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ABSTRACT

The highly developed nano-fabrication techniques allow light to be modulated with

photonic structures in a more intensive way. These photonic structures involve photonic

crystals, metals supporting surface plasmon polaritons, metamaterials, etc. In this thesis

work, three different ways for light manipulation are numerically investigated. First,

the light propagation is modulated using a photonic crystal with Dirac cones. It is

demonstrated that the zero-index behavior of this photonic crystal which happens for

normal incident waves, is lost at oblique incidence. A new method combining complex-k

band calculations and absorbing boundary conditions for Bloch modes is developed to

analyze the Bloch mode interaction in details. Second, the mechanic states of graphene

are modulated through the optical gradient force. This force is induced by the coupled

surface plasmons on the double graphene sheets and is greatly enhanced in comparison

to the regular waveguides. By applying different strengths of forces in accordance to the

input power, the mechanic state transition is made possible, accompanied by an abrupt

change in the transmission and reflection spectra. Third, the helicity/chirality of light

is studied to modulate the lateral force on a small particle. A left-hand material slab

which supports coherent TE ad TM plasmons simultaneously is introduced. By mixing

the TE and TM surface plasmons with different relative phases, the lateral force on a

chiral particle can be changed, which will be beneficial for chiral particle sorting.
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CHAPTER 1. INTRODUCTION

1.1 Concepts and a historical survey of manipulating light

Light is a gift from nature. It shines the darkness in the old days, and is used to

transport information nowadays. It travels fast as its speed in the free space reaches

approximately 3 × 108 m/s, which is considered the upper limit of all objects under

current theoretical frames. A true understanding of light takes a long history tracing

back to thousand years ago when the ancient people first made fires to lighten up their

surroundings, while from the modern view, it is interpreted as the incoherent radiation

from spontaneous emission of atoms. Newton and Hygens are the two giants who made

great steps by revealing a lot of intrinsic properties of light, such as dispersion, interfer-

ence and so on. Their completely opposite opinions of interpreting light as “particles”

or “waves” brought the academia into centuries’ debate. After summarizing the brilliant

work by Ampire, Hertz, Faraday and other scientists, Maxwell raised a set of partial

differential equations, now well known as Maxwell equations, and first unified the laws

that govern electromagnetic waves. His theory lays the foundation of classic electro-

magnetism and can explain well how light interacts with different forms of matter in a

classical sense. Decades later, Einstein pushed one step further, realizing that light could

behave like a particle, and the quanta of light referred to as photons, carry the smallest

amount of energy. After the building-up of quantum mechanics, generations of scientists

have pushed their understanding of light into a quantum era. The theory of quantum

electrodynamics(QED) starts by quantizing the spin-1 field (photons) and reaches a full
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agreement between quantum mechanics and Einstein’s theory of special relativity. It is

such a beautiful frame that predicts light matter interaction very accurately.

Accompanying the deeper understanding of light is the application by modulating

light. The interaction between light and mirrors and lenses offers great freedom to

manipulate reflection and transmission to build a whole geometric optical system. In-

teractions with electrons in materials lead to the discovery of waveguides, laying the

fundamental elements of all modern optical communication systems, and nano-photonic

devices. In general, the ideas of manipulating light falls into two branches – we either

make new materials, or build new structures. For example, the discovery of graphene

show its promise in photonic applications in a wide range. The plamon frequency of

graphene is much lower than the noble metals and thus greatly expand the plasmon

application into mid-infrared region. However, the discovery of a new useful material

does not always happen, and there are always limitations that natural materials can

never overcome such as negative refractive index. Therefore, artificial materials – new

structures with present materials – are invented to achieve those unusual properties. In

the interested range of wavelength, these artificial materials are usually built up from

micro- and nano-meter scales, and the fast developing modern nano-technology makes

it possible to operate matter in such scales and boost the field of nano-photonics. A

few subfields in nano-photonics are shown in blue boxes of Fig. 1.1, with some examples

of theoretical and numerical methods in green and commonly taken packages in orange.

Below is the a brief introduction of some.

1.1.1 Photonic Crystals

The semiconductor industry have completely changed the world since almost all mod-

ern technology relies on the invention of transistors. Semiconductors are useful due to its

cystalline structure being able to tailor the electronic response of materials and thus mod-

ulate the flow of electrons [1]. Analogically, photonic crystalline structures are made in
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Figure 1.1 Some examples of the nano-photonics sub-fields (blue), theoreti-
cal/numerical methods (green), and commonly utilized packages (orange).

which composites with certain permittivity and permeability are arranged periodically.

Photons propagating in such artificial materials will experience periodic potentials as

electrons do in semiconductors, mapping a photonic counterpart from solid state physics

such as Bloch theoremt. One of the most significant properties for semiconductors is the

formulation of electronic band diagram due to periodicity, and so is it for the photonic

crystals. In 1987, E. Yabnovitch [2] and S. Johnson [3] found that such periodic photonic

crystals can localize modes and can be used to suppress spontaneous emission resulting

from photonic bandgaps. These are the most initial ideas for the so-called photonic

crystals.

In a PhC where only permittivity is periodically arranged, the Maxwell equation can
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Figure 1.2 A sketch of 1D, 2D and 3D photonic crystals. Taken from Ref. [4].

be transformed into the wave equation form under harmonic oscillation written as:

LH ~H(~r) = (
ω

c
)2 ~H(~r), (1.1)

where LH is an Hermitian operator reading:

LH = ∇× 1

ε(~r)
∇× . (1.2)

It turns out to be a standard eigenvalue problem. By combining the Bloch theorem that

the field in a periodic potential can be the multiplication of a periodic function and a

plane wave envelop:

~H(~r) = ~u~kn(~r)ei
~k·~r,

~u~kn(~r + ~a) = ~u~kn(~r),

(1.3)

and a Fourier expansion:

~E~kn(~r) =
∑
~K

~E~kn( ~K)ei(
~k+ ~K)·~r,

1

ε(~r)
=
∑
~K

ξ( ~K)ei
~K·~r.

(1.4)
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We get a set of eigenvalue equations where a pair of (~k, n) corresponds to an eigen-

frequency ω associated with an eiqen field ~E. This set of eigen-solutions make a band

diagram for PhCs. Figure 1.2 sketches photonic crystals of different dimensions, and

Fig. 1.3 gives an example of the band diagram of a one dimensional photonic crystal.

There is a gap as shadowed in yellow and no propagating photonic modes are allow

within this range.

Figure 1.3 (a) A sketch of a 1D photonic crystal. (b) The photonic band diagram with
a forbidden band inside. Taken from Ref. [4].

Due to its special photonic band diagram, PhCs can be almost used wherever needed

to manipulate and control light. By introducing a point defect, one can easily make

high-Q cavity higher than 106. By introducing a line defect, one can make PhC fibers

or waveguides which can well confine and transmit light with little loss. By getting the

frequency of light close to the flat edge of the band gap, one can greatly enhance the

light-matter interaction since the light has a slow group velocity.

Table 1.1 summarizes the similarities between electrons in crystals and photons in

PhCs. A more detailed table can be found in Ref. [4].
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Table 1.1 Comparison between electrons in crystals and photons in PhCs

Crystals PhC with periodic ε
Periodic V (~r) = V (~r + ~a) Periodic ε(~r) = ε(~r + ~a)

Wave function Ψ Magnetic field ~H

Ψ(~r) = u(~r + ~a)ei
~k·~r ~H(~r) = ~u(~r + ~a)ei

~k·~r

HΨ(~r) = EΨ(~r) LH ~H(~r = (ω
c
)2 ~H(~r)

Figure 1.4 The coupling between a photon and a plamon gives rise to the surface plas-
mon polariton. Taken from Ref. [5]

1.1.2 Surface Plasmon Polariton

Plasmon is a quasi-particle, and it is the collective oscillation of free electron densities,

while surface plasmons are those confined on the surface of certain materials, which in

general are noble metals [6]. When the light couples with the plasmon, a polariton is

formed and is referred to as surface plasmon polaritons (SPPs) shown in Fig. 1.4.

While studying the interaction of photons and plasmons, the Drude Model is most
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commonly used to describe the electric response of metals. In the Drude Model, free

electrons in metal are driven by an external field as:

∂2

∂t2
~r + γ

∂

∂t
~r = −e

~E

m
e−iωt, (1.5)

where e is the charge of an electron, m is the mass, γ describes the damping due to loss

which is the inverse of relaxation time. By taking ~P = −ne~r and ~P = (ε − 1)ε0 ~E, the

Drude permittivity can be easily derived:

ε(ω) = 1−
ω2
p

ω2 + iγω
, (1.6)

where ωp = (ne2/(mε0))1/2 is the plasma frequency and n is the electron density. In

higher frequencies, an interband transition term needs to be appended. The Drude model

predicts and explains noble metals with free electrons having a negative permittivity

under certain range of frequencies and it is the prerequisite for a TM SPP to exist.

Considering two materials with ε1, µ1 and ε2, µ2, each filling a half space of y > 0

and y < 0 respectively, one eigen-mode which propagates along x-direction have the

transverse magnetic field:

Hz =


Ae−κ1yeiβx ∈ I

Beκ2yeiβx ∈ II
(1.7)

where β is the propagation constant and κi is the decaying factor defined as κi = (β2 −

εiµik
2
0)1/2. Substituting into ∇ × ~H = −iωεi ~E, we can get the components of electric

fields:

Ex =


κ1
iωε1

Ae−κ1yeiβx ∈ I

− κ2
iωε2

Beκ2yeiβx ∈ II
, Ey =


β
ωε1
Ae−κ1yeiβx ∈ I

β
ωε2
Beκ2yeiβx ∈ II

. (1.8)

By matching the continuity for both Hz and Ex, we are able to get the necessary condi-

tions and dispersion relations for such a TM SPP:

κ1

ε1
+
κ2

ε2
= 0,

β = k0

√
ε1ε2
ε1 + ε2

µ1ε2 − µ2ε1
ε2 − ε1

.

(1.9)
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Since for a evanescent wave, κi should be a positive number, the signs of εi should be

opposite for the two materials.

Due to the high reactive response from electrons, the surface plasmon polariton ex-

hibits deep subwavelength features. This results in (1) a strong confinement of the field

around the surface and (2) a strong enhancement of near field. These properties of SPP

makes it superior in the near field optical applications including near field transducer [7],

enhanced Raman spectrum [8], surface plasmon sensors [9] and so on.

1.1.3 Others

Besides the photonic crystals and plasmonics which are most relevant to this thesis

work, there are a lot more ways to manipulate light-matter interaction, such as making

metamaterials [10, 11], metasurfaces [12], quantum emitters [13] and so on.

Metamaterials are also a type of artificial metamaterials with periodic composites.

Different from photonic crystals, the periodicity of metamaterials is much smaller than

the wavelength of interest and the effective medium theory can be applied. Also metama-

terials are usually resonant while photonic crystals are not. The composites are tailored

by making different small resonators. The responses of all resonators towards external

fields contribute to the overall macroscopic material properties such as the permittivity

and permeability.

One of the most important applications of metamaterials is to make the left-handed

materials, in which the permittivity and permeability are simultaneously negative leading

to a negative refractive index. Phenomenologically, the permittivity and permeability

under certain resonance can be written as:

ε(ω) = 1−
ω2
p

ω2 + iγeω
,

µ(ω) = 1 +
Fω2

ω2 − ω2
0 + iγmω

.

(1.10)
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Figure 1.5 A few common designs for three dimensional metamaterials. Taken from
Ref. [14].

By making structures in which the electric resonance and magnetic resonance are

close to each other, one may essentially achieve a simultaneous negative ε and µ. Fig. 1.5

shows some common metamaterial designs taken from literature.

Metasurfaces are a special category of metamaterials, where they have very thin

thickness. They are also made of resonant units. When light hits the surface, either

their phases or polarizations would be tailored.

Quantum emitters are confined systems. When the size of the structure becomes

smaller and smaller, quantum effects have to be taken into account. A photon energy

matching the energy difference between two electronic states, resonances may occur, the

electron will be excited, and stimulated emission could happen. There are a few common

types of quantum emitters, such as dye molecules, quantum dots in semiconductors and

so on. Quantum emitters are very useful – they can act as point dipoles since their size

is really small; they can be applied into micro detectors and sensors since their intrinsic

properties rely on the local fields; they can find ways in a lot of other state-of-the-art

fields, such as quantum plasmonics, quantum information and so on.
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1.2 Outline of this thesis

In this thesis, numerical studies on manipulating light-matter interactions, expecially

on photonic crystals, plasmonics, and optical forces, are presented. It is organized as

follows:

In Chapter 2, I have a systematic study on a photonic crystal structure with Dirac

cones. This type of PhC was proposed with a zero-index behavior, while further work

shows that this behavior will be lost at oblique incidence due to the excitation of the flat

band modes. A new method by combining complex-k band calculation and absorbing

boundary conditions for Bloch modes under the frame of COMSOL Multiphysics is also

developed, and is brought to a detailed research on Bloch mode interaction inside the

PhC slab.

In Chapter 3, I explore the posibilities of using graphene as opto-mechanical devices.

I first theoretically study the optical gradient force arising from the coupling of surface

plasmon modes on parallel graphene sheets. It is found to be orders’ stronger than that

between regular dielectric waveguides. I also calculate the deformation of graphene sheets

under such gradient force by building an energy functional model, and demonstrate the

mechanical state transitions of graphene sheets. This transition is accompanied by abrupt

changes in transmission and reflection spectra, and can be used for optical actuators and

sensors.

In Chapter 4, the research on a novel optical force called the lateral force is carried

out. This force is a higher order effect and will be strongly enhanced in evanescent

fields due to its relation with the spin angular momentum of light, and is closely related

to the handness of particles. I first systematically study how this force arises in the

interaction between plane waves/evanescent waves and achiral/chiral particles. Further

more, I propose that the TE and TM surface plasmon can coexist on slabs made of left-

handed materials, and changes of each mode can tune the lateral force on the particles,
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which enhances the selectivity of chiral particle sortings.

In Chapter 5, I make a summary of my work.
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CHAPTER 2. PHOTONIC CRYSTALS WITH DIRAC

CONES

2.1 Novel photonic crystals with Dirac cones

Dirac cones are named after Dirac equations which governs the motion of elections in

a relativistic frame, with a linear solution of energy E with respect to the wavenumber

k. Usually electrons near the edge of a band has a parabolic feature since its energy

is proportional to the square of velocity: H = h̄2k2/2m∗ with m∗ to be the effective

mass of electrons taking into account its interaction with lattices. However, there are

special cases that the dispersion is linear and the electron behaves like a massless particle

governed by the Dirac equation. In this sense, the neighborhood of the linear dispersion

in the band structure is named the Dirac cone, and the degeneracy/intersection between

two linear branches is named the Dirac point. Near the Dirac point, electrons show

various extraordinary transport properties, such as quantum Hall effects.

Similarly, photonic crystals (PhCs), known as the semiconductors of electromagnetic

waves, have been shown to exhibit a variety of novel properties and promising applica-

tions [4, 15, 16, 17, 18]. Their most notable features lie in the band structures shown

in Chapter 1, which is closely related to the symmetry of the reciprocal lattice, and the

interaction between photons and scatterers. Though photons in free space are massless,

the interaction between photonic modes and the lattice will bring in an effective mass

and thus the parabolic feature in the dispersion as well. However, there are also special

cases where a Dirac cone could appear in PhCs.
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(a)

(b)

(c) (d)

(e)

Figure 2.1 Dirac cone photonic crystal examples from literature. (a) Band diagrams

of a hexagonal PhC with Dirac cones. (b) Degeneracy of the Dirac cone

is broken by breaking the time reversal symmetry. A gap is opened and

a unidirectional state bridging the upper and lower bands appears. Taken

from [19]. (c) Experimental realization in Ref. [20]. The edge state is uni-

directional and is robust against any defects. (d) Photonic oscillations over

time, which features the Zitterbewegung motion, where d is width of the

injected gaussian beam and a the periodicity of the PhC with dirac cones.

Taken from Ref. [21]. (e) Pseudo-diffusive transport behavior. Different

lines denotes incident waves with different frequencies. The lowest black

wiggling solid line represents the Dirac frequency while all others are bias

from that. The Dirac frequency line is mostly around a constant, show-

ing that the tranmittance is inversely proportional to the thickness. Figure

taken from Ref. [22]
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In 2008, F. Haldane and S. Raghu [19] first theoretically demonstrated the analogs

of quantum Hall effects in a two dimensional PhC. While a PhC with triangular lattices

can preserve a Dirac-point doublet at the boundary of the Brillouin Zone, breaking the

time reversal symmetry by using opto-magneto materials can perturb the degeneracy

and a unidirectional edge state is guaranteed to appear, bridging the whole gap. The

number and the direction of these unidirectional states may be derived from the Chern

number difference between the upper band and the lower band. Their ideas were realized

r

a

ᴦ X

M

(a) (b)

Figure 2.2 (a) The real lattice of the PhC. The embedded rods are made of alumina,

with ε = 9.8, µ = 1. The radius of the cylinder is r = 1.59mm, and the

lattice constant is a = 4.66153r for the Dirac cone to appear. (b) The

reciprocal lattice of the PhC.

experimentally by Z. Wang et al. in 2009 [20]. Their works laid the foundation of the

booming field of topological photonics, and later novel properties of PhCs with Dirac

cones were intensively studied. In 2008, X. Zhang [21] demonstrated the existence of the

Zitterbewegung motion of photons in a two dimensional PhC with Dirac points, which

was first predicted by Schrodinger originating from the interference between the positive

and negative energy states, but very hard to be observed in an electronic system. In

2010, M. Diem et al. [22] proposed a pseudo-diffusive transport behavior in which the
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(a) (b) (c)

(d) (e)

Figure 2.3 The normalized band structure for TE modes (taken from Ref. [23]) when

the ratio a/r is (a) equal to (b) smaller (c) larger than 4.66153. (d) & (e)

The complete band diagram with a/r=4.66153. There is a triple degeneracy

at the Γ point and the Dirac frequency is 23.05161 GHz.

transmittance near the Dirac point of a two dimensional hexagonal PhC is inversely

proportional to the thickness of the PhC. In 2011, X. Huang et al. [23] proposed a

PhC structure with a square lattice. By modulating the lattice parameters, they found

Dirac cones at the center of the Brillouin zone and, at the Dirac point, the PhC behaves
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similarly to a zero-index material. However, due to the symmetry of the lattice, a flat

band crossing the Dirac point corresponding to magnetic longitudinal modes inevitably

appears, and it is known that off-normal incident waves can excite modes from this flat

band.

Work on this chapter is based on their findings and a thorough study on the flat

band Bloch modes using a newly developed method is carried out. In this chapter, the

complex-k band diagram is first calculated and a numerical demonstration is shown later

how the flat band contributes to the behavior of the PhC, which results in the deviations

from the the zero-index medium response when illuminated by a wave with a non-zero ky

(wave vector component parallel to the interface). Then by implementing an absorbing

boundary condition for Bloch waves, a semi-analytic formulation is built to explain the

flat band modes couple and contribute to the transmission spectrum features. The origin

of the different line-shape features of the resonances and how they are affected by material

losses are discussed as well.

2.2 2D photonic crystals with Dirac cones at Γ-point

2.2.1 Accidental degeneracy on the center of Brillouin zone

A detailed numerical study of the PhC with Dirac cones following Ref. [23] are first

presented. Noting that there have been different conventions to define polarizations

in the photonic area, and for clarity the TE mode as used throughout this chapter, is

denoted whose electrical field parallel to the rod axis (out of plane). In the simulation, a

square lattice in which alumina rods are periodically surrounded by vacuum is taken (see

Fig. 2.2). The permittivity and permeability of the alumina rods are chosen as ε=9.8 and

µ=1, respectively. By changing the filling ratio of the rods, the band gap between the

doubly degenerated branches representing the dipolar modes, and the single monopole

mode branch will change accordingly. Details are shown in Fig. 2.3. Figure 2.3 (b) and
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(a) (b) (c)

Min Max

Figure 2.4 Normalized Ez field distribution of the eigen-modes at the Dirac point. The
triple degeneracy contains one monopole mode and two dipole modes.

(c) show the band diagram for r/a < 4.66153 and r/a > 4.66153 respectively, while

Fig. 2.3 (a) represents that with r/a = 4.66153. It is apparent that at a specific filling

ratio (radius of the cylindrical rods), the gap closes and a triple degeneracy appears. This

degeneracy at the center of the Brillouin zone of the reciprocal lattice, formed by two

linear branches (Dirac cone) and a third flat band, merely resulting from the geometrical

parameter modulation, is called accidental degeneracy. In our configuration, it happens

at a = 4.66153r. A complete band diagram showing the Dirac cone is plotted in Fig. 2.3

(d) and (e). Figure 2.4 shows the normalized field distribution (Ez) with monopole and

dipole profiles at the Dirac frequency.
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Figure 2.5 (a) The transmission spectrum versus the incident angle. The PhC is finite

in the propagation direction (x direction), in which 11 rows are present (refer

to Fig. 4 for a visual sketch). (b) A cut-plane of the Dirac frequency over

the full band. There are intersections with the middle band. (c) A top view

of the cut-plane and the intersections. Each blue horizontal straight dash

line indicates a certain ky (component of the wave vector parallel to the

interface between the air and PhC), or the incident angle. Numbers of the

horizontal straight lines correspond to peaks in (a). It is shown that peak 1

corresponds to the zero-index mode with kx = ky = 0, due to the coupling

with the linear branch. Peak 2 to 10 indicate there are 2 propagating modes

with their reflective counterparts in the PhC, while peak 11 corresponds

to only 1 propagating mode and its reflective counterpart, both due to the

coupling with the flat band.

2.2.2 Zero-index and loss of zero index behavior

This PhC with Dirac cone at the center of Brilliouin zone (k=0) behaves similarly

to an homogeneous zero-index material. Figure 2.6 is extracted from Ref. [23]. It shows

that at normal incidence to the interface, all phases inside the medium will flat out. For

the propagation phase of a monochromatic wave simply satisfies θ = nk0l where n is
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the effective index, k0 is the free space wavenumber, and l is the distance that the wave

propagates, a zero-index medium accumulates no phase change for certain waves and the

outgoing phase front will be subject to the shape of the interface. It is worth noting that

although the periodicity of the PhC is usually comparable to the free space wavelength

where the effective medium theory fails, it is still valid to describe the whole media by

an effective index near the Dirac cone, where the effective wavelength is ideally infinity.

Figure 2.6 Field plots of zero-index behavior taken from Ref. [23]. (a) A plane wave
is normally incident on a homogeneous impedence matched zero index ma-
terial. Phases in the medium are the same everywhere, and the outgoing
wave front is subject to the shape of the interface between the medium and
air. (b) A plane wave at the Dirac frequency is normally incident on the
PhC. The PhC behaves as an impedence matched zero index medium and
the outgoing wave front is subject to the interface between the PhC and the
air too.

The classical Fresnel law nisin(θi) = ntsin(θt) tells us that at the interface of two

media with ni=1 and nt=0 respectively, all waves with oblique incident angles will be

totally reflected. In addition, the reflation between impedance and reflection r = (Z −

1)/(Z+1) tells that even for normal incidence, only an impedance matched media can let

the waves pass through. However, in this PhC, electromagnetic waves are still allowed to

transmit at oblique incidence and its angular transmission spectrum is featured by a few
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Fabry-Perot-like peaks [see Fig. 2.5 (a)]. This is an indication that modes with a non-zero

ky are excited. Figure 2.5 (b) is a cut-plane of the Dirac frequency over the complete

band diagram. Figure 2.5 (c) is a top view of the cut-plane and the intersections. Each

blue dashed line represents incident waves with a certain ky (the incident angle). It is

clear that the normal incidence line (ky=0) intersects only at the center where kx is 0.

However, the oblique incidence lines (ky 6= 0) intersect with the band more than once at

kx 6= 0. This indicates that either one or two propagating modes are excited, with their

reflective counterparts. In the following sections, results from further investigation on

these modes are presented and how these resonances are formed is explored, by building

up our own numerical methods.

2.3 Bloch modes interaction

For a full understanding of the middle flat band mode excitated by the oblique in-

cident waves, and the interaction between different Bloch modes inside the PhC slab,

a new computational technique using the commercial electromagnetics package COM-

SOL Multiphysics is implemented, by combining the complex-k band calculations and

absorbing boundary conditions for Bloch modes. This method takes some advantages

over the traditional ones. Traditional methods employed for the study of PhCs include

band calculations and reflection/transmission spectra measurements [24]. However, band

calculations only give information on the number of Bloch modes and on the eigen-field.

Scattering measurements describes the finite slab in a macroscopic way and treat it as a

“black box“ missing information on the details, such as how different modes interact and

how each mode gets coupled into the radiated waves. In the new method presented, the

complex-k band calculations will give information of both propagating and evanescent

modes under excitation with certain frequencies and incident angles, while the absorbing

boundary conditions eliminates the back-reflection from the other end of a slab, and help
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Figure 2.7 Complex-k band diagram. x-axis: the eigenvalue of the propagating con-

stant. y-axis: frequency of the EM wave. The black dots denote the real

part of the eigen-kx, and the red dots denote the imaginary part of the

eigen-kx. The blue dash shows where the Dirac frequency lies. (a)&(b):

Complex-k band structure for normal incidence (ky = 0) at different ranges

of frequencies. (c)&(d): Complex-k band structure for the incident angle of

0.4 rad (ky = 188 m−1) at different ranges of frequencies. From (a) and (c),

we plot the extended Brillouin zone, from which we can see the periodicity

for the real part of kx.



22

us gain the coupling efficiency between Bloch modes and planewaves across the PhC-air

interface.

2.3.1 Complex-k band diagram and eigen-wavevector calculation

Generally the eigenfrequencies of a PhC are calculated at given Bloch vectors as shown

in the last section. However there are many cases in which knowing the eigenvalues of

wave vectors at a given frequency is more helpful. In this case, the shape of modes

and their interaction at a given frequency (the Dirac frequency) and a given incident

angle are of more interest. Thus a so-called comlex-k-band calculation is needed. This

section shows how this information can be obtained from simulations with the package

COMSOL Multiphysics, by specifying the field equations in their weak form module.

In view of the Bloch theorem, the electric field in a periodic photonic structure can

be written as the product of a periodic function and a plane wave envelope function:

~E(~r) = u(~r)e−i
~k·~rÊ, u(~r) = u(~r + ~a) (2.1)

For the TE wave (the electric field parallel to the rod axis), the vectorial wave equation

is reduced to a scalar one:

∇ · ( 1

µ
∇Ez) + ε

ω2

c2
Ez = 0 (2.2)

Replacing Ez by its Bloch form, it becomes:

∇2u− i∇ · (u~k)− i~k · ∇u− k2u = −εω
2

c2
u (2.3)

Taking the method in Ref. [25], integral of the weak expression by multiplying a test

function v on both sides and integrating by parts in one unit cell lead to:

0 =

∫
dΩ[−k

2

µ
vu− iv

µ
~k · ∇u+

iu

µ
(∇v) · ~k − (∇v) · ∇u

µ
+
εω2

c2
vu]

=

∫
dΩ ·W

(2.4)
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where v is the test function of u. Since only the in-plane (xy plane) wave vector is

considered, there are three degrees of freedom in the weak expression, kx, ky and ω, where

ky and ω are conserved over the air/PhC boundary. To calculate the eigenvalues of kx, the

other two need to be prescribed. Frequencies are scanned within a large range containing

the Dirac frequency for both normal (ky = 0) and oblique (ky = 188m−1) incidence, and

results are plot in Fig. 2.7. All black dots denote the real part of eigen-kx, while all red

dots denote the imaginary part. Figure 2.7(a) & (b) are calculated at ky=0 implying

normal incidence, while Fig. 2.7(c) & (d) are calculated at ky=188 m−1 implying oblique

incidence. It is clearly seen that for the normal incidence, there is a triple degeneracy

at f = 23.05161GHz with eigenvalues kx = 0 (black dots). Therefore, the Bloch wave is

reduced to the periodic function u(x, y), and the Bloch phase term turns into a constant

independent of the propagation distance. Around the degeneracy, the frequency is linear

to the wave number, as expected for that near the Dirac cone. However, the photonic

crystal’s behavior is quite different when a non-zero ky is presented. Figure 2.7(c) and

Fig. 2.7(d) show that at ky = 188m−1, the Dirac cone and the zero-index mode disappear.

Instead, more Bloch modes appear—the mode with vanishing Im(ky) is a propagating

mode with propagation constant kx = 41.27m−1 (or 0.0487 in units of 2π/a); the others

with non-zero Im(ky) are attenuated modes.

2.3.2 Monomodal and multimodal resonances in the PhC slab

In the preceding sections, the eigenmodes with a given frequency and one component

of the wave vector are analyzed, and it leads to the conclusion that when ky is nonzero,

there will be propagating Bloch modes inside the PhC. Therefore, these Bloch modes are

likely to be reflected and transmitted multiple times at the PhC-air interface as plane

waves in a homogeneous dielectric slab. It is hypothesize to be the reason for the peaks

appearing in the angular transmission spectrum. To prove this, two sets of simulations

are performed. In one set, the amplitudes and phases of both incoming and outgoing
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plane waves were measured [Fig. 2.8 (a)]. From Eout = MfullEin, the transfer function

Mfull was calculated. In the other set, the transfer function under the assumption of

multiple reflections should satisfy:

MFP = tpa ·A · tap + tpa · (A · rpa ·A · rpa) ·A · tap

+ tpa · (A · rpa ·A · rpa)2 ·A · tap + · · · · · ·

= tpa · (I−A · rpa ·A · rpa)−1 ·A · tap

(2.5)

Figure 2.8 (a) A sketch for multiple reflections in the PhC. The incoming and outgoing
waves are plane waves. The field inside the PhC is the superposition of a
set of Bloch waves. In the propagating direction (x direction), 11 rows of
rods are present. In (b) and (c), |E| is plotted, with f = 23.05161GHz
and ky = 188m−1. (b) Plane waves are excited and absorbed at the left-
most boundary, and the relevant Bloch modes are absorbed at the rightmost
boundary. (c) One Bloch mode is excited and its reflective counterpart is
absorbed at the leftmost boundary; plane waves are absorbed at the right.

The subscript “p” denotes PhC and “a” denotes air. t and r refer to the transmission

and reflection coefficients at the PhC-air interface, and A denotes the phase change of the

Bloch mode traveling from one end of the PhC to the other end. Generally, all variables
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in the equation should be a matrix, and the dimension of the matrix equals the number of

the eigenmodes. The total field inside the PhC could be expanded into a complete linear

combination of all Bloch modes, including both propagating and evanescent modes, while

if the PhC waveguide is long enough, the effect of the evanescent modes can be neglected.

Therefore the resonant behavior of a long PhC slab is determined by the propagating

waves to a high degree of accuracy.

Figure 2.3 shows the traditional band structure consisting of only the propagating

modes. Figure 2.5 (c) shows that peak 2 to 10 correspond to double propagating modes

in the PhC, while peak 11 corresponds to a single propagating mode. In the monomodal

case (peak 11), the matrix is reduced to a scalar, while in the bimodal cases (peak 2 to

10),

tap =

t1ap

t2ap

 , rpa =

r11
pa r12

pa

r21
pa r22

pa

 ,
A =

e−ikx1x 0

0 e−ikx2x

 , tpa =

(
t1pa t2pa.

) (2.6)

The superscripts “1” and “2” denote different eigenmodes. The off-diagonal terms of the

reflection matrix do not necessarily disappear, since there might be coupling between

the two Bloch modes, or in other words, there might be transitions between different

eigenmodes in the presence of a pertubation. Then the problem of measuring the transfer

matrix turns into the problem of measuring the reflection and transmission coefficients at

each interface. To resolve this, a port that can perfectly excite and absorb Bloch waves

was developed. The port boundary condition is based on an orthogonality relation of

the eigenmodes of the PhC. We again implement this via the weak form specification in

the COMSOL package.
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The weak expression for a general frequency domain EM problem can be separated

into a domain and a boundary part [26], and the boundary term can be simplified as:

Wb = ~v · [n̂× (
1

µ
∇× ~E)] = ±iω

c
vHy (2.7)

Here, we choose n̂ = −x̂ at the input side (left) and n̂ = x̂ at the output side (right).

This constraint at the boundary allows us to define a port that can excite or absorb any

mode, as long as we can expand it into a linear superposition of all known eigenmodes

[(Eqn. (11.1) in [27]], and retrieve each component by taking the inner product between

the partial field and the total field, as long as a valid orthogonality relation is utilized.

Note that, in a lossless system, we shall take Eqn. (6) in [28] as the orthogonality relation,

while in a lossy case, a generalized form is essential [Eqn. (4) in [26]]. For a succinct

summary, the field Hy of the Bloch modes that we need to excite or absorb reads

Hy =
∑
n

|n >< n|Hy >=
∑
n

hyn

∫
dy(e∗znHy + Ezh

∗
yn)∫

dy(e∗znhyn + eznh∗yn)
, (2.8)

where ezn and hyn are the z component of the electric field and the y component of the

magnetic field for the eigen-modes that we import from the calculations discussed in

Section 2.

Figure 2.8 shows the setup. We truncate the air/PhC/air system into different sec-

tions. In Fig. 2.8 (b), a plane wave with a given ky is excited at the left and the

corresponding Bloch wave is absorbed by the right port. From this simulation, we can

determine tap. In Fig. 2.8 (c), we import the eigen-field obtained from the complex-k

band calculation, and then this Bloch mode is excited and its reflective counterpart is

absorbed. From the latter simulation, rpa and tpa can be obtained.

Figure 2.9 (a) and Fig. 2.9 (b) show a comparison between the energy transmission

calculated from a full simulation and the multiple-scattering assumption. Both results

are in excellent agreement, except for the smallest angles due to numerical precision

limitations. Since the Q-factor is very high, the spectrum contains some extremely

narrow peaks for low incident angles which are difficult to resolve accurately. By adding
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loss into the system (setting ε = 9.8 + 6.8 × 10−4i for the alumina rods), those peaks

are effectively lowered and broadened. In this way, results from both methods coincide

perfectly in Fig. 2.9(c) and Fig. 2.9(d).

All these resonances can be classified into three categories. Peak 1 results from the

excitation of an impedance-matched zero-index mode, which is the mode of interest

in [23]. Peak 11 has a symmetric line shape, which is due to the multiple reflections and

transmissions of a single Bloch mode in the PhC slab, and is the lowest-order resonance

for the steep-slope mode in Fig. 2.5(c). The other peaks at small incident angles are of

more interest. Their asymmetric, or Fano-like features indicate that at least two different

modes contribute to the spectrum simultaneously, with one playing the discrete resonant

role, and the other working as the continuous background process [29]. As a first-order

approximation, the coupling (the off-diagonal term in rpa) between two eigen-modes

are ignored, and the transfer matrix of each mode is calculated separately. Results are

displayed in Fig. 2.10 (a). The red resonant curve corresponds to the small-slope mode

in Fig. 2.10 (c). Its Fabry-Perot resonance origin preserves the symmetric line shape.

The blue curve shows a continuous non-resonant feature, contributed by the steep-slope

mode, and modifies the total transmission from symmetric to asymmetric. For a more

rigorous analysis, one needs to diagonalized the matrix and take superposition of the

two eigen-Bloch modes to find the exact resonant and background modes, so that the

coupling effects are taken into account. However, it’s apparent that the small-slope mode

dominates the bimodal resonance.

One might also have found that the small loss added into the system has a much more

significant impact on the bi-modal resonance than the monomodal one, suppressing the

peak into less than half of its original. This can be understood from the dispersion

relations. Figure. 2.10 (b) plots the dispersion relations for two incident angles. The

blue curve corresponds to the eigenmode with larger incident angle of 0.356 rad (peak

11), while the red curve corresponds to the bi-eigen-modes with smaller incident angle
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of 0.112 rad (peak 7). The resonant mode has a much smaller slope (group velocity) in

the bimodal case than that in the monomodal case (approximately 2.7 times smaller in

Fig. 2.10 (b)). This slow light effect implies the existence of a higher density of states,

making the field enhancement stronger and the Q-factor larger in a lossless system.

However on the other side, these high Q-factor peaks will also be more sensitive to

system losses, since a slower light is more readily absorbed when propagating.

Figure 2.9 Energy transmission(|M |2) vs. incident angle. The black lines denote the
transfer function M which comes from the direct measurement of a full
simulation in the air/PhC/air system. The red dots denote the transfer
function M determined from the multiple reflection assumption. (a) and
(b) correspond to a lossless system, where the alumina rods have ε = 9.8.
(c) and (d) correspond to a lossy system, where the alumina rods have
ε = 9.8 + 6.8× 10−4i.
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In addition, since these peaks are the result of Fabry-Perot resonances, the number of

the peaks is related to the number of unit cells in the normal direction. As the slab grows

thicker (the number of unit cells in the normal direction increases), the slab will be able

to accommodate more resonant modes, and thus the number of sharp peaks will increase.

The positions of the peaks will shift too. However, there is no one-to-one correspondence

between the number of peaks and the number of unit cells. Recalling that the resonant

wavelengths of a Fabry-Perot cavity are typically functions of the size of the cavity, i.e,

for a perfect Fabry-Perot cavity, a strict standing wave boundary condition has to be

met, a similar situation happens to the monomodal resonance at large incident angles.

When there is only one propagating Bloch mode excited, the denominator of the the

transfer matrix is commutable and reduces to [1 − r2
paexp(−2jkxd)]−1. Therefore the

position of the monomodal resonance could be estimated as kxd ∼ nπ, due to the non-

zero phase at the boundary and on condition that no higher-order diffraction happens.

In the bimodal case, the simulation becomes more complicated, since there will be no

simple standing-wave conditions. However, one can always find the resonant positions

by performing a numerical study of the denominator as is shown here.

2.4 Conclusion

In this chapter, a numerical study of the flat band Bloch modes in a photonic crystal

with Dirac cones is reported. It is proved numerically that the non-zero ky gives rise

to non-zero index medium behavior. Furthermore, to understand how modes propagate

and interact in the PhCs, the weak expressions are derived and the complex-k band and

transmission calculations are performed. Though the explanation of the spectral features

turns out to be multiple reflections of the eigenmodes, the simulation method offers us a

way to separate the coupled Bloch modes in a PhC slab and manipulate each with great

freedom. This method is used to explain the physical origins of the different line-shape
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Figure 2.10 (a) Energy transmission of both Bloch modes in the small incident angle
regime, ignoring the coupling between them. The blue curve corresponds
to the steep-slope mode in Fig. 2.5 (c), while the red curve corresponds to
the small-slope mode. (b) Dispersion relations of two excited modes with
different incident angles. The black dashed-dot line marks the excitation
frequency of 23.05161 GHz. Its intersection with the blue curve shows
the propagating and counterpropagating Bloch waves excited at peak 11 in
Fig. 2.5 (a). The intersection with the red curve shows the two Bloch modes
and their counterpropagating parts at small incident angle with respect to
peak 7 in Fig. 2.5 (a).

features in the transmission spectrum. In addition, our method allows to study the

surface scattering of a truncated PhC by eliminating the back reflection, and will prove

beneficial to understand the scattering properties of more complicated photonic crystal

structure of final extent.
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CHAPTER 3. OPTICAL FORCES INDUCED BY

COUPLING OF SURFACE PLASMON POLARITONS OF

GRAPHENE SHEETS

3.1 Introduction

Light-matter interactions exist in various forms and optical force is one of the most

intuitive representations. Recently, researchers have been exploring the possibilities of

utilizing optical force in micro- and nano-systems for a variety of practical applications,

such as optical tweezers [30], controlling photonic circuits [31], etc. However, under many

circumstances, the opto-mechanical effects are fairly inconspicuous due to weak light-

matter interactions. Therefore, many efforts have been taken towards the enhancement

of optical forces [32, 33, 34].

In this chapter, I first investigate the interaction (optical gradient force) between

two graphene sheets, which may be adopted in micro- and nano-mechanic systems, and

reveal such force originating from the coupled surface-plasmon-polariton (SPP) modes of

graphene layers can be greatly enhanced with several orders stronger than that of regular

parallel-waveguide system. Then in a cavity-like system with pre-curved graphene sheets,

the potential configurations of deformation−mechanical states−under certain bending

energy are explored. Arising from the strongly enhanced gradient force between graphene

layers, the phenomena of mechanical state transitions are demonstrated, accompanied

by abrupt changes in reflection and transmission spectra of the system.
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(a) (b)

Figure 3.1 A sketch of the radiational force and the gradient force. (a) Light is re-
flected by the medium. The change in its wave vector results in radiational
forces. Taken from Ref. [13] (b) Photons can transit between two adjacent
waveguides, resulting in an attractive for repulsive force between the two
waveguides. The direction of the force is the same as the energy gradient.
Taken from Ref. [32]

3.1.1 Optical forces and Maxwell stress tensor

Forces come from momentum exchange. Depending on whether the transferred mo-

mentum is parallel or perpendicular to the wave propagation, one can divide the op-

tical force into two categories: the radiational or scattering force, and the gradient

force [13]. The radiational force is directly associated with the wave-vector of light and

is interpreted as the momentum interchange between light and matter when the prop-

agation path is altered due to the inhomogeneity of the space [35, 36]. The optical

gradient force essentially refers to the gradient of field energy, which plays an impor-

tant role in integrated optics, and has been intensively studied in coupled waveguide

systems [31, 37, 38, 39, 40, 41, 42, 43, 44, 32]. Figure 3.1 (a) and (b) show the difference

between the radiational force and gradient force.



33

Here I give a brief introduction how the optical forces can be calculated. Starting

from the Lorentz force density that:

~f = ρ ~E + ~J × ~B, (3.1)

and replacing ρ and ~J by the Maxwell equations, a symmetric form can be got as:

~f = ε0(∇ · ~E) ~E +
1

µ0

(∇ · ~B) ~B +
1

µ0

(∇× ~B)× ~B + ε0(∇× ~E)× ~E − ε0
∂

∂t
( ~E × ~B). (3.2)

Since for any vector ~A, there is

(∇ · ~A) ~A+ (∇× ~A)× ~A

=(∇ · ~A) ~A+ ( ~A · ∇) ~A− 1

2
∇A2

=∇ · ( ~A ~A− 1

2

←→
I A2),

(3.3)

where
←→
I is the unit rank-2 tensor. By substituting E and B, we finally reach:

~f +
∂

∂t
~g = ∇ ·

←→
T , (3.4)

where

~g = ε0 ~E × ~B,

←→
T = ε0 ~E ~E +

1

µ0

~B ~B − 1

2

←→
I (ε0E

2 +
1

µ0

B2),
(3.5)

~g is the momentum density of the electromagnetic field, and
←→
T is called the Maxwell

stress tensor. By integrating both sides, we have∫
~fdV +

d

dt

∫
~gdV =

∫
∇ ·
←→
T dV =

∮
n̂ ·
←→
T dS. (3.6)

If we choose one oscillatory circle, the second term goes to zero, and the time averaged

force can be simply expressed as the surface integral of the Maxwell stress tensor.

3.1.2 Surface plasmons of graphene

Graphene, a two dimensional (2D) material composed of one layer of carbon atoms

in a honey comb lattice, has attracted intensive attention due to its unique proper-

ties in various aspects [45, 46]. In particular, graphene provides a new platform for
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a variety of intriguing optoelectronic and opto-mechanical effects. The highly reactive

electric response of graphene results in strongly localized plasmons residing within deep

subwavelength region, which leads to a prosperous subfield named graphene plasmon-

ics with plenty of promising applications ranging from terahertz (THz) to the infrared

regime [47, 48, 49, 50]. In fact, the low carrier density of graphene on one hand leads

to a high kinetic inductance and thus a much higher confinement than metals at low

frequencies. On the other hand, it makes the graphene more sensitive to carrier den-

sity changes and more tunable in the electromagnetic properties when doping or a gate

voltage is applied [51].

From the single electron approximation, and considering low temperature cases where

EF << kBT , the surface conductivity can be written in the intraband part and an

interband part:

σintra =
e2EF

πh̄2(γ − iω)
,

σinter =
e2

4h̄
[θ(h̄ω − 2EF ) +

1

pi
ln|2EF − h̄ω

2Ef + h̄ω
|].

(3.7)

Considering different dopings or gate voltages, the graphene layer can support either a

TM surface plasmon polariton, or a TE one. The dispersion relations read
kTMspp = k0

√
1− 4ε20c

2

σ2
s

kTEspp = k0

√
1− µ20σ

2
sc

2

4

. (3.8)

Figure 3.2 shows that how the optical properties such as transmission and absorption

are tuned by applying gate voltages.

3.2 Enhanced optical forces

For two dielectric slab waveguides (thickness t), settled in parallel with separation

dw as shown in Fig. 3.3 (b), the tails of fields for guided modes interact with each other,

introducing a force perpendicular to the propagation direction. Mimicking the case of
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Figure 3.2 Applying different gate voltages on graphene, its opto-electronic properties
can be tuned, giving rise to different absorption and transmission. Taken
from Ref. [51].

dg

t

dw

Symmetric Mode

Anti-symmetric Mode

(a)

(b)

(c)

y

x
z

Figure 3.3 Schematic configurations of parallel graphene sheets (a) and parallel di-
electric waveguides (b). Surface plasmons, propagating along x-direction
either of symmetric or anti-symmetric mode (c), induce interaction be-
tween graphene sheets. Signs of “+” and “−” denote the oscillating surface
charges. Straight and curved arrows show the directions of surface currents
and electric fields, respectively. Circled cross and dot symbols indicate the
magnetic fields.
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Figure 3.4 (a) Dispersion relations for SPP modes of parallel graphene sheets in com-
parison to TM modes of the parallel dielectric waveguides (εd = 3.8) with
t = 1.5 (left set in green) and 2.5 µm (right set in red). dg = dw = 100 nm.
The case of light line (dash-dotted line) is set as reference. Solid (dashed)
lines correspond to the symmetric (anti-symmetric) modes. The green (red)
lines correspond to the modes in a pair of dielectric slabs with thickness of
1.5 µm (2.5 µm). (b) kSPP-dg dependency for parallel graphene sheets at
40.4 THz: symmetric (solid line) and anti-symmetric (dashed line) modes.

parallel-waveguide systems, here, the interaction between two graphene layers upon the

excitation of SPP modes is considered, with the field decaying away from graphene at

both sides [see Fig. 3.3 (a)]. It is noted that the coupled SPP modes can be classified

as symmetric or antisymmetric, depending on the relative phase of surface currents or

electromagnetic (EM) fields [see Fig. 3.3 (c)]. For uniform notation, the symmetry of the

coupled SPP modes is denoted the same as surface currents throughout the paper, since

the currents and fields may show opposite symmetry.

Figure 3.4 (a) shows the comparison of the dispersion relations for SPP modes of

two coupled graphene sheets (dg = 100 nm) and TM0 modes (magnetic field H along

z-direction) of two coupled slab waveguides (dw = 100 nm) made from silicon with

refractive index n = 3.48 [32]. For the parallel-waveguide configuration, two different

thicknesses are considered, i.e., t = 1.5 and 2.5 µm, respectively. From Fig. 3.4 (a), the

advantages of coupled graphene sheets mainly lie in two aspects: much better separated

modes in dispersion relation imply a much stronger coupling effect between graphene
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layers, and the settlement of modes much further away from the light line [dash-dotted

line in Fig. 3.4 (a)] illustrates a stronger localization of SPPs, leading to a much larger

field gradient in the ambient medium (air) and therefore the force as well. By setting the

frequency 40.4 THz, it’s shown in Fig. 3.4 (b) that the eigen values of the propagation

constant of coupled SPP modes (kSPP) dependent on the separation between graphene

sheets dg. When the two graphene layers are well separated, i.e., dg is large enough, the

coupling in-between can be neglected and correspondingly, the symmetric (solid line)

and anti-symmetric (dashed line) modes are degenerate. As the separation dg decreases,

the interaction between graphene layers gets stronger and the degeneracy of SPP modes

breaks eventually.

To provide an intuitive analysis to the gradient force in the aforementioned parallel-

graphene-layer or parallel-waveguide system, both the graphene layers or waveguides

as two adjacent finite potential wells are compared. Though light is confined on the

graphene sheets or inside the waveguides, the quantum tunneling effect still allows the

photons to transmit from one to the other, and it is such exchange of photons that leads

to the gradient force. Assuming U = Nh̄ω representing the coupled EM field energy,

where N is the number of photons, h̄ the reduced Plank constant and ω the circular

frequency of the EM wave, the induced gradient force can be expressed as follows [43]:

F = −∂U
∂y

= −U
ω

∂ω

∂y
|kspp . (3.9)

It must be noted that ω, y and kSPP are not independent, but tied with each other

under the following dispersion relation of the coupled graphene SPPs (see Appendix C

for detailed derivations):

κ(±e−κdg − 1) = −i2ωε0
σs

, (3.10)

where κ = (k2
spp − k2

0)1/2 denotes the decaying factor and σs is the surface conductivity

of graphene. In the long wavelength and high doping limits under our consideration, the
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Figure 3.5 Comparisons of optical force for parallel-graphene-sheet and parallel-waveg-
uide configurations with same separation 100 nm in-between: (a) repulsive
force for symmetric mode; (b) attractive force for anti-symmetric mode. The
input power is set as 1 W/m.

optical conductivity σs is dominated by the intra-band transitions, which follow the local

Drude model expressed as [52]

σs(ω) =
e2EF

πh̄2(τ−1 − iω)
=

α

γ − iω
, (3.11)

where e is electronic charge, EF is doped Fermi level, γ = τ−1 is collision frequency

with τ denoting the momentum relaxation time, and α so-called Drude weight. In our

following calculations, we assume α = 7.6 × 1010 (Ωs)−1 and γ = 1.89 THz as reported

in Ref. [53].

From the implicit function theorem for differentiation of dependent variables [54], the

gradient force F in Eqn. 3.9 can be rewritten in the form of

F = +
U

ω

∂ω

∂kspp
|y
∂kspp
∂y
|ω, (3.12)

and qualitatively, it can be determined whether the force F is attractive (negative sign)

or repulsive (positive sign) based on Fig. 3.4, i.e., antisymmetric (symmetric) mode

corresponds to attractive (repulsive) force. We can also understand the nature of such a

force in an intuitive view considering the oscillating charges. Take the symmetric-mode

case as an example where both currents and charges are in phase, the in-phase currents
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result in an attractive force while the charges with same sign will lead to a repulsive

force. Therefore, a competition exists between the forces arising from the currents and

charges, which determines the net force, and in our configuration of parallel graphene

layers, the interaction of charges plays a dominant role.

Quantitatively, the time-averaged force between graphene layers can be calculated

with Maxwell stress tensor
↔
T defined in Eqn. 3.5. Figure 3.5 shows the comparison

of calculated forces (plotted with absolute values in log-scale) for the configurations of

parallel graphene layers and parallel waveguides, where the separations in-between are

set the same with dg = dw = 100 nm. Two different thicknesses, i.e., t = 1.5 and 2.5

µm, are considered for the parallel-waveguide case, and as expected, thinner slabs show

a stronger force since the thicker the slabs, the stronger confinement of EM fields inside

of waveguides but weaker fields outside leading to weaker interaction in between. From

Fig. 3.5, the force between graphene layers can be several orders stronger than that is in

the waveguide cases, and such a dramatic enhancement of interaction, originating from

much larger field gradients in the ambient medium (see dispersion relations in Fig. 3.4

for a direct evidence), will be greatly beneficial for various practical applications in opto-

mechanical systems. It also worth noting from Fig. 3.5 that the gradient optical force

between graphene layers does not change monotonically with frequency. This can be

understood qualitatively via the expression of the force F ∝ (κ2/ω2)|B|2e−κdg , where B

denotes the amplitude of the field between graphene layers (see Appendix C for detailed

derivations). Therefore, the force is determined by two competitive aspects, i.e., κ,

which represents the gradient of the field, and |B|2e−κdg , which corresponds to the field

strength at the evanescent tail. At low frequency side, the system has smaller kSPP and

correspondingly smaller κ [see Fig. 3.4 (a)], which means the EM field between layers

is stronger but with lower gradient. Therefore, the strength of the field dominates over

the gradient for the force at low frequencies. It is the opposite case for high frequencies,

where the gradient of the field is large while with weak field strength. A trade-off does
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exist leading to the strongest force. It is noted that the force of parallel graphene layers

at frequencies over 50 THz are marked with dotted line in Fig. 3.5, since the actual force

would be smaller due to extra losses induced by phonon-electron interactions.

3.3 Mechanical state transitions from the force

In the last section, it’s been demonstrated that a SPP-induced significant force en-

hancement between parallel graphene layers in the infrared regime, i.e., several orders

stronger than that is between parallel waveguides. In addition, graphene has been shown

to possess superior mechanic properties, such as strong in-plane stiffness with measured

Young’s modulus as high as 1 TPa [55], several orders larger than that of conventional

materials. Considering its extremely small mass density as a 2D material, graphene

therefore provides a great opportunity in force sensing and many other practical applica-

tions [56, 57, 58, 59]. Therefore, the introduction of graphene in micro- or nano-systems

is believed to bring various interesting opto-mechanic effects. As well known, from clas-

sical mechanics, a thin plate can be bent if a force or torque is exerted. In this Section, a

conceptual configuration with two graphene layers settled closely with each other will be

constructed and the deflections of graphene sheets even the possibilities of mechanic-state

variations will be explored, for it shall provide solid physical foundations and guidances

towards various practical applications in opto-mechanics.

3.3.1 Mechanical energy of graphene sheets

In classic elastic mechanics, Kirchhoff theory is the one being used to describe the

bending of a thin plate. Under circumstances where only the transverse load is applied

(no external in-plane forces), the deformation of this thin plate is governed by:

∇2∇2w = − q

D
, (3.13)
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where q is the distribution of transverse load, and D is a material-dependent parameter,

called bending stiffness and is related to the bulk Young’s modulus E, plate thickness h,

and poisson ratio ν, represented as D = 2Eh3/3(1 − ν2) [60]. The relation between D

and E comes from the fact that during a pure bending where middle plane of the plate

keeps its original length, the planes above and below the middle plane are stretched and

compressed respectively. Figure 3.6 gives a sketch of the process. It is intuitive that

when the elastic modulus of the plate is stronger, or when the thickness of the plate is

larger, the bending energy under certain deflection will be larger, making it harder to

bend.

In contrast, graphene, as a 2D material, has no well-defined thickness, and there is no

well-defined middle plane. Therefore there is a different origin of rigidity corresponding to

free bending of graphene sheets, i.e., instead of any stretch or compression. In presence,

the bending energy of graphene arises from the rotation of C-C bonds since the sp2

hybridization tends to keep the carbon atoms in plane, and accordingly, the Kirchhoff

theory for classical thin plates no longer holds [61]. Theoretically, the bending modulus

D can be obtained from ab − initio calculations, and the most commonly taken value

is 0.192 nN · nm [62, 63, 56, 64, 65, 66]. In this work, a phenomenological model is

adopted to investigate the bending of graphene sheets. Under small deformations, the

linear model applies: F = Fb +Fs with Fs in-plane stretch energy and the pure bending

energy Fb =
∫

1
2
Dκ2 ds [61], respectively, where κ ∼ y′′/(1+y′2)3/2 denotes the curvature

of the bent graphene sheet. By minimizing the total energy, one can get a stable y(x) –

the deflection distribution along graphene.

3.3.2 Mechanical state transitions

Figure 3.7 shows the schematic setup, in which two graphene layers with the separa-

tion dg = 100 nm are embedded in some dielectric medium (εd is taken as 3.8) at two

sides. The distance between two side dielectric blocks, s, is 1 µm, while the length of
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Middle plane Compressed plane

Stretched plane

Figure 3.6 Schematic configuration (a) bent thin plate and (b) bent graphene sheet.
The bending energy of the thin plate comes from the stretch and compres-
sion of planes with respect to the middle plane. The bending energy of
graphene sheet origates from the chemical bonds between carbon-carbon
atoms tending to keep everything in plane.

graphene sheets in-between is assumed to be 1.004 µm, so that the graphene layers are

in curved status for demonstrating opto-mechanical deflections and different shapes of

graphene sheets correspond to different mechanical energy states. Intuitively, the lowest

state, denoted as ground state, should have a cosine-like shape with only one antinode,

the first meta-stable state will correspond to a sine-like shape with two antinodes, and

higher order states possess certain number of antinodes. Assuming the parallel graphene

sheets sit at the ground state initially, they may be in either of concave [Fig. 3.7 (a)]

and convex [Fig. 3.7 (b)] configurations, which are degenerate without external force. In

case of some force being applied to the system, such a degeneracy will be broken and one

configuration experiences lower energy than the other. Therefore, an optical-gradient-

force-induced mechanical state transition may be achieved.

In Fig. 3.7 (a), the two graphene sheets are initially in the concave configuration, to

which the symmetric SPP mode with certain power is injected from one side leading to

a repulsive force between graphene sheets. Upon the increase of the input power, the

force gets stronger accordingly, and at some threshold point, the graphene sheets get
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Figure 3.7 Schematic configuration of constructed system for demonstrating optical–
force-induced mechanic state transitions of graphene sheets: (a) Initial state
of concave configuration with symmetric mode injection; (b) Initial state of
convex configuration with anti-symmetric mode injection. Graphene layers
are embedded in dielectric medium at two sides (s = 1 µm) with pre-curved
shape in between (length 1.004 µm).
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Figure 3.8 Calculated reflection (R) and transmission (T) spectra for concave (blue
dark line) and convex (red light line) configurations of graphene sheets under
symmetric [(a) and (b)] and anti-symmetric [(c) and (d)] SPP modes. Dash
dotted lines correspond to the frequency 40.4 THz, where significant contrast
in R and T exists between the concave and convex configurations.
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Figure 3.9 Monitored R and T dependent on the input power showing the processes
of mechanic state transitions: (a) symmetric mode and (b) anti-symmetric
mode. Single arrows mark the direction of the transition path from initial
state towards final state upon the increase of input power, while double
arrows indicate the final state does not vary when the input power gets
decreased.

flipped and reach the state of convex configuration. It should be noted that, as long as

the graphene sheets flip over, the effective gap in-between changes and the eigenvalue of

the propagation constant of the coupled SPPs also changes accordingly. In the EM view,

the two side dielectric blocks naturally form a Fabry-Pérot (FP) cavity in-between for

SPP waves of graphene, and the transmission (T) and reflection (R) of the system may

vary dramatically upon the shape change of graphene sheets, providing an excellent and

straightforward strategy of monitoring the mechanical state transition macroscopically.
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Figure 3.10 Variation of geometric-configuration and force-density profiles for graphene
sheets from initial state to final state under symmetric mode [(a) and (b)]
and anti-symmetric mode [(c) and (d)], respectively. The three interme-
diate cases (dotted lines) are not meta-stable states but only indicate the
process of mechanic state transition being reached. The input power is
taken with the threshold value, i.e., 15.8 W/m and 25 W/m for symmetric
and anti-symmetric mode, respectively.

A self-consistent iterative method to find the corresponding deformations of the

graphene sheets is applied. Considering the optical force is fairly small compared to

the strong in-plane modulus of graphene, it is assumed that no in-plane stretch or com-

pression happens, implying a constraint of the length of graphene sheets in the cavity

being kept as 1.004 µm. Therefore, the problem of finding the shape configurations for

graphene sheets turns out to be optimizing the energy function for local minimum under
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the length constraint. Under external fields, the bending energy density function can be

written as follows in the form of deformation:

F [w(x)] =

∫
1

2
Dκ2 ds−

∫
fopticaldx

=
1

2
D

∫
dx [w′′(x)2 (1 + w′(x)2)−

5
2 ]−

∫
dx ·∆w[x] · foptical[w(x)],

(3.14)

where the energy density F , in unit of J/m, represents the total energy per unit length

in z-direction of graphene, and w[x] is the function of deformation with respect to the

coordination along x-direction. Technically, to figure out the local minimum of the

energy function, the “steepest decent” method [67] is utilized by performing Fourier ex-

pansions to the deformation function w(x) and applying the optical force of the initial

configuration. As long as a new configuration of deformation is reached, the correspond-

ing optical gradient force of the graphene system is calculated and substituted into the

energy function for another round of optimization. Iterations continue until the defor-

mation configuration does not change reaching a converged and final state (see Appendix

D for detailed information). A flow chart as in Fig. 3.11 can help understand the whole

process.

As stated in the above, one can monitor the mechanical deformation of graphene

sheets via the propagation properties of EM waves (R and T) in the system. For a

better contrast in R and T spectra between the concave and convex configurations (see

Fig. 3.8), some demonstration frequency can be chosen accordingly and it it set to be 40.4

THz, at which, the concave (convex) configuration has R = 25.1% (2.9%) and T = 51.0%

(63.0%) under symmetric SPP modes while R = 13.8% (1.3%) and T = 58.0% (69.4%)

for anti-symmetric SPP modes, respectively.

Figure 3.9 shows the processes of mechanic state transitions with the dependence of

input powers, calculated via the previously described iterative method. Figures 3.9 (a)

and (b) correspond to the case with symmetric SPP modes injection in graphene sheets.

For the initial state being the concave configuration, the increase of the input power

(the path is marked with single arrows) leads to slight deformations initially, but abrupt
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Optical force
• COMSOL RF
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functional
optimization

New force
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Figure 3.11 The flow chart of the self-consistent calculation. First, The eigen-mode
of SPP (either symmetric or anti-symmetric) is calculated, and imported
into the optical force simulation as the injected waves. Second, the optical
force is calculate under certain injection and exported into the deformation
calculation. The whole process of deforming is continously however we
discretize that by monitoring deformation every few steps. Third, as long
as the deformation of graphene sheets changes, the force in-between will
also change, so we import the new deformation back into the optical force
simulation and do that recursively until the final results converges.

changes in R and T spectra happen at the input power being 15.8 W/m, the threshold

for the mechanical state transition, where the graphene sheets flip to the convex config-

uration. Upon the decrease of input power for the convex configuration, the repulsive

force induced by symmetric SPP modes keeps the graphene configuration and there is no

change in R or T [see Figs. 3.9 (a) and (b)], consistent with our intuitive expectations.

Figures 3.9 (c) and (d) show the case of anti-symmetric SPP modes injection with attrac-

tive gradient force between graphene sheets: Starting from the convex configuration, the

increase of input power (direction along single arrows) induces some slight deformations

to graphene sheets initially, and the mechanic state transition occurs at 25.0 W/m, with
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the evidence of abrupt changes in R and T spectra. It should be noted that R and T

of the final state in Figs. 3.9 (c) and (d) are to-some-extent different from those values

calculated for the concave ground state, which means such a final state is not exactly the

ground state and may be called as a pseudo concave configuration. This will be further

explained by working out the transition path and the corresponding force density profiles

shown in Fig. 3.10. The same as the case of symmetric SPP modes, upon the decrease of

input power from the pseudo concave configuration, the shape of graphene sheets does

not change with constant R and T, marked with double arrows in Fig. 3.9 (c) and (d).

The geometric-deformation and force-density profiles in Figs. 3.10 (a) and (b) show

how the mechanic state of the graphene sheets transits from the concave configuration to

the convex one upon the threshold input power [transition window marked with dotted

lines in Figs. 3.9 (a) and (b)]. The induced gradient force is stronger at the injection

side (left), so the shape of graphene sheets starts changing from left and reaches the final

state by experiencing two-antinode profiles. It is noted that the three middle profiles

(marked in dotted lines) do not correspond to any meta-stable state, but are obtained in

our iterative procedure only for illustrating the instant transition path near the threshold

point. The mechanic transition for anti-symmetric SPP mode behaves similarly, whose

geometric-deformation and force-density profiles neighboring the threshold are presented

in Figs. 3.10 (c) and (d), i.e., the graphene sheets have their left parts dragged firstly

due to stronger repulsive force induced at the injection side and transit to a final concave

state experiencing some two-antinode profiles as well. However, due to the strong but

asymmetric repulsive force, the final concave state is not symmetric but slightly bias to

the left, showing R and T different from those are in the symmetric concave “ground

state”. In addition, it should be pointed out that, along the transition path (marked

with single arrows in Fig. 3.9), any point on the solid lines corresponds to a meta-stable

state, i.e., before reaching the transition point, switching-off the input power leads the
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graphene sheets back to the initial state, and beyond the threshold, the release of the

force will keep the configuration of graphene sheets staying as the new state.

3.4 Conclusion

In conclusion, this work showed a significant enhancement of optical gradient force

between graphene sheets induced by coupled surface plasmon polaritons. Such a force

can be several orders stronger than that exists between regular dielectric waveguides, and

definitely will open up new avenues for efficient control of micro- and nano-components

in opto-mechanical systems. As one of the fundamental phenomena, the optical-force-

induced mechanic-state transitions for curved neighboring graphene sheets was demon-

strated, can could be intuitively characterized via electromagnetic spectra measurements

in a constructed cavity-like system. Therefore it will be greatly beneficial for the explo-

ration of various new opto-mechanical devices integrated with graphene, such as force

sensors, actuators, optical switches, etc.
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CHAPTER 4. LATERAL FORCES ON CHIRAL

PARTICLES ARISING FROM THE SPIN ANGULAR

MOMENTUM OF LIGHT

4.1 Introduction

4.1.1 Spin angular momentum of light

Spin of electrons was first proven experimentally by the well known Stern-Galarch

experiment, in which a beam of silver atoms bifurcate into two discrete lines on the

reception screen while traveling through inhomogeneous magnetic fields, indicating the

existence of an extra freedom of angular momenta. Spin is a pure quantum concept and

an intrinsic property of particles without any classical counterparts. It is unrelated to

spatial coordinates and the specific frame that is chosen, in contrast to the orbital angular

momentum. The best mathematical tool to describe spin and angular momentum is the

group theory, in which the spin of electrons is classified as the SU(2) group. Similarly to

electrons, photons as bosons also possess spin angular momenta. In free space, they have

spin eigen-values as ±h̄, while the 0 value is forbidden due to its massless nature. Large

number of photons make up electromagnetic waves, in which the polarization plays a

role similar to spin.
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Considering an electromagnetic wave under Columb gauge ∇ · ~A = 0 where ~A is the

vector potential, the electric and magnetic field can be expressed as:

~E = − ∂

∂t
~A,

~B = ∇× ~A,

(4.1)

and the linear momentum and total angular momentum densities are:

~g = ~E × ~B,

~j = ~r × ( ~E × ~B).

(4.2)

Then the total angular momentum will be:

~J =

∫
~jdV = ~L+ ~S, (4.3)

where

~L =

∫
Ei(~r ×∇)AidV,

~S =

∫
( ~E × ~A)dV.

(4.4)

The ~L term is coordinate dependent and (~r× ~∇) takes the same matrix representation as

a spin-1 particle, while the ~S term is coordinate independent. For this reason, researchers

associate ~L with the orbital part, while ~S with the spin part of the total angular mo-

mentum. Nevertheless it’s of argument whether this separation is physical or not. It

was first shown by S. Enk et al [68] and S. Barnett [69] that the separation of ~J into ~L

and ~S can produce physically measurable quantities – in other words, both ~L and ~L are

observables in a quantum mechanical sense. However, neither of them are true angular

momenta since their quantized forms do not meet the general commutation rule as an

angular momentum should be. Classically they are not generators of rotations as well.

Further more, to satisfy electro-magnetic dual symmetry ( ~E → ~B and ~B → − ~E makes

Maxwell equations unchanged ), S. Barnett suggested the spin part ~S should take the

following form:
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~S =

∫
1

2
( ~E × ~A+ ~B × ~C)dV, (4.5)

where ~C is a virtual vector potential for the electric field:

~E = −∇× ~C,

~B = − ∂

∂t
~C.

(4.6)

In the monochromatic case, ~E = iω ~A and ~B = iω ~C. Then the time averaged spin

angular momentum can be redefined merely by the electric field and the magnetic field,

which gives more computational convenience, reading as:

~s = ~se + ~sm,

< ~se > =
1

4ω
Im[

1

µ
~E∗ × ~E],

< ~sm > =
1

4ω
Im[

1

ε
~H∗ × ~H].

(4.7)

In short, I put aside the argument of the naming the spin for a classical electromag-

netic wave since it’s beyond the main topic of this chapter, but just follow the historic

convention and refer to ~S (~s) as the spin angular momentum (density) of light throughout

the following text.

4.1.2 Transverse spin of evanescent waves

The spin angular momentum aforementioned though not a true angular momentum,

can been seen as the rotation of the polarization, either in E-field or in H-field. Consid-

ering a plane wave propagating along the x-direction, there is:

~E = (ŷ +mẑ)eikx,

~se = x̂
Im(m)

2ω
.

(4.8)

For linear polarization, m is purely real, and ~se=0. For circular or elliptical polarizations

where Im(m) is non-zero, the spin angular momentum density is in the x-direction,

parallel to the wavevector.
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Now considering an evanescent wave, which propagates along the x-direction and

decays in the z-direction:

~E = (x̂+myŷ +mz ẑ)eikxx−κz,

~se =
1

2ω
[Im(m∗ymz)x̂− Im(mz)ŷ + Im(my)ẑ].

(4.9)

It is apparent that as long as the mz is not purely real, there will be a transverse

direction of the spin angular momentum. And this is one of the reason that evanescent

waves can couple with chiral particles and induce lateral forces. Figure 4.1 shows the

field distribution Hz of a certain material. The black arrows denote the direction of the

momentum density, which rotates in plane. The transverse spin points out of plane.

A more complete analysis of the transverse spin of evanescent waves can be found in

Ref. [70].

Max

Min

Figure 4.1 Magnetic field plot out of plane for a TM SPP. Black arrows denote the

direction of linear momentum density.

4.1.3 Origin of the lateral force

In Chapter 3, it’s been shown that the interaction between incoming electromagnetic

waves and electrons (either free or bounded) in materials brings about the so called
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optical forces. Under the dipole approximation, the force either comes from the transfer

between kinetic momentum of the mono-electromagnetic waves (Poynting vector), or the

gradient of the field intensity. Based on this difference in nature, they are classified into

radiational (or scattering) force, and gradient force. However, the dipole approximation

in Chapter 3 is actually a first-order approximation merely containing the interaction

between external fields and the induced particle dipoles. By expanding the stress tensor

with scattered field formulation, one can estimate the next order term, which is a dipole-

dipole interaction.

Starting from the Maxwell stress tensor again,

< ~F >=

∫
S

< ~T > dS (4.10)

where < ~T > is the time averaged normal component of the Maxwell stress tensor to the

surface, defined as:

< ~T >=
1

2
Re[(ε ~E · n̂) ~E∗ + (µ ~H · n̂) ~H∗ − 1

2
(ε|E|2 + µ|H|2)n̂]. (4.11)

In a scattering problem, it is common that we write the total field in terms of a back-

ground field (incident wave) and a scattered field as ~E = ~Eb + ~Esc, and under the dipole

approximation where the size of the scatterer is much smaller than the wavelength, the

incident field can be expanded into a Taylor series:

~Eb(~r) = ~Eb(0) + r(r̂ · ∇) ~Eb + o(~r), (4.12)

and the same for magnetic fields. Substituting into Eqn. 4.10 and noting that the scat-

tered field ~Esc is the radiational field by an electric dipole ~p and a magnetic dipole ~m

whose form can be found in Ref. [71] as:

~Esc(~r) = eikr{[3r̂(r̂ · ~p)− ~p]( 1

r3
− ik

r2
) +

k2

r
(r̂ × ~p)× r̂ − k2(r̂ × ~m)(

1

r
+

i

kr2
)},

~Hsc(~r) = eikr{[3r̂(r̂ · ~m)− ~m](
1

r3
− ik

r2
) +

k2

r
(r̂ × ~m)× r̂ − k2(r̂ × ~p)(1

r
+

i

kr2
)}.

(4.13)
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The total force will be the sum of three parts: ~F = ~F 0 + ~Fmix + ~F pm. The first term ~F0

only contains the incident field with a surface integral to be zero. The second term is a

mixture of the incident field and induced dipoles, written as:

Fmix
i = pj∂iE

∗
j +mj∂iB

∗
j . (4.14)

This term is interpreted as the interaction between the external field and the particles.

The traditional optical force, as mentioned, including the radiational force and gradient

force can be further derived from the dipole-field interaction term. What’s of interest is

the last term, which involves the electrical dipole and magnetic dipole and takes form of:

F pm
i = − k4

6πε0c
εijkpjm

∗
k. (4.15)

This term indicates that an additional force appears due to the self interaction. When

an electrical dipole and a magnetic dipole are induced simultaneously, their radiational

field may interfere with each other and results in an asymmetric net far field pattern

giving rise to a recoil force. This force may have a component, which is neither to the

direction of the incoming poynting vector, nor to the direction of the energy gradient, and

is thus referred to as lateral forces. This force is interesting because it is closely related

to the chirality of the scatterer, and the spin angular momentum of the electromagnetic

waves [72, 73, 74]. Exploring the lateral force promises people a bright future for chiral

particle sorting using optical methods.

4.2 Laterial forces on particles

4.2.1 Interaction with non-chiral particles

Assuming a small particle is imposed under the illumination of an incident electro-

magnetic wave which propagates along the x-direction. According to the dipole-dipole

interaction, the lateral force Fy might appear if an electric dipole pz and a magnetic

dipole mx are excited simultaneously due to ~F ∼ ~p × ~m∗. This could be achieved first
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without introducing any chirality. Recalling the simplest split ring structure (SRR) ly-

ing parallel to the yz-plane [75], a plane wave propagates along x-direction and incides

normal to the SRR. As shown in Fig. 4.2 (a), the SRR is made of gold, with permittivity

ε = 3.7− f 2
p/(f

2
0 − jf0ft), where fp=2175 THz and ft=6.5 THz. Since the real SRR has

a finite thickness, it may have a current distribution along the edge resulting in some

diamagnetic effects. To avoid this diamagnetic effect, a line current model is taken to

simulate the real structure by shrinking the 50 nm thick SRR into a pure line sitting in

the xz-plane as shown in Fig. 4.2 (b). The line conductivity is modeled from the bulk

conductivity by multiplying the cross section area σline = Aeff · σbulk.

Figure 4.2 (c) shows the lateral force calculation under the illumination of a z-

polarized plane wave as ~E = ẑE0exp(ikxx). The red line is the numerical integration

of the Maxwell stress tensor over an enclosed surface, while the blue dots are analyt-

ical results taking from the vectorial multiplication of electric dipoles and magnetic

dipoles. Forces calculated are normalized by the time-averaged local energy flow den-

sity 1/2Re[ ~E(r0) × ~H(r0)]. The electric dipole and magnetic dipole are taken from the

simulation using the relations below:

~p =

∫
( ~D − ε0 ~E)dV,

~m =
jω

2

∫
~r × ( ~D − ε0 ~E)dV.

(4.16)

The peak of the lateral force around 53 THz is due to the excitation of the fundamental

resonant mode of SRR, in which the current flows from one end of the gap to the other.

The total current loop features a total effective electric dipole pointing in the z-direction,

and a total effective magnetic dipole moment pointing in the x-direction. It is the self

interaction between pz and mx that gives rise to the lateral force Fy. In this way, it can

be concluded that an anisotropic particle could induce lateral force, though it might be

small.

One may also notice the discrepancy between the analytic and the numerical results.

Strictly, the definition of magnetic momentum in Eqn. 4.16 requires a continuity condi-
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tion for current [76], while the existence of the gap of the SRR naturally breaks that.

Thus it is not a pure/ideal magnetic momentum anymore. When the size of the gap

becomes smaller, the disagreement between the numerical and analytic results will be

relieved.

Figure 4.3 (a) & (b) plot the magnitude of calculated electric and magnetic dipole

moments and Fig. 4.3 (c) & (d) plot the phases. As clearly shown, the z-component of

the electric dipole and the x-component of the magnetic dipole makes a difference, and

the magnetic dipole shifts π/2 in phase with respect to the electric dipole. Since this

lateral force is non-related to any chirality, the helicity or chirality of the plane wave

does not affect the total lateral force at all. Figure 4.4 (a) and (b) show that it’s almost

no difference under a left circularized plane wave illumination ~E = (ŷ− iẑ)E0exp(ikxx),

or a right circularized plane wave illumination ~E = (ŷ + iẑ)E0exp(ikxx).

4.2.2 Interactions with chiral particles

In the last section, it’s found that lateral forces can appear on an anisotropic structure,

as long as electric dipoles and magnetic dipoles on desired directions can be excited.

However, this lateral force is very small, approximately three orders’ smaller than the

regular scattering forces, and does not respond to the external field chirality. To enhance

the tunability of lateral forces, scatterers made of isotropic chiral materials are studied.

Considering a reciprocal isotropic chiral materials, the constitutive relations are:

~D = ε0εr ~E +
iκ

c
~H,

~B =
−iκ
c

~E + µ0µr ~H,

(4.17)

where c is the speed of light in vacuum, and κ is the chiral parameter. A regular value

for κ lies in the smaller or the same order of the refractive index n, depending on the

strength of the chirality. The chiral constitutive relations can also be written in terms
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Figure 4.2 Lateral forces on a SRR structure. (a) Sketch of a real SRR made of gold.
(b) Effective line current model used in simulations. The side length is
700 nm, while the gap is 50 nm. The effective line current conductivity
σline = σgoldAeff , where Aeff is the cross section area of the real SRR in (a).
(c) Normalized lateral force under plane wave illumination with linearized
polarization Ez only. Analytical results meet well with numerical results cal-
culated from Maxwell stress tensor. The discrepancy is due to the non-pure
magnetic dipole.

of electric and magnetic dipoles moments as:

~p = αe ~E + iχµ0
~H,

~m = −iχ ~E + αm ~H,

(4.18)

where αe and αm are electric and magnetic polarizabilities respectively, and χ is the

electro-magnetic coupling coefficient, denoting the strength of chirality. In general all

these coefficients are tensors, while in the isotropic case, they simply reduce to a scalar.
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Figure 4.3 (a) Magnitude of induced electric dipole. (b) Magnitude of induced magnetic
dipole. (c) Phase of the induced electric dipole. (d) Phase of the induced
magnetic dipole.

By substituting Eqn. 4.18 into Eqn. 4.14, and taking the time-averaged force, we get:

< ~Fp−m > =
1

2
Re[− k4

6πε0c
(~p× ~m∗)]

= − k4

12πε0c
Re[iαeχ

∗( ~E × ~E∗) + iχµ0α
∗
m( ~H × ~H∗)

+ αeα
∗
m( ~E × ~H∗) + |χ|2µ0( ~E∗ × ~H)].

(4.19)

Recalling the definition for the spin angular momentum of light in Eqn. 4.7, one may

notice the first term < ~Fee >∼ Im[αeχ
∗~se], the second term < ~Fhh >∼ Im[α∗mα

∗
mχ~sm],

the third and the fourth term correspond to the real and the imaginary part of Poynt-

ing vector density, or linear momentum density. It’s apparent that the first two terms
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Figure 4.4 (a) Normalized lateral force under plane wave illumination with left circu-
larized polarization (Ez = −iEy). (b) Normalized lateral force under plane
wave illumination with right circularized polarization (Ez = iEy).

strongly reply on the chirality of this particle. When the chirality χ changes signs, the

direction of the lateral force will also flip. However, there is a term which does not

depend on the chirality at all. This indicates that an achiral isotropic particle is possible

to feel lateral forces as well.

First a non-magnetic particle with αm = 0 is considered. A plane wave only have

spin angular momentum and poynting vector along the propagation direction, so no

terms would contribute to the lateral force. However, for an evanescent wave such as

surface plasmon polaritons on a noble metal, ~se have an transverse part, and ~Fee is

proportional to the chirality of the particle. As in Fig. 4.5 (a), a point dipole is imposed

1500 nm above a material with ε = 2 + 0.2i and µ = 1. For simplicity, it is modeled

as: ~p = αe ~E0 + iχµ0
~H0 and ~m = −iχ ~E0, where αe = 10−29F · m2, ~E0 and ~H0 is the

background field, i.e. the evanescent field when no particle is presented. This model

to describe a point dipole is simplified but is convenient to analyze how the evanescent

waves can affect the lateral force on a chiral particle. However, if the dipole is too close

to the surface, the coupling between the dipole and the surface plasmon will actually

modify the local field. In that sense, the simplified force calculation will be inaccurate.



62

Figure 4.5 (b) shows normalized lateral forces from analytic and numerical calculations.

When the chirality of the particle changes sign, the direction of the force will flip. In this

way, chiral particle sorting can be realized. The discrepancy between the analytic and

numerical results comes from the coupling between the dipole and SPP aforementioned.

If the point is lifted farther away from the surface, the discrepancy will become smaller.

(a) (b)

Figure 4.5 (a) A point dipole is placed 1500 nm above a material with ε = 2 + 0.2i and
µ = 1. A SPP is excited at 49 THz and propagating to the x-direction. (b)
Normalized lateral force from analytic (red dots) and numerical (blue line)
results.

4.3 Enhanced selectivity by mixing TE and TM SPP using

LHM

4.3.1 Co-existence of TE and TM surface plamons

In Chapter 1, it is shown that the existence of a TM SPP on the interface of two

half-infinite materials requires their perimittivity to be opposite signs. Similarly, for a

TE SPP to exist, we need:
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κ1

µ1

+
κ2

µ2

= 0,

kspp = k0

√
µ1µ2

µ1 + µ2

ε1µ2 − ε2µ1

µ2 − µ1

,

(4.20)

where κi is the decaying factor and has a positive real part on both sides, and µi is

the permeability of each material. Though in nature, materials with notable negative

permeablity do not exist, the development of metamaterials with carefully designed small

resonant units bring this idea to reality. Therefore, to make a real chiral surface plasmon

which mixes the transverse electric field and magnetic field with the same frequency and

propagation constant, we need Eqn. 1.9 and Eqn. 4.21 to hold simultaneously, which

actually results in:

ε1 + ε2 = 0,

µ1 + µ2 = 0.

(4.21)

This constraint is too strong and also comes with a flat dispersion relation as shown in

Fig. 4.6 (a), which is completely useless in reality. Figure 4.6 (b) shows a phase diagram

for the existence area of TE and TM SPP modes, which is based on calculations when the

whole space is filled by two different materials with their permittivity and permeability

to be (ε1, µ1) and (ε2, µ2) respectively. Assuming that ε2µ2 > ε1µ1, the whole diagram

then can be divided into several blocks depending on the relation of ε1,ε2 and µ1,µ2. The

horizontal dashed line sits at ε1/ε2=-1, while the vertical dashed line sits at µ1/µ2=-1.

The tilted dotted-dashed line in the third quadrant represents an impedence matched

case that ε1/ε2 = µ1/µ2. The curved line in the third quadrant is actually hyperbolic

and represents ε1ε2/µ1µ2 = 1.The area where TM SPP can exist is marked in blue and

that for the TE SPP is in orange. The only intersection of all dashed lines is a point

where ε1 + ε2 = 0 and µ1 +µ2 = 0 is where TE and TM SPPs can co-exist. Interestingly,

I found the derivations different from some literature [77, 78].
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Figure 4.6 (a) In a impedence perfectly matched double negative material, the TE and
TM SPP modes can co-exist, but constrained by a flat dispersion subject to
the excitation frequency. (b) A phase diagram of TE and TM SPP existing
area. The whole diagram is based on presumption that ε2µ2 > ε1µ1. The
horizontal (vertical) dashed line sits at ε1/ε2=-1 (µ1/µ2). The tilted dotted–
dashed line in the third quadrant represents ε1/ε2 = µ1/µ2. The curved line
in the third quadrant represents ε1ε2/µ1µ2 = 1

4.3.2 Chiral surface plasmons modulation using LHM slab

While Fig. 4.6 (b) is a “static” phase diagram at a certain frequency, the real materials

are usually dispersive in nature, especially when the realization of tailored ε and µ

requires the usage of metamaterials which is intrinsically resonant. Supposing a material,

whose electromagnetic properties are designed as follows:

ε(ω) = 1−
ω2
p

ω2
,

µ(ω) = 1− Fω2

ω2 − ω2
m

,

(4.22)

where F=0.56, ωp = 5.14× 1014 rad/s, and ωm = 2.06× 1014 rad/s. Figure 4.7 (b) plots

the dispersion relation between the circular frequency ω and the propagation constant

kspp with the setup shown in Fig. 4.7 (a), where the titled black line is the light line, the
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Figure 4.7 (a) The scheme of a semi-infinite left-handed material. (b) Dispersion rela-

tion of the SPP supported by the semi-infinite left-handed material. Blue

lines indicate TM SPP while red lines indicate TE SPP. They intersect with

each other on the light line. (c) The scheme of a LHM slab embeded in

air. (d) The coupling between of interfaces of the slab breaks degeneracy

and separate both TM and TE SPPs into a symmetric and anti-symmet-

ric pair. Blue and red lines are symmetric and anti-symmetric TM modes

with respect to H field, while green and magenta lines are symmetric and

anti-symmetric TE modes with respect to E field. The intersection of the

red and green line defines well confined anti-symmetric TM modes and sym-

metric TE modes. At this point, a coherent pair of TE and TM SPP with

the same frequency and propagation constant can co-exist.
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Figure 4.8 (a) & (b) & (c) are the Ex, Ey, Hz field distribution for the TM SPP. (d)

& (e) & (f) are the Hx, Hy, Ez field distribution for the TE SPP. All fields

are normalized by its own.
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blue lines represent the TM SPP, and the red one represents the TE SPP. It shows that

no intersection between the TE and TM SPP happens in the guided mode region, but

right on the light line.

However, when a left-handed material slab with finite (small) thickness is present,

the surface modes on the two interfaces may talk to each other. Their coupling will

break the degeneracy and hence, each dispersion line will bifurcate into a symmetric and

an anti-symmetric branch. By carefully designing the thickness of the LHM slab, the

lower branch from the upper band may intersect with the higher branch of the lower

band. In this way, the co-existence of both TE and TM SPP on the interface can be

achieved. Figure 4.7 (c) & (d) show the setup and the dispersion relation. In Fig. 4.7

(a), a LHM slab with thickness t = c/ωm = 1.46µm is sandwiched in air. In Fig. 4.7 (b),

all modes around the intersection point are plotted. The blue and red lines represent

symmetric and anti-symmetric TM modes with respect to the H-field, while the green

and magenta lines represent symmetric and anti-symmetric TE modes with respect to

the E-field. The intersection point has a TM and TE SPP at ω = 1.67× 1014 rad/s, and

kspp = 1.04× 106m−1.

Figure 4.8 gives field plots of all components, in which (a) to (c) represent Ex, Ez

and Hy for the TM SPP, while (d) to (f) represent Hx, Hz and Ey for the TE SPP. The

colorbar is normalized by its maximum.

Moreover, the closed form of the all fields for each polarization above the LHM slab

read as follows: For TM and TE SPP respectively, there are:
Hy = ATMe

−jksppx−κz

Ex = −∂zHy

jωε
= κATM

jωε
e−jksppx−κz

Ez = ∂xHy

jωε
= −ksppATM

ωε
e−jksppx−κz

. (4.23)
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
Ey = ATEe

−jksppx−κz

Ex = −∂zEy

−jωε = −κATE

jωµ
e−jksppx−κz

Ez = ∂xHy

jωε
= −ksppATE

ωµ
e−jksppx−κz

. (4.24)

It is obvious that the TE and TM SPP do not have an overlapped component. Thus

it offers a great flexibility and convenience to tune the chirality of the surface waves by

independently changing the either without affecting the other.

4.3.3 Enhanced selectivity

Considering either a pure TM SPP or a pure TE SPP possessing the field formulation

in Eqn. 4.23 or Eqn. 4.24, it can be proved that the Poynting vector or linear momentum

density only have its component along the propagation direction (x-direction), leaving

Py=0. However, the TE and TM modes are mixed with certain phase difference, the

transverse Py could be non-zero, leading to the lateral force. The transverse linear

momentum appear when a chiral surface wave is present, and is referred to as “Belinfante

spin momentum”. It is a result of inhomogenuous distribution of the spin of light. I now

show that the Belinfante spin momentum induced force can help enhance the ability to

chiral particles sorting.

Considering a LHM slab setup as in Fig. 4.7, and a particle is settled 1500 nm above

the slab. This particle is isotropic and chiral, with its constitutive relations defined

in Eqn. 4.18. The electromagnetic parameters are chosen as αe = 10−29F ·m2, αm =

10−18m3, and χ = ±10−20A ·m3/V. An extra phase factor is added to the TM SPP and

swept from 0 to 2π. It’s worth mentioning that for simplicity, the field taken in Eqn. 4.18

is the incident surface wave, and the point is set as an electric dipole and a magnetic

dipole in COMSOL. This model is a perfect dipole model, and is clear to show how the

surface waves itself impact the lateral force, but will be oversimplified if the local field is

strongly modified by the coupling between the dipole and the surface waves.



69

0 0.5 1 1.5 2

Phase of TM mode in units of π

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 l
a
te

ra
l
fo

rc
e
 [
p
N
·µ

m
2
/m

W
]

s
e

s
m

p
s

0 0.5 1 1.5 2

Phase of TM mode in units of π

-0.5

0

0.5

1

1.5

N
o
rm

a
liz

e
d
 l
a
te

ra
l 
fo

rc
e
 [
p
N
·µ

m
2
/m

W
]

Analytical

Stress tensor

0 0.5 1 1.5 2

Phase of TM mode in units of π

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 l
a
te

ra
l 
fo

rc
e
 [
p
N
·µ

m
2
/m

W
]

s
e

s
m

p
s

0 0.5 1 1.5 2

Phase of TM mode in units of π

-1.5

-1

-0.5

0

0.5

N
o
rm

a
liz

e
d
 l
a
te

ra
l 
fo

rc
e
 [
p
N
·µ

m
2
/m

W
]

Analytical

Stress tensor

(a) (b)

(c) (d)

Figure 4.9 Normalized force modulation when the phase between TE and TM modes

changes. (a) & (b) Total lateral forces for particles with αe = 10−29F ·m2,

χ = −10−20A ·m3/V , and αm = 10−18m3. Blue lines in (a) are calculated

analytically using cross production of electric and magnetic dipoles, while

red dots are got from Maxwell stress tensors. (b) Decomposition of the

total lateral forces into contributions from spin part of electric field (blue),

magnetic field (red), and berlinfante spin momentum (black). (c) & (d)

Total lateral forces for particles with αe = 10−29F ·m2, χ = 10−20A ·m3/V ,

and αm = 10−18m3. Blue lines in (c) are calculated analytically using cross

production of electric and magnetic dipoles, while red dots are got from

Maxwell stress tensors. (d) Decomposition of the total lateral forces into

contributions from spin part of electric field (blue), magnetic field (red),

and berlinfante spin momentum (black).
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Figure 4.10 (a) Normalized lateral forces for particles with αe = 10−29F · m2,
χ = 10−20A ·m3/V , and αm = 0m3. Magenta dots denote the total lateral
force while contributions from spin part of electric field, magnetic field, and
berlinfante spin momentum are denoted in blue, red and black lines sepa-
rately. (b) Normalized lateral forces for particles with αe = 10−29F ·m2,
χ = −10−20A · m3/V , and αm = 0m3. Magenta dots denote the total
lateral force while contributions from spin part of electric field, magnetic
field, and berlinfante spin momentum are denoted in blue, red and black
lines separately.

Figure 4.9 (a) plot the total lateral force for χ > 0, in which the blue line represents

results by analytically calculating the dipole-dipole interaction term, and the red dots

represent results from Maxwell stress tensors. Figure 4.9 (b) shows how the total lateral

force is decomposed into contributions from the electric part of spin, the magnetic part

of spin, and the Berlinfante spin momentum. Figure 4.9 (c) & (d) plot the same but

for χ < 0. It is clear that the spin of light ~se and ~sm do not depend on the specific

phase of the surface mode but on the chirality of the particles. To the contrary, the

Berlinfante spin momentum, or the chirality of the wave itself rather than the chirality

of the particles exerts more influence on the achiral lateral force, which is sensitive to

the phase of each mode.

Figure 4.10 (a) & (b) show the total lateral force and its decomposition for non-

magnetic particles with αm=0, αe = 10−29F ·m2, χ = ±10−20A ·m3/V respectively. We
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can see the spin of the magnetic part is decoupled from the total force.

In short, the total lateral force of a chiral particle may have two different origins.

One comes from the coupling between the chirality of the particle and the spin angular

momentum of light. The other comes from a non-chiral term, which is due to the

Berlinfante spin momentum. By modulating the relative phase of the TM and TE SPP,

we have better tunablity to modulate chiral particle sorting.

4.4 Conclusion

In conclusion, this work showed due to the dipole-dipole interaction, a lateral force

appear. When the electric and magnetic dipole are simultaneously excited, their inter-

ference with each other will make the radiation non-symmetric, and thus exert a recoil

force on itself. Lateral force under evanescent wave illumination may have two origins:

one corresponds to the coupling between the chirality of the particle and the spin angular

momentum of light, while the other is due to the helicity of light, regardless of the par-

ticle being chiral or not. Surface plasmons can make better usage of the incident power

and confine the whole field in a relatively small region in contrast to the total internal

reflection. By utilizing a left handed material slab, TE and TM surface plasmons can be

excited simultaneously and independently. The modulation between their phases give

us great flexability to modulate lateral forces, and thus pave the way for chiral particle

sorting.
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CHAPTER 5. CONCLUSION

Light matter interaction is a broad and historic topic, where people can manipulate

light in different levels. The fast development of nano-technology makes it possible to

control light in the micro- and nano-meter scale. Theories governing the interaction

between light and these photonic structures may vary from classical to quantum. In

some cases, the interaction is merely classical such as that in a bandgap photonic crystal

where classical light is scattered by periodic embeddings, the wave equations can be

reformulated similarly to an Hermitian Schrodinger equation, and thus a lot of ideas

from the quantum mechanics and the electronic systems and be “borrowed” to describe

the classic electromagnetic waves, such as band diagram, Bloch modes, etc. In other

cases, such as the surface plasmon polariton, a quasi-particle representing the collective

oscillations of electron densities, is quantum originated, but can still be analyzed from

the classical Maxwell equations to a certain extent. There are also cases, though falling

into the same category, may have different origins such as optical forces. Traditional

forces including the radiational force and gradient force, are just the interaction of a

electromagnetic wave on the electrons in the media, while the Casimir force is a result

of quantum fluctuation, related to the zero-point energy of vacuum. In my thesis work,

all problems, whether quantum or classical originated, can be resolved within the frame

of Maxwell equations.

In Chapter 2, I studied how a photonic crystal with the Dirac cone on the center can

be used to manipulate light. This kind of PhC behaves as an impedance matched zero-

index material, which can do phase front modulation and cloaking. However, an oblique
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incident wave will excite the middle flat band and thus the zero-index behavior is lost.

By developing a method combining complex-k band calculation and absorbing boundary

conditions for Bloch modes, the mode interaction is analyzed in details, and it leads to

the conclusion that the multi-peak feature in the transmission spectrum originates from

the multiple reflection of Bloch modes at the interface between the PhC slab and air.

In Chapter 3, I explored the possibility of using graphene as an opto-mechanical

device. I first realized that the coupling of surface plasmon polaritons on the double

graphene sheets can induce orders’ stronger force than the regular slab waveguides. Us-

ing this enhanced gradient force, we can modulate the mechanic state of a pre-curved

graphene sheet, and measured that by observing the total reflection and transmission.

In Chapter 4, I studied how the lateral force, originating from dipole-dipole self-

interaction in addition to the traditional radiational and gradient forces, can be associ-

ated with the chirality of waves and the chirality of particles. I first revealed that lateral

forces can appear under plane wave illumination on non-chiral particles. Then I showed

how an evanescent wave can produce a chirality-related lateral force, which can be used

for chiral particle sorting. By mixing TE and TM SPP using left-handed material slabs,

we can modulate the lateral force, which would assist enhancing the selectivity of chiral

particles.

This thesis work is still far from perfect and there are a lot more photonic structures

that can modulate light, and even within the same type of structure it remains a lot to

be done. For example, the discovery of Dirac cone of photonic crystals have pioneered

a completely new field named topological photonics, where people introduce topology

concepts into photonic systems. One of the most notable feature is the unidirectional

states protected by topology and thus will be less scattered. Our developed method,

especially absorbing the Bloch modes on the back side to eliminate back reflection may

play a role in the edge state study. Surface plasmons on graphene can be reduced to a

quantum level, in which Maxwell equations does not hold and a quantized theory needs
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to be applied. Also single photons on graphene can induce non-linear effects, which can

enrich the field of nonlinear optics and strong photon-matter interactions.

Finally, I’d like to end my thesis by quoting the words from Henry Augustus Rowland,

which has inspired me since ten years ago:

“The whole universe is before us to study. The greatest labor of the greatest minds has

only given us a few pearls; and yet the limitless ocean, with its hidden depths filled with

diamonds and precious stones, is before us. The problem of the universe is yet unsolved,

and the mystery involved in one single atom yet eludes us. The field of research only

opens wider and wider as we advance, and our minds are lost in wonder astonishment

at the grandeur and beauty unfolded before us. Shall we help in this grand work, or not?

Shall our country do its share, or shall it still live in the almshouse of the world?”
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APPENDIX A. WEAK EXPRESSION

COMSOL Multiphysics is the commercial package used throughout the thesis work,

based on the finite element method. The general process for COMSOL to work is as

follows: First it discretizes the continuous domain into small grids. For example, in 2D

triangular and rectangular are most commonly used, while in 3D tetrahedral is often

taken for the discretization. Then the partial differential equation is transformed into

the so-called weakform, and Galerkin’s method in which the the original and the test

function take the same basis functions is taken. The calculations are done on on a set of

element matrix and are assembled into a big linear system. The weakform part is the key

in using COMSOL. While COMSOL has offered a lot of built-in modules for common

PDEs such as the Helmholtz equation, there are a lot of cases in the state-of-the-art

researches that people cannot get what they want in the built-in modules. Thus, one can

always focus on the physics model and develop his own weak expression for either the

domain or the boundary constraint, but get released from the pure mathematical part

of solving PDEs. In this Appendix, we show the derivations of weak expressions for a

few photonic systems, such photonic crystals, plasmonics, etc.

Complex-k band for a 2D photonic crystal

Weak form is “weak” in comparison with the “strong” form. In general, a physics

equation is a second order PDE, which has strong requirements on the continuity of the

variables. By multiplying a test function and performing an integral, one can reduce the
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order of the PDE by 1. The reduced form has a weaker continuity requirement and is

more numerically preferred. That’s why it is called a weak form. Below we show how

the eigen-k is calculated in a 2D photonic crystal.

By Bloch theorem, the field function in a periodic photonic structure can be written

as the product of a periodic function and a plane wave envelop function:

~E(~r) = u(~r)e−i
~k·~rÊ, u(~r) = u(~r + ~a). (A.1)

And the weak expression for the TE wave(E field parallel to the rod axis) is:

0 =

∫
dΩ[−k

2

µ
vu− iv

µ
~k · ∇u+

iu

µ
(∇v) · ~k − (∇v) · ∇u

µ
+
εω2

c2
vu]

=

∫
dΩ ·W,

(A.2)

where v is the test function of u. Since we only consider the in-plane (xy-plane) wave

vector, there are three freedoms in the weak expression, kx, ky and ω. To calculate the

eigenvalues of kx, we need to prescribe the other two first. For the boundary, we apply

the Floquet-periodic boundary conditions.

Port boundary constraint

Starting from the wave equation:

∇× (
1

µ
∇× ~E)− εω2

c2
~E = 0. (A.3)

Multiplied by a test function on both sides, and integrated over the whole domain, we

have: ∫
dΩ[∇× (

1

µ
∇× ~E) · ~v − εω2

c2
~E · ~v ] = 0. (A.4)

The first term can be broken into two parts, and applying the divergence theorem:

∇× (
1

µ
∇× ~E) · ~v = ∇ · [( 1

µ
∇× ~E)× ~v] + (

1

µ
∇× ~E) · (∇× ~v). (A.5)
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0 =

∫
dΩ∇ · [( 1

µ
∇× ~E)× ~v] +

∫
dΩ[(

1

µ
∇× ~E) · (∇× ~v)− εω2

c2
~E · ~v]

=

∮
∂Ω

d~Γ · [( 1

µ
∇× ~E)× ~v)] +

∫
dΩ[(

1

µ
∇× ~E) · (∇× ~v)− εω2

c2
~E · ~v]

=

∮
∂Ω

dΓ ·Wb +

∫
dΩ ·Wd,

(A.6)

where Wd denotes the weak expression for the whole domain, and Wb means the weak

expression for the boundary. In the 2D TE case, Wd and Wb are reduced to simpler

forms:

Wd =
1

µ
(∂yEz · ∂yv + ∂xEz · ∂xv)− εω2

c2
Ezv, (A.7)

and

Wb = n̂ · [( 1

µ
∇× ~E)× ~v)]

= ±iω
c
vHy.

(A.8)

In our case, we should choose n̂ = −x̂ at the incident side(left), and n̂ = x̂ at the output

side(right). By correctly defines the expression for Hy, we define a port. More details of

the expression of a port can be found in Appendix B.

Modeling graphene as surface current sheet

Graphene is a two dimensional material, without well defined thickness. People some-

times like to use 0.34 nm which is is the average distance between two layers on graphite,

as the thickness of graphene for modelling. In this way, one just needs to treat it as a

regular bulk material in modelling and simulations. However, it brings complexities nu-

merically. Due to the electronic properties, people are mostly interested in graphene from

mid-infrared to visible ranges, which has a featured wavelength from a few micrometers

to hundreds of nanometers. The extra small size of graphene makes the mesh (discretiza-

tion of domains) very difficult. In addition, the experimentalists measures the surface

conductivity, so another way is to treat graphene as current sheet, a boundary, where

there is surface current flowing on it excited by the electric field present. The surface
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current imposes discontinuity of parallel magnetic fields and is constraint by ~Js = σs ~E,

where σs is the surface conductivity. Starting from Eqn. (8) from the last section, we

can get the weak expression to model graphene as:

Ws = −jω[(n̂× ~H) · ~v]

= −jω ~Js · ~v

= −jω ~E · ~v,

(A.9)

where ~v is the test function for electric fields.
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APPENDIX B. ABSORBING BOUNDARY CONDITIONS

OF BLOCH MODES

Orthogonality

This part is a supplementary derivation for Ref. [28]. Bloch modes are the eigen

modes of a photonic crystals. It can be seen as the superposition of infinite planes waves

with different wavenumber. Thus there is no definite “wavelength” for bloch modes and

no built-in boundary conditions in COMSOL, such as scattering boundary conditions,

perfectly matched layers, can be applied to absorb the Bloch modes. Here we show the

principle how to develop self-defined port to absorb Bloch modes.

As we already showed that the weakform expression for the boundary is:

Wb = ~v · [n̂× (
1

µ
∇× ~E)] = ±iω

c
vHy. (B.1)

A port means it tells all information of the modes on the boundary, including the profile

of each modes, and the proportion they take out of the whole field. The total field Hy

can be written as follows:

Hy = h0 +
∑
n

cnhn = h0 +
∑
n

|n >< n|Hy >, (B.2)

where h0 mean the source, and hn or |n > is the eigen-mode which hits the boundary.

Thus the key of defining a port boundary to excite and absorb Bloch modes lies on the
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definition of the orthogonality relation of Bloch modes.

Supposing a wave is propagating along z-direction, we have a set of equations as:

∂z ~Et +
iωµ

c
ẑ × ~Ht = ∇tEz,

ẑ · (∇t × ~Ht) = −iω
c
εEz.

(B.3)

Canceling out Ez, we can get:

β ~Et = −ω
c
µẑ × ~Ht +∇t[

c

ωε
ẑ · (∇t × ~Ht)]. (B.4)

Similarly we also have:

β ~Ht =
ω

c
εẑ × ~Et −∇t[

c

ωµ
ẑ · (∇t × ~Et)], (B.5)

then we have: 0 ω
c
µ(ẑ× ) + c

ω
∇t[

1
ε
ẑ · (∇t× )]

ω
c
ε(ẑ× )− c

ω
∇t[

1
µ
ẑ · (∇t× )] 0


 ~Et
~Ht

 = β

 ~Et
~Ht

 .
(B.6)

However it is not difficult to prove that the matrix on the leftmost side is not Hermitian.

In order to get an Hermitian operator, a few transformations need to be made. We

multiply ẑ× on both sides resulting in:

Â|φ >= −i ∂
∂z
B̂|φ >, (B.7)

where

Â =

ωc ε− c
ω
∇t × {ẑ[ 1

µ
ẑ · (∇t× )]} 0

0 ω
c
µ− c

ω
∇t × {ẑ[1

ε
ẑ · (∇t× )]}

 ,
B̂ =

 0 −ẑ×

ẑ× 0

 , |φ >=

 ~Et
~Ht

 ,
(B.8)
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Â and B̂ are Hermitian when ε and µ are real (lossless case).

For homogeneous waveguides with tranlational invarience along the propagation di-

rection (z-direction), it becomes:

Â|ψ >= βB̂|ψ >, (B.9)

while for a periodic structure such as photonic crystals, it reads:

Ĉ|ψ0 >= (Â+ i
∂

∂z
B̂)|ψ0 >= βB̂|ψ0 >, (B.10)

where ψ = ψ0exp(iβz) and ψ0 is a periodic function.

Generalized Hermitian eigenvalue problems

In either the case of homogeneous waveguides or photonic crystals , Â, B̂ and Ĉ

are all Hermitian operators. Thus the problem is reduced to a generalized Hermitian

eigenvalue equation. Take Â|ψ >= βB̂|ψ > for example,

< ψ|B̂|ψ >= 2ẑ ·
∫

Re[Ẽt × H̃∗t ], (B.11)

which does not guarrentee a positive definite value. This results in some departures

from a regular quantum mechanical eigenvalue problem. Derivations are shown below

by taking a standard process. Considering |i > and βi as eigenvectors and eigenvalues

respectively,

Â|i >= βiB̂|i >, (B.12)

and take Hermitian conjugate,

< j|Â† = β∗j < j|B̂†. (B.13)

Multiplying < j| and |i > on each, and doing the substraction, and applying that both

Â and B̂ are Hermitian, there is:

< j|Â|i > − < j|Â†|i >= βi < j|B̂|i > −β∗j < j|B̂†|i > . (B.14)
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0 = (βi − β∗j ) < j|B̂|i >, (B.15)

Therefore, even B̂ is not positive definite, as long as < i|B̂|i >6= 0, the eigenvalue β still

needs to be real-valued, which is the same as regular quantum mechanics. However in

the case that < i|B̂|i >= 0, β could be complex, and β and β∗ always appear in pair

mathematically. They correspond to evanescent waves and a blowing-up counterpart.

In addition, in non-degenerate cases where βi 6= β∗j for i 6= j, we have the orthonomal

relation < j|B̂|i >= 0.
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APPENDIX C. ANALYTICAL DERIVATIONS FOR SPP

ON DOUBLE GRAPHENE SHEETS

Eigen-modes

Assuming the TM surface mode propagates along the x-direction, and decaying into

the z-direction, the magnetic field can be written as:

Hz =


Ae−κ(y−a)eiksppx ∈ I

[Beκ(y−a) + Ce−κ(y+a)]eiksppx ∈ II

Deκ(y+a)eiksppx ∈ III

, (C.1)

and the electric field can be derived from the magnetic as:
Ex = − 1

iωε0
∂yHz

Ey = 1
iωε0

∂xHz

, (C.2)

Together with the continuity conditions across the boundaries:

n̂× ( ~H2 − ~H1) = ~Js = σs ~E,

n̂× ( ~E2 − ~E1) = 0

(C.3)
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where σs is the surface conductivity density of graphene which can either be determined

by the Kubo formula from single electron approximation, or measured experimentally.

We then get a set of four equations:

1− σsκ
iε0ω

−1 −1 −e−2κa

0 −e−2κa −1 1− σsκ
iε0ω

1 1 −e−2κa 0

0 e−2κa −1 −1 = 0





A

B

C

D


= 0, (C.4)

Thus for a non-zero solution to exist, the determinant of the coefficient matrix should

be zero, yielding the dispersion relation:

± e−2κa − 1 = −2iωε0
κσs

, (C.5)

and a constraint between the field amplitude:

A = −2iωε0
κσs

,

B == −2iωε0
κσs

C,

C = ±B,

(C.6)

where a ‘+’ sign denotes the mode with anti-symmetric currents (symmetric magnetic

fields), and ‘-’ sign denotes the mode with symmetric currents (anti-symmetric magnetic

fields).

‘+’ mode: B=C, A=D

Force

The time averaged force in terms of the Maxwell stress tensor reads:

< Fi > =

∮
< Tij > dAj,

< Tij > =
1

2
Re[ε0(E∗iEj −

1

2
δijE

2) + µ0(H∗iHj −
1

2
δijH

2)],

(C.7)
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In the lossless case, < Fy >=
∮
< Tyy > dxdz.

In area I and III, < Tyy >=0.

In area II,

< Tyy >=
1

4
Re[ε0|Ey|2 − ε0|Ex|2 − µ0|Hz|2]. (C.8)

By substituting the field expression in the Eigen-modes section, we get:

< Tyy >=
κ2

ω2ε0
|B|2e−2κa. (C.9)

Poynting vector

In order to normalized the total force by power, we calculate the poynting vector:

< Sx >=
1

2
Re(E∗yHz) =

1

2

kspp

ωε0
|Hz|2. (C.10)

In area I, Hz = Ae−κ(y−a)eiksppx, so∫ ∞
a

< Sx > dy =

∫ ∞
a

|A|2e−2κ(y−a) 1

2

kspp

ωε0
dy,

=
kspp

ωε0κ3η
|B|2,

(C.11)

where η = σs/iωε0.

In area II, Hz = Beiksppxe−κa[eκy + e−κy], so∫ a

−a
< Sx > dy =

1

2

ksppe
−2κa

ωε0
|B|2

∫ a

−a
(2 + e2κy + e−2κy)dy

=
kspp

ωε0
|B|2[2ae−2κa +

1− e−4κa

2κ
].

(C.12)

In area III, Hz = Deκ(y+a)eiksppx, then∫ −a
−∞

< Sx > dy =

∫ −a
−∞
|D|2e2κ(y+a) 1

2

kspp

ωε0
dy

=
kspp

ωε0κ3η
|B|2.

(C.13)

Adding all these up we can get the total power flowing along the x-direction:∫ ∞
−∞

< Sx > dy =
2kspp

ωε0
|B|2[

1

κ2η
+ ae−2κa]. (C.14)
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Normalized force

The total force normalized by the power read:

fy =
d2

dxdz
< Fy >= − κ2

ω2ε0
|B|2e−2κa,

px =

∫
< Sx > dy =

2kspp

ωε0
|B|2[

1

κ2η
+ ae−2κa],

fy
px

= − κ2e−2κa

2ksppω[ 1
κ2η

+ ae−2κa]
.

(C.15)

‘-’ mode: B=-C, A=-D

Derivations for the ‘-’ mode is very similar to the ’+’ one. And I will just give a

summary here:

fy =
d2

dxdz
< Fy >=

κ2

ω2ε0
|B|2e−2κa,

px =

∫
< Sx > dy =

2kspp

ωε0
|B|2[

1

κ2η
− ae−2κa],

fy
px

=
κ2e−2κa

2ksppω[ 1
κ2η
− ae−2κa]

.

(C.16)

It is worth noting that the ‘+’ mode represents the SPP with anti-symmetric current

distribution (symmetric magnetic field distribution), yielding an attractive force between

the two sheets, while the ‘-’ mode represents the SPP with symmetric current distribution

(anti-symmetric magnetic field distribution), yielding a repulsive force between the two

sheets.
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APPENDIX D. DEFORMATION OF GRAPHENE SHEETS

The problem of finding the deformation of graphene sheets can be treated as the

problem of finding local minimum of mechanical energy under external field. Thus the

total mechanical energy can be written as:

W [y(x)] = Wb[y(x)] +Wf [y(x)] +Ws[y(x)], (D.1)

where Wb is the bending energy, Wf is the work done by the external field, and Ws is

the in-plane stretch energy. They are all functional of the deformation y(x):

Wb[y(x)] =
1

2
D

∫
ds

y′′2

(1 + y′2)−3

=
1

2
D

∫
dxy′′2(1 + y′2)−5/2,

Wf [y(x)] = −
∫
f [y(x)](y − y0)dx,

Ws[y(x)] =
1

2
K∆L2,

(D.2)

where f [y(x)] is the force density along the graphene which will be updated recurringly

when deformation changes. The deformation function y(x) is expanded into sum of a

few sine- and cosine-basis,

y(x) =
∑
n

anζn(x)

ζn(x) =


cos(nkx) n = 1, 3, 5...

sin(nkx) n = 2, 4, 6...

.

(D.3)

In our simulations, since the power of input energy is not too large and the graphene

sheet only jumps to the second order mechanical state, only first four orders’ bases are

enough.
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It is worth noting that Ws is a very large term, and under our input power, almost no

in-plane stretch could happen. By simplifying our numerical process, we remove the Ws

term but replaced by imposing a constraint, that the total length does not change. This

approximation is good under small input power, but will fail if the force is too strong

and obvious in-plane deformation happens. The constraint could be written as:

Z(an) =

∫
ds− L0 =

∫
dx(1 + y′2)−

1
2 − L0 = 0. (D.4)

By applying a Lagrangian multiplier, the final functional to be optimized becomes:

F (an, λ) = Wb(an) +Wf (an)− λZ(an), (D.5)

and: 
∂F
∂an

= 0

∂F
∂λ

= 0

. (D.6)

an can be updated iteratively by:

ai+1
n = ain + δ · [W ′(ain)− λ′(ain)], (D.7)

where δ is the step we choose for each iteration. A positive number will lead the opti-

mization to a local maximum while a negative one lead to a local minimum.


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Concepts and a historical survey of manipulating light
	1.1.1 Photonic Crystals
	1.1.2 Surface Plasmon Polariton
	1.1.3 Others

	1.2 Outline of this thesis

	2. PHOTONIC CRYSTALS WITH DIRAC CONES
	2.1 Novel photonic crystals with Dirac cones
	2.2 2D photonic crystals with Dirac cones at -point
	2.2.1 Accidental degeneracy on the center of Brillouin zone
	2.2.2 Zero-index and loss of zero index behavior

	2.3 Bloch modes interaction
	2.3.1 Complex-k band diagram and eigen-wavevector calculation
	2.3.2 Monomodal and multimodal resonances in the PhC slab

	2.4 Conclusion

	3. OPTICAL FORCES INDUCED BY COUPLING OF SURFACE PLASMON POLARITONS OF GRAPHENE SHEETS
	3.1 Introduction
	3.1.1 Optical forces and Maxwell stress tensor
	3.1.2 Surface plasmons of graphene

	3.2 Enhanced optical forces
	3.3 Mechanical state transitions from the force
	3.3.1 Mechanical energy of graphene sheets
	3.3.2 Mechanical state transitions

	3.4 Conclusion

	4. LATERAL FORCES ON CHIRAL PARTICLES ARISING FROM THE SPIN ANGULAR MOMENTUM OF LIGHT
	4.1 Introduction
	4.1.1 Spin angular momentum of light
	4.1.2 Transverse spin of evanescent waves
	4.1.3 Origin of the lateral force

	4.2 Laterial forces on particles
	4.2.1 Interaction with non-chiral particles
	4.2.2 Interactions with chiral particles

	4.3 Enhanced selectivity by mixing TE and TM SPP using LHM
	4.3.1 Co-existence of TE and TM surface plamons
	4.3.2 Chiral surface plasmons modulation using LHM slab
	4.3.3 Enhanced selectivity

	4.4 Conclusion

	5. CONCLUSION
	BIBLIOGRAPHY
	A. WEAK EXPRESSION
	B. ABSORBING BOUNDARY CONDITIONS OF BLOCH MODES
	C. ANALYTICAL DERIVATIONS FOR SPP ON DOUBLE GRAPHENE SHEETS
	D. DEFORMATION OF GRAPHENE SHEETS

