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ABSTRACT

Cyber-Physical Systems (CPSs) are combinations of physical processes and network computa-

tion. Modern CPSs such as smart buildings, power plants, transportation networks, and power-

grids have shown tremendous potential for increased efficiency, robustness, and resilience. However,

such modern CPSs encounter a large variety of physical faults and cyber anomalies, and in many

cases are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among

their sub-systems. To address these issues, this study proposes a graphical modeling framework to

monitor and predict the performance of CPSs in a scalable and robust manner.

This thesis investigates on two critical CPS applications to evaluate the effectiveness of this pro-

posed framework, namely (i) health monitoring of highway traffic sensors and (ii) building energy

consumption prediction. In highway traffic sensor networks, accurate traffic sensor data is essen-

tial for traffic operation management systems and acquisition of real-time traffic surveillance data

depends heavily on the reliability of the physical systems. Therefore, detecting the health status

of the sensors in a traffic sensor network is critical for the departments of transportation as well as

other public and private entities, especially in the circumstances where real-time decision making

is required. With the purpose of efficiently determining the traffic network status and identifying

failed sensor(s), this study proposes a cost-effective spatiotemporal graphical modeling approach

called spatiotemporal pattern network (STPN). Traffic speed and volume measurement sensors are

used in this work to formulate and analyze the proposed sensor health monitoring system. The

historical time-series data from the networked traffic sensors on the Interstate 35 (I-35) within the

state of Iowa is used for validation. Based on the validation results, this study demonstrates that

the proposed graphical modeling approach can: (i) extract spatiotemporal dependencies among

the different sensors which lead to an efficient graphical representation of the sensor network in
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the information space, and (ii) distinguish and quantify a sensor issue by leveraging the extracted

spatiotemporal relationship of the candidate sensor(s) to the other sensors in the network.

In the building energy consumption prediction case, we consider the fact that energy perfor-

mance of buildings is primarily affected by the heat exchange with the building outer skin and

the surrounding environment. In addition, it is a common practice in building energy simulation

(BES) to predict energy usage with a variable degree of accuracy. Therefore, to account for accurate

building energy consumption, especially in urban environments with a lot of anthropogenic heat

sources, it is necessary to consider the microclimate conditions around the building. These condi-

tions are influenced by the immediate environment, such as surrounding buildings, hard surfaces,

and trees. Moreover, deployment of sensors to monitor the microclimate information of a building

can be quite challenging and therefore, not scalable. Instead of applying local weather data directly

on building energy simulation (BES) tools, this work proposes a spatiotemporal pattern network

(STPN) based machine learning framework to predict the microclimate information based on the

local weather station, which leads to better energy consumption prediction in buildings.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

The term cyber-physical systems refers to systems (such as in Fig. 1.1) with integrated phys-

ical and computational capabilities that can communicate with humans under certain modalities

Baheti and Gill (2011). Over the past years, the concepts of CPS have been widely applied in med-

ical devices and systems Lee et al. (2012), transportation systems Kuo and Szeto (2018), robotics

Pasqualetti et al. (2018); Zhang et al. (2018), integrated buildings Liu et al. (2018), and other

critical infrastructures to improve the system efficiency, safety, and energy savings. For exam-

ple, transportation systems are able to benefit considerably from better embedded intelligence in

automobiles and traffic routes, which improves safety and efficiency Qu et al. (2010). Similarly,

constructed integrated building control systems (such as HVAC and lighting) significantly improve

energy efficiency and supply variability Guan et al. (2010).

Due to their safety- and time-critical roles, CPSs are required to be robust and resilient. In this

context, the hardware robustness and information integrity should be monitored and evaluated con-

stantly. There are varieties of existing techniques have been applied on hardware status monitoring

and evaluating, such as multiple sensor cross validation Sallans et al. (2005), periodic calibration

Vico et al. (2015), and repeat experiments Wu et al. (2018a). Such methods can be easily applied

on small systems like medical machines Lee et al. (2012), critical sensors applied in industry Basir

and Yuan (2007), and simple repeating actions like robots on an assembly line Song et al. (2000).

However, for large fundamental CPSs such as traffic systems and integrated buildings, it is too

expensive, in labor and equipment, to apply the above techniques to health monitoring and energy

performance prediction Wang et al. (2018). In previous research, there are some applications have

been used for regional or partial traffic sensor network analysis, health monitoring, and event de-

tection, such as macroscopic traffic modeling Thonhofer et al. (2018) and virtual reference feedback
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CPS for freeway traffic system
https://goo.gl/images/r4Bp2V

CPS for medical machine
https://goo.gl/images/Mz6jGp

CPS for integrated building
https://goo.gl/images/zxp2Yp

Figure 1.1 Examples of large distributed cyber-physical system

tuning (VRFT) Jin et al. (2014). Some widely used machine learning techniques, such as sup-

port vector machines (SVM) Amasyali and El-Gohary (2018) and artificial neural network (ANN)

González and Zamarreno (2005), have been used for energy performance prediction for some special

buildings like laboratories and critical operation rooms. But for most communities and commercial

buildings in the U.S, it is either expensive or technically challenging to predict building energy

consumption. To resolve these concerns, this thesis proposes a spatiotemporal graphical modeling

methodology (will be discussed in chapter 2) for CPSs to monitor traffic networked sensors as well

as to predict the building energy consumption performance (HVAC systems).

1.2 Related Work and Contributions

As CPSs play a critical role in many engineering processes, it is not unusual for modern dis-

tributed CPSs to experience a large variety of anomalies. When overlooked, these CPSs are vulner-

able to catastrophic fault propagation due to the strong connectivity between dierent sub-systems.
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Monitoring the health conditions and predicting the performance of these CPSs become highly

intractable due to the complex mechanism of fault propagation with a large variety of operating

modes. In this section, there are two typical cyber-physical systems have been highlighted for

further study, large distributed traffic sensor network and integrated building. Section 1.2.1 ex-

plains the existing techniques that have been applied on large distributed sensor network health

monitoring or anomaly detection, and the approach this study proposes. In section 1.2.2, this work

presents related works that focus on building energy consumption prediction, especially for HVAC

systems, and the advantages of applying data-driven techniques for performance prediction which

is proposed in this thesis.

1.2.1 Large Distributed Sensor Network Health Monitoring

With increasing dependencies on sensors for condition monitoring, diagnostics, and decision

making in large infrastructure systems Wenjie et al. (2005); Wang et al. (2011), the reliability of

the sensors themselves is critical in terms of collecting accurate information from the system of

interest. Anomalous sensors may misrepresent the real conditions and mislead operators and man-

agement systems that may result in incorrect decision making, performance degradation, damage

to properties, waste in energy, and even harm to the health of human beings. Therefore, there

are many studies on sensor health monitoring and calibration, such as fault detection and diag-

nose (FDD) Wang and Chen (2004) and principle component analysis (PCA) based FDD Xiao

et al. (2006) have been proposed for HVAC online sensor monitoring. Deep Belief Networks (DBN)

Tamilselvan et al. (2011) have been applied to multi-sensor health diagnosis, and a number of

methods have been applied for sensor accuracy calibration and validation, especially for biosen-

sors studied in Luo et al. (1998); Brimacombe et al. (2009). However, most of the former studies

tend to use sensor redundancy approaches by considering one data source as the ground truth or

physical experiments to validate another data source Sallans et al. (2005). Such systems typically

have multiple collocated sensors to monitor the critical points Jeong et al. (2006); Harris et al.

(1995), which may be reasonable for expensive, safety-critical systems or small systems where only
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limited monitoring points are needed Bhuiyan et al. (2009). In practice, such an approach may not

be feasible in large distributed sensor network systems such as a large transportation network Liu

et al. (2016b), which may not have multiple data sources to cross-validate the data they obtained or

have limited budget for sensor implementation. Thus, these systems are too difficult for operators

to take physical experiments for each sensor’s accuracy calibration.

In chapter 3 (published in International Journal of Prognostics and Health Management Wu

et al. (2018b)), a graphical modeling technique based on spatiotemporal pattern networks (STPN)

has been proposed for traffic sensor network off-line and online health monitoring. In this applica-

tion, year long real traffic data has been applied to validate this proposed framework and its results

have been used to compare with a benchmark method, called traffic flow theory Wells et al. (2008);

Dailey (1999), proposed based on an inherent relationship between speed, volume, and occupancy.

The results show that the proposed spatiotemporal graphical modeling framework is cost-effective

and robust for large distributed sensor network health monitoring. Specific contributions of chapter

3 are as follows:

a. Background and preliminaries of spatiotemporal pattern networks (STPN) based on information

theoretic metric for causality and inference based metric for root cause analysis.

b. Benchmark method, online detection framework and off-line detection framework are applied to

a real traffic sensor network problem based on 10 traffic sensors on Interstate 35 highway in Iowa.

c. Detailed results are presented using tables and figures, and chapter is concluded with discussions

on the performance of each method..

1.2.2 Integrated Building Energy Consumption Prediction

According to the World Energy Outlook 2017 IEA. (2017), the world wide demand for energy

consumption is still rapidly growing, which raises concerns about energy supply difficulties and

environment changes (eg. climate change). Among various sectors, buildings have become a major

consumer of energy and have a total share of 40% energy usage in the United States in 2016,

as reported by the U.S. Energy Information Administration (EIA). The energy consumption in
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buildings is influenced by many factors, such as ambient weather conditions, building materials

and structure, and the operation of sub-systems like lighting and HVAC systems. Among these

impact factors, ambient weather information is the most difficult to be obtained, which makes

it difficult to predict building energy consumption accurately. Therefore, this work proposes a

spatiotemporal pattern network (STPN) based graphical modeling technique to obtain the ambient

weather conditions through a local weather station.

Ambient weather conditions are the main factors affecting the heat exchange from surroundings

to the inside of building. Commonly, the surrounding environment information of a building is

considered to be from a meteorological weather data Meek and Hatfield (1994) or a local micro

weather station and is used in various building energy simulation (BES) tools for energy consump-

tion or energy costs analysis Swan and Ugursal (2009). Given the fact that the microclimatic

conditions around the building are affected by the neighboring buildings, vegetation, air flow pat-

terns, etc. These factors also affect the energy performance of the building. The local weather

station climatic data, as recorded in the far-field, may not account the local climatic information

around the building. Hence, it is important to include microclimate information to have a better

understanding of the building energy performance. The important microclimatic variables are av-

erage surrounding temperature, wind, humidity, solar radiation, and vegetation. These variables

are usually monitored around the building. For such monitoring, a spatiotemporal relationship

with the local weather data can be constructed as a model to predict the microclimatic condition.

In terms of the impact of microclimate conditions, this thesis proposes a data-driven based

graphical modeling technique for microclimate conditions predictions (published in the 5th Inter-

national High Performance Buildings Conference at Purdue), rather than predicting the energy

consumption performance directly from local weather station data. In chapter 4, the proposed

framework has been deployed and applied to a real data collected at interlock house in Ottumwa,

Iowa. The specific contributions are:

a. A review of the importance of using microclimate information for energy consumption estimation

associated with previously proposed techniques.
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b. A formulation of data-driven methodologies for this application based on STPN and neural

networks (NN).

c. The application of the proposed techniques and validation results of energy consumption pre-

diction.
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CHAPTER 2. SPATIOTEMPORAL PATTERN NETWORKS

2.1 Introduction

Spatiotemporal pattern networks (STPNs) is a causal graphical modeling concept followed by

unsupervised learning of various system-level nominal patterns Fiore et al. (2013). By definition,

STPNs represent temporal dynamics of each subsystem and their relational dependencies as prob-

abilistic finite state automaton (PFSA) Sarkar et al. (2014). Patterns generating from individual

subsystem and their relational dependencies are called atomic patterns (AP) and relational pat-

terns (RP), respectively. Atomic patterns and relational patterns in the framework are extracted

by applying symbolic dynamic filtering (SDF) and probabilistic finite state automaton (PFSA)

techniques Ray (2004); Sarkar et al. (2014) as presented in section 2.2.1 & 2.2.2. Subsystems, APs

and RPs are named as nodes, self-loop links, and links between pairs of nodes, respectively. This

chapter mainly introduces the formation of STPNs and the features used for anomaly detection or

event prediction.

2.2 Background on Spatiotemporal Pattern Networks (STPNs)

2.2.1 Symbolic Dynamic Filtering

Symbolic dynamic filtering (SDF) has been recently shown to be extremely effective for extract-

ing key textures from time-series data for anomaly detection and pattern classification Rao et al.

(2009). The basic concept of SDF is built based on the concept of Symbolic Dynamics, Information

Theory, and Statistical Signal Processing, where time-series data from target system in the fast time

scale are analyzed at discrete epochs in the slow time scale (as shown in Fig. 2.1). An important

feature of SDF is capturing the relevant statistics by converting the time-series data into a symbol

sequence using appropriate coarse-graining of the embedded information. The core idea is that a
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Slow time epochs

Fast time scale

Figure 2.1 Illustration of two-time-scale dynamics, the definition of slow time is the sym-

bolized epoch

symbol sequence (i.e., discretized time-series) emanated from a symbolization process, shown in

Fig. 2.2 can be approximated by a Markov chain of order D (also called depth), called D-Markov

machine Sarkar et al. (2014) that captures key behavior of the underlying process.

The symbolization process (also called partitioning Ray (2004); Sarkar et al. (2013a)) is as fol-

lows: Let X represents a set of partitioning functions, X : X(t)→ S, which can transform a general

dynamic system (time-series X(t)) into a symbol sequence S using an alphabet set Σ. Researchers

have proposed different partitioning approaches according to different objective functions, such as

uniform partitioning (UP), maximum entropy partitioning (MEP), statistically similar discretiza-

tion (SSD) Sarkar and Srivastav (2016), and maximally bijective discretization (MBD) Sarkar et al.

(2013b). The detailed introduction of statistical similarity-based discretization (SSD) and maxi-

mally bijective discretization (MBD) algorithms are presented in chapter 3 and in Sarkar et al.

(2013b).

2.2.2 Probabilistic Finite State Automaton

Probabilistic finite state automaton (PFSA) is defined in the symbolic space as presented in

section 2.2.1 that the time-series data is discretized into symbol sequences and then state sequences,

which is the essential part in STPNs for patterns extraction and transition matrix generation, and
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Figure 2.2 Symbolization of measured time-series (discretization)

it generalizes the concept of Markov chain. The D-Markov machine, as mentioned in section

2.2.1, is represented by a probabilistic finite state automaton (PFSA) that is constituted by states

(represents different parts of the data space) and probabilistic transitions among these states that

can be captured from time-series data. Theoretically, PFSA is constructed based on a deterministic

finite state automaton (DFSA) D = (Σ, Q, δ̂) Sarkar et al. (2014) as a pair P = (D, φ), i.e., the

PFSA is a 4-tuple P = (D, φ), where:

1. Q is a non-empty finite state set;

2. Σ is a non-empty finite alphabet set;

3. δ̂: Q× Σ→ Q is the mapping for state transition;

4. φ: Q × Σ → [0, 1] is the symbol generation function, i.e., probability morph function which

satisfies the condition
∑

σ∈Σ φ(q, σ) = 1, ∀q ∈ Q, and pij denotes the probability of the symbol

σj ∈ Σ occurring with the state qi ∈ Q.

The framework of PFSA is shown in Fig. 2.3 and the detailed definitions of PFSA, D-Markov

machine, xD-Markov machine and the learning schemes can be found in Sarkar et al. (2014);

Mukherjee and Ray (2014).

Based on the above setup, the spatiotemporal pattern networks (STPNs) is formulated as below

Liu et al. (2016a).

Definition. A PFSA based STPN is a 4-tuple defined as WD ≡ (Qa,Σb,Πab,Λab), (a, b are nodes

of the STPN)



10

…а γ δ δ γ β γ α β δ …

Symbolization of time series

Symbol sequence

0 1

2 3

а
β

а

β

β δγа

γ

γ

а

γ

δ

β

δ

δ

Finite State Machine

Figure 2.3 Formation of finite state automaton for symbolic dynamic filtering

1. Qa = {qa1 , qa2 , · · · , qa|Qa|} is the state set corresponding to symbol sequences Sa;

2. Σb = {σ0, · · · , σ|Σb|−1} is the alphabet set of symbol sequence Sb;

3. Πab is a |Qa|×|Σb| symbol generation matrix, the ijth element of Πab represents the probability

of observing the symbol σj in the symbol list Sb while making a transition from the state qai

in the symbol sequence Sa; self-symbol generation matrices are called atomic patterns (APs)

i.e., when a = b, cross-symbol generation matrices are called relational patterns (RPs) i.e.,

when a 6= b.

4. Λab is a metric that can represent the importance of the learnt pattern (or degree of causality)

for a→ b which is a function of Πab.

An illustration of STPN is shown in Fig. 2.4.

2.3 Information Theoretic Metric for Causality Using STPNs

Based on the above definition of STPN, we can use the atomic or relational patterns to interpret

the causal dependencies among the sensors. In this context, information theoretic criteria have
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Figure 2.4 Demonstration of Spatiotemporal Pattern Network (STPN) for extraction of

atomic and relational patterns (using D-Markov and xD-Markov machines re-

spectively and D = 1, i.e., states and symbols are equivalent).

been widely used, e.g., transfer entropy Wibral et al. (2011) and mutual information Sarkar et al.

(2014); Solo (2008). In this study, the concept of mutual information Λ is applied for representing

the importance of the patterns (APs & RPs). The definition of Λaa and Λab are as follows.

Λaa , Iaa = I(qak+1; qak) = H(qak+1)−H(qak+1|qak) (2.1)

where, Iaa is the mutual information of atomic pattern (a, a), H is the conditional entropy defined

as follows,

H(qak+1) = −
Qa∑
i=1

P (qak+1 = i) log2 P (qak+1 = i)

H(qak+1|qak) =

Qa∑
i=1

P (qak = i)H(qak+1|qak = i)

H(qak+1|qak = i) = −
Qa∑
j=1

P (qak+1 = j|qak = i)

· log2 P (qak+1 = j|qak = i)

Here, Iaa essentially captures the temporal self-prediction capability of the sensor node a and qak

denotes the kth state of node a. Similarly, the mutual information for the relational pattern (a,b)
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can be expressed as:

Λab , Iab = I(qbk+1; qak) = H(qbk+1)−H(qbk+1|qak) (2.2)

where, Iab is the mutual information of pattern (a, b), H is the conditional entropy defined as

follows,

H(qbk+1|qak) =

Qa∑
i=1

P (qak = i)H(qbk+1|qak = i)

H(qbk+1|qak = i) = −
Qb∑
j=1

P (qbk+1 = j|qak = i)

· log2 P (qbk+1 = j|qak = i)

Detailed description of mutual information theoretic causality metric in the context of APs and

RPs can be found in Sarkar et al. (2014).

2.4 Inference Based Metric Using STPNs

The mutual information theoretic metric introduced in section 2.3, requires significant amount

of data for estimating the state transition probabilities and hence, may not be ideally suited for

online real time decision making. Therefore, an alternative inference based metric is presented here

which utilizes a short time window of data to compute the metric using a Dirchlet prior on the

state trasition probabilities. To compute this metric, a two-step process is needed that includes a

modeling and an inference phase Liu et al. (2016a).

In the modeling phase, the entire time-series in the nominal condition is considered, where the

multivariate time-series is denoted by X = {XN (t), t ∈ N, N = 1, 2, · · · }, where N is the number of

measurement sensors in the network. The multivariate time-series is symbolized into S = {SN } and

then state sequences are generated with the STPN formulation, noted by Q = {QN , N = 1, 2, · · · }.

In the inference phase, a short time-series is analyzed, X̃ = {X̃N (t), t ∈ N∗, N = 1, 2, · · · },

where N∗ is a subset of N. The length of the short time-series depends on the selection of a window

size, which is flexible and can be overlapping. The symbolic subsequences for the short time-series is

noted as S̃ = {S̃N }, and the state sequences is noted as Q̃. An importance metric Λab is defined for
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a given short subsequence (described by short state subsequence Q̃ and short symbol subsequence

S̃). The value of this metric suggests the importance of the pattern Πab or the degree of causality

in a→ b as evidenced by the short subsequence. In this context, we consider

Λab(Q̃, S̃) ∝ Pr({Q̃a, S̃b}|Πab) (2.3)

where Pr({Q̃a, S̃b}|Πab) is the conditional probability of the joint state-symbol subsequence given

the pattern Πab.

With this definition of Λab and with proper normalization, the inference based metric Λab(Q̃, S̃)

can be obtained as follows,

Λab(Q̃, S̃) =

K

|Qa|∏
m=1

(Ña
m)!(Na

m + |Σb| − 1)!

(Ña
m +Na

m + |Σb| − 1)!

|Σb|∏
n=1

(Ñab
mn +Nab

mn)!

(Ñab
mn)!(Nab

mn)!

(2.4)

where, K is a proportional constant, Nab
mn , |{(Qa(k), Sb(k + 1)) : Sb(k + 1) = σbn | Qa(k) = qam}|,

Nab
m =

∑|Σb|
n=1(Nab

mn), Ñab
mn and Ñab

m are similar to Nab
mn and Nab

m , |Qa| is number of states in state

sequence Q̃a, and |Σb| is number of symbols in symbol sequence S̃b.

A detailed derivation can be found in Liu et al. (2016a). Thus, with Eq. 2.4, the inference

metrics Λab of APs (i.e., when a = b) and RPs (i.e., when a 6= b) are obtained with respect to the

short subsequences.

2.5 Summary

In conclusion, the proposed STPN is capable of recognizing patterns of anomalous behavior by

learning a model for the nominal behavior and identifying departures from such behavior due to

parametric or non-parametric changes in the underlying system.
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CHAPTER 3. TRAFFIC SENSOR HEALTH MONITORING USING

SPATIOTEMPORAL GRAPHICAL MODELING

3.1 Introduction

Accurate traffic sensor data is essential for traffic operation management systems and acquisition

of real-time traffic surveillance data depends heavily on the reliability of the traffic sensors (e.g.,

wide range detector, automatic traffic recorder). In a typical road transportation network, traffic

sensors are deployed on freeways primarily to collect real-time data for traffic adaptive signal

control and mitigating recurring or nonrecurring congestion Klein et al. (2006). According to the

U.S. Department of Transportation (the U.S. DOT), the sensors are typically installed about every

2 miles and facilitating sensor redundancy is not feasible due to the sheer length of roadways that

requires monitoring in each state and the cost of sensors deployed (e.g., microwave radar sensor that

covers multiple lanes costs at least $6200 without the installation fee based on the costs database

of the U.S. DOT in 2002 Klein et al. (2006)). Therefore, a robust and feasible approach to monitor

the health status of the traffic sensors is required that does not rely on redundancy of collocated

sensors.

Among the existing techniques that are used to monitor the health status of the traffic sensors, a

method based on the traffic flow theory has been widely adopted Wells et al. (2008); Dailey (1999)

to identify the erroneous data and anomalous sensors. In this approach, the average effective

vehicle length (AEVL) is computed by defining a function F (V,C,O), where V ,C and O denote

the traffic speed, traffic volume, and the sensor occupancy respectively. An assessment criteria

can be formulated to report the error rate of the sensor by evaluating whether the AEVL value

meets the criteria or not FHW (2016). Although it is fast and can be used for online monitoring,

the method is built upon single lane road assumption and the accuracy is seriously affected when
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applied to roads with multiple lanes (e.g., 2 lanes when only 1 lane has vehicle passing at the

recording time).

In this work, we consider the fact that the traffic sensors in the same freeway and direction form

a sensor network in the information space. Therefore, under nominal conditions, the data collected

by these sensors should follow a stable spatiotemporal relationship among themselves that can be

captured by an efficient learning technique using historical data. Such a stable relationship will be

affected when one or more sensors degrade in performance. Hence, discovering the relationships

among the sensors during operation with respect to the (historical) nominal conditions can provide

us indications whether a sensor is healthy or not. In this context, this work applies a recently

proposed spatiotemporal graphical modeling approach, called the spatiotemporal pattern network

(STPN, built on the concepts of symbolic dynamics filtering, SDF) Sarkar et al. (2014); Liu et al.

(2017); Jiang and Sarkar (2015), to build a novel sensor health monitoring framework for traffic

sensors.

Contributions: The main technical contributions of this chapter are: (i) STPN learning

framework to capture the causal dependencies between the sensors in a traffic sensor network using

multi-model information sources such as speed, volume, and the sensor occupancy, (ii) an off-line

traffic sensor anomaly detection and isolation framework using the learnt STPN model, and (iii)

an on-line traffic sensor anomaly detection and isolation approach via a recently proposed STPN+

RBM (RBM: Restricted Boltzmann Machine) technique Liu et al. (2016a) is used for the first

time in the present context. The proposed approaches are validated based on a real traffic sensor

network, installed on Interstate 35 from Ankeny to Ames in the state of Iowa. The data set was

collected by Wavetronix LLC. in Oct., Nov. and Dec. 2016, and the ground truth (nominal and

anomalous categorization) has been established manually based on careful inspection and collected

field images. Performance evaluation and comparison with the benchmark method (AEVL) are

presented using both real traffic sensor anomalies and simulated traffic sensor degradations (for

general sensor degradation or fault types Najafi et al. (2004)) in this real life setting.
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Figure 3.1 Extraction of atomic and relational patterns (using D-Markov and xD-Markov

machines respectively and D = 1, i.e., states and symbols are equivalent) in

sensor network S, where N = (1, 2, .., 10) sensors in the network to charac-

terize individual sub-system behavior and interaction behavior among different

sub-systems.

Including the introduction, this chapter is presented in 5 sections. Section 2 presents the

graphical modeling background, an information theoretic metric and an inference based metric

leveraged to build the sensor health monitoring framework. Section 3 describes the three approaches

for sensor health monitoring: (i) the benchmark method (AEVL), (ii) the proposed off-line method,

using the information theoretic metric, and (iii) the proposed on-line approach, using the inference

based metric. The results obtained with the three different methods are described in Section 4 and

the study is summarized in Section 5.

3.2 Background on STPNs Based Graphical Modeling

Based on the framework of Spatiotemporal Pattern Networks (STPNs) described in Chapter 2,

the STPNs of the above traffic sensor network can be constructed as shown in Fig. 3.1.
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3.2.1 STPN Based Information Theoretic Metric

The information theoretic metric, as presented in Chapter 2, is applied based on mutual in-

formation criteria to identify the importance of an AP or an RP of the traffic sensor network.

Mutual information (I) quantifies the importance of APs and RPs (e.g.,Iaa, Iab) and is able to

assign weights on the patterns. The detailed formulations are provided in Chapter 2 and in Butte

and Kohane (1999).

3.2.2 Online Anomaly Detection with STPN+RBM Framework

The inference metrics (Λab) shown in the chapter 2 can be further normalized and converted

into binary states (0 for low values and 1 for high values) for APs and RPs. With multiple

short subsequences, a large number of examples can be formed, whose characteristics represent the

systematic behavior. Then, Restricted Boltzmann Machine (RBM) is trained to capture the most

likely system-wide behavior, and detect any anomaly via identifying a low probability event.

For RBM, weights and biases are learnt so that the feature configurations observed during

nominal operation of the system obtain low energy (or high probability). Consider a system state

that is described by a set of visible variables v = (v1,2 , v3, · · · , vD) and a set of hidden (latent)

variables h = (h1, h2, h3, · · · , hM ). Here, the normalized inference metrics (Λab are used as the

inputs for the RBM, thus, |v| = |Λab|, i.e., the number of visible units equal to the number of

patterns learned by the STPN. The variables can be binary or real-valued depending on the need.

Now, each joint configuration of these variables determines a particular state of the system and an

energy value E(v,h) is associated with it. The energy values are functions of the weights of the

links between the variables (for RBM, internal links within the visible variables and the hidden

variables are not considered) and bias terms related to the variables.

With this setup, the probability of a state P (v,h) depends only on the energy of the configu-

ration (v, h) and follows the Boltzmann distribution

P (v,h) =
e−E(v,h)∑
v,h e

−E(v,h)
(3.1)
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E(v,h) = −hTW t−BTv− cTh (3.2)

Where W is the weight of the hidden unit, B and c are the biases of the visible units and hidden

units, respectively.

Anomaly detection process. During training, weights and biases are obtained via maximiz-

ing likelihood of the training data. During testing, short testing subsequences are converted into

an N2-dimensional binary vectors using the same inference phase of the training process. Multiple

testing (possibly overlapping) subsequences are applied to compute a distribution of free energy.

For the nominal condition, the distribution of free energy should be close to that of the training

data, while the anomalous data should differ from the nominal condition. Further details of the

STPN+RBM framework can be found in Liu et al. (2016a).

3.3 Problem Setup and Methodology

3.3.1 Problem Setup

Consider a sensor network S = {S1,S2, ...,SN} with N sensors (as illustrated in Fig. 3.1).

Each sensor is represented by the measurements in our case, which can be univariate time-series

(speed) or multivariate time-series (speed, volume, and occupancy). The sensor health monitoring

task is to find out the anomalous sensor(s) based on a certain performance metric M. Therefore,

the sensor health monitoring problem can be formulated as:

Finding Sano ⊂ S (3.3)

where Sano is the subset of the sensor network that are anomalous.

Three performance metrics are illustrated in the following sections where the first one is based

on the traffic flow theory and used as the benchmark, and the later two are proposed in this study

for the purposes of off-line and on-line detection. Note that in this work, sensor health monitoring

with univariate time-series (speed) is noted as the 1D model, and the one with two time-series

(speed, volume) is noted as the 2D model.
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3.3.2 Benchmark Method Based on Traffic Flow Theory

According to the traffic flow theory, there is an inherent relationship between speed, volume, and

occupancy Dailey (1999) and hence, such relationship can be applied to assess sensor data quality.

Authors in Wells et al. (2008) proposed a method to identify sensor errors via evaluating the

relationship among speed, volume, and sensor occupancy. In this framework, the sum of average

effective vehicle length (AEVL) and the detection range (DTR) is estimated by the following

empirical rule:

AEV L+DTR =
5280 ∗ Speed ∗Occupancy

V olume
, (3.4)

where AEVL is in feet, DTR of the sensor is in feet, speed is in miles per hour, occupancy is a

fractional number between 0 and 1 representing percentage of time when the sensor is occupied,

volume is in vehicles per hour and the scalar 5280 is used for unit standardization.

We use this relationship based on our radar sensor as the benchmark method for sensor health

monitoring. Note, DTR is the length of a loop detector Chen et al. (2001), a typical sensor used in

this type of applications. As the data from Wavetronix HD sensors uses a virtual line to represent

the detectorWav (2016), DTR equals to 0. According to FHW (2016); Minge et al. (2012), the

possible distance between vehicles should fall within the range of 10 ft to 75 ft, which provides a

method to monitor the health of the sensor by using the AEVL equation. A sensor is identified as

erroneous when the output falls outside this range and the ratio of error counts to the total number

of data points is called the error rate Er.

3.3.3 Off-line Sensor Fault Detection Using STPN

Among the proposed STPN-based sensor monitoring solutions, we first present the off-line

method that uses the information theoretic metric defined in Section 2.3. We begin the discussion

with the symbolization procedures which is critical for the success of the proposed schemes.
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3.3.3.1 1D data and 2D data symbolization

In 1D STPN model, we use traffic speed as the univariate input. The speed distribution from

historical data shown in Fig. 3.2 demonstrates that the speed mainly falls in the range of 65 miles

per hour to 83 miles per hour and is normally distributed. In this case, we found that compared with

UP and MEP discretization, SSD discretization that aims to preserve the nature of the continuous

data distribution in the discrete domain, is much more effective. The SSD discretization for traffic

speed is based on the modified Douglas-Peucker (DP) algorithm Douglas and Peucker (2011). The

detailed formulation of the SSD scheme can be found in Sarkar and Srivastav (2016), we provide a

brief description here in Algorithm 1 for completeness.

Let XV (t) ∈ Ω1 be a one dimensional time-series data, where interval Ω1 is a compact subset

of R. Let B={b1,b2,b3, ...}, bi ∈ Ω1,bi < bj for i < j be an ordered set with discrete levels

that have to be determined to discretize Ω1. There exists a function F (XV (t)) which represents

the true underlying cumulative density function (CDF) of XV (t). In the discrete domain, we

define the density F̃B(XV (t)) that aims to preserve the statistical properties of X(t) in the sense of

minimizing the distance d with respect to |F̃ − F |, where F̃ is a piece-wise linear and continuous

function. In this study, we use the Kolmogorov-Smirnov statistic test to compute the distance d,

where d = sup
XV (t)

|F̃B − F |. Note, generally, the true density F (XV (t)) is not available, here we

propose to use the empirical density F̃n(XV (t)) (observated), where n is the number of data points.

With the SSD technique, partitioning of the speed data is implemented and the symbol sequences

for the speed sensors in the network are generated.
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Algorithm 1 Statistical Similarity-based Discretization (SSD)

1: Input variable XV

2: Input tolerance ξ on d for univariate discretization of XV .

3: Compute empirical F̃n(XV ) of XV as the set {(Xk
V , p

k)|Prob(XV < Xk
V ) = pk, k =

0, 1, 2, 3, ...,K} and pK = 1

4: fit a line segment L1 through the endpoints (X0
V , p

0) and (XK
V , p

K)

5: Initialization of the line segments L = {L1}

6: Find a split point ks to maximize the distance between L1 and cumulative density function

F̃n(XV ), ks is the split point.

7: while d≥ ξ do

8: for i in k do

9: Generate two new line segments Ll and Lr corresponding to the split point ks for Li

10: Update L = L ∪ {Ll, Lr}\Li

11: end for

12: Find the ks for segments L and F̃n(XV ) have the maximum distance, where the bin boundary

of B is determined.

13: end while

In this work, we also construct STPN model for 2D data, where traffic speed and volume are

used (data are in 20s and from the same data source as the 1 dimensional model), the correlation

between speed and volume can be viewed in the figure presented in Fig. 3.3, The distribution of

volume is shown in Fig. 3.4. To implement the joint (2D) symbolization of the correlated variables

speed and volume, we adopt a two-step technique, SSD followed by MBD. The main idea of MBD

is as in Algorithm 2.

LetXC(t) denote the volume andXV (t) denote the speed and let L=(l1,l2,l3,...) denote the set of

discrete bins for volume XC(t) after implementing the SSD discretization. The main objective of the

MBD scheme is to find the bins for the speed variable XV (t) which is denoted by B={b1,b2,b3, ...},
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such that there is a maximum possible one-to-one correspondence (hence, maximally bijective)

between the bins for XV (t) and those for XC(t). In this work, the traffic volume XC(t) which

has been symbolized with SSD technique is the input variable, the basis of MBD discretization as

mentioned in chapter 2.

In this context, we call bin li corresponds to bin bj , i.e., li ⇒ bj if i = argmaxh P (lh|bj ∈ B), h

∈ (1, .., |L|), where P (·) is a probability function, li is the ith bin for volume XC and bj is the jth bin

for speed XV . Then, a reward function is defined for the discretization as follows: R(bj) = P (li|β ∈

XV ) s.t. L ⇒ B. A higher reward value means that an existing (SSD) bin better corresponds to

an MBD bin. The total expected reward value can be calculated by: TR(B) =
∫
β R(bj)P (β)dβ.

In the MBD scheme, the goal is to maximize the total reward TR.

Algorithm 2 Maximally Bijective Discretization(MBD)

1: Speed XV is the output

2: β=min(XV )

3: k=1, initial index value

4: while rj < maxXV do

5: Select li such that P (li|β) = Pmax(β)

6: Select lj such that P (lj |β + dβ) = Pmax(β + dβ)

7: li,lj represent the existing ith,jth bins for volume XC

8: if i 6= j then

9: bk = β, bk denotes the kth bin boundary of XV .

10: k← k+1

11: end if

12: β ← β+β

13: end while

14: bin boundaries for MBD, B={b1,b2, ...bk−1} is obtained
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Figure 3.2 Speed distribution in histogram which shows that the speed of 10 sensors is

mainly in range from 65 mile/hour to 83 mile/hour, traffic congestion or no

vehicle passing leads to 0 mile/hour.

Algorithm 2 aims to achieve the maximally bijective discretization ofXV (t), where {b1,b2,b3, ...}

denotes the set of MBD bin boundaries and σVj is the symbol with boundaries bj and bj+1:

3.3.3.2 Fault Detection

After symbolization, multiple sets of symbol sequences S1, S2, ..., S10 (representing training data

and testing data respectively, and corresponding to sensor network shown in Fig. 3.1) are generated

in time-series based on the training symbols Σ. Thus, based on section 2.3, the mutual information

matrices (10 by 10 matrix) of the training data and testing data in the network can be obtained

as:

Λtrg = (IS1S1, IS1S2, ..., IS10S10)

Λtst = (IS1S1, IS1S2, ..., IS10S10)

Where Λtrg and Λtst are the training and testing mutual information matrices respectively.

The difference ∆Λ between Λtrg and Λtst, can be used to detect and isolate the anomalous

sensor(s) in the sensor network.
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3.3.4 Online Detection with Inference Based on Spatiotemporal Graphical Modeling

With STPN+RBM framework presented in Section 2.4, an anomaly is detected as a high energy

(low probability) event, and the distribution of free energy in anomalous condition differs from that

in the nominal condition. Then a sequential state switching method can be used to further localize

the fault in the sensor network. The idea for sequential state switching is to find potential pattern(s)

that, if changed, can transition the system from a high to a low energy state. The probabilities of

AP and RP’s existence are discovered by the STPN, and an anomaly will influence the causality

of specific patterns. Hence, by switching/flipping a pattern, its contribution on the energy status

of the system can be estimated and attributed to a possible fault.
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Figure 3.5 Online detection via sequential state switching approach based on STPN+RBM

framework. Spatiotemporal features are extracted from both nominal and

anomalous data, with online STPN inference. Multiple sub-sequences of APs

and RPs form input vectors to the RBM. Here, the RBM is only trained with

nominal data, and the anomalous data is used as input to compute free energy.

Anomaly is detected by identifying its high energy state. In the root-cause anal-

ysis phase (fault detection/isolation), the potentially failed patterns are obtained

via evaluating free energy of the system with the perturbations.
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With the weights and biases of RBM using training data as presented in chapter 2, free energy

can be computed Hinton (2012):

G(v) = −
∑
i

viai −
∑
j

ln(1 + ebj+
∑

i viwij )

The free energy in nominal conditions is noted as G̃. In fault conditions, a failed pattern will

shift the energy from a lower state to a higher state. Assume that the patterns can be categorized

into two sets, vnom and vano. By flipping the set of anomalous patterns vano, a new expression for

free energy is obtained:

Gs(v) =−
∑
g

vgag −
∑
j

ln(1 + ebj+
∑

g vgwgj )

−
∑
h

v?hah −
∑
j

ln(1 + ebj+
∑

h v
?
hwhj ),

{vg} ∈ vnom, {v?h} ∈ v?,ano

(3.5)

Here, v? has the opposite state to v and represents that the probability of the pattern has been

significantly changed. In this work, the probabilities of the patterns are binary (i.e. 0 or 1). Hence,

we have that v? = 1− v. The sequential state switching is formulated by finding a set of patterns

vano via min(Gs(vano, vnom) − G̃). Flowchart of sequential state switching method is shown in

Fig. 3.5.

Note that the sequential state switching method is pattern based, and the anomalous patterns

are associated to the candidate nodes (sensors in this case) using a sequential search method, to

find a subset X̂ of X = {XN (t), t ∈ N, N = 1, 2, · · · , 10} that can interpret all of the anomalous

patterns Λano. For example, a pattern Ni → Nj is identified as failed, and it indicates that the

two nodes (Ni, Nj) are potentially failed. If multiple patterns from or to a node are detected as

anomalous, the node is more reliable to be classified as anomalous. Thus, the node inference can be

carried out via computing the anomaly score of each node. Also, as the failed patterns contribute

differently to the system (in terms of energy increase in RBM, weights of failed patterns are defined.

The weights of failed patterns can be formed by the difference of free energy with and without the

failed pattern and then can be associated to the anomaly scores for the patterns.
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With sequential state switching method, the fault sensor(s) Sano in the sensor network can

be identified and the performance metric M is formed using the anomaly score(s) AS, which is

a measure of the energy increase (of the candidate sensor) in the RBM. By defining a threshold

ASthres, the on-line detection approach for the sensor network is formulated as:

Finding a subset Sano ⊂ S, where AS > ASthres (3.6)

Note that, as the sequential state switching method is built upon short sequences, it only needs

short time-series and is suitable for online detection.

3.4 Results and Discussions

While we collected real data from Iowa interstate traffic scenarios (a network of 10 sensors on

Interstate 35 from Ankeny to Ames in the state of Iowa, the data set was collected by Wavetronix

LLC. in Oct., Nov. and Dec. 2016) to validate our proposed technique, actual sensor faults are

somewhat rare. Therefore, it becomes difficult to use only that data for comprehensive validation.

However, representative sensor degradations of different types and severity levels can be artificially

injected in real nominal data and that is how we begin presenting our results.

3.4.1 Simulation Results

Based on the collected real data, the sensor faults are simulated in two ways: (i) drift–the

measured speeds of the sensor(s) are artificially modified by adding different levels of bias and

(ii) noise–the measurements of the sensor(s) are contaminated by a predefined level (variance) of

Gaussian noise.

The original data is initially divided into a training, Xtrg(t) and testing, Xtst(t) data for val-

idating with real data. However, initially the training set Xtrg(t) is further divided into X̂trg(t)

(80% with 32000 data points) and X̂tst(t) (20% with 8000 data points) sets that are treated as the

training and testing sets for a simulation based validation. Then we artificially inject sensor faults

into the testing set as described above. Simulation cases include: (1) adding drift from 1 mile per
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Table 3.1 Anomaly detection results with one-sensor-fault simulations

Noise Type Data Type Method
Severity

1 2 3 4 5 6 7 8 9 10

Drift(mile/hour)

S
STPN 0/1 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1

RCA 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V
STPN 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

RCA 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V+O AEVL 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/1

Gaussian Noise(mile/hour)

S
STPN 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

RCA 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V
STPN 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

RCA 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V+O AEVL 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/1

hour to 10 miles per hour to one sensor (sensor 3, S3), two sensors (S3 & S7), and five sensors (S1,

S2, S3, S6, and S7) respectively; (2) adding Gaussian noise with standard deviation from 1 to 10

to one sensor (S3), two sensors (S3 & S7), and five sensors (S1, S2, S3, S6, and S7) respectively.

The cases are tested with AEVL, off-line (STPN) and online (RCA) approaches as presented in

Section 3. Note that we call the STPN+RBM based online method as RCA as it essentially uses

a root-cause analysis (RCA) approach to solve the sensor fault detection and isolation problem.

The results are summarized in Table 3.1–3.3 where the drift and noise variance levels are treated

as severity levels. The simulation results show that 2 dimensional models have higher sensitivity

than 1 dimensional models when using STPN and RCA and both can isolate the faulty sensors

with a higher sensitivity. The benchmark method AEVL does not perform as well despite using 3

sensor modalities.

3.4.2 Sensor Fault Detection with Real Data

The real use case involves the original training data and testing data (Xtrg(t) and Xtst(t)) that

are collected for the same sensor network every 20s by Wavetronix LLC. in 2016. Using detail

manual investigation, we find that sensor 6 is anomalous during the testing period and hence used

as the ground truth. In the benchmark method, we can compute the AEVL for each sensor and
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Table 3.2 Anomaly detection results with two-sensors-fault simulations

Noise Type Data Type Method
Severity

1 2 3 4 5 6 7 8 9 10

Drift(mile/hour)

S
STPN 0/2 0/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

RCA 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V
STPN 0/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

RCA 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V+O AEVL 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 2/2

Gaussian Noise(mile/hour)

S
STPN 0/2 0/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

RCA 0/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V
STPN 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

RCA 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V+O AEVL 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 2/2

Table 3.3 Anomaly detection results with five-sensors-fault simulations

Noise
Data Type Method

Severity

Type 1 2 3 4 5 6 7 8 9 10

Drift(mile/hour)

S
STPN 0/5 2/5 2/5 2/5 3/5 3/5 3/5 3/5 5/5 5/5

RCA 0/5 2/5 2/5 2/5 3/5 3/5 3/5 3/5 4/5 4/5

S+V
STPN 0/5 2/5 2/5 3/5 3/5 3/5 5/5 5/5 5/5 5/5

RCA 2/5 2/5 3/5 3/5 3/5 3/5 4/5 4/5 4/5 5/5

S+V+O AEVL 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 5/5

Gaussian Noise(mile/hour)

S
STPN 0/5 0/5 0/5 3/5 3/5 4/5 4/5 4/5 5/5 5/5

RCA 2/5 2/5 2/5 2/5 3/5 3/5 3/5 4/5 4/5 4/5

S+V
STPN 1/5 4/5 4/5 4/5 4/5 5/5 5/5 5/5 5/5 5/5

RCA 2/5 3/5 3/5 3/5 3/5 4/5 4/5 4/5 4/5 5/5

S+V+O AEVL 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 5/5

S:speed, V: volume, O: occupancy. The results in above tables (table 3.1–3.3) are represented in m/n, where m
represents the detected anomaly sensor(s) and n denotes the sensor(s) are labeled anomaly in the sensor network.
The severity levels correspond to the different levels of bias and noise variance synthetically added to the test
data.

Table 3.4 Results of RCA and AEVL with real data

Methodology Data Type Probability of detected faults (ranked)

RCA
Speed S6=0.512 S1=0.237 S2=0.151

Speed+Volume S6=0.725 S10=0.210

AEVL Speed+Volume+Occupancy S10=0.061 S8=0.051 S7=0.031 S5=0.029

S1 to S10 represents the sensor ID
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Figure 3.6 Labeled sensor health monitoring using STPN with vehicle speed data, where

sensor 6 has been detected as an anomaly sensor (matched with the labeled

data) and the result is directly reported in image c with some ambiguity.

use this value to compare with the length range (10 feet to 75 feet as shown in section 3.3.2) and

compute the number of error occurrences (denoted by e). Then, the AEVL differential error will

be: δEir =
eitrg

#Xi
trg
− eitst

#Xi
tst

for the ith sensor, and #Xi
trg represents the total number of data points

in the training data. Then, δEir is the error rate or anomaly score in this case for each sensor in

the network.

For the off-line method (i.e., STPN), the symbol sequences, S1, S2, ..., S10, are generated by

symbolizing X(t) (both Xtrg(t) and Xtst(t)) via SSD and MBD partitioning techniques. And then

the mutual information matrices Λtrg and Λtst can be obtained. To identify the anomalous sensor,

deviation in mutual information matrices, ∆Λ = Λtrg − Λtst can be computed as visualized in
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Figure 3.7 Labeled sensor health monitoring using STPN with vehicle speed and volume

data, where the labeled fault sensor 6 has been detected with less ambiguity as

in Fig.3.6.

Figs. 3.6-3.7. As shown in Fig. 3.6, we can conclude that the faulty sensor 6 can be identified by

STPN only using the speed data. However, there may be ambiguities and false alarms as evidenced

visually by the deviation matrix. On the other hand, when using both speed and volume, the

off-line STPN method can detect the fault more accurately without any significant ambiguity as

seen in Fig. 3.7.

The on-line method adopts short sequences U , where U ⊂ (S1, S2, ..., S10) to form the inference

metric and then implements root-cause analysis to identify the anomalous sensor(s). Table 3.4

presents the ranking of possibly faulty sensors along with their respective anomaly scores. The on-

line approach can correctly isolate the faulty sensor (which shows the highest anomaly score), while

the AEVL method can not identify the faulty sensor despite using 3 different sensing modalities.
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Remark. Although the proposed online detection technique is susceptible to false alarms, it plays

a critical role in the entire traffic sensor health monitoring framework. This can be used for getting

early indication of possible sensor anomalies and failures in traffic systems. They can be manually

verified only if a potentially anomalous sensor is crucial such as being safety-critical. In this case,

a certain level of false alarm can be acceptable. The online detection technique is complemented by

the off-line method which can verify the alarms from the online technique using batch processing.

3.5 Summary

By applying the concept of spatiotemporal pattern network, this work proposes two ways (on-

line and off-line) to monitor sensor health via graphical modeling of sensor network data. Both

approaches are designed to process large-scale time-series data in sensor networks with advantages

in: (1) extracting spatiotemporal features to discover relationships among sensors, (2) detecting

anomaly in an off-line manner by computing an information theoretic metric, (3) monitoring and

localizing anomalous sensor in real-time by computing an inference based metric.

Based on the results, it can be concluded that: (i) compared with the benchmark AEVL

method, off-line and on-line methods can isolate the anomalous sensor more accurately and can

be very effective for different types of sensor anomalies such as bias or drift and increased noise

variance, (ii) 2D model using both speed and volume data can distinguish the anomalous sensor

more clearly than the 1D model. The possible reason is that, regional congestion may affect the 1D

result since the speed is very low at that point, while the relationship among the sensors remain

preserved while using both the speed and volume information. Also, while the proposed off-line

method is more stable and sensitive, the on-line approach is fast, i.e., low time-to-detect (suitable

for real-time application) but may have more false alarms.
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CHAPTER 4. A DATA-DRIVEN APPROACH TOWARDS INTEGRATION

OF MICROCLIMATE CONDITIONS FOR PREDICTING BUILDING

ENERGY PERFORMANCE

4.1 Introduction

Energy consumption in buildings is a major part of the overall energy usage in the United

States and across the world. Ambient weather conditions are the main factors affecting the heat

exchange from surroundings to the inside of building. Generally, the building surrounding environ-

ment information is considered to be from meteorological weather data Meek and Hatfield (1994)

or a local micro weather station and is used in various building energy simulation (BES) tools for

energy consumption or energy costs analysis Swan and Ugursal (2009). Given the fact that the

microclimatic conditions around the building are affected by the neighboring buildings, vegetation,

air flow patterns etc. These factors also affect the energy performance of the building. The local

weather station climatic data, since recorded in the far-field, may not account the local climatic

information around the building. Hence, it is important to include microclimate information to

have a better understanding of the building energy performance. The significance and the use of

microclimatic information are shown for various studies, such as in urban heat islands for peak

building energy use and energy savings Bhiwapurkar (2015). Further, microclimatic conditions in

urban environment can also significantly affect urban energy management, important in develop-

ment of cities or certification of buildings based on their energy performance, such as LEED Scofield

and Oberlin (2009), Energy Star Boyd et al. (2008) etc. The important microclimatic variables are

average surrounding temperature, wind, humidity, solar radiation, and vegetation. These variables

are usually monitored around the building. For such monitoring, a spatiotemporal relationship

with the local weather data can be constructed as a model to predict the microclimatic condition.
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Various efforts are made in the area of integrating the microclimatic conditions for predicting the

energy performance of buildings, a few are listed below: 1) A procedure for coupling microclimate

model ENVI-met with EnergyPlus for quantitative analysis of building energy performance by Yang

et al. (2012). 2) A simulation platform relying on both computational fluid dynamics (CFD) and

themoradiative simulation codes by Bouyer et al. (2011) to measure the impact of urbanization

and planning strategies on an energy demand. In the work they also did sensitivity analysis for

finding important microclimatic variables affecting building energy consumption. 3) Coupling CFD

and BES are shown by Dorer et al. (2013) for analyzing the impact of urban microclimate (UMC)

on space heating and cooling energy demand. In the work by Yuming et.al Sun et al. (2014), a

framework is proposed to compare the microclimate variables computed from standard model in

BES programs to those with mesoscale model which takes into account more detailed specifications

of urban form. Further, the vegetation effect of the energy performance of the building is also

studied in detail by Huang et al. (1987). The occupancy which act as a important parameter in

building design, in association with microclimate can be looked in the work by Kalvelage et al.

(2015).

In this study, we consider a real-time monitored and operated building at Ottumwa, Iowa. The

availability of data pertaining to the key microclimatic variables for the building makes it possible

to apply data driven approaches to have a deeper understanding of patterns and process in building

energy systems. This motivates us to use data driven approaches for microclimatic modeling and

analyze its impact on the energy performance. The main goal of this work is to present a proof of

concept to analyze the impact of microclimatic information on the energy consumption of buildings

using data-driven approaches Jiang et al. (2017); Sarkar and Srivastav (2016).

Contributions: The major contributions of this work are: (i) the efficacy of using predicted

microclimate information for energy consumption prediction as compared to the ambient weather

data. (ii) the use of data-driven models in predicting microclimate variables and using those

predictions for energy consumption prediction based on regression models. (iii) validating the

prediction and regression models using the real data of Interlock house located in Ottumwa, Iowa.
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Figure-4.1 shows the pictorial representation of the testbed considered for the data collection in

the study.

Figure 4.1 Interlock house located at the Ottumwa, Iowa, used as a testbed in the study.

It is equipped with energy and microclimate monitoring sensors.

4.2 Data-Driven Methodologies

Building energy systems consist of different subsystems interacting at different temporal and

spatial scale, and are therefore complex to simulate. It is important to account for these temporal

and spatial dependencies of system properties when modeling building systems. With the technolog-

ical advances and data driven learning methods, it is easy to use the available data, infer patterns,

and information underlying the process. In this study, two different data driven approaches have
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been used: 1) Spatiotemporal pattern networks (STPNs) 2) Neural Networks (NNs) to predict the

microclimate conditions and then use it for predicting energy performance in buildings. A brief

summary of details of both the methods are listed in below sections.

4.2.1 STPN Framework for Multi-variables

In this work we propose a model with multiple time-series inputs and a single prediction target.

Suppose X = {XA(t), t ∈ N,A = 1, 2, .., n} represents the multivariate time-series data from city

weather station, n is the number of time-series and Y = Y (t), t ∈ N denotes the microclimatic

information (here is temperature) collected by microclimate station. And for the time-series X,

Y we have symbol sequences σ = {σA(t)} and µ = {µ(t)} after data processing and partitioning.

To generate the dependencies we form a joint symbol sequence for X, σJ = σ1(t) ⊕ ... ⊕ σn(t).

Here, the joint symbol space is created by summing the individual symbol spaces directly. For

example, σa⊕σb is the product space of σa and σb. Then based on the previous definition of STPN

we can get the state sequences Φ and Ψ respect to σJ and µ. The training step of STPN is to

compute the transition matrix ω(Φ, µ) from the states in Φ to the symbols in µ using a frequentist’s

technique(e.g. counting the number of occurrences). For example, we can compute the probability

of the state Φm to the symbol µi by Pr(φm, µi) = Nmi/Nm, where Nmi is the number of times

that the symbol µi ∈ µ is emanated after the state φ ∈ Φ, and here Nm ,
∑n

i=1Nmi. In the

model, the true values represented by µ can be computed from the training data, and noted as

E(X|µ = n), n = 1, 2, ... In the prediction model, we only have the time-series X and the microcli-

matic temperature time-series Ŷ is assumed unknown and used for the verification. And similarly,

we can get the symbol sequences σ̂ and joint symbol sequence σJ as well as state sequences. Thus,

the microclimatic temperature Yt is obtained as:

Yt =

n∑
i=1

Pr(µ|φ̂(t))× E(Y |µ = i) (4.1)

A schematic of the procedure of STPN is shown in Fig. 4.2
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Figure 4.2 Formulation of STPN with multiple time-series (nodes in graphical modeling).

It extracts atomic patterns (AP) and relational patterns (RP) with D-Markov

machine and xD-Markov machine respectively and the depth D=1.

4.2.2 Neural Networks

Neural networks (NNs) are inspired by the biological operation of the specialized cells called

neurons. In a human body a neuron is a cell which receive several inputs activated from the outside

process. Based on the activation level, the neuron gets stimulated and produces the outputs.

Further, each input and output path of the neuron can have their own strength and can differ from

one another. The neural network tries to replicate this by a set of weighted graphs and a neuron

is represented as a node. The node receive inputs, and processes their sum with its activations

function φ and passes the results to the nodes further in the graph. Mathematically this can be

written as

φ(wTa) =
1

1 + exp(−wTa)
(4.2)

The sigmoid activation function is used at each node in the network. A schematic of the neural

network is shown in Fig-4.3. The nodes are chained together to form the hidden layer in the

network, there can be multiple set of hidden layer which passes the output as a input to the next

hidden layer to reach the final output. The goal is to train a neural network based on the data so
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Figure 4.3 Schematic of a Neural network trained in the current study for predicting the

microclimate variables based on the ambient weather data

that it can be used to predict for a set of unseen input data.

Recent success of deep learning has demonstrated the enormous possibilities of wider and

deeper neural networks for learning complex functions without feature hand-crafting Lore et al.

(2015). However, in the present work it is difficult to build a large neural network due to the small

volume of data. The regular neural network developed here was trained using time-series data of

the microclimate and weather station data sampled at the same time-interval. The network can be

used for classification as well as regression and for the current study we develop regression model,

for which we define the loss function as follows,

L(w) =
∑
i

f(xi,w)− yi)
2 (4.3)

where, f(xi,w) is the regression function and we must minimize L(w). This equation has the closed

form solution for general least squares, but here we use the gradient based method, ADAM Kingma

and Ba (2014) to minimize the loss. In general, the gradient of the loss gradient ∇wL(w) is to

minimize the overall error on the training data. The first step is to derive the loss with respect

to a particular weight wj→k (This is the weight of the edge connecting node j to node k) for the
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general setting we write this as follows:

∂

∂wj→k
L(w) =

∂

∂wj→k

∑
i

(f(xi,w)− yi)
2

=
∑
i

∂

∂wj→k
(f(xi,w)− yi)

2

=
∑
i

2(f(xi,w)− yi)
∂

∂wj→k
f(xi,w)

(4.4)

This general process is modified in ADAM by the stochastic gradient finding method (more details

are provided in Kingma and Ba (2014)). Following the discussed procedure, the network is trained

to predict the microclimate data as a dependent variable by using the weather station data as

input. The trained model is then used to input the conditions to predict the energy performance

of the building. We use the MSE (mean square error) to calculate the accuracy of the model, as a

widely accepted metric for regression problems. The quality and quantity affect the performance

and with more time-points the MSE can be reduced further for the current problem. We then use

the model for predicting the microclimatic data, which then can be used for energy predictions.

4.3 Test Schematic & Data Preparation and Model Setup

4.3.1 Test Schematic

The testing building, interlock house, located in Ottumwa, Iowa as shown in Fig. 4.1 is equipped

with sensors for thermal performance and energy consumption monitoring and collecting the sur-

rounding microclimatic information (i.e., temperature, humidity, wind speed etc.). A schematic of

the house is shown in Fig 4.4. It is a solar energy based building close to the Honey Creek Resort

State Park, which has the best geographic location with the longest time for sunshine. The heating

load is calculated through the heating gain model:

Hload = (Tin − Tout) · Cw · Vw · ρw (4.5)

where Hload is the heating load (energy consumption in winter), Tin is the temperature of the

flowing in water, Tout is the temperature of the flowing out water, Cw is the specific heat of
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water, Vw is the volume and ρw is the density of water. Given the microclimate data of interlock

house and the associated ambient weather data, a data driven approach is proposed to predict

the microclimatic conditions (temperature). The predicted temperature is in turn used for energy

consumption prediction based on a regression analysis.

Figure 4.4 The building used in the study (Interlock house), the yearly energy data and

microclimatic data is recorded for the building.

4.3.2 Data Preparation and Model Setup

The workflow chart for the proposed data-driven energy analysis is shown in Fig. 4.5. Typical

meteorological data (TMY3) from Ottumwa city is considered for the weather station data and

the key variables used for the regression analysis are outside air temperature (Ta), relative humid-

ity (RH), global horizontal irradiation (Ee), and wind speed (Vw). For the simulation study, the

weather station data X from the months of July, August and September of year 2015 is considered

as the summer verification season (X1) and from December 2015 to February 2016 are the winter

verification season (X2). And the same timestamp for interlock house microclimatic variables Y .

Those data sets are 1-minute interval data and there are 129,500 data points for each season being

used for the analysis. The data is further split into training (Xtr = 85%X,Ytr = 85%Y ) and

validation (Xts = 15%X,Yts = 15%Y ) for use by both the data-driven approaches.

The simplified model for both data-driven methodologies are:
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Figure 4.5 Workflow procedure for incorporating the microclimatic conditions using the

data-driven approach.

Ytemp = f(X(t)|X(τ : t− 1), Ytemp(τ : t− 1)) (4.6)

or:

Tmicro(t) = f(Ta(t), RH(t), Ee(t), Vw(t)|Ta(τ : t− 1),

RH(τ : t− 1), Ee(τ : t− 1), Vw(τ : t− 1),

Tmicro(τ : t− 1)) (4.7)

Where t is the target time and τ is the training start time.

The predictions of microclimate variables obtained using the data driven approaches (STPN/NN)

are then used for energy prediction analysis. For energy prediction, we use autoregressive-moving-

average (ARMAX) Yang et al. (1996) regression model using the four regression variables (RH,Ta,Ee,Vw).
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These models build the relationship between the inputs and the outputs of the system using mea-

surements and also helps in understanding the energy characteristics of the building.

4.4 Results and Discussion

In this work, the proposed STPN and NN models are used for microclimatic temperature

prediction. Further, these prediction results are used for energy prediction analysis using regression

method. We conduct validation in two different seasons, summer and winter to analyze the affect

of climatic conditions on the prediction performance. In the following, this study provides the

detailed results of using the proposed methods as well as comparisons.
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Figure 4.6 Comparisons of real microclimate temperature and the predicted microclimate

temperature using STPN and Neural Networks methods for summer season.

4.4.1 Summer Season

The procedure for using STPN and NN methods are detailed in Section 4.2. For the summer

season (mainly focus on cooling), the data from months of July, August, September of 2015 are

considered. Key variables from the ambient weather data are used for prediction of microclimate
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Figure 4.7 Comparison of energy consumption prediction using predictions from data–

driven approaches, ambient weather data, actual microclimate data and true

energy consumption. Here, est.MC represents predicted microclimate data, Reg.

means the regression model and act.MC means the actual microclimate data.

temperature. The testbed has outdoor AC units which are used for providing cooling during the

summer season. The data has been preprocessed to filter any outliers (i.e. manually shut off) in

the data set which affects the prediction results. The temperature prediction results using both

the methods in comparison to actual temperature is shown in Fig. 4.6. The prediction results

using both the methods captures the trend associated with the data and STPN performs better

compared to NN. For the case of STPN, the error in the peaks can be improved by partitioning

the data into finer bins. Typically, NNs perform well while being trained with a large data set (by

avoiding overfitting). Therefore, in this case the slightly lesser accuracy compared to STPN can be

attributed to the data quantity as well as lack of hyperparameter tuning.

These temperature prediction results are used in the regression model for energy prediction. A

comparison plot of energy prediction using the prediction results from the proposed methods along

with energy predicted from weather station data is shown in Fig. 4.7. The results indicate that

the energy prediction from the data-driven methods has higher accuracy (i.e. fit better) compared
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Figure 4.8 Comparisons of real microclimate temperature and the predicted microclimate

temperature using STPN and Neural Networks methods for winter season.

to the energy predicted from ambient weather station data. This clearly signifies the importance

of microclimate information on the building energy consumption prediction analysis. This study

will be further extended in future to include building specific variables (e.g., building architecture,

materials, vegetation around the building) for improving the prediction performance.

4.4.2 Winter Season

For the winter season the months of December 2015, Januray & February of 2016 are consid-

ered. The microclimate temperature prediction results are shown in Fig. 4.8. The prediction result

of STPN method has improved performance over the NN method. Similarly the energy consump-

tion comparison result is shown in Fig. 4.9. The energy consumption results also suggest that

microclimate information is crucial in predicting the building heating energy consumption. The

heating energy consumption is mainly affected by the heat transfer between inside and outside of



45

0 1000 2000 3000 4000 5000 6000
 Time data points

225

230

235

240

245

250

255

260

265

270

275

En
er

gy
 c

on
su

m
pt

io
n 

(W
h)

True Energy
Predicted Energy ( est.MC(Weather Station) + Reg.)
Predicted Energy ( est.MC(STPN) + Reg.)
Predicted Energy( est.MC(NN) + Reg.)
Predicted Energy ( act.MC + Reg.)

Figure 4.9 Comparison of energy consumption prediction using predictions from data–

driven approaches, ambient weather data, actual microclimate data and true

energy consumption.

the building. From the Fig. 4.8 we can see the temperature in winter changes in a larger range,

which is more complicated for data-driven model to learn the patterns. The results can be further

improved by including additional variables which captures the heat loss from the building which in

turn affects the heating energy consumption.

For a multivariate time-series, the proposed STPN framework captures the informative patterns,

which results in predicting microclimate data. The case studies in this study show that, although

microclimatic information is not always available for every building, data-driven techniques help

in obtaining a better energy consumption prediction. Also, the data quality and quantity can

significantly improve the microclimatic prediction and hence the energy prediction results. Overall,

both data-driven methodologies contribute a great effects on the prediction of building energy

consumption, especially, STPN method performs better in comparison with NN method due to

the limited data points. Using variants of NN for prediction analysis needs to be investigated

further. Energy prediction comparison results are shown in Table 4.1. The mean square error using
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predictions based on STPN method is close to the real microclimate data, which suggests that the

data-driven models are sufficient for predicting microclimate information which replaces the need

for sensing cost in obtaining such information.

Table 4.1 Comparison of energy prediction using different weather conditions

Mean square error with different types of weather data

Season Ambient weather station data Real microclimatic data Predicted microclimatic data using data-driven models

Summer 7.33 0.54
STPN 0.56

NNs 0.70

Winter 88.07 41.45
STPN 44.04

NNs 71.64

4.5 Conclusion

This work presents a proof of concept study to demonstrate the efficacy of using microclimate

information for building energy consumption prediction as compared to ambient weather data. In

this regard, data-driven approaches can be extremely effective for prediction of microclimate vari-

ables and hence, can help avoid expensive microclimate sensor deployment. Quantitative results

(using energy prediction accuracy metrics such as mean square error) show that the energy predic-

tion from the data-driven approaches are sufficiently close to the actual microclimate data. These

results illustrate that the predicted microclimate information based on data-driven approaches is a

reliable and low-cost way to predict building energy consumption.
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CHAPTER 5. SUMMARY AND CONCLUSION

This thesis has demonstrated that the proposed graphical modeling methodology with domain

knowledge holds enormous potential in improving the management performance of cyber-physical

systems, health monitoring, and estimation. Specifically, spatiotemporal pattern networks (STPNs)

are capable of modeling complicated nonlinearities time-series data as discussed in chapter 2. In

chapter 3, this work constructs the off-line detection model based on STPN and combines STPN

with Restricted Boltzmann machines for the online model for identifying the source of anomalies.

The effectiveness of applying graphical modeling for traffic sensor network health monitoring has

been validated by comparing with the previous works as shown in the results section in chapter 3.

Additionally, applying STPN for multivariate model to exploit the inherent correlations between

local weather station and microclimate conditions is significantly helpful for the applications where

a scalable and accurate estimation of building energy consumption needs to be made based on

local weather data. A representative application integrating microclimate conditions for predicting

building energy consumption has been studied in this thesis in chapter 4.

In contrast to other machine learning methods, e.g. neural networks, STPN for multivariate

model has a signicant potential in providing scalable and effective solutions to address engineering

problems involving spatiotemporal data. The original motivation behind proposing graphical mod-

eling methodology for the health monitoring and performance prediction in cyber-physical systems

is in fact to pursue the cost-effective and robust techniques as mentioned in chapter 1. The future

work will focus on (1) visualizing the result through an APP for customer view and (2) using

deep learning based modeling techniques such as long short-term memory for other engineering

applications, such as cyber-agriculture systems.
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