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ABSTRACT 

The objective of the proposed study is to predict traffic speeds at a route level so 

that the traffic management has a chance to operate proactively. A distributed file system 

and parallel computing platform is used to store the big data sets of statewide traffic and 

weather data in a fault-tolerant way and process the big data in a timely manner. Traffic 

speed prediction problem is studied at two levels, and two deep networks are proposed 

accordingly: a fully convolutional deep network for long-term speed prediction and a 

hybrid long short-term memory (LSTM) network for short-term speed prediction. The 

fully convolutional deep network utilizes both weather information and historical traffic 

speeds to make long-term traffic speed predictions, and a trained model can be 

transferred to predict traffic speed at any spatial-temporal scale. The hybrid LSTM 

network utilizes the previous traffic speeds on the current day as well as historical traffic 

speeds to make short-term speed predictions, and a trained model can be used to predict 

speeds at any timestamps ahead in a streaming fashion. The proposed long-term and 

short-term traffic speed prediction models can be combined as a multilayer decision 

supporting system to provide traffic management an opportunity to operate proactively. 
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CHAPTER 1.    INTRODUCTION 

1.1 Background 

Transportation systems aim to move people and goods safely and efficiently; thus, the 

system mobility becomes a great concern for both agencies and road users. In urban traffic 

systems, congestion is a major harm to mobility, which can also result in a total of $78 

billion of societal and energy costs in the United States (TTI, 2007). One way to alleviate the 

congestion is to provide accurate and reliable traffic information and predictions, which can 

help both traffic planners and travelers to change plans for an alternative route in advance. 

Therefore, there is a need for research on how to produce an accurate understanding and 

reliable forecasting of traffic conditions, especially traffic speed. 

With lots of intelligent transportation system (ITS) technologies being applied, large-

scale, multisourced and high-resolution traffic data are available to researchers. In Iowa, 

enormous data can be obtained statewide from multiple sources, including roadside radar 

sensors, the private sector, a road asset management system (RAMS), and a road weather 

information system (RWIS). How to understand those massive data in an efficient way 

becomes a critical research task.  

In recent decades, the emergence of big data technology and successful 

implementation of neural network algorithms provide the opportunities to conduct data-

driven research in transportation. Moreover, the innovation of a parallel computing platform 

makes graphics processing unit (GPU)-accelerated computing available, which brings deep 

learning algorithm into reality. Some deep learning algorithms, like convolutional neural 

network (CNN) and long short-term memory (LSTM), have the powerful ability to explore 

massive, heterogeneous data and make predictions. All these advances in artificial 
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intelligence provide researchers the chance to learn the features from traffic data in a fast and 

deep way. Thus, predicting the traffic speed in both the short and long term through massive, 

heterogeneous traffic data could be improved by using big data and deep learning approach. 

1.2 Research Motivation 

Traffic speed predictions studied in this dissertation are to provide agencies and road 

users an estimation of roadway traffic speed in the coming future by using deep networks 

trained on large-scale historical data. 

In traffic operations and management, heatmaps have been widely used to visualize 

traffic speeds at a route level. A traffic speed heatmap puts speed values in a two-

dimensional array. The 2-D array typically arranges roadway sensors or monitored roadway 

segments along the vertical axis, expands the time along the horizontal axis, and colors each 

cell from green to red by the value of traffic speeds. A typical traffic speed heatmap is 

illustrated in Figure 1.1. 

 

Figure 1.1 Sample speed heatmap 

As shown in the illustration, traffic speed heatmaps are plots that can provide 

meaningful traffic speed visualization both spatially and temporally. Because of the matrix 

nature, the colorful 2-D plots of traffic speeds on a route level can be viewed as images. In a 

live traffic monitoring system, these traffic speed images are rolling along the temporal axis 

and the displayed images are always behind the current timestamps because of data 



3 

processing and communication latency. In this context, traffic speed prediction is basically 

sneak-peeking the traffic speed images beyond the current timestamp. 

From the traffic operation perspective, public agencies like the Department of 

Transportation (DOT) would be interested in traffic speed predictions at different temporal 

scales. 

• Long-term: A good traffic speed estimation of the next day could make DOT 

operators well prepared and operational strategies can be planned in advance 

for the potential upcoming congestions. 

• Short-term: A good traffic speed estimation of the next few minutes could 

give traffic operation officers an opportunity to prepare for the low-speed 

events proactively. Traffic incident management (TIM) may take this 

opportunity to relocate highway helpers in advance.  

Thus, a good traffic speed prediction could provide traffic operations extra 

information as reference and potentially improve the reaction speed of TIM for incidents and 

enhance the mobility and safety of the roadway system overall. 

Agencies would also be interested in traffic speed predictions at different spatial 

scales. The future traffic speed estimate at a certain sensor location would be useful for 

traffic monitoring at a targeted area, but a speed prediction of a roadway network can provide 

a better sense of a whole picture and thus be more useful. 

Roadway users can benefit from the traffic speed prediction as well. The estimated 

travel speed in the next day can help drivers plan their travel time accordingly and choose an 

appropriate detour if applicable, and the network traffic loads can be more balanced. 

Similarly, an estimation of the travel speed in the next few minutes can keep the drivers both 
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on the road and before leaving better informed and help them make better adjustments from 

both user optimal and system optimal perspectives, thus the overall traffic congestion level 

on the network can be alleviated. 

1.3 Problem Statement 

There are several challenges in predicting traffic speeds. First is efficiently managing 

the large-scale, high-resolution, and heterogeneous data. Traditional databases could deal 

with a certain amount of multivariate data but require excessive time and memory, which is a 

main obstacle in data-driven research.  

The second is the high computational complexity requested by predicting traffic 

speeds. Traffic speeds on a network have both spatial and temporal correlations that make 

them challenging to predict. Although there have been lots of prediction models available, 

the traditional methods still lack the capability to deal with high computational complexity.  

To provide accurate predictions to travelers and planners, both short-term and long-

term predictions should be considered. Current methods tend to treat speed data as a time-

series and have less prediction power, especially in long-term prediction. They also have 

limited ability in exploring heterogeneous data in a scalable manner. This research aims to 

solve these problems by answering the following research questions: 

1. How to apply big data technologies to efficiently integrate massive traffic 

data? 

2. How to predict short-term speeds at a route level? 

3. How to predict long-term speeds at a route level? 

1.4 Research Objective 

According to the different use cases and different technologies required, this 

dissertation discusses the whole traffic prediction in two different temporal scales: (1) long-
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term prediction, which estimates traffic speeds in the next few hours or even the next day; 

and (2) short-term prediction, which estimates traffic speed in the next few minutes. In both 

long-term and short-term prediction cases, this dissertation applies deep neural network 

models that can be trained on historical data collected from various sensors with no manual 

labeling needed and estimate future traffic speeds at a route level. The research objectives are 

the following: 

1. Develop database to store, integrate, and analyze big traffic data. 

In this research, the raw streaming traffic data from roadside radar sensors 

(Wavetronix) and weather data provided by Iowa Environmental Mesonet (IEM) are 

downloaded and stored in a distributed way. A parallel processing method will be introduced 

and applied to those data. 

2. Predict long-term speed to provide big picture traffic conditions to traffic 

planners. 

The long-term speed prediction discussed in this dissertation is predicting the traffic 

speeds of the next few hours or the next day at a route level. The prediction model should 

take advantage of the large amount of historical data. The pretrained model should provide 

high transferability for deploying on different roadway networks and predict speeds in the 

desired time scale. 

3. Predict short-term speed to provide advance traveler information. 

The short-term speed prediction discussed in this dissertation is predicting the traffic 

speeds of the next few minutes at a route level. Unlike the long-term traffic speed prediction 

that usually is done once in a while, the short-term traffic speed prediction should be done in 

a streaming fashion. 
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1.5 Dissertation Organization 

This dissertation consists of six chapters including an introduction. Chapter 2 presents 

a comprehensive literature review on current predictive analysis and artificial intelligence in 

transportation. Chapter 3 describes the database built on multiple data sources using big data 

technology. According to the complexity level of the methodology used, the long-term 

prediction will be discussed first then the short-term prediction will follow. Chapter 4 

presents the prediction of long-term traffic speed at a route level using a fully convolutional 

deep network. Chapter 5 presents the prediction of short-term traffic speed at a route level 

using a hybrid LSTM network. Chapter 6 concludes the research by summarizing the 

findings and outlining the future work. 
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CHAPTER 2.    LITERATURE REVIEW 

This chapter presents a comprehensive literature review, focusing on the research 

related to traffic speed prediction and deep learning in transportation. Currently, the methods 

used for traffic speed prediction can be put into two general categories: statistical modeling 

and artificial intelligence (AI). Based on the categories, this section will review two kinds of 

past research on prediction and provide the background of methods employed in this study. 

2.1 Statistic Modeling in Traffic Prediction 

Statistical analysis has been the major method in the traffic speed prediction field for 

a long time, and it is still being widely used. Several kinds of methods, including 

fundamental traffic flow theory, time-series models, and Kalman Filter (KF), are discussed. 

2.1.1 Traffic Flow Theory 

Previously, many transportation researchers relied on the flow theory to explore 

different stages of traffic flow and make predictions. Most of them were focusing on volume 

prediction by estimating the origin-destination (OD) matrix on the network (Camus et al., 

1994; Crittin and Bierlaire, 2002). There are also many studies using flow theory that were 

implemented in simulations. Besides traffic volume estimation, researchers also tried to 

represent the full traffic evolution with volume, density, and speed. Daganzo (1994) 

proposed a cell transmission model (CTM) to represent traffic evolution and further predict it 

over time and space. 

Treating traffic flow as a stochastic process, some researchers have explored and 

modeled the stochastic characteristics in traffic flow to predict short-term speed. Qi and Ishak 

(2013) focused on urban freeways during peak hours and estimated the speed transition 

probabilities, from which the expected values were extracted and fitted using exponential 
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models. However, this method tends to be affected by study location and time period, which 

makes it less scalable. 

2.1.2 Time Series Model 

Since the traffic data is time variant, time-series modeling has been widely used in 

traffic data analysis. One typical model, autoregressive integrated moving average (ARIMA), 

assuming stationarity and constant variance, is often adopted in traffic prediction research. 

Hamed et al. (1995) and Lee and Fambro (1999) have used the ARIMA model to predict 

traffic volume. Further, Williams et al. (1998) and Williams and Hoel (2003) explored the 

seasonality by using the seasonal ARIMA (SARIMA) model. Other researchers also tried to 

combine generalized autoregressive conditional heteroscedasticity (GARCH) with the 

ARIMA model to deal with the volatility in traffic conditions (Kamarianakis et al., 2005; 

Chen et al., 2011). 

Several methods developed on the ARIMA model for speed prediction were also 

explored. Cetin and Comert (2006) have proposed an adaptive ARIMA model to 

accommodate regime change in traffic (such as free flow regime, congested regime, etc.). 

They implemented expectation maximization (EM) and cumulative sum (CUSUM) methods 

to detect the change in the mean of process, then applied the ARIMA model with adaptive 

parameters. Wang et al. (2014) combined empirical model decomposition (EMD) with 

ARIMA and created a hybrid EMD-ARIMA model. Emperical model decomposition 

decomposed the traffic data into intrinsic model functions (IMFs), then ARIMA models were 

applied on each of the IMFs, and finally the components were reconstructed to the predicted 

traffic speed. 

To capture the spatial relationship existing in traffic flow, many researchers have 

been working on multivariate time-series analysis. Williams (2001) used the ARIMAX 
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model to incorporate upstream volume as a transfer function input(s). Kamarianakis and 

Prastacos (2003) compared univariate and multivariate models for traffic prediction. Mainly 

they applied the ARIMA model, the vector autoregressive moving average (VARMA) 

model, and the space-time ARIMA (STARIMA) model to predict the speed on major 

arterials. The forecasting results showed a better performance in the multivariate model, 

which can cope with the interdependencies between speed from neighboring detectors. 

Pavlyuk (2017) also compared several multivariate models, such as VARMA, error 

correction model (VECM), STARIMA, and the multivariate autoregressive space state 

(MARSS) model for speed prediction. This study found the multivariate model can capture 

the spatial and temporal relationship in traffic flow and suggested simultaneous modeling on 

volume, speed, and occupancy to improve predictions. 

Similar work in traffic speed predictions using multivariate models has also been 

done. Chandra and Al-Deek (2008, 2009) have used the vector autoregressive (VAR) model 

to account for the spatial relationship with taking two upstream and two downstream 

locations into consideration. And Zou et al. (2015) have proposed a hybrid model to estimate 

the speed series by periodic trend and residual part, with the assumption that speeds have a 

daily periodic trend on work days. They used the trigonometric regression function to 

estimate the periodic component and tried space time (ST), VAR, and ARIMA models to 

estimate the residual. The results showed a better performance in the hybrid ST model with 

different prediction steps. 

Besides the ARIMA model, other multivariate methods were also explored. Ghosh et 

al. (2009) have proposed the structural time-series model (STM) with regard to multivariate 

data. This model separated components in a time-series and was used on signalized 
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intersections to predict traffic volume. Another improvement in multivariate time-series 

analysis is made by Szeto et al. (2009). They embedded CTM in the SARIMA model to 

achieve volume prediction on a signalized network. 

Time series models are widely used in traffic prediction; however, they are still 

constrained by the assumption of stationary process and the linear combination of previous 

observations. Moreover, compared to traffic volume, traffic speed has less obvious patterns 

and can be impacted by latent factors, which makes it hard to be predicted by traditional 

time-series analysis. 

2.1.3 Kalman Filter 

The KF utilizes the observed measurements and current estimated state to generate 

the estimation of a future state with statistical noises. This state space-based model can cope 

with multivariate data; thus, it has been applied in many traffic prediction studies. Okutani 

and Stephanedes (1984) first used KF to predict short-term traffic volume and found a better 

performance than the benchmark model UTCS-2. Further, Xie et al. (2007) improved the 

volume prediction by using discrete wavelet decomposition to denoise the raw data and get 

multilevel data series, then applying KF to estimate the volume. The results showed the 

proposed wavelet KF outperformed the direct KF. Another improvement on volume 

prediction was made by Guo et al. (2014). They proposed an adaptive KF to update the 

process variance by using the observation errors and state estimation errors to fine-tune the 

variances and implement the Kalman recursion. 

Some researchers also focused on travel time prediction. They have used KF to 

estimate freeway travel time using different data sources such as toll tags (Chien and 

Kuchipudi, 2003; Chien et al., 2003), GPS data (Yang, 2005), and inductive loops (Xia, 

2006). Further, Kuchipudi and Chien (2003).provided the flexibility in choosing path-based 
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or link-based travel time estimation according to the traffic condition based on their previous 

research. Lint (2008) also proposed an extended KF (EKF) enabling online learning to 

predict freeway travel time. Other applications have also been done on network-level traffic 

prediction embedding KF (Whittaker et al., 1997; Wang et al., 2006). 

Although there are lots of studies in traffic flow prediction using KF, few applications 

can be found in traffic speed prediction. Yang et al. (2004) have proposed an adaptive 

recursive least-squares method to predict traffic speed online. They used an autoregressive 

(AR) model to generate an offline estimate for the transition coefficient matrix and noise 

covariance matrix, and they made predictions with KF online. One problem in this study is 

the spatial relationship has not been explored, which exists in traffic propagation. 

The KF can deal with multivariate time series and update the state continuously; 

however, it requires the knowledge of state transition and noise covariance, which are hard to 

determine in traffic flow. 

2.2 Artificial Intelligence in Transportation 

By moving toward AI, many more techniques and tools are revealed in front of traffic 

researchers and engineers. The adequate data also made it possible to implement machine 

learning and data mining techniques to make short-term and long-term predictions of traffic 

flow. This section reviews several shallow machine learning algorithms and the application 

in traffic flow prediction, such as 𝑘-nearest neighbor (𝑘NN), support vector machine (SVM), 

and artificial neural network (ANN). With the emergence of deep learning, this powerful tool 

can also be used to predict traffic. Thus, this section will also emphasize deep learning 

algorithm applications in transportation and how they inspire this study. 
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2.2.1 Nearest Neighbor Algorithm 

In data mining domain, a nonparametric, pattern matching technique, 𝑘NN algorithm, 

is commonly used. This method has also been adopted in transportation research. Smith and 

Demetsky (1996) used the nearest neighbor model to predict traffic volume in multiple 

intervals in advance on freeway segments. It had the advantages in scalability and ability of 

predicting relative long-term volume. Other than volume, Handley et al. (1998) have also 

proposed the 𝑘NN model to predict the travel time at multiple locations on a freeway. They 

examined and selected three nearest neighbor, different predictive features and normalization 

schemes, and from the results, they suggested that speed prediction is less accurate than 

volume during peak hours. Further, a hybrid model integrating geographic information 

system (GIS) and nonparametric regression has been developed to improve the prediction of 

travel time (You and Kim, 2000). In regard to multivariate traffic characteristics, Clark 

(2003) has predicted the traffic state by using the 𝑘NN model. The method was applied on 

one highway location with one month of data; it turned out to be a good prediction in flow 

and occupancy, but it did not perform well in speed prediction. 

In previous literature, compared to traffic speed, the pattern of traffic volume—such 

as the peak hour pattern and seasonal pattern—seems easier to capture. Thus, this method is 

more often used in traffic volume prediction. Researchers have conducted many studies on 

predicting traffic flow (Smith et al., 2002; Zhang et al., 2013; Zhong and Ling, 2015). Efforts 

have also been made for a real-time system (Oswald et al. 2000; Smith and Oswald, 2003). 

Researchers have also tried different input variable structures to improve the prediction. 

Kindzerske and Ni (2007) have used a composite approach in the nearest neighbor search to 

predict traffic conditions. They tended to not use the whole network as input; instead, they 
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only chose two upstream and two downstream sensors to form a local network to make 

predictions in order to minimize the error. 

There is little research with a focus on traffic speed prediction using 𝑘NN. One was 

done by Yildirim and Cataltepe (2008), which used both 𝑘NN and SVM to predict traffic 

speed in 5-minute intervals. The results indicated SVM has a better performance than 𝑘NN. 

The other speed prediction study conducted by Chen et al. (2014) integrated Gaussian 

process regression with 𝑘NN. They used 𝑘NN to extract data features and input them to 

Gaussian process regression to achieve a reliable prediction. 

Overall, this method is easy to implement and transfer using simple features extracted 

from historical data; however, it does not outperform the more advanced machine learning 

techniques in terms of prediction accuracy. 

2.2.2 Support Vector Machine 

The SVM method or support vector regression (SVR) is one of the most currently 

used machine learning techniques in traffic flow prediction. Wu et al. (2004) have used SVR 

to predict travel time on a highway network with three different kernel functions examined. 

The results performed better than the baseline prediction the authors selected. Other 

researchers also have applied SVM on travel time prediction and compared the root mean 

square error (RMSE) with other baseline models (Yu, Yang and Yao, 2017; Vanajakshi and 

Rilett, 2007). 

Since SVM is a powerful tool in traffic prediction, there are many researchers who 

have added extra techniques to improve the model performance from solely using SVM. Asif 

et al. (2014) clustered the traffic data by unsupervised learning methods based on their 

spatiotemporal patterns before applying SVR, and it benefits the prediction results. One 
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advantage of SVR is that it allows a kernel function to implicitly boost the input features up 

to a higher dimension, but choosing the right kernel function can be a trial-and-error process. 

Wang and Shi (2013) constructed a new kernel function in SVR using a wavelet function to 

capture the nonstationary characteristics of the short-term traffic speed data and report better 

performance over traditional SVR. Although SVR with kernel function overcomes the linear 

constraints, the model performance is highly relied on for the engineered input features. 

Furthermore, there are many variants of SVR, such as least squares SVM (Zhang and 

Liu, 2009), 𝑣-SVM (Zhang and Xie, 2007), online-SVR (Castro-Neto et al., 2009), and 

seasonal SVR (Hong, 2011), which focused on different aspect of traffic flow prediction, 

such as travel time, traffic volume, etc. Also, to capture the spatial and temporal relationship 

in traffic flow, Li et al. (2016) have combined the ARIMA model and SVR to generate a 

hybrid strategy to predict highway volume in a more accurate and stable way. Besides those 

SVR variants with focus on prediction, Gopi et al. (2013) have proposed a Bayesian SVR to 

focus on the error variation of predicted traffic speeds. 

Support vector machine can be a powerful tool in prediction; however, it mainly 

relies on the pattern of historical data and has shortcomings in exploring the temporal 

relationship, which is a nature of traffic speed data. 

2.2.3 Artificial Neural Network 

One great aspect of the neural network (NN) is that it can mimic any function by 

stacking tons of parameters in a simple way, and the useful features are automatically 

extracted through the training process. This method has been applied in traffic prediction 

increasingly in recent years. 

One typical NN often refers to the back propagation NN (BPNN). The idea for back 

propagation is that inputs are fed forward to the network and then errors between output and 
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target are propagated backwards through the network; meanwhile the weights are updated by 

some optimization technique. The BPNN was applied in traffic volume prediction as early as 

the late 90s (Kwon and Stephanedes, 1994; Smith and Demetsky, 1994; Yun et al., 1998). In 

terms of traffic speed prediction, Huang and Ran (2003) have investigated the traffic speed 

under adverse weather using BPNN for a single link. They used weather and traffic variables 

as inputs and built a fully connected NN. Lee et al. (2007) took the time of day and day of 

week into account. Other researchers also used the ANN to predict traffic speed and 

compared it with traditional ARIMA or a pattern matching model (Lee et al., 2006; Fabritiis 

et al., 2008; Park et al., 2011; Ye et al., 2012; Habtie et al., 2017). 

Based upon the NN concept, much improvement has also been accomplished. One 

improvement is focusing on the network structure optimization. Researchers used a genetic 

algorithm to determine layer connection or nodes (Abdulhai et al., 1999; Lingras and 

Mountford, 2001; Wang et al., 2005; Vlahogianni et al., 2005). Some researchers also 

focused on preprocessing the traffic data to achieve a better prediction performance. Park and 

Rilett (1998) explored two clustering techniques—Kohonen self-organizing feature maps and 

fuzzy c-means model—to extract features from data before they were fed it into the NN. 

Jiang and Adeli (2005), Xie and Zhang (2006), and Boto-Giralda et al. (2010) used wavelet 

transform to denoise the data for network training and made predictions on traffic volume. 

Inside the NN, some researchers also tried to replace the sigmoid function in hidden 

layers with radial basis function (RBF). They have employed this model to predict traffic 

volume and compared it with other methods (Amin et al., 1998; Park et al., 1998; Xie and 

Zhang, 2006; Zheng et al. 2006; Chen, 2017; Li et al. 2017). This kind of NN has a simple 



16 

structure and is fast to learn. But the performance relies on the center and width parameter 

estimation of the RBF. 

Different NNs could be applied on different traffic conditions. Park and Rilett (1998) 

proposed a modular NN by first clustering the data and then building a modular NN for each 

classification. This approach could estimate the entire function separately without the 

requirement of prior knowledge like other function approximation schemes. Similarly, Chen 

et al. (2001) used a self-organizing map (SOM) to cluster the traffic data and then used 

BPNN for each cluster. Lee (2009) used the k-means clustering method before predicting the 

travel time using ANN. This concept has also been adopted by other researchers (Yin et al., 

2002; Coufal and Turunen, 2003; Tang et al., 2017). They tended to cluster the input data by 

fuzzy approach and apply the NN to each group with a similar traffic pattern. 

To cope with the nature of time dependency in traffic data, many researchers have 

improved the NN structure with a recurrent feature. Some recurrent neural networks (RNNs) 

with context units to remember the previous output have been applied, such as the recurrent 

Jordan networks to forecast traffic volume (Yasdi, 1999), the recurrent state-space NN to 

predict travel time (Lint et al., 2002), a time-lagged recurrent network to predict short-term 

traffic speed (Dia, 2001). Ishak et al. (2003) explored three different networks for speed 

prediction—Jordan-Elman networks, partially recurrent networks, and time-lagged 

feedforward networks—and tried to optimize the network performance by using different 

input settings. Similar works have also been done by Zeng and Zhang (2013) and Jiang et al. 

(2016), which compared different RNN topologies on traffic speed and travel time 

prediction. 
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Some hybrid models have been explored by embedding statistical modeling in ANNs 

(Zeng et al., 2008; Moretti et al., 2015). Zheng et al. (2006) have also tried to combine two 

types of NN (BPNN and RBFNN) by using the Bayesian approach. The results showed it 

performed better than the single predictor. In addition, Alecsandru and Ishak (2004) have 

explored various topologies of the NN model to test the performance in traffic flow 

prediction. 

The advantage in the ANN family algorithm is the capability in handling complex, 

nonlinear relationships in multivariate data. In terms of time-series prediction, however, the 

traditional NN is limited by short-term memory, which neglects the long-term trend that 

exists in a speed sequence. Also, a traditional ANN also has a limited structure due to the 

computational power constraint before GPU-accelerated computing was in place. 

2.2.4 Deep Learning 

2.2.4.1 Deep Learning Trend in Transportation Research 

The deep learning concept was introduced back in the 80s and developed increasingly 

since the breakthrough in 2006 made the training fast and effective (Hinton and 

Salakhutdinov, 2006; Hinton et al., 2006). Transportation researchers have also adopted the 

deep learning algorithm in recent years. Some advanced deep models like the CNN and 

LSTM have been used for traffic prediction. Table 2.1 lists the number of literatures in deep 

learning (with CNN and LSTM highlighted) in the general transportation area and the traffic 

speed prediction with deep learning. 
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Table 2.1 Number of literatures in deep learning and speed prediction* 

Key Words Google Scholar TRID*** 
Deep Learning 111** 46 
CNN 44** 41 
LSTM 22** 15 
Traffic Speed Prediction / w. 
Deep Learning 

110 / 6 31 / 1 

Traffic Speed Forecasting / 
w. Deep Learning 

27 / 1 14 / 0 

* As of 3/10/2018 
** With additional key words “traffic” or “transportation” 
*** TRID is an integrated database that combines the records from the Transportation Research Information 
Services (TRIS) database and International Transport Research Documentation (ITRD) Database. TRID 
provides access to more than one million records of transportation research worldwide. 

 

Figure 2.1 also shows the trend of deep learning in transportation research. Notably, 

the peak is the last Transportation Research Board (TRB) annual meeting, with many 

researchers presenting their studies. Deep learning has gained more and more attention, 

which motivates this study in speed prediction as well. 

 

Figure 2.1 Deep learning trend in transportation research 
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2.2.4.2 Deep Belief Network 

In traffic flow prediction, the first application is made by Huang et al. (2014) using 

deep belief networks (DBNs) to predict traffic volume from a single location and multiple 

locations (with multitask learning). Unlike the deep neural network (DNN), DBN has 

undirected connections in layers, which can be treated as stacked restricted Boltzmann 

machines (RBMs) and trained layer by layer as unsupervised. Huang et al. (2014) utilized 

DBN architecture and further added a multitask regression layer to predict volume with 

supervision. The results outperformed shallow machine learning models. Similar studies have 

also been done. Jia et al. (2016) used DBN to predict traffic speed; Tan et al. (2016) 

compared different RBM settings in the DBN for volume prediction. In addition, Lv et al. 

(2015) used stacked auto-encoders (SAE) with unsupervised greedy layer-wise training to 

predict traffic flow. 

2.2.4.3 Deep Neural Network 

Some researchers have worked on developing traditional ANN into deep learning. A 

simple DNN was applied by Yi et al. (2017) predicting the traffic performance index from 

speed data. Another structure adopted from image processing is CNN, which has the 

advantages in dealing with spatial relationship as it maintains the spatial correlation through 

convolution. By treating multiple location speed sequences as images, Ma et al. (2017) 

applied deep CNN to predict the speed image in the next 10 and 20 minutes. However, one 

important problem in this approach is that the network is not fully convolutional. The last 

several fully connected layers may potentially lose the structural dependencies maintained 

throughout the previous CNN layers, and the full connection limits the model inputs to a 

fixed size; thus a pretrained model cannot be directly applied on another roadway segment. 
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2.2.4.4 Deep Recurrent Neural Network 

Due to the nature of time dependency in traffic data, some studies have been 

conducted with focuses on recurrent model structure. Ma et al. (2015a) combined RBM with 

RNN to predict a binary congestion condition on the roadway network. Wang et al. (2016) 

used CNN with an error-feedback recurrent layer to predict traffic speed. After using the 

convolution layer to extract the features, they applied a recurrent layer containing both 

regular neurons and error-feedback neurons to capture the incidents that can cause speed 

pattern change. 

Although RNN aims to capture the pattern in time series, in practice it has a big 

problem—it is not good at capturing long-term dependencies. To overcome the long-term 

memory loss, a new structure has been developed. Long short-term memory has been 

introduced by Hochreiter and Schmidhuber (1997) and increasingly used in time-series 

prediction. Ma et al. (2015b) applied an LSTM model that is a special type of RNN for traffic 

speed prediction. With the speed, volume, and occupancy of one sensor as input and the 

speed in the next 2 minutes as output, the author demonstrated the efficiency of DNN, but a 

lot more potentials of DNN have not been excavated. Chen et al. (2016) used LSTM to 

classify and predict the categorized traffic conditions (congested, slow, free flow). Duan et 

al. (2016) trained LSTM models for each roadway segment using travel time series data, and 

they predicted a travel time vector four steps ahead. The LSTM model achieved relatively 

higher accuracy in first step prediction. However, they predicted each location on the same 

highway independently; thus the spatial dependencies are not utilized. Fu et al. (2016) 

applied both LSTM and a gated recurrent unites (GRU) model to predict traffic volume in 5-

minute intervals. The GRU has a simpler structure than LSTM, which can potentially reduce 

the computation time. They randomly selected 50 locations from a traffic network and used 
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previous 30-minute data to predict the next 5-minute volume. The results showed LSTM and 

GRU outperformed the traditional ARIMA model. Jia et al. (2017) integrated rainfall data to 

predict traffic speed using DBN and LSTM. To take the spatial correlation into account, 

Zhao et al. (2017) included the data from other locations as the input of the LSTM unit at the 

target location. They used traffic volume data in 5-minute intervals and predicted up to a 60-

minute volume. In order to capture the backward temporal dependency, Cui et al. (2018) 

used a bidirectional LSTM model. They used speed data in 5-minute intervals and tested 

different numbers of steps in spatial and temporal input. The results indicated stacking one 

bidirectional LSTM layer and one unidirectional LSTM layer performed the best in the 

experiments compared to other architectures. One limitation is the lack of historical speed 

information as inputs so that the seasonal or periodical characteristics of traffic may not be 

captured. In addition, “backward temporal dependency” in the prediction problem itself may 

be arguably a nonvalid term, so that the need of bidirectional LSTM is questionable. 

2.2.4.5 Hybrid Deep Learning 

With the advance of CNN in spatial feature extraction and LSTM in temporal feature 

extraction, some studies have been conducted to learn the feature from spatiotemporal 

correlated traffic data by assembling two models. Wu and Tan (2016) combined CNN and 

LSTM to predict traffic flow. They proposed the model with one CNN layer, two LSTM 

layers, and one fully connected layer. The results showed a lower mean absolute error (MAE) 

compared to the single LSTM model. Similar work has also been done by Yu et al. (2017). 

They used CNN to learn the spatial features and LSTM to learn the temporal features. One 

improvement occurred when preparing the training data—they represented the road network 

in grid to retain the structure. Liu et al. (2018) also used CNN to extract features and 

ensemble LSTM to predict the travel time. They tested different settings of model 
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architecture such as tuning the number of LSTM layers, number of DNN layers, etc. They 

proposed one CNN layer plus two LSTM layers plus two DNN layers is the best structure in 

the predictions on different horizons and using different sliding inputs. 

Deep learning is prevailing in transportation research as we are getting large-scale, 

high-resolution, and multisource traffic data. Deep learning has the advantages in exploring 

dynamic and implicit correlation in data with less assumptions and prior knowledge. But 

deep networks need to be driven by a large amount of data and the impact of a certain feature 

could not be easily explained. 

2.3 Summary 

Numerous studies have been done in traffic prediction, from exploration in 

fundamental traffic flow theory, time series modeling, to artificial intelligence applications. 

Prediction is still a tough task to complete. In past research, most traffic prediction focuses 

on volume prediction rather than speed prediction. One reason could be traffic speed has less 

obvious trends (peak hour, weekday/weekend) than traffic volume. Also, volume is 

determined by traffic demand and supply; however, speed can be less sensitive to volume if 

demand is served. On the other hand, speed can be sensitive to other factors such as weather 

condition, incident occurrence, etc., that sometimes are unobserved. These properties in 

traffic speed result in a harder prediction. 

Among all the reviewed studies, a true long-term speed prediction like daily speed 

profile prediction is still not investigated. Forecasting daily speed profiles can benefit traffic 

planners in preparation for any weather hazards impacting traffic or for congestion relief 

measures planning. 
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CHAPTER 3.    BIG DATA IN TRAFFIC DATABASE DEVELOPMENT 

High-volume, high-resolution, heterogeneous traffic data can be obtained or accessed 

today by many transportation agencies. How to store, manage, and utilize these data is 

important. With the advent of big data technology, a solution is developed to efficiently 

manage the traffic database. In this chapter, the database developed for statewide traffic data 

management using big data techniques is discussed. The contents include (a) data acquisition, 

(b) big data storage and management, and (c) data preprocessing, particularly for this speed 

prediction research. 

3.1 Data Acquisition 

The Iowa DOT deploys more than 500 roadside radar sensors and 700 cameras, 

including both permanent and temporary versions statewide. Permanent sensors and cameras 

are typically located within major metropolitan areas in the state, while the temporary 

versions are commonly used at locations where a work zone is present. Traffic data collected 

by Wavetronix radar sensors stream to a web server, and the ITS vendor manages and 

disseminates them to the Iowa DOT via secured uniform resource locators (URLs). This 

implementation gives us the capability to perform real-time processing and application. Data 

are accessible in a not well-structured extensible markup language (XML) format, which 

requires a parsing program using more flexible languages than structured query languages 

(SQLs) in traditional database management. A sample of raw data we received is illustrated 

in Figure 3.1. 
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Figure 3.1 Sample raw data from Wavetronix sensor 

Traffic data collected include traffic volume, average speed, sensor occupancy, 

vehicle classification, and sensor status (operational, failed, off) every 20 seconds. Such high 

resolution and large-scale data requires big data tools to store and parallel processing to 

manage. 

Along with Wavetronix data, weather information collected from the IEM in the 

observing networks is also available. Different from sensor data that are streaming, weather 

data are stored on a server every five minutes by the IEM team. A sample of raw weather 

data is illustrated in Figure 3.2. We download and parse the json file into a comma-separated 

value (CSV) file and store it on our local machine. Since the weather data are in five-minute 

resolution and cover the whole state of Iowa with small grids (rectangular longitude and 

latitude grids at a resolution of 0.01 degrees in both directions), it results in an enormously 

large amount of data that cannot be accessed by any traditional tools (more than 

140 gigabytes [GB] per month). The weather information contains variables like temperature, 
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precipitation, wind speed, etc. Selected variables are used for traffic speed prediction, which 

will be discussed in section 3.3. 

 

Figure 3.2 Sample raw weather data from IEM 

Since the access methods for traffic and weather data are different, different data 

acquisition techniques and programs are implemented. Traffic data are downloaded and 

migrated to our file system through a real-time processing Java program and weather data are 

downloaded and parsed in Java in a batch processing. The traffic data acquisition program is 

written in multithread fashion. It is running on the high-performance cluster (HPC) to 

download the XML from the webpage every 20 seconds. The program allows the data 

downloading processes to be executed independently in parallel. This handles the potential 

timing-out issues in the web service connection and ensures that the data can be downloaded 

smoothly. The downloaded XML data is further parsed and then appended into a CSV 

formatted file for better data structure and storage saving. 

3.2 Big Data Storage and Management 

The streaming traffic data accumulate to more than 15 GB monthly and batch weather 

data are more than 140 GB monthly. An enormous amount of data requires a large-capacity, 

fault-tolerant, and fast-processing database. The database should hold all the data from 

multiple sources as their raw format so that no information is lost and new analysis can be 

potentially applied on any historical data at any time point. These directly lead to a big data 

tool for data storage and management. 
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3.2.1 Distributed File System (DFS) 

A DFS is a model in which components located on networked computers 

communicate and coordinate their actions by passing messages. In other words, a DFS is a 

cluster of computers in which each computer within the cluster interacts and coordinates with 

each other to achieve a common goal as a whole. An illustration of the DFS structure is 

shown in Figure 3.3. 

 

Figure 3.3 DFS structure 

A DFS can be easily expanded by adding more computers into the cluster so that it is 

scalable and can handle big data sets. On a DFS, distributed processing can be applied on big 

data sets, which normal file systems can hardly handle. In distributed processing, a certain 

data processing job can be split into multiple components and all the components are 

executed in parallel by different processing units. With this distributed processing fashion, 

not only can a big data set be processed with limited amounts of memory, but the time it 

takes to process a certain job is significantly reduced. 

3.2.2 Hadoop Distributed File System (HDFS) 

There are various software frameworks used to operate a DFS and run distributed 

processing jobs on very large data sets. In our case, Apache Hadoop was selected because it 

is open source and can be installed on computer clusters built from commodity hardware. In 
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an HDFS, a big dataset is split into multiple smaller chunks and each chunk is duplicated 

several times with each duplicate being stored on a different computer within the cluster. An 

illustration is shown in Figure 3.4. This way of splitting makes it possible to store a big data 

set with a size larger than the storage on a single computer and the duplication makes the 

system robust to hardware failures. 

 

Figure 3.4 HDFS storage strategy 

The HDFS itself controls the level of splitting and duplication to optimize the system 

performance and handles the addressing between chunks behind the scenes so the user is not 

bothered by these lower-level communications when using the HDFS. In this study, 14 

computers with 6 terabyte (TB) storage each were built as an HPC. Half the storage from 

each computer was configured into the HDFS. The remaining half storage was preserved for 

local usage. The final configured HPC consists of 14 computers with 3 TB local storage on 

each and a 42 TB HDFS. An illustration is shown in Figure 3.5. 
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Figure 3.5 HDFS splitting and duplication 

3.2.3 MapReduce Programming 

MapReduce is the basic framework for distributed processing in an HDFS. It parcels 

out work to various processing units called nodes within the cluster, then organizes and 

reduces the results from each node into a cohesive answer to a query. MapReduce utilizes the 

key value pair to distribute the data as programmed. Different data but with the same key will 

dump into one reducer to process. A brief process inside MapReduce programing is shown in 

Figure 3.6. MapReduce works very efficiently in many frequently performed jobs of traffic 

data processing such as filtering, grouping, data aggregation, etc. 

 

Figure 3.6 MapReduce programming process 
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There are more than 5 million records (rows) of traffic data in the raw CSV file of a 

single day. EXCEL is not capable of processing data of a single day because of the 1 million 

row limit, and MATLAB, R, or other traditionally used tools can be annoyingly slow. As a 

comparison, the distributed computing under the MapReduce framework is super-fast and 

scalable to larger datasets. In the HDFS, a sequence of filtering, grouping, and aggregating 

tasks can be done on one-day data in several seconds, on one-week data in a minute, and on 

one-year data in approximately half an hour. 

In our study, the 20s raw data needed to be re-aggregated into larger time bins for 

model training. MapReduce programs were written in Java and executed to process the big 

datasets stored in the HDFS. 

3.3 Preprocessing for Speed Prediction Analysis 

For the speed prediction case study, the eastbound traffic data collected by 15 

Wavetronix sensors on Interstate 235 (I-235) were used. Figure 3.7 displays the locations of 

the 15 traffic sensors. The 15 sensors covered an 11-mile-long corridor located in the center 

of the Des Moines metropolitan area. To cover this area, weather information from 15 

corresponding grids were used. Traffic and weather data collected from September 2015 to 

the end of 2016, 447 days in total, were used for both the long-term and short-term traffic 

speed prediction case study. 
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Figure 3.7 Locations of Wavetronix sensors along I-235 eastbound 

The traffic and weather data are arranged in image-like 2-D arrays by time and 

location as described before. Because of connection failures or sensor errors, there are 

missing data as well as wrong data involved in the raw data collected directly from sensors. 

Therefore, data filtering and smoothing are needed before any analysis. Figure 3.8 shows a 

speed calendar plot of the raw traffic speeds re-aggregated in 1-minute intervals in March 

2016. 

 

Figure 3.8 Raw speed data in 1-minute aggregation 
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Each subplot is a 1-day traffic speed heatmap with the 15 sensors ordered by location 

along the vertical axis and time of day along the horizontal axis. Each traffic speed heatmap 

is a 15x1440 2-D array. The red patches spreading a whole column are missing data usually 

caused by connection failures. The narrow red bands spreading horizontally are missing data 

due to a single sensor malfunction or temporal shut-down. Some other sparse red dots are 

possibly caused by sensor errors. A day is left blank if the whole day’s data is completely 

missing. The data filtering and smoothing is performed in two steps. 

1. Fill the missing data by the average of data from the same sensor, same time 

of day, and same day of week in other weeks. 

2. Smooth the data of each sensor by moving the average with a 5-minute 

window size. 

Note that the method for filling missing data used here may not be the best strategy. 

In addition to averaging by sensor location, time of day and day of week, averaging by more 

detailed weather conditions such as by snow versus no snow may better retain the dynamics 

in data and provided better modeling results. But considering the fact that the missing data is 

relatively a small potion (5.6%) and the conditional averaging strategy can go very deep 

itself involving study on significant impact factors, the data smoothing method used here 

sticks to the simple strategy. 

The speed calendar plot of March 2016 after data filter and smoothing is shown in 

Figure 3.9. Besides traffic speeds, traffic information includes vehicle count and sensor 

occupancy as well. Weather information contains 9 variables listed in Table 3.1. 
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Figure 3.9 Smoothed speed data in 1-minute aggregation 

Table 3.1 Weather variables description 

Variable Description Measure Details 
tmpc Temperature Two-meter above ground level air temperature. This value would be 

over a typical landscape for the location and not necessarily concrete, 
except in very urban areas. Units are Celsius. 

dwpc Dew point 
temperature 

Two meters above ground level dew point temperature. As with 
“mpc,” the same landscape assumptions apply. Units are Celsius. 

smps Wind speed Ten meters above ground level wind speed. This speed does not 
include gusts, but is averaged over a couple-of-minutes period. Units 
are meters per second. 

drct Direction Wind direction, where the wind is blowing from, at ten meters above 
ground level. Units are degrees from North. 

vsby Visibility Horizontal visibility from automated sensors. Units are kilometers. 
roadtmpc Road 

temperature 
Pavement surface temperature derived from available RWIS reports. 
These reports include both bridge and approach deck temperatures. 
Units are Celsius. 

srad Solar 
radiation 

Photoactive global solar radiation, sometimes called “shortwave 
down”. Units are watts per meter squared. 

snwd Snow depth Snowfall depth analyzed once per day at approximately 7 AM local 
time. If the reported snowfall depth was zero at 7 AM and it started 
snowing at noon, this field would still be zero until it updated the next 
day at 7 AM. Units are millimeters. 

pcpn Precipitation 5-minute precipitation accumulation ending at the time of analysis. 
This is liquid equivalent. Snow and sleet are melted to derive this 
value. Units are millimeters accumulated in 5 minutes. 
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There are 5.6% of traffic data is missing and 0.0% of weather data is missing. Table 

3.2 shows the summary statistics of the data after the preprocessing in the total 447 days. 

Table 3.2 Statistic summary for all traffic and weather data 

All Days Minimum Maximum Mean Standard Deviation 
Traffic Data 
Speed 3.93 90.75 65.61 6.07 
Volume 0 165.6 27.67 22.93 
Occupancy 0 38.73 2.26 3.25 
Weather Data 
tmpc -25 35.6 10.28 11.07 
dwpc -29 28 4.82 10.23 
smps 0 17.5 3.99 2.63 
drct 0 360 183.96 102.11 
vsby 0 16.09 13.9 4.97 
roadtmpc -20.4 51.3 13.89 13.05 
srad 0 960 133.23 216.69 
snwd 0 152.4 6.87 22.31 
pcpn -36 1315.2 0.86 11.78 

 

Three days are selected for testing purposes in both long-term and short-term 

predictions. 

1. Test day 1: 12-02-2016 Friday. Nonrecurrent congestion on I-235 west end 

during PM peak hours. A comparison of average traffic speeds against test 

day 1 is shown in Figure 3.10. The data summary statistics of test day 1 are 

shown in Table 3.3. 

2. Test day 2: 12-05-2016 Monday. Recurrent congestions on I-235 west end 

during both AM and PM peak hours and nonrecurrent congestion on I-235 

east end during PM peak hours. A comparison of average traffic speeds 

against test day 2 is shown in Figure 3.11. The data summary statistics of test 

day 2 are shown in Table 3.4. 
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3. Test day 3: 12-16-2016 Friday. Nonrecurrent congestion on I-235 west end 

during AM peak hours and big congestion on the whole segment during PM 

peak hours. A comparison of average traffic speeds against test day 3 is shown 

in Figure 3.12. The data summary statistics of test day 3 are shown in Table 

3.5. 

 

Figure 3.10 Speed data for test day 1. 

Table 3.3 Statistic summary for test day 1 

Test Day 1 Minimum Maximum Mean Standard Deviation 
Traffic Data 
Speed 27.12 85.03 65.04 5.81 
Volume 0 117.8 16.59 22.77 
Occupancy 0 34.7 1.36 2.4 
Weather Data 
tmpc 0 28 21.15 6.44 
dwpc 0 20 15.98 4.44 
smps 0 5.7 2.71 1.47 
drct 0 300 150.28 45.39 
vsby 0 16.09 14.96 4.03 
roadtmpc 0 37.2 25.34 8.37 
srad 0 593.4 123.32 189.1 
snwd 0 0 0 0 
pcpn 0 240 0.39 6.55 
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Figure 3.11 Speed data for test day 2 

 

Table 3.4 Statistic summary for test day 2 

Test Day 2 Minimum Maximum Mean Standard Deviation 
Traffic Data 
Speed 22.38 83.49 65.32 6.01 
Volume 0 121.6 28.83 24.22 
Occupancy 0 16.68 2.12 1.73 
Weather Data 
tmpc 0 25.6 20.15 5.63 
dwpc 0 20 16.95 4.64 
smps 0 5.1 1.98 1.55 
drct 0 360 145.55 62.95 
vsby 0 16.09 14.94 4.02 
roadtmpc 0 31.2 22.5 6.65 
srad 0 227.5 58.5 77.7 
snwd 0 0 0 0 
pcpn 0 823.2 2.75 29.32 

 

 

 

Figure 3.12 Speed data for test day 3 
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Table 3.5 Statistic summary for test day 3 

Test Day 3 Minimum Maximum Mean Standard Deviation 
Traffic Data 
Speed 21.11 83.9 65.05 6.7 
Volume 0 126.8 30.23 24.53 
Occupancy 0 13.3 2.14 1.68 
Weather Data 
tmpc 0 26.1 20.27 5.82 
dwpc 0 20 14.27 4.21 
smps 0 6.2 2.79 1.45 
drct 0 200 124.09 42.36 
vsby 0 16.09 15.02 4.01 
roadtmpc 0 31.4 23.18 6.91 
srad 0 628.1 93.09 158.79 
snwd 0 0 0 0 
pcpn 0 14.4 0 0.22 
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CHAPTER 4.    LONG-TERM SPEED PREDICTION USING ADVANCED 
CONVOLUTIONAL NEURAL NETWORK 

4.1 Introduction 

This chapter discusses the methodology for long-term speed prediction at a route 

level. Compared to the “short-term” in the next chapter, “long-term” here means “next few 

hours” or “the next day.” 

It has been explained earlier that traffic speed heatmaps of a roadway network over a 

certain period of time can be viewed as images (see section 1.2). The long-term speed 

prediction discussed here is predicting the traffic speed image of the next few hours or the 

next day as the output. Various studies have pointed out that weather is a big impact factor to 

traffic speeds and traffic incidents have a higher likelihood during adverse weather 

conditions. In addition, comparing to future traffic speeds, future weather information is 

easier to predict and the predicted weather information has been made widely available. 

Therefore, the predicted weather information will be used as input to predict future traffic 

speeds. Traffic also follows patterns. The traffic patterns will not change much from week to 

week on a certain roadway network. Considering that, the historical traffic speeds on the 

same roadway network should be used as input to predict future traffic speeds as well. 

Similar to the speed image as output, each piece of the input information can also be 

organized spatially and temporally in 2-D matrices and thus be viewed as images. The long-

term traffic speed prediction then becomes a problem that needs to convert the image-like 

inputs to an image-like output. The problem can be formularized as the following. 

𝑆𝑝𝑒𝑒𝑑'()*() 	= 	𝑓 𝐼𝑛𝑝𝑢𝑡2, 𝐼𝑛𝑝𝑢𝑡4, … , 𝐼𝑛𝑝𝑢𝑡6   (4.1) 

where 
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𝑆𝑝𝑒𝑒𝑑'()*() 	=

𝑠22 𝑠24 𝑠28
𝑠42 𝑠44 𝑠48
𝑠82 𝑠84 𝑠88

⋯
𝑠2:
𝑠4:
𝑠8:

⋮ ⋱ ⋮
𝑠=2 𝑠=4 𝑠=8 ⋯ 𝑠=:

 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑜𝑎𝑑𝑤𝑎𝑦	𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠 

𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑡𝑖𝑚𝑒	𝑤𝑖𝑛𝑑𝑜𝑤	𝑡𝑜	𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

𝐼𝑛𝑝𝑢𝑡J 	=

𝑎22 𝑎24 𝑎28
𝑎42 𝑎44 𝑎48
𝑎82 𝑎84 𝑎88

⋯
𝑎2:K
𝑎4:K
𝑎8:K

⋮ ⋱ ⋮
𝑎=K2 𝑎=K4 𝑎=K8 ⋯ 𝑎=K:K

, 𝑘 = 1,2, … , 𝐾 

In this chapter, a fully convolutional deep network with encoder and decoder is used 

as the function 𝑓 in the equations above to deal with long-term traffic speed prediction. 

4.2 Methodology 

To clearly explain the proposed fully convolutional deep network with encoder and 

decoder used in this chapter, the discussion needs to start from basic ANNs, then talk about 

the advantage of CNNs, then move to advanced uses of CNN, and finally explain the 

proposed network in details. 

4.2.1 ANN 

4.2.1.1 The Basic Building Block 

There are many model families in the deep learning world. But no matter whether it is 

a fully connected network, CNN, or other complicated network such as variational auto-

encoder generative adversarial networks (VAE-GAN) (Larsen et al., 2015), they all are 

rooted from the very basic ANNs. Before the term “artificial neural network” became 

dominant in today’s modeling field, researchers were all very familiar with the statistical 

models such as linear regression and logistic regression. Actually, the linear regression model 
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and logistic regression model can be viewed as ANNs with a single node as well. A single 

node of ANN is shown as a graph in Figure 4.1. 

 

Figure 4.1 One-node ANN structure 

As a formula, the output y can be written as: 

𝑦	 = ℎ 𝑤2𝑥2 	+ 𝑤4𝑥4 	+ ⋯+ 𝑤:𝑥: + 𝑏   (4.2) 

or written in matrix format as: 

𝑦	 = ℎ(𝑊𝑋 + 𝑏)     (4.3) 

where 

𝑊 =	 𝑤2 𝑤4 𝑤8 … 𝑤: 	are	the	learnable	weights	

𝑏	is	the	learnable	bias	

𝑋a = 	 𝑥2 𝑥4 𝑥8 … 𝑥: 	are	the	inputs	

ℎ	is	called	the	activation	function	

𝑦	is	the	output	

Now, if we recall the formula of linear regression: 

𝑦 = 𝑊𝑋 + 𝑏      (4.4) 

it can easily be related to ANN and treated as a one node network in ANN context with a 

special activation function: 

ℎ 𝑥 = 	𝑥      (4.5) 
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Similarly, if we recall the formula of logistic regression: 

𝑦 = 	 ijk	(lmno)
2nijk	(lmno)

= 	 2
2nijk	(p(lmno))

   (4.6) 

it can be viewed as a one node network in ANN context as well with a well-known sigmoid 

function as the activation function: 

ℎ 𝑥 = 	𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 = 	 2
2nijk	(pq)

   (4.7) 

4.2.1.2 Understand the Capability of ANN 

Now both linear regression and logistic regression can be graphically viewed as a 

one-node ANN shown in Figure 4.1, and the regular ANN is just a stack of lots of connected 

nodes similar to what is shown in Figure 4.2. Figure 4.2 shows a regular ANN with one 

output layer and three hidden layers and where each hidden layer has 10 nodes. 

 

Figure 4.2 Fully connected deep ANN 

In this typical ANN shown in Figure 4.2, each node functions exactly the same as the 

signal node case illustrated in Figure 4.1. If this deep ANN structure was used for modeling a 

problem instead of logistic regression, writing out all the actual formula becomes 

impracticable. 
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To better understand the capability of ANNs, we still use the three-layer ANN shown 

in Figure 4.2 vs. logistic regression as a comparison. Suppose in both cases we model the 

same problem and to be specific suppose we have ten inputs (𝑛 = 10), 𝑥2, 𝑥4, … , 𝑥2s, and one 

output, 𝑦. When modeling the mapping function 𝑓 using logistic regression, we basically use 

10×1 = 10 parameters, 𝑤2,𝑤4, … ,𝑤2s, to capture the dependencies between the inputs and 

the output. As a comparison, when using the three-layer ANN shown in Figure 4.2, we use 

10×10 + 10×10 + 10×10 + 10×1 = 320 parameters to capture the dynamics. Not only do 

we use more parameters to model the problem, but also, because of the multiple layers and 

the nonlinear activation function in each layer, the network can capture higher level nonlinear 

dynamics than logistic regression can do. In the ANN context, we can easily build a larger 

and more powerful network by adding more layers or adding more nodes in each layer. In 

addition, the output is not necessarily restricted to one 𝑦, we can add more nodes in the 

output layer so that the network can provide multivariate outputs 𝑦2, 𝑦4, … , 𝑦=. 

4.2.1.3 How to Train an ANN 

An artificial neural network is developed upon very simple building blocks and the 

theory behind it is that a stack of lots of simple functions can mimic any complex functions. 

By using simple nonlinear activation functions and multiple layers, the ANN network can 

model highly nonlinear dynamics. An ANN network is parameterized. Some existing 

successfully deployed networks contain millions of parameters. Those large networks are 

extremely powerful, but meanwhile how to find the right values for those millions of 

parameters (can also be called weights) is essential and difficult. Ultimately, finding the right 

values for those millions of parameters in ANN is nothing but an optimization problem and it 
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is fundamentally exactly the same as finding the weights in a linear regression or a logistic 

regression. 

4.2.1.3.1 Gradient descent 

Again, let’s talk about the general method of solving an optimization problem, and 

then illustrate using linear regression and logistic regression, and finally talk about ANNs. 

Most of the problems, if not all, can be modeled as optimization problems. For any problem, 

we always want to achieve some goals. To mathematically and strategically achieve the goal, 

we need to formularize some objective value regarding our goal and try to minimize or 

maximize it—this is an optimization problem. An optimization problem can be generally 

formularized as: 

    𝑥 = argmin
q

𝐽(𝑥)    (4.8) 

where 

𝑥	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑤𝑒𝑖𝑔ℎ𝑡𝑠  

𝐽	𝑖𝑠	𝑡ℎ𝑒	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑢𝑠𝑢𝑎𝑙𝑙𝑦	𝑖𝑠	𝑎	𝑙𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

The general method to find the optimal 𝑥 so that the loss function 𝐽(𝑥) can be 

minimized is gradient descent. Gradient descent comes from a simple and intuitive ideal:  

If I can find the direction in which changing 𝑥 increases the value of 𝐽(𝑥), I can 

change 𝑥 in the opposite direction to make 𝐽(𝑥) smaller. Then I can keep changing 𝑥 in that 

opposite direction so that 𝐽(𝑥) can be minimized. 

The direction “in which changing 𝑥 increase[s] the value of 𝐽(𝑥)” is called gradient, 

and the method “changing 𝑥 in the opposite direction to make 𝐽(𝑥) smaller” is called gradient 

descent. Gradient descent is an iteratively updating process and can be generally 

formularized as: 
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   𝑥yn2 = 𝑥y + 𝛼y𝑑y, 𝑟 = 0,1,2, …   (4.9) 

where 

𝑥y𝑖𝑠	𝑡ℎ𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑠	𝑎𝑡	𝑠𝑡𝑒𝑝	𝑟  

𝑑y𝑖𝑠	𝑡ℎ𝑒	𝑤𝑒𝑖𝑔ℎ𝑡	𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

𝛻𝑓 𝑥y 𝑑y < 0, 𝑖𝑓	𝛻𝑓 𝑥y 𝑑y ≠ 0  

𝛻𝑓 𝑥y 	𝑖𝑠	𝑡ℎ𝑒	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡	𝑤𝑖𝑡ℎ	𝑟𝑒𝑠𝑝𝑒𝑐𝑡	𝑡𝑜	𝑥y  

𝛼y	𝑖𝑠	𝑎	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑠𝑡𝑒𝑝	𝑠𝑖𝑧𝑒  

Different strategies of choosing the descent direction 𝑑y and the updating step size 𝛼y 

yield to different solvers, and they are all variants of gradient descent. Now after the gradient 

decent has been formularized here, let’s recap how to solve linear regression and logistic 

regression. We all know the solution for linear regression is called “least squares,” which can 

be translated as “use mean square errors (MSE) as the loss function and minimize it.” The 

MSE loss function of linear regression is a quadratic function and to minimize a quadratic 

function there is a closed-form solution by setting the gradient to zero. The closed-form 

solution is essentially a one-step gradient descent update using the Quasi-Newton method. 

For logistic regression, the well-known solution “maximum likelihood” can be translated as 

“use negative log-likelihood as the loss function and minimize it.” Compared to linear 

regression, logistic regression is more difficult to solve because its objective function, 

negative log-likelihood, has a higher nonlinearity than a quadratic function such as MSE. 

Although logistic regression cannot be solved by a one-step gradient descent update, it can be 

solved by iterative gradient descent. And iterative gradient descent is guaranteed to find the 

global optimal solution because negative log-likelihood is a convex function. The 

aforementioned Quasi-Newton method is the most widely used strategy for solving logistic 
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regression, which uses the inverse of the Hessian matrix as the descent direction as shown 

below. 

  𝑥yn2 = 𝑥y + 𝛼y(∇4𝑓 𝑥y )p2∇𝑓 𝑥y , 𝑟 = 0,1,2, …  (4.10) 

where ∇4𝑓 𝑥y 	is the second order derivitive in matrix format, aka the Hessian matrix. 

Since the inversion of the Hessian matrix is hard to compute, some methods use an 

estimation of the Hessian matrix to make the computation more efficient. The Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm and the limited-memory BFGS (L-BFGS) 

algorithm are two solvers falling in that category and are widely used in software packages 

such as NLogit. 

4.2.1.3.2 Backpropagation and learning rate 

As in linear regression and logistic regression, finding the parameter weights of ANN 

is also an optimization problem, also needs to set a loss function, and also needs to use 

gradient descent to minimize it. Given an input, there are two major steps to perform one 

iteration of weights update: 

1. Calculate the gradient for all learnable weights in all layers. 

2. Update the weights based on the calculated gradient. 

To perform step 1, backpropagation comes into play. Backpropagation is nothing 

other than using the chain rule to calculate derivatives for a composite function. Consider a 

very simple ANN structure with one hidden layer and one node in the hidden layer as shown 

below in Figure 4.3. 

 

Figure 4.3 Simplified ANN for backpropagation illustration 
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Given input x and target y, the loss can be calculated as: 

   𝑙𝑜𝑠𝑠 = 𝐽(ℎ4 ℎ2 𝑥,𝑊2 ,𝑊4 , 𝑦)   (4.11) 

where 

𝐽	𝑖𝑠	𝑡ℎ𝑒	𝑙𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

ℎ2	𝑖𝑠	𝑡ℎ𝑒	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	ℎ𝑖𝑑𝑑𝑒𝑛	𝑙𝑎𝑦𝑒𝑟  

ℎ4	𝑖𝑠	𝑡ℎ𝑒	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑓𝑜𝑟	𝑜𝑢𝑝𝑡𝑢𝑡	𝑙𝑎𝑦𝑒𝑟  

𝑊2,𝑊4	𝑎𝑟𝑒	𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑠  

Then using the chain rule, the gradient with respect to 𝑊2 and 𝑊4 and be calculated 

as: 

𝜕𝐽
𝜕𝑊4

=
𝜕𝐽
𝜕ℎ4

𝜕ℎ4
𝜕𝑊4

 

𝜕𝐽
𝜕𝑊2

=
𝜕𝐽
𝜕ℎ4

𝜕ℎ4
𝜕ℎ2

𝜕ℎ2
𝜕𝑊2

 

As demonstrated, the gradient can be calculated step by step from the output layer 

backwards to the first hidden layer. This method of gradient calculation is called 

backpropagation. 

After getting the gradient, to perform step 2 we need to choose an updating direction 

and an updating step size for gradient descent as described earlier. Usually the updating 

direction is simply set as the opposite direction of gradient (the negative gradient direction). 

Gradient descent using the negative gradient direction is often called steepest gradient 

descent. The updating step size is also known as the learning rate. There are various ways of 

choosing the learning rate. A more aggressive strategy with a larger learning rate lowers the 

loss faster but may overshoot near the optimal solution so that it is harder to converge. A 

more conservative strategy with a smaller learning rate lowers the loss slower but can better 
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converge. A smarter way of setting the learning rate is called learning rate decay, which 

makes the learning rate a decreasing function with respect to the iteration number 𝑟 (as 

shown in Equation 4.9). 

4.2.1.3.3 Activation function and batch 

Activation functions provide the nonlinearity of the ANNs. We can choose different 

activation functions for each node in the networks or we can choose the same activation 

function for all nodes. Different activation functions provide different output value ranges 

and different gradient descent characteristics. As an example, the sigmoid function that is 

used by logistic regression takes any real-number input and outputs real-number value 

between 0 and 1. The rectified linear unit (ReLU) is the most widely used activation function 

in the current ANN meta. The ReLU is nothing but a max function: 

    𝑓 𝑥 = 	max	(0, 𝑥)    (4.12) 

The ReLU has a huge computational advantage when performing backpropagation on 

a large ANN because of its simplicity. Meanwhile its nonlinear nature still provides ANN the 

capability to model highly nonlinear dynamics. 

How to effectively train the weights is the key to develop a good ANN. Besides using 

ReLU and other activation functions, putting data samples in batch to train is another strategy 

from which training can benefit. Usually when training a model given a training dataset, the 

objective is to minimize the overall loss on all training samples. The loss function is defined 

on the entire training set 𝑋: 

    𝑙𝑜𝑠𝑠��� = 𝐽(𝑊|𝑋���)    (4.13) 

Then the gradient descent will guarantee reduction of the overall loss at each 

iteration. But in an ANN application, since there are so many weights in the network, usually 
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it needs at least one order higher number of training samples than the number of weights to 

effectively train it. In that case, the very large training dataset usually cannot be fit in the 

memory all at once. Besides learning the training samples all at once, another way is to learn 

the training samples one at a time, called stochastic gradient descent. The stochastic gradient 

descent calculated based on the loss function given a random training sample is shown as: 

    𝑙𝑜𝑠𝑠� = 𝐽(𝑊|𝑋�)    (4.14) 

Stochastic gradient descent assumes by updating the weights after seeing the training 

samples one at a time the overall loss can also be minimized. This assumption is true in the 

long run, but it is not guaranteed to decrease the overall loss at every iteration. Therefore, 

stochastic gradient descent saves memory and computation at each update iteration, but it 

takes many more iterations and much longer time to reach an optimal solution than regular 

gradient descent. Neither learning the training samples all at once nor learning the training 

samples one at a time, batch gradient descent is somewhere in the middle. By learning a 

group of samples or a batch of samples one at a time, batch gradient descent needs less 

computation and memory than regular gradient descent and trains faster than stochastic 

gradient descent. 

4.2.1.4 How to select the trained weights of an ANN 

Because of the multilayer structure and nonlinear activation function in between, a 

typical ANN network is a highly nonlinear and nonconvex function. The nonconvexity of 

ANN means it is not guaranteed to reach the global optimal solution when we perform 

gradient descent. In addition, because the available training dataset is just an estimation of 

the actual population, even the global optimal solution on the training dataset is not 

guaranteed to perform well on the unseen data. Third, because ANN can perform as an ultra-

high dimensional function, which can be an overshoot of the actual dynamics underneath the 
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problem, an ANN over-fitted on the training dataset can perform poorly on the unseen data. 

Because of the aforementioned reasons, it is important to decide when the ANN has been 

trained at the most appropriate point. 

The good or bad of an ANN is decided by how well it can perform on the unseen 

data, not on the training data. In order to find the model weight with the best generalizability, 

the dataset is usually split into three subsets: training set, validation set, and test set. Here is 

model selection strategy during training: 

• Train ANN weights using the training set. 

• Select the weights with the best performance on the validation set. 

• The final model performance is reported on the test set. 

4.2.2 CNN 

The CNN is a special kind of network in the ANN family. The major advantage of the 

CNN is that it is better at capturing local features while maintaining the dimensional structure 

of the input data than the regular fully connected ANNs. The CNN also requires less 

parameters than the regular ANNs. The advantages of the CNN come from its two main 

features: convolution and weights sharing. Figure 4.4 shows a regular fully connected layer 

and a one-dimensional (1-D) CNN layer side by side. 

 

Figure 4.4 Fully connected layer and CNN layer 
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On the left is a regular fully connected layer and on the right is a 1-D convolutional 

layer. A fully connect layer connects every node in one layer to every node in another layer. 

The specific fully connected layer shown in Figure 4.4 has 5×3 = 15 connections so that is 

fifteen parameters. A CNN layer applies a convolution operation to the input and passes the 

results to the output. The specific CNN layer shown in Figure 4.4 applies a convolution 

operation using one filter (also can be called a kernel) with size = 3 and passes the results to 

the output. This CNN layer uses only three parameters. Figure 4.5 is another example of a 2-

D CNN layer. The specific 2-D CNN layer applies a convolution operation using one filter 

with size = 3 x 3 (and stride = 1) on a 10 x 10 input sample and outputs an 8 x 8 feature map. 

A fully connected layer mapping 10 x 10 input to 8 x 8 output takes 10 x 10 x 8 x 8 = 6400 

parameters, whereas this CNN layer only takes 3 x 3 = 9 parameters. 

 

Figure 4.5 Two-dimensional CNN layer 

As shown in both Figure 4.4 and Figure 4.5, in CNN context, convolution is an 

operation that slides a certain filter (or kernel) though the input data and performs an 

operation at each location. The sliding can use step size = 1 (both Figure 4.4 and Figure 4.5) 

or any other step sizes. The operation performed at each location is a sum of elemental-wise 

matrix multiplication. At the specific location in Figure 4.5, the operation is: 
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𝑏 = 	 𝑤�𝑎�

�

��2

 

Convolutions are computationally calculated as matrix multiplication, the same as the 

fully connection. Using the example in Figure 4.4, the computation of the fully connection 

can be written as: 

𝑎2 𝑎4 𝑎8 𝑎� 𝑎�

𝑤2 𝑤4 𝑤8
𝑤� 𝑤� 𝑤�
𝑤�
𝑤2s
𝑤28

𝑤�
𝑤22
𝑤2�

𝑤�
𝑤24
𝑤2�

= 𝑏2 𝑏4 𝑏8   (4.15) 

The computation of the convolution can be written as:  

𝑎2 𝑎4 𝑎8 𝑎� 𝑎�

𝑤2 0 0
𝑤4 𝑤2 0
𝑤8
0
0

𝑤4
𝑤8
0

𝑤2
𝑤4
𝑤8

= 𝑏2 𝑏4 𝑏8    (4.16) 

By comparing Equation 4.15 and Equation 4.16, it is also clear that convolutions use 

less parameters by weights sharing. 

Convolution extracts features from local information while maintaining the 

dimensional structure from the input data. By sliding a same set of filters, the weights are 

shared by local information at different locations and a CNN layer uses less parameter than a 

regular fully connected layer. Convolutional neural networks are good at processing 

structured information. Images are naturally spatially structured data and the CNN is 

currently dominant in the image processing field. Traffic data that contains spatial and 

temporal information is another good fit for CNNs. 

4.2.3 Proposed CNN 

As described in section 4.1, the predicted weather information and the historical 

traffic speeds on the same roadway network will be used as input to predict future traffic 
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speeds. As described in section 3.3, there are nine variables in weather data; the data of each 

variable is arranged in a 2-D array in which one dimension stands for location and the other 

dimension represents time. The nine 2-D arrays are stacked together as a three-dimensional 

(3-D) volume in which the third dimension represents different variables and is called a 

channel dimension. Traffic speeds on the same time/same day in the past six weeks are used 

as historical traffic speeds. The traffic speeds on one day are arranged in a 2-D array in which 

one dimension strands for location and the other dimension represents time. Six of them are 

stacked together as a 3-D volume in which the third dimension represents weeks. A fully 

convolutional deep network is proposed to take in both the predicted weather information 

and the historical speed information and predict the traffic speed correspondingly. The whole 

structure of the proposed network for long-term speed prediction is shown in Figure 4.6. 

 

Figure 4.6 Proposed CNN 
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This fully convolutional deep network has an “encoder-decoder” structure where two 

input sources are mapped and merged to a feature space and then the output is reconstructed 

from the extracted features. Because the spatial-temporal dimension is fixed given a target 

roadway network and a predicted time range, the input information is not shift-invariant and 

thus the proposed fully convolutional deep network uses no pooling layers in the feature 

extraction layers and no un-pooling layers in the output reconstruction layers as a normal 

CNN-based encoder and decoder will do. Still, since the proposed network deploys the 

concept of extracting features and then reconstructing from features, “encoder” and 

“decoder” are used here to depict the model structure. 

The details in proposed CNN architecture are the following: 

1. Two different CNN encoders are used to extract features from weather data 

and historical speed data separately. 

2. The extracted features maps from two sources have the same size and are 

merged together. 

3. The merged feature map is then up-sampled by a CNN decoder to reconstruct 

the predicted speed. 

The ideas behind the design of this network structure include the following: 

1. The network should be deep to capture the highly nonlinear dynamics. 

2. The network should use CNN layers to capture spatial-temporal dependencies. 

3. The network should only use CNN layers (fully convolutional) so that the 

network is independent of the size of input and a pretrained network can be 

applied on roadway networks with any number of sensors and predict traffic 

speed in any length of time window. The networks should use no fully 
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connected layers also because the spatial-temporal structure should be 

retained from end to end. 

4. The network should treat the two input sources separately so that if one of the 

sources is missing in some practical use cases a pretrained model still contains 

valuable weights. 

5. The network should not contain too many parameters so that it can be 

trainable with a limited dataset. 

All the CNN layers in this section use stride = 1 and no padding. 

4.2.3.1 Encoder for Predicted Weather 

The detailed structure of the encoder for predicted weather is shown in Figure 4.7. 

From one-day predicted weather data containing nine variables as input, this encoder extract 

features three CNN layers: 

1. 2-D CNN layer using two filters with size = 9 x 1 x 1 

2. 2-D CNN layer using eight filters with size = 2 x 3 x 3 

3. 2-D CNN layer using sixteen filters with size = 8 x 3 x 3 

The number of total parameters contained in CNN layers is 2 x 9 x 1 x 1 + 8 x 2 x 3 x 

3 + 16 x 8 x 3 x 3 = 1314. 

 

Figure 4.7 Structure of encoder for predicted weather 
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Inspired by the original GoogLeNet paper (Szegedy et al., 2014), the 1-by-1 

convolution layer is used before the relatively more expensive 3-by-3 convolution layer to 

reduce dimensionality in the channel dimension while providing depth and nonlinearity in the 

network. As shown in Figure 4.7, suppose we jump from the input with size = 9 x 15 x 1440 

to the second feature map with size = 8 x 13 x 1438 using 3-by-3 convolution and skipping 

the 1-by-1 convolution; the number of parameters will be 9 x 3 x 3 x 8 = 648. By adding the 

1-by-1 convolution in the middle, the dimensionality of the channel dimension reduces the 3-

by-3 convolution and the number of parameters decreases to 9 x 1 x 1 x 2 + 8 x 2 x 3 x 3 = 

162. 

Following the 1-by-1 CNN layer, two sequential 3-by-3 CNN layers extract the 

feature map from local information while maintaining the spatial-temporal structure. 

4.2.3.2 Encoder for Historical Speed 

The detailed structure of the encoder for historical speed is shown in Figure 4.8. From 

six days of historical speed as input, this encoder extract features using three CNN layers: 

1. 3-D CNN layer using two filters with size = 3 x 3 x 3  

2. 2-D CNN layer using two filters with size = 8 x 1 x 1 

3. 2-D CNN layer using sixteen filters with size = 2 x 3 x 3 

The number of total parameters contained in CNN layers is 2 x 3 x 3 x 3 + 2 x 8 x 1 x 

1 + 16 x 2 x 3 x 3 = 358. 
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Figure 4.8 Structure of encoder for historical speed 

The major difference between the 3-D input data volumes from two sources is that the 

third dimension of predicted weather is a channel dimension that contains no structural 

information (the order of channel is not meaningful), whereas the third dimension of 

historical data contains temporal order. The advantage of convolution against fully 

connection applies to every dimension. In order to capture the temporal dynamics in the third 

dimension of historical speeds, convolution should replace fully connect in this dimension as 

well. Therefore, a 3-D convolutional layer is used. Two 3-by-3-by-3 filters extract two 

feature maps and the channel dimension is then removed by stacking the two maps together 

to remain a total of three dimensions. 

Following the 3-D CNN layer, again a 1-by-1 convolution is applied before the 3-by-

3 convolution to reduce dimensionality in the channel dimension while providing depth and 

nonlinearity in the network as explained in section 4.2.3.1. Finally a 3-by-3 CNN layer 

extracts the feature maps from local information while maintaining the spatial-temporal 

structure. The feature maps extracted from the historical speed encoder have the same size as 

the ones extracted from the predicted weather encoder. 
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4.2.3.3 Decoder 

After merging the extracted feature maps from two input sources, the merged feature 

maps are sent to the decoder to reconstruct the predicted speed. The detailed structure of the 

decoder is shown in Figure 4.9. This decoder reconstructs predicted speeds using two CNN 

layers. 

1. 2-D transposed CNN layer using eight filters with size = 16 x 3 x 3 

2. 2-D transposed CNN layer using one filter with size = 8 x 3 x 3 

The number of total parameters contained in CNN layers is 8 x 16 x 3 x 3 + 1 x 8 x 3 

x 3 = 1224. 

 

Figure 4.9 Structure of decoder 

Transposed convolutions generally arise from the desire to use a transformation going 

in the opposite direction of a normal convolution, i.e., from something that has the shape of 

the output of some convolution to something that has the shape of its input while maintaining 

a connectivity pattern that is compatible with said convolution. Transposed convolutions are 

used here as decoding layers to project feature maps to back to the same dimensional space 

as the input. As described in Equation 4.16, convolutions are essentially matrix 

multiplications so they are transposed convolutions. Because the weights shape is transposed 
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when going from the right-hand side to the left-hand side of a CNN computation (see 

Equation 4.16), this operation is called transposed convolution. 

4.3 Case Study 

4.3.1 Model Input 

As described in section 3.3 and section 4.1, both weather information and historical 

speeds are used as the model input to predict long-term speeds. All nine variables in weather 

information of the predicted day are used. Historical speeds of the same day in the past six 

weeks are used. Data are arranged in 2-D arrays with the 15 sensor locations along the 

vertical axis and the 1,440 minutes in the day along the horizontal axis. Nine weather 

variables are stacked along the third axis and six historical days of traffic speeds are stacked 

along the third axis. After the data processing describe above, each of the 447 samples are 

arranged as below: 

1. Weather input: a 9-by-15-by-1440 3-D array 

2. Historical speed input: a 6-by-15-by-1440 3-D array 

3. Speed output label: a 15-by-1440 2-D array 

4.3.2 Model Training 

Model training is the key step in deep learning. A common belief is that even an 

arbitrary deep network has a very high modeling power, but how much potential we can get 

from it depends on how we train it. Another common belief is that to effectively train a deep 

model, we need one order higher number of training samples compared to the number of 

parameters in the deep network. 

As described in section 4.2.3, the proposed fully connected deep network contains 

about 2,900 parameters, but in this study we only have 447 training samples. A data 

augmentation method here is used to boost the number of training samples. One big 
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advantage of the fully convolutional network is that it accepts any input size and the output 

size will depend on the input it receives. With that being said, the model can be trained on 

any size of data samples; for example, it can be trained on two-hour patches as well as one-

day patches. Following that idea, the 447 one-day training samples are processed into 447 x 

((1440 – 120) / 10 + 1) = 59,451 two-hour patches using a sliding window with step size = 10 

minutes. After the data patching, we have about 59,000 training samples that is one order 

more than the 2,900 parameters. 

The ReLU as the nonlinear activation function and batch normalization as the anti-

overfitting strategy are applied at each layer of the fully convolutional deep network. Eighty 

percent and 20% of the samples are used for training and validation separately while the 

three test days described in section 3.3 are reserved for the testing purpose only. The RMSE 

is used as the loss function and batch gradient descent is performed using adaptive motion 

estimation (Adam) optimizer where the learning rate and moving direction are adaptively 

changed during training. Data samples are put in batches with size = 200.  

Given the designed “encoder-decoder” network structure described in the previous 

section, there are other details that may differ the model performance. For example, the 

number of CNN filters used in each layer determines the number of features extracted and 

the number of weights as well. With more filters, the model extracts more features from the 

input data and potentially has higher prediction power. Meanwhile, more filters bring more 

weights and the model becomes harder to train given limited train data. The model structure 

is designed to deal with two input sources separately and has the ability to disable one or the 

other as needed. The fully convolutional deep network is tested with different number of 

filters in every layer following the regulation that the number of filters changes exponentially 
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in consecutive layers. The model is also tested with only weather information as input, only 

historical traffic data as input and both sources as input. After all those experiments, The 

model with proposed number of filters shown in the previous section and with both sources 

as input provides the best performance. The final selected fully convolutional deep network 

is trained on an NVIDIA TITAN Xp GPU for 5,000 minutes. 

4.3.3 Testing Results and Discussion 

The trained fully convolutional deep network is tested on the three selected test days 

described in section 3.3. Each testing is performed by three experiments as follows: 

1. Use one-day patch as input, predict the whole day speeds, and compare with 

the one-day patch ground truth. 

2. Test on two two-hour patches: 7:00–9:00AM during AM peak hours and 

4:30–6:30PM during PM peak hours, and compare with the two-hour patch 

ground truth. 

3. Predict two-hour speeds every 10 minutes, then stitch all predicted two-hour 

patches into a one-day prediction and compare with the one-day patch ground 

truth. 

The first and second experiments are designed to demonstrate that the fully 

convolutional deep network can be used on any size of input to predict the speeds 

accordingly. And the third experiment is designed to connect to two input scales to 

demonstrate that the fully convolutional deep network learns structural dependencies from 

input, so that even though the model is trained on two-hour patches it has the transferability 

to predict the speeds at any scale. The testing results of the three test days are shown in 

Figure 4.10, Figure 4.11 and Figure 4.12, respectively. Each figure is organized as follows: 

• Row 1 shows the whole day ground truth for experiment 1 and experiment 3. 
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• Row 2 shows the prediction results from experiment 1. 

• Row 3 shows the ground truth for experiment 2. 

• Row 4 shows the prediction results from experiment 2. 

• Row 5 shows the prediction results from experiment 3. 

Several observations can be made from the testing results: 

1. The fully convolutional deep network is capable of using information from both 

historical speeds and weather data to make predictions. By comparing test day 2 

against test days 1 and 3, the model predicts different traffic patterns based on 

historical traffic conditions on Mondays and Fridays. By comparing test day 1 

against test day 3, the model predicts different overall traffic conditions based on 

the variation in the weather of the two test days even though there is not a very 

significant difference between the weather data summary statistics of the two test 

days. 

2. The model can predict traffic speeds at any scales. By comparing the results from 

experiment 1 and experiment 2 in each test case, the model is able to capture the 

dynamics and predict similar traffic conditions at different temporal scales. By 

comparing the results from experiment 1 and experiment 3 in each test case, even 

though the model is trained on two-hour patches, at inference it can take a whole-

day patch as input and directly predict the whole-day speeds at even a higher 

accuracy level than predicting and stitching two-hour patches. With that being 

said, the fully convolutional deep network has high transferability. 

3. Long-term prediction is hard and the traffic speeds are impacted by many 

stochastic factors. Human factors and other stochastic factors that happened on 
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the actual day can cause big fluctuations in the traffic condition during peak hours 

and only utilizing historical traffic speeds and weather information as input 

sources could not predict the nonrecurrent congestions well enough. Those 

fluctuations usually are caused by short-term dependencies and will be discussed 

in the next chapter. 

 

Figure 4.10 Model results on test day 1, 12-02-2016 Friday 
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Figure 4.11 Model results on test day 2, 12-05-2016 Monday 
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Figure 4.12 Model results on test day 3, 12-16-2016 Friday 
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CHAPTER 5.    SHORT-TERM SPEED PREDICTION USING HYBRID DEEP 
NEURAL NETWORK 

5.1 Introduction 

This chapter focuses on short-term prediction at a route level using a hybrid LSTM 

network. Corresponding to the “long-term” in the previous chapter, “short-term” refers to 

prediction for the next few minutes. 

It has been explained in section 2.1 that traffic speed heatmaps of a roadway network 

over a certain period of time can be viewed as images. The short-term speed prediction 

discussed here is predicting the traffic speed image of the next few minutes as the output. 

Unlike the long-term traffic speed prediction that usually is done once in a while—e.g., the 

prediction is done once a day when predicting the traffic speed of the next day—the short-

term traffic speed prediction should be done in a streaming fashion. The raw traffic 

information collected by various sensors usually comes in by a fixed time interval. Then the 

prepossessed data for analysis will keep the same pace or may be aggregated to a larger 

interval. In whatever time interval, the data collected from sensors come in every interval and 

in a streaming fashion. Thus the short-term speed prediction should provide the speed 

estimation several intervals ahead and also in a streaming fashion. Suppose the data come in 

every one minute and the short-term speed prediction is expected to provide the speed 

estimation five minutes in the future; then every time a new data point comes in, the 

prediction program should also roll one time interval ahead and predict the speeds five 

minutes ahead related to the current timestamp. 

In the previous chapter, long-term traffic speed prediction leverages predicted 

weather information as one of the major inputs. Undeniably, weather has an impact on traffic 

conditions at a large time scale, but it may not be a very dominant and responsive indicator in 
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the short-term speed prediction case. There are various factors including weather that may 

affect the actual traffic speed. Some of the factors are able to be captured by sensors, some of 

them are not, and some of them may even be impossible to measure. But eventually all those 

impacts will be reflected on the real traffic speeds. As a kind of time series data, the past 

evolution of traffic speeds is intuitively the best predictor of its future states. Therefore, the 

traffic speeds of the near past timestamps are used as input. Traffic also follows patterns. The 

traffic patterns will not change much from week to week on a certain roadway network at the 

same time of day. Considering that, the historical traffic speeds on the same roadway 

network at the same time of day should be used as input to predict future traffic speeds as 

well. Here we can view the traffic speeds as 2-D matrices as well, where rows represent 

locations and columns stand for time. The short-term traffic speed prediction has then 

become a problem that predicts the next column in the matrix, using previous columns as 

well as the same column in the same day in the last several weeks as input. The problem can 

be formularized as the following. 

𝑆𝑝𝑒𝑒𝑑�,) 	= 	𝑓(𝑆𝑝𝑒𝑒𝑑�,)p2, … , 𝑆𝑝𝑒𝑒𝑑�,)pa, 𝑆𝑝𝑒𝑒𝑑�p�∗2,), … , 𝑆𝑝𝑒𝑒𝑑�p�∗l,)) 

where 

𝑆𝑝𝑒𝑒𝑑�,) =

𝑠2)
𝑠4)
𝑠8)
⋮
𝑠=) �

 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑜𝑎𝑑𝑤𝑎𝑦	𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠 

𝑑 = 𝑑𝑎𝑦	𝑛𝑢𝑚𝑏𝑒𝑟 

𝑡 = 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝	𝑛𝑢𝑚𝑏𝑒𝑟 
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In this chapter, an (LSTM-based network is used as the function 𝑓 in the equations 

above to deal with short-term traffic speed prediction. 

5.2 Methodology 

To clearly explain the proposed LSTM-based network used in this chapter, the 

discussion needs to start from regular recurrent neural networks, transits to the advantages of 

LSTM, and finally explain the proposed network in details. 

5.2.1 RNN 

In the short-term traffic speed prediction problem, when we try to predict what is 

going on next we would intuitively not only use the information at the current timestamp. 

Instead, we would consider the information in past timestamps as well to predict what is 

going on next. Suppose we are currently at timestamp 𝑡 and want to predict traffic speeds at 

timestamp 𝑡 + 1. In order to take information from the previous timestamps into 

consideration, there are two ways to model this problem. 

1. A model takes input data from the previous 𝑁 timestamps, including the 

current timestamp all at once, and predicts traffic speed at time 𝑡 + 1 as 

shown in Figure 5.1. 

2. A model only takes input data from one timestamp at a time and makes an 

output. At each timestamp, the model takes the data from that timestamp as 

well as the output from the previous timestamp to make an output. The model 

reads in data from all previous timestamps in order and finally makes a 

prediction for timestamp 𝑡 + 1 as shown in Figure 5.2. 
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Figure 5.1 Traditional NN structure for sequence prediction 

 

Figure 5.2 Recurrent NN structure for sequence prediction 

By comparing the two strategies, the first one has limitations such as the following: 

• The window size 𝑁 is prefixed. 

• The temporal dependencies have to be handled inside the model. 

The second strategy has several advantages when handling a time series data such as 

the following: 

• There is no fixed window size; the number of previous timestamps used to 

predict the next one is flexible. 

• The temporal dependencies are naturally handled by the recurrent model 

structure. 

An ANN having a recurrent structure as shown in Figure 5.2 is called an RNN. 

Recurrent neural network models have a chain-like structure and they are the natural 

architecture of ANN to use data in sequences. 
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5.2.2 LSTM 

Long-short term memory networks belong to the RNN family. The major problem of 

the regular RNNs is that they are not good at modeling the long-term dependency. The 

reason is that, as shown in Figure 5.2, the regular RNN passes the previous information only 

through the output-input connections and at each pass the information is nonlinearly 

transformed. In theory the information has been successfully passed on, but in reality people 

find that the long-term dependencies are lost after several nonlinear passes. Because of that, 

the regular RNNs are all “short-memory.” 

The LSTM addresses this long-term dependency loss problem by adding a “green 

channel” for the “memories” to pass through. This “green channel” is called cell state and 

when “memories” passing through, only linear transformations are applied along the way. 

Each LSTM cell utilizes the input from the current timestamp, the output from the previous 

timestamp, and the “memories” passed from the “green channel” to make an output, and then 

it linearly modifies the “memories” and keeps passing them along the “green channel.” In 

such a way, the long-term dependencies are well preserved. The structure is shown in Figure 

5.3. 

 

Figure 5.3 LSTM NN structure 

In a short-term traffic speed prediction problem, a driver would probably take a very 

long-term dependency into consideration. For example, at 4:50pm a driver is planning a 
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travel at 5:00pm, which is usually when the PM peak starts. The driver would consider what 

the traffic conditions currently and in the past hours are. The driver may also check whether 

it is more congested during the morning peak today to estimate the traffic condition at 

5:00pm. Preferably, we may want to look through the traffic conditions from the start of the 

day until the current time sample to predict what is going to happen next. The LSTM is a 

great model architecture to model data in time sequences with long-term dependencies. 

5.2.3 Proposed Hybrid LSTM 

As described in section 5.1, the traffic information from the previous timestamps and 

the historical traffic speeds on the predicted timestamp from the previous weeks will be used 

as input to predict traffic speeds in the next few minutes. A hybrid LSTM network is 

proposed to take in both the input sources and predict the traffic speed correspondingly. The 

whole structure of the proposed network for short-term speed prediction is shown in Figure 

5.4. 

 

Figure 5.4 Proposed hybrid LSTM model structure 
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This hybrid LSTM network predicts traffic speed at timestamp 𝑡 + 1 using features 

extracted from two input sources: 

1. The information from the start of the current day to timestamp 𝑡. The input 

information can have traffic speed as the only variable or it can contain any 

more variables that are available.  

2. The traffic speeds at timestamp 𝑡 + 1 of the same day in the past six weeks. 

At timestamp 𝑡, steps to predict traffic speeds at time 𝑡 + 1 include the following:  

1. One LSTM cell takes features extracted from timestamp 𝑡, the outputted 

feature maps from timestamp 𝑡 − 1, and the cell state and outputs feature 

maps. 

2. Another LSTM cell goes through the sequence of features in the past six 

weeks and outputs another feature map.  

3. The feature maps extracted from two sources are combined and the combined 

feature maps are outputted as predicted speed at time 𝑡 + 1 by a fully 

connected layer. 

At time 𝑡, to predict speed at time 𝑡 + 𝑛, first predict speed as time 𝑡 + 1, then use 

speed at	𝑡 + 1 as input to predict speed at 𝑡 + 2, and then keep looping until you get the 

predicted speed as	𝑡 + 𝑛. In this mode, the first input source contains traffic speed as the only 

variable. 

The features from both of the aforementioned two sources are extracted by a 1-D 

convolutional filter with size = 5 as shown in Figure 5.5. Then the extracted features are 

passed to LSTM cells for prediction. 
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Figure 5.5 1-D convolutional filter for feature extraction for LSTM cell input 

5.3 Case Study 

5.3.1 Model Input 

As described in section 3.3 and section 5.1, both the traffic information from the 

previous timestamps and the historical traffic speeds from the previous days are used as input 

to predict traffic speeds in the next few minutes. Only traffic speeds are used as input here to 

give the model the ability to predict any timestamps ahead as described in section 5.2.3. 

Historical speeds on the predicted timestamp of the same day from the previous six weeks 

are used. Data of each timestamp are arranged in 1-D arrays ordered by the 15 sensor 

locations. At each timestamp t, the data are structured as follows: 

1. Current speed input: a size = 15 1-D array. 

2. Historical speed input: a 6-by-15 2-D array. 

3. Speed output label: a size = 15 1-D array. The actual speeds at time 𝑡 + 1 are 

used as labels. 

5.3.2 Model Training 

There is so much flexibility in training an LSTM model. There are two LSTM cells in 

the proposed hybrid LSTM network described in section 5.2.3: the current speed LSTM cell 
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and the historical speed LSTM cell; in this section we call them LSTM cell 1 and LSTM cell 

2, respectively. For LSTM cell 1, the training method used here is using the actual speed at 

timestamp 𝑡 + 1 as the label for training sample at timestamp t and the “memory” is reset at 

every start of day. The LSTM cell 2 lives outside of the LSTM cell 1 timeline. At each 

timestamp on LSTM cell 1’s timeline, LSTM cell 2 goes through all six of its own 

timestamps to provide features from historical information. This specific training strategy 

teaches the hybrid LSTM to remember everything that has happened from the start of the 

current day, as well as the historical speeds, and to predict the next timestamp at its best. 

The ReLU as the nonlinear activation function and batch normalization as the anti-

overfitting strategy are applied at the input layer and the output layer of both LSTM cells. 

Eighty percent and 20% of the data are used for training and validation separately whereas 

the three test days described in section 3.3 are reserved for the testing purpose only. The 

RMSE is used as the loss function and batch gradient descent is performed using adaptive 

motion estimation (Adam) optimizer where the learning rate and moving direction are 

adaptively changed during training. Data samples are put in batches with size = 1,000. The 

hybrid LSTM network is trained on an NVIDIA TITAN Xp GPU for 5,000 minutes. 

5.3.3 Testing Results and Discussion 

The trained hybrid LSTM network is tested on the three selected test days described 

in section 3.3. Each testing is performed by two experiments as follows: 

1. Use only the current speed LSTM cell with historical speed LSTM cell 

disabled to predict speeds in six difference time scales: 1-minute ahead, 5-

minute ahead, 10-minute ahead, 15-minute ahead, 30-minute ahead, and 60-

minute ahead. 
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2. Use both LSTM cells to predict speed in six different time scales: 1-minute 

ahead, 5-minute ahead, 10-minute ahead, 15-minute ahead, 30-minute ahead, 

and 60-minute ahead. 

The two experiments are designed to compare the different model behaviors with and 

without historical information. For each experiment, six different time scales are tested to 

demonstrate the flexibility of the model in terms of prediction range as well as the model 

prediction accuracy. The testing results of the three test days are shown in Figure 5.6, Figure 

5.7, and Figure 5.8, respectively. Each figure is organized as follows: 

• Column 1 shows the results from experiment 1.  

• Column 2 shows the results from experiment 2. 

• Row 1 shows the ground truth. 

• Rows 2–7 show results at the six different prediction time scales. 

Several observations can be made from the testing results: 

1. The short-term hybrid LSTM model can predict more accurate traffic speeds than 

the long-term model. Traffic conditions have trends and also are sensitive to the 

near past stochastic factors. A combination of short-term prediction and long-term 

prediction can predict more comprehensive multilayer information. 

2. The hybrid LSTM network can predict traffic speed at different prediction time 

scales. As described in section 5.2.3, the model can keep rolling ahead by using 

the prediction as input to predict the next timestamp. The results show that 

although the model is trained to predict only the next one timestamp, it can 

predict further. The network’s prediction accuracy decreases as the prediction 
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range gets longer. The short-term prediction model works better when predicting 

speed less then fifteen minutes ahead. 

3. The hybrid LSTM network shows different behavior with and without historical 

input. Using only the previous information from the current day as input, the 

model tends to carry the current traffic speed and predict the future speed near it. 

Although the overall RMSE is lower than the RMSE when using historical 

information, the predicted congestion is some kind of a shifted version of 

observed congestion. When using historical information, the overall prediction, 

although having a higher RMSE, has a better value in terms of predicting the start 

and end of a congestion event. 
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Figure 5.6 Model results on test day 1, 12-02-2016 Friday 
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Figure 5.7 Model results on test day 2, 12-05-2016 Monday 
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Figure 5.8 Model results on test day 3, 12-16-2016 Friday 
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CHAPTER 6.    CONCLUSIONS 

The objective of the proposed study is to provide traffic management the predicted 

traffic speeds at a route level to operate proactively. 

Traffic speed prediction analysis using deep learning can benefit from the large 

amount of historical data. The past observations are the ground truth predictions at the 

historical timestamps so that although a supervised method is used to train a deep network 

for traffic speed prediction, there is no manual labeling needed. The large amount of 

historical data are all we need. Traffic information collected from RTMSs and weather data 

provided by IEM are the two sources used in this study. To accommodate large amount of 

statewide data and to provide data preprocessing in a timely manner, HDFS is used as a 

large-capacity fault-tolerant distributed file system and MapReduce is adopted as a parallel 

computing framework in this study. 

Data collected from fifteen locations on eastbound I-235 in Des Moines metropolitan 

area from September, 2015 to the end of 2016 totaling 447 days are used in this study. Due to 

random connection failure and sensor errors, about 5.6% of traffic data is missing. The 

missing data are filled with average value by sensor location, time of day and day of week 

throughout the study period. Data is then smoothed by a moving average method with a 

window length of five minutes. 

A fully convolutional deep network is developed to make long-term traffic speed 

prediction from both weather information and historical traffic speeds. CNN layers are used 

so that the network is able to effectively extract features from the spatial-temporal structure 

in the input data and predict traffic speed at a route level. Only CNN layers are used so that 

the network is independent on the spatial-temporal dimension of the input data so that a pre-
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trained model can be transferred on traffic speed prediction at difference scales. The 

proposed fully convolutional deep network is optimized by using both 3-D CNN layer and 

one-by-one CNN layers so that the entire model is deep while the number of weights is 

reduced. Different number of filters are tested and the model structure with the best 

performance are proposed. The testing experiments on three test days demonstrate the 

proposed model can effectively capture the dynamics from both two input sources to make 

predictions. The testing experiments also demonstrate that a model trained on two-hour 

patches can make an accurate whole day prediction directly from a whole day input. 

A hybrid LSTM network is developed to make short-term traffic speed predictions 

from both historical traffic speeds and traffic speeds in the current day. LSTM structure is 

used so that the long-term memory can be well maintained while the timestamp keeps rolling 

forward. The LSTM memory will not be reset until the end of the day so that the observed 

traffic speeds in the current day from the beginning of the day are taken into account to 

predict the traffic speeds at the next time stamp. The impact of historical input is tested and 

the testing cases demonstrate that with the impact of historical input, the model tends to have 

lower latency in terms of predicting recurrent congestions. The recurrent LSTM model 

structure gives the model ability to predict arbitrary number of timestamps ahead by using 

the previous prediction as input and rolling forward. The testing experiments demonstrates 

that a model trained to predict only one timestamp ahead can effectively predict multiple 

timestamps ahead using the aforementioned mechanism.  

The long-term traffic prediction model and short-term traffic prediction model are 

superior in different aspects when comparing with each other. The short-term prediction 

model provides much higher accuracy than the long-term prediction model but it can only 



80 

predict traffic speed in a very short time scale. The long-term prediction model can provide 

hours to days of buffer time between the current timestamp and the predicted timestamp but 

it compromises on the prediction accuracy. A combination of the two models can take 

advantage of the strength from both aspects and provide an effective multilayer decision 

supporting system and both models are compatible to become a live application. 

There are also many aspects where the study can be improved in the future. Data is 

the fundamental ingredients of deep learning. The more validate data the better a deep 

network can be trained. In this study, only data from one route is used due to practical 

limitations. The adopted distributed file system and parallel computing framework is scalable 

to larger amount of data. Thus in the future when more data is available the deep models can 

potentially gain higher prediction power.  

The proposed fully convolutional deep network structure can be applied to any 

spatial-temporal dimension. This study applies the model to a fixed route and demonstrates it 

can be applied on multiple temporal scales. Future studies can dig deeper in applying the 

model in different spatial scales. Following the experiment design in this study, one use case 

in exploring the spatial transferability could be applying a model pre-trained on a short route 

to a longer route. One hidden assumption when apply the same model to different spatial 

scales is that the geospatial dependencies do not change at those different spatial scales. 

Sometimes this assumption does not hold because the consecutive sensors at different 

locations can be differently spaced and the segment type may change from regular to 

merging to diverging to weaving segments. One way to give the model a better ability to 

learn the varying geospatial dependencies is to parameterize the CNN filter shape, such as 

dilated CNN or deformable CNN filter. 
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A different training strategy may significantly improve the performance of a deep 

network. The training strategy used in this study for the hybrid LSTM model is to train it to 

predict traffic speed at only the next timestamp. Although the testing experiments 

demonstrate that the model trained in such a way can effectively predict multiple timestamps 

ahead, but a different training strategy such as training the model to predict a certain number 

of timestamps ahead may improve the prediction power. A different loss function could also 

bring different behavior to a model. The future study may use a weighted RMSE as the loss 

function giving higher weighted to peak hours or amplifying the error when the actual traffic 

speed is low so that the model may better predict congestions. 
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