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ABSTRACT

This work presented in this thesis combines statistical models for social networks and network

visualization in new and exciting ways. In Chapter 1, a thorough review of the literature in the

topics of statistical network models and network visualization is presented. In Chapter 2, we focus

in on one type of model for dynamic social networks: the stochastic actor-oriented models (SAOMs),

introduced by Snijders (1996). Unlike other network models, SAOMs are not very well understood,

so we use model visualization techniques inspired by those introduced in Wickham et al (2015) in

order to make the models a little less murky. The SAOMs are a prime example of a set of models

that can benefit greatly from application of model visualization, and with the help of static and

dynamic visualizations, we bring the hidden model fitting processes into the foreground, eventually

leading to a better understanding and higher accessibility of stochastic actor-oriented models for

social network analysts. In Chapter 3, we further explore the SAOMs using the visual inference

methodology of Buja et al. (2009). We construct significance tests of model parameters, goodness-

of-fit tests, and power calculations for the objective function parameters in SAOMs using visual

inference. In this way, we can explore complex network data more completely than traditional

significance and goodness-of-fit methods that rely on one-dimensional derived features of networks

do. In Chapter 4, we present an R package for drawing networks using the popular grammar

of graphics R plotting paradigm, ggplot2 (Wickham 2016). We close with a discussion of the

limitations of the work and directions for the future in Chapter 5.
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CHAPTER 1. LITERATURE REVIEW

Social networks have been studied for decades, beginning with a few foundational works, the

most well known of which is the 1967 study, “The Small World Problem” by Stanley Milgram

(Goldenberg et al., 2010). But in recent years, the study of social networks has grown wildly in

popularity due to an increase in the availability of and easy of access to social network data. The

digital revolution has led to the creation of social media, linking people from all over the world in a

way we never have been before. Now that platforms like Facebook, Twitter, and LinkedIn permeate

our world, just about everyone knows what social networks are. In academic circles, collaboration

networks are a type of social network that have been extensively studied and can even be a point

of pride, like a mathematician’s Erdös number (Grossman, 2016). Social networks are a rich source

of knowledge, but the data format does not fit easily within traditional data collection paradigms.

Traditionally, data collection involves a set of units of the same, or at least similar, kind, on which

observations are made. The storage of traditional data is simple and organized: rows contain

variable values collected from units. These units can be people, plants, animals, stocks, objects,

fields, and anything else under the sun, but one social network consits of many units, yet on the

whole is just one observation. When observing a social network, one observes the possibly very

numerous actors (also referred to as vertices or nodes) and the relationships (also referred to as

edges or ties) between those actors. One can also collect information on the nodes and the edges

separately, such as the age or gender of people and the length of their relationship or how strong it

is in a friendship network. Thus, information on the entire network is more difficult to store than

traditional data with which statisticians usually work.

This apparent difficulty has not stopped researchers in many different fields from studying

social and other types of networks. Sociologists work with human relationship networks of all kinds

imaginable, biologists work with protein-protein interaction networks, neurologists use fMRI scans
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to study biologic neural networks, and the list goes on. These disciplines worked separately for

many years, each developing their own measures, softwares, and theories about the fundamental

properties of networks. And although statisticians were comparatively late to the party, many

statistical models exist for network analysis. Beginning with the classic Erdös-Rényi random graph

model and varying in structure, complexity, and application to include longitudinal network data,

such as continuous time markov chain models (Goldenberg et al., 2010). The many varying models

that exist just for social network analysis are impressive, but I focus my research on one type of

continuous time markov chain (CTMC) models, called Stochastic Actor-Oriented Models (SAOMs).

A full introduction to the various models that exist for social network analysis is presented in Section

1.1, and a full introduction to the structure and theory of SAOMs is presented in Section 1.1.4.

1.1 Statistical Models for Social Networks

The literature on statistical models for networks is extensive. In their thorough “Survey of

Statistical Models”, Goldenberg et al. (2010) separate these models into two primary classes: static

and dynamic. I discuss the several types of models as they relate to stochastic, actor-oriented

models, the models of my primary focus, in each of these two categories after a brief introductory

section on general network terminology and notation.

1.1.1 Basic Network Terminology and Notation

Formally, a network is defined by a collection of nodes, also referred to as vertices or actors, and

the set of ties, also referred to as edges or relationships, between them. Let x denote a network.

The network’s collection of nodes, its nodeset, is written N , and its collection of edges, its edgeset,

is written. E . Typically, the nodes are numbered so that N = {1, 2, . . . , n}, where n is the total

number of nodes in the network. The edgeset is usually described as a set of pairs, written as xij

or i  j or (i, j), where i 6= j ∈ N . In an undirected network, the ordering of i and j does not

matter: there is no parent-child relationship, to use a term from graph theory, just a connection

of some kind. In a directed graph, however, the order does matter: the tie xij is not equivalent
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to the tie xji. In a simple, undirected graph, the number of possible edges is
(
n
2

)
, while in simple,

directed graphs it is n(n− 1), assuming no self-loops (also called self-ties or simply loops) and only

allowing for at most one edge between any two nodes.

In statistical network analysis, an observed network is written as x, while X denotes an unob-

served network being treated as a random variable. I assume binary network ties throughout: if

the edge between nodes i and j is present, xij = 1, whereas xij = 0 if the edge is not present. If

x is undirected, then xij = xji∀i 6= j ∈ N . If x is directed, then xij may equal xji, but this is not

required and should not be assumed. Note that the definition of binary edge variables makes the

assumption that edges are unweighted and that their cannot be more than one edge between two

nodes. It is possible for networks to have weighted edges or multiple ties between nodes, but the

models I discuss here, including the stochastic actor-oriented models that are my primary focus,

are all for unweighted networks.

A network x can also be expressed as an n×n matrix of 0s and 1s called the adjacency matrix,

denoted A. The ijth entry of this matrix, aij is 1 if there is an edge between nodes i and j and 0

otherwise. The diagonal entries of this matrix, aii are structurally 0, as self-ties or self-loops are

not allowed as mentioned above.

1.1.2 Static Network Models

The Erdös-Rényi random graph model is widely regarded as the first random graph model

(Goldenberg et al., 2010). This model, first introduced in Erdös and Rényi (Erdös and Rényi,

1959), describes random, undirected networks. Edges xij are selected at random from all possible

edges. The parameter in this model is p, the probability that an edge exists between any two nodes

in the network. The number of edges in the network, e =
∑

i<j xij , has likelihood

f(e|p, n) = pe(1− p)(
n
2)−e.

The properties and asymptotic behavior of this network model are well-established (Goldenberg

et al., 2010). Nodes in networks generated using this model all have about the same degree, or

number of incident edges, which, in practice, is a very unrealistic property for a network to have. As
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such, many other models have been devised over the years as a way to better capture the network

creation process underlying real-world networks.

In order to better model real-world networks, the exponential random graph family of models

(ERGMs) was developed. These are also referred to as p∗ models after the first use of the exponential

family form in the p1 model for directed networks of Holland and Leinhardt (Holland and Leinhardt,

1981). This class of models uses structural properties of the network as sufficient statistics in the

likelihood. The properties used are different for directed and undirected graphs. Some statistics

used for directed networks are the outdegree of the nodes, xi+ =
∑

j= 6=i xij , the indegree of the

nodes, x+i =
∑

j 6=i xji, and the number of reciprocal ties of the nodes, xi,recip =
∑

j 6=i xijxji. For

undirected networks, however, structures that are considered are the number of triangles in the

network, T (x) =
∑

i 6=j 6=h xijxihxjh, or the number of k-stars, Sk(x) =
∑

i

(xi+
k

)
, where k = 2 is

most commonly chosen. The likelihood for ERGMs is written in terms of the whole network, x.

The general form of the likelihood for x is

f(x|β) =
1

ψ(β)
exp

(∑
k

βksk(x)

)
,

where βk are parameters corresponding to K sufficient statistics chosen by the researcher and ψ(β)

is the normalizing constant. A problem with this model arises when one considers the nested

nature of the sufficient statistics. For example, an edge can be contained in a 2-star, which can

be contained in a triangle. So, the sufficent statistics can be dependent. Despite this flaw, this

type of ERGM has been studied extensively, and many methods for parameter estimation exist,

for example in the R packages statnet and sna (R Core Team, 2016; Handcock et al., 2008; Butts,

2014).

Other models are extensions of the Erdös-Rényi (ER) random graph model, including the

preferential attachment model or the small world model, which are among the first network models

that consider a network formation process over time. Eventually, network models expanded to

include dynamic models, which consider changing network states in time.
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1.1.3 Dynamic Network Models

Dynamic networks models are extremely important because of how realistic they are. Social

networks do not form spontaneously: they evolve over time. Ties can be added and deleted, and

new nodes can join the network. Modeling the process of network changes over time is more

complex but ultimately more useful if done correctly. The work on dynamic network models began

with fairly straightforward random graph models that are quasi-dynamic extensions of the classic

Erdös-Rényi model.

A model is quasi-dynamic if it models a static network via an underlying dynamic process. The

first is the preferential attachment model of Barabsi and Albert (Barabási and Albert, 1999). Given

n0 nodes to start, at each time point t a new node is added with nt ≤ n0 ties to the nodels already in

the network. The nt new ties are assigned proportionally based on the degree of each existing node.

It is quasi-dynamic because it is usually used to model one scale-free network oberervation. The

preferential attachment model is also referred to as the “rich-get-richer” model because it results

in a network where there are a few nodes with very high degree.

Another quasi-dynamic model is the small-world model of Watts and Strogatz (Watts and

Strogatz, 1998b). Given n nodes to start, each with k edges that form a ring lattice (nodes

layed out in a circle and connected to their k closest neigbors), edges are randomly “rewired” with

probability p. This results in networks with the small-world property: let L be the average distance

between any two nodes in the graph, and if the graph has the small-world property, L ∝ log(n) as

n increases (Watts and Strogatz, 1998b).

Truly dynamic models consider the same network observed at multiple points in time. To

indicate a dynamic network, we write x(t) instead of x for the network observation at time t.

Dynamic network models can be in discrete or continuous time.

One such model in discrete time is an extension of the ERGM family. It models the transition

probability, the probability of moving from the current network x(t − 1) to a potential future

network, x(t), that differs from x(t − 1) by one tie. The form of this probability is similar to the
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likelihood of the static ERGM model:

Pr(x(t)|x(t− 1)) =
1

ψ(β)
exp

{∑
k

βksk(x(t), x(t− 1))

}
,

where the sk for k = 1, . . . ,K, are structural network statistics, similar to, but not the same as,

the network statistics defined for static ERGMs. Some examples of statistics used are, the density

of edges of the network, s1(x(t), x(t − 1)), or the stability of the network between time t − 1 and

time t. The density of a network is a ratio of the number of edges to the number of nodes in the

network at the next time point, s1(x(t), x(t− 1)) = 1
n−1

∑
i 6=j xij(t). The stability is a measure of

how many changes were made in the network between two time points, relative to the number of

nodes, s2(x(t), x(t− 1)) = 1
n−1

∑
i 6=j (xij(t)xij(t− 1) + (1− xij(t))(1− xij(t− 1))). The likelihood

of the entire network for all its states in discrete time is the joint probability of each transition

step:

Pr(x(1), x(2), . . . x(T )) =
T∏
t=2

Pr(x(t)|x(t− 1)).

The family of dynamic network models in continuous time, of which stochastic, actor-oriented

models are a member, are called continuous time Markov Chain (CTMC) models. These models

are founded in the theory of continuous time Markov processes. Let {X(t), |t ∈ T } be a stochastic

process in a continuous time interval T and finite state space X . For any two timepoints ta < tb ∈ T ,

the future state of the network, X(tb), depends only on the current state of the network, X(ta), and

not any other previous network state. This is the Markov property, which for CTMCs is written

as:

Pr(X(tb) = x̃|X(t) = x(t), ∀t ≤ ta) = Pr(X(tb) = x̃|X(ta) = x(ta))

where x̃ is a potential future state in X and x(ta) is the present, observed state of the network.

Assuming this probability relies only on the length of time that passes, tb − ta, then X(t) has a

stationary transition distribution. Then, the transition matrix for the process X(t) is

Pr(tb − ta) ≡
[
Pr(X(tb) = x̃|X(ta) = x(ta))

]
x,x̃∈X

.

Write tb − ta = t′. Then, thanks to the stationarity of X(t), the transition matrix of X(t), Pr(t′)

is equal to the matrix exponenial exp(t′Q), where Q is called the intensity matrix in the CTMC
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Table 1.1: Some propensity functions to describe the network dynamics in CTMC models.

Model qij(x) = Brief Description

Independent arc λxij Edges are independent and have equal prob-

ability of changing from 0 to 1 and from 1 to

0

Reciprocity λxij + µxijxji Rate of change depends on the presence of

reciprocal edge.

Popularity λxij + πxijx+j Rate of change is dependent on the indegree

of the child node, j

Expansiveness λxij + πxijxi+ Rate of change is dependent on the outdegree

of the parent node, i

literature. The elements of this matrix will be defined in greater detail later, but one should note

that the rows of Q are constructed to always sum to 0, and that each element also determines the

probability of changing from one state to the other as a function of time.

For network modelling with CTMCs, the state space X is the set of all 2n(n−1) possible networks

with n nodes and directed, binary edges. Let x denote the current state of the network. From this

network, there are n(n − 1) possible networks that x could become by changing just one edge

variable, xij to its opposite value, 1− xij . Then, let qij(x) be the propensity for for xij to become

1 − xij given x. This function qij(x) “completely specifies the dynamics of the network model”

(Goldenberg et al., 2010, p. 48). There are many forms in this family of models, which differ only

in their choice of qij(x). A list of some fairly simple choices for qij(x) is provided in Table 1.1.

Additional definitions of qij(x) are more complicated. These next set of models rely on two

different underlying mechanisms: one that determines which node is given the opportunity to

change and one that determines the propensity of change. First, I consider the subset of models

with edge-oriented dynamics. Let x(i  j) denote the network that differs from x by just one

node, xij , which takes on the value 1− xij in x(i j). Then, write the probability that node xij

changes to 1− xij as

pij(x) =
exp(f(β, x(i j)))

exp(f(β, x)) + exp(f(β, x(i j)))
,



8

where f(β, x) =
∑

k βksk(x) is called the potential or objective function (Goldenberg et al., 2010).

The βk are parameter values associated with the network statistics that are also used in ERGMs.

For more definitions of the possible sk(x), see Table 1.2. The opportunity for change in this model

is controlled by a constant rate parameter, α. The wait time between a change of any edge in the

network is exponentially distributed with parameter α. So, the function qij(x) is defined as αpij(x).

The next subset of models rely on node-oriented dynamics. These are very similar to the edge-

oriented dynamics but the rate parameter and propensity to change are defined with respect to the

nodes instead of the edges. Now, each node has its own rate at which it gets an opportunity for

change, αi. Additionally, the objective function is defined for each node, fi(β, x) =
∑

k βksik(x).

This changes the definition of the statistics used slightly, from global statistics to local statistics

with ego node i. Thus, the propensity function becomes qij(x) = αipij(x).

Finally, stochastic, actor-oriented models belong to the set of CTMC models that combine edge

and node dynamics so that the propensity function becomes a hybrid of the prior two: qij(x) =

αpij(x) where α is a constant rate of edge change, while pij is the propensity to change edge xij

using the node-oriented objective function fi(β, x). These are described in greater detail in Section

1.1.4.

1.1.4 Stochastic Actor-Oriented Models for Longitudinal Social Networks.

A Stochastic Actor-Oriented Model (SAOM) is a model that is changing in time in order to

accomodate for observations from the same network made at different points in time and that allows

for changes in network structure due to actor-level covariates. These two properties are crucial to

understanding networks as they exist naturally. Most social networks, even holding constant the

set of actors over time, are ever-changing as relationships decay or grow, and most actors (or nodes)

in social networks have inherent properties that could affect how they change their place within

the network.
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1.1.4.1 Terminology, Notation, and Mathematical Definition of SAOMs

A longitudinal network is a network consisting of the same set of n nodes that is chang-

ing over time, and is observed at M discrete time points, t1, . . . , tM . We denote these net-

work observations x(t1), . . . , x(tM ). The SAOM assumes that this longitudinal network is em-

bedded within a continuous time markov process (CTMP), call it X(T ). This process is al-

most entirely unobserved. The process X(T ) theoretically exists outside of the range of obser-

vation, but for simplicity of notation, assume that the beginning of the process, X(0) is equiv-

alent to the first observation x(t1), while the end of the process X(∞) is equivalent to the

last observation x(tM ). The observations x(t1), . . . , x(tM ) are observed states of the process,

x(t1) ≡ X(0), x(t2) ≡ X(Tt2), . . . , x(tM−1) ≡ X(TtM−1), x(tM ) ≡ X(∞), but the time points tm

and Ttm for m = 2, . . .M − 1 are not equivalent. The process X(T ) is a series of single tie changes,

in which one actor at a time is given the opportunity to add or remove one outgoing tie. These

opportunities for change can arise at a different rate for each actor, and the overall rate of change,

the distribution of the waiting times that any actor will be given the opportunity to change is a

function of all actors’ rates. Additionally, once an actor is given the chance to change a tie, it

tries to maximize a sort of utility function based on the current and potential future states of the

network. These functions are described in detail in subsections 1.1.4.2 and 1.1.4.3.

1.1.4.2 The Rate Function

For the network x and each actor i in the network, the rate function dictates how often the actor

i gets to change its ties, xij , to other nodes j 6= i in the network. This rate can depend on the time

period of observation, some actor-level covariates or some actor-level network statistics. The rate

function can be unique to each actor, and is denoted λi. The most general form is λi(α, ρ, x,m),

where α is a simple rate of change parameter, ρ is a parameter or a vector of parameters corre-

sponding to one or more covariates, x ∈ X is the current state of the network, and m indicates

the time point of the current network observation, tm. The rate function determines how quickly

actor i gets an opportunity to change one of its ties, xij in the time period tm ≤ T < tm+1. We
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assume that the actors i are conditionally independent given their current ties, xi1, . . . , xin. This

assumption leads to the rate function for the whole network:

λ(α, ρ, x,m) =
∑
i

λi(α, ρ, x,m).

In order to achieve the memorylessness property of a Markov process, for any time point, T , where

tm ≤ T < tm+1, the waiting time to the next change opportunity by actor i is exponentially

distributed with expected value (λi(α, ρ, x,m))−1. Thus, the waiting time to the next change op-

portunity by any actor in the network is also exponentially distributed with mean (λ(α, ρ, x,m))−1,

where

λ(α, ρ, x,m) =
∑
i

λi(α, ρ, x,m)

.

There are many possibilities for the rate function, λi. The simplest is that it is constant over all

actors and all unobserved timepoints between observations x(tm) and x(tm+1), λi(α, ρ, x,m)) = αm.

The rate function can also depend on covariate values, call them zi(tm), of the actors, or structural

network elements such as outdegree, or both. For instance, assume λi(α, ρ, x,m)) = λi1λi2λi3,

where λi1 is constant over all actors within a time period (tm, tm+1), λi2 depends on the actor

covariates, and λi3 depends on a structural network property for node i. λi1 might be written as

αm. λi2 might be written as

λi2 = exp

(∑
h

ρhzih(tm)

)
,

where there are h = 1, . . . ,H actor covariates of interest, each with their own parameter ρh. λi3

can be written as a function of the outdegree of node i, denoted xi+ with its own parameter αH+1,

so that, for example,

λi3 =
xi+
n− 1

exp(αH+1) +

(
1− xi+

n− 1

)
exp(−αH+1).

When H = 0, this form of λi3 is equivalent to the model proposed by Wasserman (1980), which

is one of the first models proposed for modeling dynamic networks as continuous-time Markov

processes (Snijders, 2001). Once a change occurs, according to the rate of change for the whole
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network, λ(·), the probability that actor i is the node with the power to change a tie is

λi(α, ρ, x,m))∑
i λi(α, ρ, x,m))

.

1.1.4.3 The Objective Function

Thanks to the conditional dependence assumptions in the model, we can consider the objective

function for each node separately, since only one tie from one node is changing at a time. The

objective function is written as

fi(β, x) =
∑
k

βksik(x,Z),

for x ∈ X and Z the matrix of covariates. The vector β are the parameters of the model with

corresponding network and covariate statistics, sik(x,Z), for k = 1, . . . ,K. Given the focal or ego

node, i, there are n possible steps for the actor i to take: either one of all current ties xij = 1 will

be destroyed, a new tie will be created, or no change will occur.

The parameters, β, are attached to various actor-level network statistics, sik(x). There are

always at least two parameters, β1 for the outdegree of a node, and β2 for the number of reciprocal

ties held by a node (Snijders, 2001, p. 371). There are many possible parameters β to add to the

model. They can be split up into two groups: first, the structural effects, which only depend on

the structure of the network. The inclusion of these effects has origin in the ERGMs discussed in

Section 1.1.2. These effects are written in terms of the edge variables xij , for i 6= j. The second set

of effects are the actor-level or covariate effects. These effects also depend on the structure of the

network. They are written in terms of xij but also in terms of the covariates, Z. A table of some

possible structural and covariate effects is given in 1.2.

When node i is given the chance to change a node, we assume that they wish to maximize the

value of their objective function fi(β, x) plus a random element, Ui(x), where the Ui(x) are from

“the type 1 extreme value distribution (or Gumbel distribution) with mean 0 and scale parameter

1” (Snijders, 2001, p. 368). This distribution, which is also known as the log-Weibull distribution,
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Table 1.2: Some of the possible effects to be included in the stochastic actor-oriented models

in RSiena. There are many more possible effects, but we only consider a select few here. For a

complete list, see the RSiena manual (Ripley et al 2016).

Structural Effects

outdegree si1(x) =
∑

j xij
reciprocity si2(x) =

∑
j xijxji

transitive triplets si3(x) =
∑

j,h xijxjhxih
Covariate Effects

covariate-alter si4(x) =
∑

j xijzj
covariate-ego si5(x) = zi

∑
j xij

same covariate si6(x) =
∑

j xijI(zi = zj)

jumping transitive triplets si7(x) =
∑

j 6=h xijxihxhjI(zi = zh 6= zj)

has probability distribution function, using µ for the mean parameter and σ for the scale parameter,

of

f(u|µ, σ) =
1

σ
exp

{
−
(
u− µ
σ

+ e−
u−µ
σ

)}
.

Using this distribution is convenient because it allows the probablity the actor i chooses to

change its tie to actor j in terms of the objective function alone. Let pij(β, x) be this probability.

Next, write the network x in its potential future state, where the tie xij has changed to 1− xij , as

x(i j). Then, the probility that the tie xij changes is

pij(β, x) =
exp {fi(β, x(i j))}∑
h6=i exp {fi(β, x(i h))}

1.1.4.4 A SAOM as a CTMC

In order to fit this model definition back into the original context of the CTMC described in

Section 1.1.3, it must be written in terms of its intensity matrix, Q. This matrix describes the rate

of change between states of the process. For networks, there are a very large number of possible

states, 2n(n−1), so the intensity matrix is a square matrix of that dimension. But, thanks to the

property of SAOMs that the states are allowed to change only one tie at a time, there are only n

possible states given the current state, n−1 of which are uniquely determined by the node i that is
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given the opportunity to change. Thus, the intensity matrix Q is very sparse, with only n(n−1)+1

non-zero entries in each row. Note that n(n− 1) of these represent the possible states that are one

edge different from a given state, and the additional non-zero entry is for the state to remain the

same. All other entries in a row are zero because those column states cannot be reached from the

row state by just one change as dictated by the SAOM. The entries of Q are defined as follows:

let b 6= c ∈ {1, 2, . . . , 2n(n−1)} be indices of two different possible states of the network, xb, xc ∈ X .

Then the bcth entry of Q is:

q(xb, xc) =



qij(α, ρ,β, x
b) = λi(α, ρ, x

b,m)pij(β, x
b) if xc ∈ {xb(i j)| any i 6= j ∈ N}

0 if xc differs from xb by more than 1 tie

−
∑

i 6=j qij(α, ρ,β, x
b) if xb = xc

Thus, the rate of change between any two states that differ by only one tie, xij , is the product

of the rate at which actor i gets to change a tie and the probability that the tie that will change

is the tie to node j.1 Furthermore, the theory of continuous time Markov chains gives that the

matrix of transition probabilities between observation times tm−1 and tm is dependent only on the

difference between timepoints, tm− tm−1. Following the same definition for transition probabilities

in Section 1.1.3, the matrix of transition probabilities is

e(tm−tm−1)Q,

where Q is the matrix defined above and eX for a real or complex square matrix X is equal to∑∞
k=0

1
k!X

k.

1.1.4.5 Model Fitting for SAOMs

Stochastic actor-oriented models are “too complicated for the calculation of likelihoods or es-

timators in closed form, but they represent stochastic processes which can be easily simulated”

(Snijders et al., 2010b, p. 568). Thus, calculation of the method of moments estimates of param-

1Just to be clear, the change is from xbij to xcij = 1 − xbij .
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eters in SAOMs is done via Markov Chain Monte Carlo (MCMC) approximation. The algorithm

presented here were first presented in Snijders (2001).

The vector of parameters that need to be estimated is

θ = (α2, . . . , αM , β1, . . . , βK).

The length of θ is L = M − 1 + K, where M is the number of network observations and K is

the number of parameters included in the objective function, fi(β, x). The corresponding suffi-

cient statistics for estimating the rate parameters, αm, are the number of edges that have changed

between x(tm−1) and xtm , C2, . . . , CM , where Cm =
∑

i 6=j |xij(tm) − xij(tm−1)|. Let The corre-

sponding sufficient statistics for estimating the rate parameters, βk, are the corresponding values

of the node-level statistics, some of which are seen in Table 1.2, summed over all nodes for each

network observation, S2k, . . . , SMk where Smk =
∑

i sik(x(tm)) for m = 2, . . . ,M . Denote the whole

vector of sufficient statistics as S =
(
C2, . . . , CM , S2k, . . . , SMk

)
.

The method of moments estimator of θ is the solution to Eθ[S] = s where s are the observed

values of S in x(t2), . . . , x(tM ). Following Snijders (2001), the estimate θ̂ can be separated into the

vectors α̂ and β̂, which are the solutions to the system of equations

Eα[Cm|x(tm)] = cm

M−1∑
m=1

Eβ[Smk|x(tm)] =

M−1∑
m=1

smk.

The solutions to these moment equations are, unless the model is extremely simple, not able

to be calculated explicitly. Because of this, random simulation of networks with the desired distri-

bution can be used in Markov Chain Monte Carlo simulation of the moment estimates. Given a

starting value θ(0), the updating step of the simulation is, for iterations b = 0, . . . , B:

θ(b+1) = θ(b) + abD
−1
0 (Sb − s)

where Sb is drawn from the distribution of the model under θ = θ(b), s are the observed statistics,

D0 is a positive diagonal matrix, usually the identity, and ab is called the gain sequence and is
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some sequence of positive values that approach 0 as b → ∞ at about the same rate as b−r for

some 0.5 < r < 1. The method of moments estimator, θ̃ is then an average of the B iterations,

θ̃ = 1
B

∑B
b=1 θ

(b). It must be the average in order to obtain optimal convergence (Snijders, 2001).

This algorithm is implemented in the R software package RSiena for computation of parameter

estimates for various SAOMs (Ripley et al., 2013). This is the software I use for model fitting in 2

and 3.

Model Selection and Testing for SAOMs A likelihood ratio test was also developed in

Snijders et al. (2010b), but it has yet to be implemented in the software RSIENA for parameter

estimation of SAOMs. Tests of the elements of β are, however, availabile in RSIENA. Both t-

tests and Wald-type tests are implemented. A goodness-of-fit test is also implemented, but it only

assesses the fit of a model with respect to the “auxiliary statistics of networks [. . . ] that are not

explicitly fit by a particular effect” (Ripley et al., 2017, p. 53). It is this lack of goodness-of-fit

testing that led my research down the path of applying visual inference principles and protocols to

hypothesis testing for SAOMs.

1.2 Network Visualization

Network visualization, also called network mapping, is a very well-established subfield of network

analysis. As networks have such a non-traditional data structure, visualization has always been of

the utmost importance to understanding the structre of a network.

1.2.1 Layout Algorithms

The key difficulty with network visualization that does not arise with most other types of data

visualization is the lack of a well-defined axis. This is not something one has to think hard about

for most data visualizations. If the variables are numerical, histograms, scatterplots, or time series

plots are straightforward to construct: one variable on the x-axis, another on the y-axis in 2D

Euclidean space. If the variables are categorical, bar charts and mosaic plots can be constructed
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in this same space. If the data are spatial, there is a well-defined space In pretty much any case,

the location and labels of the data and axes can be defined with very little struggle. With network

data, however, this is a more difficult problem.

Network visualizations are made by representing nodes with points in 2D Euclidean space, just

like one would with any other data set, and then by representing edges by connecting the points

with lines if there is an edge between the two nodes. But, because there is no natural placement of

the points, a random placement is used, then adjusted iteratively via a layout algorithm, of which

there are many kinds. I will focus on the 2D layout algorithms only because I work later with the

ggplot2 package to visualize networks, and this package only has 2D drawing capabilities.

Some layout algorithms were designed to mimic physical systems, drawing the graphs based on

the “forces” connecting them. The network’s edges act as springs pushing and pulling the nodes in

2D space. Some force-directed layout algorithms are:

• Kamada-Kawai: first introduced in Kamada and Kawai (1989). Has “symmetric drawings,

a relatively small number of edge crossings, and almost congruent drawings of isomorphic

graphs” (Kamada and Kawai, 1989, p. 15).

• Fruchterman-Reingold: first introduced in Fruchterman and Reingold (1991). Primary ad-

vantage is speed over Kamada-Kawai (Fruchterman and Reingold, 1991, p. 1161).

• Spring embedding: first introduced in Eades (1984). Other force-directed layouts are refine-

ments of this original algorithm.

• Target diagram: nodes placed in concentric circles with hig-centrality nodes placed nearer to

the center of the circle. First introduced in Brandes et al. (2003).

Other layout algorithms depend on the mathematical properties of the network’s adjacency

matrix or some other function or propterty of the network. Algorithms of this kind are:

• Eigen: node placement is based on the eigenvalues of the adjacency matrix
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• Hall: node placement is based on the last two eigenvectors of the Laplacian of the adjacency

matrix

• Multidimensional Scaling (MDS): node placement is based on metric multidimensional scaling

of a given distance matrix. Distance metric can vary.

• Principal Coordinates: node placement is based on the eigenvalues of a given covariance or

correlation matrix.

Some layout algorithms only exists for certain types of networks:

• Reingold-Tilford: for trees

• Sugiyama: for layerd directed acyclic graphs

Finally, some layout methods just place the nodes randomly or in a simple ordering:

• Random: places nodes randomly according to some distribution, usually uniform or some

Gaussian distribution.

• Grid: places nodes on a 2D grid

• Circle: places nodes in a circle in numerical order by ID number

These layout algorithms have been provided in several R packages for network visualization.

Another important aspect of network visualization is the addition of varirable information into the

properties of the points and segments of the network visualization. For example, the size of the

point, the width of the line, and the color of these these can all be mapped to the points and

segments making up the network visualization. This is discussed further in Section 1.2.3.

The visualization methods outlined above are all for static networks. There has been little work

done on how to visualize dynamic networks. The only R package to my knowledge that attempts

dynamic network visualization is ndtv by Bender-deMoll (2016). I will use this package to help

visualize the continuous time Markov chain underlying the SAOM dynamics. The goal is to better
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understand the network changes, how they change, and better see the differences, but it may turn

out to be less effective than looking at side-by-side comparisons of two network observations.

1.2.2 R Packages

There is a multitude of R packages that exist for network analysis, and many, if not most,

of them contain some sort of built-in functionality for visualizing networks. The most popular of

these is probably the igraph package by Csardi and Nepusz (2006). This package is extensive,

and contains much more than methods for network visualization. It contains tools for both 2D

and 3D visualization of networks. The 2D layouts it contains are random, circle, star, grid,

graphopt, bipartite, fruchterman reingold,kamada kawai, mds, grid fruchterman reingold,

lgl, reingold tilford, reingold tilford circular, and sugiyama.

Another popular package for network analysis is sna by Butts (2014). This package was

designed specifically for social network analysis (sna), so it also contains much more capabili-

ties for network analysis in addition to visualization. Like igraph, sna contains both 2D and

3D layout methods. The 2D layout algorithms available in sna are circle, circrand, eigen,

fruchtermanreingold, geodist, hall, kamadakawai, mds, princoord, random, rmds, segeo,

seham, spring, springrepulse, and target.

Research into possible layout algorithms is important, but it ignores some of the things that

statisticians usually consider when visualizing data. For instance, since the location of points in 2D

space contains no information about the data, how else should this information be visualized? As

an example, consider a friendship network of students at a university. Representing this network

as simple points and lines leaves a lot of information out. Some information that could be incor-

porated includes the students’ majors, year in school, and whether the students have ties through

their classes or their extracurricular activities. In the network visualization, this information can

be mapped to color of point, shape of point, and linetype, respectively. Adding this aesthetic

information helps to make up for the loss of two dimensions of visual perception and to bring the

network visualization into the world of statistical graphics.
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1.2.3 The Importance of the ggplot2 Package

The gg of ggplot2 is for the “grammar of graphics”. The grammar of graphics is a well-defined

theory for creating statistical graphics described in Wilkinson (1999) and Wickham (2009). In the

grammar, a plot has layers, each of which has four distinct pieces: the data and aesthetic mapping,

a statistical transformation, a geometric object, and a position adjustment. The aesthetic mapping

takes the data and maps the variables in the data frame to visual features. Some of these features

are horizontal and vertical placement in the plane, size of the geometric object and color of the

geometric object. The statistical transformation dictates how to transform the data to the values

that create the visual feature. Some stats are identity (no change in data), bin, and smooth.

The geometric object or geom is the tool used to draw a plot layer. Some geoms are point, line

and bar. Finally, the position adjustment is there to slightly change the position of the visual

features in order to better view the data. This is typically only a probelm with discrete data,

where overplotting can occur. Some position adjustments are identity, jitter, and dodge.

With the theory well defined and constructed, the ggplot2 package allows for creation of rich,

visually dense plots. The user can combine multiple aesthetic mappings to view four variables at

once or view many data sets of similar scale at once. The widespread use of ggplot2 and the

many packages that have built upon ggplot2 to create visualizations above and beyond what it

is capable of by itself make the ggplot2 package an ideal framework on which to build additional

methods of network visualization in R.

First, the data structure required in ggplot2 is fairly simple: data frames. Some other network

packages contain network data structures unique to them, like the igraph class of data in the

igraph packages or the network class of data in the network package. These unique structures

come with unqiue syntax that can make customizing visualizations tricky. Additionally, the default

visualizations in these packages are not very pleasing to the eye, as is shown with the random graph

examples from igraph and network in Figure 1.1. As I will discuss in 4, network visualization within

the ggplot2 framework results in beautiful, easily customizable plots.
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Figure 1.1: The same random network plotted with the default options in igraph (at left) and

network (at right).

By creating a way to visualize networks in ggplot2, we open up network visualization to a set

of visual tools and approaches that

I will use network visualization in the ggplot2 framework to graphically explore the SAOMs.

By using visual inference, I will learn about the importance of the many possible model parameters

in SAOMs and about how they affect the visible structure of the network.

1.3 What is Visual Inference?

Viewing plots of data is an important part of exploratory data analysis (EDA) and of model

diagnostics (MD). In EDA, plots guide the analyst to discovering relationships between variables

in their data, while in MD, plots help the analyst determine if the model chosen is appropriate. In

EDA, the analyst may notice that a covariate is strongly correlated with the dependent variable

by drawing a scatterplot, leading the analyst to choose a simple linear model. But in MD, the

analyst could later notice a pattern in the residuals plotted against the covariate, indicating that

the variance of the dependent variable is not constant across changing values of the covariate.
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These steps of EDA and MD have become so engrained in statistical practice that they are taught

in introductory statistics courses. But, how can we formalized this visual discovery process?

1.3.1 A Formal Definition and Construction

The idea of visual inference was first introduced in Buja et al. (2009). In this seminal work,

the authors outline two protocol for visual tests of hypotheses, the “Rorschach” the “lineup”. The

former allows one “to measure a data analyst’s tendency to overinterpret plots in which there is no

or only spurious structure,” while the latter has the viewer “identify the plot of the real data from

among a set of decoys [. . . ] under the veil of ignorance” (Buja et al., 2009, p. 4368-9).

They begin by formalizing the definition of the set of discoverable (i.e. visible) features of a plot

as a set of test statistics, denoted T (i)(y)(i ∈ I). The value y is the data in the plot, and the set

I is the hard-to-define set of all possible visual features one could discover in a plot. Then they

consider a general null hypotheses scenario, H0, from which the data could have arisen. Samples

are then taken from this null model and the same plot is made for the samples as was made for

the data. These plots are called “null plots” while the other is the “data plot”. The idea is that if

an “analyst” sees a feature in the data, and also in the null plots, then the data cannot be said to

come from a different scenario than H0.

Generating samples from H0 is not trivial. The authors provide three types of sampling available

for creating the null plots: conditional sampling given a minimally sufficient statistic, parametric

bootstrap sampling, and Bayesian posterior predictive sampling. (Buja et al., 2009, p. 4367). Once

the null plots are generated, they are presented to an analyst through the Rorschach and lineup

protocols.

In the Rorschach protocal, the analyst looks at a series of plots and describes any features or

structures that stand out to them. These plots will all be null plots, but the analyst should not

know this. The protocol administrator should also not know whether or not the data plot is in the

series of plots. Then, these results are examined by the researcher, who determines what tendency

the analyst have to “over-interpret” plot structure.
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In the lineup protocol, the analyst looks at M plots that are laid out in a grid. M − 1 of these

plots will be null plots, while one is the data plot. For M = 20, the probability of choosing the data

plot from among the null plots is 0.05, providing us with an inferentially valid p-value of α = 0.05.

The lineup protocal has several special features. First, there is no need for pre-specification of the

visual feature the analyst should identify. They can simple be asked to pick the most different or

most special plot. Second, the analyst can self-administer the lineup once, thereby becoming a data

point in their own experiment. Next, it is possible that 2 or more plots can be selected from among

the M plots, as ranked data methods can be used for data analysis. Finally, the procedure can

have as many repetitions as possible, as long as the analysts are independently selected and have

not previously viewed the plot of the data. This can lead to extremely small p-values for inference,

with the smallest possible being 0.05K for K analysts, assuming all K selected the data plot from

the lineup. Formally, the p-value of a lineup of size M evaluated by K analysts is

Pr(X ≥ x) = 1−BinomK, 1
M

(x− 1)

where X is the number of analysts who correctly identify the data plot, x the observed value X for

an experiment, and BinomK, 1
M

(x) is the probability mass function of the binomial distribution with

K trials and probability of success 1
M evaluated at the observed x. Type I error, the probability

that a test rejects H0 when it is true, is also formally defined as Pr(X ≥ xα), where xα is the

number of observers picking the data plot needed so that P (X ≥ xα|H0) is less than or equal to the

chosen value of α. The type II error, the probability that H0 is not rejected when it is not true, is

then P (X < xα), where X and xα are defined as above. Additionally, the power of the test given

the true state, either when H0 is true or when it is not, is the probability that the test rejects H0.

When H0 is true, the power is 1−BinomK, 1
M

(xα− 1). If H0 is not true, the power depends on the

specific true state (alternative hypothesis) chosen (Majumder et al., 2013a).

The type of plots shown in visual inference will vary based on the context of the research question

and null hypothesis of interest. For example, scatterplots can be shown to test for independence

of two variables or for clustering; histograms can be shown to test for distribution of a variable;

time series plots can be shown to test for trends; residual plots can be shown to test for presence of
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structure the model misses; and smoothers can be shown to test for differences in trends between

groups. All of these examples are discussed in detail in Buja et al. (2009)

Additional detail to consider is the importance of varying skillsets of analysts, and the ef-

fectiveness of each analyst at selecting the data lineup. Some analysts, especially when doing

experimentation, will be more visually inclined, or more analytically inclined, and these individual

differences can affect the success rate of an analyst, and the rate of identification may need to be

modified to account for these differences.

1.3.2 Applications of Visual Inference

There have been two distinct areas of application of visual inference since Buja et al. (2009).

The first is true application of the methodology, while the second is understanding the methodology

via application of the protocols. In both applications usually rely on the Amazon Mechanical Turk

service (Amazon, 2010) or other similar services to show lineups to many participants from different

backgrounds quickly.

In true applications, researchers have one or more alternative hypotheses and corresponding

nulls on which they perform visual inference tests to show many participants of different back-

grounds the lineups. One such paper, Loy et al. (2016), considers the visual inference tests for

normality via lineups of Q-Q plots and compares these tests to traditional statistical normality

tests. The authors found that visual inference used in this way is a more powerful test for normal-

ity than classical tests (Loy et al., 2016). In another direct application, Zhao et al. (2013)use visual

inference to establish the existence of a structrue in the RNA sequence of soybean plants where

different treatments and conditions alter the gene expression. Yet another application is that of

Hofmann et al. (2012a), in which the authors use visual inference to determine which view of a

dataset to present so that the important data properties are communicated most accurately and

efficiently.

The second type of application, understanding the methodology through application is the type

that I pursue in 3. One such instance of this type of application is Chowdhury et al. (2014), in which
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visual inference is used to better understand problems that arise when viewing high dimension, low

sample size data. A second application is that of Loy and Hofmann (2015) in which the authors

use visual inference to determine hierarchical model misspecification. In both of these applications,

visual inference is used to discover more about the models or structures under investigation. This

is how I intend to use visual inference for SAOMs. By using the lineup protocol, I hope to learn

more about the effects of parameter selection on SAOMs, and order to do this, I also need to have

tools to visualize the networks simulated from SAOMs.

1.4 Summary

Stochastic actor-oriented models are a rich and interesting set of models because of the compli-

cated nature of statistical network modeling and the variety in choice of parameters available to the

researcher. In the next three chapters, my aim is to fully characterize the structure and function

of these models. I will do this using model visualization, the lineup protocol for visual inference,

and the R package, geomnet that I created as a part of this work.
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CHAPTER 2. STOCHASTIC ACTOR-ORIENTED MODELS: REMOVING

THE BLINDFOLD

2.1 Introduction

Social networks have been studied for decades, beginning with a few foundational works, in-

cluding the 1967 study, ”The Small World Problem” by Stanley Milgram (Goldenberg et al., 2010).

Examples of social networks include collaboration networks between academic researchers, friend-

ship networks in a school or university, and trade networks between nations. In recent years, the

study of social networks has grown in popularity due to an increase in the availability and access to

social network data. There are many kinds of social networks, but there are not as many statistical

models for social network data. Some network models that have been applied to social networks

include the exponential random graph model and latent space models. These models, however,

are only for single instance networks. If we only have one network observation, or only care about

one state of a complex network in time, like a snapshot of the World Wide Web, using the well-

established models for single network observating is not a problem. If, on the other hand, we have

many observations of social network over time, these models may not be appropriate because they

do not explicitly allow for the network to change as time passes. When studying a network over

time, referred to as a dynamic network, we need a model that can take the time aspect of the

network into account. Models for dynamic social networks have a great deal of modelling potential

because of how realistic their structure can be. A social network does not form spontaneously: it

evolves over time. Ties are formed and dissolved, and new actors join the social structure. Mod-

eling the underlying mechanisms that create network changes over time is very complex but also

provides potential to uncover hidden truths.

In this paper, we concentrate on one type of model for dynamic social networks: the stochastic

actor-oriented models (SAOMs), introduced by Snijders (1996). These models are fundamentally
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different from other social network models because they allow us to incorporate network and actor

statistics, where other models only rely on the network statistics, to model the changes in the

network. Allowing the actor-level statistics to directly effect the structure of the network leads to

a more practical and relevant approach to model change in a social network. In the “real” world

we expect people with common interests to be more likely to form relationships, and SAOMs allow

us to incorporate this intuition in the modeling process.

Unlike other network models, SAOMs are not very well understood. They are relatively new,

especially compared to the classic exponential random graph models, and they are not very tractable

analytically. Likelihood functions quickly very complex objects to analyze due to the dependency

structure inherent in the data. Therefore, computationally more tractable solutions are used to

fit estimators, and in particular, SAOMs are often fit to data using a series of Markov Chain

Monte Carlo (MCMC) phases for finding method of moments estimators. In order to estimate the

parameters of SAOMs, we use the software SIENA, and its R implementation RSiena, which was

developed by Ripley et al. (2013). This software marks a huge contribution to the field of social

network analysis, but the many moving pieces involved in parameter estimation are largely “behind

the scenes” and hidden from the software user. In this paper, in order to better understand the

model-fitting process, we attempt to bring SAOM fits and the fitting process out of their black boxes,

by combining the principals of network visualization with those of model visualization as discussed

in Wickham et al. (2015). By bringing some light to the underlying methods and structures that

are behind the scenes when fitting SAOMs to network data, we aim to help researchers working

with the models better understand the implications and analyses of these models.

We get into the SAOM black box by using model visualization (see Wickham et al. (2015)) to

display the model in the data space, view collections of models instead of single models, and visually

explore the process of fitting the SAOMs as opposed to looking at only the final output. Stochastic

actor-oriented models are a prime example of a set of models that can benefit greatly from the

application of model visualization. For instance, the models themselves include a continuous-time

Markov chain (CTMC) that is completely hidden from the analyst in the model fitting process.
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Bringing the CTMC out of the black box and into the light through model visualization can provide

researchers with insights into the underlying features of the model. Furthermore, SAOMs can

include a great deal of parameters to be added to the model structure, each of which is attached to

a network statistic. These statistics are often somewhat, if not highly, correlated, which causes high

correlation between the associated parameters in a SAOM. By visualizing collections of SAOMs,

we gain a better understanding of these correlations and find ways to deal with them and rectify

their effects in the model. In addition, the estimation of the parameters in a SAOM relies on a

Robbins-Monro algorithm, and the convergence checks for these estimates rely on simulation from

the fitted model. Again, each of these steps are largely kept in the background of the estimation

process. With the help of static and dynamic visualizations we bring the hidden model fitting

processes into the foreground, eventually leading to a better understanding and higher accessibility

of stochastic actor-oriented models for social network analysts.

In Section 2.2, we introduce basic concepts of networks and network visualizations. In Sec-

tion 2.3, we present the family of stochastic actor-oriented models for social network analysis. In

Section 2.4, we combine concepts from Sections 2.2 and 2.3 in an application of the model-vis

paradigm, and conclude with a discussion in Section 2.5.

2.2 Networks and their Visualizations

2.2.1 Introduction to Network Structures

Network data is of frequent interest to researchers in a wide array of fields. There are techno-

logical networks, like power grids or the internet, information networks, such as citation networks

or the World Wide Web, biological networks, like neural networks, and social networks, just to

name a few (Newman, 2010). Each of these examples have one thing in common: their data struc-

ture. There are always units of observation: the power stations, websites, neurons, and people,

which we refer to throughout this paper as nodes or actors. There are also always connections of

some kind between those units: the power lines, hyperlinks, electrical signals, and relationships,

which we will call edges or ties. Networks might change over time, like when new websites and
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hyperlinks are added on the World Wide Web, or when there are new people and relationships in

a friendship network. The nodes and edges themselves can also have inherent variables of interest,

e.g. the institution of authors in a co-authorship network, or the number of times two authors have

collaborated.

The multiple layers of network data structures pose unique problems to network analysts. Some

questions that network researchers may aim to answer are: How does the strength of a tie between

two nodes affect the overall structure of the network? Do node-level differences affect the formation

or dissolution of edges? Which views of the data are most informative for communicating significant

effects and other results of statistical analyses of the network of interest? These are, of course, just

a few broad questions, and we focus here on the latter, which we aim to answer through visual

exploration of network data and models.

2.2.2 Visualizing Network Data

Network visualization, also called network mapping, is a prominent subfield of network analysis.

Visualizing network data is uniquely difficult because of the structure of the data itself. Most, if not

all, data visualizations rely on well-defined axes inherited from the data. If variables are numerical,

histograms, scatterplots, or time series plots are straightforward to construct. If the variables are

categorical, bar charts and mosaic plots are available to to the researcher. If the data are spatial,

there is a well-defined region in which to view information. Network data, however, are much less

cut-and-dried.

There are two primary methods used to visualize networks: node-link diagrams and adjacency

matrix visualization (Donald E. Knuth and John J. Watkins, 2013; Fekete, 2009). As a toy example,

let us assume that we have five nodes, {1, 2, 3, 4, 5}, connected by five directed edges: {2→ 4, 3→

4, 1 → 5, 3 → 5, 5 → 4} We use this toy data set to demonstrate the two visualization methods in

Figure 2.1.

The first method, the node-link diagram, represents nodes with points in 2D Euclidean space

and then represents edges by connecting the points with lines when there is an edge between the
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two nodes. These lines can also have arrows on them indicating the direction of the edge for

directed networks. But because there is typically no natural placement of the points unless they

have important spatial locations, a random placement of the points is used, then adjusted via a

layout algorithm, of which there are many (Gibson et al., 2013).

1
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3

4

5

Node-Link Diagram

1 2 3 4 5

5
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2

1

to (alter)

fr
om

 (
eg

o)

Adjacency Matrix Visualization

Figure 2.1: On the left, a node-link diagram of our directed toy network, with nodes placed using

the Kamada-Kawai algorithm. On the right, the adjacency matrix visualization for that same

network.

Some commonly used layout algorithms, such as the Kamada-Kawai layout (Kamada and Kawai,

1989) and the Fruchterman-Reingold layout (Fruchterman and Reingold, 1991), are designed to

mimic physical systems, drawing the graphs based on the “forces” connecting them. In these algo-

rithms, the edges of the network act as springs pushing and pulling the nodes in a low dimensional

(usually two-dimensional) space. Another algorithm uses multi-dimensional scaling, relying on dis-

tance metric and computing a matrix whose entries represent the “distance” between every pair

of nodes. There are also layout algorithms that use properties of the adjacency matrix, like its

eigenstructure, to place the nodes in 2D space (Gibson et al., 2013). The node-link diagram using
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the Kamada-Kawai layout algorithm for our toy network is shown in Figure 2.1. Unless otherwise

stated, all other node-link diagrams in this paper will use the Kamada-Kawai layout.

The second primary method for network visualization uses the adjacency matrix of the network.

The adjaceny matrix of a network, A, describes the edges of a network in matrix form. An entry

Aij of A, for two nodes i 6= j in the network is defined as

Aij =


1 if an edge exists i→ j

0 otherwise

Note here that our edge variables are binary: we only consider the presence or absence of an edge.

If the network has weighted edges, for example an email network where edge weights represent the

number of emails sent from one person to another, the entries in the adjacency matrix are the edge

weights instead of zeroes and ones. In an undirected network, Aij = Aji, but in a directed graph

this is only true if there is an edge from i to j and from j to i. Thus, A is always symmetric for

undirected networks, and is symmetric for directed networks only if every edge between two nodes

is reciprocated. An adjacency matrix visualization for our toy example is also shown in Figure 2.1.

Each type of visualization comes with its own advantages and disadvantages. For example,

paths between two nodes in a network are easier to determine with node-link diagrams than with

adjacency matrix visualizations (Ghoniem et al., 2005). In node-link diagrams, node-level infor-

mation can be incorporated into the visualization by coloring or changing the shape of the points

representing the nodes, and edge-level information can be incorporated by coloring the lines, or

changing their thickness, linetype, or color. Incorporating a node-level variable into an adjacency

matrix visualization is not as straightforward or simple, which is more focused on edges. Adjacency

matrix visualization has been found to be particularly useful when the network is very complex,

dense, or large, and experimental studies have shown adjacency matrix visualization to be superior

to node-link diagrames for large networks. For example, for basic perceptual tasks on networks,

including node and edge count, adjacency matrix visualizations outperform node-link diagrams as

the size and density of the network increases (Ghoniem et al., 2005). One drawback of the adjacency

matrix visualization that Ghoniem et al. found was that edges are overrepresented for undirected
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graphs, due to the symmetry of A: the edge xij for i 6= j appears in A twice: in Aij and Aji,

and so it also appears twice in the adjacency matrix visualization. This, however, may actually

be an advantage for directed graphs, where exactly the correct number of edges is represented in a

matrix visualization, due to the fact that the edges xij and xji are not interchangeable. A node-

link diagram, however, may underrepresent the edge count if the edges xij and xji both exist and

are drawn on top of one another. Ultimately, however there is not one ”correct” way to visualize

network information, and we will be using both the node-link and adjacency matrix visualization

methods throughout this paper to explore social networks and stochastic actor-oriented models.

2.3 Stochastic Actor-Oriented Models for Longitudinal Social Networks

A Stochastic Actor-Oriented Model (SAOM) is a model that incorporates all three components

of dynamic networks: edge, node, and time information. It models the change of a network over

time, allowing for changes in network structure due to actor-level covariates. This model was first

introduced by Snijders in 1996 (Snijders, 1996). The two titular properties of SAOMs, stochasticity

and actor-orientation, are crucial to understanding networks as they exist naturally. Most social

networks, even holding constant the set of actors over time, are ever-changing as relationships decay

or grow in seemingly random ways, and most actors (or nodes) in social networks have inherent

properties that could affect how they change their role within the network, and vice versa.

2.3.1 Definitions, Terminology, and Notation

In this paper, the term dynamic network refers to a network, consisting of a fixed set of n

nodes, that is changing over time, and is observed at M discrete time points, t1, . . . , tM with

t1 ≤ t2 ≤ · · · ≤ tM . We denote the network observation at timepoint tk by x(tk). In the modelling

process, we condition on the first observation, x(t1). The SAOM assumes that this longitudinal

network of discrete observations is embedded within a continuous time Markov chain (CTMC),

which we will denote X(T ). This process is almost entirely unobserved: we assume that the

beginning of the process, X(0), is equivalent to the first network observation x(t1), while the end
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of the process,X(∞), is equivalent to the last observation x(tM ). Nearly all other parts of the

process are unseen, with the exception of x(t2), . . . , x(tM−1). Unlike the first and last observations

of the network, these “in-between” observations do not have direct correspondence with steps in

the continuous time Markov chain. Thus, the “in-between” observations are considered to be

“snapshots” of the network at some point between two steps in the CTMC. The whole process

X(T ) is a series of single tie changes that happen according to some pre-defined rate function,

where one actor at a time is given the opportunity to add or remove one outgoing tie, or to not

make any changes. Once an actor is chosen at random according to the rate function, it is “given”

the chance to change a tie, and it tries to maximize its utility function based on the current and

near future states of the network. We expand on the model description further in the subsequent

sections.

2.3.1.1 The Rate Function

For the network x and each actor i in the network, the number of times that an actor i gets to

change its ties, xij , to other nodes j 6= i in the network is dictated by a rate function ρ(x, z,α),

where α are the parameters in the function ρ, and x is the current network state, with covariates of

interest z. For this paper, we assume a simple rate function, ρ(x, z,α) = αm that is constant across

all actors between observations at time tm to tm+1, thus our rate function is just a rate parameter in

the overall model. In general, SAOMs can incorporate covariate values and network statistics into

the model, so that each node will have a different rate of change. Other modelling scenarios allow

this rate to be more flexible, e.g. a function that depends on the time period of observation, some

actor-level covariates or some actor-level network statistics. In our simple model with a simple rate

parameter instead of a rate function, the rate parameter dictates how quickly an actor i gets an

opportunity to change one of its ties to the other nodes in the network, xij , for j ∈ {1, . . . , n} in the

time period from tm to tm+1. If j = i, no change in the network is made. The model also assumes

that the actors i are conditionally independent given their ties, xi1, . . . , xin at the current network

state. Let τ(i|x,m) be the wait time until actor i makes its next change from its current state in
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the network x. Note that m indicates the number of the wave that is conditioned on in the SAOM.

For any time point, T , where tm ≤ T < tm+1, the waiting time to the next change opportunity

by actor i is exponentially distributed with expected value α−1m . The conditional independence of

nodes in the network given their current ties is expressed in Equation 2.1.

τ(i|x,m)|xi1(m), . . . , xin(m)
iid∼ Exp(αm) (2.1)

The waiting time to the next change opportunity by any actor in the network is also expo-

nentially distributed with expected value (nαm)−1. The distribution of waiting time for the whole

network to change, τ(x|m) =
∑

i τi(m)|xi1(m), . . . , xin(m) can then be written as

τ(x|m) ∼ Exp(nαm) (2.2)

The parameter for the wait time for the whole network nαm is the rate at which any tie change

occurs. The estimation of this parameter is straightforward: a the method of moments is used to

estimate the rate with the statistic

C =
∑
i

∑
j

|xij(tm+1) = xij(tm)|

which is the total number of changes from observation at time tm to the observation at time tm+1.

2.3.1.2 The Objective Function

Because of the conditional independence assumptions given in Equation 2.1, we can consider

the objective function for each node separately, as only one tie from one node is allowed to change

at a time. The node i, which is the node that is chosen to change at the current time point, is

called the ego node. It has the potential to interact with all other nodes in the network, j 6= i.

These nodes j, are referred to as alter nodes, or simply alters. These nodes are acted upon by the

ego node, and they only act when they become the ego node at a subsequent time point in the

CTMC. For the ego node, i, in the current network state x, its objective function, which it tries to
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maximize, is written as

fi(β, x) =
∑
k

βksik(x,Z), (2.3)

for x ∈ X , the space of all possible directed networks with the n nodes, and Z, the matrix of

covariates. The vector β contains the parameters of the model with corresponding network and

covariate statistics, sik(x,Z), for k = 1, . . . ,K. Given the ego node, i, there are n possible steps

for the actor i to take: either one of all current ties xij = 1 will be destroyed, a new tie will be

created thatis currently xij = 0, or no change will occur.

The parameters, β, correspond to various actor-level network statistics, sik(x). According to

Snijders (2001) (p. 371), there should be at least two parameters included in the model: β1 for

the outdegree of a node, and β2 for the number of reciprocal ties held by a node. These effects

should seem familiar to readers used to working with the classical exponential random graph model

(ERGM) for networks. The outdegree represents the propensity of nodes with a lot of outgoing ties

to form more outgoing ties (the ”rich get richer” effect), and the reciprocity parameter measures

the tendency of outgoing ties to be returned within a network. The statistics corresponding to these

effects are written in terms of the edge variables xij , for i 6= j. In the RSiena software that we use

to fit the SAOMs, there are over 80 possible parameters to add to the model. The formulas for the

effects are provided in Ripley et al. (2017). The parameters, βk, in the model can be split up into two

groups: first, the structural effects, whose estimation depends only on the structure of the network,

like the outdegree and reciprocity parameters mentioned above. The parameters are included when

the researcher hypothesizes that they will model underlying mechanisms of network change. They

hope to answer questions such as, “How does the existing network structure influence change in

the network?” and “How do the behavior and characteristics of the nodes influence change in the

network?” The second set of effects are referred to as the actor-level or covariate effects. These

covariate effects also depend on the structure of the network, with the additional inclusion of node-

level covariates of interest. The covariate effects are written in terms of the tie variables xij , but

also in terms of the covariates, Z. A table of some possible structural and covariate effects is given
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Table 2.1: Some of the possible effects to be included in the stochastic actor-oriented models

in RSiena. There are many more possible effects, but we only consider a select few here. For a

complete list, see the RSiena manual (Ripley et al. 2017).

Structural Effects

outdegree si1(x) =
∑

j xij

reciprocity si2(x) =
∑

j xijxji

transitive triplets si3(x) =
∑

j,h xijxjhxih

Covariate Effects

covariate-alter si4(x) =
∑

j xijzj

covariate-ego si5(x) = zi
∑

j xij

same covariate si6(x) =
∑

j xijI(zi = zj)

in Table 2.1. For a complete list of the network and covariate statistics that can currently be

included in the objective function, see Ripley et al. (2017).

When node i is given the chance to change a tie, it attempts to maximize the value of its objective

function fi(β, x) as well as a random element, Ui(x), to account for unknown attraction between

nodes. The additional random element is included to account for any random, unexplainable change

in the network ties. Snijders (2005) recommends that the Ui(x) be random draws from a type 1

extreme value distribution. This distribution, which is also known as the log-Weibull distribution,

has probability distribution function of:

g(u|µ, σ) =
1

σ
exp

{
−
(
u− µ
σ

+ exp−
u−µ
σ

)}
. (2.4)

using µ for the mean parameter and σ for the scale parameter.
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g(u) = exp(-(u + exp(-u)))

0.0

0.1

0.2

0.3

0 4 8

u

de
ns

it
y 

of
 g

(u
)

Figure 2.2: The probability distribution function for the type 1 extreme value distribution, also

known as the log-Weibull or Gumbel distribution with location parameter µ = 0 and scale parameter

σ = 0.

The probability density function for the type 1 extreme value distribution is shown in Figure 2.2.

For mean µ = 0 and scale σ = 1 as Snijders (2005) suggests is convenient because it leads to a

simple probability formula for the probability that actor i chooses to change its tie to actor j that

can be written only in terms of the objective function. Let pij(β, x) be the probability that actor

i chooses to change its tie to actor j. Next, we write the network x in its potential future state,

x(i j), where the tie xij has changed to 1− xij . Then, the probility that the tie xij changes is

pij(β, x) =
exp {fi(β, x(i j))}∑
h6=i exp {fi(β, x(i h))}

(2.5)

When i = j in pij , the numerator represents the exponential of the value of the objective

function when evaluated at the current network state. When the value of the objective function is

high at the current state, the probability of not making a change in a microstep is also high. In

the CTMC, when actor i may make a change, it chooses which tie xi1,...,xin to change at random

according to the probabilities pij(β, x). The objective function and the resulting values of pij are

combined with the rate function to fully describe the CTMC that is used to model network change

in a SAOM.
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2.3.1.3 Continuous Time Markov Chain (CTMC)

In the continuous-time Markov chain literature, see for instance Yin and Zhang (2010), chains

are characterized by their generator or intensity matrix Q. This matrix describes the rate of

change between two states of the CTMC process, and the rows of this matrix always add to zero.

For directed networks with binary edge variables like the ones we will be working with, there are a

very large number of possible states for a directed network with n nodes. We denote the state space

as X , a set which contains 2n(n−1) states: there are two possible states for an edge, {0, 1}, and

there are n(n− 1) edge relationships because the network is directed and we exclude self-ties. The

intensity matrix for a CTMC in a SAOM is then a square matrix of dimension 2n(n−1) × 2n(n−1).

Only one tie changes at a time in the CTMC, resulting in n(n − 1) reachable states from the

current network state. Thus, the intensity matrix Q is very sparse, with only n(n− 1) + 1 non-zero

entries in each row. Note that n(n − 1) of these entries represent the possible states that are one

edge different from a given state, while the additional non-zero entry is for the state to remain

unchanged. All other entries in a row are structural zeroes because those network states cannot be

reached from the current state in a single change.

The two pieces of a SAOM, the rate function/parameter and the objective function, each con-

tribute to the entries of the intensity matrix to describe the rate of change between two network

states. The entries of Q are defined as follows: let b 6= c ∈ {1, 2, . . . , 2n(n−1)} be indices of two

different possible states of the network, xb, xc ∈ X . Then the bcth entry of Q is:

qbc =



qij = αmpij(β, x
b) if xc ∈ {xb(i j)| any i 6= j ∈ {1, . . . , n}}

0 if
∑

i

∑
j |xcij − xbij | > 1

−
∑

i 6=j qij if xb = xc

Thus, the rate of change between any two states, xb and xc, that differ by only one tie xij , is

the product of the rate at which actor i gets to change a tie and the probability that the tie that

will change is the tie to node j. This matrix Q is the foundation for estimation of a SAOM.
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2.3.2 Fitting Models to Data

To fit a SAOM to observations of a dynamic network, we use the package RSiena (Ripley

et al., 2013). This package uses simulation methods to estimate parameter values using either the

method of moments or maximum likelihood estimation. In this paper, use the method of moments

estimation because the theory behind it was established in Snijders (1996), while the maximum

likelihood estimation methods were not fully established until Snijders et al. (2010c), though RSiena

contains capabilities to use maximum likelihood estimation. We also use the score function method

for estimating the derivatives of the expected values, as opposed to the finite differences method,

both of which are outlined in detail in Snijders (2016).

For the score function method, the SIENA software uses a Robbins-Monro algorithm (see Rob-

bins and Monro (1951)) to estimate the solution of the moment equation

EθS = sobs

where θ is the vector of rate and objective function parameters, and sobs is the observed vector of

model statistics, S. The entire algorithm is provided in Snijders (2016).

There are three phases in the the SIENA algorithm, as described in Ripley et al. (2017); Snijders

(2016). The first phase performs initial estimation of the score functions for use in the Robbins-

Monro procedure for method-of-moments estimation. The second phase carries out the Robbins-

Monro algorithm and obtains estimates of the parameter values through iterative updates and

simulation from the CTMC at current parameter values. The third phase uses the parameter

vector estimated in phase two to estimate the score functions and covariance matrix of the parameter

estimate, and also carries out convergence checks. In each of the the first two phases, the estimation

procedure also uses “microsteps” that simulate from the model as it exists in its current state in

order to update either the score functions or the parameter estimates. These simulated microsteps

are observed instances of the continuous-time Markov chain that is the backbone of the stochastic

actor-oriented model. In Section 2.4, we further explore these phases in the SIENA method-of-

moments algorithm through visualization, bringing them out of the “black-box” and into the light.



39

2.3.3 Model Goodness-of-Fit

The RSiena software that fits the models to data also includes a goodnes-of-fit function for

examining model fit, sienaGOF(). This function “assess[es] the fit of the model with respect to

auxiliary statistics of networks” (Ripley et al., 2017, p. 53). Examples of auxiliary statistics include

the out- or indegree distribution on the nodes, with the option for users to input their own statistics

to examine. The goodness-of-fit is evaluated as follows:

1. The auxiliary statistics are computed on the observed data and on N simulated observations

from the model. Typically, N = 1000.

2. The mean vector and covariance matrix of the statistics on the simulations from the model

are computed.

3. The Mahalanobis distance from the observed statistics to the distribution of the simulated

statistics is computed using the mean and covariance found in step 2.

4. The Mahalanobis distance from each of the N simulations to the same distribution is com-

puted, and the Mahalanobis distance of the observed data is compared to this distribution of

distances.

5. An empirical p-value is found by computing the proportion of simulated distances found in

step 4 that are as large or larger than the Mahalanobis distance from the data. A SAOM is

thus considered a good fit if p is large.

The plot.sienaGOF() function allows us to visualize this fit. This function draws a box plot

and a violin plot at each value of the statistic of interest observed in the simulations: on the x-axis,

the out(in)degrees observed in the data (0, 1, 2, 3, . . . ), and on the y-axis, the cumulative number

of times that out(in)degree value appears in the simulations and the data. In order to compare the

distribution of the counts of nodes with the specified degree as calculated on the simulated networks

to the counts observed in the true data, red points connected by red lines representing the observed

values are superimposed on the boxplots. If the red points lie ”well within” the simulated values, the
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model is a good fit to the data. This plot is not shown because it is not intuitive for understanding

network data. Boxplots separated by the many outdegree values observed do not communicate how

the nodes are connected, just that some have more connections than others. In order to understand

the fit of the model, we should try to understand how well the model captures theoverall structure

of the network, not just one or two summary measurements of that structure. In Section 2.4.2,

we propose a new way of visualizing goodness-of-fit that uses the traditional node-link diagram to

visualize the entire network instead of numerical summaries of the the network.

2.3.4 Example Data

Wave 1 Wave 2 Wave 3

node j (alter)

no
de

 i 
(e

go
)

i likes j

no

yes

Figure 2.3: A visualization of the adjacency matrices of the three waves of network observations in

the “Teenage Friends and Lifestyle Study” data. The subset we will be using is outlined in red.

To guide our visual exploration of stochastic actor-oriented models, we use two data sources.

The first is a subset of the 50 actor dataset from the “Teenage Friends and Lifestyle Study” that is

provided on the RSiena webpage. These data come from Michell and Amos (1997), and we chose

to only work with a subset of the data to make network visualizations less busy and to make any

changes in the network more noticeable. To determine which subset to select, we visualized all waves

of the full network using the adjacency matrix visualization approach, which we show in Figure 2.3.

This adjacency matrix visualization is different from the one in Figure 2.1 because it does not show

the node IDs on the axes. The network in Figure 2.3 is much larger than our toy data example,
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Figure 2.4: The smaller friendship network data we will be modelling throughout the paper. In

the first wave, we can see there are two large, separate friend group. By the second wave, three

students with heavier drinking behavior have separated from their group, while the others become

members of the other group. By the third wave, the large group has almost completely broken up.

We want to capture these changes with our SAOMs.

so we remove the node labels to remove clutter. In all three adjacency matrices, the ego and the

alter nodes are ordered by node ID, 1-50, which were determined arbitrarily by the relationships in

wave 1. The subset we selected is outlined in red in the visualization. This subset contained actors

20 through 35 and the ties between them, as well as the drinking behavior of each actor at each of

the three waves. This specific subset was chosen because it showed somewhat higher connectivity

than other subsets, as we’ve emphasized in the visualizations of the three network observations in

Figure 2.3. For model fitting, we condition on wave 1 and estimate the parameters of the models

from the second and third waves. We will also be working with one actor level categorical covariate,

drinking behavior. This variable has five values in the original data: (1) does not drink, (2) drinks

once or twice a year, (3) drinks once a month, (4) drinks once a week, and (5) drinks more than

once a week. The network and the actor covariate values are visualized using a node-link diagram

in Figure 2.4. In the node-link diagram, the nodes are colored according to the drinking behavior of
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that student. Over time, we can see that the students tend to drink more and become increasingly

isolated into smaller groups. An analysis of this type of data with a SAOM should capture these

dynamics in a way that allows the researcher to draw conclusions about the nature of the network

and behavioral forces at play.

The second data example we use is a collaboration network in the United States Senate during

the 111th through 114th Congresses. These sessions of congress correspond to the years of Barack

Obama’s presidency, from 2009-2016.1. In this network, ties are directed from senator i to senator

j when senator i signs on as a cosponsor to the bill that senator j authored. There are (somewhat

surprisingly) many hundreds of ties between senators when they are connected in this way, so we

simplify the network by computing a single value for each senator-senator collaboration called the

weighted propensity to cosponsor (WPC). This value is defined in Gross et al. (2008) as

WPCij =

nj∑
k=1

Yij(k)
cj(k)

nj∑
k=1

1
cj(k)

(2.6)

where nj is the number of bills in a congressional session authored by senator j, cj(k) is the

number of cosponsors on senator j’s kth bill, where k ∈ {1, . . . , nj}, and Yij(k) is a binary variable

that is 1 if senator i cosponsored senator j’s kth bill, and is 0 otherwise. This measure ranges in

value from 0 to 1, where WPCij = 1 if senator i is a cosponsor on every one of senator j’s bills

and WPCij = 0 if senator i is never a cosponsor any of senator j’s bills.

Because we require binary edges for our models, we focus only on very strong collaborations.

For our senate collaboration networks, x, edges are defined as

xij =


1 if WPCij > 0.25

0 if WPCij ≤ 0.25.

The networks we constructed for the four senates during President Obama’s administration are

shown in Figure 2.5. In Section 2.4, we fit several stochastic actor-oriented models to these data

sets use those models to guide our further exploration of SAOMs.

1Details of how this data can be downloaded are provided by Franois Briatte at https://github.com/briatte/

congress

https://github.com/briatte/congress
https://github.com/briatte/congress
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2.4 Model Visualizations

Every good data analysis includes both numerical and visual summaries of the data, so why

restrict model description and diagnostics to numerical summaries? The concept of model visu-

alization was developed to complement traditional model diagnostic tools. Typically, numerical

summaries such as R2 are used to assess model fit, and the occasional visualization, like a residual

plot, are used to determine how well the model fits the data. Wickham et al. outline three separate

ideas, each of which are can be referred to simply as the ”model”: the model family, the model

form, and the fitted model. The latter is primarily what one thinks of first when considering a

model in a data analysis, where a specified model is fit to data, and parameter estimates and other

numerical summaries, such as R2 are reported. In the context of SAOMs, the fitted model contains

the form of the rate and objective functions, the estimated rate parameters, and the estimated

objective function parameters. The model form describes the the model before the fitting process,

defining which parameters are in the model within the context of the larger model family. In

SAOMs, the model form includes description of the rate and objective functions and the variables

therein that describe how the network evolves over time. Finally, the model family is the broadest

description of the model. This is the type of model that you wish to fit to the data, and is chosen

based on the problem, data, and knowledge at hand. For example, we chose to use a SAOM to

model network data over an exponential random graph model (ERGM) because we believe that

actor-level variables effect network structure and formation, and we wanted to model the network

changes over time.

The model family, the model form, and the fitted model can each be visualized according to

the three principals of model visualization: we can view the model in the data space, visualize

collections of models, and explore the process of fitting the model, not just the end result. Since

we have already decided on our model family, SAOMs, we now shift our focus to the fitted model

and the model form. Specifically, we want to learn more about how the model form we choose

affects the fitted model by using our example data sets and our visualization toolbox. We begin by

introducing the five models that we fit to our example data. Next we use the five models to guide
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our visual explorations of SAOMs. We first use novel tools and ideas to view a SAOM in the data

space of a dynamic network. We then explore collections of the same models fit many times to the

example data to see how the simulation processes in RSiena affect the model fits. Finally, we look

behind the scenes and into the individual steps of the continuous time Markov chain to learn more

about how this ”hidden data” mechanism works and how it results in a fitted model.

2.4.1 The Models

We first consider the 16 actor subset of the teenage friends and lifestyle data available on the

RSiena website (Ripley et al., 2013). To this data, we fit three different SAOMs. Each SAOM

used a simple rate function, αm, and an objective function with two or three parameters. The first

model, M1, contains the absolute minimum number of parameters in the objective function fi(x):

fi(x)M1 = β1si1 + β2si2,

where si1 is the density network statistic and si2 is the reciprocity network statistic for actor i at

the current network state x. The second and third models, M2 and M3, contain one additional

parameter each in the objective function which were determined by a Wald-type test provided

in the RSiena software to be significant, with p-values less than 0.05 (Ripley et al., 2016). The

M2 model contains an actor-level covariate parameter, and the M3 model contains an additional

strutural effect in the objective function.

fi(x)M2 = β1si1 + β2si2 + β3si3

fi(x)M3 = β1si1 + β2si2 + β4si4,

where si3 =
∑

j 6=h xijxihxhjI(zi = zh 6= zj), and si4 = |{j : xij = 0,
∑
h

xihxhj ≥ 2}|.

These statistics are known as the number of jumping transitive triplets and the number of dou-

bly achieved distances two effect, respectively. The first statistic emphasizes triad relationships

that are formed between actors from different covariate groups, while the other emphasizes in-

direct ties between actors. The covariate groups are determined by the student’s drinking be-

havior, the values of which are numeric and mean-centered. The four values in our data are
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{never, 1-2 times per year, once per month, once per week}, which after being converted to nu-

meric and mean-centered become {−0.8125,−1.8125, 0.1875, 1.1875}. The two additional effects

are visually represented and further described in Figure 2.7 and Figure 2.8, respectively.

In Section 2.4.3.3, we also fit models M1, M2, and M3 to the senate collaboration data for

comparison. For fitting M2 to the senate data, we use the number of bills authored by each senator

as the node covariate for the jumping transitive triplet variable. In terms of the senate data, then,

the value of β3 should dictate how willing a senator is to coauthor a bill on which the author of

the bill has a different level of authorship, assuming there is an intermediary between the two who

has the same authorship level as the first.

Due to the intractability of SAOMs, it is difficult to know for certain how to interpret a fitted

value of a parameter. We can make educated guesses based on the definition of the effect and

the sign of the fitted value, but a direct interpretation is not always possible. But, by exploring

these models more visually, we aim to understand these effects, their interpretations, and the model

fitting process better.

2.4.2 View the model in the data space

The first way we hope to better understand stochastic actor-oriented models is by viewing the

model(s) in the data space. In Wickham et al., they happen to define the data space as “the region

over which we can reliably make inferences, usually a hypercube containing the data” (Wickham

et al., 2015, p. 206). But what does this definition mean for network data? For dynamic social

networks, there are a few different data “spaces”:

1. the actors and their corresponding covariates,

2. the edges and their correpsonding variables that describe the relationships between the nodes,

and

3. the time, both the continuous unobserved time and the discrete observed time points, over

which the network evolves
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These three data pieces can be visualized together in various ways. The traditional node-link

visualization uses one of many algorithms to layout the actors as points in 2D space, then draws

segments connecting the points in 2D if there is an edge between two nodes, and draws nothing

otherwise. The time aspect can be visualized by drawing each network observation in time and

placing the observed timepoints side-by-side.

Because longitudinal network data consist of three different “spaces” of data, viewing the model

in the data space can depend on which aspect of the model and the data we are interested in

viewing. Incorporating data covariates into the network structure allows us to assess whether the

ties between nodes are affected by how nodes behave over time. In this instance, we would want to

view predictions over time. A SAOM can also model behavior change over time, taking both the

node and edge information into account. In this case, a plot of predicted covariate values over time

would put the model into the time and node data space. Most likely, however, is that we would

want to view all of the data spaces simultaneously.

One tool that can bring the node, edge, and time data spaces together in this way is the R

package geomnet (Tyner and Hofmann, 2016a). Different visual features in the node-link diagram

can be tied to the underlying node or edge data. The color, size, and shape of the points can be

used to represent variables in the node data, while the color, linewidth, and linetype of the lines

between points can be used to represent the edge variables. In a social network, node data might

be age, gender, and occupation of the person in the network, and edge data might be length of

connection between two people, how the people first met (school, work, church, etc.), and how often

they interact, and we can view the network at different timepoints side-by-side to see its evolution.

Pulling all of this information together with geomnet allows the entire data space to be viewed at

once.

To demonstrate, we use geomnet to visualize the connections in the 111th United States Senate

at two different points: when Hillary Clinton was in the senate, and after she left to become

Secretary of State. Clinton was only in the 111th senate for 17 days, from January 3, 2009, to

January 20, 2009, when she was in the middle of her second term as senator from New York. In
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that time, she authored two bills and was a cosponsor on 17 other bills. With Clinton included in

the node-link diagram, the senate looks much more highly collaborative than it does without her in

the diagram. We can compare the number of bills authored throughout the senate by mapping the

size of the node to the numer of bills authored by that senator. We also map shape to sex, and keep

color mapped to party of the senator. In addition, we can see the strength of the tie by mapping

the linewidth of the edge to the WPC value between the two senators. In this single visualization,

we have viewed node information (number of bills authored by a senator and the sex and party of

that senator), edge information (the direction and strength of ties between two senators), and time

(before and after Clinton left the senate).

Another way to view the model in the data space is through simulation from the model. No

single network alone simulated from a SAOM is going to look like the data or represent the model,

just as no single value simulated from the standard normal distribution will look like a bell-shaped

curve. Statisticians would prefer to look at a sample, or at least a summary statistic or two,

so it would therefore better to visualize many simulations together. From a statistician’s point

of view, a stumbling block with statistical network models generally is the lack of an “average

network” or “expected network” value. Statisticians frequently rely on averages and expected

values in data analyses, but statistical network models, especially those as complex as SAOMs,

lack a single, intuitive expected value measure. We could talk about expected values of parameters,

but the parameters can be hard to interpret. Expected values of parameters are important, but

if they cannot directly tell us anything about our dependent variable (networks in this case),

they lose some value to us. Furthermore, there is no way to talk about the expected value of an

observation simulated from a statistical network model. How then, can we arrive at an “average”

network? We answer this question through visualization. For network data, one way we view an

”average” network is through a summary network drawn using the traditional node-link diagram.

In Figure 2.11, we show an average network created with 1,000 simulations of the second wave of

the network from Model 1. To make this average network, we first simulated 1,000 wave 2 and

wave 3 observations of our small friendship example data from model M1, for which parameters
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had previously been estimated. We then combine the 1,000 instances of wave 2, and count up the

number of times each edge appears in a simulation. Then, we combine these 1,000 networks into

a single network with edgeweight equal to the proportion of time that edge appears in our 1,000

simulations. This weighted edgelist is the network we draw using the node-link diagram. An edge

is only drawn in the average network if it appears in more than 5% of the simulations (in at least 51

of the 1000 simulations), with edges that appear more frequently emphasized by thicker linewidths

and a darker color, representing the proportion of times appeared in the model simulations. On

either side of the average network in Figure 2.11, we show the actual data, wave 1 on the left, and

wave 2 on the right. We can see that the structure of the average network is much more similar

to the first wave than to the second wave. However, the simulations are supposed to represent the

second wave of data, which is shown on the right in Figure 2.11. This is an indication that the

simple model, M1, is doing a very poor job of capturing the change mechanism from the first to

the second wave of observation. The average network can thus be used to help determine model

goodness-of-fit. Because the the average network looks more like the first wave than the second

wave, we can use the visualization in Figure 2.11 as evidence of poor model fit.

Another potential goodness-of-fit visualization that places the model in the node and edge data

space is a lineup like those proposed in Buja et al. (2009). A lineup “asks the witness to identify

the plot of the real data from among a set of decoys, the null plots, under the veil of ignorance”

(Buja et al., 2009, p. 4369). It can be thought of like a police lineup, where the “suspect” is

in a lineup among several innocent lookalike fillers, and a witness picking the suspect out of the

lineup is considered evidence against the suspect. In data and model visualization, the “suspect”

is a plot of the true data, while the “filler” is composed of several plots of mock data, simulated

from a hypothesized model. If the true data stands out among the simulated data, that is taken

as evidence of poor model fit, whereas if the true data is difficult to identify among the simulated

data, that is taked as evidence of good model fit. An application of the lineup protocal can be

found in Hofmann et al. (2012b), where the authors examine, for instance, the differences between

polar and cartesian coordinates for plotting categorical data, and density plots and box plots for
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determining distributional differences. They pose questions to experiment participants such as,

“Which plot is most different from the others?” for the first example and, “In which plot is the blue

group furthest to the right?” for the distributional differences. The data visualizations examined

in Hofmann et al. (2012b) are less complex than a node-link network diagram. What questions

should we ask for network data visualizations? Asking participants to identify the most different

plot may be difficult. In the network lineup shown in Figure 2.12, the second wave of the small

friendship network is shown among five simulated networks from model M1 using parameter values

estimated from the data. What makes these plots “different”? It seems possible to argue for

any one of the six plots in Figure 2.12 as most different. So, we guide participants to look at

the overall structure of the graphs to determine which has the most and least complex structure.

The least complex plot, number six, has no triplets, while the most complex plot, number three,

has three triplets, and in fact, plot three is the data. We have found in an experiment where all

the node-link diagrams shown are based on simulated data, one observation from an “alternative”

model and the rest from a “null” model, the triangular shape of the triplets stands out the most to

participants. We can use the lineup protocol to help better understand SAOMs because it allows

us to view the model in the data space by placing observations the model side-by-side with the data

and examining the differences. This can also help us determine the significant structural effects,

if any, of the parameters in the model on observations simulated from the model. The triangular

shape mentioned above becomes more prevalent when a transitive triplet parameter in included in

a model, but it does not always cause triplets to form in the simulated data. This requires more

investigation with larger data sets and more complex models, but is promising for the development

of additional goodness-of-fit measures for network models.

2.4.3 Visualizing collections of models

There are many possible ways to collect models together. We could look at the same models

fit to different data, different models fit to the same data, or because of the nature of SAOMs, we
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could fit the same models to the same data many times to see how the simulations change. For the

SAOMs, we decided that there were four collections that were most important:

1. the collections resulting from exploring the space of all possible models;

2. the collections we get when varying model settings;

3. the results from fitting the same model form to different data;

4. the results from fitting the same model to the same data many times.

We chose these four collections because they each explore something different about SAOMs.

The first takes the many dozens of parameters available to include in a SAOM into account, which

easily translates into the second by showing how those many parameters affect the fitted models.

Then, we look at how the same model looks when fit to different sets of dynamic network data.

Finally, we look at the results from fitting the same model to the same data because the MCMCs

and CTMCs that make up a SAOM lead to different parameter estimates every time, so it important

to see how the results can vary.

2.4.3.1 Exploring the space of all possible models

The RSiena manual contains over eighty possible effects to include in the model. In order

to select parameters to include in the models for our example data, we searched through the

possible effects available to model given the data structure to find significant effects. We tested for

significance using the Wald-type tests built into RSiena for one-at-a-time effects testing. We start

with the outdegree and reciprocity measures as the foundation of the models we fit, then add one

evaluation effect, fit the model, test the additional effect for significance, and repeat for all possible

parameters to add to the model. We performed this procedure for both the small friendship and

the senate collaboration data. The results for significant effects are shown in Figure 2.13. We see

in both the friendship data and the senate data results that most of the significant effects have

absolute value less than ten. In addition, the p-values for the effects from the friendship data are

more spread out than the p-values for the senate data, which are concentrated at about 0.02 or
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less. This may suggest that larger data sets tend to result generally in smaller p-values, just like a

larger sample size results in smaller p-values in a t-test.

2.4.3.2 Varying model settings

We have varied model settings already by choosing models M1, M2, M3 to fit to our small

friendship network data set. In Section 2.4.3.4, we fit these models to the data 1,000 times, and

in this section, we explore simulations from these three models given the mean values of from

the 1,000 fitted parameter values as the parameters in our models. From each of these three

models using the means of parameter estimates as our fixed parameter values, we simulated 1,000

observations from each of the three models. In this process, we condition on the first friendship

network observation, and the second and third observations are simulated from the SAOM models

with the given parameter values. From these simulations, we first create a visualization that

represents an average network.

To create the average network visualization shown in Figure 2.14, we follow the same procedure

as in Section 2.4.2, counting occurrences of each possible edge in the simulations, resulting in a

summary network with weighted edges representing the number of times an edge appeared in the

simulated wave 2 when simulating from the SAOM 1,000 times. As in Figure 2.11, edges only

appear in the average networks if they appear more than 5% of the time in the simulations. In

Figure 2.14, we show the “average” network from the three models we fit and the first and second

waves of data. Comparing the three averages to waves 1 and 2, we see that they have very similar

structure to wave 1. Model 2, which included the transitive triplet parameter, seems to have created

a larger connected component overall than models 1 and 3. In particular, if we look at the group

of nodes {10, 11, 14}, we see they are very strongly connected within the three average networks,

and they are completely separate from the other nodes in the true wave 2. None of the three

average networks show node 16 gaining ties as it does in wave two, nor do they show nodes 4 and

7 becoming isolated. In Model 2, however, the ties to node 7 appear much weaker than in Model

1 or Model 2, suggesting that of the three, Model 2 may be the best fit for our data.
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Table 2.2: The means (standard deviations) of parameter values estimated from repeated fittings

of M1,M2,M3 to the small friendship network and the senate collaboration network. Each model

was fit 1,000 times to the friend data, while each model was fit 100 times to the senate data.

Friendship Data Senate Data

M1 M2 M3 M1 M2 M3

α1 4.660 (0.059) 5.176 (0.068) 4.712 (0.060) 3.344 (0.016) 3.349 (0.016) 3.340 (0.016)

α2 1.930 (0.026) 2.017 (0.028) 1.979 (0.027) 2.480 (0.017) 2.487 (0.015) 2.483 (0.014)

α3 – – – 2.221 (0.017) 2.227 (0.017) 2.224 (0.016)

β1 -3.597 (0.033) -4.104 (0.038) -3.589 (0.035) -4.979 (0.027) -4.993 (0.025) -4.987 (0.021)

β2 4.149 (0.050) 4.277 (0.052) 4.230 (0.050) 4.954 (0.046) 4.974 (0.040) 4.970 (0.035)

β3 – 3.209 (0.053) – – -1.175 (0.789) –

β4 – – -7.582 (1.746) – – -1.048 (0.486)

2.4.3.3 Fitting the same model to different data

As mentioned in Section 3.3.4, we fit the models M1, M2, and M3 to both the small friendship

network and the senate collaboration network. We fit each model to the friendship data 1,000

times, and to the senate data 100 times. The means and standard deviations of the parameter

estimates for each combination of model and data are given in Table 2.2.

Looking at Figure 2.15 and Table 2.2, we see a few patterns in the estimates from both models.

First, we can see in both the table and the density of the estimates that the same relationship

between the outdegree parameter, β1, and the reciprocity parameter, β2. In both data sets and

across all three models, the estimates of β1 are all negative and hover between -5 and -3, while the

estimates of β2 are all positive and hover between four and five. This suggests that in both data

sets, nodes are discouraged from forming ties that are outgoing without being reciprocated, while

also being encouraged to form outgoing ties to nodes that tie to them. In both data sets, people

seem to want to have reciprocated relationships: teenage girls want be friends with other girls that

reciprocate their friendship, and senators want to coauthor bills with senators who have also been

coauthors on their bills. We explore the relationship between β1 and β2 further in Section 2.4.3.4.

The inclusion of β3, the jumping transitive triplet parameter, for the friendship data had a

noticeable effect on the other parameters in the model. The same cannot be said for the inclusion

of β3 for the senate data. The covariate used in the senate data for the jumping transitive triplet



53

calculation was the number of bills authored by the ego node in the given year. The number of

bills authored by a senator varies wildly, from no bills to 114 bills authored in two years, so this

effect could simply be nonsensical for the senate data, since senators are less likely to have the same

number of bills authors than teenage girls are to have the same drinking behavior. Looking at the

estimates of β4, we see that the estimates for the senate data are near zero, suggesting this effect,

which considers indirect ties, is not important for the senate data: indirect relationships do not

describe the senate collaboration structure as much as they do the teenage friendship structure.

2.4.3.4 Fitting the same model to the same data

To our small friendship network, we fit three models, M1, M2, and M3, using RSiena 1,000

times each. We then looked at the distribution of the fitted values, which are shown in Figure 2.16.

We can see from these distributions that the inclusion of the jumping transitive triplet parameter,

β3 is obviously affecting the distributions of the other four parameters included in all models, α1,

α2, β1, and β2. When β3 is included, its estimate is postitive, meaning that friendships between two

girls with different drinking behaviors tend to form when there is an intermediary who is already

friends with the two girls. The inclusion of this parameter leads to increases in the rate parameters’

estimates, suggesting that encouraging the transitive triplet behavior means that the girls would

also change friends more frequently. The outegree parameter, β1 decreases when β3 is included,

while the reciprocity parameter, β2 increases. This implies the girls in the data prefer to form

closer friend groups, as indicated by reciprocated ties and jumping transitive triplet formation, as

opposed to being popular and having many friends. Having many friends who do not reciprocate

is discouraged by M2. In comparison with models M1 and M3, model M2 typically has higher

estimates of the rate parameter, meaning that the inclusion of the covariate statistic in the model

leads to higher estimates of the number of times, on average, a node gets to change its ties. It

is not clear, however, that the addition of a parameter to the objective function should effect the

estimation of the rate parameters, so we continue to explore the collection of parameter estimates.
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To further investigate the odd relationship between the parameter values, we look at correlations

between each of the parameter estimates in each model. In Figure 2.17, we examine correlations

between each of pair of parameters within each model and overall. The strongest correlation within

each model is between β1 and β2, with absolute value of correlation between those two parameter

values greater than 0.90 in all three models. The β1 parameter is also highly correlated with the

β3 parameter within model M2, but it is not as highly correlated with the β4 parameter in model

M3. It might therefore be advisable to consider only models that either allow β1, or β2. Looking

at the high correlation with α, we might switch to a model without β1.

2.4.4 Explore algorithms, not just end result

The last principle of model visualization is to explore the process of fitting the model, instead of

just focusing on the end result. This principle is perhaps the most important for SAOMs because

the model fitting process in RSiena involves several simulation steps that are hidden from the

user. Hiding the MCMC steps is practical and efficient if a researcher is primarily interested in

fitting one model to a set of longitudinal network data, obtaining parameter estimates, and drawing

conclusions or making predictions. We are more interested in how the models are fit, so we extracted

and explored the different steps of that process instead of allowing them stay hidden.

A key component of each step of the SIENA method of moments algorithm is the “microstep”

process. A series of microsteps is obtained by simulating from the model in its current state, x(tm)

with current parameter values θ0 = {α10 , . . . αm−10 , β10 , . . . , βK0}, to the next state, x(tm+1). This

microstep process stops when the simulated network has achieved the same number of differences,

C, from x(tm) as x(tm+1), where

C =
∑
i 6=j
|xij(tm+1)− xij(tm)|.

This simulation process follows the steps of the continuous-time Markov chain. Each tie change

in the CTMC is referred to as one “microstep”. At each microstep, an “ego node” is selected

to make a change, and the chosen ego node randomly makes one change in its ties according to

the probabilities, {pij : i 6= j ∈ {1, . . . , n}} defined in Equation 2.5, determined by its objective
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function. The options for change are (1) removing a current tie, (2) adding a new tie, or (3) making

no change at all. Saving and exploring all of these steps is not computationally efficient if one is

only interested in estimating parameter values, but they can be saved and extracted using options

in RSiena, which is what we did to create our visualizations. Between two network observations

x(tm) and x(tm+1), there can be dozens, hundreds, or even thousands of microsteps, depending

on the size of the network and the number of changes between two network observations. We

wanted to view these in-between steps in order to better understand the behavior of the underlying

continuous-time Markov chain.

The first vizualization we present here is an animation of the simulated microsteps that form the

transition steps of the CTMC from wave 1 to wave 2 of the small friendship network example shown

in Figure 2.4 when fitting model M1. Movies similar to this animation were used to visualize the

changes of dynamic networks in Moody et al. (2005). When each ego node is selected in a microstep,

it is emphasized in the animation, then the associated edge either appears or disappears. If there

are no changes at a particular microstep, no changes are seen. Some frames of the animations are

shown in Figure 2.18, and the full movie can be viewed at https://vimeo.com/240089108.

The top row of Figure 2.18 shows an edge being removed, and the bottom row shows one being

added. In both cases, the ego node chosen to act change color from black to red, and they also

increase greatly in size. In the case of an edge being removed, in the top row, the edge that currently

exists is emphasized with the same color and size change that the node gets, and as the animation

proceeds the edge shrinks to nothing, as the ego node shrinks and changes color back to its original

black. If an edge is being added, as in the bottom row of the figure, the ego node’s appearance

changes in the same way as when the edge is being removed, while the edge appears colored red

from nothing, and grows to a large size, then changes color and size to match the rest of the edges,

while the node shrinks and changes color to match the other nodes.

In the network animation, we see the possible steps of the unobserved CTMC process that is

underlying the SAOM fit to the data. We see each part of the model come into play. First, we see

the rate at which the nodes are selected to change. Then, we see the result of the actor maximizing

https://vimeo.com/240089108
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its objective function by either deleting or adding a node. In addition, the layout of the nodes

changes as edges are removed or added, which gives us a better sense of how the overall network

structure changes with these individual tie changes.

We next use animation to view the changing structure of the adjacency matrix the microsteps.

The adjacency matrices for the three waves of friendship data as shown in Figure 2.4 are ordered

by node id. There are 16 nodes in the data, numbered 1-16, and that order is used on the x and y

axes for the matrix visualization. Viewing the adjacency matrices with this arbitrary ordering does

not provide much information to the viewer about the underlying structure of the network. This

lack of perceived structure would be exacerbated in an animation, so we adjust the ordering so

that the viewer can better perceive the structure of the network. This process is known as matrix

seriation (Liiv, 2010).

To reorder the vertices for the matrix visualization, we first constructed a cumulative adjaceny

matrix, Acum, for the series of microsteps simulating the network from x(tm) to x(tm+1). A single

entry in the cumulative adjacency matrix, Acum
ij , is the total number of times the edge from node

i to node j appears in the network from the initial observation, x(tm) ≡ X(0) to the final result of

the last microstep, X(R), where R is the total number of microsteps taken:

Acum
ij =

R∑
r=0

Xij(r).

We then performed a principal component analysis (PCA) on Acum, and used the values of the first

principal component to order the vertices on the x and y axes for the adjacency matrix animation.

For one such series of microsteps simulated by RSiena, we present the adjacency matrix ordered by

the (arbitrary) vertex id alongside the seriated adjacency matrix using the first principal component

loading on the cumulative adjacency matrix, Acum, in Figure 2.19.

Using PCA on Acum to order the rows and columns of the adjacency matrix visualization clearly

shows the two distinct connected components in the first wave of the network, which are difficult

to find in the arbitrarily ordered visualization. We also use the PCA seriated layout to fix the

layout in the animation of one of the microstep process simulations. This animation, some frames

of which are shown in Figure 2.20 is very simple: a square appears or disappears in the animation
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as that edge appears or disappears in the microstep process. Through this animation, we can see

edges appearing, and then later on disappearing. These in-between steps are not shown when we

look at the network at our discrete observation points, so by viewing this animation we can gain a

better understanding of the underlying dynamics of this model. The full movie can be viewed at

https://vimeo.com/240092677.

We also attempt to better understand the microstep process by visualizing the observed transi-

tion probabilites for the first microstep in the process. We only do the first step of many because the

RSiena transition probabilities for any two edges i, j after the first step are only directly comparable

for identical ego node states due to the conditioning on the current network state in the model. By

ego node state, we mean the current set of incoming and outgoing ties to the ego node, i. Put more

precisely, let the vector Xi = ({xik}, {xki})k 6=i ∈ {0, 1}2(n−1) represent the set of all tie variables

involving node i in the current network. For pij to be comparable for any two network states x and

x′, the value of the vector Xi must be the same in both states. It is possible to incorporate this

information into our visualizations, but for now we look at only the first step, because we know

without needing any complicated conditioning steps that the previous node state Xi is identical in

all cases. Thus we have 1,000 transition probabilities to examine: one transition probability for the

first microstep taken for each of the simulations. In Figure 2.21, we present each ego node and the

resulting probabilities of tie changes. The probability shown by the bars is the theoretical proba-

bility, according to the objective function, of the ego node changing its tie to the alter node, while

the probability shown by the points is the empirical probability of that change being made. The

empirical probability is calculated by counting all instances of the ego node first, then computing

the proportion of each different alter node change. In most cases, they are almost identical, which

demonstrates that the algorithm is performing about as expected. There are, however, many steps

that are never taken. Some ego nodes, like 1, 4, and 16, really explore the space of all possible

outgoing ties. On the other hand, nodes like 13 and 15 explore very few possible outgoing ties.

It is unclear why this would be happening; it may have something to do with the ties in wave 1,

where 13 and 15 have multiple connections, while 1 and 16 have none, but there are several other

https://vimeo.com/240092677
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counterexamples of well connected nodes that explore the space more. In addition, we can see that

the ties changed most often are removing ties, not adding ties. This tracks with the overall pattern

of the data: we see the most ties in the first wave of data, and the least ties in the third wave.

Another way to view these transition probabilities is through the adjacency matrix visualization.

In Figure 2.22, we build on the concept of the ordered adjacency matrix of Figure 2.19. This

heatmap shows the transition probabilities of all ties that are changed in the first microstep of the

1,000 simulations. The heatmap is noticeably sparse: of the 162 = 256 possible steps for the CTMC

to take, only 103, or about 40%, are taken in the 1,000 simulated chains. This reinforces what we

saw in Figure 2.21, where there are many paths not taken. This effect could only be exacerbated as

more steps are taken in the CTMC, leading to a very large area of our network space, X , completely

unexplored by the SAOM model fitting process.

We also wanted to better understand the entire microstep process from the first wave, all the

way through to the second wave. The number of steps taken from wave 1 to wave 2 varies. In one

set of 1,000 simulations from Model 1, the smallest number of steps taken was 58, and the longest

was 248, with a mean of 106 and a median of 103. In the 1,000 simulations, the standard deviation

of the number of microsteps was 22.8. In Figure 2.23, we see two simulations of the process from

wave 1 to wave 2, with wave 1 shown on the left, and wave 2 shown on the right. In each of the

three plots, the y-axis contains the edges sorted by how often they appear in the networks along

the way. We can see that some edges are there in the beginning, but disappear and never come

back, while others appear a few steps in, only to dispappear again. There are also some edges that

were observed in wave 2 that don’t appear at all in the microstep process in a given simulation.

So, even though the CTMC makes about the right number of changes as it was designed to do, the

changes it is making are not necessarily in the right direction.

We also combine 1,000 simulations from model M1 into a visualization like the one shown in

Figure 2.23. We first assign each possible edge an edge ID number so that we can keep track of it

throughout all the microsteps and all the simlations. Then, we count up the total number of times

each edge appears in the microstep process in each of the 1,000 simulations for use as an ordering
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variable later. We also count up the number of times an edge occurs in each microstep number in

the 1,000 simulations. Since the number of microsteps in the process varies, the number of times an

edge occurs decreases as the microstep number increases. Next, we compute a proportion, which

we call the occurrence percentage, which is the number of times the edge occurred in a microstep

divided by 1,000. Finally, we visualize all this information together in Figure 2.24. In this plot,

all possible edges are shown, and we see that every one of the 16× 15 = 240 possible edges in the

network occurs at some point in the simulation process. We also see, however, that the process

struggles to focus in on the edges in the second wave of the data. Ideally, we would like to see more

occurrences of the edges which appear in the second wave of data. But, about half of the edges

in wave two are in the bottom half when ordered by number of occurrences, meaning they do not

appear as much as they would if the model was truly excellent at capturing the mechanisms of tie

change in the network. This solidifies what we found in Figures 2.21 and 2.22: the model M1 and

the SAOM fitting process do not explore the data space enough to adequately capture the network

change mechanism.

2.5 Discussion

We have used novel visualization methods in order to better understand the family of models

known as stochastic actor-oriented models for social network data. By looking at the underlying

algorithms, visualizing collections of these models, and viewing the model in the data space, we

have been able to gain knowledge and appreciation for these complicated models and everything

that goes into them.

We have only just begun to scratch the surface of these complicated and multi-layered models

for social networks. The RSiena software is incredibly powerful, and can fit a whole slew of much

more flexible stochastic actor-oriented models than we have examined here. If a researcher thinks

the network structure or an actor covariate effects the rate of change of the network, there is

a way to incorporate that belief into the rate function of the SAOM. More than one actor-level

covariate can be included in the model, and way more than three parameters can be included in the



60

objective function itself. In addition, RSiena allows the user to tell it which parameters lead to tie

creation, and which parameters lead to tie endowment, or dissolution. We have used “evaluation”

parameters, which assume that creation and endowment are equal (Ripley et al., 2017). Finally,

SAOMs and RSiena are able to also model behavior change of the actors in the network, which

again is a capability we did not explore here.
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Figure 2.5: The collaboration network in the four senates during the Obama years, 2009-2016.

Edges are shown only if the weighted propensity to cosponsor from one senator to another is

greater than 0.25. We use the Fruchterman-Reingold algorithm to layout the node-link diagram.
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Figure 2.7 Realization of a jumping transitive
triplet, where i is the focal actor, j is the tar-
get actor, and h is the intermediary. The group
of the actors is represented by the shape of the
node.
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Figure 2.8 Doubly achieved distance between ac-
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Figure 2.9: The additional network effects included in our models fit to the friends data. On the

left, a jumping transitive triplet (JTT). On the right, a doubly achieved distance between i and k.
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Figure 2.10: The 111th Senate at two discrete time points: while Clinton was in the senate in

the first few weeks of 2009 (on the left) and after she left the senate to become Secretary of State

(on the right). We put some potential model covariates, sex and party of the senator and the

number of bills they authored in the data space through the shape, color, and size of the nodes,

respectively. We also map the strength of the tie, the WPC, to the width of the edge between two

nodes. Thicker lines implies higher propensity to collaborate. In addition, senators with no ties

higher than WPC = 0.25 are not shown.
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Figure 2.11: On the left, the first wave of observed data that is conditioned on in the model. On the

right, the second wave of observed data. In the middle, a summary network from the first model fit

to the data. This summary network represents 1,000 simulations of wave 2 using the values from

the simple fitted model M1.

Figure 2.12: A small lineup of node-link diagrams showing the second wave of our small friendship

network among five networks simulated from model M1.
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Figure 2.13: Significant effects for the two data sets, at a significance level of 0.10 or lower as

calculated by the Wald-type test available in the SIENA software.
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Figure 2.14: The node-link diagrams from the three ”average” networks that we calculated are in

the top row, and the true wave 1 and wave 2 data are shown in the bottom row above. There

is some difference between the three models, but overall, these three models cannot capture the

structure in the true second wave of data.
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Figure 2.15: Density plots of the repeated estimates from fitting models M1, M2, and M3 to the

friendship and senate example data. Note that the rate parameters are excluded since the two data

sets have different numbers of waves. The first two parameters, outdegree and reciprocity, have

the same relationship for both data sets: the outdegree parameter estimate is strongly negative,

while the reciprocity estimate is strongly postitive. For the friendship data, the inclusion of the

transitive triplet parameter has strong effect on the estimates of the other two parameters, while

it does not affect the estimates of the other two parameters for the senate data.
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Figure 2.16: Distribution of fitted parameter values for our three SAOMs. The inclusion of β3 or

β4 clearly has an effect on the distribution of the rate parameters, α1 and α2.
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Figure 2.17: A matrix of plots demonstrating the strong correlations between parameter estimate

in our SAOMs. The strongest correlation within each model is between β1 and β2.
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Figure 2.18: A selection of images in the microstep animation. The selected edges and nodes

are emphasized by changing the size and the color, then when edges are removed, they fade out,

shrinking in size, while the nodes change color and shrink to blend in with the other nodes.
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Figure 2.19: On the left, the starting friendship network represented in adjacency matrix form,

ordered by vertex id. On the right, the same adjacency matrix is presented after ordering the

vertices by one repetition of the microstep simulation process from wave one to wave two.
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Figure 2.20: A selection of frames from the adjacency matrix visualization animation for one series

of microsteps. (Ego and alter node labels are removed to declutter the graph.) At the beginning

of the animation, shown in the top row, there are two clearly connected components: one in the

top left corner, and one in the bottom right corner. By the end, the component in the top left has

spread out, while the bottom right component has shrunk, but remains closely connected.
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Figure 2.21: Each panel shows the theoretical (as lines) and empirical (as points) probabilities of

the chosen ego node changing its tie to each of the other nodes. The color of the line indicates

whether the tie from the ego to the alter node is being added, removed, or if there is no change to

the network in this step.
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Figure 2.22: A heatmap showing the empirical transition probabilities for the first microstep in

1,000 simulations. The acting ego node is on the y-axis, and the alter node is on the x-axis. There

were many ties with empirical probability zero.
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process: they are in the second wave, but never appear in the microsteps.
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Figure 2.24: Visualizing all microsteps taken in 1,000 simulations from the model M1. The occur-

rence percent is split up into groups to correspond with its distribution: only about 10% of the

edges appear more than 10% of the time in the 1,000 simulations, while about 60% appear less

than 1% of the time. The first wave network is shown at microstep 0, and the second wave of

the network is shown as the last microstep for comparison. We see that it is rare for a microstep

process to last longer than 150 steps, and also that the edges that appear past the 150th step tend

to be in either the first wave or the second wave.
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CHAPTER 3. VISUAL INFERENCE FOR SIGNIFICANCE AND

GOODNESS-OF-FIT TESTING OF STOCHASTIC ACTOR-ORIENTED

MODELS

3.1 Introduction

Three of the most important pieces of statistical modeling are significance testing of model

parameters, model goodness-of-fit tests, and determining power of a hypothesis test. In the first,

the data are usually assumed to come from a simple model under the null hypothesis, and addi-

tional parameters are tested to determine whether they significantly contribute to explaining the

variability in the data. In the second, the model of interest is examined to determine how well it

fits the data. In the final, the ability of the hypothesis test in question to detect the difference

between the null and alternative hypothesis is determined. All three of these aspects of statistical

modeling increase greatly in difficulty as the complexity of the model of interest increases.

Some particularly complicated sets of models are those designed to model network change. A

network is any set of things, such as people, computers, or neurons, that are connected in some way,

through social relations, internet connection, or electrical impulses in the brain. We refer to the

“things” in the network as nodes, or actors in a social network, and the connections as edges, or ties

in a social network. Dependencies inherent to the data make network objects particularly difficult

to model. The difficulty of modeling increases when we go beyond single instances of a network and

consider the dynamics of network change between observed instances. This type of modelling for

dynamic networks is often performed on social network data, such as friendship networks among

students or the spread of HIV in drug users sharing needles. It is known that most network models

lack the asymptotics required to perform many well-known goodness-of-fit tests, and the maximum

likelihood estimation of parameters is so difficult that it can make significance testing difficult as

well (Goldenberg et al., 2010).
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In order to circumvent these difficulties, we propose new methods for significance testing of

parameters, goodness-of-fit testing, and power calculations for a set of social network models:

stochastic actor-oriented models for dynamic network data (Snijders, 1996). Specifically, we are

using visual inference in place of traditional statistical methods for social network models, such

as Wald or t-tests for significance of parameters and in- and outdegree distribution metrics for

determining goodness-of-fit. Visual inference, introduced by Buja et al. (2009), allows us to look at

the entire dataset simulated from a network model as opposed to a (set of) usually one-dimensional

metric(s) derived from the network such as outdegree, or a p-value for a single parameter in the

model. By using visual inference to supplement traditional statistical tests, we gain a new under-

standing of parameters in SAOMs and fit of SAOMs to data.

The paper is outlined as follows: Section 3.2 gives a basic overview of visual inference and

the lineup protocol. Section 3.3 provides an introduction to the our models of interest, stochastic

actor-oriented models. Section 3.4 details how we define significance testing and goodness of fit

procedures for SAOMs through visual inference, and Section 3.5 details the results of a visual

inference survey of Amazon Mechanical Turk workers. We close with a discussion in Section 3.6.

3.2 Visual Inference

Data visualizations are an important component of data analysis, providing a mechanism for dis-

covering patterns in data. Pioneering research by Gelman (2004), Buja et al. (2009) and Majumder

et al. (2013b) provide methods to quantify the significance of discoveries made from visualizations.

Buja et al. (2009) introduced two protocols, the Rorschach and the lineup protocol, which bridge

the gulf between traditional statistical inference and exploratory data analysis. Here, we use the

lineup protocol. Under this protocol, we begin with a data set of interest to us, such as a network,

and a visualization of this data, such as a node-link diagram. We would like to know the model that

generated this data. There are two hypothesis considered: a null hypothesis which states the model

that is assumed to have generated the data, and an alternative hypothesis that the data were not

generated under this model. Then, the plot of the data of interest is placed randomly among a set
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of m− 1 null plots, which are visualizations of data simulated from the null model(where m = 20,

usually). Human observers are then asked to examine the lineup and to identify the plot that looks

most different from the others. If an observer identifies the data plot, this is quantifiable evidence

against the null hypothesis. Since an observer has a chance of 1 in m to pick the data plot from the

lineup by simply guessing, i.e. in a situation where the data plot is virtually indistinguishable from

the null plots, the evidence grows in strength with the number of independent observers identifying

the data plot.

The lineup protocol places a plot firmly in the framework of hypothesis tests: a plot of the

data is considered to be the test statistic, which is compared against the sampling distribution

under the null hypothesis represented by the null plots. Obviously, the null generating mechanism,

i.e. the method of obtaining the data for null plots, is crucial for the lineup protocol, as the null

hypothesis directly affects the choice of null generating method. Null generating methods are

typically based on (a) simulation, if the null hypothesis allows us to directly specify a parametric

model, (b) sampling, as for example in the case of large data sets, or (c) permutation of the original

data, see for instance Good (2005), which allows for non-parametric testing that preserves marginal

distributions while ensuring independence in higher dimensions. The model of interest here allows

us to simulate directly from a parametric model for dynamic social network data.

The lineup protocol was formally tested in a head-to-head comparison with the equivalent con-

ventional test in Majumder et al. (2013b). The experiment utilized human subjects from Amazon’s

Mechanical Turk (Amazon, 2010) and used simulation to control conditions. The results suggest

that visual inference is comparable to conventional tests in a controlled conventional setting. This

provides support for its appropriateness for testing in real exploratory situations where no conven-

tional test exists or is difficult.

3.3 Stochastic Actor-Oriented Models

Stochastic Actor-Oriented Models (SAOMs) are a family of models for dynamic network data

that incorporate both network structure and node-level information to describe how a network
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observed on two or more occasions changes over time (Snijders, 1996). The two titular properties

of SAOMs, stochasticity and actor-orientation, are crucial to understanding networks as they exist

naturally: social networks are ever-changing as relationships decay or grow in seemingly random

ways, and the actors in them have characteristics that could affect how they change their ties to

other nodes in the network. These unique properties allow for the fitting of some very complicated

models to inherently complex data, so it can be exceedingly difficult to interpret parameters and

their corresponding estimates. The sheer amount of available parameters to include in the model

combined with the difficulty of interpretation make parameter selection and goodness-of-fit testing

burdensome as well.

Broadly, a SAOM takes network structure and node covariate information into account in two

ways and models the network changes one-at-a-time as a continuous time Markov chain (CTMC).

First, the rate of change between states is dictated by a rate function that describes how often

changes in the network occur, and secondly, the objective function describes what those state

changes are. As in most other network models, the variables of interest are the edges of the

network, xij , where xij denotes the edge between nodes i and j, where i, j ∈ {1, 2, . . . , n =

the number of nodes}. xij is modelled as a binary variable, i.e.

xij =


1 if an edge from i to j exists

0 otherwise

(3.1)

Edges are treated as directed, i.e. in general xij 6= xji, and self-referencing edges or loops are not

allowed, i.e. xii = 0 for all i. The network is observed M ≥ 2 times at time points t1 < t2 < ... < tM ,

and the entire network at time point tm is denoted as x(tm). In sections 3.3.1 and 3.3.2 we discuss

the rate and objective functions of a SOAM in more depth. Additional details on SOAMs can be

found in Snijders (1996, 2001); Snijders et al. (2010a,b, 2007); Snijders (2017),

3.3.1 Rate Function

All changes in SAOMs are treated as changes made by the nodes, or actors, in the network,

i.e. each actor, i, gets a chance to make a change according to the rate function, typically denoted
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λi, which dictates when relationships between nodes in the network can change. In general, the

rate function can take the network structure e.g. outdegree of node i, and the node covariates

into account, but we use the simple rate function, which is constant over all nodes in a given

time period, so that λi ≡ αm ∀i ∈ {1, 2, . . . , n}. We denote the rate from tm to tm+1 as αm for

m = 1, . . . ,M − 1. Using this notation, the waiting time to the next chance for actor i to make

a change is exponentially distributed with expected value α−1m . Since the rate is the same for all

actors, the waiting time for any actor to get the oppurtunity to change its set of ties is exponentially

distributed with expected value (nαm)−1.

3.3.2 Objective Function

After actor i has been given the opportunity to change, it probabilistically chooses one of its

current ties, xij , to change. The probability that actor i changes its current tie to actor j is

determined by the objective function of the model and a random component, U , which can be

thought of as encompassing any other factors that may be influencing the changes the node makes

not accounted for by the parameters in the model. Actor i is aiming to maximize its corresponding

objective function fi given the current state of the network, x and the node-level covariates, Z,

given as:

fi(x,β,Z) =
K∑
k=1

βksik(x,Z), (3.2)

where β = (β1, . . . , βK) are additional model parameters, each associated with some network

statistics, sik(x,Z), sik(x,Z), calculated with respect to actor i at the current network state x.

Network statistics range from the simple outdegree, si(x) =
∑

i 6=j xij , to the more complicated

transitive triplets jumping to different covariate, si(x,Z) =
∑

i 6=j 6=h xijxihxhj · I(zi = zh 6= zj).

Version 1.2-3 of RSiena (Ripley et al., 2013), the software used to fit the models here, provides

over 80 possible effects that can be included in the objective function. We discuss these statistics

in more detail in Section 3.3.4.

Objective function fi(x,β,Z) and random component U combine to form the transition prob-

ability, pij , of the network changing from its current state x to the state with changed tie xij ,
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denoted as x(i j):

pij =
exp{fi(x(i j),β,Z)}∑
h exp{fi(x(i h),β,Z)}

(3.3)

This probability dictates which edge change is made by the acting node. The acting node can

also choose to not change at all. This is most likely to occur when the numerator, as calculated for

the current state of the network, is larger than for any changes x(i j) that could be made.

According to Ripley et al. (2017), at least two parameters must be included in the objective

function: the density and the reciprocity. We denote the density, or out-degree, parameter by β1

and the associated statistic as si1(x) =
∑

j xij . Similarly, we denote the reciprocity parameter by

β2 and the associated statistic as si2(x) =
∑

j xijxji. We will refer to the very simple model with

only these two parameters in the objective function as M1.

3.3.3 Example Data

The data we use are collaboration networks in the United States Senate during the 111th through

114th Congresses, overlapping with Barack Obama’s presidency. These senates began on January 6,

2009, the start date of the 111th, and ended on January 3, 2017, the last date of the 114th1. In the

US Senate, there are three ways that senators can show support for a piece of legislation: they can

author the bill, cosponsor the bill, and vote for the bill. We use cosponsorship as a metric because it

results in a network that is unimodal (all nodes are senators) and directed. In this network, ties are

directed from senator i to senator j when senator i signs on as a cosponsor to the bill that senator

j authored. There are many hundreds of ties between senators when they are connected in this

way, so we simplify the network by computing a single value for each senator-senator collaboration

called the weighted propensity to cosponsor (WPC). This value is defined in Gross et al. (2008) as

WPCij =

nj∑
k=1

Yij(k)
cj(k)

nj∑
k=1

1
cj(k)

(3.4)

1Details of how this data can be downloaded are provided by Franois Briatte at https://github.com/briatte/

congress.

https://github.com/briatte/congress
https://github.com/briatte/congress
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where nj is the number of bills in a congressional session authored by senator j, cj(k) is the

number of cosponsors on senator j’s kth bill, where k ∈ {1, . . . , nj}, and Yij(k) is a binary variable

that is 1 if senator i cosponsored senator j’s kth bill, and is 0 otherwise. This measure ranges in

value from 0 to 1, where WPCij = 1 if senator i is a cosponsor on every one of senator j’s bills

and WPCij = 0 if senator i is never a cosponsor any of senator j’s bills. Because SAOMs require

binary edges, we construct the edges as follows:

xij =


1 WPCij > 0.25

0 WPCij ≤ 0.25

(3.5)

For each of the four senate sessions, in addition to the WPC value between any two senators in

the session, we have three node covariates: the party affiliation of each senator, the number of

bills they authored in each session, and their gender. We explored each of these covariates in the

model to determine if they affect the overall network structure and how ties are formed between

senators. The node-link diagram representations of the data we use for modelling are shown in

Figure 3.1. We have labelled some of the nodes in these networks whose names will be familiar

to US readers, because they are leaders in their party or they have run for president. The size of

the nodes represent how many bills the senator authored in a session, the color represents party

affiliation, and the shape represent gender. In each of the four sessions, there is one very large

connected component tying many of the prominent senators together, with many smaller groups

of two to ten senators surrounding the larger component. In each senate, the structure changes

slightly as new senators arrive or come to prominence.

For Senate 111, for instance, we see Hillary Clinton, serving out her second term in the senate

until she became Secretary of State. She is isolated in Figure 3.1, but in actuality, she had many

cosponsors on two pieces of legislation she authored in that short time, as is shown in Figure 3.2.

We chose to remove Clinton and her edges from the network because they make the overall structure

look so different from the other three senates, where the pattern is not typical of a senate in any

other year. We suspect that because Hillary Clinton had recently run for President had just been
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selected as President-elect Obama’s Secretary of State, the cosponsorships were largely symbolic,

so the 111th Senate without Hillary Clinton is more typical than the 111th Senate with her.

In legislative cosponsorship networks, it is well known that party affiliation, reciprocity of

relationships, and whether senators are ”workhorses” who author many bills or ”showhorses” who

author few bills, are major influences on structure (Ringe et al., 2017). We focus on these covariates,

plus the additional sex covariate when choosing which SAO models to fit to the data.

3.3.4 Models of Interest

In addition to considering already well-known effects in legislative networks for application of

our significance and goodness-of-fit methods, we first fit many other possible models and selected

a few significant effects. To determine the effects that we would move forward with, we followed

this procedure:

1. Define the simple effects structure of the data: the rate parameters and the outdegree and

reciprocity parameters.

2. Add each additional possible effect, as determined by the effects documentation function, in

RSiena one-at-a-time to the model’s objective function (Ripley et al., 2013).

3. Fit each model to the data and check for convergence.

(a) If the model converged, move to 4.

(b) If the model did not converge, use the previous fitted values as starting values and repeat

5 times or until convergence, whichever comes first.

4. Test the added parameter for significance using a Wald-type test.

5. Report out the estimate of the additional parameter, its standard error, Wald p value, and

convergence criterion.
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After completing the procedure for all model effects, we selected effects whose estimates con-

verged, had a Wald p-value of less than 0.10, and seemed to have a reasonable interpretation for

our data according to well-known properties of legislative networks (Ringe et al., 2017).

The parameters we use for the remainder of the paper are detailed in Table 3.1. The most

significant effect was the jumping transitive triplet (JTT) parameter for the party covariate, which

was estimated to be about -6 with a standard error of 0.11, resulting in a p-value of less than 0.0001.

This estimate of the parameter associated with this statistic considers the number of transitive

closures formed between two senators from different parties. The negative estimate is an indication

that forming transitive ties between two people from different parties is discouraged, which tracks

with the divisive nature of American politics, where party affilitation is the dominant effects.

Another significant effect was the same JTT parameter for the sex covariate, with an estimate of

about 3 with a standard error of 0.89. This parameter also consideres transitive closures, but for

senators of different genders. The positive value indicates that transitive ties between senators of

different genders are more likley to form. The covariate-related similarity score-weighted transitive

triplets parameter estimate for the number of bills authored by a senator was also significant. We

chose to look at similarity because the number of bills authored is more continuous than gender or

party. The similarity measure is computed as:

simb
ij =

maxhk |bh − bk| − |bi − bj |
maxhk |bh − bk|

(3.6)

where maxhk |bh−bk| is the range of number of bills authored by senators, and bi, bj are the number

of bills authored by senators i, j repectively in the senate period. This effect was estimated at

about 10 with standard error of 3.9. The high positive estimate suggests senators are encouraged

to collaborate with other senators who author about the same number of bills they do. This

tendency of senators to cosponsor bills written by senators who are similarly “prolific” corresponds

to another well-known property of the U.S. Senate structure: the tendency of senators to be either

“workhorses” or “showhorses”. Senators known as workhorses author many pieces of legislation in

a session, and largely stay out of the public arena. The showhorse senators, on the other hand,

author relatively few pieces of legislation, and tend to appear on television, radio, and other media
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Table 3.1: The additional effects we used in the SAOMs fit to the senate data. * - simb
ij =

maxhk |bh−bk|−|bi−bj |
maxhk |bh−bk| is the similarity score between two senators based on the number of bills au-

thored, and sim
b

= 1
n(n−1)

∑
i 6=j sim

b
ij is the average bill similarity score between any two senators.

βk Effect

name

Interaction

Variable

Formula Picture Initial

estimate

Wald

p-value

β3 jumping

transitive

triplet

party si3(x,p) =
∑

j 6=h xijxihxhj · I(pi = ph 6= pj) -5.884 < 0.0001

β4 jumping

transitive

triplet

sex si4(x, s) =
∑

j 6=h xijxihxhj · I(si = sh 6= sj) 3.335 0.0002

β5 similarity

transitive

triplet

bills si5(x,b) =
∑

j xijxihxhj · (simb
ij − sim

b
)∗ 9.821 0.0128

β6 same

transtive

triplet

party si6(x,p) =
∑

j xijxihxhj · I(pi = pj) 1.306 0.0642

a great deal. Finally, we found the same party transitive triplet effect was also significant, with a

fitted value of 1.3 and standard error of 0.7, meaning that transitive relationships between senators

tend to form when they are from the same party, exactly as we would expect in a legislative body

in a country with extremely entrenced partisan divides as in the US.

We examine a total of six models, each identified by its objective function:

1. Model M1: fi(x,β) = β1si1(x) + β2si2(x)

2. Model M3: fi(x,β,p) = β1si1(x) + β2si2(x) + β3si3(x,p)

3. Model M4: fi(x,β, s) = β1si1(x) + β2si2(x) + β4si4(x, s)

4. Model M5: fi(x,β,b) = β1si1(x) + β2si2(x) + β5si5(x,b)

5. Model M6: fi(x,β,p) = β1si1(x) + β2si2(x) + β6si6(x,p)

6. Model M7: fi(x,β,p,b, s) = β1si1(x) + β2si2(x) + β4si4(x, s) + β5si5(x,b) + β6si6(x,p)
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Table 3.2: The final estimates from repeated estimation of our models of interest. When simulating

from these models, these are the estimates that we will use unless otherwise stated.

Model α̂1 α̂2 α̂3 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

M1 2.441 2.46 2.204 -4.903 4.893 – – – –

M3 2.44 2.46 2.204 -4.902 4.893 -3.45 – – –

M4 2.438 2.461 2.211 -4.918 4.898 – 3.34 – –

M5 2.442 2.459 2.206 -4.917 4.89 – – 10.091 –

M6 2.443 2.461 2.205 -4.911 4.881 – – – 1.329

M7 2.441 2.459 2.21 -4.923 4.892 – 2.374 6.966 0.205

We fit models M1 through M6 in RSiena using Markov Chain Monte Carlo (MCMC) methods

to approximate the method of moments estimates of the parameters. Because the estimation is

done through MCMC simulation, we fit each model to the data 1,000 times to get a better estimate

of the true value of β. From the simulations that converged, which made up over 90% of the fits for

each model, we computed the mean of the 1,000 estimates of each parameter to get final estimates

of β̂ for each model, which are given in Table 3.2.

We want to explore the role of each of these parameters in the objective functions for each

model. So, we use the estimates given in Table 3.2 to simulate from models M1 through M6. We

discuss the simulation procedure and how we use the simulations in Section 3.4.

3.4 Experiment Set-Up

We want to explore three different aspects of the SAOM models using the lineup protocol: (1)

significance of parameters, (2) goodness-of-fit of a model, and (3) visual power of the effects. Each

one of these situations requires a different setup, which we describe in detail, but we make ue of

the lineup protocol for all of these aspects.

In each lineup, we include plots from two models: the null model and an alternative model. The

definition of the null and alternative model varies with the aspect of the SAOMs we are exploring.

Typically, a lineup shows sets of 20 plots at a time c.f. Loy and Hofmann (2015); Vander Plas

and Hofmann (2015), but we determined that not enough structure could be shown in each plot
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for 20 node-link diagrams. We chose to expose our participants to only six plots at a time in

order to show the node-link diagrams in more detail and to lower cognitive load for participants.

To construct a lineup, we simulate five networks from the null model and one network from the

alternative model. An example of a lineup like those shown to our participants is given on the right

side of the image in Figure 3.3. In this lineup, model M4 is the alternative model, and model M1

is the null model.

To simulate lineups from the models we used the siena07 function in RSiena (Ripley et al.,

2013). Sections 3.4.1 through 3.4.3 describe in detail how we set up the lineups, which parameter

values we simulate from, and why. Sets of the lineups we create are shown to independent ob-

servers recruited through Amazon Mechanical Turk for feedback (more details on the Turk setup

in Section 3.5).

3.4.1 Significance Testing

In the significance testing protocol, a parameter of interest is selected to test, say βk. The

hypotheses we use to generate lineups are:

H0 : βk = 0 versus HA : βk 6= 0 (3.7)

Under the null hypothesis, we assume that the model that generated the network data is M1,

the simplest model presented in Section 3.3.4. Thus, the five null plots in the lineup are simulations

from M1 with β1, β2 set to the estimates given in Table 3.2 for M1. The alternate model is the

model with β1, β2, and βk in the objective function, with the remaining plot simulated from the

appropriate model with values set to the estimates from Table 3.2.

The lineup generated under this scenario is shown to a number of independent viewers. If an

observer picks out the alternative data plot, that is evidence against the null hypothesis, while

picking one of the null plots is evidence in favor of the null hypothesis. The significance tests

that we perform in our experiment are for β3 and β4, making the alternative models M3 and M4,

respectively, for three repitions each.
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3.4.2 Goodness-of-Fit

For the goodness-of-fit tests, we compare one model of interest, say Mi to the data. The

hypothesis we use to generate lineups are

H0: The data come from model Mi

HA: The data come from some other, unknown model

To generate the null plots, we simulate five networks from model Mi using the corresponding

parameters in Table 3.2. We pick a wave to focus on, wave two, which is the first simulated network,

and among these five plots, we place a node-link diagram of the true second wave data. We cannot

show the data more than once to each participant, so we examine several different models with

three repitions each in our Amazon Mechanical Turk experiment, with each participant never seeing

the true data wave twice. The models we chose for goodness-of-fit testing are M3, M4, M5, and

M7.

3.4.3 Visual Power

Through visual inference, we want to determine at which point an effect becomes noticeable in

a SAOM. By noticeable, we mean that the inclusion of the effect alters the appearance of networks

simulated from a model to a degree that viewers are able to reliably pick out a node-link diagram

rendered from data simulated from a model with the effect in a lineup among plots without the

effect. This is a way to determine the power of the visual significance test. We explore all parameters

in the objective function, β1, . . . , β6 in this way.

In model M1, with only two parameters in the objective function, we varied both the density

and reciprocity parameter values one at a time, keeping all other parameters at their fitted values

given in Table 3.2. In models M3 through M6, we vary the additional parameter, β3 through β6,

respectively. Thus, we have six different parameters of interest to us in total: β1, . . . , β6. We want

to determine how the size of these parameters affects the overall structure of the network data
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simulated from the models M1 through M6, so we also vary the value of the parameters in order

to determine at what level the effects become noticeable.

To determine the threshold at which an effect becomes noticeable, we examine six different

levels of the effect, three negative and three positive ones. Figure 3.4 shows a sketch of what the

detection probability by participants’ looks like hypothetically with varying effect size: the higher

in absolute value the parameter is, the more likely participants are to choose the alternative model

out of the lineup. To determine the exact values of the six levels we want to test for each effect, we

started with the estimates of the parameter at hand (see Section 3.3.4), and used small negative and

positive factors to determine at what point we noticed the effect of the parameter in simulations

from the changed models. In Figure 3.4, we demonstrate these values with the vertical lines labeled

“easy,” “medium,” and “hard.” We expected most viewers to see the effects at the “easy” values,

and we expected very few, if any, viewers to see the effects at the “hard” values.

To decide on the values of the parameters to use for each difficulty level, we constructed an online

application that created the lineup protocol for us to be the guinea pigs of our own experiment

(Swan, 2013). A screen shot of the app we created with the shiny package by Chang et al. (2017)

is shown in Figure 3.3. On the left side of the screen, the user2 can input the information necessary

for creating a lineup of the models M1 through M7 for the data in Section 3.3.3: first, choose to

simulate only one plot from the specified model (analogous to changing the alternative model in

the lineup protocol) or to simulate M − 1 plots from the specified model (analogous to changing

the null model in the lineup protocol); the model of interest; the wave of the data to examine; if

model M1 is selected, whether to alter the density or the reciprocity parameter; the size of the

lineup; the amount by which to multiply the effect selected; a random seed for replicability; and a

layout algorithm to use for the node-link diagrams. There is also a checkbox if the user wishes the

nodes to be colored by the size of the connected component to which they belong. The plot(s) that

appear(s) that are not from the model specified using the other options are simulated from model

M1 with the estimates of the rate parameters, and β1 and β2 as given in Table 3.2.

2Please visit https://sctyner.shinyapps.io/saom_lineup_creation/ to create lineups constructed from the
models we present for this data for yourself.

https://sctyner.shinyapps.io/saom_lineup_creation/
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Using the “Picking Lineups” web application, we settled on six parameter values to test for each

of our six effects, β1, . . . β6. The complete details of the parameters tested using the lineup protocol

is given in Table 3.3. In the case of both β4 and β6, we could not determine any values for negative

effects that made the data simulated from M4 and M6 look different than null model simulations

from model M1. We hypothesized that this was due to the negative effects removing visually

interesting structural elements as opposed to adding noticeable structural elements. Therefore we

decided that the lesser experienced participants in our experiment would also not be able to. Instead

of testing the negative values of these effects, we are examining a different scenario: we placed 5

simulations from model M4 or M6 with positive values of the parameter with one simulation from

model M1 in a lineup. We will refer to this as the “reverse” lineup scenario. We used the reverse

scenario to determine if the perception of the effect size is symmetric: if an effect is noticed x% of

the time at value βk = βk0 when one simulation from the corresponding model is placed among

five null plots from model M1, then when five simulations from the model with βk = βk0 are put in

a lineup with one simulation from model M1, the plot from the simpler model should be noticed

about x% of the time as well.

Table 3.3: All conditions used for the MTurk experiment. For parameters β1, β2, β3, and β5 M1

served as null model. For β4 and β6, null model M1 and the alternative model switch roles in the

reversed lineups, i.e. five plots show data simluated from the laternative model and only one plot

shows data from M1.

Parameter Condition Easy Value Medium Value Hard Value

beta1 neg -7.354 -6.6187 -5.883

pos -3.922 -4.1674 -4.412

beta2 neg 0.000 0.0005 0.049

pos 7.340 6.8504 6.361

beta3 neg -17.249 -10.3497 -3.450

pos 10.350 6.8998 5.175

beta5 neg -30.272 -20.1817 -10.091

pos 20.182 17.6590 16.145

beta4 regular 8.351 6.6806 5.010

reverse 6.681 5.0105 3.340

beta6 regular 5.316 3.9872 3.323

reverse 5.316 3.9872 3.323
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3.5 Experiment Results

We recruited 250 participants for our experiment through Amazon Mechanical Turk. Each

participant was presented with some brief training material before beginning the experiment. After

agreeing to participate, the participants were shown two trial plots, one where the data plot was the

most different from the others due to its relatively complex structure, while the other trial included

a data plot that was most different from the others due to its comparatively simple structure. Only

when participants were able to correctly identify the data plot from the trial lineups were they

allowed to begin the experiment. Each participant was randomly assigned 13 lineups to look at.

The were asked to select one or more plots that they perceived as “most different” from the others,

and provide a reasoning for their choice. They could select from “Most simple overall structure”

or “Most complex overall structure”, corresponding to what they saw in the examples and trials,

or they could choose “Other” and provide their own text description of their reasoning. These

language in these reasons is purposefully vague: we want participants to tell us what they see. We

do not want to tell them what they “should” be seeing. In this way, we can truly determine what

effects are noticeable.

Twelve of the 13 lineups that the participants saw were used for the significance testing and the

visual power methods discussed in Sections 3.4.1 and 3.4.3. The final of the 13 lineups shown to

participants contained the true data from the 112th senate shown in Section 3.3.3 placed among five

other plots from models M3, M4, M5, and M7 as discussed in Section 3.4.2. Each participant only

saw the data one time in order to avoid bias. Upon completion of the 13 lineups, each participant

was paid $1.75.

3.5.1 Significance Testing

For a SAOM, there are two ways a conventional significance test of the parameters can be

performed. In RSiena, there are t-type and Wald-type tests for a single parameter and for multiple

parameters. The t-type test statistic is simply the parameter estimate divided by its standard error,

and compared to a standard normal distribution (Ripley et al., 2017). The Wald-type test statistic
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for a single parameter, βk is

(β̂k)
2

var(β̂k)
∼ χ2

1, (3.8)

which is compared to a Chi-square distribution with one degree of freedom(Ripley et al., 2017).

Testing the significance of multiple parameters depends on the hypothesis we wish to test, and a

P ×K matrix, A, must be appropriately designed to test the P hypotheses of interest. The null

hypothesis is that Aβ = 0, and the test statistic is

(Aβ̂)′Σ̂−1Aβ̂ ∼ χ2
P , (3.9)

where Σ̂ is the estimated covariance matrix of β. This statistic is then compared to a Chi-square

distribution with P degrees of freedom.

Both the parameters we test for significance using the lineup protocol, β3 and β4, were de-

termined to be statistically significant using Equation 3.8. The correspoding results from the

significance tests we performed using the lineup protocol are given in Table 3.4. Corresponding to

traditional methods, if enough participants pick out the alternative plot to result in a p-value less

than 0.05, we reject the null hypothesis that the true value of the additional parameter, either β3

or β4, is equal to zero.

Table 3.4: Experiment results for the two parameters for which we performed significance tests.

There were three lineups for each parameter, so there are three results for each plot.

Lineup ID parameter # Alt. Model Picks Total Views p-value

3131 beta3 4 29 0.60654

3132 beta3 26 31 0.00001

3133 beta3 2 27 0.80053

3141 beta4 10 23 0.03420

3142 beta4 3 37 0.77965

3143 beta4 10 29 0.09619

The p-values were calculated using the vinference package by Hofmann and Röttger (2016).

This package contains methods to calculate Visual distributions for lineup experiment data. The

distribution depends on the number of evaluations of a plot, K, the size of the lineup, m, and the

lineup scenario, which here is that each lineup containing the same data and the same set of null
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plots is shown to K independent observers. The visual inference family of distributions is similar

to the binomial distribution, but takes the dependency among the m plots in a single lineup shown

to multiple viewers into account. Using these p-values, all but one lineup results in a rejection of

the null hypothesis at Type-I error rate of α = 0.05. We see that the p-values for visual inference

here are highly variable.

The lineup for significance testing of β3 which resulted in a very small p-value and rejection

of the null hypothesis is shown in Figure 3.5. Another significance lineup for model M3, which

resulted in failure to reject the null hypothesis, is shown in Figure 3.6. When viewing Figure 3.5,

26 of 31 viewers chose the plot from M3, while only 2 of 27 chose the plot from M3 when viewing

Figure 3.6. The most common choice in the latter was panel two, which 16 of 27 viewers chose as

the most different due to its large connected component, making it seem more complex than the

others. In viewing these two lineups, it is evident that there is a large amount of variability. It is

difficult to see that five of the six come from the same model when they can all look different in

their own way. Thus, the variability in results is introduced through the null plots generated from

M1, as not all simulations look alike. In addition, the necessarily small number of null plots do

not give the viewer as complete of a view of the null model as the usual 19 null plots would. The

results of the significance tests given in Table 3.4 for β3 and β4 are not definitive. For the test of

β3, two of the three tests are not significant, while the third is highly significant. For the test of

β4, one test is significant, one is decidedly not significant, and the third is significant at the level of

0.10. Thus, unlike the Wald-type tests described at the beginning of this section, there is no way

to decisively reject or to fail to reject the null hypothesis that the parameter value is 0. We include

all of the lineups shown to our participants in the appendix.

3.5.2 Goodness-of-Fit Testing

Goodness-of-fit testing for network models is notoriously difficult. Most network models, other

than the most simple, lack the necessary asymptotics for developing goodness-of-fit methods (Gold-

enberg et al., 2010). Some methods have been developed based on what Ripley et al. call “auxiliary
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statistics” such as the indegree or outdegree distribution on the nodes. In RSiena, the sienaGOF

function performs goodness-of-fit testing as follows:

1. Auxiliary statistics, such as the cumulative outdegree counts on the nodes, are computed on

the observed data (ud) and on N simulated observations from the model (u1 . . .uN ). (Usually,

N = 1000)

2. The mean vector, u and covariance matrix, S of the statistics on the simulations from the

model are computed, and the Mahalanobis distance, dM (u) from the observed statistics to

the distribution of the simulated statistics is computed:

dM (u) =
√

(u− u)′S−1(u− u) (3.10)

3. The Mahalanobis distance for each of the N simulations is calculated and dM (ud) is compared

to this distribution of distances.

4. An empirical p-value is found by computing the proportion of simulated distances found in

step 4 that are as large or larger than dM (ud). A SAOM is thus considered a good fit to

the data if p is large. A plot comparing the data to the simulations is also considered, and

a similar plot is shown in Figure 3.7 for the outdegree distribution of small data set, shown

in the points and connected lines, with the simulated values of ud shown in boxplots and

overlaid violin plots.

The RSiena software also provides a Rao score-type test for goodness-of-fit for assessing one

or more parameters, the test statistic of which is compared to a Chi-square distribution with P

degrees of freedom, where P has the same definition as in Section 3.5.1. For full detail on the

score-type test, see Schweinberger (2012).

These methods are both restriced: the sienaGOF method only considers one measure on the

data and simulations from the model, while the score-type tests only consider subsets of parame-

ters, “nuisance parameters” in Schweinberger (2012), not the entire set of parameters. By using

visual inference instead of more traditional statistical methods, we hope to perform a more holistic

goodness-of-fit test.
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Using the lineup protocol, we show each Amazon Mechanical Turk worker the data once, in

a lineup with five other plots of simulated data from one of the models we chose. We examined

four different models, M3, M4, M5, and M7, and examined three repetitions of each, for a total

of 12 goodness-of-fit lineups. In each lineup, the “null model” is one of the four models and the

“alternative” model is the true, unknown model that generated the senate network data. The

hypotheses for our goodness-of-fit tests are:

H0: The senate network data come from (or could have come from) the null model, Mi.

HA: The senate network data do not come from the null model.

If a lineup viewer picks out the data among the five simulations from the null model, it is evidence

against the null hypothesis. On the contrary, if the lineup viewer picks one of the null plots, that

is evidence in favor of the null hypothesis. Because the size of the lineups is small, the probability

of picking the data by chance is high, 1
6 , but if many independent viewers pick out the data from

the nulls, the evidence in favor of the alternative hypothesis becomes stronger. Results from our

MTurk goodness-of-fit plots are provided in Table 3.5.

Table 3.5: An overview of the results from the 12 goodness-of-fit lineup tests.

Model Replicate Data Picks Total Viewers p-value

M3 1 29 36 < 0.0001

jtt party 2 13 18 0.0004

3 16 20 < 0.0001

M4 1 13 16 < 0.0001

jtt sex 2 7 20 0.1150

3 29 34 < 0.0001

M5 1 9 21 0.0414

stt party 2 21 24 < 0.0001

3 14 16 < 0.0001

M7 1 17 20 < 0.0001

2 14 28 0.0093

3 28 37 < 0.0001

The p-values were again computed using the vinference package by Hofmann and Röttger

(2016). The lineup that resulted in a failure to reject the null hypothesis is shown in Figure 3.8.
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The null model in this lineup is M5, and the senate data is shown in panel number 32−7. However,

the panel most participants chose was number four, and the most common reasoning for that

choice was that it had the most simple structure. Some of the other panels, such as three and six,

in Figure 3.8 have large connected components that are similar in size to the connected component

of the data plot shown in panel two. Thus, model M5 is sometimes capable of capturing the network

structure of the senate collaboration data.

The smallest p-value for one of the goodness-of-fit lineups was for the third replicate of the

null model M5. This result contrasts with our previous finding that the only lineup to fail to

reject the null was also when the null model was M5. This lineup is shown in Figure 3.10. In the

remaining replicate of M5 as the null model, 13 of 16 viewers identified the data plot, corresponding

to a p-values of less than 0.0001, just like the third replicate. This variability in results is similar

to the variability we found in Section 3.5.1. This variability is again introduced through the plots

simulated from null model, and does not provide us with a clear cut decision resulting the hypothesis

test. For model M5, we can neither reject nor fail to reject the null hypothesis that the data come

from model M5. This is evidence that the goodness-of-fit of network models cannot always be

determined by one dimensional derived features, such as p-value shown on the x-axis in Figure 3.7.

For the other models for which we tested goodness-of-fit, however, we do have significant evi-

dence from all three replicates to reject the null hypothesis that the null model generated the data.

For models M3, M5, and M7, these goodness-of-fit tests have rejected the null hypotheses that the

senate data come from these models. We hypothesized that the model with the most effects, M7,

would be the best fit. However, as shown in Figure 3.9, the model does not capture the overall

structure very well at all. The rest of the goodness-of-fit lineups as shown to participants are

provided in the appendix.

We believe this goodness-of-fit testing method holds promise for the future of social network

analysis. The participants in our experiments are very good overall at picking out the data when it

is noticeably different from the null plots in the lineups. In addition, as in replicate three for null

model M4, when the null plots contain similarly sized structures as the data plot, our participants
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have a hard time distinguishing the data. We believe that running these tests multiple times using

several different sets of null models to adequately explore the possible structures generated by the

models is a step in the right direction for a more comprehensive goodness-of-fit test for network

models.

3.5.3 Visual Power

A summary of the results from our experiment is shown as points in Figure 3.11. On the x

axis, we plot the value of the parameter of interest, and on the y axis, the proportion of times the

alternative data plot was picked out for each lineup. The results are split into groups based on the

value of the parameter and the lineup type. We can see clear patterns in the added parameters

β3, . . . , β6 : as the parameter value approaches 0, fewer participants identified the alternative plot.

Similarly, as β1, β2 approach their estimated values β̂1, β̂2, fewer people are able to identify the

alternative plot.

We further explore this relationship between identification of the alternative data in the lineup

and the parameter of interest, effect size, and lineup type with a generalized linear mixed model

that provides us with an estimate of the power of the visual significance test. The response variable,

Yijkm, is binary, indicating whether participant m picked the alternative data plot in lineup type

j, rep k, for effect i. There is one continuous covariate x, which is the centered and scaled size

of the effect of interest from which the alternative data were simulated, the values of which are

labeled “easy”, “medium”, and “hard” in Table 3.3 according to how difficult we thought the Turk

participants would find each lineup. In Equation 3.11, i ∈ {1, 2, 3, 4, 6} corresponds to the effects

β1, . . . , β6, respectively, j ∈ {−1, 1}, and k ∈ {1, 2, 3}. We also include random effects in the model:

one for each lineup, δijk, and one for each participant, εm, and fit a hierarchical model given in

Equation 3.11.
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Yijkm ∼ Bernoulli(πijkm)

logit(πijkm) = αij + γijx+ δijk + εm

δijk
iid∼ N(0, σ2δ )

εm
iid∼ N(0, σ2ε )

(3.11)

The results of fitting this model, including estimates of parameters, standard errors, p-values,

and the odds ratio multipliers, using glmer from the lme4 package are summarized in Table 3.6

(Bates et al., 2015). For each combination of parameter and lineup type, the expected value of the

link function for a new lineup and a new observer with parameter value x is

E[logit(πij)] = αij + γijx (3.12)

and the corresponding probability of picking out the alternative data plot is

πij =
exp{αij + γijx}

1 + exp{αij + γijx}
(3.13)

In Figure 3.11, we see a clear trend in all parameters except β1 and β2 that as the parameter

value approaches zero from either side, the probability of picking the data plot in a lineup of size

six descreases. For β3 and β5, the slope of the fitted line is much steeper for positive values of the

parameter than for negative values, meaning that our participants perceived differences more often

for postitive parameter values than for negative parameter values. This finding is similar to that of

Harrison et al. (2014), who found that people detect positive correlations sooner and better than

negative correlations.

We expand portions of Figure 3.11 in Figures 3.12-3.14. These figures show the same prediction

regions as in Figure 3.11, plus some additional predictions outside of the data range shown in gray.

Again, the points represent the results from the experiment. In all three of these figures, the lack

of symmetry is apparent. In the reverse lineup scenario shown in Figure 3.14, the probability of

prediction is consistently far less than the probability of prediction in the regular lineup scenario.

This demonstrates that the visual signal of one plot from M4 among five plots from M1 is much
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Table 3.6: Summary of the results from fitting the model given in Equation 3.11. Significance

levels: * - < 0.10; ** - < 0.05; † - < 0.01; ‡ - < 0.001

Parameter Estimate Std Error p-value Odds Multiplier

α1+ 37.297 6.573 <0.0001‡ >1e+06

α1− −9.933 3.473 0.0042† <0.0001

γ1+ 75.356 13.532 <0.0001‡ >1e+06

γ1− −14.504 4.804 0.0025† <0.0001

α2+ −6.833 4.466 0.1260 0.0011

α2− −17.001 2.236 <0.0001‡ <0.0001

γ2+ 13.771 7.446 0.0644∗ 956752.4844

γ2− −229.16 31.306 <0.0001‡ <0.0001

α3+ −2.801 0.949 0.0032† 0.0608

α3− −2.644 0.811 0.0011† 0.0711

γ3+ 4.474 1.389 0.0013† 87.7507

γ3− −1.108 0.609 0.0690∗ 0.3304

α4+ −2.078 0.954 0.0293∗∗ 0.1252

α4− −2.692 1.322 0.0417∗∗ 0.0678

γ4+ 4.247 2.147 0.0479∗∗ 69.8675

γ4− 2.403 2.187 0.2719 11.0585

α5+ −5.84 2.989 0.0507∗ 0.0029

α5− −4.686 0.86 <0.0001‡ 0.0092

γ5+ 3.264 1.756 0.0630∗ 26.1487

γ5− −2.176 0.387 <0.0001‡ 0.1136

α6+ −1.164 1.226 0.3425 0.3123

α6− −5.929 1.28 <0.0001‡ 0.0027

γ6+ 5.76 3.524 0.1021 317.4753

γ6− 15.092 3.605 <0.0001‡ >1e+06

σ2δ 0.564 – – –

σ2ε 0.342 – – –
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stronger than that of one plot from M1 among five plots from M4. We posit that the latter is a

more difficult task because it involves noticing a lack of structure as opposed to the presence of

more structure. We can see a similar effect in Figure 3.13. At a value of β5 = 20, the model predicts

a probability of about 0.60 that a new viewer of a new lineup will identify the alternative data plot.

At a value of β5 = −20, however, the model predicts this same probability to be about 0.40. This

again demonstrates that the presence of structure is detected sooner and more frequently than the

absence of structure.

For β4 and β6, where one plot simulated from M1 was placed among five plots from the cor-

responding model, we see that the predictions for the reverse lineup type (-1), are less than the

standard lineup type (1) for all values of the parameter that we have. This contradicts our hy-

pothesis for this scenario, which was that these two scenarios would perform similarly. One of the

lineups for the β4 = 6.681, lineup type 1 scenario is given in Figure 3.15, and a corresponding

lineup for the lineup type -1 scenario is given in Figure 3.16. For identical values of the parameter,

viewers had a harder time identifying the different plot when they were selected the most “simple”

structure, detecting M1 in five plots from the more complicated model, than they did identifying

the most “complex” structure, the plot from the more complicated model, from the five plots from

M1. This result is also similar to that of Harrison et al. (2014) because it emphasizes the difficulty

of picking out the absence of an effect relative to picking out the presence of an effect.

3.6 Discussion

By using visual inference methods, we have developed new ways to perform significance and

goodness-of-fit testing for a complicated and intractable set of statistical models for social network

data. We have also developed a way to determine the power of these new visual tests. Our methods

can be used to supplement traditional methods and check our assumptions about network models.

The traditional methods only look at one piece or derived measure of a network model, whereas

our methods look at the models holistically for a broader sense of what it means for a parameter

to be significant or a model to be a good fit. By looking at an entire network simulated from
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a SAOM side-by-side with other instances of networks simulated from another model, instead of

singular features, we develop an idea of the model in terms of the data itself, instead of in terms

of statistical summaries of the data. These methods place the model in the data space, instead of

summarizing or compressing the data to place it in the model space.

Furthermore, we have found the visual power of some effects in the object function of a SAOM

for this particular senate data example, and we have shown that, for the same effects, there is a

lot of variability in results from significance and goodness of fit tests. Because the visual tests

we performed show a great deal of variability, we can see that the decisions with respect to the

significance of a parameter or the goodness of fit of a model to data are not as cut-and-dried as the

more traditional methods would have us believe.

These results do not come without limitations. In visual inference, the null plots are supposed

to play the role of good representatives of the null model. Here, the number of null plots is reduced

to five, which increases the variability seen in a single lineup dramatically, and can unfortunately

lead to very different conclusions for the same lineup scenario. Furthermore, these results do not

generalize to all SAOMs or to some subset of SAOMs. The lineups shown are made for only one

set of data, and it is not clear whether the power results transfer, nor is it clear to what degree

if they do transfer, to other situations with different number of actors, different edge densities, or

different layout algorithm of the node-link diagram. We can make some generalizations about what

participants are picking up on in the lineups based on their feedback and previous research, but we

cannot apply our hierarchical model directly to lineups constructed for new data or new models or

parameters.

We hope to apply these methods further for different types of network data and different types

of network models. We accept the limitations of this type of network data visualization, in that even

in small instances, the cognitive load of looking at a lineup is very high for the average observer.

We would therefore like to explore larger datasets, different layout algorithms, and different ways

of visualizing network data, such adjacency matrix visualizations, using visual inference to see if

similar patterns emerge.
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Figure 3.1: The four senate collaboration networks that we use as our example data to visually

assess the SAOM effects. Color represents party, shape represents gender, and size represents

number of bills authored in a session. The Frucherman-Reingold layout is shown.
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Figure 3.2: We removed Hillary Clinton’s ties from the network because she had abnormally high

collaboration with senators during the time she was in the 111th senate and before she left office

to become Secretary of State.
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Figure 3.3: A screen shot of the web application we created to design our lineup experiment. More

details about this application are given in Section 3.4.3. In the lineup, M5 is the alternative model

with β5 set to twice its estimated value given in Table 3.2. One plot simulated from this model is

placed at random among five observations simulated from the null model, M1. Participants of the

study are asked to identify the most different plot.
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Figure 3.4: We hypothesize that as the parameter value of interest increases in absolute value, more

viewers of the lineup will pick the alternative data out of a lineup. Note that the significance test

we construct in Section 3.4.1 is just one point on the line below, represented by the vertical dotted

line labeled β̂. The easy, medium, and hard lines represent how we determined which values of the

parameters to show to our participants, and the horizontal dotted line shows the type-I error for

one viewer of a lineup of size 6.
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Figure 3.5: The lineup which caused a rejection of the null hypothesis that β3 = 0. The network

simulated from model M3 is found in panel
√

16 − 1, and the remaining panels show networks

simulated from model M1.
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Figure 3.6: One of the lineups which failed to reject the null hypothesis that β3 = 0. The network

simulated from model M3 is found in panel
√

25 − 4, and the remaining panels show networks

simulated from model M1.
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Figure 3.7: An example of what a goodness-of-fit plot from RSiena looks like. The overlaid boxplots

and violin plots show the distribution of each of the outdegree count values on the simulated

networks, and the red points and lines are the observed data values.
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Figure 3.8: The goodness-of-fit lineup that failed to reject the null hypothesis. The null model for

this lineup is M5. Only 7 of 20 viewers of this lineup selected the data plot as the most different

from the others. The most commonly chosen panel was number four, which has a relatively simple

structure compared to panels 2, 3, and 6 especially.
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Figure 3.9: One repitition of a goodness-of-fit lineup testing modle M7. The senate data are shown

in panel two, and it is evident that none of the other five panels, which show data simulated from

model M7, come close to creating the large connected component that is central to the structure

of the senate data.
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Figure 3.10: The lineup resulting in the smallest p-value rejecting the null hypothesis. Surprisingly,

this another repetition for M5 as the null model.
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Figure 3.11: Predictions from our generalized linear mixed effects model given in Equa-

tion efeq:glmm. The lines show the expected probability of detecting the alternative data in

a lineup of size 6 for new observers of new lineups is plotted on the y-axis, and the size of the

parameter of interest is on the x-axis. The proportions detected by our Turk participants for each

lineup group are shown by the points, with the probability of picking out the data plot at random

shown by a horizontal line at 1/6. The lineup marked as “outlier” was removed from modeling.

The panel for the reciprocity parameter, β2 is also presented in Figure 3.12 in more detail.
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Figure 3.12: The top middle panel of Figure 3.11 expanded to show greater detail. The square root

of the parameter value is shown on the x-axis. For this parameter, as its value approaches zero, the

probability of identifying the alternate data model decreases, then increases, which is noticeably

different from the pattern exhibited by the others. Again, a horizontal line is drawn at 1/6, the

chance of selecting the data plot at random.
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Figure 3.13: The bottom middle panel of Figure 3.11 expanded to show greater detail. The pa-

rameter value is shown on the x-axis. This parameter most closely follows our hypothesis shown in

Figure 3.4. However, the result is not symmetric. According to the model, people will detect the

effect at lower values and with greater frequency as the value increases when it is positive instead

of negative.
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Figure 3.14: The bottom left panel of Figure 3.11 expanded to show greater detail. The parameter

value is shown on the x-axis. The “reverse” lineup has a much flatter slope than the “regular”

lineup, which means the participants had a harder time detecting a more simple M1 structure

among many more complex M4 structures. Reversing the lineup scenario was not symmetric as we

hypothesized.
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Figure 3.15: In our experiment, 52.8% of viewers of this plot selected the plot from the alternative

model, M4. The “reverse” of this lineup is given in Figure 3.16, where 41.4% of viewers selected

the plot from the alternative model, M1. Here, the alternative plot is
√

25− 3.
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Figure 3.16: In our experiment, 41.4% of viewers of this plot selected the plot from the alternative

model, M1. The “reverse” of this lineup is given in Figure 3.15, where 52.8% of viewers selected

the plot from the alternative model, M1. Here, the alternative plot is
√

25− 1.
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CHAPTER 4. DRAWING NETWORK DATA WITH THE R PACKAGE

ggplot2

Author’s Note: This Chapter is a version of paper I authored with Heike Hofmann (Iowa

State University) and François Briatte (European School of Political and Social Sciences) that

has been published in The R Journal. I developed the package ‘geomnet‘ (“our package”) with

Dr. Hofmann in 2015, and I have maintained it since. Separately from the implementation of

the geom net() function in our package, Briatte implemented graph visualization in two different

approaches: the ggnet2() function in the GGally package and the ggnetwork package. This paper

gives an overview of the three different approaches, highlights why the package ggplot2 is generally

well suited for graph/network visualization, and discusses the pros and cons of the three methods,

with several reproducible examples for each implementation.

There are many kinds of networks, and networks are extensively studied across many disciplines

(Watts, 2004). For instance, social network analysis is a longstanding and prominent sub-field of

sociology, and the study of biological networks, such as protein-protein interaction networks or

metabolic networks, is a notable sub-field of biology (Prell, 2011; Junker and Schreiber, 2008). In

addition, the ubiquity of social media platforms, like Facebook, Twitter, and LinkedIn, has brought

the concepts of networks out of academia and into the mainstream. Though these disciplines and

the many others that study networks are themselves very different and specialized, they can all

benefit from good network visualization tools.

Many R packages already exist to manipulate network objects, such as igraph by Csardi and

Nepusz (2006), sna by Butts (2014), and network by Butts et al. (2014); Butts (2008). Each

one of these packages were developed with a focus of analyzing network data and not necessarily

for rendering visualizations of networks. Though these packages do have network visualization

capabilities, visualization was not intended as their primary purpose. This is by no means a critique
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or an inherently negative aspect of these packages: they are all hugely important tools for network

analysis that we have relied on heavily in our own work. We have found, however, that visualizing

network data in these packages requires a lot of extra work if one is accustomed to working with

more common data structures such as vectors, data frames, or arrays. The visualization tools

in these packages require detailed knowledge of each one of them and their syntax in order to

build meaningful network visualizations with them. This is obviously not a problem if the user is

very familiar with network structures and has already spent time working with network data. If,

however, the user is new to network data or is more comfortable working with the aforementioned

common data structures, they could find the learning curve for these packages burdensome.

The packages described in this paper have, by contrast, have one primary purpose: to create

beautiful network visualizations by providing a wrapper of existing network layout capabilities (see

for example the statnet suite of packages by Handcock et al. (2008)) to the popular ggplot2

package (Wickham, 2009). And so, our focus here is not on adding to the analysis of network

data or to the field of graph drawing (Tamassia, 2013) but rather it is on implementing existing

graph drawing capabilities in the ggplot2 framework, using the common data frame structure. The

ggplot2 package is hugely popular, and many other packages and tools interface with it in order

to better visualize a wide variety of data types. By creating a ggplot2 implementation, we hope

to place network visualization within a large, active community of data visualization enthusiasts,

bringing new eyes and potentially new innovations to the field of network visualization. With our

approaches, we have two primary audiences in mind. The first audience is made up of frequent

users of network structures and those who are fluent in the language of packages such as network

or igraph. This audience will find that two of our three approaches (ggnet2 and ggnetwork)

directly incorporate the network structures and functions with which they are familiar with into

the less familiar visualization paradigm of ggplot2 (Briatte, 2016). The second audience, targeted

by geomnet, consists of those users who are not familiar with network structures, but are familiar

with data manipulation and tidying, and who happen to find themselves examining some data that
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can be expressed as a network (Tyner and Hofmann, 2016a). For this audience, we do the heavy

network lifting internally, while also relying on their familiarity with ggplot2 externally.

The ggplot2 package was designed as an implementation of the ‘grammar of graphics’ proposed

by Wilkinson (1999), and it has become extremely popular among R users.1

Because the syntax implemented in the ggplot2 package is extendable to different kinds of

visualizations, many packages have built additional functionality on top of the ggplot2 framework.

Examples include the ggmap package by Kahle and Wickham (2013) for spatial visualization, the

ggfortify package for visualizing statistical models (see Horikoshi and Tang (2015), Tang et al.

(2016)), the package ggally by Schloerke et al. (2016), which encompasses various complementary

visualization techniques to ggplot2, and the ggbio and ggtree Bioconductor packages by Yin

et al. (2012) and Yu et al. (tted), which both provide visualizations for biological data. These

packages have expanded the utility of ggplot2, likely resulting in an increase of its user base. We

hope to appeal to this user base and potentially add to it by applying the benefits of the grammar

of graphics implemented in ggplot2 to network visualization.

Our efforts rely upon recent changes to ggplot2, which allow users to more easily extend the

package through additional geometries or geoms.2

In the remainder of this paper, we present three different approaches to network visualization

through ggplot2 wrappers. The first is a function, ggnet2 from the ggally package, that acts as

a wrapper around a network object to create a ggplot2 graph. The second is a package, geomnet,

that combines all network pieces (nodes, edges, and labels) into a single geom and is intended to look

the most like other ggplot2 geoms in use. The final is another package, ggnetwork, that performs

some data manipulation and aliases other geoms in order to layer the different network aspects one

on top of the other. Section 4.1 introduces the basic terminology of networks and illustrates their

1In order to give an indication of how large the user base of ggplot2 is, we looked at its usage statistics from
January 1, 2016 to December 31, 2016 (see http://cran-logs.rstudio.com/). Over this period, the ggplot2 package
was downloaded over 3.2 million times from CRAN, which amounts to almost 9,000 downloads per day. Almost 800
R packages import or depend on ggplot2.

2Version 2.1.0, released 1 March 2016. See https://cran.r-project.org/web/packages/ggplot2/news.html for
the full list of changes in ggplot2 2.1.0, as well as the new package vignette, “Extending ggplot2”, which explains
how the internal ggproto system of object-oriented programming can be used to create new geoms.

http://cran-logs.rstudio.com/
https://cran.r-project.org/web/packages/ggplot2/news.html
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ubiquity in natural and social life. Section 4.2 then discusses the structure and capabilities of each

of the three approaches that we offer. Section 4.3 extends that discussion through several examples

ranging from simple to complex networks, for which we provide the code corresponding to each

approach alongside its graphical result. We follow with some considerations of runtime behavior in

plotting networks in Section 4.4 before closing with a discussion.

4.1 Brief introduction to networks

In its essence, a network is simply a set of vertices connected in pairs by a set of edges (Newman,

2010). Throughout this paper, we also use the term node to refer to vertices, as well as the terms

ties or relationships to refer to edges, depending on context. The two sets of graphical objects that

make up a network visualization, points and segments between them, have been used to examine

a huge variety and quantity of information across many different fields of study. For instance,

networks of scientific collaboration, a food web of marine animals, and American college football

games are all covered in a paper on community detection in networks by Girvan and Newman (2002).

Additionally, Buldyrev et al. (2010) study node failure in interdependent networks like power grids.

Social networks such as links between television and film actors found on http://www.imdb.com/

and neural networks, like the completely mapped neural network of the C. elegans worm are also

extensively studied (Watts and Strogatz, 1998a).

These examples show that networks can vary widely in scope and complexity: the smallest

connected network is simply one edge between two vertices, while one of the most commonly used

and most complex networks, the world wide web, has billions of vertices (Web pages) and billions

of edges (hyperlinks) connecting them. Additionally, the edges in a network can be directed or

undirected: directed edges represent an ordering of vertices, like a relationship extending from one

vertex to another, where switching the direction would change the structure of the network. The

World Wide Web is an example of a directed network because hyperlinks connect one Web page

to another, but not necessarily the other way around. Undirected edges are simply connections

between vertices where order does not matter. Co-authorship networks are examples of undirected

http://www.imdb.com/
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networks, where nodes are authors and they are connected by an edge if they have written an

academic publication together.

As a reference example, we turn to a specific instance of a social network. A social network is a

network that everyone is a part of in one way or another, whether through friends, family, or other

human interactions. We do not necessarily refer here to social media like Facebook or LinkedIn,

but rather to the connections we form with other people. To demonstrate the functionality of

our tools for plotting networks, we have chosen an example of a social network from the popular

television show Mad Men. This network, which was compiled by Chang (2013) and made available

in gcookbook (Chang, 2012), consists of 52 vertices and 87 edges. Each vertex represents a char-

acter on the show, and there is an edge between every two characters who have had a romantic

relationship.

Abe Drexler

Allison Bellhop in Baltimore

Bethany Van Nuys

Betty Draper

Bobbie Barrett

Brooklyn College Student

Candace

Don Draper

Doris

Duck Phillips

Faye Miller
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Roger Sterling

Sal Romano

Shelly

Suzanne Farrell

Toni

Trudy Campbell
Vicky

Woman at the Clios party

Gender female male

Figure 4.1: Graph of the characters in the show Mad Men who are linked by a romantic relationship.
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Figure 4.1 is a visualization of this network. In the plot, we can see one central character who

has many more relationships than any other character. This vertex represents the main character of

the show, Don Draper, who is quite the “ladies’ man.” Networks like this one, no matter how simple

or complex, are everywhere, and we hope to provide the curious reader with a straightforward way

to visualize any network they choose.

Coloring the vertices or edges in a graph is a quick way to visualize grouping and helps with

pattern or cluster detection. The vertices in a network and the edges between them compose the

structure of a network, and being able to visually discover patterns among them is a key part of

network analysis. Viewing multiple layouts of the same network can also help reveal patterns or

clusters that would not be discovered when only viewing one layout or analyzing only its underlying

adjacency matrix.

4.2 Three implementations of network visualizations

We present two basic approaches to using the ggplot2 framework for network visualization.

First, we implement network visualizations by providing a wrapper function, ggnet2 for the user to

visualize a network using ggplot2 elements (Schloerke et al., 2016). Second, we implement network

visualizations using layering in ggplot2. For the second approach, we have two ways of creating a

network visualization. The first, geomnet, wraps all network structures, including vertices, edges,

and vertex labels into a single geom. The second, ggnetwork, implements each of these structural

components in an independent geom and layers them to create the visualization (Briatte, 2016).

In each package, our goal is to provide users with a way to map network properties to aesthetic

properties of graphs that is familiar to them and straightforward to implement. Each package has

a slightly different approach to accomplish this goal, and we will discuss all of these approaches

in this section. For each implementation, we also provide the code necessary to create Figure 4.1,

and describe the arguments used. We conclude the section with a side-by-side comparison of the

features available in all three implementations in Table 4.1.
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4.2.1 ggnet2

The ggnet2 function is a part of the ggally package, a suite of functions developed to extend

the plotting capabilities of ggplot2 (Schloerke et al., 2016). A detailed description of the ggnet2

function is available from within the package as a vignette. Some example code to recreate Figure 4.1

using ggnet2 is presented in Figure 4.2.

library(GGally)

library(network)

# make the data available

data(madmen, package = ’geomnet’)

# data step for both ggnet2 and ggnetwork

# create undirected network

mm.net <- network(madmen$edges[, 1:2], directed = FALSE)

mm.net # glance at network object

# create node attribute (gender)

rownames(madmen$vertices) <- madmen$vertices$label

mm.net %v% "gender" <- as.character(

madmen$vertices[ network.vertex.names(mm.net), "Gender"]

)

# gender color palette

mm.col <- c("female" = "#ff69b4", "male" = "#0099ff")

# create plot for ggnet2

set.seed(10052016)

ggnet2(mm.net, color = mm.col[ mm.net %v% "gender" ],

labelon = TRUE, label.color = mm.col[ mm.net %v% "gender" ],

size = 2, vjust = -0.6, mode = "kamadakawai", label.size = 3)

Figure 4.2: The code required to generate Figure 4.1 using the ggnet2 function in the ggally

package.

The ggnet2 function offers a large range of network visualization functionality in a single

function call. Although its result is a ggplot2 object that can be further styled with ggplot2

scales and themes, the syntax of the ggnet2 function is designed to be easily understood by the

users, who may not be familiar with ggplot2 objects. The aesthetics relating to the nodes are

controlled by arguments such as node.alpha or node.color, while those relating to the edges are

controlled by arguments starting with edge. Additionally, as seen in Figure 4.2, the usual ggplot2
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arguments like color can be used without the prefix to map node attributes to aesthetic values.

The arguments with the node. prefix are aliased versions for readability of the code. Thus, while

ggnet2 applies the grammar of graphics to network objects, the function itself still works very

much like the plotting functions of the igraph and network packages: a long series of arguments

is used to control every possible aspect of how the network should be visualized.

The ggnet2 function takes a single network object as input. This initial object might be an

object of class "network" from the network package (with the exception of hypergraphs or multiplex

graphs), or any data structure that can be coerced to an object of that class via functions in the

network package, such as an incidence matrix, an adjacency matrix, or an edge list. Additionally, if

the intergraph package (Bojanowski, 2015) is installed, the function also accepts a network object

of class "igraph". Internally, the function converts the network object to two data frames: one for

edges and another one for nodes. It then passes them to ggplot2. Each of the two data frames

contain the information required by ggplot2 to plot segments and points respectively, such as a

shape for the points (nodes) and a line type for the segments (edges). The final result returned to

the user is a plot with a minimum of two layers, or more if there are edge and/or node labels.

The mode argument of ggnet2 controls how the nodes of the network are to be positioned in the

plot returned by the function. This argument can take any of the layout values supported by the

gplot.layout function of the sna package, and defaults to fruchtermanreingold, which places the

nodes through the force-directed layout algorithm by Fruchterman and Reingold (1991). In the ex-

ample presented in Figure 4.2, the Kamada-Kawai layout is used by adding mode = "kamadakawai"

to the function call. Many other possible layouts and their parameters can also be passed to

ggnet2 through the layout.par argument. For a list of possible layouts and their arguments, see

?sna::gplot.layout.

Other arguments passed to the ggnet2 function offer extensive control over the aesthetics of

the plot that it returns, including the addition of edge and/or node labels and their respective

aesthetics. Arguments such as node.shape or edge.lty, which control the shape of the nodes and

the line type of the edges, respectively, can take a single global value, a vector of global values,
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or the name of an edge or vertex attribute to be used as an aesthetic mapping. This feature is

used to change the size of the nodes and the node labels in Figure 4.2 by including size = 2 and

label.size = 3 in the function call.

This last functionality builds on one of the strengths of the "network" class, which can store in-

formation on network edges and nodes as attributes that are then accessible to the user through the

%e% and %v% operators respectively.3 Usage examples of these operators can be seen in Figure 4.2.

The attribute of gender is assigned to nodes, which in turn is accessed to color the nodes and node

labels by gender. If the ggnet2 function is given the node.alpha = "importance" argument, it

will interpret it as an attempt to map the vertex attribute called importance to the transparency

level of the nodes. This works exactly like the command net %v% "importance", which returns

the vertex attribute importance of the "network" object net. This functionality allows the ggnet2

function to work in a similar fashion to ggplot2 mappings of aesthetics within the aes operator.

The ggnet2 function also provides a few network-specific options, such as sizing the nodes as

a function of their unweighted degree, or using the primary and secondary modes of a bipartite

network as an aesthetic mapping for the nodes.

All in all, the ggnet2 function combines two different kinds of processes: it translates a network

object into a data frame suitable for plotting with ggplot2, and it applies network-related aesthetic

operations to that data frame, such as coloring the edges in function of the color of the nodes that

they connect.

4.2.2 geomnet

4.2.2.1 Data structure

The package geomnet implements network visualization in a single ggplot2 layer. A stable ver-

sion is available on CRAN, with a development version available at https://github.com/sctyner/

geomnet. The package has two main functions: stat net, which performs all of the calculations,

and geom net, which renders the plot. It also contains the secondary functions geom circle and

3See p. 22-24 of Butts et al. (2014). The equivalent operators in the igraph package are called E and V.

https://github.com/sctyner/geomnet
https://github.com/sctyner/geomnet
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# also loads ggplot2

library(geomnet)

# data step: join the edge and node data with a fortify call

MMnet <- fortify(as.edgedf(madmen$edges), madmen$vertices)

# create plot

set.seed(10052016)

ggplot(data = MMnet, aes(from_id = from_id, to_id = to_id)) +

geom_net(aes(colour = Gender), layout.alg = "kamadakawai",

size = 2, labelon = TRUE, vjust = -0.6, ecolour = "grey60",

directed =FALSE, fontsize = 3, ealpha = 0.5) +

scale_colour_manual(values = c("#FF69B4", "#0099ff")) +

xlim(c(-0.05, 1.05)) +

theme_net() +

theme(legend.position = "bottom")

Figure 4.3: The code required to generate Figure 4.1 using the geom net function in the geomnet

package.

theme net, which assist, respectively, in drawing self-referencing edges and removing axes and other

background elements from the plots. The approach in geomnet is similar to the implementation of

other, native ggplot2 geoms, such as geom smooth. When using geom smooth, the user does not

need to know about any of the internals of the loess function, and similarly, when using geomnet,

the user is not expected to know about the internals of the layout algorithm, just the name of the

algorithm they’d like to use. On the other hand, if users are comfortable with network analysis,

the entire body of layout methods provided by the sna package is available to them through the

parameters layout.alg and layout.par.

In network analysis there are usually two sources of information: one data set consisting of

a description of the nodes, represented as the vertices in the network and vertex attributes, and

another data set detailing the relationship between these nodes, i.e. it consists of the edge list

and any additional edge attributes. The minimum amount of information needed is a vector of

all vertex labels and a two column data frame that encodes the edge list of the network. In order

for this geometry to work, these two data sets need to be combined into a single data frame. For
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this, we implemented several new fortify methods for producing the correct data structure from

different S3 objects that encode network information. Supported classes are "network" from the

sna and network packages, "igraph" from the igraph package, "adjmat", and "edgedf". The last

two are new classes introduced in geomnet that are identical to the "matrix" and "data.frame"

classes, respectively. We created these new classes and the functions as.adjmat() and as.edgedf()

so that network data in adjacency matrix and edgelist (data frame) formats can have their own

fortify functions, separate from the very generic "matrix" and "data.frame" classes. These fortify

functions combine the edge and the node information using a full join. A full join is used because

generally, there will be some vertices that are sinks in the network because they only show up

in the ‘to’ column, and so we accommodate for these by adding artificial edges in the data set

that have missing information for the ‘to’ column. The user may also pass two data frames to

the function, e.g. data = edge data and vertices = vertex data, but we recommend using the

fortify methods whenever possible.

A usage example of the fortify.edgedf method is presented in Figure 4.3 with the creation

of the MMnet data set. Two dataframes, madmen$edges and madmen$vertices are joined to create

the required data. The first few rows of these data sets and their merged result are below.

head(as.edgedf(madmen$edges), 3)

## from_id to_id

## 1 Betty Draper Henry Francis

## 2 Betty Draper Random guy

## 3 Don Draper Allison

head(madmen$vertices, 3)

## label Gender

## 1 Betty Draper female

## 2 Don Draper male

## 3 Harry Crane male

head(fortify(as.edgedf(madmen$edges), madmen$vertices), 3)
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## from_id to_id Gender

## 1 Betty Draper Henry Francis female

## 2 Betty Draper Random guy female

## 3 Don Draper Allison male

The formal requirements of stat net are two columns, called from id and to id. During this

routine, columns x, y and xend, yend are calculated and used as a required input for geom net.

Other variables may also be included for each edge, such as the edge weight, in-degree, out-

degree or grouping variable.

4.2.2.2 Parameters and aesthetics

Parameters that are currently implemented in geom net are:

• layout: the layout.alg parameter takes a character value corresponding to the possible

network layouts in the sna package that are available within the gplot.layout.*() family

of functions. The default layout algorithm used is the Kamada-Kawai layout, a force-directed

layout for undirected networks (Kamada and Kawai, 1989).

In sna, for each layout there is a corresponding set of possible layout parameters, layout.par,

which can be passed as a list to geom net. If the user wishes to create small multiples using

ggplot2 facets, they can use fiteach, a logical value specifying whether the same layout

should be used for all panels (default) or each panel’s data should be fit separately. Finally,

the singletons parameter is a logical value that dictates whether or not to include nodes

with zero indegree and zero outdegree in the visualization. The default is set to TRUE, and

if set to FALSE nodes will only appear in panels where they have indegree or outdegree of at

least one.

• vertices: any of ggplot2’s aesthetics relating to points: colour, size, shape, alpha, x, and

y are available and used for specifying the appearance of nodes in the network. For example
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aes(colour = Gender) is used in Figure 4.3 to color the nodes and node labels according to

the gender of each character.

• edges: for edges we distinguish between two different sets of aesthetics: aesthetics that only

relate to line attributes, such as linewidth and linetype, and aesthetics that are also used

by the point geom. The former can be used in the same way as they are used in geom segment,

while the latter, like alpha or colour, for instance, are used for vertices unless separately

specified. Instead, use the parameters ecolour or ealpha, which are only applied to the

edges. If the group variable is specified, a new variable, called samegroup is added during the

layout process. This variable is TRUE, if an edge is between two vertices of the same group,

and FALSE otherwise. If samegroup is TRUE, the corresponding edge will be colored using the

same color as the vertices it connects. If the edge is between vertices of a different group, the

default grey shade is used for the edge.

The parameter curvature is set to zero by default, but if specified, leads to curved edges

using the newly implemented ggplot2 geom geom curve instead of the regular geom segment.

Note that the edge specific aesthetics that overwrite node aesthetics are currently considered

as ‘as.is’ values: they do not get a legend and are not scaled within the ggplot2 framework.

This is done to avoid any clashes between node and edge scales.

self-referencing vertices: some networks contain self references, i.e. an edge has the same

vertex id in its from and to columns. If the parameter selfloops is set to TRUE, a circle is

drawn using the new geom circle next to the vertex to represent this self reference.

• arrow: whenever the parameter directed is set from its default state to TRUE, arrows are

drawn from the ‘from’ to the ‘to’ node, with tips pointing towards the ‘to’ node. By default,

arrows have an absolute size of 10 points. The entire structure of the arrow can be changed by

passing an arrow object from the grid package to the arrow argument. If the user doesn’t

wish to change the whole arrow object, the parameters arrowsize and arrowgap are also

available. The arrowsize argument is of a positive numeric value that is used as a multiple
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of the original arrow size, i.e. arrowsize = 2 shows arrow tips at twice their original size.

The parameter arrowgap can be used to avoid overplotting of the arrow tips by the nodes,

arrowgap specifies a proportion by which the edge should be shrunk with default of 0.05. A

value of 0.5 will result in edges drawn only half way from the ‘from’ node to the ‘to’ node.

• labels: the labelon argument is a logical parameter, which when set to TRUE will label the

nodes with their IDs, as is in Figure 4.1. The aes option label can also be used to label nodes,

in which case the nodes are labeled with the value corresponding to their respective values

of the provided variable. If colour is specified for the nodes, the same values are used for

the labels, unless labelcolour is specified. If fontsize is specified, it changes the label size

to that value in points. Other parameter values, such as vjust and hjust help in adjusting

labels relative to the nodes. The parameters work in the same fashion as in native ggplot2

geoms. Additionally, the label can be drawn by using geom text (the default) or using the

new geom label in ggplot2 by adding labelgeom = "label" to the arguments in geom net.

Finally, with the help of the package ggrepel by Slowikowski (2017) we have implemented

the logical repel argument, which when true, uses geom text repel or geom label repel

to plot the labels instead of geom text or geom label, respectively. Using repel can be

extremely useful when the networks are dense or the labels are long, as in Figure 4.1, helping

to solve a common problem with many network visualizations.

4.2.3 ggnetwork

ggnetwork is a small R package that mimics the behavior of geomnet by defining several geoms

to achieve similar results.

The approach taken by the ggnetwork package is to alias some of the native geoms of the

ggplot2 package. An aliased geom is simply a variant of an already existing one. The ggplot2

package contains several examples of aliased geoms, such as geom histogram, which is a variant of

geom bar. (See Table 4.6 of Wickham (2009) for an example).

Following that logic, the ggnetwork package adds four aliased geometries to ggplot2:
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# create plot for ggnetwork. uses same data created for ggnet2 function

library(ggnetwork)

set.seed(10052016)

ggplot(data = ggnetwork(mm.net, layout = "kamadakawai"),

aes(x, y, xend = xend, yend = yend)) +

geom_edges(color = "grey50") + # draw edge layer

geom_nodes(aes(colour = gender), size = 2) + # draw node layer

geom_nodetext(aes(colour = gender, label = vertex.names),

size = 3, vjust = -0.6) + # draw node label layer

scale_colour_manual(values = mm.col) +

xlim(c(-0.05, 1.05)) +

theme_blank() +

theme(legend.position = "bottom")

Figure 4.4: The code required to generate Figure 4.1 using the ggnetwork package.

• geom nodes, an alias to geom point;

• geom edges, an alias to either geom segment or geom curve;

• geom nodetext, an alias to geom text; and

• geom edgetext, an alias to geom label.

The four geoms are used to plot nodes, edges, node labels and edge labels, respectively. Two of

the geoms that they alias, geom curve and geom label, are part of the new geometries introduced

in ggplot2 version 2.1.0. All four geoms behave exactly like those that they alias, and take exactly

the same arguments. The only exception to that rule is the special case of geom edges, which

accepts both the arguments of geom segment and those of geom curve; if its curvature argument

is set to anything but 0 (the default), then geom edges behaves exactly like geom curve; otherwise,

it behaves exactly like geom segment. Three of the four availble aliased geoms are used in Figure 4.4

to create the visualization of the Mad Men relationship network.

Just like the ggnet2 function, the ggnetwork package takes a single network object as input.

This can be an object of class "network", some data structure coercible to that class, or an object of

class "igraph" when the intergraph package is installed. This object is passed to the ‘workhorse’
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function of the package, which is also called ggnetwork to create a data frame, and then to the

data argument of ggplot().

Internally, the ggnetwork function starts by computing the x and y coordinates of all nodes

in the network with respect to its layout argument, which defaults to the Fruchterman-Reingold

layout algorithm (Fruchterman and Reingold, 1991). It then extracts the edge list of the network,

to which it adds the coordinates of the sender and receiver nodes as well as all edge-level attributes.

The result is a data frame with as many rows as there are edges in the network, and where the x,

y, xend and yend hold the coordinates of the network edges.

At that stage, the ggnetwork function, like the geomnet package, performs a left-join of that

augmented edge list with the vertex-level attributes of the ‘from’ nodes. It also adds one self-loop

per node, in order to ensure that every node is plotted even when their degree is zero—that is,

even if the node is not connected to any other node of the network, and is therefore absent from

the edge list. The data frame created by this process contains one row per edge as well as one

additional row per node, and features all edge-level and vertex-level attributes initially present in

the network.4

The ggnetwork function also accepts the arguments arrow.gap and by. Like in geomnet,

arrow.gap slightly shortens the edges of directed networks in order to avoid overplotting edge

arrows and nodes. The argument by is intended for use with plot facets. Passing an edge attribute

as a grouping variable to the by argument will cause ggnetwork to return a data frame in which

each node appears as many times as there are unique values of that edge attribute, using the same

coordinates for all occurrences. When that same edge attribute is also passed to either facet wrap

or facet grid, each edge of the network will show in only one panel of the plot, and all nodes will

appear in each of the panels at the same position. This makes the panels of the plot comparable to

4One limitation of this process is that it requires some reserved variable names (x, y, xend and yend), which should
not also be present as edge-level or vertex-level attributes (otherwise the function will simply break). Similarly, if an
edge attribute and a vertex attribute have the same name, like na, which the network package defines as an attribute
for both edges and vertices in order to flag missing data, ggnetwork will rename them to na.x (for the edge-level
attribute) and na.y (for the vertex-level attribute).
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each other, and allows the user to visualize the network structure as a function of a specific edge

attribute, like a temporal attribute.

4.3 Examples

In this section, we demonstrate some of the current capabilities of ggnet2, geomnet, and

ggnetwork in a series of side by side examples. While the output is nearly identical for each

method of network visualization, the code and implementations differ across the three methods.

For each of these examples, we present the code necessary to produce the network visualization in

each of the three packages, and discuss each application in detail.

For the following examples we will be loading all three packages under comparison. In practice,

only one of these packages would be needed to visualize a network in the ggplot2 framework:

library(ggplot2)

library(GGally)

library(geomnet)

library(ggnetwork)

4.3.1 Blood donation

We begin with a very simple example that most should be familiar with: blood donation. In this

directed network, there are eight vertices and 27 edges. The vertices represent the eight different

blood types in humans that are most important for donation: the ABO blood types A, B, AB, and

O, combined with the RhD positive (+) and negative (-) types. The edges are directed: a person

whose blood type is that of a from vertex can to donate blood to a person whose blood type is that

of a corresponding to vertex. This network is shown in Figure 4.9. The code to produce each one

of the networks is shown above Figure 4.9. We take advantage of each approach’s ability to assign

identity values to the aesthetic values. The color is changed to a dark red, the size of the nodes

is changed to be large enough to accomodate the blood type label, which we also change the color

of, and we use the directed and arrow arguments of each implementation to show the precise blood
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Table 4.1: Comparing the three different package side-by-side.

ggnet2 geom net geom nodes,

geom edges, etc
Functionality (ggally) (geomnet) (ggnetwork)

Data object of class

"network" or object

easily converted to

that class (i.e.

incidence or

adjacency matrices,

edge list) or object of

class "igraph"

a fortified "network",

"igraph", "edgedf",

or "adjmat" object

OR one edge data

frame and one node

data frame to be

merged internally

same as ggnet2

Naming conventions node. , edge. ,

label. ,

edge.label. for

alpha, color, etc.

arguments identical

to ggplot2 with

exception of ecolor,

ealpha

same as ggplot2

Layout package &

default

sna, Fruchterman-

Reingold

sna, Kamada-Kawai sna, Fruchterman-

Reingold

Aesthetic mappings

to variables

all alpha, color,

shape, size for

nodes, edges, labels

colour, size, shape,

x, y, linetype,

linewidth, label,

group, fontsize

same as ggplot2

Arrows directed = TRUE,

arrow.size, gap

arrowsize, gap,

arrow = arrow()

like ggplot2

specify arrows in

geom edge like in

codegeom segment,

arrow.gap

Theme or palette

changes

done in the function

with arguments like

.legend, .palette,

etc. and adding

ggplot2 elements

adding ggplot2

elements

adding ggplot2

elements

Creating small

multiples

created separately,

use grid.arrange

from gridExtra

add group argument

to fortify() and use

facet *() from

ggplot2

use by argument in

ggnetwork() and

facet *() from

ggplot2

Edge labelling? Yes No Yes

Draw self-loops? No Yes No
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donation relationships. Additionally, we change the node layout to circle, and the placement of the

labels with the hjust and vjust options.

# make data accessible

data(blood, package = "geomnet")

# plot with ggnet2 (Figure 5a)

set.seed(12252016)

ggnet2(network(blood$edges[, 1:2], directed=TRUE),

mode = "circle", size = 15, label = TRUE,

arrow.size = 10, arrow.gap = 0.05, vjust = 0.5,

node.color = "darkred", label.color = "grey80")

head(blood$edges,3) # glance at the data

## from to group_to

## 1 AB- AB+ same

## 2 AB- AB- same

## 3 AB+ AB+ same

# plot with geomnet (Figure 5b)

set.seed(12252016)

ggplot(data = blood$edges, aes(from_id = from, to_id = to)) +

geom_net(colour = "darkred", layout.alg = "circle", labelon = TRUE, size = 15,

directed = TRUE, vjust = 0.5, labelcolour = "grey80",

arrowsize = 1.5, linewidth = 0.5, arrowgap = 0.05,

selfloops = TRUE, ecolour = "grey40") +

theme_net()

# plot with ggnetwork (Figure 5c)

set.seed(12252016)
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ggplot(ggnetwork(network(blood$edges[, 1:2]),

layout = "circle", arrow.gap = 0.05),

aes(x, y, xend = xend, yend = yend)) +

geom_edges(color = "grey50",

arrow = arrow(length = unit(10, "pt"), type = "closed")) +

geom_nodes(size = 15, color = "darkred") +

geom_nodetext(aes(label = vertex.names), color = "grey80") +

theme_blank()

In this example every vertex has a self-reference, as blood between two people of matching ABO

and RhD type can always be exchanged. The geomnet approach shows these self-references as

circles looping back to the vertex, which is controlled by using the parameter setting selfloops =

TRUE.

Figure 4.6 ggnet2

A−

A+

AB−

AB+

B−

B+

O−

O+

Figure 4.7 geomnet

A−

A+

AB−

AB+

B−

B+

O−

O+

Figure 4.8 ggnetwork

A−

A+

AB−

AB+

B−

B+

O−

O+

Figure 4.9: Network of blood donation possibilities in humans by ABO and RhD blood types.

colour and size aesthetics in Figure 4.9 are set to identity values to change the size and

color of all vertices. We have also used the layout and label arguments to change the default

Kamada-Kawai layout to a circle layout and to print labels for each of the blood types. The circle

layout places blood types of the same ABO type next to each other and spreads the vertices out

far enough to distinguish between the various “in” and “out” types. We can tell clearly from this
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plot that the O-type is the universal donor: it has an out-degree of seven and an in-degree of zero.

Additionally, we can see that the AB+ type is the universal recipient, with an in-degree of seven

and an out-degree of zero. Anyone looking at this plot can quickly determine which type(s) of

blood they can receive and which type(s) can receive their blood.

4.3.2 Email network

The email network comes from the 2014 VAST Challenge (Cook et al., 2014). It is a directed

network of emails between company employees with 55 vertices and 9,063 edges. Each vertex

represents an employee of the company, and each edge represents an email sent from one employee

to another. The arrow of the directed edge points to the recipient of the email. If an email

has multiple recipients, multiple edges, one for each recipient, are included in the network. The

network contains two business weeks of emails across the entire company. In order to better visualize

the structure of the communication network between employees, emails that were sent out to all

employees are removed. A glimpse of the data objects used is below.

em.net # ggnet2 and ggnetwork

## Network attributes:

## vertices = 55

## directed = TRUE

## hyper = FALSE

## loops = FALSE

## multiple = FALSE

## bipartite = FALSE

## total edges= 4743

## missing edges= 0

## non-missing edges= 4743

##

## Vertex attribute names:
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## curr_empl_type vertex.names

##

## Edge attribute names not shown

emailnet[1,c(1:2,7,21)] # geomnet

## from_id

## 1 Ada.Campo-Corrente@gastech.com.kronos

## to_id day

## 1 Ingrid.Barranco@gastech.com.kronos 10

## CurrentEmploymentType

## 1 Executive

Emails taken by themselves form an event network, i.e. edges do not have any temporal duration.

Here, however, we can think of emails as observable expressions of the underlying, unobservable,

relationship between employees. We can think of this network as a dynamic temporal network,

i.e. this network has the potential to change over time. The ndtv package by Bender-deMoll

(2016) allows the analysis of such networks and provides impressive animations of the underlying

dynamics. Here, we are using two static approaches to visualize the network: first, we aggregate

emails across the whole time frame (shown in Figure 4.13), then we aggregate emails by day and

use small multiples to allow a comparison of day-to-day behavior (shown in Figure 4.19).

For all of the email examples, we have colored the vertices by the variable CurrentEmploymentType,

which contains the department in the company of which each employee is a part of. There are six

distinct clusters in this network which almost perfectly correspond to the six different types of em-

ployees in this company: administration, engineering, executive, facilities, information technology,

and security. Other features in the code include using alpha arguments to change the transparency

of the edges, curvature argumnets to show mutual communication as two edges instead of one

edge with two arrowheads, and the addition of ggplot2 functions like scale colour brewer and

theme to customize the colors of the nodes and their corresponding legend.
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In Figure 4.13 we can clearly see the varying densities of communications within departments

and the more sparse communication between employees in different departments. We also see that

one of the executives only communicates with employees in Facilities, while one of the IT employees

frequently communicates with security employees.

A comparison of the results of ggnet, geomnet and ggnetwork reveals some of the more subtle

differences between the implementations:

• In the ggnet2 implementation, the opacity of the edges between employees in the same cluster

is higher than it is for the edges between employees in different clusters. This is due to the

fact that the email network does not make use of edge weights: instead, every email between

two employees is represented by an edge, resulting in edge overplotting. The edge.alpha

argument has been set to a value smaller than one, therefore multiple emails between two

employees create more opaque edges between them. Multiple emails are also taken into

account in the geomnet package. When there is more than one edge connecting two vertices,

the stat net function adds a weight variable to the edge list, which is passed automatically

to the layout algorithms and taken into account during layout. This is thanks to the sna

package, which supports the use of weights in its edge list. In addition to taking weights into

account in the layout, we can also make use of them in the visualization. geomnet allows to

access all of the internal variables created in the visualization process, such as coordinates

..x.., ..y.. and edge weights ..weight... Note the use of the ggplot2 notation .. for

internal variables.

• In the first two layouts of Figure 4.13, edges between employees who share the same em-

ployment type are given the color of that employment type, while edges between employees

belonging to different types are plotted in grey. This feature is particularly useful to visualize

the amount of within-group connectedness in a network. By contrast, in the last layout, edges

are colored according to the sender’s employment type, because the ggnetwork package does

not support coloring edges as a function of node-level attributes.
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• Finally, in the last two layouts of Figure 4.13, the curvature argument has been set to

0.05, resulting in slightly curved edges in both plots. This feature, which takes advantage

of the geom curve geometry released in ggplot2 2.1.0, makes it possible to visualize which

edges correspond to reciprocal connections; in an email communication network, as one might

expect, most edges fall into that category.

To give some insight into how the relations between employees change over time, we facet

the network by day: each panel in Figure 4.19 shows email networks associated with each day of

the work week. The code for these visualizations is below. The different approaches create small

multiples in different ways. The ggnet2 approach requires that the network be separated, each plot

created individually, then placed together using the grid.arrange function from the gridExtra

package (Auguie, 2016). The geomnet approach uses the facet * family of functions just as they

are used in ggplot2, and the ggnetwork approach uses the by argument in the ggnetwork function

in combination with the facet * functions. We present the full code for each of these approaches

below.

First, the code for the ggnet2 approach, which results in Figure 4.19(a):

# data preparation. first, remove emails sent to all employees

em.day <- subset(email$edges, nrecipients < 54)[, c("From", "to", "day") ]

# for small multiples by day, create one element in a list per day

# (10 days, 10 elements in the list em.day)

em.day <- lapply(unique(em.day$day),

function(x) subset(em.day, day == x)[, 1:2 ])

# make the list of edgelists a list of network objects for plotting with ggnet2

em.day <- lapply(em.day, network, directed = TRUE)

# create vertex (employee type) and network (day) attributes for each element in list

for (i in 1:length(em.day)) {

em.day[[ i ]] %v% "curr_empl_type" <-

em.cet[ network.vertex.names(em.day[[ i ]]) ]
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em.day[[ i ]] %n% "day" <- unique(email$edges$day)[ i ]

}

# plot ggnet2

# first, make an empty list containing slots for the 10 days (one plot per day)

g <- list(length(em.day))

set.seed(7042016)

# create a ggnet2 plot for each element in the list of networks

for (i in 1:length(em.day)) {

g[[ i ]] <- ggnet2(em.day[[ i ]], size = 2,

color = "curr_empl_type",

palette = "Set1", arrow.size = 0,

arrow.gap = 0.01, edge.alpha = 0.1,

legend.position = "none",

mode = "kamadakawai") +

ggtitle(paste("Day", em.day[[ i ]] %n% "day")) +

theme(panel.border = element_rect(color = "grey50", fill = NA),

aspect.ratio = 1)

}

# arrange all of the network plots into one plot window

gridExtra::grid.arrange(grobs = g, nrow = 2)

Second, the code for the geomnet approach, which results in Figure 4.19(b):

# data step: use the fortify.edgedf group argument to

# combine the edge and node data and allow all nodes to

# show up on all days. Also, remove emails sent to all

# employees

emailnet <- fortify(as.edgedf(subset(email$edges, nrecipients < 54)),
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email$nodes, group = "day")

# creating the plot

set.seed(7042016)

ggplot(data = emailnet, aes(from_id = from, to_id = to_id)) +

geom_net(layout.alg = "kamadakawai", singletons = FALSE,

aes(colour = CurrentEmploymentType,

group = CurrentEmploymentType,

linewidth = 2 * (...samegroup.. / 8 + .125)),

arrowsize = .5,

directed = TRUE, fiteach = TRUE, ealpha = 0.5, size = 1.5, na.rm = FALSE) +

scale_colour_brewer("Employment Type", palette = "Set1") +

theme_net() +

facet_wrap(~day, nrow = 2, labeller = "label_both") +

theme(legend.position = "bottom",

panel.border = element_rect(fill = NA, colour = "grey60"),

plot.margin = unit(c(0, 0, 0, 0), "mm"))

Finally, the code for the ggnetwork approach, which results in Figure 4.19(c):

# create the network and aesthetics

# first, remove emails sent to all employees

edges <- subset(email$edges, nrecipients < 54)

edges <- edges[, c("From", "to", "day") ]

# Create network class object for plotting with ggnetwork

em.net <- network(edges[, 1:2])

# assign edge attributes (day)

set.edge.attribute(em.net, "day", edges[, 3])

# assign vertex attributes (employee type)
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em.net %v% "curr_empl_type" <- em.cet[ network.vertex.names(em.net) ]

# create the plot

set.seed(7042016)

ggplot(ggnetwork(em.net, arrow.gap = 0.02, by = "day",

layout = "kamadakawai"),

aes(x, y, xend = xend, yend = yend)) +

geom_edges(

aes(color = curr_empl_type),

alpha = 0.25,

arrow = arrow(length = unit(5, "pt"), type = "closed")) +

geom_nodes(aes(color = curr_empl_type), size = 1.5) +

scale_color_brewer("Employment Type", palette = "Set1") +

facet_wrap(~day, nrow = 2, labeller = "label_both") +

theme_facet(legend.position = "bottom")

Note the two key differences in the visualizations of Figure 4.19: whether singletons (isolated

nodes) are plotted (as in the ggnetwork method), and whether one layout is used across all panels

(as for the ggnetwork example) or whether individual layouts are fit to each of the subsets (as for

the ggnet2 and the geomnet examples). Plotting isolated nodes in geomnet is possible by setting

singletons = TRUE, and it would be possible in ggnet2 by including all nodes in the creation of

the list of networks. Using the same layout for plotting small multiples in geomnet is controlled by

the argument fiteach. By default, fiteach = TRUE, but fiteach = FALSE results in all panels

sharing the same layout. Having the same layout in each panel makes seeing specific differences

in ties between nodes easier, while having a different layout in each panel emphasizes the overall

structural differences between the sub-networks. It would be interesting to be able to have a hybrid

of these two approaches, but at the moment this is beyond the capability of any of the methods.

Through the faceting it becomes obvious that there are several days where one or more of the
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departments does not communicate with any of the other departments. There are only two days,

day 13 and day 15, without any isolated department communications. Faceting is one of the major

benefits of implementing tools for network visualization in ggplot2. Faceting allows the user to

quickly separate dense networks into smaller sub-networks for easy visual comparison and analyses,

a feature that the other network visualization tools do not have.

4.3.3 ggplot2 theme elements

This example comes from the theme() help page in the ggplot2 documentation (Wickham,

2009). It is a directed network which shows the structure of the inheritance of theme options in the

construction of a ggplot2 plot. There are 53 vertices and 36 edges in this network. Each vertex

represents one possible theme option. There is an arrow from one theme option to another if the

element represented by the ‘to’ vertex inherits its values from the ‘from’ vertex. For example, the

axis.ticks.x option inherits its value from the axis.ticks value, which in turn inherits its value

from the line option. Thus, setting the line option to a value such as element blank() sets the

entire inheritance tree to element blank(), and no lines appear anywhere on the plot background.

Code and plots of the inheritance structure are shown in Figure 4.25. A glimpse of the data is

below.

te.net

## Network attributes:

## vertices = 53

## directed = TRUE

## hyper = FALSE

## loops = FALSE

## multiple = FALSE

## bipartite = FALSE

## total edges= 48

## missing edges= 0
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## non-missing edges= 48

##

## Vertex attribute names:

## size vertex.names

##

## No edge attributes

head(TEnet)

## # A tibble: 6 x 3

## # Groups: from_id [2]

## from_id to_id degree

## <fctr> <fctr> <dbl>

## 1 text title 6.40

## 2 text legend.text 6.40

## 3 text axis.text 6.40

## 4 text strip.text 6.40

## 5 line axis.line 5.57

## 6 line axis.ticks 5.57

Note the various ways the packages adjust the side of the labels to correspond to the outdegree

of the nodes, including the use of the scale size continuous function in Figure 4.25(c). In each

of these plots, it is easy to quickly determine parent-child relationships, and to assess which theme

elements are unrelated to all others. Nodes with the most children are the rect, text, and line

elements, so we made their labels larger in order to emphasize their importance. In each case, the

label size is a function of the out degree of the vertices.

4.3.4 College football

This next example comes from M.E.J. Newman’s network data web page (Girvan and Newman,

2002). It is an undirected network consisting of all regular season college football games played



144

between Division I schools in Fall of 2000. There are 115 vertices and 613 edges: each vertex

represents a school, and an edge represents a game played between two schools. There is an

additional variable in the vertex data frame corresponding to the conference each team belongs to,

and there is an additional variable in the edge data frame that is equal to one if the game occurred

between teams in the same conference or zero if the game occurred between teams in different

conferences. We take a look at the data used in the plots below.

fb.net

## Network attributes:

## vertices = 115

## directed = TRUE

## hyper = FALSE

## loops = FALSE

## multiple = FALSE

## bipartite = FALSE

## total edges= 613

## missing edges= 0

## non-missing edges= 613

##

## Vertex attribute names:

## conf vertex.names

##

## Edge attribute names:

## same.conf

head(ftnet)

## from_id to_id same.conf value

## 1 AirForce NevadaLasVegas 1 Mountain West

## 2 Akron MiamiOhio 1 Mid-American
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## 3 Akron VirginiaTech 0 Mid-American

## 4 Akron Buffalo 1 Mid-American

## 5 Akron BowlingGreenState 1 Mid-American

## 6 Akron Kent 1 Mid-American

## schools

## 1

## 2

## 3

## 4

## 5

## 6

The network of football games is given in Figure 4.32. Here, the linetype aesthetic corresponds

to games that occur between teams in the same conference or different conferences.

These lines are dotted and solid, respectively. We have also assigned a different color to each con-

ference, so that the vertices and their labels are colored according to their conference. Additionally,

in the first two implementations, the edges between two teams in the same conference share that

conference color, while edges between teams in different conferences are a default gray color. This

coloring and changing of the line types make the structure of the game network easier to view.

Additionally, we use the label aesthetic in Figure 4.32(b) to label only a few schools that are of

interest to us. This is the conference consisting of Navy, Notre Dame, Utah State, Central Florida,

and Connecticut, which is spread out, whereas most other conferences’ teams are all very close to

each other because they play within conference much more than they play out of conference. At

the time, these five schools were all independents and did not have a home conference. Without

the coloring capability, we would not have been able to pick out that difference as easily.
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4.3.5 Southern women

Bipartite (or ‘two-mode’) networks are networks with two different kinds of nodes and where

all ties are formed between these two kinds. Affiliation networks, which represent the ties between

individuals and the groups to which they belong, are examples of such networks (see p. 53-54,

123-127 of Newman (2010) for more examples).

One of the classic examples for a two-mode network is the network of 18 Southern women

attending 14 social events as collected by Davis et al. (1941) and published e.g. as part of the tnet

package (Opsahl, 2009). In this data, a woman is linked by an edge to an event if she attended

it. One of the questions for these type of networks is gain insight in the interplay between the two

different sets of nodes.

The data for the example of the Southern women is reported as edge list in form of ‘lady X

attending event Y ’. With a bit of data preparation as detailed below, we can visualize the graph

as shown in Figure 4.38. In creating the plots, we use the shape and colour aesthetics to map the

two different modes to two different shapes and colours.

# access the data and rename it for convenience

library(tnet)

data(tnet)

elist <- data.frame(Davis.Southern.women.2mode)

names(elist) <- c("Lady", "Event")

The edge list for the Southern women’s data consists of women attending events:

head(elist,4)

## Lady Event

## 1 1 1

## 2 1 2

## 3 1 3
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## 4 1 4

In order to distinguish between nodes from different types, we have to add an additional identifier

element, so that we can tell the ‘first’ woman L1 apart from the first event, E1.

elist$Lady <- paste("L", elist$Lady, sep="")

elist$Event <- paste("E", elist$Event, sep="")

davis <- elist

names(davis) <- c("from", "to")

davis <- rbind(davis, data.frame(from=davis$to, to=davis$from))

davis$type <- factor(c(rep("Lady", nrow(elist)), rep("Event", nrow(elist))))

The two different types of nodes are shown by different shapes and colors. We see the familiar

relationship between events and groups of women attending these events. Women attending the

same events then form a tighter knit subset, while events are also thought of as more similar, if

they are attended by the same women. This defines the cluster of events E1 through E5, which

are only attended by women 1 through 9, while events E6 through E9 are attended by (almost)

everybody making them the core group of events.

4.3.6 Bike sharing in Washington D.C.

The data shows trips taken with bikes from the bike share company Capital Bikeshare5 during

the second quarter of 2015. While this bike sharing company is located in the heart of Washington

D.C. the company offers a set of bike stations just outside of Washington in Rockville, MD and

north of it. Each station is shown as a vertex, and edges between stations indicate that at least

five trips were taken between these two stations; the wider the line, the more trips have been taken

between stations. In order to reflect distance between stations, we use as an additional restriction

that the fastest trip was at most ten minutes long. Figure 4.44 shows four renderings of this data.

5https://secure.capitalbikeshare.com/

https://secure.capitalbikeshare.com/
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The first is a geographically true representation of the area overlaid by lines between bike stations,

the other three are networks drawn with geomnet, ggnet2, and ggnetwork, respectively. The code

for these renderings is shown below:

# make data accessible

data(bikes, package = ’geomnet’)

# data step for geomnet

tripnet <- fortify(as.edgedf(bikes$trips), bikes$stations[,c(2,1,3:5)])

# create variable to identify Metro Stations

tripnet$Metro = FALSE

idx <- grep("Metro", tripnet$from_id)

tripnet$Metro[idx] <- TRUE

# plot the bike sharing network shown in Figure 7b

set.seed(1232016)

ggplot(aes(from_id = from_id, to_id = to_id), data = tripnet) +

geom_net(aes(linewidth = n / 15, colour = Metro),

labelon = TRUE, repel = TRUE) +

theme_net() +

xlim(c(-0.1, 1.1)) +

scale_colour_manual("Metro Station", values = c("grey40", "darkorange")) +

theme(legend.position = "bottom")

# data preparation for ggnet2 and ggnetwork

bikes.net <- network(bikes$trips[, 1:2 ], directed = FALSE)

# create edge attribute (number of trips)

network::set.edge.attribute(bikes.net, "n", bikes$trips[, 3 ] / 15)

# create vertex attribute for Metro Station

bikes.net %v% "station" <- grepl("Metro", network.vertex.names(bikes.net))
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bikes.net %v% "station" <- 1 + as.integer(bikes.net %v% "station")

rownames(bikes$stations) <- bikes$stations$name

# create node attributes (coordinates)

bikes.net %v% "lon" <-

bikes$stations[ network.vertex.names(bikes.net), "long" ]

bikes.net %v% "lat" <-

bikes$stations[ network.vertex.names(bikes.net), "lat" ]

bikes.col <- c("grey40", "darkorange")

# Non-geographic placement

set.seed(1232016)

ggnet2(bikes.net, mode = "fruchtermanreingold", size = 4, label = TRUE,

vjust = -0.5, edge.size = "n", layout.exp = 1.1,

color = bikes.col[ bikes.net %v% "station" ],

label.color = bikes.col[ bikes.net %v% "station" ])

# Non-geographic placement. Use data from ggnet2 step.

set.seed(1232016)

ggplot(data = ggnetwork(bikes.net, layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +

geom_edges(aes(size = n), color = "grey40") +

geom_nodes(aes(color = factor(station)), size = 4) +

geom_nodetext(aes(label = vertex.names, color = factor(station)),

vjust = -0.5) +

scale_size_continuous("Trips", breaks = c(2, 4, 6), labels = c(30, 60, 90)) +

scale_colour_manual("Metro station", labels = c("FALSE", "TRUE"),

values = c("grey40", "darkorange")) +

theme_blank() +

theme(legend.position = "bottom", legend.box = "horizontal")
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To plot the geographically correct bike network layout in geomnet, we use the layout.alg

= NULL option and provide the latitude and longitude coordinates of the bike stations from the

company’s data. A glance of the data that we used in the examples is shown below.

bikes.net

## Network attributes:

## vertices = 20

## directed = FALSE

## hyper = FALSE

## loops = FALSE

## multiple = FALSE

## bipartite = FALSE

## total edges= 53

## missing edges= 0

## non-missing edges= 53

##

## Vertex attribute names:

## lat lon station vertex.names

##

## Edge attribute names:

## n

head(tripnet[,-c(4:5,8)])

## from_id

## 1 Broschart & Blackwell Rd

## 2 Crabbs Branch Way & Calhoun Pl

## 3 Crabbs Branch Way & Calhoun Pl

## 4 Crabbs Branch Way & Calhoun Pl

## 5 Crabbs Branch Way & Calhoun Pl
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## 6 Crabbs Branch Way & Calhoun Pl

## to_id n lat long Metro

## 1 <NA> NA 39.1 -77.2 FALSE

## 2 Crabbs Branch Way & Redland Rd 11 39.1 -77.2 FALSE

## 3 Needwood Rd & Eagles Head Ct 14 39.1 -77.2 FALSE

## 4 Rockville Metro East 51 39.1 -77.2 FALSE

## 5 Rockville Metro West 8 39.1 -77.2 FALSE

## 6 Shady Grove Metro West 36 39.1 -77.2 FALSE

Because all three approaches result in the same picture, we only show one of these in Fig-

ure 4.44a. The code for creating the map is given here:

library(ggmap)

metro_map <- get_map(location = c(left = -77.22257, bottom = 39.05721,

right = -77.11271, top = 39.14247))

# geomnet: overlay bike sharing network on geographic map

ggmap(metro_map) +

geom_net(data = tripnet, layout.alg = NULL, labelon = TRUE,

vjust = -0.5, ealpha = 0.5,

aes(from_id = from_id,

to_id = to_id,

x = long, y = lat,

linewidth = n / 15,

colour = Metro)) +

scale_colour_manual("Metro Station", values = c("grey40", "darkorange")) +

theme_net() %+replace% theme(aspect.ratio=NULL, legend.position = "bottom") +

coord_map()
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We can also make use of the option layout.alg = NULL whenever we do not want to use an

in-built layout algorithm but make use of a user-defined custom layout. In this case, the coordinates

of the layout have to be created outside of the visualization and x and y coordinates have to be

made available instead.

4.4 Some considerations of speed

In our examples thus far, we have focused on rather small social or relationship networks and one

larger communication network. Now we present an example of a biological network, which comes

from Jeong et al. (2001). It is the complete protein-protein interaction network in the yeast species

S. cerevisiae. There are 2,113 proteins that make up the vertices of this network, with a total of 4480

edges between them. These edges represent “direct physical interactions” between any two proteins

(Jeong et al., 2001, p. 42), resulting in a relatively large network. When these interactions and

their associated proteins are plotted using the Fruchterman-Reingold layout algorithm, the runtime

is extremely long, about 9.5 minutes for 50,000 iterations through the algorithm. The resulting

layout is shown in Figure 4.45. When testing the three approaches with the larger network, we

decided to use a random layout to save time. Despite its size, each one of the approaches in the

ggplot2 framework can be drawn in a few hundred milliseconds.

Another benefit that emerges from using ggplot2 for network visualization is the speed at which

it can plot fairly large networks. In order to assess the speed gain procured by our three approaches,

we ran two separate tests, both of which designate ggplot2-based approaches as faster than the

plotting functionality offered in the network package. They also show the ggplot2 approaches to

be largely on par with the speed provided by the igraph package. We first investigate average

random layout plotting time of the protein network

shown in Figure 4.45, and then consider average plotting times of increasingly larger random

networks. Note that in all tests, default package settings were used. The code to create benchmark

results for both of these situations is provided in the vignette of the package ggCompNet (Tyner
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and Hofmann, 2016b). See the Supplementary Material section at the end of this paper for more

information.

We plotted the protein interaction network of Figure 4.45 100 times using the network and

igraph packages, and compared their run times to 100 runs each of the three visualization ap-

proaches introduced in this paper. The results are shown in Figure 4.46. We can see that on

average, the ggplot2 framework provides a two to three-fold increase in speed over the network

package, and that geomnet and ggnetwork are faster than package igraph. The three ggplot2

approaches also have considerably less variability in time than the network package. Despite the

large number of vertices, the protein interaction network has a relatively small number of edges

(4480 out of over 2.2 million theoretically possible connections resulting in an edge probability of

just over 0.0020). Next, we examine networks with a higher edge probability.

The second test relies on random undirected networks in which the probability of an edge

between two nodes was set to p = 0.2. We generated 100 of these networks at network sizes from

25 to 250 nodes, using increments of 25.

Figure 4.47 summarizes the results of these benchmarks using a convenience sample of machines

accessible to the authors, including authors’ hardware and additional results from friends’ and

colleagues’ machines. Network sizes are plotted horizontally, execution times of 100 runs under

each visualization approach are plotted on the y-axis. Each panel shows a different machine as

indicated by the facet label. Note that each panel is scaled separately to account for differences

in the overall speed of these machines. What these plots indicate is that we have surprisingly

large variability in relative run times across different machines. However, the results support some

general findings. The network plotting routine is by far the slowest across all machines, while

the igraph plotting is generally among the fastest. Our three approaches generally feature in

between igraph and network with ggnet2 being as fast or faster than igraph plotting, followed by

ggnetwork and geomnet, which is generally the slowest among the three. These differences become

more pronounced as the size of the network increases.
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Although speed was not the main rationale for our inquiry into ggplot2-based approaches to

network visualization, a speed-based comparison shows a clear advantage of these approaches over

the plotting function included in the network package, which very quickly becomes much slower as

network size increases.

4.5 Summary and discussion

At first glance, the three visualization approaches may seem nearly identical. However, each one

brings unique strengths to the visualization of networks. Out of our three approaches, ggnetwork is

most flexible and allows for a re-ordering of layers to emphasize one over the other. The flexibility

is useful but does require the user to specify every single part of the network visualization. The

geomnet implementation most closely aligns with the existing ggplot2 paradigm because it provides

a single layer that can be added to other ggplot2 layers. ggnet2 requires the user to know the

least about the ggplot2 framework, while resulting in a valid and extensible ggplot2 object.

Many features of the packages would not have been possible, or would have at least been difficult to

implement, in prior versions of ggplot2. The increased flexibility of the current development version

as well as the added geoms geom curve and geom label provided us with a strong, yet flexible,

foundation for network visualization. Our approaches also benefit from the speed of ggplot2,

making network visualization more efficient than the existing framework of network for a lot of

the benchmark examples.

All three approaches rely on the package sna for layouts. This allows the user to access the

many layout algorithms available for networks, and in the event that new layouts are implemented in

sna, our packages will accommodate them seamlessly. A larger range of layouts is available through

igraph, and can be implemented into our packages by setting the respective layout arguments to

NULL and passing x,y coordinates calculated from igraph. There are some notable differences

between the packages, such as in the parameters used for specific layout algorithms, e.g. igraph

allows the use of weights for Fruchterman-Reingold placement, even though it is unclear from

the original article how these are supposed to affect the layout. In all three approaches, it is
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feasible to tap into igraph’s functionality in a future version so that the user does not need to

calculate the layout separately. Additional future work will explore the implementation of other

network data structures, such as the networkDynamic class from statnet, which would benefit

from the faceting capabilities of our implementations. This work will likely incorporate the fortify

approach of ggnetwork and geomnet::fortify.network() for converting network data structures

to a ggplot2-friendly format.

We have found that none of our approaches is unequivocally the best. We can, however, provide

some guidance as to which approach is best for which type of user. The main differences between the

three methods are in the way that network information is passed into the functions. For ggnet2 and

ggnetwork, data management and attribute handling is done through network operators on nodes

and edges, while the geomnet approach does not require any knowledge of networks or existing

network analysis packages from the user. This likely affects the user base of each package. We

think that users who are well-versed with networks will find ggnet2 and ggnetwork more intuitive

to use than geomnet. These users might be looking to ggplot2 as another avenue to create high-

quality visualizations that tap into ggplot2 advantages such as facetting and, for ggnetwork,

layering. Users who are already familiar with ggplot2 and some of the other tidyverse packages

(see Wickham (2017)), and who find themselves dealing with network data will likely be more

attracted to the geomnet implementation of network plotting. The data management skills needed

for using geomnet are basic: some familiarity with the split-apply-combine paradigm, in the form

of familiarity with plyr or dplyr, would be sufficient in order to make full use of the features of

geom net (Wickham, 2011). All in all, the three approaches we have presented here provide a wealth

of resources to users of all skill sets who are looking to create beautiful network visualizations.

On a personal level we discovered that the collaboration on this paper has helped us to improve

upon our initial versions of each of these packages. For instance, the edge coloring in the ggnet2

function was designed so that edges between two vertices in the same group were colored with that

group’s vertex color. This inspired an implementation of it in geomnet through the traditional

ggplot2 group operator. During the process of writing the paper the authors collaborated on a
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solution for the problem of nodes being plotted on top of arrow tips. This solution was implemented

in the geomnet arrow.gap parameter, which allows to re-track the tip of an arrow on a directed

edge, and was also added to ggnetwork. In addition, the implementation of a ggplot2 geom for

networks within geomnet inspired the creation of the aliased geoms of the ggnetwork package.

Finally, curious users may be interested in how these three packages can fit together and replicate

each other, since they are in fact so similar. Thanks to the flexibility inherent to ggnetwork, it is

possible to write wrapper functions around ggnetwork functions in order to recreate the behavior

and functionality of ggnet2 and geomnet. Simple examples of such wrapper functions, called

ggnetwork2 and geom network, respecively are shown below.

library(ggnetwork)

# mimics geom_net behavior

geom_network <- function(edge.param, node.param) {

edge_ly <- do.call(geom_edges, edge.param)

node_ly <- do.call(geom_nodes, node.param)

list(edge_ly, node_ly)

}

# mimics ggnet2 behavoir

ggnetwork2 <- function() { ggplot() + geom_network() }

Similarly, geomnet can mimic the the behavior of ggnet2, as shown below.

library(geomnet)

geomnet2 <- function(net) {

ggplot(data = fortify(net),

aes(from_id = from_id, to_id = to_id)) +

geom_net()

}
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Mimicking ggnetwork with geomnet requires a little bit more work because the native data

input for geomnet is a "data.frame" object fortified with geomnet methods, not a "network"

object. Instead, the internal ggplot2 function ggplot build allows a plot created with geomnet

function calls to be recreated with ggnetwork-like syntax. An example of using a geomnet plot to

create a similar plot in the style of ggnetwork follows to reproduce Figure 4.9(c).

library(geomnet)

library(ggnetwork)

library(dplyr)

# a ggnetwork-like creation using a geomnet plot

data("blood")

# first, create the geomnet plot to access the data later

geomnetplot <- ggplot(data = blood$edges, aes(from_id = from, to_id =

to)) +

geom_net(layout.alg = "circle", selfloops = TRUE) +

theme_net()

# get the data

dat <- ggplot_build(geomnetplot)$data[[1]]

# ggnetwork-like construction for re-creating network shown in Figure 5

ggplot(data = dat, aes(x = x, y = y, xend = xend, yend = yend)) +

geom_segment(arrow = arrow(type = ’closed’), colour = ’grey40’) +

geom_point(size = 10, colour = ’darkred’) +

geom_text(aes(label = from), colour = ’grey80’, size = 4) +

geom_circle() +

theme_blank() + theme(aspect.ratio = 1)

Supplementary Material
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Software: ggnetwork 0.5.1 and geomnet 0.2.0 were used to create the visualizations. ggnet2 is

part of ggally 1.3.0.

Reproducibility: All the code used in the examples is available as a vignette in the CRAN

package ggCompNet. There are two vignettes: one for the speed comparisons and one for the

visualizations provided in the Examples section. The package also provide our speed test data

for creating Figure 4.47. We created this package to accompany this paper with the hope

that interested users will compare these methods on their own systems and against their own

code. Finally, all of the data we use in the examples, with the exception of the bipartite

network example, is included as a part of the geomnet package.
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Figure 4.11 ggnet2

# make data accessible

data(email, package = ’geomnet’)

# create node attribute data

em.cet <- as.character(

email$nodes$CurrentEmploymentType)

names(em.cet) = email$nodes$label

# remove the emails sent to all employees

edges <- subset(email$edges, nrecipients < 54)

# create network

em.net <- edges[, c("From", "to") ]

em.net <- network(em.net, directed = TRUE)

# create employee type node attribute

em.net %v% "curr_empl_type" <-

em.cet[ network.vertex.names(em.net) ]

set.seed(10312016)

ggnet2(em.net, color = "curr_empl_type",

size = 4, palette = "Set1", arrow.gap = 0.02,

arrow.size = 5, edge.alpha = 0.25,

mode = "fruchtermanreingold",

edge.color = c("color", "grey50"),

color.legend = "Employment Type") +

theme(legend.position = "bottom")
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Engineering

Executive

Facilities

Information Technology

Security

Figure 4.12 geomnet

# data step for the geomnet plot

email$edges <- email$edges[, c(1,5,2:4,6:9)]

emailnet <- fortify(

as.edgedf(subset(email$edges, nrecipients < 54)),

email$nodes)

set.seed(10312016)

ggplot(data = emailnet,

aes(from_id = from_id, to_id = to_id)) +

geom_net(layout.alg = "fruchtermanreingold",

aes(colour = CurrentEmploymentType,

group = CurrentEmploymentType,

linewidth = 3 * (...samegroup.. / 8 + .125)),

ealpha = 0.25, size = 4, curvature = 0.05,

directed = TRUE, arrowsize = 0.5) +

scale_colour_brewer("Employment Type", palette = "Set1") +

theme_net() +

theme(legend.position = "bottom")
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Engineering

Executive

Facilities

Information Technology

Security

Figure 4.13: Email network within a company over a two week period.
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Figure 4.14 ggnetwork

# use em.net created in ggnet2step

set.seed(10312016)

ggplot(ggnetwork(em.net, arrow.gap = 0.02,

layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +

geom_edges(

aes(color = curr_empl_type),

alpha = 0.25,

arrow = arrow(length = unit(5, "pt"),

type = "closed"),

curvature = 0.05) +

geom_nodes(aes(color = curr_empl_type),

size = 4) +

scale_color_brewer("Employment Type",

palette = "Set1") +

theme_blank() +

theme(legend.position = "bottom")
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Facilities

Information Technology

Security

Figure 4.15: (continued) Email network within a company over a two week period.
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Figure 4.17 ggnet2

Day 6 Day 7 Day 8 Day 9 Day 10

Day 13 Day 14 Day 15 Day 16 Day 17

Figure 4.18 geomnet

day: 13 day: 14 day: 15 day: 16 day: 17
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Security

Figure 4.19: The same email network as in Figure 4.13 faceted by day of the week.
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Figure 4.20 ggnetwork
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Figure 4.21: (continued) The same email network as in Figure 4.13 faceted by day of the week.
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Figure 4.23 ggnet2

# make data accessible

data(theme_elements, package = "geomnet")

# create network object

te.net <- network(theme_elements$edges)

# assign node attribut (size based on node degree)

te.net %v% "size" <-

sqrt(10 * (sna::degree(te.net) + 1))

set.seed(3272016)

ggnet2(te.net, label = TRUE, color = "white",

label.size = "size", layout.exp = 0.15,

mode = "fruchtermanreingold")
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Figure 4.24 geomnet

# data step: merge nodes and edges and

# introduce a degree-out variable

# data step: merge nodes and edges and

# introduce a degree-out variable

TEnet <- fortify(

as.edgedf(theme_elements$edges[,c(2,1)]),

theme_elements$vertices)

TEnet <- TEnet %>%

group_by(from_id) %>%

mutate(degree = sqrt(10 * n() + 1))

# create plot:

set.seed(3272016)

ggplot(data = TEnet,

aes(from_id = from_id, to_id = to_id)) +

geom_net(layout.alg = "fruchtermanreingold",

aes(fontsize = degree), directed = TRUE,

labelon = TRUE, size = 1, labelcolour = ’black’,

ecolour = "grey70", arrowsize = 0.5,

linewidth = 0.5, repel = TRUE) +

theme_net() +

xlim(c(-0.05, 1.05))
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Figure 4.25: Inheritance structure of ggplot2 theme elements. This is a recreation of the graph

found at http://docs.ggplot2.org/current/theme.html.

http://docs.ggplot2.org/current/theme.html
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Figure 4.26 ggnet2

set.seed(3272016)

# use network created in ggnet2 data step

ggplot(ggnetwork(te.net,

layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +

geom_edges() +

geom_nodes(size = 12, color = "white") +

geom_nodetext(

aes(size = size, label = vertex.names)) +

scale_size_continuous(range = c(4, 8)) +

guides(size = FALSE) +

theme_blank()
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Figure 4.27: (continued) Inheritance structure of ggplot2 theme elements. This is a recreation of

the graph found at http://docs.ggplot2.org/current/theme.html.

http://docs.ggplot2.org/current/theme.html


165

Figure 4.29 ggnet2

#make data accessible

data(football, package = ’geomnet’)

rownames(football$vertices) <-

football$vertices$label

# create network

fb.net <- network(football$edges[, 1:2],

directed = TRUE)

# create node attribute

# (what conference is team in?)

fb.net %v% "conf" <-

football$vertices[

network.vertex.names(fb.net), "value"

]

# create edge attribute

# (between teams in same conference?)

set.edge.attribute(

fb.net, "same.conf",

football$edges$same.conf)

set.seed(5232011)

ggnet2(fb.net, mode = "fruchtermanreingold",

color = "conf", palette = "Paired",

color.legend = "Conference",

edge.color = c("color", "grey75"))
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Figure 4.30 geomnet

# data step: merge vertices and edges

# data step: merge vertices and edges

ftnet <- fortify(as.edgedf(football$edges),

football$vertices)

# create new label variable for independent schools

ftnet$schools <- ifelse(

ftnet$value == "Independents", ftnet$from_id, "")

# create data plot

set.seed(5232011)

ggplot(data = ftnet,

aes(from_id = from_id, to_id = to_id)) +

geom_net(layout.alg = ’fruchtermanreingold’,

aes(colour = value, group = value,

linetype = factor(same.conf != 1),

label = schools),

linewidth = 0.5,

size = 5, vjust = -0.75, alpha = 0.3) +

theme_net() +

theme(legend.position = "bottom") +

scale_colour_brewer("Conference", palette = "Paired") +

guides(linetype = FALSE)
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Figure 4.31 ggnetwork

# use network from ggnet2 step

set.seed(5232011)

ggplot(

ggnetwork(

fb.net,

layout = "fruchtermanreingold"),

aes(x, y, xend = xend, yend = yend)) +

geom_edges(

aes(linetype = as.factor(same.conf)),

color = "grey50") +

geom_nodes(aes(color = conf), size = 4) +

scale_color_brewer("Conference",

palette = "Paired") +

scale_linetype_manual(values = c(2,1)) +

guides(linetype = FALSE) +

theme_blank()

Conference
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Figure 4.32: (continued) The network of regular season Division I college football games in the

season of fall 2000. The vertices and their labels are colored by conference.
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Figure 4.34 ggnet2

# Southern women network in ggnet2

# create affiliation matrix

bip = xtabs(~Event+Lady, data=elist)

# weighted bipartite network

bip = network(bip,

matrix.type = "bipartite",

ignore.eval = FALSE,

names.eval = "weights")

# detect and color the mode

set.seed(8262013)

ggnet2(bip, color = "mode", palette = "Set2",

shape = "mode", mode = "kamadakawai",

size = 15, label = TRUE) +

theme(legend.position="bottom")
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Figure 4.35: Graph of the Southern women data. Women are represented as orange triangles,

events as green circles.
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Figure 4.36 geomnet

# Southern women network in geomnet

# change labelcolour

davis$lcolour <-

c("white", "black")[as.numeric(davis$type)]

set.seed(8262013)

ggplot(data = davis) +

geom_net(layout.alg = "kamadakawai",

aes(from_id = from, to_id = to,

colour = type, shape = type),

size = 15, labelon = TRUE, ealpha = 0.25,

vjust = 0.5, hjust = 0.5,

labelcolour = davis$lcolour) +

theme_net() +

scale_colour_brewer("Type of node", palette = "Set2") +

scale_shape("Type of node") +

theme(legend.position = "bottom") E1
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Figure 4.37 ggnetwork

# Southern women network in ggnetwork. Use data from ggnet2 step

# assign vertex attributes (Node type and label)

set.vertex.attribute(bip, "mode",

c(rep("event", 14), rep("woman", 18)))

set.seed(8262013)

ggplot(data = ggnetwork(bip,

layout = "kamadakawai"),

aes(x = x, y = y, xend = xend, yend = yend)) +

geom_edges(colour = "grey80") +

geom_nodes(aes(colour = mode, shape = mode),

size = 15) +

geom_nodetext(aes(label = vertex.names)) +

scale_colour_brewer(palette = "Set2") +

theme_blank() +

theme(legend.position = "bottom")
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Figure 4.38: Graph of the Southern women data. Women are represented as orange triangles,

events as green circles.
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Figure 4.40 geographic map
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Figure 4.41 geomnet
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Figure 4.42 ggnet2
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Figure 4.43 ggnetwork
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Figure 4.44: Network of bike trips using a geographically true representation(top left) overlaid on

a satellite map, a Kamada-Kawai layout in geomnet (top right), a Fruchterman-Reingold layout

in ggnet2 (bottom left) and ggnetwork (bottom right). Metro stations are shown in orange. In

both the Kamada-Kawai and the Fruchterman-Reingold layouts, metro stations take a much more

central position than in the geographically true representation.
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Figure 4.45: Protein-protein interaction network in S. cerevisiae. A Fruchterman-Reingold algo-

rithm allowed to run for 50,000 iterations produced the coordinates for the nodes.
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Figure 4.46: Comparison of the times needed for calculating and rendering the previously discussed

protein interaction network in the three ggplot2 approaches and the standard plotting routines of

the network and igraph packages based on 100 evaluations each.
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Figure 4.47: Plotting times of random undirected networks of different sizes under each of the

available visualization approaches using their default settings. Note that each panel is scaled

independently to highlight relative differences in the visualization approaches rather than speed of

different hardware.
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CHAPTER 5. SUMMARY AND DISCUSSION

There are a vast array of methods for modelling network data. We have chosen to explore one

type of model for one type of network data: stochastic actor-oriented models for social network

data. These models are complex and relatively new, compared to other statistical network models,

so they are difficult to approach. The aim of our work is to bring attention to these models, both for

their potential and their potential flaws. Their intractability has led to complex simulation methods

for fitting, which in turn has led to these computations being hidden and hard to comprehend. In

Chapter 2, we brought these models out of the cave and into the light. By glimpsing the underlying

processes behind computation, we have exposed these models for other researchers to fully explore.

In Chapter 3, we performed “statistics on street corners” to determine what these models look like,

how the parameter values shape the overall structures of the simulated networks, and how well the

models actually capture the structure of the data they are modeling. In Chapter 4, we provided a

series of tools to the statisticians and sociologists who are interested in modelling dynamic network

data, with SAOMs and other network models, that give them beautiful, intutively created graphics

of their often complex data.

The suite of stochastic actor-oriented models for dynamic social network data take a lot of time

and effort to understand and apply for even the smallest of datasets, as was shown in Chapter

2. We have developed some tools, in Chapter 4, and methods, in Chapters 2 and 3, to lower the

“barrier of entry” to working with these models throughout this body of work, but there is still a lot

work to be done to further develop these models in a robust statistical framework. Even more work

computationally needs to be done to speed up the process of fitting these models. For the relatively

small senate collaboration network example of Chapter 2, the RSiena software takes minutes on a

personal computer to fit a model. With the exponentially increasing amount of network data and
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the increasing interest in network data in the 21st century, new, faster computing methods need to

be developed for these models to remain relevant.

In the future, we would like to explore the space of statistical models for social networks, learning

more about them in new and exciting ways, especially through the visualization methods we have

developed in this work. We would also like to collect social network data from various sources,

whether that be sociological data or social media data, and really push the limits of stochastic

actor-oriented models.
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APPENDIX. ADDITIONAL MATERIAL - CHAPTER 3

The lineups shown to participants in our study from Chapter 3 are shown below. The title of the

plot encodes the type of lineup as “model type difficulty rep”. The values of ‘model’ correspond to

the models M1, M3, M4, M5, M6, and M7, and the parameter being altered in the lineup, β1, . . . , β6.

The model codes are: dens, recip, jttp, jtts, simttb, samettp, and bigmod, which correspond to

(M1, β1), (M1, β2), (M3, β3), (M4, β4) , (M5, β5), (M6, β6), and (M7, goodness of fit only).

The values of ‘type’ correspond to the lineup types: ‘gof’ is a goodness of fit lineup (contains the

data), ‘neg’ is lineup type -1, and ‘pos’ is lineup type 1. The ‘difficulty’ is value is 1,2,3, or 9, for

easy, medim, hard, and goodness of fit (difficulty is not applicable). Finally, the ‘rep’ value is the

replicate of the lineup condition, 1,2,3.
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