
Lagrangian relaxation-based multi-threaded discrete gate sizer

by

Ankur Sharma

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Chris Chu, Major Professor

Degang J. Chen
Akhilesh Tyagi

Phillip H. Jones III
Sarah Ryan

The student author, whose presentation of the scholarship herein was approved by the program of study
committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this

dissertation is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2018

Copyright c© Ankur Sharma, 2018. All rights reserved.



ii

DEDICATION

I would like to dedicate this thesis to the Almighty whom we refer to in our culture as Krishna, and I

hope and pray that the skills and knowledge that I have gained during this course of study, may it be used in

some tangible way in the service of humanity.



iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 ISPD Gate Sizing Contests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Major Drawbacks With Existing LR Gate Sizers . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2. FAST LAGRANGIAN RELAXATION BASED GATE SIZING USING MULTI-
THREADING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Sequential Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 LDP solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Greedy post-pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Multi-threaded Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Requirements for Multi-threading the LRS . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 A Simple Approach - Clustering and Leveling . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Mutual Exclusion Edge Assignment - An Alternative to Clustering . . . . . . . . . . 17
2.4.4 DAG Based Netlist Traversal - An Alternative to Leveling . . . . . . . . . . . . . . 18
2.4.5 Modified Approach - An Alternative to the Simple Approach . . . . . . . . . . . . . 19
2.4.6 Parallelizing STA and LM update . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Enhancements in Sequential Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Fast-OLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Early Exit Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Fast-GTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Comparing Power and Performance Against Previous Works . . . . . . . . . . . . . 26
2.6.2 Comparison Against the Simple Approach . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 Impact of Fast-GTR on the Overall Speedup . . . . . . . . . . . . . . . . . . . . . . 28
2.6.4 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



iv

CHAPTER 3. RAPID GATE SIZING WITH FEWER ITERATIONS OF LAGRANGIAN RELAX-
ATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 LR Based Gate Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Lagrange Multiplier Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Timing Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Power Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Multi-Gate Sizing (MGS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.5 Critical Path Sizing (CPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 A Comparison With Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Factors Contributing to the Reduction in LR Iterations . . . . . . . . . . . . . . . . 49
3.5.3 Impact of CPS on Timing Convergence . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER 4. FAST LAGRANGIAN RELAXATION BASED MULTI-THREADED GATE SIZ-
ING USING SIMPLE TIMING CALIBRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Background on Lagrangian Relaxation Based Gate Sizing . . . . . . . . . . . . . . . . . . . 61

4.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Solve LDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Greedy post-pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Timing Models With Resistive Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Modeling Effective Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.2 Modeling Slew of an RC Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.3 Modeling Delay of an RC Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6.4 Modeling Gate Slew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.5 Modeling Gate Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.6 Calibration Pseudo Code and Runtime . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Fast LRS Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Lagrange Multiplier Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9 Greedy Post-Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9.1 Greedy Timing Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9.2 Greedy Power Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.10.1 Results on the ISPD 2012 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.10.2 Results on the ISPD 2013 Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.10.3 Breakdown of Results for the ISPD 2013 Designs . . . . . . . . . . . . . . . . . . . 82
4.10.4 Impact of Relaxing the Target Clock Period . . . . . . . . . . . . . . . . . . . . . . 84



v

4.10.5 Effectiveness of Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.10.6 Multi-Threading Different Sub-blocks of the Gate Sizer . . . . . . . . . . . . . . . 86

4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

CHAPTER 5. LAGRANGIAN RELAXATION BASED GATE SIZING WITH CLOCK SKEW
SCHEDULING - A FAST AND EFFECTIVE APPROACH . . . . . . . . . . . . . . . . . . . . . 90
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Min-Cost Network Flow Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 EGSS: Effective Gate Sizing With Skew Scheduling . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 Solving LRSλλλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5.2 Skew Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.3 Modified Lagrange Multiplier Update . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 NetFlo Vs EGSS: Limitations of Optimizing Primal Via Dual Maximization . . . . . . . . . 104
5.7 Greedy Refinements in Timing and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.8 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . 113

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



vi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Sri Krishna, the Supreme Personality of Godhead, for He is

the intelligence of the intelligent [Bhagavad Gita 7.10] and the ability in living beings [Bhagavad Gita 7.8],

and above everything, one thing that appeals the most to me is that He is the dearest well-wishing friend of

everyone irrespective of who you are [Bhagavad Gita 5.29]. He is so big-hearted and broad-minded.

I would like to express my heartfelt gratitude to my advisor Dr. Chu for his expert guidance, support

and encouragement through out my program of study. I cherish both his constructive criticism and honest

appreciations. I would also like to thank my committee members - Dr. Degang Chen, Dr. Akhilesh Tyagi,

Dr. Phillip Jones, Dr. Sarah Ryan for taking out their precious time to serve on my POS.

My heartfelt gratitude to Dr. Ganesh Ramakrishnan - my mentor at my undergraduate alma mater Indian

Institute of Technology Bombay, for seeing potential in me and inspiring me to take on my graduate journey.

I would like to take this opportunity to sincerely thank my elder brother Ashish for being with me as a

friend and advisor through thick and thin. Earlier his advices would often not appeal to me. But over the

period of time, I started to see wisdom in his words. As I look back, all I see is his self-less support and

encouraging assurance - I feel fortunate to have him. Next I would like to offer my deepest respects and love

for my parents. Their continuous shower of blessings and love always felt like cooling shade of large trees

under scorching heat of the sun. Trees suffer all the hard-ships and give comfort to those who are under

their shade. I would like to thank my wife, Nidhi, who joined me in the last one year of my studies. I must

confess she was instrumental in getting me finish my studies fast :-) Jokes apart, thank you Nidhi for your

support while you felt homesick and put through my busy schedules.

I thank my lab mates - Lin Tao, Yixiao Ding and Gang Wu - in all of whom I appreciated the quality

of focus. During this course of study, I made several friends whom I fondly remember and would like to

mention their names here for they became an integral part of my journey and I feel gratitude for them. They

are Anand Jagannath, Ravikiran, Ishana, Ankit, Pratik, Akshit, Rakesh, Abhinav, Rishi, Pranav, Paavan.



vii

ABSTRACT

In integrated circuit design gate sizing is one of the key optimization techniques which is repeatedly

invoked to trade-off delays for area and/or power of the gates during logic design and physical design stages.

With increasing design sizes of a million gates and larger, discrete gate sizes and non-convex delay models

the gate sizing algorithms that were designed for continuous sizes and convex delay models are slow and

timing inaccurate.

Of the several published discrete gate sizing algorithms, recent works have shown that Lagrangian relax-

ation based gate sizers have produced designs with the lowest power on average with high timing accuracy.

But they are also very slow due to a large number of expensive timing updates spread across hundreds of

iterations of solving the Lagrangian sub-problem.

In this thesis we present a Lagrangian relaxation based multi-threaded discrete gate sizer for fast timing

and power reduction by swapping the gate sizes and the threshold voltages. We developed two parallelization

enabling techniques to reduce the runtime of Lagrangian sub-problem solver, namely, mutual exclusion

edge (MEE) assignment and directed acyclic graph (DAG) based netlist traversal. MEEs are dummy edges

assigned to reduce computational dependencies among gates sharing one or more common fan-ins. DAG

based netlist traversal facilitates simultaneous resizing of gates belonging to different topological levels.

We designed a Lagrange multiplier update framework that enables rapid convergence of the timing

recovery and power recovery algorithms. To reduce the runtime of timing updates, we proposed a simple

and fast-to-compute effective capacitance model and several mechanisms to calibrate the timing models to

improve their accuracy. Compared to the state-of-the-art gate sizer, our proposed gate sizer is on average

15x faster and the optimized designs have only 1.7% higher power.

In digital synchronous designs simultaneous gate sizing and clock skew scheduling provides signifi-

cantly more power saving. We extend the gate sizer to simultaneously schedule the clock skew. It can

achieve an average of 18.8% more reduction in power with only 20% increase in the runtime.
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CHAPTER 1. OVERVIEW

Power consumption of integrated circuits has increased substantially with much larger circuits integrated

on a single chip with shrinking technology dimensions. Circuit performance is now limited by power due

to higher power densities and device limits. Reducing power consumption is a high priority for circuit

designers to allow higher performance, to reduce cooling and packaging costs, and to extend battery life in

mobile devices. With increasing design sizes of a million gates and larger, optimization tools must be very

fast while not sacrificing the quality of results.

In VLSI physical design, gate sizing is one of the most frequently used circuit optimizations. Each logic

gate has several possible implementations in terms of size and threshold voltage (Vt) of cell alternatives in a

standard cell library. Different implementations (cells) trade off typically power and/or area for delay. The

task of a gate-sizer is to choose a suitable cell for every gate to minimize the objective cost while meeting

the design timing constraints.

An example of discrete gate sizing is shown in Figure 1.1. The figure shows a standard cell library

consisting of two types of logic gates (identified by their shapes). Each gate type has four different cell

alternatives - two sizes (1x and 2x) times two Vt (high Vt shown in blue color and low Vt shown in red

color). Compared to the smaller size cells, larger size cells have smaller delay through them but leak more

power and have larger area. On the other hand, compared to higher Vt cells, lower Vt cells have smaller

delay and leak more power. The figure also shows an example original netlist (used interchangeably with

Figure 1.1: A pictorial depiction of discrete gate sizing.



2

the term design) which is composed of three gates of which two gates are of the same type. The task of the

gate sizer is to select a suitable cell alternative for each gate type so that, say, total power of the design is

minimized while satisfying the delay constraint that the total delay of the slowest path in the design (there

is only one path in this example) is less than a pre-determined delay budget.

Apart from the huge number of gates in a design, discreteness of the cell alternatives and non-convexity

of the delay models have made the gate sizing problem quite difficult. Industry has mostly been using the

table lookup based non-linear delay models that do not have nice properties like convexity, but are fairly

accurate. Therefore, a high quality gate sizer must be able to effectively handle the discreteness and the

non-convexity. Of the several different techniques that researchers have been using to attack the gate sizing

problem like dynamic programming, convex programming and network flow, to name a few, Lagrangian

relaxation (LR) based gate sizers have produced high quality design solutions in a competitive runtime

compared to other kinds of gate sizer.

1.1 Previous Work

Gate sizing has been studied for several decades. As the constraints changed and newer timing models

emerged, researchers applied different techniques. One standard technique is greedy iterative sensitivity-

based heuristics Fishburn (1985); Hu et al. (2012); Kahng et al. (2013). These heuristics greedily resize the

gate that promise maximum benefit in terms of some sensitivity score. If the solution space is convex and has

no local minimum, then greedy heuristics can yield the optimal solution, but they can be very slow. In the

presence of local minima, such heuristics can easily get stuck. For global optimization, gate sizing problem

has been formulated as a linear programming problem Nguyen et al. (2003); Chinnery et al. (2005), or, a

more general, convex programming Kasamsetty et al. (2000); Roy et al. (2007), problem. Using standard

optimization techniques, these techniques can converge to the optimal or a near-optimal solution. However,

when cell alternatives are discrete, then optimality cannot be guaranteed and the approach is too slow. Even

continuous sizing followed by mapping to the discrete space is not that effective, especially if the discrete

gate sizes are of coarse granularity Hu et al. (2007).
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With non-convex delay models, like the table lookup based models, timing accuracy is often significantly

compromised. For example, researchers often assume simplified delay models like the Elmore delay model

Chen et. al. (1999), or an input-slew independent delay-model Nguyen et al. (2003). Alternatively, they

approximate with a convex delay model Roy et al. (2007), such as a posynomial function Kasamsetty et

al. (2000). Such delay models can be quite inaccurate versus lookup tables, as reported in Chinnery et al.

(2005); Rahman et al. (2013).

With discrete sizes, the gate sizing problem can be formulated as a combinatorial optimization problem

which has been shown an NP-hard problem Ning (1994). Several works have applied dynamic programming

(DP) Hu et al. (2007); Liu et al. (2010, 2011), but those strategies while optimal for tree topologies, cannot

optimize well on graphs with reconvergent paths.

Another global optimization technique which has been empirically shown to be quite effective in the

discrete domain with non-convex models is based on Lagrangian relaxation. The earliest work from Chen et.

al. (1999) proved convergence for a continuous and convex problem. The authors proposed to solve it

iteratively by alternating between solving an LR subproblem and updating the Lagrange multipliers using

a sub-gradient method. Since then several works have been published that improved the LR subproblem

solver and/or strategy to update the Lagrange multipliers. While Tennakoon et al. (2002); Huang et al.

(2011); Wang et al. (2009) proposed strategies to update Lagrange multipliers that were quite different from

the sub-gradient approach; the LR subproblem was formulated as a graph problem in Ozdal et al. (2011).

Reimann et al. (2016) proposed a strategy to initialize Lagrange multipliers for a pre-optimized design.

1.1.1 ISPD Gate Sizing Contests

In International Symposium on Physical Design (ISPD) 2012 and 2013, Intel organized discrete gate

sizing contests. Organizers provided a dummy discrete standard cell library containing 30 cell alternatives

(10 sizes times 3 Vt) for each gate type; a suite of 7 designs with total gate count ranging from few hundreds

of gates to an order of a million gates. The contest used Synopsys PrimeTime - de facto industry standard

sign-off timer for timing verification. A public platform for comparing different gate-sizing approaches
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under more realistic constraints greatly advanced the state-of-the-art in gate sizing. We also use these contest

benchmark suites to evaluate our gate sizer.

Since the contests, several works have been published that used the contest framework to benchmark

their gate sizers Li et al. (2012); Hu et al. (2012); Reimann et al. (2013); Kahng et al. (2013); Livramento et

al. (2014); Flach et al. (2014); Yella et al. (2017); Daboul et al. (2018). While authors of Kahng et al. (2013);

Flach et al. (2014) employed sensitivity guided greedy meta-heuristic, gate sizers from the authors of Li et

al. (2012); Livramento et al. (2014); Flach et al. (2014); Yella et al. (2017) solved an LR formulation of the

gate sizing problem. The state-of-the-art gate sizer of Flach et al. (2014) demonstrated minimum leakage

power on most of the designs as well as on average with competitive runtime. Daboul et al. (2018) recently

published their gate sizer where they formulated the gate sizing problem as a resource sharing problem.

They used the IBM’s EinsTimer for timing verification instead of the Synopsys PrimeTime which was used

in the contests. They reported shorter runtime using several tens of threads and slightly more leakage power

compared to Flach et al. (2014). However, timing was not closed when checking their final optimized netlists

in PrimeTime.

1.1.2 Major Drawbacks With Existing LR Gate Sizers

Although LR gate sizers have yielded designs with the least power and their runtime is lesser than the

other gate sizing approaches, in absolute terms they are still quite slow especially on the larger designs. For

an instance, the state-of-the-art gate sizer Flach et al. (2014) spends more than 6.5 hours to optimize designs

with a million gates. Considering that gate sizing needs to be invoked several times in the design cycle, the

design process would greatly benefit if gate sizers are much faster while achieving the similar power. LR

gate sizers in general have following major drawbacks:

• LR gate sizers require hundreds of iterations to converge to a good quality of solution. Each iteration

necessitates a huge number of timing updates which can significantly slow down the sizer, especially

when interconnects are resistive. With resistive interconnects, accurate timing updates are quite CPU

intensive.
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• The typical heuristics applied to solve the discrete LR subproblem are parallelizable, but there has

been no systematic effort to utilize the parallelism.

• The commonly used Lagrange multiplier update strategies are all heuristics with one or more parame-

ters to tune. Although the multiplier update is very crucial to convergence rate and quality of solution,

it is not clear how to tune the parameters.

• Since discrete LR gate sizing is done in a heuristic manner, often a post-pass is necessary for finer-

grained timing and power reduction. The post-pass strategies proposed in the existing LR gate sizing

literature are very slow. In some cases, the post-pass can account for the majority of the runtime.

1.2 Contributions

In this thesis we develop a multi-threaded discrete gate sizer using the LR formulation for fast timing

and power reduction without loosing the solution quality. In the first half of this thesis, we assume that the

interconnects are purely capacitive. In the second half, we extend our gate sizer to optimize designs with

resistive interconnects. We further extend it to simultaneously schedule the clock skew which significantly

reduces the power with a small runtime penalty. Our gate sizer has been benchmarked using the ISPD 2012

and the ISPD 2013 gate sizing contest suites. Our major contributions are listed below:

• We develop two parallelization enabling techniques for a multi-threaded LR subproblem solver. Com-

bined with other enhancements to speed up the sequential portion of the code, our multi-threaded gate

sizer could achieve 5.4x speedup with 8 threads without compromising the solution quality. Our gate

sizer’s runtime with single thread is on average similar to the state-of-the-art gate sizer runtime.

• We design a tunable and effective Lagrange multiplier update framework. We analyze the impact of

different tuning parameters on the convergence rate and the final solution quality. We further propose

two strategies for finer-grained timing and power reduction. They allow early termination of the run-

time expensive iterations and the final solution quality at the end actually improves (power reduces).

Faster convergence due to our proposed multiplier update framework along with early termination



6

cuts down the number of iterations by 5 times, and the total runtime reduces by 2.5x compared to our

multi-threaded gate sizer using 8 threads.

• To realize similar speedups in runtime on designs with resistive interconnect, we propose a new gate

sizing flow based on simple though inaccurate timing models. In addition to developing a new, fast-to-

compute, closed form expression for modeling effective capacitance, we propose several calibration

mechanisms to improve the accuracy of the timing models. Compared to the state-of-the-art gate sizer

Flach et al. (2014), our gate sizer is, on average, more than 15x faster and leakage power is only 2.5%

higher.

• We extend our LR gate sizer to simultaneously schedule the clock skew. For that, we incorporate

skew into the LR subproblem and propose a simple skew update strategy. With our modified flow to

simultaneously size the gates and update the skews, our tool reduces 19.7% more power, on average.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we present our proposed multi-threaded gate

sizer. In Chapter 3, we discuss our tunable Lagrange multiplier update framework. In Chapter 4, we extend

our gate sizer to optimize designs with resistive interconnect. In Chapter 5, we discuss simultaneous gate

sizing and clock skew scheduling problem. Lastly, we conclude in Chapter 6.
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CHAPTER 2. FAST LAGRANGIAN RELAXATION BASED GATE SIZING USING

MULTI-THREADING

Published in International Conference on Computer Aided Design 2015

Abstract - We propose techniques to achieve very fast multi-threaded gate-sizing and threshold-

voltage swap for leakage power minimization. We focus on multi-threading Lagrangian Relaxation (LR)

based gate sizing which has shown both better power savings and better runtime compared to other gate siz-

ing approaches. Our techniques, mutual exclusion edge assignment and directed graph-based netlist traver-

sal, maximize thread execution efficiency to take full advantage of the inherent parallelism when solving the

LR subproblem, without compromising the leakage power savings.

With 8 threads, our multi-threading techniques achieve on average 5.23x speedup versus our single-

threaded (sequential) implementation. This compares well to the maximum achievable speedup of 5.93x

by Amdahl’s law due to 5% of the execution not being parallelizable. To highlight the problems with load

imbalance and poor scheduling, we also propose a simpler approach based on clustering and topological

level-by-level netlist traversal, which can achieve only 3.55x speedup.

We also propose three simple yet effective enhancements - fast optimal local resizing, early exit policy,

and fast greedy timing recovery - to speed up single-threaded LR-based gate-sizing without degrading the

leakage power. We test our gate sizer using the ISPD 2012 gate sizing contest benchmarks and guidelines.

Compared to other researchers’ state-of-the-art LR-based gate sizer, our approach is 1.03x (with 1-thread)

and 5.40x (with 8-threads) faster and only 2.2% worse in leakage power.

2.1 Introduction

Power consumption of integrated circuits has increased substantially with much larger circuits integrated

on a single chip with shrinking technology dimensions. Circuit performance is now limited by power due

to higher power densities and device limits. Reducing power consumption is a high priority for circuit
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designers to allow higher performance, to reduce cooling and packaging costs, and to extend battery life in

mobile devices.

In VLSI physical design, gate sizing is one of the most frequently used circuit optimizations. Each logic

gate has several possible implementations in terms of size and threshold voltage (Vth) of cell alternatives

in a standard cell library. Different implementations (cells) trade off area or power for delay. The task of

a gate-sizer is to choose a suitable cell for every gate to minimize power while meeting the design timing

constraints. With increasing design sizes of a million gates and larger, optimization tools must be very fast

while not sacrificing the quality of results.

The discrete gate-sizing problem is NP-hard Ning (1994). Also, cell delays do not vary in a convex

manner with area or power, because for example internal capacitances vary with cell layout due to multiple

transistor fingers or fins to implement greater drive strengths. This makes the gate-sizing problem very

difficult to solve optimally. Researchers have applied various techniques such as greedy iterative sensitivity-

based heuristics Fishburn (1985); Hu et al. (2012), linear programming Nguyen et al. (2003); Chinnery et

al. (2005), convex programming Kasamsetty et al. (2000) Roy et al. (2007), Lagrangian Relaxation (LR)

Chen et. al. (1999); Tennakoon et al. (2002); Wang et al. (2009); Ozdal et al. (2011); Huang et al. (2011);

Li et al. (2012); Livramento et al. (2013); Flach et al. (2014), network flow Sundararajan et al. (2002)

Ren et al. (2008), dynamic programming (DP) Hu et al. (2007); Liu et al. (2010, 2011), and logical effort

Rahman et al. (2013) Reimann et al. (2013).

Two major drawbacks of most of these works are inaccurate delay models and the assumption that the

gate sizes are continuous. In academia, researchers often assume simplified delay models like the Elmore

delay model Chen et. al. (1999), or an input-slew independent delay-model Nguyen et al. (2003). Alter-

natively, they approximate with a convex delay model Roy et al. (2007), such as a posynomial function

Kasamsetty et al. (2000). Such delay models can be quite inaccurate versus SPICE models or library lookup

tables, as reported in Chinnery et al. (2005), Rahman et al. (2013). Whereas, industry has mostly been using

the table-lookup based non-linear delay models that do not have nice properties like convexity, but are fairly

accurate. Continuous sizing followed by mapping to the discrete space may not be able to satisfy the timing

constraints especially if the discrete gate sizes are of coarse granularity in size Hu et al. (2007). Moreover,
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in most of the previous works, the benchmark suites for evaluation either contained only small designs or

were proprietary, making a fair comparison difficult.

Some of these concerns were addressed with the ISPD 2012 Ozdal et al. (2012) and ISPD 2013 Discrete

Gate Sizing Contests Ozdal et al. (2013), which provided a common platform for fairly comparing different

gate-sizing approaches. The objective is to minimize leakage power while meeting the timing constraints.

Since then, several works have utilized the contest framework to compare their gate sizers Li et al. (2012);

Hu et al. (2012); Livramento et al. (2013); Reimann et al. (2013); Flach et al. (2014). We observe that

some of the fastest approaches with competitive solution quality1 use LR as the main technique Li et al.

(2012); Livramento et al. (2013); Flach et al. (2014). LR achieves excellent results as it provides a global

optimization avoiding local minima, and Karush-Kuhn-Tucker (KKT) optimality conditions Chen et. al.

(1999) greatly prune the search space.

Significant further speedups in LR based gate-sizers can be achieved by smartly multi-threading different

blocks of the LR framework. Liu et al. (2011) use a GPU to accelerate their DP-based gate-sizer. DP-

based gate sizing is optimal for tree topologies but it is known to exhibit suboptimal behavior due to path

reconvergence. Li et al. (2012) very briefly talk about multi-threading their iterative LR framework. Their

multi-threading strategy in each iteration is to simultaneously resize the gates that are either in the same

topological level or three levels apart. (We shall refer to topological levels as levels in the rest of the

chapter.) While three level separation might avoid inaccuracies in slew and capacitance computation, on the

downside, only one-third of the gates are resized in each iteration which results in slow convergence and/or

higher leakage. We propose techniques that consider all the gates in each iteration without compromising

accuracy, and yet achieve high thread utilization. Compared to Li et al. (2012), on ISPD2012 contest

benchmarks, our sizer is 7.8x faster and, on average, saves 12% more leakage power.

In this chapter, we focus on developing techniques that enable efficient multi-threading to realize a very

fast gate sizer. With 8 threads, our multi-threading techniques achieve on average 5.23x speedup versus

our sequential implementation, without degrading the leakage power. This compares well to the maximum

achievable speedup of 5.93x by Amdahl’s law due to only 5% of the execution not being parallelizable.
1Up until now, Flach et al. (2014) presents the best results for both leakage and runtime for all of the ISPD 2012 gate-sizing

benchmarks.
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To highlight the problems with load imbalance and poor scheduling, we also propose a simpler set of ap-

proaches based on clustering and topological level-by-level netlist traversal. Our major contributions are

summarized below:

• We propose mutual-exclusion edge (MEE) assignment to avoid inaccuracies in capacitance computa-

tion. In contrast with clustering, MEE greatly improves the load balancing.

• We use directed acyclic graph (DAG) netlist traversal (DNT) to systematically propagate the slew. In

contrast with leveling, DNT does not require threads to synchronize at each level.

• We provide three enhancements to the sequential approach: a fast optimal local resizing (Fast-OLR)

and an early exit policy to speedup the parallelized sequential runtime, and a fast greedy timing

recovery (Fast-GTR) to reduce the non-parallelized sequential runtime. Due to Fast-GTR we are able

to reduce the unparallelized sequential runtime to a mere 5%.

This chapter is organized as follows. In Section 2.2, we formulate the problem. Section 2.3 presents our

sequential LR approach. There we describe the overall flow of our gate-sizer. In Section 2.4, we present

MEE assignment and DAG-based netlist traversal. Section 2.5 details our enhancements to reduce sequential

runtime. We discuss the experimental results in Section 2.6 and conclude in Section 2.7.

2.2 Problem Formulation

Following the ISPD 2012 contest guidelines, we assume that 1) only combinational gates can be resized,

whereas sequential gates have a fixed size, and 2) a lumped capacitance model is used for modeling inter-

connect capacitance. Consequently, all nodes of a net (one driver and one or more sinks) share the same

timing information (slew, arrival and required times).

Throughout this work, T is the clock period; node i is the driver node of the net i; i → j denotes the

timing arc from node i to node j; ai and qi are the actual and required arrival times (AAT and RAT) at node

i, respectively; and di→j is the delay of the timing arc i→ j.

The objective is to choose suitable cells for every gate so that the total leakage power (sum of leakage

powers of individual gates) is minimized under three types of timing constraints: 1) worst path delay ≤ T ;
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2) maximum output capacitance ≤ maxcap; and 3) maximum output slew ≤ maxslew. This minimization

is over all the available cells for every gate in the library. In our approach, we guarantee to satisfy the second

and the third constraints throughout, so we do not formalize them mathematically below. We do model rise

and fall timing constraints separately, but we have omitted them here for clear presentation. The original

problem is formulated as follows:

minimize
cell,a

∑
gates

leakage

subject to ai + di→j ≤ aj , for each timing arc i→ j

ak ≤ T for each primary output k

(2.1)

We apply the Lagrangian Relaxation technique to Equation (2.1) to include all the constraints into the ob-

jective. To avoid constraint violations, a positive penalty term is introduced per constraint, called the La-

grangian multiplier (LM, λ). This gives the Lagrangian Relaxation Subproblem (LRS):

minimize
cell,a

∑
gates

leakage+
∑
i→j

λi→j (ai + di→j − aj)

+
∑
k

λk (ak − T )

(2.2)

By applying KKT conditions Chen et. al. (1999), the LRS can be simplified to

minimize
cell

∑
gates

leakage+
∑
i→j

λi→jdi→j (2.3)

The Lagrangian Dual Problem (LDP) is shown in (2.4).

maximize
λ

minimize
cell

∑
gates

leakage+
∑
i→j

λi→jdi→j


subject to

∑
u∈fanin(i)

λu→i =
∑

v∈fanout(i)

λi→v, for each node i

(2.4)

The term
∑
λi→jdi→j is referred to as the lambda-delay Flach et al. (2014).
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Figure 2.1: Gate-sizing algorithm flowchart

2.3 Sequential Approach

In this section we present a brief overview of our sequential gate-sizer. As shown in Figure 2.1, the

algorithm has three stages: the initialization; the LDP solver; and the final greedy stage.

2.3.1 Initialization

In the initialization stage, each gate is assigned its minimum leakage library cell. However, that might

violate all three types of timing constraints. Gates are minimally upsized to satisfy the maximum load

capacitance and maximum slew constraints. This is done by traversing the netlist in reverse topological

order and upsizing the gates that have capacitance violations; followed by a forward topological traversal to

upsize the gates to satisfy the slew constraints, where necessary. The LMs are all initialized to 1.

2.3.2 LDP solver

This is an iterative stage to approximately solve (2.4). In each iteration, the LM update and the LRS

solver alternate to update the LMs for the given cells and update the cells for the given LMs, respectively.

2.3.2.1 LM update

The LDP solver begins with the static timing analysis (STA) and updating of the LMs according to the

criticality of the corresponding timing arc. We developed our own static timer and verified its accuracy

against Synopsys PrimeTime, as per the contest guidelines. For updating the LMs, a common strategy is to

increase the LMs in proportion to their timing criticality Tennakoon et al. (2002). We use an exponential

factor cexp to emphasize the LMs (see the pseudo code in Figure 2.2). Although the use of cexp was

originally presented in Flach et al. (2014), details were not provided therein on how to update it, except
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Figure 2.2: Pseudo code for LM update

for a few hints. In our experience, the update method for cexp is crucial to the final solution quality, so we

explicitly show it in the pseudo code. As long as the design violates the relaxed delay target (r ∗ T ), we

increase cexp. By the time the design satisfies the relaxed delay target, cexp is usually very large because

we started out with the minimum power solution instead of a minimum delay solution. Therefore, in order

to accelerate the power recovery, we rapidly reduce cexp by using the factor k. KKT projection ensures that

LMs satisfy the KKT conditions Tennakoon et al. (2002). Both STA and LM update are highly parallelizable

sub-blocks (discussed in Section 2.4), though they contribute only a small fraction of the total runtime.

2.3.2.2 LRS solver

The LRS solver approximately solves (2.3) by optimal local resizing (OLR) of one gate at a time,

assuming all the other gates are fixed. Gates are traversed in forward topological order from the primary

inputs (PIs) to the primary outputs (POs), i.e., OLR of a gate begins after all its fanin gates have been

processed Livramento et al. (2013). Such an order can be precomputed and stored. To optimally resize a

gate, the lambda-delay-cost is computed for all the valid cells2 of that gate and the cell with the lowest cost

(lambda-delay-cost + leakage) is chosen. The lambda-delay-cost approximates lambda-delay. To exactly

compute lambda-delay, an incremental timing analysis is needed which becomes prohibitively expensive

when done for several cells of every gate. To limit the runtime overhead when analyzing alternate cells,

timing of only the local arcs is recomputed Li et al. (2012). To improve the accuracy, Flach et al. (2014)
2A cell is invalid if it causes capacitance or slew constraint violations.
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Figure 2.3: Local arcs include fanin-arcs: 1-5, 2-5, 5-7, 3-6, 4-6; gate-arcs: 7-8, 5-8, 6-8; fanout-arcs: 8-10, 8-11;
side-arcs:5-9. Drain-nets: 10, 11; side-nets: 9.

proposed global delay/slew sensitivity functions to approximate the change in lambda-delay for the rest of

the fanout cone (the second term in eq.(2.5)). Therefore, the lambda-delay-cost for a cell c can be computed

as follows:

lambda-delay-cost(c) =∑
i→j∈local−arcs(c)

λi→jdi→j +
∑

n∈drain−nets(c)∪side−nets(c)

4Dλ
n

(2.5)

where 4Dλ
n is the lambda-delay change in the net n due to the change in output slew of the gate driving

the net Flach et al. (2014). Local-arcs constitute fanin-arcs, gate-arcs, side-arcs and fanout-arcs, as shown

in Figure 2.3 along with the drain-nets and the side-nets. The LRS solver is the most expensive sub-block.

It also offers great parallelism since multiple gates can be processed simultaneously.

2.3.3 Greedy post-pass

The last stage combines two greedy heuristics: greedy timing recovery (GTR), and greedy power recov-

ery (GPR). The least power solution obtained from LDP is the starting point for the greedy post-pass. If

the starting solution satisfies the timing, GTR is skipped then GPR tries to squeeze out as much power as

possible by greedily downsizing the most sensitive gates without violating any constraint Hu et al. (2012).

GTR very effectively complements LR, as GTR allows the final solution at the end of LDP to have small

timing violations. Owing to its global view, LR is not very efficient in recovering timing exactly. To resolve

the remaining timing violations, LR ends up expending more power than a more localized greedy approach
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like GTR. The GTR algorithm will be discussed in Section 2.5.3. Both GPR and GTR lack parallelism,

hence they are left sequential in this work.

2.4 Multi-threaded Approach

We propose techniques to parallelize the following sub-blocks: LRS solver, STA, and LM update. Par-

allelization of the LRS is our key focus since its the most runtime expensive of all, so we discuss it first. We

shall refer to multi-threaded LRS as MT-LRS.

2.4.1 Requirements for Multi-threading the LRS

As mentioned above, LRS involves OLR of all the gates and several gates can be processed simulta-

neously. We shall use OLR and “processing” interchangeably. Simultaneous OLR of two or more gates

requires all of them to satisfy two properties that we have identified as follows:

Property 1 None of them should have a fanin in common. Otherwise, when two or more gates sharing

a fanin are being resized, some of them might witness an unexpected change in the fanin’s load while they

are in the middle of OLR. Even worse, the fanin maxcap constraint might be violated if gates commit their

new sizes simultaneously. This would require one or more gates to redo OLR, which can become very

expensive and therefore should be avoided.

Property 2 None of them should lie in the fanout cone of a gate undergoing OLR. Otherwise, the gate

in the fanout cone might be using the stale values for input slew. This can be easily avoided by following

a forward topological order as used in the sequential approach (see Section 2.3.2.2). However, unlike the

sequential execution, precomputing an order with multiple threads is undesirable because processing time

of the gates is not known a priori. Therefore, instead of a precomputed order, a dynamic structure like a

queue of ready gates whose fanins have already been resized needs to be maintained.

To ensure both of the above properties, we first propose a simple approach, followed by the MEE as-

signment and the DNT.
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Figure 2.4: Pseudo code for MT-LRS by the simple approach.

2.4.2 A Simple Approach - Clustering and Leveling

To ensure the first property, we propose to cluster all the gates that share fanins and process them by a

single thread. If gate A shares a fanin with gate B, and B shares a fanin with gate C, then all three gates

should be clustered, even if A and C do not share any fanin. Note that the clusters are always disjoint.

The advantage of clustering is that it is simple to implement and the clusters can be precomputed, but the

disadvantage is that it can cause heavy load imbalancing if the cluster sizes are highly non-uniform.

To ensure the second property, we propose to group all the clusters by their topological level (PIs being

at level 0) and process one level at a time. We refer to this as leveling. If a cluster spans multiple levels, it

can be safely broken down into that many sub-clusters. When all the clusters at a level have been processed,

all the clusters in the next level at once become ready. The advantage of leveling is that it does not require

any book-keeping to determine when a cluster becomes ready, whereas the disadvantage is that threads need

to wait for every other thread to finish before moving onto the next level.

Figure 2.4 shows the pseudo code for MT-LRS with this approach. At each level, a queue (readyQ)

of ready clusters is initialized with the clusters at that level. Then, each thread enters a critical section to

retrieve a cluster from the readyQ. In a critical section a mutually exclusive (mutex) lock is used to ensure

that no other thread writes or reads the data that is being updated. Other threads wanting to read/write that

data stall until the first thread exits the critical section. Threads process their respective clusters and re-enter
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Figure 2.5: (a) One possible MEE assignment: Fanouts of A - {D,E,F} are chained by MEEs (dashed lines). Similarly,
fanouts of C - {F,G} are chained. With MEEs, the fanouts of A will be processed in the following order: F then E then
D. (b) An incorrect MEE assignment as it forms the cycle D-F-E. Edges D-F and F-E are MEEs, and the edge E-D is
a netlist edge - due to D being a fanout of E.

the critical section. When the readyQ is empty, threads exit and wait at the barrier for the other threads to

finish. In multi-threaded programming, barrier is used to synchronize all the threads at that point.

2.4.3 Mutual Exclusion Edge Assignment - An Alternative to Clustering

As noted above, clustering can cause heavy load imbalancing due to non-uniform cluster sizes. If we

want to avoid clustering, we need an alternative mechanism to ensure the first property. We propose to

chain the fanouts of every gate by additional edges, referred to as mutual exclusion edges (MEE), thereby

ensuring that the fanouts of the same gate are not processed simultaneously. An example is shown in the

Figure 2.5(a).

If the fanouts are arbitrarily chained then either cycles (Figure ??(b)) or very long chains might get

created. While cycles would lead to deadlock, long chains would adversely affect the performance.

We propose a randomized algorithm for MEE assignment to avoid cycles and probabilistically reduce

the maximum chain length. Its pseudo code is shown in Figure 2.6. It consists of two stages: (1) assignment

of random IDs to each gate, and (2) assignment of MEEs. Random IDs are assigned such that the gates at

the higher topological level have larger IDs. Then in the second stage, for every gate, its fanouts are sorted

in ascending order of their IDs and an MEE is assigned between every consecutive pair of sorted fanouts -

from the lower ID fanout to the higher ID fanout. Thus, the fanouts are chained. MEEs are assigned once

and it has linear time complexity. In reference to the pseudo code, s[i] is referred to as a pseudofanin of
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Figure 2.6: Pseudo code for MEE assignment.

s[i + 1] and s[i + 1] is a pseudofanout of s[i]. In our scheme of MEE assignment, this strategy guarantees

cycle-free assignment.

If during the ID assignment stage we do not ensure larger IDs for gates at higher levels (PIs are at level

0), then an MEE may get assigned from a higher to a lower level fanout. This may create cycles involving

the netlist edges that are always from the lower to the higher levels.

While MEE can achieve much better load balancing than clustering, it creates additional edges which

means more precedence constraints that limit the parallelism. We empirically show that the thread idling

time is actually very small for larger designs.

2.4.4 DAG Based Netlist Traversal - An Alternative to Leveling

Though leveling is a simple idea, it has two disadvantages: 1) a barrier at the end of each level causes

thread idling, and 2) within a level, parallelism is limited by MEEs. The repercussions of barrier are more

visible with the clustering where loads can be highly imbalanced. With an increasing number of threads,

this barrier and the limited parallelism worsen the thread utilization. An alternative approach to leveling is
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Figure 2.7: Pseudo codes for two book-keeping functions of DNT.

DAG based netlist traversal (DNT). By some book-keeping, we can track the gates as they become ready,

and keep pushing them into the readyQ. As long as the readyQ is non-empty, threads need not wait.

Pseudo code for two book-keeping functions needed to implement the DNT are shown in Figure 2.7.

The first function, init precedence count(gate g), initializes the precedence count (preCount) of the gate g.

preCount is the number of predecessors which can be either fanins or pseudofanins. The second function,

identify ready gates(gate g), is invoked when the gate g has been processed. It decrements the preCount of

each one of its fanouts as well as pseudofanouts. Those fanouts or pseudofanouts whose preCount reaches

zero are returned as ready gates.

The disadvantage of DNT over leveling is that it requires book-keeping to track the ready gates. This

needs to be done inside a critical section because multiple threads might want to simultaneously read/write

the preCount of the same gate. However, a critical section is in any case required to update the readyQ.

Therefore, by merging the two critical sections, we can optimize away the additional thread idling.

Next, we present a better approach for MT-LRS with MEE assignment and DNT.

2.4.5 Modified Approach - An Alternative to the Simple Approach

This modified approach replaces clustering and leveling by MEE assignment and DNT, respectively.

Like clustering, the MEE assignment is also required only once in the beginning. On the other hand, the

DNT must perform book-keeping every time MT-LRS is invoked. Figure 2.8 shows the pseudo code of

MT-LRS via the modified approach. Firstly, the preCount of each gate is initialized. The gates with zero
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Figure 2.8: Pseudo code for the MT-LRS via the modified approach.

preCount are the ready gates and they form the readyQ. Then, each thread retrieves a ready gate (more gates

can also be retrieved) from the readyQ and processes it. Processed gates identify new ready gates, if any,

and update the readyQ. If all the gates have been processed, the thread exits, otherwise it retrieves the next

ready gate and processes it. Note that unlike in the leveling, an empty readyQ does not imply all the gates

are processed, rather it means that some threads are still working and they might soon generate new ready

gates.

2.4.6 Parallelizing STA and LM update

Parallelizing the STA and the LM update is much more straightforward than parallelizing the LRS.

In STA, gate timings are updated in the forward topological order; whereas in LM update, gate LMs are

updated in the reverse topological order. We apply the leveling idea for topological traversal. Note that the

clustering is not needed in either STA or LM update, because gates are not being resized. Therefore, at

each topological level, there is total freedom to update any number of gates simultaneously and in any order.

We form groups of ten gates at each level and feed them to the threads whenever threads become available.

When all the gates at a level are updated, we go to the next level. Note that the STA and the LM update do

not involve much computation and the time spent updating a group of gates is more or less the same across
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Figure 2.9: Pseudo-code for Fast-OLR.

all the groups. Therefore, an explicit barrier at the end of each level does not degrade the thread utilization

much.

2.5 Enhancements in Sequential Approach

To complement the multi-threading performance improvements, the sequential approach should be free

from sub-optimality as far as possible. Although the recent LR-based gate sizers have been demonstrated

to be the fastest on the ISPD 2012 benchmarks, at several places in the general strategy we observe sub-

optimal performance. For example: during the OLR of a gate, Li et al. (2012); Livramento et al. (2013);

Flach et al. (2014) suggest evaluating all the cells, but this may not be necessary in all the iterations. While

Livramento et al. (2013) executes a fixed number of LDP iterations, Flach et al. (2014) does not define

convergence criteria for when LDP can be terminated. To address these issues and more, we propose the

following three enhancements.
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Figure 2.10: The bar chart shows the reductions in the cell evaluations and the LRS runtime due to Fast-OLR. The
numbers on the right of each bar denote the power savings after the LDP stage, relative to OLR.

2.5.1 Fast-OLR

During the OLR, a gate is resized to the cell that has the lowest cost (lambda-delay-cost + leakage). To

determine such a cell, Li et al. (2012); Livramento et al. (2013); Flach et al. (2014) suggest evaluating all

the valid alternatives. However in practice, we observed that the cost function almost always has a single

local minimum considering a fixed Vth and varying sizes. Therefore, by searching for the optimal cell

locally, we can reach the globally optimal cell most of the time. Although this may be an artifact of the

ISPD 2012 contest library, there is another advantage of local searching which is library independent. Local

searching induces incremental changes to the current solution, whereas jumping to the globally optimal cell

may significantly perturb the current solution. Large perturbations during the last few iterations tend to

destabilize the solution, preventing convergence and degrading the results.

Figure 2.9 shows the pseudo code of our proposed algorithm, Fast-OLR. A cell is characterized by its

size (or width) and Vth. Since we do local searching, we restrict our search to the current Vth, the next

higher Vth and the next lower Vth cells. For each of the three Vth, we iterate over the cells with increasing

sizes. We continue as long as the cost is reducing, and store the least cost cell as a suitable candidate. The



23

Figure 2.11: Comparing TNS and power profiles due to Fast-OLR and OLR, on b19 fast. After 100 iterations, TNS
destabilizes due to OLR. Consequently, OLR cannot focus on power recovery, and ends up with 11% higher power.

same procedure is repeated for the decreasing sizes. At the end, the least cost candidate that does not worsen

the local slack much is applied.

Before choosing the least cost cell, Flach et al. (2014) suggested computing the change in the slack of

the driver and the sink nets because the locally optimal cell, whether found by local searching or otherwise,

might significantly worsen the TNS. We apply this check as we recover power, after the design timing is

within 1% of the target delay.

In Figure 2.10, we compare the Fast-OLR against OLR for the following three metrics: the number of

cell evaluations, the LRS runtime, and the power after LDP. Results are from single-threaded execution.

On average, the cell evaluations reduce by 3.3x and the LRS runtime reduces by 3.0x. We also observe

an average 3% reduction in the power due to the better solution stability offered by local searching, as

discussed above. In Figure 2.11, we demonstrate destabilization of TNS due to OLR after 100 iterations for

the b19 fast benchmark. If the local slack worsens significantly that further adds to the instability.

2.5.2 Early Exit Policy

When the timing constraint has almost been met, the early-exit policy determines if it is likely that power

will reduce in future iterations or not. It can be used as a rule of thumb to terminate the LDP iterations before

the maximum number of iterations are reached. The LDP solver can be terminated if neither the average

power, nor the minimum power solution found thus far, improve during two consecutive sets of iterations.

The early exit policy is derived based on the following empirical observations: power averaged over a

few iterations (5, in this work) reduces before stabilizing; in general, power is not a monotonic function of
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the number of iterations; and, in some cases, power may oscillate around a value. If the power is oscillating,

we may never observe power degradation for two consecutive sets of iterations. So there must be a reduction

in the minimum power found thus far to justify continuing. Our experiments showed that some designs

(large, as well as small) terminate LDP after 35 iterations, whereas some required up to 160 iterations. The

benchmarks required on average 95 iterations to converge, with a standard deviation of 49.

2.5.3 Fast-GTR

The GTR applied in the last phase of the optimization serves to fix small timing violations without

expending much power. At this stage timing degradation is not allowed. Although different researchers

refer to it by different names like Slack Legalization Hu et al. (2012) and Timing Recovery Flach et al.

(2014), the basic algorithm is the same. It’s an iterative algorithm: in each iteration, the critical gates are

sorted by some criterion like slack, or change in the delay after upsizing; then the most critical gate is

upsized; followed by an incremental STA. If the TNS degrades, the change is undone. GTR terminates

when all timing violations have been fixed.

The sub-optimality here is that the incremental STA can be a significant waste of CPU cycles if the

TNS degrades. One of the solutions is to have a metric that can predict if the timing is going to degrade.

Hu et al. (2012) developed one such metric for their approach. However, it may generate false negatives,

thereby causing a wasteful incremental STA nonetheless. We propose a very simple heuristic, referred to as

Fast-GTR. It is based on the empirical observation that the gates that fail to improve the timing in the current

iteration, are unlikely to improve the timing in the future iterations as well, unless one of its side gates (a

gate that shares a fanin) is successfully upsized. Therefore, we simply skip such gates until then.

In general, Fast-GTR improves the parallelized fraction of the total runtime by speeding up the greedy

post-pass stage which directly benefits the multi-threaded speedup (discussed in Section 2.6.3). In particular,

we observed that Timing Recovery Flach et al. (2014) can consume up to 50% of the total runtime on the

benchmarks like des perf, whereas Fast-GTR consumes less than 5% of runtime without degrading the

results or causing any timing constraint violations.
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2.6 Experimental Results

Our gate-sizer is implemented in C++. Experiments are performed on a server with two 2.67GHz In-

tel(R) Xeon(R) X5650 CPUs. Each CPU has six cores and each core has two hyperthreads. Aggregate

memory is 48GB. For multi-threading, OpenMP Dagum et al. (1998) is used. We use ISPD 2012 gate-

sizing contest benchmarks to test our sizer. All of our reported results are averaged over 5 runs and all the

final optimized designs satisfy the timing constraints.

We compare our results against works of the other researchers, namely Flach et al. (2014) and Li et al.

(2012). Flach et al. (2014) used a single thread on a faster machine, a 3.40GHz Intel(R) Core(TM) i7-3770

CPU. Li et al. (2012) employed 8 threads on a server like ours with two 2.67GHz CPUs with 6 cores and

72GB memory. Since we do not have access to their source code, results are cited from their respective

works.

In this section we shall discuss results pertaining to different types of executions. Their nomenclature is

defined as follows: the modified approach + Fast-GTR is referred to as Fast-Fast (FF); the modified approach

+ Timing Recovery Flach et al. (2014) is Fast-Slow (FS); and, the simple approach + Fast-GTR is Slow-Fast

(SF). When x threads are used, they are respectively referred to as FFx, FSx and SFx. All of them are

equipped with the Fast-OLR (we switch from OLR to Fast-OLR at the fifth iteration) as well as the Early

Exit policy.

2.6.1 Comparing Power and Performance Against Previous Works

Referring to Table 2.1, we first compare FF1 against Flach et al. (2014). FF1 is at par with Flach et al.

(2014), averaging 3% faster and 2.5% higher leakage power. On benchmarks with more than 500K gates,

FF1 is 23% faster, primarily due to the early exit policy. Consequently, FF1 provides an excellent baseline

to showcase the multi-threaded speedup that can be achieved. Compared to Flach et al. (2014), FF8 is on

average 5.40x faster (multiply the last two columns) with only 2.2% higher power. Runtime improvement

is likely to be even more than 5.40x as Flach et al. (2014) use a faster machine.

Compared to Li et al. (2012), which also used 8 threads, FF8 spends 7.80x lesser runtime (= 20.83/2.67)

to execute all the benchmarks and saves 12% more power. With FF8 we demonstrate an average speedup
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Figure 2.12: Comparing the MT-LRS runtime breakdown for the modified approach (FF8) and the simple approach
(SF8).

of 5.23x over FF1 without degrading results. In comparison, Li et al. (2012) reported an overall speedup of

only 2.2x with 8 threads, mainly because 40% of their algorithm’s runtime is unparallelized.

2.6.2 Comparison Against the Simple Approach

To compare the modified (FF8) and the simple approach (SF8), we analyze the runtime of MT-LRS for

both of them in Figure 2.12. A thread executing LRS would either be idling, executing a critical section, or

doing useful work, i.e., resizing. For SF8, we observed that on 10 out of 14 benchmarks, threads could be

idling for >35% of the LRS runtime. This is mainly the waiting time at the barrier caused by heavy load

imbalancing, which is caused by the clustering approach. The worst cluster sizes at a given level can have

up to 46% of the gates at that level. On des perf benchmark where SF8’s idling time is only 1%, the worst

cluster sizes were no bigger than 1%. In the worst case for FF8, threads idle for only < 3% of the LRS

runtime.

The time spent in the critical section by SF8 threads is negligible. On the other hand, FF8 threads can

expend up to 3% of the LRS runtime in the critical section. This is due to book-keeping to track the ready

gates and updating of the readyQ. Across all the benchmarks, the average thread utilization for FF8 threads

is 97%, and for SF8 threads it is only 59%. As a result, the FF8 MT-LRS is on average 1.73x faster than

SF8 MT-LRS.
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Table 2.2: Overall runtime speedup with Fast-GTR (FF8) versus Timing Recovery (FS8). Speedups are roughly
correlated with the parallelized runtime fractions. Major improvements are highlighted in bold.

Benchmark Speedup Parallel Fraction
FS1/FS8 FF1/FF8 FS1 FF1

DMA slow 4.62 4.28 0.93 0.91
DMA fast 4.86 4.37 0.96 0.96
pci bridge32 slow 5.72 5.29 0.98 0.97
pci bridge32 fast 5.50 5.21 0.97 0.97
des perf slow 1.83 3.53 0.27 0.90
des perf fast 2.38 4.23 0.65 0.94
vga lcd slow 5.83 5.64 0.98 0.97
vga lcd fast 5.86 6.04 0.97 0.97
b19 slow 5.82 5.95 0.98 0.98
b19 fast 6.17 6.08 0.98 0.98
leon3mp slow 5.82 5.91 0.92 0.94
leon3mp fast 5.09 5.65 0.88 0.95
netcard slow 6.43 6.32 0.97 0.97
netcard fast 4.40 5.67 0.90 0.88
Geometric Mean 4.77 5.23 0.84 0.95

2.6.3 Impact of Fast-GTR on the Overall Speedup

In Table 2.2 we compare the speedup in the total runtime achieved by FF8 (with Fast-GTR) and FS8

(without Fast-GTR) with respect to their corresponding single-threaded versions. On average, FF8 is 5.23x

faster than FF1, whereas FS8 is 4.77x faster than FS1. FF is faster due to the improvement in the parallel

fraction of the sequential runtime, from 0.84 for FS8 to 0.95 for FF8. On des perf and leon3mp, Fast-GTR

significantly reduces the time spent in the greedy post-pass as shown in the same table. We observed larger

speedup with FF in netcard fast despite slightly lower parallel fraction. This is supposedly due to the runtime

noise caused by server loading.

2.6.4 Scalability Analysis

In this subsection, we analyze how the speedup scales as the number of threads grow and what factors

contribute to the loss of the speedup. In Table 2.3, we show the speedups obtained from FF2, FF4, FF8,

FF12, FF14 and FF16 with respect to FF1.
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Table 2.3: Speedup for different threads with respect to FF1.

Benchmark FF1 FF2 FF4 FF8 FF12 FF14 FF16
DMA s 1.00 1.71 2.77 4.28 5.36 4.62 4.40
DMA f 1.00 1.64 2.75 4.37 5.89 5.52 4.86
pci bridge32 s 1.00 1.95 3.13 5.29 6.18 6.00 5.56
pci bridge32 f 1.00 1.96 3.19 5.21 6.58 6.16 5.63
des perf s 1.00 1.57 2.37 3.53 4.15 4.39 3.93
des perf f 1.00 1.66 2.73 4.23 3.06 4.90 4.72
vga lcd s 1.00 1.88 3.10 5.64 7.85 7.48 6.75
vga lcd f 1.00 1.76 2.89 6.04 6.25 6.12 6.63
b19 s 1.00 1.83 3.11 5.95 7.57 7.63 7.65
b19 f 1.00 1.66 3.23 6.08 7.96 7.75 7.69
leon3mp s 1.00 1.70 3.14 5.91 7.75 7.46 7.34
leon3mp f 1.00 1.85 2.86 5.65 7.03 7.18 7.08
netcard s 1.00 1.95 2.97 6.32 7.97 8.13 8.05
netcard f 1.00 1.97 2.86 5.67 5.21 6.08 6.37
Geom Mean 1.00 1.79 2.93 5.23 6.14 6.27 6.04

We see a performance saturation from 12 to 14 threads, and slight performance degradation from 14 to

16 threads. The average speed-up with 16 threads is 6.04x which is significantly smaller than the theoretical

upper bound of 9x predicted by Amdahl’s law. There are two primary factors for this gap: 1) limitations

of the hardware architecture, and 2) increase in overhead. The server has 2 CPUs each with 6 cores with

2 hyper threads. The two hyperthreads per core do not provide much additional speedup due to hardware

resource contention between threads Valles (2009). As a result speedup begins saturating as threads exceed

the physical cores. Our experiments on a synthetic completely parallel code showed that we could only

achieve a 12x speed-up using 16-threads. In other words, we effectively have only 12 threads. Considering

this, we would expect the upper-bound of the achievable speed-up on our multi-threaded application to be

7.74x, which is closer to our achieved result. With an increase in the number of threads, 1) thread idling

increases, and 2) critical section overhead increases. Additionally, we suspect runtime overhead due to

increased communication to keep memories synchronized.
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2.7 Conclusion

Today’s designs with millions of gates require very fast gate-sizing and threshold voltage assignment,

as it is a crucial circuit optimization that is performed at multiple steps in the design flow. We have shown

the effectiveness of our proposed techniques to speed up multi-threading of Lagrangian relaxation-based

gate sizing; mutual exclusion edge assignment and DAG-based netlist traversal help achieve 97% thread

utilization with 8 threads. In contrast, the simpler multi-threading strategies - clustering and topological

level-based traversal, allow only 59% thread utilization. To complement our multi-threading techniques, we

also propose fast optimal local resizing, early-exit policy, and fast greedy timing recovery, all of which are

simple yet highly performance effective enhancements to the sequential LR-based gate sizing approach. We

combine all these to realize a very fast and high quality gate sizer. Compared to the state-of-the-art (both in

runtime as well as power) algorithm Flach et al. (2014), our gate sizer using 8 threads is 5.40x faster and has

only 2.2% higher power, without any timing constraint or other violations, on the ISPD 2012 Disrete Gate

Sizing Contest benchmarks.
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CHAPTER 3. RAPID GATE SIZING WITH FEWER ITERATIONS OF LAGRANGIAN

RELAXATION

Published in International Conference on Computer Aided Design 2017

Abstract - Existing Lagrangian Relaxation (LR) based gate sizers take many iterations to converge

to a competitive solution. In this chapter, we propose a novel LR based gate sizer which dramatically

reduces the number of iterations while achieving a similar reduction in leakage power and meeting the

timing constraints. The decrease in the iteration count is enabled by an elegant Lagrange multiplier update

strategy for rapid coarse-grained optimization as well as finer-grained timing and power recovery techniques,

which allow the coarse-grained optimization to terminate early without compromising the solution quality.

Since LR iterations dominate the total runtime, our gate sizer achieves an average speedup of 2.5x in runtime

and saves 1% more power compared to the previous fastest work.

3.1 Introduction

In modern chip design methodologies, circuit optimization via gate sizing is regarded as one of the key

techniques that needs to be invoked at several design stages to trade off various metrics such as timing, area,

and power. Due to the large number of gates in a design, gate sizing can be very time consuming. In a

standard cell based design, each gate can be implemented by many different options which are characterized

by a size and a threshold voltage (Vt). Each option trades off power, area, and delay. The task of gate sizing

is to assign a suitable option to each gate such that the desired objective is optimized under the given design

constraints. In this work, we focus on timing constrained leakage power (hereafter referred to as power)

minimization.

The problem of gate sizing has been studied for over three decades. Earlier the gate sizes were assumed

to be continuous and the timing models were either derived from RC Elmore delay models, which can be

transformed into a convex function of sizes, or approximated by a convex function. Under such scenarios,
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an optimal solution could be obtained by applying techniques like Lagrangian Relaxation (LR) Chen et. al.

(1999). However, such delay models are too inaccurate to achieve a good solution with modern process

technologies - non-convex lookup table-based delay models have been industry standard for more than a

decade. With discrete size and Vt options, the gate sizing problem is NP hard Ning (1994) and thus no

polynomial time optimal algorithm is known. With millions of gates in designs and tens to hundreds of

discrete options for each gate size, it can take a day or more of runtime to deliver acceptable solution

quality.

For discrete gate sizing, researchers have presented several heuristics based on dynamic programming

Liu et al. (2010), sensitivity guided greedy frameworks Hu et al. (2012), network flow Li et al. (2012), and

LR based techniques like Livramento et al. (2014); Flach et al. (2014); Sharma et al. (2015); Reimann et

al. (2016). After the ISPD 2012 gate sizing contest Ozdal et al. (2012), several publications established

the superiority of the LR based gate sizers, showing both faster runtime and lower power. However, the

proposed LR based gate sizers take many LR iterations, even more than 100 on some benchmarks. The

high number of iterations can be very detrimental for runtime, especially with expensive timing updates to

account for the RC parasitics on large designs.

A reason for the high iteration count of the LR based gate sizers is that they are effective only for

coarse-grained timing and power recovery. As the total negative slack (TNS) and the total leakage power

of the design reduce, the efficiency of each iteration also degrades. Although LR based gate sizers are

usually equipped with greedy post-pass heuristics for finer-grained timing and power recovery, they cannot

be invoked too early as they are very time consuming and get stuck in a local minimum. The LR iterations

need to go on until TNS and power are sufficiently small. Otherwise, the outstanding timing violations

and the remaining potential power savings would be too large to be effectively handled by those greedy

techniques. Therefore, we need strategies that can reduce the runtime of coarse-grained optimization by

reducing LR iterations, and techniques for finer-grained optimization.

In this chapter, we develop an LR based rapid gate sizer (RGS). We propose an elegant Lagrange multi-

plier update strategy that makes the coarse-grained LR based sizing converge very rapidly to a solution with

sufficiently low TNS and power. We propose two LR-based techniques, one for finer-grained timing recov-
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Table 3.1: Acronyms and their meanings.

Acronym Meaning
LR Lagrangian Relaxation
LRS Lagrangian Relaxation Subproblem
LDP Lagrangian Dual Problem
RGS Rapid Gate Sizer
CPS Critical Path Sizing
MGS Multi-Gate Sizing
SGS Single Gate Sizing
TNS Total Negative Slack
STA Static Timing Analysis

ery, and the other for finer-grained power recovery. For timing recovery, our proposed technique is called

critical path sizing (CPS), which reduces the delay along critical paths. For power recovery, our proposed

technique is called multi-gate sizing (MGS), which sizes several gates simultaneously, unlike typical sizing

heuristics employed by LR based sizers which size one gate at a time. While CPS is able to efficiently fix

the timing violations that may occur during power recovery, MGS allows coarse-grained optimization to

terminate early, thereby reducing the expensive LR iterations without compromising on the final solution

quality. MGS can also potentially take the design out of a local minimum, thus creating opportunities for

further power recovery. With these three techniques, the number of LR iterations is significantly lower than

those in previous works. Since LR iterations dominate the total runtime, RGS achieves an average speedup

of 3x compared to the previously fastest work Sharma et al. (2015).

Our major contributions are summarized as follows:

• We propose an elegant Lagrange multiplier update strategy.

• We propose two LR-based techniques, MGS and CPS, for fine-grained power and timing recovery,

respectively.

• We develop a rapid gate sizing flow, and empirically verify its effectiveness.

This chapter is organized as follows: Section 3.2 formulates the problem. Section 3.3 presents the

overall flow of RGS and briefly discusses some of its components. Section 3.4 describes the core solver of
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RGS in detail. There we discuss our proposed techniques: Lagrange multiplier update strategy, MGS, and

CPS. Section 3.5 discusses the empirical results, and we conclude in Section 3.6.

3.2 Problem Formulation

With our gate sizing algorithm, we solve the following constrained optimization problem:

Given a gate-level netlist, a standard cell library with discrete choices for cell size and threshold voltage

(Vt), timing constraints, and lumped parasitics, compute the size and Vt combination (hereafter referred to

as ‘option’) for each combinational gate in the netlist such that the leakage power is minimized without

violating the timing constraints.

This is the same formulation as used in the ISPD 2012 gate sizing contest. For our experiments, we

use the same setup including the set of benchmarks as provided in the contest. Per the contest guidelines,

there are two types of electrical constraints: load at the output of a gate cannot exceed a maximum value

(max load constraint), and slew at the input of a gate cannot exceed a maximum value (max slew constraint).

Since computing the max slew violations is computationally more expensive than computing the max load

violations, we translate max slew constraints into max load constraints - this can be done because a lumped

wire capacitance model is used for the ISPD 2012 gate sizing contest. Thus ensuring that there is zero max

load violation guarantees zero max slew violation.

Before formally defining the problem, we detail notations commonly used in this work. Table 3.1 lists

acronyms that are commonly used throughout this chapter. T is the target clock period. For gate i, xi

denotes the size/Vt option, and ai denotes the arrival time at its output. di→j is the delay of the timing arc

i→ j which is defined from the output of the gate i to the output of the gate j. Endpoint of a timing path can

be either a primary output of the design or input of a sequential element (e.g. flip-flop). Note that sequential

elements have a fixed size as per the contest.
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Mathematically, the above problem is commonly formulated as a non-convex, discrete mathematical

program as:

minimize
x,a

∑
i

leakagei

subject to ai + di→j ≤ aj , ∀ i→ j

ak ≤ T , ∀ endpoints k

(3.1)

We refer to Equation (3.1) as the Primal Problem (PP). To solve this NP-hard problem, as in previous

work Chen et. al. (1999), we relax the constraints and derive its Lagrangian dual. Each constraint is

associated with a non-negative Lagrange multiplier, λ, that acts as a penalty for violating the respective

constraint. The Lagrangian function, L(x, a, λ) is:

L(x, a, λ) =
∑
i

leakagei +
∑
i→j

λi→j (ai + di→j − aj)

+
∑

k∈endpoints
λk (ak − T )

(3.2)

For a given set of Lagrange multipliers, the Lagrangian relaxation subproblem LRS(λ) is:

LRS(λ) : minimize
x,a

L(x, a, λ) (3.3)

By applying the Karush-Kuhn-Tucker (KKT) conditions for optimality, and omitting the term
∑

k λkT

since it is a constant for a given set of λk, the LRS(λ) can be simplified to:

LRS∗(λ) : minimize
x

∑
i

leakagei +
∑
i→j

λi→jdi→j (3.4)

where Lagrange multipliers must satisfy the ‘flow constraints’:

∑
u∈fanin(i)

λu→i =
∑

v∈fanout(i)

λi→v, ∀i (3.5)

The objective in Equation (3.4) is referred to as the LRS cost. Flow constraints in Equation (3.5) are obtained

by setting the partial derivatives over the a variables to 0.

The Lagrangian dual problem (LDP) is then defined as:

maximize
λ

LRS∗(λ)

subject to KKT flow constraints and λ ≥ 0

(3.6)
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Figure 3.1: RGS flow chart. Each iteration involving SGS and Lagrange multiplier (LM) update is referred to as an
LR iteration. †: LM are updated to rapidly recover timing. ‡: LM are updated to rapidly recover power. During SGS
of phase three and five, no gate is allowed to degrade power.

Solving LRS*(λ) for a given set of λ gives a lower bound on the PP. And, solving LDP maximizes that

lower bound. Optimal values of LDP and PP would match, if the duality gap is zero. A similar Lagrangian

relaxation based formulation can be derived for other objective functions like area and dynamic power.

3.3 Overall Flow

Like several other LR-based gate sizers, our gate sizer RGS is also composed of initialization, LR based

sizing which is equivalent to solving the LDP in Equation (3.6), and a greedy post-pass. The Overall flow

chart for RGS is shown in Figure 3.1.

During the initialization, RGS initializes all gates to the least leakage power option (lowest size and

highest Vt), followed by a reverse topological scan to remove the load violations. Lagrange multiplier values

for all the arcs are initialized to 1. Initial Lagrange multiplier values would depend upon the leakage power

of a typical gate and its timing arc delay. Therefore, for a different library, one-time tuning of the initial

Lagrange multiplier value might improve the convergence. To satisfy the KKT flow constraints, Lagrange

multipliers are then updated using the projection technique Tennakoon et al. (2002). Reimann et al. (2016)
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proposed a strategy to estimate Lagrange multipliers to speedup the convergence on a pre-optimized design.

Since the ISPD 2012 gate sizing contest provided unoptimized designs, their strategy is not needed for these

benchmarks.

After initialization, LR based sizing begins. LR based sizing can be broadly divided into two stages:

timing recovery, and power recovery. The timing recovery stage is focused on fixing most of the setup

timing violations. It is composed of iterations between single gate sizing (SGS) which is a typical heuristic

for solving LRS* (described later in this section), static timing analysis (STA) and Lagrange multiplier

update. Each such iteration is referred to as an LR iteration. The Lagrange multipliers are updated to

facilitate quick timing recovery. The Lagrange multiplier update strategy will be discussed in Section 3.4.1.

When TNS is below a threshold, tshTNS , power recovery can begin.

The second stage of LR based sizing is power recovery. It is composed of five phases. While phases one,

three, and five use SGS to solve LRS*; phases two and four use MGS. Like timing recovery, phase one of

power recovery is coarse-grained optimization. It iterates between SGS, STA, CPS, and Lagrange multiplier

update. In each phase of power recovery, CPS is optionally invoked if timing violations exceed the threshold

tshTNS to keep timing violations under control so that power recovery can continue unimpeded. Lagrange

multipliers are updated to facilitate quick power recovery. Phase one achieves the bulk of the power recovery

and is usually the most runtime expensive phase. It is terminated as soon as the improvement in power is

less than a threshold, tshpow, compared to the previous iteration.

Phases two through five perform finer-grained power recovery. Phase two performs a single iteration of

MGS followed by STA, CPS, and multiplier update. Since MGS is time consuming we perform only one

iteration. In addition to power recovery, MGS can potentially perturb the design out of a local minimum,

creating opportunities for more power reduction. Therefore, we invoke SGS based power recovery itera-

tions in phase three. Empirically, we determined that beyond two iterations in this phase, power recovery

diminishes significantly. Unlike the SGS during coarse-grained optimization, i.e., during timing recovery

and phase one of power recovery, SGS in phase three does not allow any gate to increase its power. To

recover more power, we repeat phases two and three again in phases four and five, respectively.



40

After LR based sizing, small timing violations can still remain. Therefore, we invoke greedy timing

recovery to eliminate all the violations. In greedy timing recovery, gates with a larger number of critical

paths passing through them are processed first. Each gate is upsized, and timing is propagated through its

entire fanout cone. If timing degrades, the sizing is undone and the next gate is processed. This is a common

greedy heuristic to recover small timing violations.

There are two main differences between our flow and previous flows. Firstly, we have an explicit timing

recovery stage followed by a power recovery stage. This provides finer grained control on runtime and so-

lution quality. Previous works did not make such distinction. Secondly, instead of a greedy power recovery,

we employ MGS which is parallelizable and is LR compliant.

Solving LRS*(λ) In the context of LR based gate sizing, single gate sizing (SGS) is a common heuris-

tic for solving LRS* in Equation (3.4). SGS is briefly described as follows. For a given set of Lagrange

multipliers, assuming no other gate can change its option, SGS near-optimally minimizes the objective in

Equation (3.4) for each gate separately. Gates are visited in the forward topological order. For each gate,

several options are evaluated to compute their contribution to the LRS cost, and the option that minimizes

the cost is assigned to that gate. Changing the option of a gate can potentially affect the delays in the

entire fanout cone of that gate. However, in the interest of runtime, and without much loss of accuracy,

delay changes only in the local neighborhood of the gate are computed and applied towards the LRS cost

computation. We use the multi-threaded version of SGS as proposed in Sharma et al. (2015).

Flach et al. (2014) suggested that while solving the LRS, in addition to minimizing the LRS cost, its

important to prevent timing degradation to ensure solution stability for faster convergence. They proposed

an approximate way of ensuring this by restricting the local slack degradation. We call it local slack check

and apply it in SGS. Through our experiments, we verify that the local slack check indeed facilitates faster

timing convergence and thereby, reduce the LR iterations, especially during the timing recovery stage.
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3.4 LR Based Gate Sizing

In this section we discuss various components of LR based gate sizing. We present our proposed La-

grange multiplier update strategy and describe how it differs in timing recovery and power recovery. Then,

we discuss our proposed MGS and CPS techniques.

3.4.1 Lagrange Multiplier Update

The Lagrange multiplier update strategy is very crucial in reducing the number of iterations for faster

convergence. The general strategy is to increase (decrease) the multipliers across timing critical (non-

critical) arcs. The key is how much to change. Most of the previous works use a non-linear expression

to direct the optimization. The strategies presented in previous works Flach et al. (2014), Sharma et al.

(2015) are reproduced in Algorithms 1 and 2, respectively. Both of these strategies use an exponent to ad-

just the multipliers and then project them to satisfy Equation (3.5). While the projection heuristic has not

changed since it was proposed in Tennakoon et al. (2002), the main difference is how the exponent is tuned.

Flach et al. (2014) do not provide much detail on how to tune the exponent. Moreover, they use different

expressions for critical and non-critical arcs (refer Algorithm 1) without any insight. On the other hand,

Sharma et al. (2015) complicate the tuning of the exponent by introducing two other parameters, namely r

and k (refer Algorithm 2). Both of the strategies have slow convergence.

Algorithm 1 Lagrange multiplier update algorithm from Flach et al. (2014)
// qx: required time at the output of gate x
for timing arc i→ j do

if aj ≥ qj then

λi→j = λi→j ×
(

1 +
aj−qj
T

)1/k

else
λi→j = λi→j ×

(
1 +

qj−aj
T

)−k
Projection to satisfy Equation (3.5).

We propose a single expression for the Lagrange multiplier update (refer Algorithm 3) along with a

much simpler strategy to tune the exponent. Di→j , in Algorithm 7, is the worst path delay through the

arc i → j, and K is the ‘acceleration’ factor. The ratio Di→j/T indicates the timing criticality of the
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Algorithm 2 Lagrange multiplier update algorithm from Sharma et al. (2015)
// WPD: Worst path delay
cexp = 1

T ′ = r × T
if WPD > T ′ then

cexp = cexp× WPD
T

else
cexp = cexp×

(
1 + k × WPD−T ′

T ′

)
for timing arc i→ j do

λi→j = λi→j ×
(

1 +
aj−qj
T

)cexp
Projection to satisfy Equation (3.5).

arc i → j. The ratio is more than one for an arc with a timing violation, so the Lagrange multiplier

for such an arc is increased. For a non-critical arc, the ratio is less than one, therefore its multiplier is

decreased. The acceleration factor determines how quickly the Lagrange multipliers increase or decrease.

Larger acceleration factors can speedup the convergence but can also cause the solution to get stuck in a

worse local minimum.

Algorithm 3 Our proposed Lagrange multiplier update algorithm

for timing arc i→ j do

λi→j = λi→j ×
(
Di→j

T

)K
Projection to satisfy Equation (3.5). Refer Tennakoon et al. (2002)

3.4.2 Timing Recovery

Since timing is a hard constraint that must be met, we first focus on fixing setup timing violations. To

enable fast timing recovery, delay on the timing arcs with timing violations needs to be emphasized, so

Lagrange multipliers for critical timing arcs need to increase faster. Therefore, acceleration factors of more

than one for critical arcs during timing recovery improves the convergence of this phase. However, the

larger the acceleration factor, the more the overshoot in the power. Figure 3.2 shows the TNS (solid lines)

and power (dashed lines) profiles for different values of K for critical timing arcs. For non-critical timing

arcs, we set K = 1. As K is increased, we observe faster convergence in TNS and larger overshoots in
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Figure 3.2: TNS and power profiles for different values of K for critical arcs during the timing recovery stage are
shown. TNS has been normalized with respect to T . As K increases, TNS reduces faster.

Figure 3.3: TNS and power profiles for different values of K for non-critical arcs are shown. Around iteration 10,
timing recovery ends and power recovery phase one begins. Note: TNS profiles for all K indistinguishably overlap.
Therefore, markers are not used for them.

power. Note that, from K = 4 to K = 6, improvement in the TNS convergence is marginal but overshoot

in the power is significant, as it may not always be recoverable due to the likelihood of the algorithm getting

stuck in some bad local minimum. Also, due to the design being oversized for power, it is possible to

simultaneously improve power and timing in the later iterations.

We use K = 4 for the critical arcs, and K = 1 for the non-critical arcs, during the timing recovery stage

of LR based sizing. The small value of K for non-critical arcs means we gradually reduce their Lagrange

multipliers and recover some power even during the timing recovery phase. In our case, timing recovery is

said to converge when timing violations are less than a threshold tshTNS . With this setting, timing recovery

on our experimental benchmark suite converges in four iterations on average.
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3.4.3 Power Recovery

To quickly reduce power, Lagrange multipliers need to rapidly reduce along the non-critical timing arcs.

Therefore, a large acceleration factor for the non-critical timing arcs is crucial. Figure ?? shows TNS and

power profiles for different values of K applied to such arcs. For critical timing arcs, we set K = 1. We can

observe that with larger K, power reduces more rapidly. We note that the gain diminishes from K = 4 to

K = 6. On the other hand, TNS does not seem to be affected by K. This is because timing degradation is

discouraged by the local slack check. Even if, on account of reduced Lagrange multipliers, LRS cost favors

a smaller size (or larger Vt) for a gate, that size is not applied if local slack would degrade. Additionally, we

invoke CPS for sizing critical paths whose timing violations exceed the threshold.

During all phases of power recovery, we set K to 1 and 6 for critical and non-critical timing arcs,

respectively. If we use a larger K for non-critical arcs, we notice that the final power is 1 to 2% worse,

because the design gets stuck in a worse local minimum. In order to terminate power recovery phase one,

we propose an aggressive early exit strategy. We do not want to wait until phase one yields the best power

that it can, because it can be very runtime inefficient in recovering power at later LR iterations. Therefore,

we terminate this phase as soon as reduction in power is less than a threshold, tshpow, compared to the

previous iteration, and invoke MGS which can size multiple gates simultaneously to recover power in larger

chunks. We empirically verify that our aggressive early exit strategy can significantly reduce the number of

iterations without compromising on the final power.

3.4.4 Multi-Gate Sizing (MGS)

As briefly discussed in Section 3.3, a typical way of solving LRS is SGS which processes one gate at

a time assuming that the other gates do not change their options. Such an approach restricts the solution

space exploration, and increases the likelihood of the sizing solution getting stuck in a local minimum. We

propose MGS to alleviate this drawback by allowing multiple gates to simultaneously change their sizes. In

favor of runtime, we do not change Vt and thereby, restrict the number of sizing combinations.

We’ll briefly describe the MGS algorithm in reference to its pseudo code shown in Algorithm 4. MGS

processes gates in forward topological order. Gate g is downsized and, if the new size of g is valid (lines
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Algorithm 4 Multi-gate sizing (MGS)

1: for each gate g ∈ S in forward topological order do
2: status = false

3: resizeg = g.downsize()

4: resizes = {resizeg}
5: if resizeg.valid() then
6: for each fo ∈ g.fanout() do
7: resizefo = single gate sizing(fo)

8: resizes = resizes ∪ {resizefo}
9: if change in power(resizes) < 0 then

10: 4negSlack = local neg slack change(resizes)
11: if4negSlack ≤ 0 then
12: status = true

13: if status 6= true then
14: undo(resizes)

15: STA every four topological levels

3-5) - in other words, no new load violations are created - then all the fanouts of g are sized in the same

way as in SGS (lines 6-8). However unlike SGS, in favor of runtime and also since we do not anticipate

large perturbations in the size of a gate at this stage, for each fanout only three options are evaluated: the

current option, the option with the next bigger size, and the option with the next smaller size. The least LRS

cost option is assigned to each fanout. New options for the gate g and all its fanouts are referred to as a set

of resizes. Lines 9 and 11 describe the conditions to accept the resizes. The first condition is that the total

power must decrease. If the first condition holds true, then the change in negative slack of the neighboring

gates is computed (line 11). If the negative slack has not degraded then the resizes are accepted. If either

condition fails, the resizes are undone (line 14). Since local slack degradation is only a rough indicator of

the impact of the resizes on circuit timing, to prevent large timing violations from accumulating, we update

timing after every four topological levels (line 15).

Since MGS can be more time consuming than SGS, we refrain from applying it during phase one of

power recovery. We apply it only twice, during phases two and four of power recovery.
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Algorithm 5 Critical Path Sizing (CPS)

1: tsh = tshTNS/vend . vend: #endpoints that violate timing
2: S = φ

3: for each timing endpoint, end do
4: if end.slack < −tsh then
5: S = S ∪ {end}
6: Sort elements of S in the ascending order of slack
7: for each end ∈ S do
8: P = critical path(end)

9: minDeltaLM = some arbitrarily large value
10: for each arc i→ j ∈ P do

11: 4λij = λij

[(
Dij

T

)K
− 1

]
12: if4λij < minDeltaLM then
13: minDeltaLM = 4λij
14: for each arc i→ j ∈ P do . Update Lagrange multiplier along the path
15: λij = λij +minDeltaLM

16: for each gate g ∈ P do . LRS along the path
17: single gate sizing(g)

18: increamental STA()

3.4.5 Critical Path Sizing (CPS)

The timing recovery stage can reduce the bulk of the timing violations in a few LR iterations. During

various phases of power recovery, despite the local slack check, a few paths may become timing critical

and TNS may exceed the threshold, tshTNS . In such cases, it is an overkill to run LR iterations to recover

timing, because each LR iteration scans the entire design several times and is quite expensive. Moreover,

LR iterations are not as effective in recovering finer-grained timing violations as they are during the coarse-

grained optimization.

To reduce the delay of a timing critical path, usually either a gate along the path is upsized or its load is

reduced. (Reducing the Vt at this stage of the algorithm is generally avoided due to the large increase in the

leakage power.) Typically, to upsize a gate via SGS, Lagrange multipliers of the gate’s timing arcs need to be

large enough to justify trading power for reduced delay. However, at this stage in the algorithm when timing

violations are not very big, for most of the timing arcs i→ j,Di→j would be either close to T or significantly

smaller than T . Consequently, it may require several LR iterations before the gate will be upsized by SGS.
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The delay of a timing critical gate can also be reduced by reducing its load, but that may induce timing

violations on near-critical paths. Thus, critical and near-critical paths may compete with each other, thereby

slowing down the convergence. Another strategy to reduce the small timing violations is to uniformly

scale up all the Lagrange multipliers. This strategy is similar to applying the ‘power weighting factor’ of

Livramento et al. (2014). Although it can eliminate all the timing violations in one to two iterations, it tends

to upsize even the non-critical gates, which causes unnecessary increase in the leakage power.

The CPS is designed to reduce the timing violations of the critical paths, while minimally affecting the

total design power, and it is also very fast as it works on only a small sub-circuit. We describe the CPS

algorithm with pseudo-code shown in Algorithm 5. In line 1, we compute a threshold, tsh, to identify

timing critical endpoints. tsh is derived from tshTNS which is the allowed total timing violation during

the LR based sizing stage. tsh is simply the average violation allowed per endpoint. Critical endpoints are

then sorted by their slack (line 6). More timing critical endpoints, with more negative slack, are processed

first. For each endpoint, its critical path, P , is computed (line 8). Then, lines 9 through 13 compute how

much to increase the Lagrange multiplier along P . We use the Lagrange multiplier update expression from

Algorithm 3 to compute the potential change in the Lagrange multiplier of each timing arc along the path

(line 11), and track the minimum value, minDeltaLM . In order to emphasize the delay along the critical

path, we would want substantial increase in the Lagrange multipliers. Therefore, we set K = 10 during the

CPS. Then, the Lagrange multipliers of all the arcs along P are increased by minDeltaLM (lines 14-15),

followed by resizing all the gates along P . Lastly, the timing is incrementally updated in line 18 before

processing the next primary output, so that the critical path of the next endpoint is computed based on the

updated timing.

3.5 Experimental Results

We implemented our gate-sizer in C++. Experiments are performed on an 8-node cluster made up of

two quad-core Intel(R) Xeon(R) E3-1240 v5 CPU @ 3.67GHz with an aggregate memory of 16GB. For

multi-threading, OpenMP Dagum et al. (1998) is used. We use 8 threads. All the results reported in this

work are averaged over 10 runs to minimize the bias due to non-determinism caused by multi-threading.



48

Table 3.2: Comparison of overall runtime and power of RGS versus the baseline (Sharma et al. (2015) [1]). Slow
refers to the loose timing constraints, and fast refers to the tighter timing constraint. Benchmarks are listed in order of
ascending number of combinational cells. DMA through netcard approximate combinational cell count is 23K, 30K,
102K, 148K, 213K, 540K and 861K, respectively.

Benchmark Total runtime (min) Leakage Power (W)
[1] RGS [1]/RGS [1] RGS RGS/[1]

DMA slow 0.11 0.07 1.47 0.135 0.135 0.997
pci b32 slow 0.27 0.09 3.02 0.099 0.098 0.995
des perf slow 0.43 0.32 1.33 0.597 0.583 0.977
vga lcd slow 1.43 0.44 3.27 0.331 0.329 0.995
b19 slow 3.03 0.83 3.66 0.568 0.569 1.001
leon3mp slow 3.91 2.52 1.55 1.335 1.335 1.000
netcard slow 5.48 2.35 2.33 1.763 1.763 1.000
DMA fast 0.26 0.08 3.05 0.251 0.245 0.979
pci b32 fast 0.31 0.10 2.95 0.142 0.141 0.993
des perf fast 1.16 0.40 2.91 1.455 1.436 0.987
vga lcd fast 1.82 0.56 3.28 0.433 0.417 0.963
b19 fast 3.19 1.13 2.82 0.733 0.729 0.995
leon3mp fast 4.88 3.13 1.56 1.443 1.449 1.004
netcard fast 7.05 3.33 2.12 1.848 1.846 0.999
Average 2.52 0.992

The experimental set up including the benchmark suite is identical with the ISPD 2012 gate sizing contest.

In our flow, we set tshTNS = 0.1× T and tshpow = 0.1%.

3.5.1 A Comparison With Previous Works

We use the algorithm proposed by Sharma et al. (2015) as our baseline. To the best of our knowledge,

among all the published results so far, they have reported the best runtime on the ISPD 2012 contest bench-

marks with 2.5% degradation in the average leakage power compared to the best quality published results

Flach et al. (2014). For fair comparison against Sharma et. al., we executed their binary with 8 threads on

our cluster, and we are using those results as the baseline in Table 3.2. Since our cluster uses faster CPUs,

the runtimes shown in column two of Table 3.2 are on average 18% smaller than the runtimes published by

Sharma et al. (2015). Powers in column five are on average 0.001% more than the published results. We

also compare against Flach et al. (2014). Their results are obtained from single threaded runs executed on

3.40GHz Intel(R) Core(TM) i7-3770 CPU.
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Table 3.2 compares the total runtime and the power between RGS and the baseline. Both the flows yield

timing violation free designs on all the benchmarks. On average, RGS is 2.52x faster than the baseline

with 0.8% extra power savings. Compared with Flach et al. (2014), which is single threaded, RGS is 19x

faster and 1.5% worse in power. Authors believe that the 1.5% degradation in power can be attributed to the

differences in tuning of the acceleration factor, K. We are able to optimize the biggest design in the suite,

netcard which has around 861K combinational gates, in 3.33 min for the ‘fast’ and 2.35 min for the ‘slow’

timing constraints. The main contributor towards the speedup is significant reduction in LR iteration count.

In Section 3.5.2, we analyze various factors that contributed towards reducing the LR iteration count.

Average runtime breakdown of our flow is as follows: LR iterations dominate the runtime by accounting

for 78% of the total runtime; followed by MGS (5%); greedy timing recovery (3%); and lastly, the CPS (1%).

14% of the total runtime is consumed in parsing the input verilog, spef, library files, and pre-processing.

Note that although MGS can be parallelized like SGS, currently it is sequential.

Compared to the power reported by the baseline (fifth column in Table 3.2), power reported by RGS

after the coarse grained optimization, i.e., after phase one of power recovery, is the same as the baseline.

Then phases two through five perform finer-grained power recovery and achieve a further 1.2% reduction in

power, followed by the greedy timing recovery which increases power by 0.2%.

3.5.2 Factors Contributing to the Reduction in LR Iterations

Table 3.3: Catalog of flows referred for different analysis.

Name Flow
v1 RGS with the early exit policy adapted from the baseline Sharma et al.

(2015)
v2 v1 with Lagrange multiplier update strategy adapted from the baseline
v3 v2 without the local slack check in the timing recovery phase
v4 v3 with CPS in the timing recovery phase

Most of the speedup in RGS is due to the reduction in the LR iterations. In this section, we empiri-

cally analyze the contribution of different factors towards the reduction in the total LR iteration count. We

identify three main factors, namely, (1) the aggressive early exit from the first phase of power recovery, (2)
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Table 3.4: We compare the following for v3 and RGS: LR iteration count for the timing recovery stage (TR); LR
iteration count for power recovery phase one (PR); and power after the power recovery phase one (LRpow). Power
numbers are normalized with respect to the baseline (fifth column of Table 3.2). At the bottom we also append the
average results for v1 and v2.

Benchmark v3 RGS
TR PR LRpow TR PR LRpow

DMA slow 10 42 0.999 3 14 1.007
pci bridge32 slow 64 68 0.987 4 14 0.990
des perf slow 9 54 0.984 3 16 0.992
vga lcd slow 53 61 0.999 4 10 1.003
b19 slow 17 111 0.996 4 16 1.007
leon3mp slow 8 34 1.001 3 10 1.003
netcard slow 1 45 1.000 1 5 1.000
DMA fast 72 57 0.982 5 15 1.000
pci bridge32 fast 66 76 0.956 6 17 0.996
des perf fast 71 54 1.004 5 24 0.999
vga lcd fast 61 69 0.990 8 13 0.988
b19 fast 71 59 0.998 6 30 1.004
leon3mp fast 10 37 1.003 3 18 1.012
netcard fast 5 30 0.999 2 11 1.000
Average 37 57 0.993 4 15 1.000
v2 Average 20 48 0.993
v1 Average 4 44 1.002

the proposed Lagrange multiplier update strategy, and (3) restricting the timing degradation in the timing

recovery phase via local slack check. To evaluate the impact of each one of these factors individually we

derive three different versions of gate sizers from RGS: v1, v2 and v3. They are summarized in Table 3.3.

In v1, we replace our aggressive early exit strategy by the early exit policy of the baseline. Baseline runs

LR iterations as long as power is improving, whereas RGS terminates phase one of power recovery as soon

as improvement in power is less than tshpow. v2 is built on top of v1 by replacing our proposed Lagrange

multiplier update strategy with the corresponding strategy from the baseline. Lastly, v3 is built on top of

v2 by disabling the local slack check in the timing recovery phase. On average, v3 has similar runtime as

the baseline and it yields designs with 1% better power. So it is a good comparison point for our further

analysis.
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Table 3.4 shows the LR iteration count during timing recovery stage, LR iteration count during phase

one of power recovery stage, and power after phase one of power recovery for v3 and the RGS flows. For

the sake of comparison, average results for the same metrics are shown for v1 and v2 as well. Comparison

of v1 and RGS shows that, by exiting early from phase one of power recovery, RGS could save 29 more

iterations with only 0.2% higher power after phase one. There are slight fluctuations due to randomness

on account of multi-threading. Compared to v1, v2 which uses the Lagrange multiplier update strategy of

the baseline, takes 5x as many iterations to recover timing. v2’s power after power recovery is around 1%

lower than v1’s power. Our Lagrange multiplier update uses large acceleration factors for quick timing and

power recovery. That may cause the solution to get stuck in a worse local minimum, so power is slightly

worse after phase one of power recovery. However, later power recovery phases involving MGS are able to

recover it. Compared to v2, v3 which disables the local slack check during its timing recovery stage, spends

on average 17 more iterations to converge the timing, and still yields the same power.

In summary, while our Lagrange multiplier update strategy is extremely effective in improving the con-

vergence of timing recovery, the local slack check also helps to a smaller extent. The Lagrange multiplier

update strategy also enables fast power recovery during phase one. Additionally, by exiting early from phase

one, and relying on the later phases for finer-grained power recovery, the iteration count in phase one sig-

nificantly reduced. Figure 3.4 compares TNS and power profiles for v3 and RGS runs on pci bridge32 fast.

As seen in the TNS profile of v3, timing convergence is initially quite slow due to poor Lagrange multiplier

updates, and after iteration 22 due to lack of local slack check. As seen in the power profile of v3 between

iterations 60 and 110, the power recovery in phase one is slow. This is due to the poor multiplier update

strategy. After iteration 110, in an attempt to recover finer-grained power, phase one does not exit. Conse-

quently, v3 takes about 140 iterations in total to complete timing recovery and phase one of power recovery,

whereas RGS completes in only about 25 iterations. Overall, compared to v3, RGS reduces the total LR

iterations of timing recovery and phase one of power recovery by 80%. The average power of RGS after

phase one of power recovery is only 0.8% worse.
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Figure 3.4: Comparison of TNS and power profiles for v3 and RGS runs on the pci bridge32 fast. LR iterations
shown on the x-axis are from the timing recovery stage and phase one of power recovery. For RGS, by iteration 6,
timing recovery ends and power recovery phase one begins. For v3, timing recovery extends until around iteration 60,
followed by the power recovery phase one until iteration 140.

Figure 3.5: TNS and power profiles for v3 and v4 runs on the pci bridge32 fast are plotted. Only 80 LR iterations
are shown. v4 invokes CPS around iteration 22 when it is still in its timing recovery stage, and TNS starts to degrade.
Within 3 calls, CPS recovers the timing from the critical paths, and power recovery phase one begins at around iteration
26. On the other hand, v3 could not converge until 60 iterations.
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3.5.3 Impact of CPS on Timing Convergence

In order to evaluate the impact of CPS on timing convergence, we build a flow version, v4, by adding

CPS in the timing recovery stage of v3. CPS has the ability to quickly recover timing from the critical paths.

Therefore, once the TNS falls below a threshold (2T , in v4), and then if it degrades, we invoke CPS instead

of SGS to converge the timing. Figure 3.5 shows pci bridge32 fast as an example. In the figure, around

iteration 20, TNS falls below 2T . Then, TNS starts to degrade (increase) around iteration 22 at which point

the CPS is invoked. CPS is able to recover the timing in just 3 calls. On the other hand, v3 is not able to

converge the timing until iteration 60.

Overall results show that v4 on average, can cut down the number of LR iterations in timing recovery

from 37 to 25. Moreover, each iteration of CPS is around 10x faster than an iteration of LRS. In fixing

critical path timing violations, CPS causes only marginal increase in the total design power.

3.6 Conclusion

In modern VLSI physical design flows, gate sizing is a time consuming optimization. LR-based gate

sizers provide good quality results, but can take significant runtime due to the need to update timing after

each iteration, as they can take many LR iterations to converge. In this work, we propose several tech-

niques to enable rapid gate sizing by reducing the number of LR iterations. We utilize an elegant Lagrange

multiplier update strategy to speed up the coarse-grained timing and power recovery. We also propose two

LR-based techniques, MGS and CPS, for finer-grained power and timing refinement. These techniques al-

low the coarse-grained optimization to terminate early, further cutting down the number of iterations. Since

LR iterations dominate the total runtime, our proposed gate sizer, RGS, is 3x faster than the previous fastest

LR-based gate sizer, while still achieving state-of-the-art reduction in leakage power.
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CHAPTER 4. FAST LAGRANGIAN RELAXATION BASED MULTI-THREADED

GATE SIZING USING SIMPLE TIMING CALIBRATIONS

Abstract - Accurate delay analysis with distributed RC delay can be computationally expensive, and

can contribute the majority of the total runtime for gate sizers. Recent works have shown that Lagrangian

relaxation based gate sizers have produced designs with the lowest power on average. But they are also

very slow due to a large number of expensive timing updates spread across several tens of iterations. In this

chapter we develop a Lagrangian relaxation based discrete gate sizer for fast timing and power reduction.

Our gate sizer is multi-threaded and is equipped with parallelization enabling techniques, namely, mu-

tual exclusion edge (MEE) assignment and directed acyclic graph (DAG) based netlist traversal. MEE are

dummy edges assigned to improve load sharing among different threads. DAG based netlist traversal facili-

tates simultaneous resizing of gates belonging to different topological levels.

Our Lagrange multiplier update strategy enables rapid convergence of our timing and power recovery

algorithms. To reduce the runtime of timing updates, we propose a simple and fast-to-compute effective

capacitance model. We further propose mechanisms to calibrate timing models to improve their accuracy.

By calibrating the internal timing models only twice, our proposed gate sizing flow facilitates extremely fast

design optimization.

We benchmark our gate sizer using the ISPD 2012 and 2013 gate sizing contest benchmark suites.

Compared to the state-of-the-art gate sizer, our proposed gate sizer is on average 15x faster and the optimized

designs have 2.5% higher leakage power. Since we trade-off timing accuracy for larger runtime speedup,

our optimized designs have small timing violations.

4.1 Introduction

One of the most time consuming aspects of gate sizing in general, and LR gate sizing in particular, is

the timing update. To respect the timing constraint, timing needs to be updated very frequently - either fully,
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incrementally, or locally. Since LR gate sizing necessitates evaluation of several cell alternatives for power

and delay trade-off for every gate in every iteration of the algorithm, timing updates tend to become the

runtime bottleneck. Resistive interconnects not only require modeling the interconnect delay and transition

time (or slew) degradation, which by themselves are complicated and CPU intensive when done accurately,

but also make the accurate gate delay and gate slew modeling complicated. Typically, an external industrial

timer needs to be invoked for accurate timing updates which in general is very slow.

In this work we extend our previous gate sizer Sharma et al. (2015) to quickly recover the bulk of the

timing violations and the leakage power even from designs where we need to more accurately model the

interconnect. We use several calibration mechanisms to greatly improve the internal timer accuracy, while

limiting interactions with the external timer.

We use benchmark suites from the ISPD 2012 and the ISPD 2013 gate sizing contests for experimen-

tation. On the ISPD 2012 designs, compared to Flach et al. (2014), on average, we achieve 15.3x speedup

in the total runtime and leakage power is 1.0% more. On the ISPD 2013 designs, compared to Flach et al.

(2014), on average, we achieve 15.5x speedup and leakage power is 2.5% more. Our major contributions in

this work include:

• a new, fast-to-compute model for effective capacitance that is used in computing the gate delay;

• mechanisms for calibrating the internal delay and slew models for both interconnect and gate to

closely track the external timer;

• a gate sizing flow for minimal interaction with the external timer without significant loss of accuracy;

• implementation of a gate sizer that achieves large speedup with little sacrifice of the solution quality.

The rest of the chapter is organized as follows. In Section 4.2 we summarize various relevant works on

gate sizing and timing models. We present the LR formulation for the gate sizing problem in Section 4.3.

In Section 4.4 we discuss a typical methodology for LR gate sizing. In Section 4.5 we present the overall

flow of our gate sizer, and then discuss our proposed calibration mechanisms in Section 4.6. Sections 4.7

and 4.8 review the multi-threaded LR subproblem solver and the Lagrange multiplier update strategy which
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together form the core of our sizer. We discuss our greedy post-pass strategies for solution refinement in

Section 4.9. Various experimental results are discussed in Section 4.10. We lastly conclude in Section 4.11.

4.2 Previous Work

Timing models are crucial factors in determining the final solution quality, rate of convergence to that

solution and the total runtime of the gate sizer. While it is a standard practice to use table lookup for

computing the gate delays and the gate slews, several different models are used for modeling the delay

and the slew degradation in an RC interconnect. Various interconnect models have a trade-off between

computational complexity and accuracy. Yella et al. (2017); Daboul et al. (2018) use an external sign-

off timer for all the timing updates; whereas Kahng et al. (2013); Flach et al. (2014), in the interest of

runtime, postpone external timer invocation to the later stages of their respective algorithms. During the early

stages, Kahng et al. (2013) use the D2M delay model Alpert et al. (2000) delay model and the PERI model

Kashyap et al. (2003) for modeling the slew. Flach et al. (2014) use the Elmore delay model Elmore (1948)

and PERI. In this work, we use the Elmore delay model and the PERI model since they are computationally

less expensive. We discuss calibration mechanisms, to improve their accuracy, in Section 4.6.

Empirical formula for gate delay estimation requires input slew and effective capacitance as parameters

for look up in the 2D table. Effective capacitance denotes the effective loading at the output pin of a gate.

Several algorithms for computing the effective capacitance have been published, like Qian et al. (1994);

Kahng et al. (1999); Abbaspour et al. (2003). Most of these algorithms are iterative in nature due to lacking

a closed form explicit expression. Even if there is a closed form expression, it depends on the π-RC model

parameters of the interconnect being driven by the gate, which needs to be derived whenever a loading

gate’s input pin capacitance changes. LR gate sizing, where effective capacitance computation would need

to sit in the inner most loop of the gate sizing algorithm, all of these effective capacitance models are too

slow. Therefore, we use our our proposed simple model along with the calibration mechanism to improve

its accuracy.
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Table 4.1: Notations used in section 4.3.

Notation Meaning
T Target clock period
G Set of gates in the design
Xg Discrete set of cells for gate g
xg ∈ Xg Current cell assigned to gate g
leakx Leakage power of cell x
max loadx Maximum load capacity of cell x
N Set of nodes in the timing graph
Nin Set of nodes that are either input pins of gates or output ports
Nout Set of nodes that are either output pins of gates or input ports
Nend Set of timing end point nodes, i.e., data input pin of a sequential gate or

an output port
E Set of timing arcs in the timing graph
ai Arrival time at node i
gi Gate or port associated with node i
λij Lagrange multiplier for the timing arc (i, j)

xxx,aaa,λλλ Respective set of variables x, a and λ. For example, xxx = {xg|g ∈ G}
dij(xxx) Delay function of the timing arc from node i to node j
slewi(xxx) Function to compute slew at node i
ceff i(xxx) Function to compute effective capacitance at node i ∈ Nout
Smax Maximum slew defined in the cell library

4.3 Problem Formulation

We solve the same problem as presented in the gate sizing contests. The objective is to minimize the

total leakage power (referred hereafter as power) of the design while satisfying the timing constraints. In

addition, the effective capacitance load at the output pin of a gate must be less than the maximum load

handling capacity of that gate which depends on the cell implementation of that gate. Also, at each input pin

of every gate and each output port, the slew has to be less than a maximum value. In the library provided

for the contest, there is a global maximum input slew of 300ps. In the contest library, sequential gates have

a single cell implementation - they cannot be resized. We are allowed to alter the size and Vth of only

the combinational gates. We model rise and fall timing constraints separately, but we omit their separate

mention throughout this work for clear presentation. Using the notations shown in Table 4.1, the primal

problem is stated as follows:
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minimize
xxx,aaa

∑
g∈G

leakxg

subject to ai + dij(xxx) ≤ aj ∀(i, j) ∈ E

ak ≤ T ∀k ∈ Nend

ceffi(xxx) ≤ max loadxgi ∀i ∈ Nout

slewi(xxx) ≤ Smax ∀i ∈ Nin

xg ∈ Xg ∀g ∈ G

(4.1)

where, minimization is over the set of discrete cell variables xxx and the continuous arrival time variables.

While leakx and max loadx are specified in the standard cell library for each cell x, computation models

for dij(xxx), slewi(xxx) and ceffi(xxx) are discussed later. By definition of arrival times, ai + dij(xxx) ≤ aj are

always satisfied for all timing arcs. Hence, violations in the timing constraints which are quantified by the

metric called total negative slack (TNS), are computed as TNS =
∑

k∈E (ak − T ). Similarly, total load

violations and total slew violations can be computed. For computing the load violations, the maximum of

the rise ceffi(xxx) and the fall ceffi(xxx) is compared against max loadxgi , for each node i ∈ Nout.

The primal problem (4.1) has non-convex timing constraints. We relax the problem by including those

constraints into the objective function. To penalize any constraint violations, each one of them is associated

with a non-negative penalty term. These penalty terms are called the Lagrange multipliers and denoted by

λij (or λk, depending upon the constraint it gets associated with). Thus, we get a new objective function for

a given set of Lagrange multipliers λλλ, called the Lagrangian function, Lλλλ(xxx,aaa). It is shown below:

Lλλλ(xxx,aaa) :
∑
g∈G

leakxg +
∑

(i,j)∈E

λij × (ai + dij(xxx)− aj) +
∑

k∈Nend

λk × (ak − T ) (4.2)
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We do not relax the load and slew constraints because they are easy to track during the optimization. We

can now define the Lagrangian relaxation subproblem for a given set of Lagrange multipliers, LRS/λλλ, as

follows:

minimize
xxx,aaa

Lλλλ(xxx,aaa)

subject to ceffi(xxx) ≤ max loadxgi ∀i ∈ Nout

slewi(xxx) ≤ Smax ∀i ∈ Nin

xg ∈ Xg ∀g ∈ G

(4.3)

Chen et. al. (1999) derived the Karush-Kuhn-Tucker (KKT) optimality conditions for the subproblem

LRS/λλλ, and in the process they simplified the Lagrangian function. Wang et al. (2009) later noted that

the KKT conditions are sufficient but not necessary. However, they derived the same conditions using a

different reasoning. For completeness, we reproduce the main steps from their derivation. The Lagrangian

function can be rewritten as follows:

Lλλλ(xxx,aaa) =
∑
g∈G

leakxg +
∑

(i,j)∈E

(λij × dij(xxx))− T ×
∑

k∈Nend

λk+

∑
i∈N\Nend

ai ×

 ∑
{v|(i,v)∈E}

λiv −
∑

{u|(u,i)∈E}

λui

+

∑
k∈Nend

ak ×

λk − ∑
{u|(u,k)∈E}

λuk


(4.4)

The Lagrangian function is unbounded below if the following conditions are not satisfied:

∑
{v|(i,v)∈E}

λiv =
∑

{u|(u,i)∈E}

λui ∀i ∈ N\Nend

λk =
∑

{u|(u,k)∈E}

λuk ∀k ∈ Nend
(4.5)

We refer to the constraints in (4.5) as the ‘flow constraints’ on the Lagrange multipliers. The flow constraints

can be stated as follows: at each node, the sum of the incoming Lagrange multipliers should be equal to the

sum of the outgoing Lagrange multipliers. Upon applying the flow constraints (4.5) to the Lagrangian
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function (4.4), coefficients of ai and ak become zero, and additionally, by ignoring the term T×
∑

k∈Nend
λk

which is constant for a given λλλ, we get the simplified subproblem, sLRS/λλλ, as shown below:

minimize
xxx

∑
g∈G

leakxg +
∑

(i,j)∈E

(λij × dij(xxx))

subject to ceffi(xxx) ≤ max loadxgi ∀i ∈ Nout

slewi(xxx) ≤ Smax ∀i ∈ Nin

xg ∈ Xg ∀g ∈ G

(4.6)

where λλλ satisfy the flow constraints (4.5). We refer to
∑

(i,j)∈E (λij × dij(xxx)) as the lambda-delay sum, and

the objective function of (4.6) as the LRS cost. Let L∗λλλ denote the optimal value of the sLRS/λλλ. Then, it can

be shown that L∗λλλ is a lower bound on the optimal value of (4.1). The Lagrange dual problem is to find an

optimal set of Lagrange multipliers that maximize this lower bound. The Lagrangian dual problem (LDP)

is thus formulated as follows:

maximize
λλλ

L∗λλλ− T ×
∑

k∈Nend

λk

subject to
∑

{v|(i,v)∈E}

λiv =
∑

{u|(u,i)∈E}

λui ∀i ∈ N\Nend

λk =
∑

{u|(u,k)∈E}

λuk ∀k ∈ Nend

(4.7)

4.4 Background on Lagrangian Relaxation Based Gate Sizing

In this section we discuss a common strategy to do LR gate-sizing. It has three stages: the initialization;

the LDP solver; and the final greedy post-pass. It is assumed that the sizer has an accurate internal timer,

otherwise additional stages involving interaction with an accurate external timer must be considered.

4.4.1 Initialization

In the initialization stage, each gate is initialized to its minimum leakage power library cell alternative

(smallest size and highest Vth). This usually creates the maximum load and maximum slew violations. To

fix load violations the design is scanned in reverse topological order and those gates whose loads exceed the
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respective gate’s maximum load handling capacity are sufficiently upsized and/or, less preferably, a lower

Vth cell alternative is used. Afterwards, to fix the slew violations, design may need to be scanned in forward

topological order and those gates whose output slew is too large would need to use a higher drive strength

cell alternative such that no new load violations are created for the upstream gates.

Initial Lagrange multiplier values would depend upon the leakage power of a typical gate and its tim-

ing arc delay. Therefore, for a different library, one-time tuning of the initial Lagrange multiplier value

might improve the convergence. To satisfy the flow constraints, Lagrange multipliers are updated using the

projection heuristic Tennakoon et al. (2002).

4.4.2 Solve LDP

This is an iterative stage to approximately solve the LDP (4.7). In each iteration, the Lagrange multipliers

are updated for the given design and the sLRS/λ (4.6) is solved by an LRS solver for the updated set of

multipliers. Iterations can terminate, for example, when the LRS cost converges.

4.4.2.1 LRS solver

The LRS solver heuristically solves (4.6), for the given set of Lagrange multipliers. In other words, the

LRS solver tries to find an optimal cell for each gate such that the weighted sum of delay and power for the

entire design is minimized subject to the maximum load and the maximum slew constraints. Note that the

weights are the Lagrange multipliers. Since sizes are discrete and delay as well as power are non-convex

functions of the gate sizes, (4.6) is a tough problem.

A commonly used heuristic to solve it is as follows. Each gate is resized to locally minimize the objective

while all the other gates in the neighborhood and in the fanout cone are assumed to have a fixed size. Gates

are traversed in the forward topological order from the timing start points to the timing end points. A gate is

resized only after all its fanin gates have been resized. While resizing a gate, the LRS cost is estimated for

all the valid cell alternatives1 of that gate and the gate is resized to the cell with the lowest estimated LRS

cost.
1A cell alternative is invalid if and only if it causes a violation of the maximum load or the maximum slew.
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Figure 4.1: Local arcs include fanin-arcs: 1-5, 2-5, 5-7, 3-6, 4-6; gate-arcs: 7-8, 5-8, 6-8; fanout-arcs: 8-10, 8-11;
and, side-arcs:5-9.

The exact computation of the LRS cost necessitates exact computation of the lambda-delay sum for

which an incremental timing analysis is needed which becomes prohibitively expensive because it has to

be done for several cell alternatives of every gate in the design, in each iteration. To limit the runtime

overhead when analyzing the cell alternatives, timing of only the local arcs is recomputed. Therefore, the

lambda-delay sum for a cell xg of gate g is estimated as follows:

lambda-delay-sum(xg) ≈
∑

(i,j)∈local arcs(g)

(λij × dij(xxx)) (4.8)

where local-arcs constitute fanin-arcs, gate-arcs, side-arcs and fanout-arcs as shown in Figure 4.1 for an

example reference gate.

To improve the lambda-delay sum estimate, Flach et al. Flach et al. (2014) computed global delay by

slew sensitivity functions to approximate the change in the lambda-delay sum for the rest of the fanout

cone. We implemented the sensitivity functions and found that with the cell library provided for the ISPD

gate sizing contests it had a negligible impact on the final solution quality. Mostly, the sensitivity function

contributed less than 0.1% of the LRS cost. The LRS solver is the most expensive sub-block in the entire

algorithm. However, owing to the local nature of the cost computation, several gates can be simultaneously

resized.

4.4.2.2 Lagrange Multiplier Update Strategy

The Lagrange multiplier indicates the timing criticality of the corresponding timing arc. A timing arc is

timing critical if and only if it’s slack is negative. Therefore, a general strategy for updating the multipliers

has been to increase (decrease) the multiplier for a timing critical (non-critical) arc in such a way that in
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the next solving of the LRS, delays of the critical arc may decrease and timing slack of the non-critical arc

may be traded off for lower power. The key is how much to change the multiplier. It has a major impact

on the convergence rate, as explored in our previous work Sharma et al. (2017). Afterwards, the multipliers

are projected to satisfy the flow constraints (4.5). To do that, at each node i, the sum of the multipliers

on the outgoing timing arcs is distributed among the incoming timing arcs in proportion of their respective

multiplier.

4.4.3 Greedy post-pass

Due to discreteness of the problem and the heuristic nature of the LDP solver, LR gate sizers are not

able to recover power in a finely grained manner. Note that solving the LRS does not guarantee a zero TNS

design. When the LDP solver terminates, there is usually a small TNS. Therefore, a post-pass is needed to

recover finer grained timing violations and power. Typically, such a post-pass invokes variants of sensitivity

guided greedy heuristics. Ideally, the greedy post-pass should not consume much runtime but on certain

benchmarks it can be very slow either due to the size of the benchmark or difficulty in recovering the timing

violations.

4.5 Overall Flow

In this section, we discuss various stages constituting our proposed gate sizer. Figure 4.2 shows the flow

chart of our sizer. In the first stage, it initializes the sizes and Lagrange multipliers, as discussed in Section

4.4.1. Once load and slew violations are fixed during initialization, they are not allowed afterwards.

The next stage is calibration of effective capacitance. We observed that total capacitance over-estimates

the delay to the extent that on some benchmarks the timing does not converge. In this stage, the sizer

invokes the external timer and updates the parameters of our proposed effective capacitance model for each

interconnect (discussed in Section 4.6). It is skipped for the designs where interconnect is purely capacitive

on the ISPD 2012 benchmark designs.

In the third stage, the LDP is solved in two sub-stages: LR timing recovery and LR power recovery. LR

timing recovery is responsible for recovering the bulk of the timing violations. It iterates between the LRS
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Figure 4.2: Flowchart of our proposed gate sizer. Calibration is invoked for distributed RC interconnect model. Our
LRS solver is multithreaded (MT). There are two differences between LR timing and power recovery: (a) convergence
criterion, and (b) parameters used for updating Lagrange multipliers (LM).

solver, timing update via static timing analysis (referred as STA) and Lagrange multiplier update. Iterates

continue until TNS converges. LR power recovery follows the same iterative structure. However, a different

set of parameters is used for the Lagrange multiplier update to drive the optimization towards lower power

design. Iterations terminate when power has converged. Iterations inside the LR timing and power recovery

are referred to as LR iterations. We set a maximum limit of 200 LR iterations for each of the sub-stages.

Livramento et al. Livramento et al. (2014) had shown larger reduction in leakage on the ISPD 2012

benchmark designs by slightly increasing (in other words, relaxing) the target clock period during the LR

iterations. Therefore, to enable timing violation and power trade-off during the LR iterations, we introduce

a parameter R called the target clock relaxation factor which is indicated in %. For example, if R = 0.2%

and T = 300ps, then the relaxed target clock period is 300.6ps. R is reset to 0 after the LDP solver ends.

Our LRS solver differs from a typical LRS solver that was discussed in Section 4.4.2.1 in the following

ways. Firstly, while resizing a gate we restrict the negative slack degradation around that gate. This idea and

technique was proposed by Flach et al. (2014) who suggested that in addition to minimizing the LRS cost, its

important to prevent timing degradation to ensure solution stability for faster convergence. The degradation

in local negative slack was used as a proxy for the actual degradation in the TNS. We refer to this technique

as local slack check. We found the local slack check to be quite effective in keeping TNS under control,
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especially during the LR power recovery. Secondly, our LRS solver is multi-threaded. Thirdly, our LRS

solver evaluates a reduced number of valid cells. The last two differences significantly speedup our LRS

solver without compromising the solution quality.

After the LR power recovery ends, the sizer can immediately start the greedy post-pass if it has an

accurate internal timer. However, with resistive interconnect, it is CPU intensive to accurately model the

timing and quite difficult to correlate well with an industrial sign-off timer. Hence, for such designs, as in

the ISPD 2013 benchmark suite, we propose to do a full calibration of our internal timing models. In this

stage, the parameters for our effective capacitance, delay, and slew models are updated. Thus, equipped with

a better timing model, the sizer can then invoke the greedy post-pass. In this last stage, the sizer greedily

recovers the timing by upsizing the gates, and then recovers power by increasing the Vth and downsizing

the gates.

4.6 Timing Models With Resistive Interconnect

Unlike the ISPD 2012 gate sizing contest where the interconnect of each benchmark was modeled by a

single lumped capacitance, in ISPD 2013, the interconnect was modeled by a fixed distributed RC tree. Due

to resistive interconnect, not only the interconnect delay and slew degradation need to be modeled, even gate

delay and gate slew cannot be computed from the table look-up based on the total capacitance loading the

gate output. Gate delay is a function of effective capacitance which is the same as total capacitance only

when interconnect is purely capacitive (lumped). To accurately model the gate slew under different loads

and input slews, timer must be able to account for the exponential tail in the output voltage waveform.

For purely capacitive interconnects, our internal timer correlates well with Synopsys PrimeTime which

is de facto standard timing analyzer used in industry, within 0.001ps. For resistive interconnects, imple-

menting a timer of this accuracy is beyond the scope of this work, and calling an external timer frequently

is prohibitively slow. For this reason, Flach et al. (2014) invoked the external timer only during the greedy

post-pass. During LR iterations they only model the effective capacitance.

To speedup the timing updates we propose a simple model to estimate the effective capacitance and

propose mechanisms to calibrate our effective capacitance model along with the other timing models - the
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delays and slews for gates as well as interconnects. For calibrating a basic timer against a sign-off timer

Moon et al. (2010) had proposed to additively adjust the endpoint slacks. As shown by Kahng et al. (2013),

this mechanism requires very frequent calibrations to keep the average slack errors low. Therefore, for

better accuracy we propose to calibrate each timing model separately. We use Synopsys PrimeTime for

timing calibration as it was also used in the gate sizing contests.

Notations used in the subsequent subsections are as follows. An interconnect (also referred as net) is an

RC tree composed of taps and wire segments connecting two adjacent taps. The tree of a net n is denoted

by Tn. Each tap, except the root tap, has exactly one parent. The root tap has no parent. Figure 4.3 shows

an example net modeled by an RC tree.

Figure 4.3: An example net modeled by an RC tree. Pin A is the driver and is also the root tap. Pins B and C are
loads and are also the leaf taps.

Capacitance associated with each tap i is denoted by capi. For those taps that are connected to an input

pin of a gate, referred to as leaf taps (or, leaves), capi includes the input pin’s capacitance as well. The

subtree rooted at tap i is denoted as subtree(i). The sum of all capacitances in subtree(i) is referred to as

downstream capacitance at tap i, and it is denoted as ci. It is defined as follows:

ci =
∑

j∈tap(subtree(i))

capj

where tap(.) returns all the taps. For an example, in reference to Figure 4.3, capY = C3 and cY =

C3 + C4 + C5 + CB + CC .

Resistance of the wire segment connecting the parent of tap i, parent(i), to tap i is referred to as the

upstream resistance at tap i, and it is denoted by ri. The path connecting the root of the tree to tap i is
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denoted by path(i). The sum of all the resistances on path(i) is referred to as the path resistance to tap i,

and it is denoted by roi. It is formally defined as follows:

roi =
∑

j∈tap(path(i))

rj

In reference to Figure 4.3, rB = R3 and roB = R1 +R2 +R3.

4.6.1 Modeling Effective Capacitance

Resistances in the interconnect shield the capacitances due to which the output of the gate gets charged

faster. Hence, the effective capacitance seen by a driver is usually smaller than the total capacitance. The

larger the resistance the more shielding there is, and the smaller is the effective capacitance. With this

intuition, we propose the following model for estimating effective capacitance of net n,

ceff(n) =
∑

i∈tap(Tn)

capi
1 + αn × roi/Rd (4.9)

where αn is a net-specific non-negative parameter and Rd is the drive resistance of the arc that drives the net

n. If on is the node corresponding to the root tap of the net, then ceff(n) is same as the effective capacitive

load at node on that was used in section 4.3. The default value of αn is 0 for all nets, in which case,

effective capacitance is same as the total capacitance. During calibration it is updated so that the estimated

effective capacitance matches the effective capacitance obtained from the industrial timer for the same input

conditions, namely, the input slew and the input pin capacitance at all the leaves of the net. We refer to

1/(1 + αn × roi/Rd) as the shielding factor at the tap i. As per our model, the larger the path resistance to

tap i (roi), the more the shielding effect on the capacitance at that tap (capi), and the smaller the contribution

of that capacitance towards the effective capacitance (ceff(n)). We compute the drive resistanceRd from the

delay lookup table as the ratio of the change in delay to the change in load, averaged over all input transition

times and all loads. For every delay table, we derive a single Rd value.

To test the accuracy of our proposed model, we compared the error in effective capacitance before

calibration and after calibration. After calibration, we randomly perturbed the design. We either upsized or

downsized a pre-determined percentage of gates, P , chosen uniformly at random. Before calibration, we

observed that the average error was up to 4.4% and the standard deviation was up to 17%, across all the
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Figure 4.4: Histograms of effective capacitance error for the design matrix mult before calibration (Uncalibrated)
and after calibration for different amounts of random perturbations, P, measured as percentage of total number of
combinational gates. X-axis is the % error and Y-axis is the count of interconnects. Positive error implies over-
estimation.

designs. The maximum error was more than 500%. Immediately after calibration, as expected, we observed

near-zero error across all designs. As perturbations increased up to P = 80%, the average error, across all

the designs, was less than 0.15% and the standard deviation was less than 1.6%. Maximum error observed

was 137%. Figure 4.4 shows histograms of errors in effective capacitance for the design matrix mult before

calibration and after calibration for five different values of P .

4.6.2 Modeling Slew of an RC Tree

Kashyap et al. (2003) had proposed that the output slew of an RC tree can be approximated as the root-

mean square of the input slew and the step response slew. Using the single dominant pole approximation,

the step response slew at a tap i can be expressed as the Elmore slew metric Bakoglu (1990) i.e., (ln4)× di

for 20-80% transition, where di is the Elmore delay from the root of the RC tree to the tap i. Thus, we can

write the 20-80% ramp response slew at tap i as follows,

si =
√
s2
o + 1.92× d2

i
(4.10)

where so is the slew at the root of the net and (ln4)2 = 1.92. The same model was used by Flach et al.

(2014) as well.
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We propose an alternative slew model for computing slew at the leaves. We replace the constant term

(1.92) by a leaf specific slew correction factor, denoted by scfi for leaf i. Thus, we can estimate the slew at

leaf i as follows,

ŝi =
√
s2
o + scfi × d2

i
(4.11)

Note that since square rooting is a CPU intensive operation, it suffices to compute slew only at the leaves.

By default scfi = 1.92 for each leaf i. During calibration it is updated for each leaf such that the estimated

slew at a leaf exactly matches the corresponding slew from the PrimeTime under the same input conditions.

Although, theoretically, we can define a correction factor for every tap of the tree, since PrimeTime does not

report their slews, it is not straightforward to compute the corresponding correction factors.

4.6.3 Modeling Delay of an RC Tree

Elmore delay has been a popular delay metric for RC tree due to simplicity of its computation as a

function of circuit parameters. Gupta had established Elmore delay as an upper bound on 50% delay of an

RC tree response for a wide category of input signals including the ramp and the step input Gupta (1995).

The Elmore delay at the tap i can be written as,

di =
∑

j∈tap(path(i))

(rj × cj) (4.12)

where rj and cj are upstream resistance and downstream capacitance at tap j, respectively. Flach et al.

(2014) used the same model.

We propose an alternative delay model for computing delay at the leaves. We add a leaf-specific delay

correction factor, denoted by dcfi for leaf i. Thus, we propose to estimate the delay at leaf i as follows,

d̂i = dcfi ×
∑

j∈tap(path(i))

(rj × cj) (4.13)

The default value of dcfi is 1 for each leaf in every net. During calibration it is updated such that the

estimated delay exactly matches the corresponding delay from PrimeTime under the same input conditions.

Note that even though we do not compute correction factors for the taps of the tree (for the same above-

mentioned reason), we can still compute delay at the leaves using (4.13).
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4.6.4 Modeling Gate Slew

For a purely capacitive interconnect, output slew of a gate’s timing arc i → j is a function of the input

slew (si), total capacitive load at the output (lj) and the library cell for that gate. It can be computed by

linear 2-D interpolation using the appropriate four boundary points in the slew lookup table. Formally, slew

at node j due to the timing arc (i, j) can be represented as follows,

sj = SlewTable(si, lj , cell) (4.14)

If multiple timing arcs are incident at a node j then, as per the contest guidelines, slew at node j is the

maximum of all the slews.

With resistances in the interconnect, the slew may increase or decrease. There are two opposite factors

in play. On one hand, lower effective capacitance causes the output to more quickly charge (or, discharge).

On the other hand, charge leaking through the resistances, slows down the transition to 20/80 threshold

resulting in a long exponential tail in the output voltage waveform. Depending upon the ratio of interconnect

impedance to the ground versus the driver resistance, one of these two factors can dominate. Qian et al.

(1994) had proposed to capture the output waveform using a two-piece approximation - one piece was

obtained from the effective capacitance model and the other (the tail portion) was obtained from a resistance

model. Since it is quite complicated and CPU intensive to accurately capture both the effects, we propose to

use a ‘slew correction factor’ denoted by scfj to improve the accuracy of the original model.

ŝj = scfj × sj (4.15)

By default, scfj = 1. During calibration it is updated for each node so that the estimated slew exactly

matches PrimeTime under the same input conditions.

4.6.5 Modeling Gate Delay

Delay of a gate’s timing arc (i, j) can be computed by linear 2-D interpolation in the delay lookup table,

as a function of input slew (si), effective capacitance of the net being driven by the output node j, denoted

as (ceff(net(j))) and the library cell for that gate. Formally, delay of a gate arc (i, j) is defined as follows,

dij = DelayTable(si, ceff(net(j)), cell) (4.16)
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Although dij is able to accurately model the gate delay, in some cases there are slight deviations. One such

case that we observed while working with PrimeTime is when net’s impedance to ground is much larger than

the drive resistance of the simplified driver model that PrimeTime builds internally for the gate timing arc.

In such situations, as per the PrimeTime (2012) the output waveform is not very smooth which potentially

reduces the accuracy of delay calculation in the RC tree being driven by the gate. Hence, PrimeTime adjusts

the drive resistance to improve accuracy.

Like in gate slew, we propose to use a delay correction factor, dcfij , for every gate arc (i, j), to account

for the above-mentioned deviations. Thus, we estimate the delay as follows,

d̂ij = dcfij × dij (4.17)

The default value of dcfij is 1. During calibration it is updated so that the estimated delay exactly matches

the PrimeTime under the same input conditions.

4.6.6 Calibration Pseudo Code and Runtime

Calibration is the process of updating αn for all nets, slew correction factors, and delay correction factors

for all leaves as well as gate arcs. Its pseudo code is shown in Algorithm 6. Algorithm writes out a Verilog

file out.v for the current design (line 1) and then, makes a system call to PrimeTime (line 2) which sources

a TCL script. The TCL script reads in out.v along with the contest provided timing constraints (.sdc) file,

parasitics (.spef) file, and the liberty (.lib) file. It outputs a file containing effective capacitance for every

gate output pin and input port, delay for every timing arc, and slew at every pin and port. Since all of these

are obtained from PrimeTime, we refer to it as golden timing data.

Then, algorithm scans the design in forward topological order, and updates parameters for each gate and

its output net. The algorithm queries the golden effective capacitance value on line 6. On line 7, it solves

(4.9) for αn using the bisection method, such that the estimated effective capacitance matches the golden

value within a threshold.

The algorithm, then computes delay and slew correction factors for each timing arc of the gate. On line

12, it queries the golden slew at the input pin of the arc. It is used for computing the lookup table delay and

slew on lines 13 and 16. For delay computation it re-uses the golden value for the effective capacitance that
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was queried on line 6. Then, it queries the golden delay for the same arc on line 14, and updates the delay

correction factor as the ratio of golden delay and the lookup table delay, as shown on line 15. For computing

slew on line 16, total capacitive load is used because effective capacitance severely under-estimates the slew

for the given contest Liberty file. It is not clear what PrimeTime uses. On line 17, maximum slew at the

output pin is calculated, which is then used to compute the slew correction factor at that output pin, as shown

on lines 18-19.

Algorithm 6 Pseudo code for calibration
1: out.v← write verilog()
2: golden← PrimeTime(out.v,...)
3: for each gate g in forward topological order do
4: o = output pin(g)
5: n = net(o) . net driven by pin o
6: ceffPT = golden.get ceff (o)
7: Setting ceff (n)=ceffPT , solve (4.9) for αn
8: xg = cell(g)
9: l = total cap(o) . total capacitive load at pin o

10: so = 0 . slew at pin o
11: for each input pin i of gate g do
12: si = golden.get slew(i)
13: Plug si, ceffPT and xg into (4.16); compute dij
14: dPT = golden.get delay(i, o)
15: dcfio = dPT /dij
16: Plug si, l and xg into (4.14); compute sj
17: so = max(so, sj)

18: sPT = golden.get slew(o)
19: scfo = sPT /so
20: for each leaf k of net n do
21: compute dk using (4.12)
22: dPT = golden.get delay(o, k)
23: dcfk = dPT /dk
24: sk = golden.get slew(k)
25: Set so = sPT , ŝi = sk, di = dk in (4.11); solve for scfi
26: scfk = scfi

The algorithm, then iterates over each leaf of the output net. For each leaf, it computes Elmore delay

using (4.12) on line 21; queries golden delay for the timing arc from the root tap of net to the leaf (line

22); and updates the delay correction factor at the leaf on line 23. On line 24, it queries the golden slew at
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the leaf. Then, it solves (4.11) for the correction factor such that the estimated slew at the leaf matches the

golden value obtained on line 24. Finally, scfi is assigned to the slew correction factor at the leaf.

The PrimeTime call is the single most runtime expensive operation of not only calibration but the entire

gate sizer. We found that the slow TCL interface between our C++ code and PrimeTime is the runtime

bottleneck. There are two factors in the interface that slow us down. Firstly, we use TCL commands which

do many function calls for every timing query in PrimeTime. If the user has access to the native tool,

then timing queries can be much faster. Secondly, we ask PrimeTime to dump out a file with the timing

information which incurs significant I/O overhead.

4.7 Fast LRS Solver

Next to calibration, the LRS solver is the most time consuming sub-block across most of the benchmarks.

Inside the LRS solver, every gate is resized which requires evaluation of various valid cell alternatives for

the LRS cost and the local slack check. As noted in the Section 4.4.2.1, multiple gates can be resized

simultaneously and thus, the LRS solver can be multi-threaded. However, not any two gates in any order can

be simultaneously resized. In section 2.4 of chapter 2 we had discussed the requirements for simultaneous

resizing, and presented two algorithms to enable effective multi-threading.

Reduced Option Evaluation We discussed in section 2.5.1 of chapter 2 that while resizing a gate

inside the LRS solver, it is sufficient to evaluate and locally search only among those valid cells that have a

similar drive strength as the current cell, rather than globally searching among all the tens of cells provided

in the standard cell library. The ISPD contest library has 30 cells for each gate. For the first five iterations of

the LR timing recovery we evaluate all the valid cells for each gate. Afterwards, we restrict the search space.

However, if the search space is too much restricted, say Vth is not allowed to change, then the algorithm is

not able to recover much power. It was empirically observed that evaluating four adjacent sizes - two on each

side, in the current Vth cells and in the adjacent Vth cells was sufficient to converge to the lowest power.

Across the ISPD 2013 designs, we observed that during the first five iterations, on average 17 valid cells
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were evaluated per gate per iteration, which reduced to 7 in the later iterations. This sped up the MT-LRS

solver by 1.77 times without compromising the quality.

4.8 Lagrange Multiplier Update

The Lagrange multiplier update is very crucial in driving the optimization. Depending upon how quickly

Lagrange multipliers change, that determines the rate of TNS convergence in the LR timing recovery and the

rate of power reduction in the LR power recovery. In our previous work Sharma et al. (2017), we analyzed

the impact of the Lagrange multiplier update on the convergence rate. We presented a concise and intuitive

expression to update the Lagrange multipliers which decouples the treatment of timing critical and timing

non-critical arcs. Our Lagrange multiplier update strategy is shown in Algorithm 7, where Dij is the worst

path delay through the arc i → j, and K is the ‘acceleration’ factor. The ratio Dij/T indicates the timing

criticality of the arc i→ j. Computationally, this ratio is same as 1 + (ai + dij − qj)/T when arrival times

at the timing start points are all zero. Here, ai is the arrival time at node i and qj is the required arrival

time at node j. The ratio is more than one for a timing critical arc, so the Lagrange multiplier for such an

arc is increased. For a non-critical arc, the ratio is less than one, therefore its multiplier is decreased. The

acceleration factor determines how quickly the Lagrange multipliers change. Larger acceleration factors can

speedup the convergence but can also cause the solution to get stuck in a worse local minimum. Sections

3.4.2 and 3.4.3 of chapter 3 may be referred for more details.

Algorithm 7 Our proposed Lagrange multiplier update algorithm

for timing arc i→ j do

λij = λij ×
(
Dij

T

)K
Projection to satisfy KKT constraints. Refer Tennakoon et al. (2002)

4.9 Greedy Post-Pass

The design obtained from the LDP solver usually has some timing violations and some more power to

be recovered. A greedy post-pass is therefore necessary for finer-grained refinement. It is composed of

two algorithms: Greedy Timing Recovery, and Greedy Power Recovery. Unlike previous works Flach et al.
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(2014); Daboul et al. (2018), we use our calibrated internal timing models in this stage. Since on average

only 5% gates change size or Vth during this stage, our calibrated internal timing models tend to be quite

accurate, and they are much faster to compute than a single invocation of the PrimeTime.

4.9.1 Greedy Timing Recovery

The greedy timing recovery (GTR) is meant to recover the few remaining timing violations. So our

algorithm using the internal timing models must guarantee improvement in TNS. Moreover, power expen-

diture during this stage must be minimized. Consequently, compared to LR timing recovery, it has several

differences. Firstly, the gate that has the maximum number of critical paths passing through it is upsized

first. Secondly, gates are upsized only to the next available size. Vth swap is not allowed at this stage to pre-

vent excessive power increase. Thirdly, after every upsize, timing of the entire fan-out cone is incrementally

updated. This is to ensure that the TNS does not worsen. And fourthly, the new size of the gate is committed

if the TNS improves. Otherwise, the sizing and the timing updates are undone.

4.9.2 Greedy Power Recovery

The greedy power recovery (GPR) is meant to recover the power in a finer-grained manner without

degrading the timing, as per the internal timing models. Like Flach et al. (2014), we also consider all the

gates for Vth swap as well as downsizing in forward topological order, and make sure to commit a new

lower power cell implementation for a gate if and only if the TNS does not degrade. To compute the change

in TNS, an incremental timing update is required. Flach et. al. continued to scan all the gates in the same

order as long as even one gate would successfully commit a new size. Since most of the time TNS degrades

and the timing updates are undone, this strategy wastes a lot of CPU cycles.

We propose to use the local slack check as a way to predict TNS degradation without having to do

expensive incremental timing analysis. If the new cell implementation degrades either the total negative

slack or the worst negative slack at the fan-outs then, it is not committed. This simple trick cuts down

the average GPR runtime by 13 times without affecting the quality. We also propose selective downsizing,

which means that not all gates are considered for power recovery in every iteration. Only those gates (and
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their neighbors) that successfully committed a lower power cell in the previous iteration are considered for

power recovery in the next iteration.

To speedup the incremental timing updates we parallelize the incremental STA. The incremental STA,

like full STA, computes the timing of each gate and the interconnect driven by that gate in the forward topo-

logical order. Gates belonging to the same topological level can be simultaneously processed by multiple

threads. However, the parallelism can be very limited depending upon the fan-out cone structure.

4.10 Experimental Results

We implemented our gate-sizer in C++. Experiments are performed on two quad-core Intel(R) Xeon(R)

E3-1240 v5 @ 3.50GHz CPUs with an aggregate memory of 16GB. For multi-threading, OpenMP Dagum et

al. (1998) was used. We use 8 threads for solving LRS and for incremental STA. For calibration, we use 4

threads and invoke a separate PrimeTime license on each one of them to distribute the timing queries. All

the results reported in this work are averaged over 10 runs to minimize the bias due to non-determinism

caused by multi-threading and random MEE assignment. We used the PrimeTime version E-2010.12 for

amd64. For benchmarking, we use the suites provided for the ISPD 2012 and the ISPD 2013 gate sizing

contests. However, the C++ application programming interface (API) and the TCL scripts to interface with

the PrimeTime are not available. On the ISPD 2013 designs, these interfacing scripts and APIs, and also the

PrimeTime version, might make a difference in the gate sizer runtime as well as the final solution quality.

Since our internal timer correlates perfectly with PrimeTime on the ISPD 2012 designs, we do not need to

communicate with PrimeTime to calibrate for those designs.

4.10.1 Results on the ISPD 2012 Designs

In this subsection, we compare our gate sizing results on the ISPD 2012 contest designs against Li et

al. (2012) and Flach et al. (2014). While Flach et. al. have reported the least leakage power on most of the

designs; Li et al. have reported slightly better runtime. Flach et. al. ran their single threaded gate sizer on

a 3.40GHz Intel(R) Core(TM) i7-3770 CPU, and Li et. al. ran on six 2.67 GHz two-socket cores with 72

GB memory using 8 threads. Unlike the LR gate sizer of Flach et. al. which does timing as well as power
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recovery, the gate sizer of Li et. al. uses the LR formulation for unconstrained delay minimization and then

uses a network flow based approach for recovering the leakage power.

During the LR timing recovery, we set K to 4 and 1 for critical and non-critical arcs, respectively and

during the LR power recovery, we set it to 1 and 6 for critical and non-critical arcs, respectively. We do not

relax the target clock, i.e, R = 0. These parameters are uniformly applied to all the ISPD 2012 designs.

The LR timing recovery iterations are terminated when the TNS falls below 20% of the relaxed target

clock period. The LR power recovery iterations are terminated when the improvement in power is less than

0.1% compared to the previous iteration. Our executable for the ISPD 2012 designs does not include data

structures for RC tree interconnect and it skips the function calls for computing the effective capacitance

and for timing propagation in the interconnects.

Table 4.2 summarizes the power and runtime results from the above-mentioned three gate sizers. All

final designs from all three gate sizers satisfy the timing constraints. Compared to Li et. al., our designs

have 13.7% lower leakage power on average and our gate sizer is 14.7x faster. Compared to the gate sizer of

Flach et. al., our gate sizer is 15.3x faster and yields designs that are slightly more leaky, 1.0% on average.

As seen from the table, compared to Flach et. al., the three largest designs have very little power difference,

in fact we achieve lower power in several cases.

The main reasons for the runtime speedup are 1) multi-threading of the LRS solver, which is the single

most time consuming sub-block in the gate sizer; 2) rapid convergence of timing and power recovery due

to our Lagrange multiplier update strategy. On average over all the designs, LR timing recovery takes 3

iterations and LR power recovery takes 13 iterations to converge. In our previous work Sharma et al. (2015),

we did detailed analysis of the speedup due to multi-threading along with the thread overhead, scalability,

etc. Compared to our previous work, in this work we have a better Lagrange multiplier update strategy and

a more exhaustive GPR as we now allow Vth swap. Consequently, compared to Sharma et al. (2015), our

current gate sizer is faster and yields designs with 1.4% lower power.
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4.10.2 Results on the ISPD 2013 Designs

Compared to the ISPD 2012 gate sizing contest, the major difference in the ISPD 2013 contest was that

the interconnects were modeled by distributed RC trees instead of a lumped capacitance. We compare our

results against Flach et al. (2014) and Kahng et al. (2013). While Flach et. al. reported the least leakage

power on average over the ISPD 2013 designs as well, Kahng et. al. reported lower runtimes and larger

power. Li et al. (2012) did not have results on the ISPD 2013 designs. The gate sizer from Kahng et. al.

performs randomized multi-starts and uses several greedy sensitivity based heuristics for timing and power

recovery. They use up to 16 threads.

For the ISPD 2013 designs, during the LR timing recovery, we set K to 1 and 0.25 for critical and non-

critical arcs, respectively and during the LR power recovery, we set it to 1 and 4. Above mentioned values

of K yielded netlists with the least leakage power on average. Using larger K during LR timing recovery

although we observed faster convergence, the final netlists had slightly more leakage at the end. We relax

the target clock period during the LR iterations by 0.5% (R = 0.5). On the ISPD 2013 designs, a non-zero

relaxation in the target clock helps improve the power at the expense of some runtime. We later analyze these

trade-offs. These parameters are uniformly applied to all the ISPD 2013 designs. The LR timing recovery

iterations are terminated when the TNS falls below 20% of the relaxed target clock period. The LR power

recovery iterations are terminated when the improvement in average power is less than 0.1%. Averaging is

done over three consecutive iterations. Our executable for the ISPD 2013 designs has the necessary data

structures and built-in functionalities to support gate sizing with interconnects modeled as fixed distributed

RC trees.

Table 4.3 summarizes the results on the ISPD 2013 gate sizing contest designs. Compared to Flach et.

al., our gate sizer is 15.5x faster and the final optimized netlists have 2.5% more leakage power, on average.

Compared to the leakage power reported after the LR iterations by Flach et al. (2014), on average, our

designs have a lower power after LR iterations even with R = 0. However, we do not have the PrimeTime

TNS after LR iterations for the gate sizer of Flach et. al. The differences in the leakage power might be

because our greedy post-pass algorithms use the less accurate timing models. We invoke PrimeTime only

once before the greedy post-pass to calibrate our internal timing models. Whereas, Flach et. al. use accurate
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timing from PrimeTime to optimize their designs during the post-pass. Other than the timing models, the

difference in PrimeTime versions might also cause timing mis-correlation which in turn may prevent further

leakage power optimization. As we trade-off some timing accuracy for large runtime speedups, our final

optimized netlists may have small constraint violations. As shown in Table 4.3, the average TNS in the

final optimized netlists is 225ps which, on average, is less than 10% of their respective target clock periods.

While there are no maximum load violations on any design, we observed total slew violations of 31ps only

on edit dist *. These minor TNS and slew violations can be recovered by other optimization techniques like

buffer insertion, sequential gate optimization, etc. Flach et. al. reported zero violations.

As shown in Table 4.3, compared to the fast mode results of Kahng et al. (2013), on average our gate

sizer achieves 16.1% lower leakage power and is 3.2x faster. Kahng et. al. do not report their results for

all the designs with the fast timing constraint. Recently Daboul et al. (2018) published results of their gate

sizer on the ISPD 2013 designs. Using IBM’s EinsTimer, they showed significant power improvements on

several larger design compared to Flach et. al. Since different timers tend to have timing mis-correlations

(as seen by significant TNS violation on their final optimized netlists when we measured in PrimeTime),

we cannot make a fair comparison. However, for the sake of completeness, compared to their results, our

average runtime is 6.8 times smaller but power is 1.4% larger.

Apart from the multi-threaded LRS solver and Lagrange multiplier update strategy, the main reasons for

the runtime speedup on the ISPD 2013 designs are: 1) we use computationally much simpler model for the

effective capacitance; 2) we call PrimeTime less frequently; and 3) GPR is quite run-time efficient.

4.10.3 Breakdown of Results for the ISPD 2013 Designs

Table 4.4 shows the breakdown of the total runtime for all the ISPD 2013 designs. On average, 18%

of the total runtime is consumed in solving the LDP. Inside the LDP solver, the MT-LRS solver dominates

the LDP solver runtime, and even more so on the ISPD 2013 designs because of the additional runtime to

compute the interconnect delay and slew degradation whenever a cell is evaluated for the LRS cost.

Both the calibration stages combined together account for 46% of the total runtime, on average. This

includes the total runtime of two PrimeTime calls. Most of the calibration runtime is spent in outputting the
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Table 4.4: Fraction of the total runtime consumed by different blocks of our gate sizer on the ISPD 2013 designs.
‘Calibrations’ include both the calibration stages. Maximum in each row is in bold font.

Benchmark LDP Solver Calibrations GTR GPR
usb phy slow 0.00 0.94 0.00 0.00
pci bridge32 slow 0.13 0.73 0.01 0.00
fft slow 0.26 0.58 0.04 0.00
cordic slow 0.33 0.40 0.18 0.01
des perf slow 0.12 0.25 0.56 0.00
edit dist slow 0.15 0.45 0.28 0.00
matrix mult slow 0.31 0.29 0.31 0.01
netcard slow 0.14 0.62 0.05 0.00
usb phy fast 0.02 0.91 0.00 0.00
pci bridge32 fast 0.20 0.46 0.25 0.03
fft fast 0.26 0.48 0.15 0.01
cordic fast 0.31 0.16 0.40 0.13
des perf fast 0.08 0.07 0.85 0.02
edit dist fast 0.21 0.33 0.37 0.01
matrix mult fast 0.24 0.19 0.48 0.05
netcard fast 0.18 0.50 0.17 0.00
Average 0.18 0.46 0.26 0.02

timing data into a file through a slow TCL interface. We observed that on bigger designs, PrimeTime spends

only 15-17% of the calibration runtime to update the timing, the rest is spent in the file I/O. When there is

an efficient way to interface with the PrimeTime, say if the user has access to the source code APIs which is

possible with the commercial licenses, then the calibration can be made roughly 5 times faster.

GTR and GPR account for 26% and 2% of the total runtime, respectively. On des perf and matrix mult

designs, as shown in table 4.4, GTR takes relatively more time to fix the timing violations. It may happen

if several upsizing attempts need to be undone due to TNS degradation. On cordic and matrix mult, GPR

spends a significant runtime and recovers a lot of leakage power, especially for the fast timing constraints.

Table 4.5 shows the leakage power and the PrimeTime TNS after different stages of our gate sizer. After

the LR iterations terminate, the average TNS is 8698ps. The GTR using our internal timing models reduces

it to 43ps and increases the leakage power by 1.8%. Then, the GPR reduces the leakage power by 3.2%. In

the process, the actual TNS increases to 225ps because our timing models slightly under-estimate the delay

along the paths from where the power was recovered.
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Table 4.5: Power and TNS after different stages of our gate sizer for the ISPD 2013 contest designs. The absolute
value of power after LR iterations and subsequent incremental changes by GTR and GPR algorithms are shown below,
along with the PrimeTime TNS after each stage.

Benchmark
After LR After GTR After GPR

Power (W) TNS (ps) 4 Pow (%) TNS (ps) 4 Pow (%) TNS (ps)
usb phy slow 0.001 11 0.7 0 -0.4 0
pci bridge32 slow 0.057 799 0.5 8 -0.2 12
fft slow 0.088 2593 1.4 0 -0.9 2
cordic slow 0.296 7846 3.4 34 -4.2 128
des perf slow 0.328 10859 2.6 33 -1.1 56
edit dist slow 0.439 21596 0.5 30 -0.3 562
matrix mult slow 0.454 7643 1.6 16 -2.8 95
netcard slow 5.169 3861 0.0 7 0.0 17
usb phy fast 0.002 11 2.5 0 -0.5 1
pci bridge32 fast 0.088 2570 3.3 64 -1.4 64
fft fast 0.209 3471 4.9 8 -2.9 14
cordic fast 1.273 9297 2.0 109 -16.8 254
des perf fast 0.648 8743 2.5 216 -3.8 434
edit dist fast 0.551 25664 1.0 25 -1.3 1313
matrix mult fast 1.859 8163 2.2 81 -14.1 499
netcard fast 5.195 26044 0.2 54 0.0 143
Average 1.041 8698 1.8 43 -3.2 225

4.10.4 Impact of Relaxing the Target Clock Period

The idea behind relaxing the target clock period during the LR iterations is based on the observation that

the greedy timing recovery is able to effectively recover large timing violations without expending much

power. Hence, we experimented with different values of relaxation factor, R. Table 4.6 shows various

metrics of interest asR is increased from 0 to 0.2 to 0.5 to 0.8. Results have been averaged over all the ISPD

2013 designs. As R increases, the power after LR iterations improves by up to 4.3% at the cost of 7x more

TNS which in turn increases power expenditure during GTR as well as the runtime of GTR. We observed

that R = 0.5 resulted in the minimum average power with a 6x slowdown in the greedy timing recovery

which resulted in an overall 1.4x slowdown in the gate sizer. Although the average power with R = 0.5 is

only 0.5% better compared to R = 0.0, on cordic fast power reduced by 5% for a similar TNS as the end.

As R increases, runtime of the greedy timing recovery increases a lot on the larger designs.
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Table 4.6: Impact of different R values on various metrics of interest. Results have been averaged over all the ISPD
2013 designs, and then normalized. Reference values for normalization are highlighted below.

R
After LR After GPR Runtime

Power TNS Power TNS GTR Total
0.0 1.000 1.000 0.966 0.140 1.0 11.5
0.2 0.988 1.969 0.963 0.117 2.0 12.3
0.5 0.971 4.295 0.961 0.097 6.3 15.6
0.8 0.957 7.512 0.962 0.189 19.5 29.3

4.10.5 Effectiveness of Calibration

In our proposed flow, we calibrate our timing models twice. The first time, before starting the LR

iterations, we only calibrate the effective capacitance; and the second time, after LR iterations terminate, we

calibrate all the timing models. In this subsection, we analyze the impact of both of these calibration steps

on the final solution quality. We consider two separate flows. The first flow is without any calibration step.

We refer to it as ‘NoCalb’. The second flow calibrates only effective capacitance both times. We refer to

it as ‘CeffCalb2’. Table 4.7 reports the final power and PrimeTime TNS for NoCalb as well as CeffCalb2.

Power numbers have been normalized with respect to the power obtained from our proposed flow (column

six in table 4.3).

Compared to our proposed flow, we observe that NoCalb produces designs that are up to 222% and on

average 16% more leaky but have smaller TNS. Without calibration, effective capacitance is over-estimated

due to which the LR iterations have a hard time fixing the TNS and therefore, gates get over-sized. Therefore,

calibration of effective capacitance before LR iterations is necessary, but not sufficient. We do not calibrate

delay and slew model parameters in the first calibration because those parameters are not robust (in terms of

model accuracy) to the many changes in the design during LR iterations. We observed that calibrating those

parameters misleads the optimization during LR iterations. Flach et. al. also, used a more accurate model

only for effective capacitance during LR iterations.

With CeffCalb2 we observe that it produces designs that have better power but much worse TNS com-

pared to our proposed flow. For example, as shown in Table 4.7, for matrix mult fast power is 5% lower

but TNS is more than 10ns. This is due to delay under-estimation. Table lookup mostly under-estimates the

gate slew which in turn under-estimates the fan-out gate delays. The default parameter values of our inter-
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connect delay and slew model tend to under-estimate the respective metric. Hence, a complete calibration

is necessary to improve the accuracy of our internal timer before starting the greedy post-pass.

Table 4.7: Final power and PrimeTime TNS for ‘NoCalb’ flow and ‘CeffCalb2’ flow. NoCalb refers to the flow
without calibration, and CeffCalb2 refers to the flow where only effective capacitance is calibrated both times. The
Power is normalized with respect to ‘Our’ results reported in column six of Table 4.3.

Benchmark
NoCalb CeffCalb2

Power TNS (ps) Power TNS (ps)
usb phy slow 1.001 0 1.004 0
pci bridge32 slow 1.004 2 1.018 539
fft slow 0.997 339 1.032 1061
cordic slow 1.013 232 1.123 10531
des perf slow 1.197 0 0.979 28063
edit dist slow 1.031 0 1.066 22139
matrix mult slow 1.048 0 1.000 6947
netcard slow 1.000 0 1.005 3207
usb phy fast 0.988 2 1.030 5
pci bridge32 fast 1.059 13 1.075 2489
fft fast 1.001 333 1.165 3314
cordic fast 1.079 377 1.093 16837
des perf fast 2.222 297 0.902 38362
edit dist fast 1.145 0 1.030 42567
matrix mult fast 1.732 97 0.950 10773
netcard fast 1.001 5 1.000 29824
Average 1.157 106 1.029 13541

4.10.6 Multi-Threading Different Sub-blocks of the Gate Sizer

In our gate sizer, we have implemented a multi-threaded version of LRS solver, LM update, STA, cal-

ibration, and incremental STA. While each one of them improves the runtime to a smaller or larger extent,

none of them affect the quality of results. We ran the LDP solver with different number of multiple threads

ranging from 2 to 12. Speedups in LDP solver runtime versus the number of threads for various ISPD 2013

designs are shown in Figure 4.5. With 2 threads we observed a near ideal speedup in LDP solver runtime.

As the number of threads increased from 4 to 8 to 12, average speedup increased from 3.4x to 6.4x to 9.5x.

Due to the randomness in our gate sizer - on account of multi-threading and random mutual exclusion edge

assignment, and variability in the server load - sometimes super-linear speedups are also observed.
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Figure 4.5: Speedup in LDP Solver runtime on ISPD 2013 benchmarks with different number of threads with respect
to single thread.

4.11 Conclusion

Today’s designs with millions of gates require very fast gate-sizing and threshold voltage assignment,

as it is a crucial circuit optimization that is performed at multiple steps in the design flow. Due to the

overheads for timing accurate modeling of resistive interconnect, timing updates are the runtime bottleneck.

We extended our multi-threaded Lagrangian relaxation based gate sizer to include support for very fast gate

sizing of the designs with resistive interconnect. We proposed a simple model for quickly computing the

effective capacitance and several calibration mechanisms to improve the accuracy of our internal timing

models. We have shown that our gate sizer quickly recovers the timing violations and the leakage power

while minimally interacting with the external timer and demonstrated the effectiveness of each calibration

step in improving the timer accuracy. Compared to the state-of-the-art (both in runtime as well as power)

gate sizer Flach et al. (2014), on the ISPD 2013 discrete gate sizing contest benchmark designs, our gate

sizer is, on average, 15.5x faster. The optimized designs have only 2.5% higher leakage power and small

timing violations.
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CHAPTER 5. LAGRANGIAN RELAXATION BASED GATE SIZING WITH CLOCK

SKEW SCHEDULING - A FAST AND EFFECTIVE APPROACH

Abstract - Recent works have established Lagrangian relaxation (LR) based gate sizing as the state-

of-the-art gate sizing approach in terms of power reduction and runtime. Gate sizing has limited potential

to reduce the power when the timing constraints are tight. In sequential designs, clock skew scheduling can

help relax the timing constraints to facilitate more power reduction.

Since variable clock skew introduces loops in the timing graph, it becomes a challenge for the LR based

gate sizing as it relies on a projection based heuristic Lagrange multiplier update for faster convergence

and better solution quality. This heuristic requires the timing graph to be directed and acyclic. To address

this challenge, we develop a fast and effective LR based tool for simultaneous gate sizing and clock skew

scheduling.

We derive an LR formulation for gate sizing combined with useful skew assignment. We propose a novel

flow for simultaneously updating the cell sizes, updating the skew, and updating the Lagrange multipliers

in an iterative fashion. Compared to the state-of-the-art LR gate sizing for a fixed skew of zero, our tool

achieves an average of 19.7% additional power reduction overall, and 26.5% power reduction for designs

with tighter timing constraints, on the ISPD 2012 gate sizing contest benchmark designs. Our tool is only

1.1 times slower vs. LR gate sizing alone. We also explore a previously proposed more formal approach

based on a network flow formulation for updating Lagrange multipliers in the presence of timing loops.

5.1 Introduction

In modern VLSI (very large system integration) circuit design, power consumption has increased sub-

stantially as larger circuits are being integrated on a single chip while the technology continues to shrink.

That results in high power density causing reliability challenges, large cooling cost in data centers, quicker
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Figure 5.1: An example showing how clock skew scheduling can relax the timing constraints. The clock rising edge
arrives at the clock pin of flip-flop A at an interval of 20 time units starting at t=0. The path delay is 24. In order to
satisfy the timing constraints, the clock arriving at flip-flop B can be delayed by 4. Flip-flop B is said to have a clock
skew of 4.

discharge of the batteries in mobile devices. Circuit performance also gets limited by power due to higher

power densities. Thus, reducing the power has become a major concern.

In VLSI physical design, gate sizing is one of the most frequently used circuit optimizations. Each gate

can be implemented by several possible cell options - having different sizes and threshold voltages (Vth).

Different cell options trade off area or power for delay. The task of a gate-sizer is to choose a suitable cell

for every gate to minimize the objective cost while meeting the design timing constraints.

In synchronous designs, appropriate scheduling of the clock skew can relax the timing constraints. Fig-

ure 5.1 illustrates this using a simple example. Relaxed timing constraints in turn, can be used to reduce the

minimum feasible clock period, power and/or area. As shown in the previous works Chuang et al. (1995);

Wang et al. (2009); Shklover et al. (2012), a gate sizer with the ability to schedule skew has a much larger

potential to reduce power compared to the gate sizer that assumes a fixed skew at all clock pins.

In this chapter, we investigate two different approaches for simultaneous skew scheduling and gate sizing

using an LR formulation. The first approach was originally proposed by Wang et al. (2009). Wang et. al.

transformed the original timing graph to eliminate the skew variables and in the process introduced loops

in the graph. The Lagrangian dual problem on the transformed graph was modeled as a min-cost network

flow problem. Assuming continuity in the cell sizes and convexity of the delay models, their algorithm

maximized the dual cost to realize primal optimality, if the primal problem was feasible. We work out the

details to apply their algorithm with more realistic constraints - discrete cell sizes and non-convex delay
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models - and discuss several limitations of this approach in the presence of these realistic constraints. We

refer to this approach as NetFlo.

The second approach for simultaneous gate sizing and skew scheduling is built upon the state-of-the-art

LR gate sizing algorithm. We derive a modified LR formulation with skew as the variables while keeping

the timing graph directed acyclic. The timing graph must be acyclic in order to apply the projection based

Lagrange multiplier update heuristic which is crucial to the performance of gate sizing tools. We propose a

new flow to simultaneously update skew along with the cell sizes and the Lagrange multipliers. We discuss

our skew update strategy and propose modifications to the Lagrange multiplier update strategy in order to

reflect the modified timing constraints caused by skewed clocks. We refer to this approach as EGSS which

stands for Effective Gate sizing with Skew Scheduling. For benchmarking, we use the ISPD 2012 gate sizing

contest benchmark suite Ozdal et al. (2012). Compared to the state-of-the-art LR gate sizer Sharma et al.

(2017) that assumes skew is fixed, EGSS achieves an average of 18.8% additional power reduction overall,

and 25.5% power reduction for designs with tighter timing constraints.

Our main contributions are as follows:

• We derive an LR formulation for simultaneous gate sizing and clock skew scheduling without loops

in the timing graph.

• In the context of discrete gate sizing with non-convex delay models, we discuss several limitations of

achieving primal optimality via dual maximization.

• We propose a new algorithm to solve the Lagrangian subproblem with skew and cell size as the

variables.

• We propose a modified Lagrange multiplier update heuristic accounting for the skew.

The rest of the chapter is organized as follows. Section 5.2 summarizes the previous works on LR gate

sizing and combined sizing plus skew scheduling. Section 5.3 formulates the problem. Sections 5.4 and 5.5

present NetFlo and EGSS, respectively. Section 5.6 discusses several limitations of trying to achieve primal

optimality via dual optimality. Section 5.7 briefly describes the greedy refinement strategies that we use in

this work. We present the experimental results in Section 5.8 and conclude in Section 5.9.
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5.2 Previous Work

Gate sizing problem has been researched for several decades. Earlier, most of the approaches assumed

continuity in the gate sizes, convex delay models and experimented on relatively smaller designs. The gate

sizing contests organized by Intel in ISPD 2012 Ozdal et al. (2012) and ISPD 2013 Ozdal et al. (2013) gave

a fresh momentum to research in this area. The objective in the contests was to minimize the leakage power

under the delay constraints. Contests were based on realistic constraints - discrete cell options and table

lookup based non-linear delay models, and provided a suite of small to large designs having up to a million

gates for benchmarking. Most of the post-contest publications in gate sizing utilized the contest framework

for benchmarking and thus, greatly pushed ahead the state-of-the-art.

Some of the post-contest publications like Hu et al. (2012) used several sensitivity guided greedy meta-

heuristics to reduce timing violations and then, reduce the power. Daboul et al. (2018) modeled the gate

sizing problem as a resource sharing problem. However, most of the gate sizers that were published post-

contest like Li et al. (2012); Livramento et al. (2014); Flach et al. (2014); Sharma et al. (2015, 2017); Yella et

al. (2017) used LR formulation. Li et al. (2012) first achieved minimum clock design and then recovered

power using the min-cost network flow formulation. Ren et al. (2008) also used network flow for discrete

cell sizing but neither of their formulations considered skew. Flach et al. (2014) improvised on the projec-

tion based Lagrange multiplier update heuristic that was originally proposed in Tennakoon et al. (2002).

They demonstrated the least power results on the ISPD 2012 gate sizing contest designs. Sharma et al.

(2015) proposed a multi-threaded LR gate sizer and reported the least runtime which they further improved

in Sharma et al. (2017). They proposed a simple and tunable framework for projection based Lagrange mul-

tiplier update which significantly improved the convergence. LR gate sizing using the projection heuristic

has been demonstrated to yield designs with lower power and much smaller runtime compared to the other

approaches. LR gate sizing idea is credited to Chen et. al. (1999).

Some of the previous works on simultaneous gate sizing and skew scheduling include Chuang et al.

(1995); Wang et al. (2009); Shklover et al. (2012); Sathyamurthy et al. (1998); Roy et al. (2008). Chuang et

al. (1995) directly solved the primal problem by formulating it as a linear programming problem using

the piecewise-linear (PWL) approximations of the convex delays. Roy et al. (2008) assumed continuous
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sizes and convex delays, and thus, were able to minimize the Lagrangian subproblem simultaneously over

size and skew variables using a bound constrained optimization solver. Without giving much details, they

claim to use the projection heuristic of Tennakoon et al. (2002) for updating Lagrange multipliers. Wang et

al. (2009) eliminated the skew variables from the primal problem in order for the Hessian of the primal

objective to be positive definite so that optimality of their algorithm can be guaranteed. As a result, timing

graph could no longer be acyclic. Wang et. al. maximized the dual cost by solving the min-cost network

flow formulation of the Lagrangian dual problem. While they prove primal optimality under the assumptions

that sizes are continuous and delay models are convex, these assumptions are not valid in modern design

methodologies which would limit the effectiveness of their approach. Shklover et al. (2012) accounted for

the cost of implementing the clock skew via clock tree. Although they formulate a simultaneous discrete gate

sizing and skew scheduling problem using LR, they mainly focus on clock tree optimization via dynamic

programming. For the gate sizing part they simply refer to the previous works Chen et. al. (1999); Roy et

al. (2008); Wang et al. (2009). They do not discuss their multiplier update strategy.

5.3 Problem Formulation

In order to formally define the problem, we are using the notations tabulated in Table 5.1. Following the

ISPD gate sizing contest objective, we are minimizing the leakage power subject to the delay constraints,

maximum load constraints and maximum slew (or, transition time) constraints. Skew variables are bounded.

We are allowed to change only combinational gates. Sequential gates are fixed. The primal problem is

formally defined as follows:
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Table 5.1: Commonly used notations.

Notation Meaning
T Target clock period
G Set of gates in the design
Xg Discrete set of cells for gate g
xg ∈ Xg Current cell for gate g
FF Set of flip-flops in the design
PO Set of primary outputs in the design
wk Skew at flip-flop k ∈ FF
N Set of nodes in the timing graph
E Set of timing arcs in the timing graph
dij(xxx) Delay function of the timing arc (i, j)

λij Lagrange multiplier for the timing arc (i, j)

ai Arrival time at node i
adk , aqk Arrival times at D and Q pins of flip-flop k
setupk, dclk2qk(xxx) Setup delay and clock to Q delay of flip-flop k
λdk , λqk Lagrange multipliers associated with the setup and the

clock to Q delay timing arcs of flip-flop k
gate power(x) Power of cell x
skew power(wk) Power cost for realizing a skew of wk at flip-flop k
p(xxx,www) Total power of the design
max load(x) Maximum load capacity of cell x
xxx,www,aaa,λλλ Respective set of variables x, w, a and λ
loadg(xxx) Capacitive load at the output of gate g
slewi(xxx) Slew at node i
max slew Maximum slew defined in the cell library
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minimize
xxx,aaa,www

p(xxx,www)

subject to ai + dij(xxx) ≤ aj ∀(i, j) ∈ E

apo ≤ T ∀po ∈ PO

adk ≤ T + wk − setupk ∀k ∈ FF

wk + dclk2qk(xxx) ≤ aqk ∀k ∈ FF

loadg(xxx) ≤ max load(xg) ∀g ∈ G

slewg(xxx) ≤ max slew ∀g ∈ G

xg ∈ Xg ∀g ∈ G

wmin ≤ wk ≤ wmax ∀k ∈ FF

(5.1)

where, minimization is over the set of discrete cell variables xxx, continuous arrival time variables aaa and

continuous skew variables www. p(xxx,www) is the total power cost of the design defined as the sum of power over

all the gates and the power cost of implementing the desired skewwww,

p(xxx,www) =
∑
g∈G

gate power(xg) + skew power(www)

We use table lookup based non-linear (and, non-convex) delay models for modeling cell arcs. In accordance

with the ISPD 2012 contest framework, interconnects are modeled by a lumped capacitance without any re-

sistance. Consequently, the net timing arcs have zero delay. Even if interconnects are modeled by distributed

RC trees as in the ISPD 2013 contest, the problem formulation and our approach would not change. With

RC interconnects, the main challenge is the interconnect and the cell delay modeling which is beyond the

scope of this work. We model rise and fall timing constraints separately, but we omit their separate mention

throughout this work for clear presentation.

The timing graph for the primal problem is shown in Figure 5.2. The graph has two dummy nodes - a

global input I and a global output O. There are weighted edges from I to Q pins; from I to primary inputs;

from D pins to O; and, from primary outputs to O. In addition to accounting for the skew at each flip-flop,

the weights have been adjusted so that the arrival times at I and O satisfy following: aI = 0 and aO ≤ 0,

without having to add an edge from O to I which would create loops as presented in Wang et al. (2009). In
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Figure 5.2: Directed acyclic timing graph with skew variables.

presence of clock trees, we can extend this timing graph to include timing arcs from the clock generator to

the clock pins without creating loops.

We relax the primal problem by including the non-convex constraints into the objective function. To

penalize any constraint violations, each one of them is associated with a non-negative Lagrange multiplier

that acts as a penalty for constraint violation. Multipliers indicate the timing criticality of the corresponding

arc. For a given set of Lagrange multipliers λλλ ≥ 0 the Lagrange function can be defined as follows:

Lλλλ(xxx,aaa,www) : p(xxx,www) +
∑

(i,j)∈E

λij × (ai + dij(xxx)− aj) +

+
∑

po∈PO
λpo × (apo − T )

+
∑
k∈FF

λdk × (adk − T − wk + setupk)

+
∑
k∈FF

λqk ×
(
wk + dclk2qk(xxx)− aqk

)
(5.2)

We do not relax the constraints that are easy to track in our proposed approach. The Lagrangian dual function

is defined as the minimum value of the Lagrangian function over xxx, aaa andwww, for given λλλ,

g(λλλ) =minimize
xxx,aaa,www

Lλλλ(xxx,aaa,www)

subject to loadg(xxx) ≤ max load(xg) ∀g ∈ G

slewg(xxx) ≤ max slew ∀g ∈ G

xg ∈ Xg ∀g ∈ G

wmin ≤ wk ≤ wmax ∀k ∈ FF

(5.3)
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Since the Lagrangian function is affine in arrival times, in order for the dual function to take a finite value,

the set of multipliers must satisfy the following, so called, flow constraints.

∑
{v|(i,v)∈E}

λiv =
∑

{u|(u,i)∈E}

λui ∀i ∈ N\{I,O} (5.4)

Let Ω denote the space of Lagrange multipliers defined by the flow constraints (5.4),

Ω = {λλλ|λλλ satisfies (5.4) and λλλ ≥ 0}

Upon applying the flow constraints (5.4) to the Lagrangian function (5.2), arrival time variables can be

eliminated and additionally, by ignoring the constant terms involving T and setupk, we get a simplified

Lagrangian function,

Pλλλ∈Ω(xxx,www) : p(xxx,www) +
∑

(i,j)∈E

(λij × dij(xxx))+

∑
k∈FF

λqk × dclk2qk +
∑
k∈FF

(λqk − λdk)× wk
(5.5)

For λλλ ∈ Ω, the dual function can be re-written as the following minimization problem, which we refer as

the simplified Lagrangian relaxation subproblem or sLRSλ,

g(λλλ ∈ Ω) =minimize
xxx,www

Pλλλ(xxx,www)

subject to constraints in (5.3)
(5.6)

The Lagrange dual problem (LDP) maximizes the dual function,

maximize
λλλ∈Ω

g(λλλ)−
∑

po∈PO
λpo × T+

∑
k∈FF

λdk × (setupk − T ) (5.7)

5.4 Min-Cost Network Flow Modeling

In this section we discuss the first approach for simultaneous gate sizing and skew scheduling that we

investigate in this work. We refer to it as NetFlo. It is based on the work of Wang et al. (2009). Authors

assumed continuous sizes and convex delay models. We extend their algorithm to make it applicable for

discrete sizes and table lookup based delay models.
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Figure 5.3: Timing graph for NetFlo approach: Original timing graph of Figure 5.2 was transformed in order to
eliminate skew variables. In the process, the graph has directed cycles.

Wang et. al. transformed the timing graph to eliminate the skew from the set of primal variables which

resulted in directed cycles. An example is shown in Figure 5.3. Their Lagrangian function LNFλλλ (xxx) is,

therefore, different than ours (5.2). See Wang et al. (2009) for the complete expression of LNFλλλ (xxx). We

define the Lagrangian subproblem for NetFlo (LRSNFλλλ ) as,

gNF (λλλ ∈ Ω) =minimize
xxx

LNFλλλ (xxx)

subject to constraints in (5.3)

except w bounds

(5.8)

gNF is the dual function. Then, LDPNF is defined as,

maximize
λλλ∈Ω

gNF (λλλ) (5.9)

In the neighborhood of current λλλ, the LDPNF can be formulated as a min-cost network flow problem,

MCNFλλλ, defined as,

minimize
4λλλ

〈
−∇gNF (λλλ),4λλλ

〉
subject to 4λλλlb ≤ 4λλλ ≤ 4λλλub

4λλλ+ λλλ ∈ Ω

(5.10)

where,∇gNF (λλλ) is the gradient of the dual function gNF at λλλ; and, 〈.〉 denotes the dot product operation.

In order to solve the gate sizing problem, the dual function is maximized over λλλ ∈ Ω. The intuition

behind the overall algorithm is to iteratively improve the dual function gNF (λλλ) by maximizing its first-

order approximation in a close neighborhood. Pseudo-code of the algorithm is shown in Algorithm 8. All
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Lagrange multipliers are initialized to 0 since that is a trivial dual feasible solution. LRSNFλλλ is solved to

initialize the sizes. Since multipliers are all zeros, the optimal solution to LRSNFλλλ is the minimum power

design subject to maximum load and slew constraints. Then, we initialize the skews to their minimum values

and update the timing. The timing information is needed to compute the bounds on4λλλ. Our proposed bound

computation strategy is discussed later in this section, and our proposed skew update strategy is discussed in

Section 5.5. After the initialization, LDPNF is iteratively solved. In each iteration, firstly the lower and the

upper bounds are computed. Then, MCNFλλλ (5.10) is solved using the computed bounds. Optimal solution

4λλλ∗ gives the steepest ascent direction of gNF (λλλ). Then, a line search is performed along 4λλλ∗ in order

to improve gNF . For each step-size during the line search, LRSNFλλλ is solved. Based on the step-size that

yielded the maximum gNF , the multipliers are updated. Then, skews and timing are updated, again only for

the purpose of computing the bounds. Iterations continue until the change in gNF is below a threshold or a

maximum number of iterations are reached. Since the problem is discrete and non-convex, this approach has

several limitations which are discussed in Section 5.6. Consequently, even though dual function converges,

often there are some timing violations and scope for further power reduction. Therefore, we add a greedy

refinement step at the end to try to recover any remaining timing violations and reduce power.

Algorithm 8 Pseudo code for NetFlo

1: λλλ = 0. Solve LRSNFλλλ (5.8) for xxx
2: Initialize skew to wmin. Update timing.
3: while gNF (λλλ) has not converged and iterations < N do
4: (4λλλlb,4λλλub)← compute bounds on4λλλ
5: Solve MCNFλλλ (5.10) for optimal4λλλ∗
6: Perform line search on gNF (λλλ+ step×4λλλ∗), 0 < step ≤ 1 for an increase in gNF .
7: Update λλλ
8: Update skew. Update timing (for bound computation)

9: Greedy refinements
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Bound Computation Wang et al. (2009) did not give details on how to set the bounds. Based on the

insights from the state-of-the-art LR gate sizing works, we propose to set the upper and lower bounds on

4λij for each combinational cell timing arc (i, j), as follows:

4λij,ub = max
{
λij × |(qj − ai − dij)|

T
, λ̄λλ×M

}
4λij,lb = max {−λij ,−4λij,ub}

(5.11)

where, qj is the required time at node j; λ̄λλ is the average value of multipliers over all the arcs; M is a

tuning parameter. We make the upper bound directly proportional to the current value of multiplier and the

slack along the arc. If either of them is large, that indicates the need for large changes in the multiplier.

For near-critical arcs, upper bound can be very small which may slow down the convergence. Hence, we

ensure that the upper bounds are at least of the order of the average multiplier value across the design. For

lower bounds, we need to ensure that the updated multiplier remains non-negative. Note that for some arcs,

including the arc from O to I , it is not necessary to set explicit bounds as their multiplier values are implied

by multiplier values of all the other incident arcs, being constrained by the Ω space.

Solving LRSNFλλλ The optimal strategy used in Wang et al. (2009) for solving the subproblem (5.8)

assumes continuity in sizes and convexity of delay models. In presence of discrete sizes and non-convex

delay models, it becomes a difficult combinatorial problem. We propose to use the same strategy that is

commonly used in discrete LR gate sizing Li et al. (2012) to solve (5.8). We applied the multi-threading

techniques Sharma et al. (2015) to parallelize the LRS solver. All gates in the design are traversed in the

forward topological order. For each gate, assuming other gates are fixed, all the cell sizes are evaluated

and that cell is chosen which contributes minimally to the objective. In order to define a topological order

in a cyclic timing graph, we cut it at the flip-flops. One major limitation of this strategy is that it ignores

the interactions between multiple gates that can be resized simultaneously. Sharma et al. (2017) proposed

multi-gate sizing as an alternative but it did not show significant improvement in practice and had much

larger runtime.
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Figure 5.4: Overall flow of our proposed EGSS. STA refers to the static timing analysis.

5.5 EGSS: Effective Gate Sizing With Skew Scheduling

In this section we describe our proposed approach for simultaneous gate sizing and skew scheduling. We

call it EGSS. Figure 5.4 shows the overall flow of our algorithm. It has three stages: initialization, solving

LDP and greedy refinements.

During initialization gates are initialized to minimum power cell sizes subject to the maximum load

and slew constraints; skews are initialized to the minimum values; timing is updated; and, Lagrange mul-

tipliers are initialized to a non-zero constant and projected on to the Ω space. Unlike NetFlo, owing to the

multiplicative nature of the Lagrange multiplier update heuristic which is discussed later in this section,

multipliers cannot be initialized to zero.

The LDP solver is an iterative stage to recover bulk of the timing violations and reduce power. It iterates

between solving theLRSλλλ (5.3) over size and skew variables, timing update and Lagrange multiplier update.

During the first few iterations, multipliers are updated to reduce the timing violations, measured as TNS

(total negative slack). Once the timing violations are reduced, multipliers are updated to drive the design

towards lower power. Extra checks are incorporated inside the LRS solver to discourage timing violations.

Like NetFlo, greedy refinements are performed in the last stage.

5.5.1 Solving LRSλλλ

In LR gate sizing, LRS needs to be solved only over the sizes. But with skew scheduling, optimization

is done over skew variables as well. We propose to solve LRSλλλ in three steps, as shown in Figure 5.4. The

first step is to solve LRS only for the size variables assuming that skews are fixed. The second step is to
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update the timing using the old skew values, and the third step is to update the skews. Our proposed skew

update strategy is discussed later in this section.

For the first step, wherein LRS is solved over the size variables only, we use the same algorithm as

discussed for the NetFlo approach in Section 5.4, except that we add a check to discourage local slack

degradation, as was proposed earlier Flach et al. (2014). This check is necessary initially for TNS con-

vergence, and later to keep the timing violations under control, while power reduction iterations are in

progress. This check was not applied while solving LRS inside the NetFlo because the NetFlo objective was

dual maximization, and reduction in TNS and power (primal objective) was expected as a consequence.

5.5.2 Skew Update

Let us consider the skews terms in the simplified Lagrangian function (5.5),

h(www) = skew power(www) +
∑
k∈FF

wk × (λqk − λdk)

where, h(www) is referred as the skew cost. Skews should be updated subject to the bounds such that the skew

cost is minimized. For a given clock tree, Shklover et al. (2012) proposed a dynamic programming approach

to solve this optimization problem. In this work we ignore the skew power cost. Then, the expression for

h(www) suggests that each skew variable can be separately optimized. For each flip-flop k, if λqk > λdk then,

wk = wmin, else wk = wmax. Intuitively, if Q pin is more timing critical than the D pin, then reduce the

skew to reduce timing violations (or, increase the timing slack) at Q pin. If D pin is more timing critical,

then increase the skew to increase the slack at D pin. Note that always setting skew to either of the extreme

values can cause oscillations. Hence, with the insight developed above, we propose following skew update

strategy,

4wk =
slackq − slackd

2

wk = max {wmin, min {wmax, wk +4wk}}
(5.12)

This is an intuitive choice for skew at other places as well, for example, to improve the reliability of the data

path Kourtev et al. (2008).
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5.5.3 Modified Lagrange Multiplier Update

Projection based Lagrange multiplier update strategy is very crucial for fast convergence and final so-

lution quality. A simple and tunable framework for projection based multiplier update was proposed in

Sharma et al. (2017). We extend it to account for the skew impact. If skew at a flip-flop is positive then, the

timing paths ending at the D pin of that flip-flop have a larger required time which reduces the rate at which

multipliers increase. Pseudo code for the Lagrange multiplier update is shown in Algorithm 9.

Algorithm 9 Lagrange multiplier update algorithm

for each flip-flop k do

λdk = λdk ×
(

1 +
adk+setupk−T−wk

T

)K
for each primary output po do

λpo = λpo ×
(

1 +
apo−T
T

)K
for each timing arc (i, j) do

λij = λij ×
(

1 +
ai+dij−qj

T

)K
. qj : required time at j

Projection to satisfy flow constraints. Refer Tennakoon et al. (2002)

5.6 NetFlo Vs EGSS: Limitations of Optimizing Primal Via Dual Maximization

The NetFlo approach is based on results from the well-known Lagrangian duality theory Boyd et al.

(2004), that under certain conditions which generally hold for the convex and continuous primal problems it

is possible to attain the primal optimality by maximizing the dual function. However, for non-convex discrete

gate sizing which has been proven to be NP-hard Ning (1994), this approach has following limitations:

• non-zero duality gap;

• minimizer xxx∗ of the Lagrangian function while solving LRS for the optimal set of dual variables λλλ∗

may not be primal feasible;

• discreteness tends to cause oscillations.

We explain these limitations with the help of a simple illustration that explains the process of dual maxi-

mization in the primal space.
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Figure 5.5: Minimization of Lagrangian function Lλ(x) for a single gate circuit is shown in the power-delay space
parameterized by the discrete cell size x. X-axis is delay shifted to the right by T . Y-axis is the power. Each dot
corresponds to a unique cell size x. Left of the power axis (d(x)−T ≤ 0) is primal feasible. Minimum feasible power
p∗ and minimum possible power pmin are indicated above.

Consider a single inverter circuit with cell size x as the only variable. Let power of the circuit be p(x)

and delay be d(x). Then, all the various discrete sizes can be plotted on a power-delay space as shown in

Figure 5.5. Each dot (referred as a design point) in the plot corresponds to a distinct size. Let λ ≥ 0 be the

Lagrange multiplier associated with timing arc of the inverter. Then, Lagrange function can be written as

Lλ(x) = p(x) + λ× (d(x)− T ). In the power-delay space, this is a line with slope −λ and intercept on the

p(x) axis is the value of the Lagrangian function. Solving LRS or computing the dual function is equivalent

to minimizing Lλ(x) which is equivalent to pushing the line as low as possible as long as it passes through

at least one design point. This process is illustrated in Figure 5.5.

Figure 5.6: Maximization of dual function g(λ) is shown graphically for a single gate circuit in (a) primal space and,
(b) dual space. g∗ is the dual optimal attained at λ = λ3. Due to non-convexity and discreteness there is a non-zero
duality gap, p∗ − g∗. For the same reasons, Lλ3(x) is minimized at x4 and x3. While x4 is primal feasible, x3 is not.
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Now we explain the process of dual maximization using Figure 5.6. Initially, when λ = 0, we know

that g(0) = pmin, where pmin is the lowest possible power of the design. In the power-delay space, λ = 0

corresponds to the horizontal line and L0(x) is minimized at x1 as shown in the Figure 5.6. As λ increases,

the slope of the line increases and the dual cost also increases. For λ < λ1, x1 minimizes Lλ(x). At λ = λ1,

both x1 and x2 minimize the Lagrangian function. Dual function continues to increase with λ as long as

λ ≤ λ3 and attains a maximum of g∗ at λ = λ3. At λ = λ3, Lagrangian function is minimized at x3 and

x4 out of which only x4 is primal feasible. So even if the dual optimal is attained, there is no guarantee that

primal feasible solution can be derived. It can also be observed that, the primal optimal value p∗ = p(x∗) is

strictly more than the dual optimal g∗. The gap p∗ − g∗ refers to the duality gap.

Note that these limitations are due to both - non-convexity as well as discreteness. While NetFlo tries to

maximize the dual cost and has the above-mentioned limitations, EGSS uses Lagrange multipliers to help

attain primal feasibility and then reduce power. EGSS rapidly increases the Lagrange multipliers initially

to attain feasibility. That causes very low dual cost and high power. Then, using local slack check while

solving LRS, the design to forced to stay in the feasible region while Lagrange multipliers reduce to recover

power. It is important to note that while NetFlo requires an optimal LRS solver, which it is not, to maximize

the dual cost, EGSS deliberately sacrifices the optimality of the LRS solver to maintain primal feasibility.

5.7 Greedy Refinements in Timing and Power

On account of sub-optimality of the LDP solver, designs obtained from the LDP solver have timing

violations and additional power that can be recovered. In case of NetFlo, due to the limitations discussed

in Section 5.6, there are large timing violations as well as a lot of power to be recovered. Hence, greedy

refinements are all the more important for NetFlo type of approaches. In either case, it is a common practice

to apply a timing recovery followed by a power recovery algorithm - both are greedy and local in nature.

One of the approaches for recovering timing violations which we implemented is to upsize those gates

that lead to the maximum number of timing critical end-points. In order to compute the change in TNS,

timing is updated in an incremental fashion. If the TNS improved (reduced) then the new size is committed,

otherwise the upsizing is undone and the next gate in the order is upsized. This process is continued as
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long as the TNS is non-zero and it is reducing. During timing recovery we avoid reducing Vth because that

significantly worsens the power.

For reducing power, we first try to increase Vth for each gate - one at a time, in the design. If Vth cannot

be increased without worsening the TNS, then each gate is considered for downsizing. Like Flach et al.

(2014) we traverse the gates in forward topological order.

5.8 Experiments and Results

We implemented our tool in C++. We performed our experiments on two quad-core Intel(R) Xeon(R)

3.50GHz CPUs. For solving the min-cost flow problem we used Gurobi. For line search we used a step size

of 0.2 and evaluated 5 steps at uniform spacing. We used M = 10 - the tuning parameter for computing

bounds. Our codes are multi-threaded using OpenMP Dagum et al. (1998). and we use 8 threads for solving

LRS. We used PrimeTime version E-2010.12 for amd64, to verify the timing of our final designs obtained

from NetFlo and EGSS. All of them satisfy all the constraints. For benchmarking we used the ISPD 2012

gate sizing contest benchmark suite.

We use the sizing results from Sharma et al. (2017) who also used 8 threads as the baseline since they

are the fastest and have competitive power results. The baseline is gate sizing alone. Our NetFlo and EGSS

flows have been provided with a minimum skew bound wmin of 0 and a maximum skew bound of 165ps.

Table 5.2 summarizes the results from all three flows. Compared to the baseline, EGSS on account of being

able to schedule skew simultaneously with sizing the gates, saves on average 19.7% more power. On designs

with tighter timing constraints (‘fast’) average power saved is 26.5%. EGSS has only 1.1X slow down in

the total runtime. Compared to NetFlo, EGSS saves 5.3% more power and is 70X faster. While in NetFlo,

greedy refinement stage accounts for an average of 5.4% power reduction, in EGSS, it accounts for only

0.4% power reduction. This shows that the core idea behind EGSS is more effective than the core idea of

NetFlo.

Main reasons for larger runtime of NetFlo are as follows: 1) Solving the min-cost flow problem is orders

of magnitude more runtime expensive compared to the projection based Lagrange multiplier update shown

in Algorithm 9. Latter has a linear time complexity in the number of gates. Using a network flow solver
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instead of Gurobi is likely to improve the runtime. 2) NetFlo has a slower convergence than EGSS. So it

takes more iterations. 3) Each NetFlo iteration is more expensive due to solving LRS several times during

the line search.

Figure 5.7: Primal cost (power), dual cost and TNS profiles obtained from NetFlo are shown for pci bridge32 fast.
Left Y-axis is the normalized dual or primal cost and the right Y-axis is the TNS normalized with respect to the target
clock period which is 660ps. For these runs maximum skew bound is set to 0 to highlight the limitations of the NetFlo
approach.

Figure 5.7 shows dual cost, power and TNS profiles from an execution of NetFlo on the design pci bridge32 fast.

We can see that although the dual cost increases and converges to an apparently maximum value, TNS is not

able to converge down to 0. We also observe that there is a distinct gap between the dual cost and the primal

cost, which is nothing but the total gate power of the design. This seems to indicate the non-zero duality

gap.

Figure 5.8 compares the TNS and power profiles from EGSS and NetFlo. EGSS starts with high over-

shoots in power as TNS rapidly reduces. But very quickly it recovers the power as well. It converges in

less than 40 iterations with near-zero TNS and better power than NetFlo. Across all the benchmarks, EGSS

takes on average only 2 iterations to converge the TNS and an additional 18 iterations to reduce the power.

5.9 Conclusion

Gate sizing is a crucial circuit optimization technique for trading off delay for area and power. The po-

tential of gate sizing can be enhanced by allowing variable skew. In this work we investigate two approaches
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Figure 5.8: Comparing power and TNS profiles for pci bridge32 fast design from NetFlo and EGSS. Maximum skew
bound is set to 0 for both approaches.

for simultaneous gate sizing and skew scheduling. One approach derives a Lagrangian dual problem from

the primal problem and tries to maximize the dual objective. We investigated several limitations arising from

the non-convexity and the discreteness of the primal space, due to which dual maximization cannot guar-

antee primal feasibility and consequently, primal optimality, as also indicated by our experimental results.

In the second approach, we extend the state-of-the-art high performance Lagrangian relaxation based gate

sizing. We propose a new flow in which we first make use of the variable skew to recover bulk of the timing

violations in just two iterations, on average. Then, we iteratively reduce power. In each iteration skew is

updated to redistribute the slack between each side of the flip-flop. Compared to the state-of-the-art gate

sizer which treats skew as fixed, our proposed flow for simultaneous gate sizing and clock skew scheduling

reduces an average of 19.7% more power on the ISPD 2012 gate sizing contest designs while consuming

slightly more runtime.
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CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS

Today’s designs with millions of gates require very fast gate-sizing and threshold voltage assignment,

as it is a crucial circuit optimization that is performed at multiple steps in the design flow. With non-convex

delay models and discrete sizes, traditional methods for gate sizing that assume continuity in sizes and/or

convexity, are either not accurate enough or too slow. Recent works have demonstrated that Lagragian

relaxation (LR) based gate sizing achieves least power on most of the designs in a competitive runtime

compared to other types of sizing methodologies. However, on account of large number of Lagrangian

iterations, slow timing updates, sequential execution and slow post-pass even the LR gate sizing can be very

slow, especially on the larger designs. To alleviate these problems, we develop a multi-threaded discrete

gate sizer that solves the LR formulation of the original problem in much lesser number of iterations and

each iteration is very fast.

Our unique innovations include two parallelization enabling techniques that facilitate effective multi-

threading; a tunable and effective Lagrange multiplier update framework to speed up the convergence and

thereby, reduce the number of iterations; two strategies for finer-grained timing and power recovery to

allow early termination of the iterations; a new, fast-to-compute model for effective capacitance and several

timing calibration mechanisms to improve accuracy of simple timing models while optimizing designs with

resistive interconnect; and, several enhancements to speed up the post-pass algorithms. Our gate sizer

combines all these innovations to achieve an average speedup of more than 15x compared to the state-of-

the-art gate sizer, on the ISPD 2012 as well as the ISPD 2013 gate sizing contest designs, while the leakage

power is higher by not more than 2.5%, on average.

We further improve the potential of our gate sizer by adding the capability to simultaneously size the

gates and schedule the clock skew. We incorporated the skew variables into the LR subproblem objective;

developed a new flow to solve the subproblem; proposed an intuitive skew update strategy; and, modified

the Lagrange multiplier update to account for skew at the sequential timing end-points. Our simultaneous
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gate sizing and skew scheduling tool can reduce 19.7% more power compared to the gate sizing alone at the

expense of only 10% increase in the total runtime.

Some of the future research problems in the domain of LR gate sizing that as follows:

• How to initialize Lagrange multipliers for an optimized initial design? There has not been much work

on the ‘right way’ to initialize the multipliers. That research is bound attract a lot of attention from the

industry wherein, for example, a timing optimized design is passed to the gate sizer to reduce area or

power without increasing the timing violations is not an un-common scenario. In other words, this is

the problem of ‘incremental gate sizing’ which is still an open-ended problem under LR framework.

• The Lagrange multiplier update strategy is a heuristic and has a few drawbacks. One of them is that

only timing criticality is used to update the multipliers with no regards to the worst slew propagation

which may contribute to the timing criticality and thus, indirectly inhibit power reduction. Another

non-intuitive aspect of the typical multiplier update strategy is that even though an arc is non-critical,

it is possible that its multiplier value increases (intuitively, it should reduce) due to one or more critical

end-points in its fan-out cone.

• How to schedule the clock skew with gate sizing in a runtime efficient manner while accounting for

the cost of clock tree that would be needed to implement the desired skew? Previous work Shklover et

al. (2012) does not discuss the multiplier update strategy. It merely refers to the runtime expensive

strategies like min-cost network flow based formulation.
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