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ABSTRACT

This thesis consists of four research papers focusing on estimation and inference in missing

data. In the first paper (Chapter 2), an approximate Bayesian approach is developed to handle

unit nonresponse with parametric model assumptions on the response probability, but without

model assumptions for the outcome variable. The proposed Bayesian method is also extended

to incorporate the auxiliary information from full sample. In second paper (Chapter 3), a new

Bayesian method using the Spike-and-Slab prior is proposed to handle the sparse propensity score

estimation. The proposed method is not based on any model assumption on the outcome variable

and is computationally efficient. In third paper (Chapter 4), we develop a robust semiparametric

method based on the profile likelihood obtained from semiparametric response model. The proposed

method uses the observed regression model and the semiparametric response model to achieve

robustness. An efficient algorithm using fractional imputation is developed. The bootstrap testing

procedure is also proposed to test ignorability assumption. In last paper (Chapter 5), we propose

a novel semiparametric fractional imputation method using Gaussian mixture model for handling

multivariate missingness. The proposed method is computationally efficient and leads to robust

estimation. The proposed method is further extended to incorporate the categorical auxiliary

information. Asymptotic properties are developed for each proposed methods. Both simulation

studies and real data applications are conducted to check the performance of the proposed methods

in this thesis.
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CHAPTER 1. OVERVIEW

Missing data is frequently encountered in many areas of statistics. Ignoring missing data can

lead to a biased estimation. The missing mechanism can mainly be categorized into three types.

If the missing mechanism does not depend on data, it is missing completely at random (MCAR).

Under MCAR, analysis methods only using complete data are consistent. However, MCAR is very

limited in practice. The second missing mechanism is missing at random (Rubin, 1976) in the sense

that missingness does not depend on missing values and only depends on observed data. MAR is

a common assumption due to its simplicity. Under MAR, one of the popular methods of handling

missing data is to build a model for the response mechanism and use the inverse of the estimated

response probability to construct weights for estimating parameters. Such weighting method is

called propensity score weighting (Rosenbaum and Rubin, 1983). The last missing mechanism

is not missing at random and also referred as nonignorable missingness, when missingness also

depends on unobserved values. NMAR is more challenging than MAR, since the response model

cannot be estimated without extra assumptions.

In the first paper, we are interested in developing Bayesian inference for propensity score estima-

tion. One of the main advantages of Bayesian inference is that all the uncertainty in the estimation

process can be built into the Bayesian computation automatically. That is, there is no need to

conduct variance estimation separately in the Bayesian inference. While the Bayesian method

is widely used in many areas of statistics, the literature on the Bayesian approach of propensity

score estimation is sparse. In the first paper, we propose a novel approach featuring approximate

Bayesian computation based on the summary statistics (Beaumont et al., 2002).

However, when the dimension of the covariates for the propensity score is large, the full response

model including all the covariates may have several problems. While spare model is wildly used in

the linear regression to improve efficiency, the sparsity effect on the propensity score estimation is
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somehow unclear. To the best of our knowledge, not much work has been done for sparse propensity

score estimation in the missing data context. In second paper, we propose a Bayesian approach for

the sparse propensity score estimation. Our main goal is to develop a valid inference procedure for

estimating equations with the sparse propensity score adjustment. One of the greatest advantages of

the Bayesian approach is that both estimating the parameter of interest and eliminating irrelevant

covariates can be simultaneously performed in the posterior inference. To introduce the sparse

posterior distribution, we propose to use stochastic search variable selection with the Spike-and-

Slab prior. The proposed Bayesian method is implemented by data augmentation algorithm (Tanner

and Wong, 1987; Wei and Tanner, 1990).

In addition to MAR, we develop a semiparametric estimation using profile likelihood and test

for handing NMAR in our third paper. Under nonignorable nonresponse, we believe that response

variable plays a critical role in the response model. The generalized linearity assumption of re-

sponse in the response model can be limited. The proposed method uses the generalized partially

linear model with a nonparametric function of response. The estimation method is developed from

maximizing the profile likelihood. An efficient computation algorithm is proposed based on the

fractional imputation (Kim, 2011). Furthermore, we propose a hypothesis test to check if the

response mechanism is missing at random. A bootstrap method is proposed to compute the empir-

ical distribution of the test statistic. The proposed method is robust, since the observed regression

model can be justified from the data directly and the response mechanism is a flexible function of

response.

Our last paper focuses on handling multivariate missingness. For multivariate missing data with

arbitrary missing patterns, imputation methods are developed to preserve the correlation structure

in the imputed data. Conditional models for the different missing patterns calculated directly from

the observed patterns may not be compatible with each other. The parametric fractional imputation

used the joint distribution to create imputed values, but correct specification of the joint model

is challenging under missing data. Furthermore, valid inference after multiple imputation requires

congeniality and self-efficiency (Meng, 1994), which is not necessary satisfied in many practical
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problems (Kim et al., 2006; Yang and Kim, 2016b). Fractional imputation does not suffer such

problems. Note that parametric imputation requires correct model specification. Nonparametric

imputation methods, such as kernel regression imputation (Cheng, 1994; Wang and Chen, 2009),

are robust but may be subject to curse of dimensionality. It is important to develop a unified, robust

and efficient imputation method. The proposed semiparametric method fills in this important gap

by considering a flexible method for imputation. In this paper, to achieve robustness against model

misspecification, we develop an imputation procedure based on Gaussian mixture models (GMM).

GMM is a very flexible model that can be used to handle outliers, heterogeneity and skewness. It

is semiparametric in the sense that the number of mixture component is chosen automatically from

the data. The computation is relatively simple and efficient.

The rest of this thesis is organized as follows. In Chapter 2, we introduce our proposed ap-

proximate Bayesian inference on propensity score method. In Chapter 3, we present Bayesian

sparse propensity score estimation for unit nonresponse approach. A profile likelihood approach

to semiparametric estimation with nonignorable nonresponse is shown in Chapter 4. In Chapter

5, we propose a semiparametric fractional imputation method using Gaussian mixture models for

handling multivariate missing data. Some summary and remarks are presented in Chapter 6.
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CHAPTER 2. AN APPROXIMATE BAYESIAN INFERENCE USING

PROPENSITY SCORE ESTIMATION UNDER UNIT NONRESPONSE

Hejian Sang Jae Kwang Kim

Abstract

Nonresponse weighting adjustment using the response propensity score is a popular tool for

handling unit nonresponse. Statistical inference after the nonresponse weighting adjustment is

complicated because the effect of estimating the propensity model parameter needs to be incor-

porated into finding inference. In this paper, we propose an approximate Bayesian approach to

handle unit nonresponse with parametric model assumptions on the response probability, but with-

out model assumptions for the outcome variable. The proposed Bayesian method is calibrated to the

frequentist inference in that the credible region obtained from the posterior distribution asymptoti-

cally matches to the frequentist confidence interval obtained from the Taylor linearization method.

The proposed Bayesian method is also extended to incorporate the auxiliary information from full

sample. Results from limited simulation studies confirm the validity of the proposed methods. The

proposed method is applied to data from a Korean longitudinal survey.

key words: Approximate Bayesian computation; Missing at random; Nonresponse weighting

adjustment.

2.1 Introduction

Missing data is frequently encountered in many areas of statistics. When the response mecha-

nism is missing at random in the sense of Rubin (1976), one of the popular methods of handling

missing data is to build a model for the response probability and use the inverse of the estimated re-

sponse probability to construct weights for estimating parameters. Such weighting method is often

called propensity score weighting and the resulting estimator is called propensity score estimator
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(Rosenbaum and Rubin, 1983). The propensity score method has been well studied in the litera-

ture. For examples, see Rosenbaum (1987), Flanders and Greenland (1991), Robins et al. (1994),

Robins et al. (1995), and Kim and Kim (2007). However, all the above researches were developed

under the frequentist approaches. Variance estimates using Taylor linearization or bootstrap are

used to make frequentist inferences.

In this paper, we are interested in developing Bayesian inference for propensity score estimation.

One of the main advantages of Bayesian inference is that all the uncertainty in the estimation process

can be built into the Bayesian computation automatically. That is, there is no need to develop

variance estimation separately in the Bayesian inference. While the Bayesian method is widely used

in many areas of statistics, the literature on the Bayesian approach of propensity score estimation

is sparse. An (2010) proposed a Bayesian propensity score estimator with jointly modeling the

response mechanism and the outcome variable. Specifying correct outcome model is difficult under

missing data and incorrect specification may lead to biased inference. McCandless et al. (2009)

and Kaplan and Chen (2012) also assumed joint models and obtained Bayesian credible regions in

the context of casual inference.

In this paper, we propose a new Bayesian approach of propensity score estimation without

making any model assumptions on the outcome variable. Since no parametric model assumptions

on the outcome variable are used, there is no explicit likelihood function corresponding to θ, the

main parameter of interest, which makes the problem difficult to solve.

To overcome such challenges, we develop a novel Bayesian approach using the idea of approx-

imate Bayesian computation (ABC) based on the summary statistics (Beaumont et al., 2002). In

the proposed method, the sampling distribution of summary statistics, which is the estimating

equation itself, can be used to replace the likelihood part in deriving the posterior distribution. See

Sunn̊aker et al. (2013), Toni et al. (2009), Csilléry et al. (2010) and Soubeyrand and Haon-Lasportes

(2015) for examples. It is also similar in spirit to Bayesian generalized method of moments of Yin

et al. (2009). In the proposed Bayesian method, the credible region obtained from the posterior

distribution asymptotically matches the frequentist confidence interval obtained from the Taylor
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linearization method. The computation for the proposed method is relatively simple and easy to

understand.

Note that, the propensity score estimation does not use full sample information, in the sense

that the propensity score estimator of the auxiliary variables is not necessary equal to the full

sample estimator. To incorporate this additional auxiliary information, the optimal propensity

score estimation using augmented estimation equations is developed. See Zhou and Kim (2012),

Cao et al. (2009), and Imai and Ratkovic (2014). We extend the proposed Bayesian propensity score

estimation method to obtain the optimal Bayesian propensity estimator by including additional

propensity score estimation of the auxiliary variables.

The rest of the paper is organized as follows. In §2.2, we introduce the basic setup of the general

propensity score estimation problem. The proposed method is presented in §2.3. The main result

and asymptotic theory are discussed in §2.4. In §2.5, we developed a related method by extending

our proposed method to incorporate the auxiliary information observed throughout the sample.

The finite sample performance of the proposed methods is examined in an extensive simulation

study in §2.6. An application of the proposed methods to a longitudinal survey is presented in

§2.7. Some concluding remarks and future work are discussed in §2.8. The proofs and technique

derivations are given in Appendix.

2.2 Basic Setup

Suppose that we are interested in estimating θ defined through E {U (θ;X,Y )} = 0 for some esti-

mating function U(θ;X,Y ). Let (xi, yi) , i = 1, · · · , n, be independently and identically distributed

realizations of random variable (X,Y ). Under complete response, we can obtain a consistent esti-

mator of θ by solving

1
n

n∑
i=1

U (θ;xi, yi) = 0 (2.1)

for θ without model assumption on Y . We assume that the solution to (2.1) is unique almost

everywhere to avoid the model non-identifiability issue.
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Now, suppose that the auxiliary variable X is always observed and the response variable Y is

subject to missingness. In this case, we can define the response indicator function for unit i as

δi =


1 if yi is observed

0 otherwise.

We assume the response mechanism is missing at random in the sense of Rubin (1976). Furthermore,

assume that δi are independently generated from a Bernoulli distribution with

pr(δi = 1 | xi, yi) = π (φ;xi) (2.2)

for some unknown parameter vector φ and π(·) is a known link function.

When nonresponse exists, we cannot apply (2.1) directly. Instead, using the response probability

in (2.2), we can obtain the propensity score estimator of θ by the following two steps:

Step 1. Compute the maximum likelihood estimator φ̂ of φ by maximizing

L1(φ) =
n∏
i=1

π(φ;xi)δi {1− π(φ;xi)}1−δi . (2.3)

Step 2. Compute the propensity score estimator of θ, say θ̂PS , by solving

1
n

n∑
i=1

δi

π(φ̂;xi)
U (θ;xi, yi) = 0.

Under the above setup, we propose a new Bayesian approach to make inference from the poste-

rior distribution. An advantage of the Bayesian approach is that we can incorporate the uncertainty

in estimating φ into the Bayesian computation automatically. Furthermore, prior information about

φ or θ can be naturally handled in the Bayesian framework.

2.3 Proposed Method

We now present the proposed Bayesian method in the case of missing at random. Let Xn =

(x1, x2, · · · , xn), ∆n = (δ1, δ2, · · · , δn) and Yobs denote the observed part of Yn = (y1, y2, · · · , yn).

Under the Bayesian framework, the posterior distribution p(φ, θ | Xn,∆n, Yobs) can be obtained by

p(φ, θ | Xn,∆n, Yobs) = L(φ, θ | Xn,∆n, Yobs)π(φ)π(θ)∫
L(φ, θ | Xn,∆n, Yobs)π(φ)π(θ)dφdθ , (2.4)
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where L(φ, θ | Xn,∆n, Yobs) is the joint likelihood function of (φ, θ) based on (Xn,∆n, Yobs) and

{π(φ), π(θ)} are prior distributions for φ and θ. Unfortunately, the likelihood function for θ is not

available.

In the approximate Bayesian method, we approximate the likelihood part by the sampling

distribution of the summary statistics. In the context of propensity score estimation, the summary

statistics for (φ, θ) is the estimating function itself. That is, {S(φ), UPS(θ, φ)} is the summary

statistics for (φ, θ), where

S (φ) = 1
n

n∑
i=1

{
δi

π (φ;xi)
− 1− δi

1− π (φ;xi)

}
∂π (φ;xi)

∂φ
=: 1

n

n∑
i=1

s (φ;xi, δi) (2.5)

and

UPS(θ, φ) = 1
n

n∑
i=1

δi
π(φ;xi)

U(θ;xi, yi). (2.6)

Thus, we can use

p̂(φ, θ | Xn,∆n, Yobs) = g {S(φ), UPS(θ, φ) | φ, θ}π(φ)π(θ)∫
g {S(φ), UPS(θ, φ) | φ, θ}π(φ)π(θ)dφdθ , (2.7)

as an approximation for the posterior distribution in (2.4), where g {S(φ), UPS(θ, φ) | φ, θ} is the

sampling distribution of S(φ) and UPS(θ, φ).

To obtain the sampling distribution, under certain regularity conditions, we can establish the

asymptotic distribution of {S(φ), UPS(θ, φ)} as

√
n
{
ST (φ), UTPS(θ, φ)

}T
−→ N(0,Σ)

in distribution, where

Σ = Σ(φ, θ) =

Σ11 Σ12

Σ21 Σ22


is a positive-definite matrix. Therefore, the sampling distribution g {S(φ), UPS(θ, φ) | φ, θ} is ap-

proximated by a normal distribution with mean 0 and variance n−1Σ.

Now, since we can decompose the joint likelihood function as L(θ, φ | Xn,∆n, Yobs) = L1(φ |

Xn,∆n)L2(θ | Xn,∆n, Yobs, φ), we can avoid the approximate Bayesian technique in generating φ
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and only apply it in generating θ. Thus, the following two-step method can be used in generating

(φ, θ) from the approximate posterior distribution:

Step 1. Generate φ∗ from

L1(φ | Xn,∆n)π(φ)∫
L1(φ | Xn,∆n)π(φ)dφ,

where L1(φ | Xn,∆n) is defined in (2.3).

Step 2. Generate θ∗ from

p(θ | Xn,∆n, Yobs, φ
∗) = p̂(θ, φ∗ | Xn,∆n, Yobs)

p̂(φ∗ | Xn,∆n, Yobs)
, (2.8)

where p̂(θ, φ | Xn,∆n, Yobs) is defined in (2.7) and

p̂(φ | Xn,∆n, Yobs) = g1 {S(φ) | φ}π(φ)∫
g1 {S(φ) | φ}π(φ)dφ.

Using (2.7) and (2.8), the posterior distribution in (2.8) reduces to

p(θ | Xn,∆n, Yobs, φ
∗) ∝ g {S(φ∗), UPS(θ, φ∗) | φ∗, θ}π(θ)

g1 {S(φ∗) | φ∗} ,

which yields to

p(θ | Xn,∆n, Yobs, φ
∗) = g2 {UPS(θ, φ∗) | S(φ∗), θ}π(θ)∫

g2 {UPS(θ, φ∗) | S(φ∗), θ}π(θ)dθ ,

where g2 {UPS(θ, φ) | S(φ), θ} is the density function of the conditional distribution of UPS(θ, φ)

given S(φ). Thus, we can simplify Step 2 as follows:

Step 2. Given φ∗, generate θ∗ from

θ∗ ∼ p(θ | Xn,∆, Yobs, φ∗) ∝ g2 {UPS(θ, φ∗) | S(φ∗), θ}π(θ). (2.9)

g2 {UPS(θ, φ) | S(φ), θ} is the normal density function with mean κS(φ) and variance Σ22·1 =

Σ22 − Σ21Σ−1
11 Σ12, where κ = Σ21Σ−1

11 . To generate θ∗ from (2.9), we use a consistent estimator of

Σ in the sampling distribution g2.
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To summarize, the proposed Bayesian propensity score method can be described as follows:

Step 1. Generate φ∗ from

φ∗ ∼ p(φ | Xn,∆n) ∝ L1(φ | Xn,∆n)π(φ).

Step 2. Given φ∗, generate θ∗ from

θ∗ ∼ p(θ | Xn, δn, Yobs, φ
∗) ∝ ĝ2 {UPS(θ, φ∗) | S(φ∗), θ}π(θ),

where ĝ2 {(· | S(φ∗), θ} is the estimated density function of g2 {· | S(φ∗), θ} with Σ replaced

by Σ̂(φ∗, θ). See Appendix 2.9 for details.

2.4 Asymptotic Properties

To formulate the asymptotic properties of the proposed Bayesian propensity method, denote ζ =

(φ, θ) and ζ0 = (φ0, θ0), where ζ0 is the true parameter value generating the sample. Let the joint

propensity score estimating equations be Hn(ζ) = {S(φ), UPS(φ, θ)}. The asymptotic properties of

the posterior distribution include posterior consistency and posterior asymptotic normality.

To establish the consistency of the parameter estimate and the interval estimate under the

frequentist propensity score estimation, we assume the following regularity conditions:

Assumption 1. As n goes to infinity, Hn (ζ) −→ η (ζ) in probability uniformly, where η(ζ) = E {Hn(ζ)}. That

is, supζ ‖Hn (ζ)− η (ζ) ‖ −→ 0 in probability.

Assumption 2. The mapping ζ 7→ Hn (ζ) is continuous and has exactly one zero ζ̂n almost everywhere.

Assumption 3. There exists an unique ζ0 such that infζ:d(ζ,ζ0)≥ε ‖η(ζ)‖ > 0 = η(ζ0), for any ε > 0, where d is

a distance function.

Assumption 4. There exists a neighbor of ζ0, denoted by Nn (ζ0), on which with probability one all Hn (ζ)

are continuously differentiable and the Jacobian ∂Hn (ζ) /∂ζ converges uniformly to a non-

stochastic and non-singular limit. Here, Nn (ζ0) is a ball with center ζ0 and radius rn, where

rn satisfies rn −→ 0 and rn
√
n −→∞.
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Assumption 5. For any ζ ∈ Nn (ζ0), Hn(ζ) is Lipschitz continuous for ζ and E
{
H⊗2
n (ζ0)

}
< ∞, where

A⊗2 = AAT .

Assumptions 1–5 are the standard conditions to achieve the consistency of the propensity score

estimation and asymptotic normality, in the sense of

√
n
(
ζ̂n − ζ0

)
−→ N {0,W (ζ0)} (2.10)

in distribution, whereW (ζ0) = A(ζ0)−1Σ (ζ0)AT (ζ0)−1, A(ζ) = ∂η (ζ) /∂ζT and Σ(ζ0) = E
{
H⊗2
n (ζ0)

}
.

We now make additional assumptions to establish the posterior consistency and convergence in

distribution:

Assumption 6. The prior distribution π (ζ) is absolutely continuous in Nn(ζ0) and has a positive density on

ζ0 .

Assumption 7. For ζ ∈ Nn (ζ0), the variance estimator is consistent, in the sense of Σ̂(ζ) = Σ(ζ) {1 + op(1)}.

Assumption 6 is a common assumption for the prior and the flat prior satisfies this condition.

The positive support on ζ0 ensures the posterior distribution covers the true value. Assumption

7 is the sufficient condition for approximating the posterior distribution in Step 2 of the proposed

Bayesian propensity score method.

Theorem 2.1. Under assumptions 1–7, the posterior distribution p(ζ | Xn,∆n, Yobs), generated

from the proposed Bayesian propensity score method in §2.3, satisfies

‖p
{√

n(ζ − ζ0)|Xn,∆n, Yobs
}
− g

{√
n(ζ − ζ0); 0,W (ζ0)

}
‖ −→ 0 (2.11)

in probability and

pr
{

lim
n−→∞

∫
Nn(ζ0)

p(ζ|Xn,∆n, Yobs)dζ = 1
}

= 1, (2.12)

where g {·; 0,W (ζ0)} is the density of the approximate normal distribution in (2.10).

The proof is shown in Appendix 2.10. Result (2.11) is the convergence of the posterior distribu-

tion to normality and result (2.12) is the strong posterior consistency. By (2.11), the confidence re-

gion using the proposed Bayesian method is asymptotically equivalent to the frequentist confidence



13

region based on asymptotic normality of ζ̂n. Thus, our proposed Bayesian method is calibrated to

frequentist inference using asymptotic normality of θ̂PS .

2.5 Optimal Estimation

We now extend the proposed method to incorporate additional information from the full sample.

Note that the propensity score estimator applied to µx = E(X) can be computed as the solution

to
n∑
i=1

δi

π(φ̂;xi)
(xi − µx) = 0

which is not necessarily equal to µ̂x = n−1∑n
i=1 xi. Including this extra information in the propen-

sity score estimation, if done properly, will improve the efficiency of the resulting propensity score

estimator. In the frequentist propensity score method, incorporating such extra information can be

implemented by generalized method of moments and it is sometimes called the optimal propensity

score estimation.

To include such extra information, we can add

UPS,x (µx, φ) = 1
n

n∑
i=1

δi
π (φ;xi)

(xi − µx)

Ux (µx) = 1
n

n∑
i=1

(xi − µx)

in addition to the original propensity score estimating equations (2.5) and (2.6).

To formally describe the proposed Bayesian method, define ψ = (θ, µx) and

UJ(ψ, θ) = {UPS(θ, φ), UPS,x(µx, φ), Ux(µx)} .

The joint likelihood function of (φ, ψ) can be decomposed as

L(φ, ψ | Xn,∆n, Yobs) = L1(φ | Xn,∆n, Yobs)L2(ψ | Xn,∆n, Yobs, φ). (2.13)

Similarly to §2.3, L2(ψ | Xn,∆n, Yobs, φ) is not well defined without any model assumptions on X

and Y . From (2.13), L1(φ | Xn,∆n, Yobs) can be used to generate φ∗. To generate the posterior
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draw ψ∗, we can use, similarly to (2.8), the two approximate distributions to derive the conditional

distribution of ψ given φ∗ as follows:

ψ∗ ∼ p(ψ | Xn,∆n, Yobs, φ
∗) = p̂(ψ, φ | Xn,∆n, Yobs)

p̂(φ | Xn,∆n, Yobs)
,

where p̂(ψ, φ | Xn,∆n, Yobs) ∝ g {UJ(ψ, φ), S(φ) | φ, ψ}π(φ)π(ψ), p̂(φ | Xn,∆n, Yobs) ∝ g1 {S(φ) | φ}π(φ),

and g(· | φ, ψ) can be approximated by the asymptotic normal distribution from
√
n
{
ST (φ), UTJ (ψ, φ)

}T
−→

N(0,Σ). Therefore,

p(ψ | Xn,∆n, Yobs, φ) ∝ g {UJ(ψ, φ), S(φ) | φ, ψ}π(ψ)
g1 {S(φ) | φ} = g2 {UJ(ψ, φ) | S(φ), ψ}π(ψ),

where g2 {UJ(ψ, φ) | S(φ), ψ} is the conditional density function.

Thus, the implementation of the proposed optimal Bayesian propensity score method can be

described as the following two steps:

Step 1. Generate φ∗ from

φ∗ ∼ p(φ | Xn,∆n) = L1(φ | Xn,∆n)π(φ)∫
L1(φ | Xn,∆n)π(φ)dφ.

Step 2. Given φ∗, generate ψ∗ from

ψ∗ ∼ p(ψ | Xn,∆n, Yobs, φ
∗) ∝ g2 {UJ(ψ, φ∗) | S(φ∗), ψ}π(ψ). (2.14)

The posterior distribution in (2.14) can be obtained by Metropolis–Hastings algorithm. The

proposed optimal Bayesian propensity method incorporates the full sample information and cali-

brates to the frequentist optimal estimation using the generalized method of moments.

2.6 Simulation Study

We perform a limited simulation study to validate our proposed methods and to check the

effect of prior distributions. The performance of the proposed Bayesian methods with informative

priors and non-informative priors is compared with the frequentist propensity score method. The

simulation study is a 2 × 2 factorial design, where the factors are outcome regression models for

E(y | x) and sample size.
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For the outcome regression models, we consider the following two candidates:

M1 : y = β0 + β1x+ e (β0, β1) = (1, 1)

M2 : y = β0 + β1x
2 + e (β0, β1) = (1, 0.5)

where the error distribution is e ∼ N(0, 0.25). The superpopulation models M1 and M2 are used

to check the performance of the proposed methods under the linear and nonlinear models. The

explanatory variable x is generated from N(1, 1) independently.

For the response mechanism, the response indicator function δi are independently generated

from a Bernoulli distribution with probability

pi (φ0, φ1) = exp(φ0 + φ1xi)
1 + exp(φ0 + φ1xi)

(2.15)

with (φ0, φ1) = (0.1, 1), which makes the overall response rate approximately equal to 70%.

For each setup, we generate random samples of size n = 50 or 500 independently with B = 2, 000

replications. From each realized sample, we specify a logistic regression model in (2.15) as the

response model. For each Monte Carlo sample, we use the following methods to make inference for

θ = E(Y ):

1. PS: Frequentist propensity score approach based on Taylor linearization. The point estimator

(θ̂PS , φ̂) is computed from

UPS(θ, φ) = 1
n

n∑
i=1

δi
π(φ;xi)

(yi − θ) = 0

S(φ) = 1
n

n∑
i=1
{δi − π(φ;xi)}(1, xi)T = 0.

The confidence intervals are constructed by θ̂PS ± 1·96
√
V̂PS , where V̂PS = v̂ar(θ̂PS) is ob-

tained by the Taylor linearization.

2. Bayesian PS (BPS): The proposed Bayesian method based on the parametric model assump-

tion in (2.15). For prior specifications, we consider the following four cases:

a: π(φ) ∝ 1 and π(θ) ∝ 1.
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b: π(φ) ∼ N(b0, B0) and π(θ) ∝ 1.

c: π(φ) ∝ 1 and π(θ) ∼ N(µ0, s0).

d: π(φ) ∼ N(b0, B0) and π(θ) ∼ N(µ0, s0),

where b0 is the true value of (φ0, φ1), B0 = diag(1, 1), µ0 is the true value of E(Y ) and

s0 = 1. The estimators for (φ, θ) are obtained by the mean of the draws from the approximate

posterior distribution. The credible intervals can be constructed by quantiles of the posterior

distribution. Under the non-formative prior a, the proposed Bayesian method should calibrate

to propensity score method asymptotically. For prior b, where prior of φ is informative, but

prior of θ is non-informative, we explore the effect of prior of φ on estimating of θ. For prior

c, we use the non-informative prior for φ and the informative prior of θ to check the effect of

prior of θ. The prior d is to check the effect of jointly informative priors.

3. Optimal PS (OPS): Use the generalized method of moments as

Cn(φ, θ, µx) = 1
n

n∑
i=1



{δi − π(φ;xi)} (1, xi)T

δiπ(φ;xi)−1(yi − θ)

δiπ(φ;xi)−1(xi − µx)

xi − µx


.

The OPS estimator is obtained by minimizing CTnW−1Cn, where W = var(Cn). See §5.4 of

Kim and Shao (2013) for details.

4. OBPS: Optimal Bayesian PS method discussed in §2.5. The prior distributions π(θ, φ) ∝ 1

and π(µx) ∝ 1. The credible intervals can be constructed quantiles of the posterior distribu-

tions.

For each of the four methods, 95% confidence intervals for θ are computed from Monte Carlo

samples. The simulation result is presented in Table 2.1.

From Table 2.1, where n = 500 and the population model is linear (M1), we can see that,

overall, the proposed BPS achieves the same standard errors and the coverage probabilities with the
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Table 2.1: Simulation results from a Monte Carlo study of size B = 2, 000. : “bias” is the Monte
Carlo bias. “std” is the Monte Carlo standard error. “AL” is the average length of the confidence
(credible) intervals. “CP” is the coverage probability for the corresponding confidence (credible)
interval. “PS” is the propensity score estimation. “BPS a”, “BPS b”,“BPS c” and “BPS d” are
the Bayesian propensity score method with prior a,b,c and d, respectively. “OPS” is the optimal
propensity score estimation. “OBPS” is the optimal Bayesian propensity score method with non-
informative priors.

n method M1 M2
bias std AL CP bias std AL CP

500

PS 0.00 0.06 0.22 0.95 -0.00 0.06 0.25 0.95
BPS a -0.00 0.06 0.22 0.95 -0.00 0.06 0.25 0.95
BPS b -0.00 0.06 0.22 0.95 -0.00 0.06 0.25 0.95
BPS c -0.00 0.06 0.22 0.95 -0.00 0.06 0.25 0.95
BPS d -0.00 0.06 0.22 0.95 -0.00 0.06 0.25 0.95
OPS 0.00 0.05 0.20 0.95 -0.01 0.06 0.24 0.95
OBPS 0.00 0.05 0.20 0.95 -0.01 0.06 0.24 0.95
PS -0.01 0.18 0.67 0.94 -0.01 0.20 0.75 0.93
BPS a -0.07 0.21 0.75 0.94 -0.03 0.20 0.76 0.92
BPS b -0.05 0.19 0.69 0.93 -0.02 0.20 0.75 0.92

50 BPS c -0.03 0.19 0.64 0.93 -0.02 0.19 0.72 0.92
BPS d -0.01 0.18 0.63 0.93 -0.03 0.19 0.75 0.93
OPS 0.01 0.17 0.61 0.93 -0.02 0.20 0.75 0.93
OBPS 0.01 0.17 0.63 0.94 -0.02 0.20 0.75 0.93

frequentist PS method regardless of whether priors are informative or flat. This is consistent with

Theorem 2.1 in the sense that the posterior distribution converges to the asymptotic distribution

of maximum likelihood estimator as the sample size becomes large enough. Also we find that the

proposed OBPS method is calibrated to the OPS method with showing the same performance in

term of standard errors and length of credible (confidence) intervals. Comparing four methods, the

OBPS and OPS always perform better than BPS and PS methods with incorporating full sample

information. When the population model is quadratic in Table 2.1, the same conclusions of M1 can

be obtained. When the outcome regression model is quadratic (M2), the proposed two Bayesian

methods also obtain the same performance with the frequentist methods.

To explore the effect of priors in the PS estimation, we also set the sample small size as n = 50.

From Table 2.1, the proposed BPS method with flat priors obtains larger standard errors and wider
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credible intervals than the frequentist PS method, which yields to better or equivalent coverage

probabilities. Under the BPS method, the informative priors of φ and θ help to reduce variability

and bias. The prior information of θ only (prior c) achieves the better perfomrance than prior

b, where we use only informative prior for φ. Also, the BPS with jointly informative priors is

better than the PS method in term of narrower confidence length. Comparing the OBPS and

OPS, we can see that the proposed OBPS method provides similar credible intervals with better

coverage probabilities than the OPS. In summary, the proposed Bayesian methods outperform the

frequentist methods under the small sample size.

2.7 Application

In this section, we apply the proposed Bayesian propensity score methods to Korea Labor

and Income Panel Survey data. A brief description of the panel survey can be found at http://

www.kli.re.kr/klips/en/about/introduce.jsp. The study variable (y) is the average monthly

income for the current year and the auxiliary variable (x) can be demographic variables, such as the

age groups and sex. Let (xi, yit) be the observations for household i in panel year t. The KLIPS

has n = 5, 013 households and T = 8 panel years. We treat the first panel observations as the

baseline measurements, and there are no missing data in the first year. In the panel survey, xi are

completely observed and yit are subject to missingness, for i = 1, 2, · · · , n and t = 1, 2, · · · , T . Let

δit be the response indicator function of yit. Define

δit =


1 if we observe yit

0 otherwise.

We are interested in estimating the probability of full response

πi = pr(δi1 = 1, · · · , δiT = 1 | xi, yi,obs), (2.16)

where yi,obs = (yi1, · · · , yiT ) represent the observed responses for household i. The inverse of the πi

in (2.16) can be used as the propensity weight for the penal survey. For monotone missing data, in

the sense of δit = 1 implying δi,t−1 = 1, · · · , δi1 = 1, the probability reduces to πi = πi1πi2 · · ·πiT ,

where πit = pr(δit = 1 | δi,t−1 = 1, xi, yi1, · · · , yi,t−1) under missing at random assumption.

http:// www.kli.re.kr/klips/en/about/introduce.jsp
http:// www.kli.re.kr/klips/en/about/introduce.jsp
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For arbitrary missing patterns, we first define δ∗it =
∏t
k=1 δik. Note that δ∗it = 1 implies that

δ∗i,t−1 = 1. Furthermore,

pr(δi1 = 1, · · · , δiT = 1 | xi, yi,obs) =
T∏
k=2

pr(δ∗ik = 1 | δ∗i,k−1 = 1, xi, yi,k−1)

=
T∏
k=2

pr(δik = 1 | δ∗i,k−1 = 1, xi, yi,k−1)

= πi2πi3 · · ·πiT = πi,

where πi1 = 1 for all samples.

Thus, we can build a parametric model for πit = pr(δit = 1 | δ∗i,t−1 = 1, xi, yi,t−1) and estimate

the parameters sequentially. Instead of using the frequentist approach of Zhou and Kim (2012),

we apply the Bayesian propensity method in §2.3 and the optimal Bayesian method in §2.5 to

incorporate the extra information in x.

We are interested in estimating the average income for the final year and constructing confidence

intervals for the parameters. Assume the response mechanism follows

π(φt;xi, yi,t−1) = pr(δit = 1 | δ∗i,t−1 = 1, xi, yi,t−1) = 1
1 + exp

{
−(xTi , yi,t−1)φt

} , (2.17)

which is known up to parameter φt. Thus, we allow that the response probability at year t depends

on the last year income yt−1, but not on the current year income. Assume δit, given δ∗i,t−1 = 1, xi,

and yi,t−1, independently follow Bernoulli distribution with probability π(φt;xi, yi,t−1) in (2.17).

Therefore, we can apply the proposed Bayesian propensity method sequentially for each t. Then

the joint estimating equations are Un(φ2, φ3, · · · , φT , θ) = 0, where

Un(φ2, φ3, · · · , φT , θ) = n−1
n∑
i=1

π−1
i (δ∗iT yiT − θ) (2.18)

and θ = E(YT ). The proposed Bayesian propensity method can be applied to obtain the posterior

distribution of (φ2, · · · , φT , θ) with known likelihood function of φt and approximated sampling

distribution of Un(φ2, φ3, · · · , φT , θ).

To improve the efficiency of the point estimator, we also apply the optimal Bayesian propensity

method to the same sample. In addition to equations in (2.18), we add
∑n
i=1 δ

∗
iTπ
−1
i (xi − µx) = 0
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and
∑n
i=1(xi − µx) = 0, where µx is the marginal proportion vector for demographical covariates.

Therefore, the posterior distribution of θ can be obtained by applying the proposed algorithm in §5.

For a comparison, we also considered a naive method which does not use the propensity model and

apply the Bayesian method in the complete cases (CC) only. The numerical results are presented

below.

Figure 2.1: Boxplots for posterior distribution of θ (Magnitude 1,000,000 Won) by different methods
and panels T = 2, 3, 4. “CC” denotes the Bayesian method only using the complete data. “BPS”
is the proposed Bayesian propensity score method. “OBPS” is the optimal Bayesian propensity
method with incorporating information of X.

From Figure 2.1, all three methods provide similar estimators for the average income θ.The

trend of average income goes up as year T increases. For year T = 2, all three methods provide

similar mean estimates. But the OBPS method is the most efficient. For year T = 3, we see that

the CC method provides lower mean estimate than BPS or OBPS, which is due to the nonresponse

bias in the CC method. This phenomenon becomes more obvious for year T = 4. Also, the lengths

of confidence intervals increase as T increases, since the fully observed sample size is decreasing

due to panel attrition. The CC method presents smaller values of θ for T = 4, which suggests
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more panel attrition for higher income households. Both BPS and OBPS provide similar mean

estimates. But the OBPS method has narrower confidence intervals, which confirms the efficiency

of the OBPS method.

2.8 Concluding Remarks

A new Bayesian inference using propensity score method is developed using the idea of Approx-

imate Bayesian computation. The proposed method can be widely applicable due to popularity of

propensity score method. The proposed Bayesian approach is calibrated to frequentist inference in

the sense that the proposed method provides the same inferential results with its frequentist version

asymptotically (Little, 2012). The calibration property holds if the sample size is large enough. If

the prior is informative then the resulting Bayesian inference could be more efficient than frequen-

tist inference due to its natural incorporation of the prior information. Thus, the proposed method

is applicable when combining information from different sources.

Causal inference, including estimation of average treatment effect from observational studies,

can be one promising application area of the propensity score method (Morgan and Winship, 2014;

Hudgens and Halloran, 2008). Developing tools for causal inference using the Bayesian propensity

score method will be an important extension of this research. Also, Bayesian model selection

method (Ishwaran and Rao, 2005) can be naturally applied to this setup. Such extensions will be

topics for future research.
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Appendix includes a brief description about the consistent variance estimator of {S(φ), UPS(θ, φ)}

in Step 2 and the proof of Theorem 1 in §4.

2.9 Appendix A: The consistent variance estimator in step 2

Note that,

var
{√

nS(φ)T ,
√
nUTPS(θ, φ)

}T
−→ Σ(φ, θ),

in probability. Since {(x1, y1δ1, δ1), · · · (xn, ynδn, δn)} are independent, the consistent estimator of

Σ(φ, θ) is

Σ̂(φ, θ) = 1
n

n∑
i=1


s(φ;xi, δi)

δiπ
−1(φ;xi)U(θ;xi, yi)


⊗2

,

where A⊗2 = AAT and s(φ;x, δ) is the score function of φ.

2.10 Appendix B: Proof of Theorem 1

First, we can decompose the posterior distribution as

p {
√
n(ζ − ζ0) | Xn,∆n, Yobs} = p

{√
n(φ− φ0) | Xn,∆n, Yobs

}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
.

From the asymptotic distribution of (φ̂, θ̂), we have

√
n

φ̂− φ0

θ̂ − θ0

 −→ N (0,W ) (2.19)

in distribution, where

W =

W11 W12

W21 W22

 .
Thus, given

√
n(φ− φ0), we have

√
n(θ − θ0) | φ −→ N(W12W

−1
11
√
n(φ− φ0),W22 −W21W

−1
11 W12)
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in distribution. Note that, the distribution is conditional on φ, which is equivalent to giving
√
n(φ − φ0). Denote µ(φ) = W12W

−1
11
√
n(φ − φ0) and W22·1 = W22 −W21W

−1
11 W12. Similarly, we

can decompose the asymptotic distribution of (2.19) as

g
{√

n(ζ − ζ0); 0,W
}

= g
{√

n(φ− φ0); 0,W1
}
g
{√

n(θ − θ0);µ(φ),W22·1
}
,

where g(·;µ, S) is the normal density function with mean µ and variance S.

Note that, the propose Bayesian method uses the explicit likelihood of φ and the approximate

distribution of θ. Thus, we can obtain that

‖p
{√

n(ζ − ζ0) | Xn,∆n, Yobs
}
− g

{√
n(ζ − ζ0); 0,W

}
‖

= ‖p
{√

n(φ− φ0) | Xn,∆n, Yobs
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

n(φ− φ0); 0,W1
}
g
{√

n(θ − θ0);µ(φ),W22·1
}
‖

= ‖p
{√

n(φ− φ0) | Xn,∆n, Yobs
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

+g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

n(φ− φ0); 0,W1
}
g
{√

n(θ − θ0);µ(φ),W22·1
}
‖.

Using the triangular inequality, it is sufficient to show that

‖p
{√

n(ζ − ζ0) | Xn,∆n, Yobs
}
− g

{√
n(ζ − ζ0); 0,W

}
‖

≤ ‖p
{√

n(φ− φ0) | Xn,∆n, Yobs
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
‖

+‖g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

n(φ− φ0); 0,W1
}
g
{√

n(θ − θ0);µ(φ),W22·1
}
‖ −→ 0,
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in probability. From step 2, p {
√
n(θ − θ0) | Xn,∆n, Yobs, φ} ∝ ĝ2 {UPS(θ;φ) | S(φ), θ}π(θ) is uni-

formly bounded by c1, when the posterior distribution is appropriate. Then, we can obtain that

‖p
{√

n(φ− φ0) | Xn,∆n, Yobs
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
‖

−g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
‖

≤ c1‖p
{√

n(φ− φ0) | Xn,∆n, Yobs
}
− g

{√
n(φ− φ0); 0,W1

}
‖.

step 1 is a standard Bayesian method. By Bernstein-von Mises theorem (Van der Vaart, 1998,

Chapter 10), we have the following conclusion:

‖p
{√

n(φ− φ0) | Xn,∆n, Yobs
}
− g

(√
n(φ− φ0); 0,W1

)
‖ −→ 0

in probability, which yields to

‖p
{√

n(φ− φ0) | Xn,∆n, Yobs
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
‖

−g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
‖ −→ 0 (2.20)

in probability.

Then, next step is to show

‖g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

n(φ− φ0); 0,W1
}
g
{√

n(θ − θ0);µ(φ),W22·1
}
‖ −→ 0 (2.21)

in probability. We can rewrite (2.21) as

‖g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

n(φ− φ0); 0,W1
}
g
{√

n(θ − θ0);µ(φ),W22·1
}
‖

≤ ‖g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

nS(φ); 0,Σ11
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
‖

+‖g
{√

nS(φ); 0,Σ11
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

nHn(ζ); 0,Σ
}
‖

= J1 + J2.
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Thus, it is sufficient to show that J1 −→ 0 and J2 −→ 0 in probability. For the first claim J1 −→ 0 in

probability, we can conclude it from

J1 = ‖g
{√

n(φ− φ0); 0,W1
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}

−g
{√

nS(φ); 0,Σ11
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
‖

≤ c1‖g
{√

n(φ− φ0); 0,W1
}
− g

{√
nS(φ); 0,Σ11

}
‖ −→ 0 (2.22)

in probability, where the convergence in probability holds because
√
n(φ̂ − φ0) −→ N(0,W1) is

asymptotically equivalent to
√
nS(φ) −→ N(0,Σ11). Using the extended dominated convergence

theorem, we can show the convergence in probability holds.

Note that, step 2 is to generate θ∗ from

θ∗ ∼ p(θ | Xn, δn, Yobs, φ
∗) ∝ ĝ2 {UPS(θ, φ∗) | S(φ∗), θ}π(θ)

Therefore, we can show that

‖g
{√

nS(φ); 0,Σ11
}
p
{√

n(θ − θ0) | Xn,∆n, Yobs, φ
}
− g

{√
nHn(ζ); 0,Σ

}
‖

= ‖g
{√

nS(φ); 0,Σ11
}
c(φ)ĝ2

{√
nUPS(θ, φ) | S(φ), θ

}
π(θ)− g

{√
nHn(ζ); 0,Σ

}
‖,

= ‖g
{√

nS(φ); 0,Σ11
}
c(φ)ĝ2

{√
nUPS(θ, φ) | S(φ), θ

}
π(θ)

−g
{√

nS(φ); 0,Σ11
}
g
{√

nUPS(θ, φ); Σ21Σ−1
11 S(φ),Σ22·1

}
‖

≤ c2‖c(φ)ĝ2
{√

nUPS(θ, φ) | S(φ), θ
}
π(θ)− g

{√
nUPS(θ, φ); Σ21Σ−1

11 S(φ),Σ22·1
}
‖,

where c(φ) is the normalized constant, g (·; 0,Σ11) is bounded by c2 and Σ22·1 = Σ22−Σ21Σ−1
11 Σ12.

By the assumption (7), we can have V̂U = Σ22·1 {1 + op(1)} and κ̂ = Σ21Σ−1
11 {1 + op(1)}. Then,

we can derive that

c(φ)ĝ2
{√

nUPS(θ, φ) | S(φ), θ
}
π(θ)− g

{√
nUPS(θ, φ); Σ21Σ−1

11 S(φ),Σ22·1
}

= c(φ)g
{√

nUPS(θ, φ); κ̂S(φ), V̂U
}
π(θ)− g

{√
nUPS(θ, θ); Σ21Σ−1

11 S(φ),Σ22·1
}

=
exp

[
−0.5n

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}T

Σ−1
22·1

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}
{1 + op(1)}

]
π(θ)∫

exp
[
−0.5n

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}T

Σ−1
22·1

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}
{1 + op(1)}

]
π(θ)dθ

−g
{√

nUPS(θ, φ); Σ21Σ−1
11 S(φ),Σ22·1

}
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Note that, when θ1 solves UPS(θ, φ)− Σ21Σ−1
11 S(φ) = 0, we have the following conclusion:

exp
[
−0.5n

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}T

Σ−1
22·1

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}
{1 + op(1)}

]
π(θ) = π(θ1).

If UPS(θ, φ)− Σ21Σ−1
11 S(φ) 6= 0, then

exp
[
−0.5n

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}T

Σ−1
22·1

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}
{1 + op(1)}

]
−→ 0,

in probability. Therefore, we can show that the approximate integration of the conditional distri-

bution goes to the following point mass:∫
exp

[
−0.5n

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}T

Σ−1
22·1

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}
{1 + op(1)}

]
π(θ)dθ

−→ |2πΣ22·1|−1/2π(θ1).

Thus, we have

=
exp

[
−0.5n

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}T

Σ−1
22·1

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}
{1 + op(1)}

]
π(θ)∫

exp
[
−0.5n

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}T

Σ−1
22·1

{
UPS(θ, φ)− Σ21Σ−1

11 S(φ)
}
{1 + op(1)}

]
π(θ)dθ

−g
{√

nUPS(θ, φ); Σ21Σ−1
11 S(φ),Σ22·1

}
−→ 0,

in probability. By the extended dominated convergence theorem, we can show

‖c(φ)ĝ2
{√

nUPS(θ, φ) | S(φ), θ
}
π(θ)− g

{√
nUPS(θ, φ); Σ21Σ−1

11 S(φ),Σ22·1
}
‖ −→ 0, (2.23)

in probability.

(2.22) and (2.23) completes the proof of (2.21). Combining (2.20) and (2.21), we have

‖p
{√

n(ζ − ζ0)|Xn,∆n, Yobs
}
− g

{√
n(ζ − ζ0); 0,W (ζ0)

}
‖ −→ 0, (2.24)

in probability.

Next, we are going to show the consistency of the posterior distribution. From the asymptotic

distribution (2.19), we can define

Cn,α =
{
ζ : n(ζ − ζ0)TW−1(ζ − ζ0) ≤ χ2

p(α)
}
,
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where the χ2
p(α) is the α quantile of the Chi-square distribution with p degrees of freedom.

Furthermore, from a property of the Raylei Quotient (Horn and Johnson, 1990), there exists a

matrix O such that

OW−1OT = diagonal {λ1, · · · , λp} ,

where OOT = Ip and 0 < λ1 ≤ λ2, · · · ,≤ λp. Thus we obtain

xT
(
nW−1

)
x ≥ nλ1x

Tx. (2.25)

Applying the conclusion (2.25), we can obtain the following two inequalities:

‖ζ − ζ0‖ ≤ λ−1/2
1

√
(ζ − ζ0)TnW−1(ζ − ζ0) ≤ λ−1/2

1

√
χ2
p(α)/n. (2.26)

Next, from (2.26), we can conclude that

lim
n−→∞pr

{
‖ζ − ζ0‖ ≤ λ−1/2

1

√
χ2
p(α)/n

}
≥ α,

which leads to

lim
n−→∞pr

{
ζ ∈ Cn,α, ‖ζ − ζ0‖ ≤ 2λ−1/2

1

√
χ2
p(α)/n

}
≥ α. (2.27)

Since we have defined Nn(ζ0) in a neighborhood with center ζ0 and radius rn, where rn satisfies

rn −→ 0 and
√
nrn −→∞. From (2.27),

lim
n−→∞ pr {ζ ∈ Cn,α, ‖ζ − ζ0‖ ≤ rn} ≥ α,

lim
n−→∞ pr {Cn,α ⊂ Nn(ζ0)} ≥ α.

Therefore,

lim
n−→∞pr

{∫
Nn(ζ0)

g(ζ; ζ0, n
−1W )dζ ≥

∫
Cn,α

g(ζ; ζ0, n
−1W )dζ

}
≥ α,

which is equivalent to

lim
n−→∞pr

{∫
Nn(ζ0)

g(ζ; ζ0, n
−1W )dζ ≥ α

}
≥ α. (2.28)
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Conclusion (2.28) holds for any α ∈ (0, 1). Thus,

pr
{

lim
n−→∞

∫
Nn(ζ0)

g(ζ; ζ0, n
−1W )dζ = 1

}
= 1. (2.29)

Using the triangular inequality, we can obtain

∫
Nn(ζ0) p(ζ | Xn,∆n, Yobs)dζ ≥

∫
Nn(ζ0)

g(ζ; ζ0, n
−1W )dζ

−
∫
Nn(ζ0)

|p(ζ | Xn,∆n, Yobs)− g(ζ; ζ0, n
−1W )|dζ.

From (2.29), we can show that the probability can be bounded by the following lower bound:

pr
{

lim
n−→∞

∫
Nn(ζ0)

p(ζ | Xn,∆n, Yobs)dζ

≥ 1− lim
n−→∞

∫
Nn(ζ0)

|p(ζ | Xn,∆n, Yobs)− g(ζ; ζ0, n
−1W )|dζ

)
= 1. (2.30)

From (2.24), we can obtain that, for any ε ∈ (0, 1),

pr
{

lim
n−→∞

∫
Nn(ζ0)

|p(ζ | Xn,∆n, Yobs)− g(ζ; ζ0, n
−1W )|dζ > ε

}
< ε.

Thus, plugging into (2.30), we can obtain

pr
{

lim
n−→∞

∫
Nn(ζ0)

p(ζ | Xn,∆n, Yobs)dζ ≥ 1− ε
}
≥ 1− ε,

for any ε ∈ (0, 1). Therefore, we can conclude that,

pr
{

lim
n−→∞

∫
Nn(ζ0)

p(ζ | Xn,∆n, Yobs)dζ
}

= 1,

which completes the proof of Theorem 2.1.
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CHAPTER 3. BAYESIAN SPARSE PROPENSITY SCORE ESTIMATION

FOR UNIT NONRESPONSE

Hejian Sang Gyuhyeong Goh Jae Kwang Kim

Abstract

Nonresponse weighting adjustment using propensity score (PS) is a popular tool for handling

unit nonresponse. However, including all the auxiliary variables into the propensity model can lead

to inefficient estimation and the consistency is not guaranteed if the dimension of the covariates

is large. In this paper, a new Bayesian method using the Spike-and-Slab prior is proposed to

handle the sparse propensity score estimation. The proposed method is not based on any model

assumption on the outcome variable and is computationally efficient. Instead of doing model

selection and parameter estimation separately as in most frequentist methods, the proposed method

simultaneously selects the true sparse response probability model and provides consistent parameter

estimation and corresponding inference, which can be quite involved in the frequentist methods.

The finite-sample performance of the proposed method is investigated in limited simulation studies,

including a partially simulated real data example from the Korean Labor and Income Panel Survey.

key words: Approximate Bayesian computation, Data augmentation, Missing at random, Spike-

and-Slab prior, Sparsity.

3.1 Introduction

Nonresponse in the collected data is a common problem in survey sampling, clinical trials,

and many other areas of research. Ignoring nonresponse can lead to a biased estimation unless the

missing mechanism is completely missing at random (Rubin, 1976). To handle nonresponse, various

statistical methods have been developed. The propensity score weighting is one of the most popular

tools for adjusting bias due to nonresponse, which builds on a model for the response probability
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and uses the inverse of the estimated response probability as the weights for estimating parameters.

Rosenbaum and Rubin (1983) showed that the propensity score adjustment is sufficient to remove

the nonresponse bias under the correct response probability model. The propensity score weighting

method is well established in the literature. See Rosenbaum (1987), Flanders and Greenland

(1991), Robins et al. (1994), Robins et al. (1995) and Kim and Kim (2007). However, when the

dimension of the covariates for the propensity score is large, the full response model including all

the covariates may have several problems. First, the computation for the parameter estimation

can be problematic as it involves high dimensional matrix inversion and the convergence is not

guaranteed. Second, estimating zero coefficients in the propensity model increases the variability of

the propensity scores and thus leads to inefficient estimates of the model parameters. Furthermore,

the asymptotic normality of the PS estimator is not guaranteed if the dimension of the covariates

is large. That is, the assumptions for the Central Limit Theorem (CLT) may not be satisfied if we

include all the covariates into the propensity model. Therefore, a proper model selection to obtain

a sparse propensity model is an important practical problem in the propensity score estimation.

Sparsity is a natural and important characteristic of statistical models. While sparsity is wildly

used in the linear regression to improve efficiency, the sparsity effect on the propensity score estima-

tion is somehow unclear. In the context of propensity score weighting, sparsity occurs when, among

all the covariates under consideration, only a few of them are significantly involved in the true re-

sponse mechanism. It is well known that traditional estimation methods such as the maximum

likelihood estimation and the least squares estimation ignoring sparsity may yield poor estimates

with large variance (Tibshirani, 1996; Zou and Hastie, 2005). Likewise, when sparsity is present in

the propensity score, the propensity score estimation using the full model is less efficient than the

method using the sparse model, even when the sample size is sufficiently large. See Lemma 3.1 in

§3.2. There are many attempts to tackle sparse estimation in the classical regression problems. See

Fan and Li (2001), Zou (2006), Park and Casella (2008), Kyung et al. (2010) for example. However,

to the best of our knowledge, not much work has been done for sparse propensity score estimation

in the missing data context.
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In this paper, we propose a Bayesian approach for the sparse propensity score estimation.

Our main goal is to develop a valid inference procedure for estimating equations with the sparse

propensity score adjustment. One of the greatest advantages of the Bayesian approach is that both

estimating the parameter of interest and eliminating irrelevant covariates can be simultaneously

performed in the posterior inference. To introduce the sparse posterior distribution, we propose

to use stochastic search variable selection with the Spike-and-Slab prior, which is a mixture of flat

distribution and degenerate distribution at zero, or a mixture of their approximations (Mitchell and

Beauchamp, 1988; George and McCulloch, 1993, 1997; Narisetty et al., 2014). However, there is

still a big challenge in implementing the Bayesian variable selection method in the propensity score

(PS) estimation. In the estimating equations using the PS method, the likelihood function for the

parameter of interest is unspecified. To resolve this issue, we derive an approximate likelihood from

the sampling distribution of PS estimator. The proposed Bayesian method is implemented by data

augmentation algorithm (Tanner and Wong, 1987; Wei and Tanner, 1990). The computation of

posterior distribution is quite fast and efficient. The proposed method is justified using asymptotic

theory and extensive simulation studies.

The rest of this paper is organized as follows. In §3.2, we introduce the basic setup of the PS

estimation. The technical details of our proposal are described in §3.3. Model selection consistency

and the asymptotic theory are established in §3.4. The performance of the proposed method is

examined through simulation studies in §3.5. Some discussion is presented in §3.6. Proofs and

derivations are given in Appendix.

3.2 Basic Setup

Let (x1, y1), (x2, y2), . . . , (xn, yn) be n independent and identically distributed (IID) realizations

from a random vector (X,Y ), where Y is a scalar response and X is a p-dimensional vector of

covariates. Suppose we are interested in estimating parameter θ ∈ Θ, which is the unique solution

to the population estimating equation E {U(θ;X,Y )} = 0. Under complete response, a consistent
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estimator of θ can be obtained by solving

1
n

n∑
i=1

U(θ;xi, yi) = 0. (3.1)

However, if nonresponse occurs, the estimating equation in (3.1) cannot be used directly.

To handle the missing data problem, the propensity score method using response propensity

model can be used. To introduce the PS method, suppose that xi are fully observed and yi are

subject to missingness. Let δi be the response indicator of yi, that is,

δi =


1 if yi is observed

0 if yi is missing.

Assume that δi are independently distributed from a Bernoulli distribution with the success prob-

ability of Pr(δi = 1|xi, yi). We further assume that the missing mechanism is missing at random

(MAR) in the sense that

Pr(δi = 1|xi, yi) = Pr(δi = 1|xi).

Following Rosenbaum and Rubin (1983), we define the propensity score for the i-th observation as

Pr(δi = 1|xi) = π(φ;xi) = G (xT
i φ) , (3.2)

where G : R → [0, 1] is a known distribution function and φ = (φ1, φ2, . . . , φp)T is a p-dimensional

unknown parameter. Then the propensity score estimator of θ, say θ̂PS, can be obtained by solving
n∑
i=1

δi

π(φ̂;xi)
U(θ;xi, yi) = 0, (3.3)

with respect to θ, where φ̂ is a consistent estimator of φ. From the response model in (3.2), we

can easily obtain the maximum likelihood estimator (MLE) of φ by maximizing the log-likelihood

function,

ln(φ) =
n∑
i=1

log f(δi|xi;φ), (3.4)

where

f(δi|xi;φ) = {π(xi;φ)}δi {1− π(xi;φ)}1−δi .
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However, when φ is sparse, that is, φ contains many zero values, the MLE often involves large

variance and fails to be consistent (Zou, 2006). Such phenomenon unfavorably leads to a poor

inference about the parameter of interest θ. The following lemma illustrates the effect of including

extra covariates in the PS estimation.

Lemma 3.1. Suppose X = (X1, X2) and the response mechanism is MAR. Let θ̂PS be the solution

to

n∑
i=1

δi
Pr(δi = 1|X1i, X2i)

U(θ;X1i, yi) = 0,

and θ̂SPS be the solution to

n∑
i=1

δi
Pr(δi = 1|X1i)

U(θ;X1i, yi) = 0.

In this case, ignoring the smaller order terms, we have

E
(
θ̂PS

)
= E

(
θ̂SPS

)
,

V ar
(
θ̂SPS

)
≤ V ar

(
θ̂PS

)
.

Proof of Lemma 3.1 is presented in Appendix A. By Lemma 3.1, we can see that the propen-

sity model including unnecessary covariates increases the variance of the resulting PS estimator.

However, including important covariates into model is still critical to reduce the nonresponse bias.

Penalized likelihood estimation techniques have been proposed to overcome the drawback of

MLE for high dimensional covariate problems. Similarly, we may achieve sparse and consistent

estimation for φ by adding a suitable penalty function to (3.4). For example, LASSO (Tibshirani,

1996) produces a sparse estimator of φ via L1-penalization,

φ̂LASSO = arg min
φ

−ln(φ) + λ
p∑
j=1
|φi|

 , (3.5)

where λ ≥ 0 is a deterministic parameter to control the degree of penalization. Thus, we can easily

obtain a penalized PS estimate of θ by solving (3.3) for given φ̂LASSO. However, despite the utility

of the penalized likelihood method, its applicability is limited to the point estimation in the PS
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method. In particular, the derivation of the variance estimator of θ̂PS is very challenging under the

penalization approach. All the aforementioned concerns motivate us to tackle the sparse propen-

sity estimation problem in a Bayesian framework. We propose to incorporate Bayesian stochastic

variable search and approximate Bayesian computation (Beaumont et al., 2002; Soubeyrand and

Haon-Lasportes, 2015) into the sparse propensity score estimation. The details are discussed in the

following section.

3.3 Bayesian Sparse Propensity Score Estimation

To formulate our proposal, we first introduce a latent variable z = (z1, z2, · · · , zp)T, which

indicates nonzero elements of φ as follows:

zj =


1 if φj 6= 0

0 if φj = 0
, j = 1, 2, . . . , p. (3.6)

Thus, zj is an indicator function for the inclusion of j-th covariate into the PS model. Then,

by assigning suitable prior distributions for the parameter φ and the latent variable z, we can

obtain the marginal posterior distribution p(z|x, δ) using the likelihood of φ in (3.4), where x =

(x1, x2, . . . , xn)T and δ = (δ1, δ2, . . . , δn)T. After the posterior distribution p(z | x, δ) is obtained,

we can employ the Bayesian method of Sang and Kim (2017) to generate the posterior distribution

of θ, given the response model.

To account for the sparsity of the response model, we assign the Spike-and-Slab Gaussian

mixture prior for φ and independent Bernoulli prior for z as follows:

φj |zj
ind∼ N(0, ν0(1− zj) + ν1zj), (3.7)

zj
ind∼ Ber(wj), (3.8)

where wj(∈ (0, 1)), ν0(> 0), and ν1(> ν0) are deterministic hyperparameters. To induce sparsity

for φ, the scale hyperparameters ν0 and ν1 need to be small and large fixed values, respectively. In

our simulation study, we set ν0 = 10−7 and ν1 = 107 for n = 500. The mixing probability wj can

be interpreted as the prior probability that φj is nonzero. Under the absence of prior information

for φ, we can set wj = 0.5 for all j or set the uniform prior for wj .
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Let L1(φ|x, δ) be the likelihood of φ obtained from (3.4). Then, our proposed Bayesian sparse

propensity score (BSPS) method can be described as following two steps:

Step 1: Generate z∗ from the marginal posterior distribution of z given x and δ:

z∗ ∼ p(z|x, δ) =
∫
L1(φ|x, δ)p(φ|z)p(z)dφ∫ ∫
L1(φ|x, δ)p(φ|z)p(z)dφdz , (3.9)

where p(φ|z) and p(z) are the prior density functions of φ and z, respectively, as defined in

(3.7) and (3.8).

Step 2: Generate θ∗ from an approximate posterior distribution of θ given the z∗ generated

from Step 1.

We first discuss Step 1. To generate z∗ from (3.9) in Step 1 efficiently, the data augmentation

algorithm (Wei and Tanner, 1990) can be applied. That is, the marginal posterior distribution of

z given x and δ can be obtained by iterating the following two steps until convergence:

I-step: Given φ∗, generate z∗ from

z∗ ∼ p(z|x, δ, φ∗) = L1(φ∗|x, δ)p(φ∗|z)p(z)∫
L1(φ∗|x, δ)p(φ∗|z)p(z)dz

= p(φ∗|z)p(z)∫
p(φ∗|z)p(z)dz = p(z|φ∗).

P-step: Given z∗, generate φ∗ from

φ∗ ∼ p(φ|x, δ, z∗) = L1(φ|x, δ)p(φ|z∗)∫
L1(φ|x, δ)p(φ|z∗)dφ. (3.10)

Note that I-step and P-step perform the model sampling and the parameter sampling, respectively.

Under (3.7) and (3.8), I-step can be simplified as generating z∗ = (z∗1 , z∗2 , . . . , z∗p)T from

z∗j
ind∼ Ber

(
wjψ(φ∗j |0, ν1)

wjψ(φ∗j |0, ν1) + (1− wj)ψ(φ∗j |0, ν0)

)
, j = 1, 2, . . . , p,

where ψ(·|µ, σ2) denotes a Gaussian density function with mean µ and variance σ2. Thus, I-Step

can be efficiently generated.
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Note that the normalizing constant in P-Step (3.10) is not tractable. To generate φ∗ from

p(φ|x, δ, z∗), the Metropolis-Hastings algorithm (Chib and Greenberg, 1995) can be applied. How-

ever, when the dimensionality of φ is high, the computation can be quite heavy. Thus, instead of

using the likelihood function from (3.4), we propose to use the approximate Bayesian computation

(ABC) method by treating the estimating equations as the summary statistics for φ and using its

sampling distribution to replace the likelihood function. The details are given in Remark 1.

Remark 3.1. To discuss the proposed ABC method for approximating (3.10), we define:

Sn(φ) = n−1
n∑
i=1

S(φ;xi, δi), (3.11)

where S(φ;xi, δi) = ∂ log f(δi|xi, φ)/∂φ. Let φ̂ = φ̂(x, δ) be the solution to the estimating equation

Sn(φ) = 0. Then, under some regularity conditions, we can establish the asymptotic distribution of

φ̂:

√
n
(
φ̂− φ

)∣∣∣φ d−→ Np(0,Σ), (3.12)

as n→∞, where “ d−→” represents “convergence in distribution” and Σ is the covariance matrix of
√
nφ̂. From (3.12), we can get

φ̂|φ ∼ Np

(
φ, n−1Σ̂

)
, (3.13)

where Σ̂ is a consistent variance estimator of Σ. See Appendix B for the derivation of Σ̂. Let

g(φ̂|φ) be the sampling density function of φ̂ in (3.13). For sufficiently large n, L1(φ|x, δ) is

(approximately) proportional to g(φ̂|φ) with respect to φ. Thus, the posterior distribution in (3.10)

can be approximated by

pg(φ | x, δ, z∗) = g(φ̂ | φ)p(φ | z∗)∫
g(φ̂ | φ)p(φ | z∗)dφ

. (3.14)

Since our prior distribution of φ is conjugate for Gaussian distribution, our new algorithm for

P-step can be explicitly expressed as follows:

New P-step: given z∗, generate φ∗ from

φ∗ | z∗ ∼ Np

{(
Σ̂−1 + n−1V −1

z∗

)−1
Σ̂−1φ̂,

(
nΣ̂−1 + V −1

z∗

)−1
}
, (3.15)
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where Vz∗ = Diag
(
νz∗

1
, νz∗

2
, . . . , νz∗

p

)
and νz∗

j
= ν1z

∗
j + ν0(1− z∗j ).

Note that, in New P-step (3.15), only Vz∗ involves z∗. Thus, the New P-step does not

involves Markov Chain Monte Carlo (MCMC) method and the computation can be very efficient.

Furthermore, the New P-step is reversible of z∗, in the sense that even some z∗j occurrently are

0, the proposed method can make z∗j return to 1, if the true z∗j are 1. Thus, the proposed method

is invariant with the starting point of z∗.

We now discuss Step 2. In Step 2, to generate the posterior distribution of θ given z∗, we can

apply the method of Sang and Kim (2017). Let xi,z∗ be a sub-vector of xi corresponding to the

nonzero elements of z∗ for i = 1, 2, . . . , n. Similarly, let φz∗ be a sub-vector of φ corresponding to

the nonzero elements of z∗. Given z∗, the joint estimating equations are

Un(θ, φz∗) =

 n−1∑n
i=1 S(φz∗ ;xi,z∗ , δi)

n−1∑n
i=1 δiπ

−1(xi,z∗ ;φz∗)U(θ;xi, yi)

 , (3.16)

where S(φz∗ ;xi,z∗ , δi) = ∂ log f(δi|xi,z∗ , φz∗)/∂φz∗ . Let φ̂z∗ = φ̂(x, δ, z∗) and θ̂z∗ = θ̂(x, yobs, δ, z
∗)

be the solutions to the joint estimating equation Un(θ, φz∗) = 0 in (3.16). Then, Step 2 can be

implemented by generating θ∗ from

θ∗ ∼ p(θ|x, yobs, δ, z
∗) =

∫
g {Un(θ, φz∗)|θ, φz∗} p(θ)p(φz∗)dφz∗∫ ∫
g {Un(θ, φz∗)|θ, φz∗} p(θ)p(φz∗)dφz∗dθ

, (3.17)

where g {Un(θ, φz∗)|θ, φz∗} is the asymptotic distribution of the joint estimating equations (3.16)

and p(θ)× p(φz∗) is the prior distribution for the parameters (θ, φz∗).

The algorithm for generating θ∗ from (3.17) without using Taylor linearizion can be implemented

in the following two-step procedure.

1. Generate η∗ = (η∗1, η∗2) from

η∗ ∼ N|z∗|+1
(
0, n−1Σ̂z∗

)
,

where |z∗| =
∑p
j=1 z

∗
j and

Σ̂z∗ = 1
n

 ∑n
i=1 S(φ̂z∗ ;xi,z∗ , δi)⊗2 ∑n

i=1 δiπ̂
−1
i,z∗U(θ̂z∗ ;xi, yi)S(φ̂z∗ ;xi,z∗ , δi)

symm.
∑n
i=1 δiπ̂

−2
i,z∗{U(θ̂z∗ ;xi, yi)}2

 ,
where π̂i,z∗ = π(xi,z∗ ; φ̂z∗) and A⊗2 = AAT for a generic matrix A.
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2. Obtain (φ∗z∗ , θ∗) by solving Un(θ, φz∗) = η∗.

Note that, since g(Un | θ, φz∗) is a normal distribution, the proposed algorithm also does not

involve the MCMC method and the computation is very fast. Sang and Kim (2017) gave a rigorously

theoretical justification of the Bayesian method in Step 2 when the propensity model is correctly

specified.

Let {θ∗(k) : k = 1, 2, . . . ,M} be the posterior sample of size M generated from the method we

have proposed. Then, our Bayesian sparse propensity score (BSPS) estimator of θ is obtained by

θ̂BSPS =
M∑
k=1

θ∗(k)/M.

The α/2 and (1 − α/2) quantiles of {θ∗(k) : k = 1, 2, . . . ,M} can be directly used to construct a

(1− α) credible interval for θ.

3.4 Asymptotic Properties

To establish the asymptotic properties of our BSPS method, we first show the existence of the

unique solution to the estimating equation in (3.11). Silvapulle (1981) established the necessary

and sufficient conditions for the existence and uniqueness of MLE for binary response models. Let

F1 and F0 be the relative interiors of the convex cones generated by x1, x2, · · · , xn, that is,

F1 =
{

n∑
i=1

δikixi : ki > 0
}

and F0 =
{

n∑
i=1

(1− δi)kixi : ki > 0
}
.

Similar to Silvapulle (1981), we consider the following underlying assumptions.

(A1) Let Xn = [x1, · · · , xn]T. Assume XT
nXn is a full rank design matrix.

(A2) Let xi1 be the first element of xi for i = 1, 2, . . . , n. Assume xi1 = 1 for all i.

(A3) Suppose that − logG and log(1 − G) are convex. Further assume that G is strictly

increasing for t such that 0 < G(t) < 1.

Assumption (A1) requires the design matrix to be full rank, which is a common assumption in

the linear regression setup. If not, we can remove redundant variables to make (A1) satisfied.
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Assumption (A2) means the intercept is included in the model. The most common link functions,

such as logit and probit functions, satisfy assumption (A3).

Lemma 3.2. Under (A1) – (A3) and the MAR assumption in (3.2), the solution to the estimating

equation in (3.11) is uniquely defined if and only if F1 ∩F0 6= Ø, where Ø represents the empty set.

The proof of Lemma 3.2 can be found in Silvapulle (1981). In context of the PS estimation,

condition F1 ∩ F2 6= Ø is satisfied if the response probability is bounded below as in Rosenbaum

(1987) and Kim and Kim (2007). Thus, Lemma 3.2 is also necessary in the PS estimation. Once

the MLE of φ exists, the asymptotic distribution g(φ̂ | φ) can be used to approximate the likelihood

function L1(φ | x, δ) and the posterior distribution of z can be derived in a closed form.

We now establish the model selection consistency under the Bayesian framework. The Bayesian

model selection consistency is satisfied if the posterior probability of the true model tends to one

as the sample size goes to infinity (Casella et al., 2009). To achieve the model selection consistency

or Oracle property (Fan and Li, 2001; Zou, 2006) , we further assume the following conditions.

(A4) Assume p = O(1), where p is the dimension of φ (or X).

(A5) For the hyperparameters, assume that ν0 = o(n−1), ν1 = O(1), and w1 = w2 = · · · =

wp = 0.5.

(A6) The Σ̂ in (3.13) satisfies Σ̂ = Σ {1 + op(1)}.

Note that, we assume that p is large but does not dependent on n in assumption (A4). Since

the approximated sampling distribution g(φ̂ | φ) has the variance of Op(n−1), ν0 = o(n−1) and

ν1 = O(1) are in the right scales to approximate the Spike-and-Slab prior in assumption (A5). The

choice of wj = 0.5 represents a non-informative prior for each covariate component. Assumption

(A6) requires that the variance covariance estimator be consistent to make the approximation

of the sampling distribution valid. The following theorem establishes the oracle property of the

proposed BSPS method.
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Theorem 3.1. Under assumptions (A1)–(A6) and the MAR assumption in (3.2), we have

pg(zo|x, δ) −→ 1,

in probability, where zo is the true model and

pg(z|x, δ) =
∫
g(φ̂|φ)p(φ|z)p(z)dφ∫ ∫
g(φ̂|φ)p(φ|z)p(z)dφdz

.

The proof of Theorem 3.1 is given in Appendix C. According to Theorem 3.1, we observe that

the probability that Step 1 selects the true model becomes very close to one when the sample

size n is sufficiently large. Thus, the proposed Bayesian method can effectively eliminate irrelevant

covariates and select important ones to adjust bias due to nonresponse. Since we assume the true

response model is sparse, po =
∑
j zo,j is relatively small compared to n. Thus, the asymptotic

normality is easy to establish under the regularity conditions.

Corollary 3.1. Under the conditions in Theorem 3.1 and the regularity conditions of Sang and

Kim (2017), we have

{
V̂ ar(θ̂BSPS)

}−1/2 (
θ̂BSPS − θ0

)
d−→ N (0, 1) ,

where θ0 satisfies E {U(θ;X,Y )} = 0 and

V̂ ar(θ̂BSPS) =
M∑
k=1

(
θ∗(k) − θ̂BSPS

)2
/(M − 1).

Sang and Kim (2017) have established the asymptotic normality of the Bayesian propensity score

(BPS) estimator under the correctly specified response model. By Theorem 3.1, the probability

that Step 1 selects the true model converges to one. Consequently, the asymptotic distribution of

our BSPS estimator is the same as the asymptotic distribution of BPS estimator under the true

model which leads to the asymptotic normality of the BSPS estimator.

Remark 3.2. From Theorem 3.1, we can see that the model uncertainty of z vanishes as n −→∞.

However, in the finite sample, the model uncertainty always contributes to the variability of θ̂BSPS.

The advantage of the proposed Bayesian method is that it can still capture the variability of the
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model uncertainty in the finite sample case. Since for each z∗ ∼ p(z | x, δ), we apply one step

algorithm in Step 2. Thus, by Law of Large Numbers (LLN), we can show that

∑M
k=1

(
θ∗(k) − θ̂BSPS

)2
/(M − 1) P−→ V ar {θ∗}

= V ar {E (θ∗ | z∗)}+ E {V ar (θ∗ | z∗)} ,

where θ∗ is generated from Step 2. In the finite sample, V ar {E (θ∗ | z∗)} represents the variability

due to the model uncertainty. When n −→∞, Pr(z∗ = zo) = 1, which leads to V ar {E (θ∗ | z∗)} = 0.

3.5 Simulation Study

In this section, we conduct two simulation studies to examine the finite sample performance

of the proposed Bayesian method. The first simulation study investigates the proposed Bayesian

method under the IID setup. In the second simulation study, we apply our proposed method using

a real data obtained from a probability sampling.

3.5.1 Simulation study I

In the first simulation, our data generation process consists of the following two parts.

1. Generate a random sample of size n = 500, {(xi, yi) : i = 1, 2, . . . , n}, from each one of the

following two models:

M1 : yi
ind∼ 2xi1 + 2xi2 + ei; (3.18)

M2 : yi
ind∼ Binomial {20, p(xi)} ; (3.19)

where p(xi) = exp(xi3)/ {1 + exp(xi3)}, xi = (xi1, xi2, . . . , xip)T with xi1 = 1, xi2, xi3, . . . , xip
iid∼

N(0, 1), and the errors ei are generated independently from χ2
3.

2. For i = 1, 2, . . . , n, generate the response indicator of yi from each one of the following two

response mechanisms:

R1 : δi
ind∼ Ber

{ exp(xi1 + xi2)
1 + exp(xi1 + xi2)

}
; (3.20)

R2 : δi
ind∼ Ber {Φ(0.7xi1 + 0.7xi2)} ; (3.21)
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where Φ(·) is the cumulative distribution function (CDF) of N(0, 1). Here, the average re-

sponse rate is about 0.7 for the both response mechanisms.

We consider all possible cases: (Case 1) M1 and R1; (Case 2) M1 and R2; (Case 3) M2 and

R1; (Case 4) M2 and R2. In each case, we perform 2, 000 Monte Carlo replications for each

p = 5, 10, 50 and 100. Note that in our setup p controls the amount of sparsity on the propensity

score. As p increases, the propensity score becomes more sparse. We are interested in estimating

θ = E(Y ), which is the solution of E {U(θ;X,Y )} = E(Y − θ) = 0. We use a working PS model

G(t) = exp(t)/{1 + exp(t)}, which is the true link function in R1.

For each setup, we generate 500 Monte Carlo samples and for each realized sample, we apply

following methods:

1. PS: The traditional PS estimate, say (φ̂PS, θ̂PS), is obtained by solving the joint estimating

equations

1
n

n∑
i=1
{δi − π(xi;φ)}xi = 0,

1
n

n∑
i=1

δi
π(xi;φ)(yi − θ) = 0,

where π(xi;φ) = G(xTi φ). The variance of (φ̂PS, θ̂PS) is estimated by the Taylor linearization.

The 95% confidence intervals are constructed from the asymptotic normal distribution of

(φ̂PS, θ̂PS).

2. TPS: The true propensity score (TPS) method in which the ordinary PS method is applied

using the covariates in the true response mechanism. The 95% confidence intervals are con-

structed from the asymptotic normal distribution of (φ̂TPS, θ̂TPS)

3. LASSO: We first apply the LASSO method to select the response model with λ in (3.5) chosen

by the cross-validation method. The algorithm is implemented in “glmnet” (Friedman et al.,

2009). Then we apply the traditional PS estimation method to the selected response model.

Variances and confidence intervals are obtained by using the asymptotic normal distribution

of (φ̂LASSO, θ̂LASSO) for the selected response model.
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4. BSPS: In BSPS, we set w1 = · · · = wp = 0.5, ν0 = 10−7, and ν1 = 107 to induce noninforma-

tive priors. Using the formula in Section 3.3, we compute the BSPS estimate and its variance

estimate based on the posterior sample of size 2, 000 after 2, 000 burn-in iterations. The 95%

confidence intervals are constructed from the quantiles of the posterior sample.

To assess the variable selection performance of BSPS and LASSO methods, we compute true

positive rate (TPR) and true negative rate (TNR), where TPR is the proportion of the regression

coefficients that are correctly identified as nonzero and TNR is the proportion of the regression

coefficients that are correctly identified as zero. The coverage probabilities of each methods are

computed by counting how often the confidence intervals contains the true parameter values. The

simulation results for each choice of (M,R) are presented in Tables 3.1, 3.2, 3.3, and 3.4, respec-

tively.

Table 3.1: Table: Simulation results for Case 1 (M1,R1): “Bias” is the bias of the point estimator
for θ, “S.E.” represents the standard error of the point estimator, “E[S.E.]” is the estimated standard
error, “CP” represents the coverage probability of the 95% confidence interval estimate.

p Method Bias S.E. E[S.E.] CP TPR TNR
5 PS 0.001 0.173 0.168 0.953
5 TPS 0.001 0.171 0.168 0.952
5 LASSO 0.001 0.172 0.168 0.952 1.000 0.639
5 BSPS -0.006 0.173 0.168 0.949 1.000 0.995
10 PS 0.004 0.173 0.168 0.951
10 TPS 0.003 0.171 0.168 0.951
10 LASSO 0.003 0.172 0.169 0.952 1.000 0.749
10 BSPS -0.004 0.172 0.168 0.946 1.000 0.994
50 PS 0.012 0.189 0.161 0.923
50 TPS 0.004 0.171 0.168 0.955
50 LASSO 0.007 0.175 0.169 0.956 1.000 0.904
50 BSPS -0.003 0.173 0.168 0.953 1.000 0.995
100 PS 0.023 0.235 0.147 0.828
100 TPS 0.007 0.172 0.167 0.947
100 LASSO 0.012 0.183 0.170 0.944 1.000 0.937
100 BSPS 0.002 0.174 0.168 0.944 0.998 0.996
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Table 3.2: Simulation results for Case 2 (M1,R2): “Bias” is the bias of the point estimator for
θ, “S.E.” represents the standard error of the point estimator, “E[S.E.]” is the estimated standard
error, “CP” represents the coverage probability of the 95% confidence interval estimate

.
p Method Bias S.E. E[S.E.] CP TPR TNR
5 PS 0.001 0.166 0.168 0.949
5 TPS 0.001 0.167 0.169 0.949
5 LASSO 0.002 0.167 0.169 0.949 1.000 0.627
5 BSPS -0.005 0.169 0.169 0.949 1.000 0.992
10 PS 0.006 0.176 0.168 0.942
10 TPS 0.004 0.169 0.169 0.944
10 LASSO 0.004 0.173 0.169 0.946 1.000 0.737
10 BSPS -0.004 0.170 0.169 0.944 1.000 0.993
50 PS 0.016 0.190 0.160 0.911
50 TPS 0.002 0.171 0.168 0.948
50 LASSO 0.009 0.179 0.170 0.945 1.000 0.897
50 BSPS -0.006 0.175 0.169 0.948 1.000 0.995
100 PS 0.045 0.223 0.144 0.794
100 TPS -0.004 0.176 0.169 0.948
100 LASSO 0.010 0.181 0.170 0.939 1.000 0.935
100 BSPS -0.009 0.180 0.169 0.947 0.999 0.995

From Table 3.1, where we correctly specify the link function for the response model, we observe

that when p is small (5, 10), the PS, LASSO and BSPS methods work well and provide very

similar results to the TPS method. However, in term of the probability of correctly identifying

the true response model, the BSPS method always performs better than the LASSO method.

As p increases (50, 100), the bias and the variance of PS estimator increase. But, the proposed

BSPS method is still consistent and the variance of BSPS estimator does not change with p as

in the TPS method. As a result, the coverage probability of the confidence intervals for the PS

method is quite poor. Comparing the true standard errors with the estimated standard errors, the

PS method and LASSO method are always under-estimate for large p, which confirms that the

asymptotic normality of the PS method fails for large p and the LASSO method fails to account

for the model uncertainty. Simulation results in Table 3.1 clearly shows that the BSPS method

is consistently efficient regardless of changes in p. Note that BSPS successfully eliminates all the
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Table 3.3: Simulation results for Case 3 (M2,R1): “Bias” is the bias of the point estimator for
θ, “S.E.” represents the standard error of the point estimator, “E[S.E.]” is the estimated standard
error, “CP” represents the coverage probability of the 95% confidence interval estimate.

p Method Bias S.E. E[S.E.] CP TPR TNR
5 PS 0.010 0.223 0.223 0.954
5 TPS 0.006 0.258 0.260 0.955
5 LASSO 0.007 0.230 0.252 0.968 1.000 0.653
5 BSPS 0.005 0.254 0.259 0.958 1.000 0.990
10 PS -0.006 0.227 0.223 0.946
10 TPS -0.003 0.264 0.260 0.952
10 LASSO -0.007 0.239 0.255 0.961 1.000 0.749
10 BSPS -0.004 0.263 0.260 0.953 1.000 0.994
50 PS 0.009 0.249 0.213 0.914
50 TPS 0.008 0.268 0.260 0.945
50 LASSO 0.010 0.261 0.261 0.951 1.000 0.904
50 BSPS 0.008 0.267 0.260 0.946 1.000 0.995
100 PS -0.004 0.285 0.194 0.834
100 TPS -0.005 0.264 0.260 0.949
100 LASSO 0.000 0.262 0.262 0.956 1.000 0.937
100 BSPS -0.003 0.264 0.260 0.948 0.998 0.996

irrelevant covariates. As a result, the performance of the BSPS method is always comparable to

the performance of the TPS method. Table 3.2 shows the simulation result when the parametric

model of response mechanism is misspecified. The result shows that our proposed method is still

stable and accurate, but the PS performs poorly in large values of p. Even though the LASSO

method has around 95% coverage probabilities, the estimated standard errors are under-estimated

for large p = (50, 100). From Table 3.3, we observe that our proposed BSPS method works very well

even under discrete response variables. Also, we can see that the LASSO method cannot provided

consistent estimates for the standard errors and correct confidence intervals, when p is small. Table

3.4 shows the most challenging case in which the parametric model for the response mechanism is

misspecified and the outcome regression model is not linear. Nevertheless, our BSPS method is still

consistent and comparable to the TPS method and the LASSO method fails to provide accurate

estimates of standard errors and confidence intervals, when p is small.
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Table 3.4: Simulation results for Case 4 (M2,R2): “Bias” is the bias of the point estimator for
θ, “S.E.” represents the standard error of the point estimator, “E[S.E.]” is the estimated standard
error, “CP” represents the coverage probability of the 95% confidence interval estimate.

p Method Bias S.E. E[S.E.] CP TPR TNR
5 PS -0.002 0.228 0.225 0.949
5 TPS -0.002 0.261 0.260 0.951
5 LASSO -0.007 0.235 0.251 0.960 1.000 0.628
5 BSPS -0.002 0.261 0.260 0.949 1.000 0.992
10 PS 0.008 0.229 0.224 0.947
10 TPS 0.008 0.260 0.259 0.949
10 LASSO 0.007 0.240 0.254 0.960 1.000 0.743
10 BSPS 0.010 0.259 0.258 0.949 1.000 0.993
50 PS -0.010 0.247 0.213 0.916
50 TPS -0.000 0.266 0.260 0.945
50 LASSO 0.003 0.258 0.260 0.950 1.000 0.899
50 BSPS -0.002 0.266 0.260 0.948 1.000 0.995
100 PS -0.001 0.292 0.191 0.824
100 TPS 0.005 0.259 0.259 0.950
100 LASSO -0.002 0.256 0.261 0.955 1.000 0.935
100 BSPS 0.004 0.259 0.259 0.946 0.999 0.995

3.5.2 Simulation study II

We also apply the proposed Bayesian method to the 2006 Korean Labor and Income Panel

Survey (KLIPS) data. A breif description of the panel survey can be found at http://www.kli.

re.kr/klips/en/about/introduce.jsp. In KLIPS data, there are 2,506 regular wage earners.

The study variable y is the monthly income in 2006. The auxiliary variables (x) include the

average monthly income in previous year and demographic variables. The auxiliary variable x is

briefly described in Table 3.5.

We grouped age into three groups: age < 35, 35 ≤ age < 51, age ≥ 51. We also standardized the

continuous auxiliary variable by subtracting its mean and dividing its standard error. Note that the

dimension of x is not so large. To demonstrate the proposed Bayesian sparse propensity method,

we add additional 50 auxiliary variables as noise variables. Thus, x = (x1, · · · , x9, x10, · · ·x59)T ,

where (x1, · · · , x9) are the auxiliary variables in Table 3.5 and (x10, · · · , x59)T ∼ N(0, Ip) where

http://www.kli.re.kr/klips/en/about/introduce.jsp
http://www.kli.re.kr/klips/en/about/introduce.jsp
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Table 3.5: Levels of each auxiliary variable.

variable levels
gender (x1) 2
age (x2) 3
level of education (x3) 8
job type (x4) 2
occupation (x5) 10
maternity leave (x6) 3
private pension (x7) 3
labor union (x8) 3
average monthly income in the previous year (Korean Won 10,000) (x9) continuous

p = 50 and Ip is a p-dimensional identity matrix. In this simulation study, we use the KLIPS

data as a finite population. The realized sample is then obtained from the population by Simple

Random Sampling (SRS) with sample size n = 500 independently. Since the KLIPS data are fully

observed data, we artificially create nonresponse data by applying some missing mechanism. Note

that, there are two major differences with the first simulation study. One is the mixed data types of

the auxiliary variables. Another is that the outcome regression model is unknown. The simulation

process is described as following:

Step 1: Obtain 500 samples from the KLIPS data by SRS.

Step 2: Apply the response mechanism R to the sample, where the auxiliary variables are fully

observed and the study variable y is subject to missingness.

Step 3: Apply the PS method and the proposed Bayesian method to the incomplete sample.

Step 4: Repeat Step 1–3 for B = 2, 000 times.

The true response function R is

Pr(δi = 1 | xi, yi) =
exp(φ0 + φ1I{xi1=1} + φ2xi9)

1 + exp(φ0 + φ1I{xi1=1} + φ2xi9) ,

where (φ0, φ1, φ2) = (0, 1, 1), I{·} is an indicator function and the response rate is approximately

65%. Suppose we are interested in the average monthly income θ = E(y). Therefore, the estimating
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equation is U(θ;x, y) = y − θ. Also, we are interested in Gini coefficient G. The Gini coefficient

is an important index of the income inequality, which is also known as Gini index or Gini ratio.

The Gini coefficient measures the income distribution and inequality. The Gini coefficient can be

calculated by solving

n∑
i=1

n∑
j=1
|yi − yj | − 2nG

n∑
i=1

yi = 0,

if yi are fully observed.

To fit the response model, we assume the response mechanism is

Pr(δi = 1 | xi, yi) = exp(xTi φ)
1 + exp(xTi φ)

=: π(φ;xi),

which is known up to the parameter φ. Thus, the joint estimating equations are

Un(φ, θ,G) =


n−1∑n

i=1 {δi − π(φ;xi)}xi

n−1∑n
i=1

δi
π(φ;xi)(yi − θ)

n−2
{∑n

i=1
∑n
j=1

δiδj
π(φ;xi)π(φ;xj) |yi − yj | − 2nG

∑n
i=1

δi
π(φ;xi)yi

}
.

(3.22)

We apply the PS method and the proposed Bayesian method to (3.22). The analysis result is

summarized in Figure 3.1.

(a) Estimated average monthly incomes. The horizontal
line is the true population mean.

(b) Estimated Gini coefficients. The horizontal line is the
true Gini coefficient in the population.

Figure 3.1: Simulation results for the PS and BSPS methods
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From Figure 3.1, we can see that both methods are consistent, but the proposed BSPS method is

more efficient than the PS method because of accounting for the response model sparsity. In average

monthly income estimation, the PS method provides some extremely small estimates. Also, in the

Gini coefficient estimation, the PS method has some extremely large estimates. This is because

the PS method including all covariates involves computing inversion of high dimensional covariance

matrix and the convergence is not guaranteed. Thus, the PS estimator is significantly affected if

the some estimated propensity scores are close to 0. Because of accounting for the sparsity, the

BSPS method avoids this situation.

3.6 Discussion

Bayesian approach to PS estimation using the Spike-and-Slab prior for the response propensity

model is proposed. In the proposed method, model selection consistency holds and the uncertainty

in the model selection is fully captured in the Bayesian framework. The approach provides valid

frequentist coverage probabilities in finite samples. Since the PS estimation is widely used in causal

inference (Morgan and Winship, 2014; Hudgens and Halloran, 2008), applying the proposed method

to the sparse Bayesian causal inference can be developed similarly. Also, our proposed method is

developed under the assumption of MAR. Extension of our proposed method to nonignorable

nonresponse is a topic for future research.
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There are three Appendices in supplementary materials. Appendix A is the proof for Lemma

3.1. In Appendix B, we show how to derive the consistenct variance estimator in (3.13). We present

the proof of Theorem 3.1 in Appendix C.

3.7 Appendix A: Proof of Lemma 3.1

To formulate the problem, denote

U1(θ) =
n∑
i=1

δi
Pr(δi = 1 | X1i, Xi2)U(θ;X1i, yi),

U2(θ) =
n∑
i=1

δi
Pr(δi = 1 | X1i)

U(θ;X1i, yi).

By Taylor linearization and ignoring the smaller term, we can obtain

V ar
(
θ̂PS

)
=
[
E

{
∂U1(θ)
∂θ

}]−1
V ar {U1(θ)}

[
E

{
∂U1(θ)
∂θ

}]−1
, (3.23)

V ar
(
θ̂SPS

)
=
[
E

{
∂U2(θ)
∂θ

}]−1
V ar {U2(θ)}

[
E

{
∂U2(θ)
∂θ

}]−1
. (3.24)

See Chapter 5 in Kim and Shao (2013) for details. Note that

E
{
∂U1(θ)
∂θ

}
=

n∑
i=1

E

[
E

{
δi

Pr(δi = 1 | X1i, Xi2)
∂U(θ;X1i, yi)

∂θ

∣∣∣∣Xi, yi

}]

=
n∑
i=1

E

{
∂U(θ;X1i, yi)

∂θ

}
,

and

E
{
∂U2(θ)
∂θ

}
=

n∑
i=1

E

[
E

{
δi

Pr(δi = 1 | X1i)
∂U(θ;X1i, yi)

∂θ

∣∣∣∣Xi1, yi

}]

=
n∑
i=1

E

{
∂U(θ;X1i, yi)

∂θ

}
.

Thus, from equations (3.23) and (3.24), to show V ar
(
θ̂PS

)
≥ V ar

(
θ̂SPS

)
is equivalent to

showing V ar {U1(θ)} ≥ V ar {U2(θ)}.
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Now, we derive the variance of U1(θ) and U2(θ), respectively. Since we have shown that

V ar {U1(θ)} ≥ V ar {U2(θ)} implies V ar
(
θ̂PS

)
≥ V ar

(
θ̂SPS

)
, it is sufficient to derive follows:

V ar {U1(θ)} = V ar [E {U1(θ) | Xi, yi}] + E [V ar {U1(θ) | Xi, yi}]

= V ar

{
n∑
i=1

U(θ;Xi1, yi)
}

+E
{

n∑
i=1

1− Pr(δi = 1 | Xi1, Xi2)
Pr(δi = 1|Xi1, X2i)

U2(θ;Xi1, yi)
}
, (3.25)

V ar {U2(θ)} = V ar [E {U2(θ) | Xi1, yi}] + E [V ar {U2(θ) | Xi1, yi}]

= V ar

{
n∑
i=1

U(θ;Xi1, yi)
}

+E
{

n∑
i=1

1− Pr(δi = 1 | Xi1)
Pr(δi = 1|Xi1) U2(θ;Xi1, yi)

}
, (3.26)

By Jensen’s inequality, we have

E
{

1
Pr(δi=1|X1i,X2i)

∣∣∣X1i
}
≥ 1
E {Pr(δi = 1 | X1i, X2i)|X1i}

= 1
Pr(δi = 1|X1i)

. (3.27)

Therefore, combining (3.25),(3.26) and (3.27), we have V ar {U1(θ)} ≥ V ar {U2(θ)}. Thus,

V ar
(
θ̂PS

)
≥ V ar

(
θ̂SPS

)
holds, which completes the proof.

3.8 Appendix B: Consistent variance estimator of Σ

Since φ̂ is the solution to

Sn(φ) = n−1
n∑
i=1

S(φ;xi, δi),

and according to Theorem 5.21 in Van der Vaart (2000), we have

Σ/n = A−1B (AT)−1
,

where A = E
{
∂Sn(φ)
∂φ

}
and B = V ar {Sn(φ)}. Hence, using the Law of Large Numbers (LLN), we

can obtain a consistent variance estimator of Σ as

Σ̂/n = Â−1B̂
(
ÂT
)−1

,
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where the consistent estimators Â and B̂ can be obtained by

Â = 1
n

n∑
i=1

∂Sn(φ)
∂φ

∣∣∣∣∣
φ=φ̂

and B̂ = 1
n

n∑
i=1

Sn(φ̂)Sn(φ̂)T.

3.9 Appendix C: Proof of Theorem 3.1

Let V = n−1Σ. Our proof can be summarized as follows: First, we show that

p̃(zo|x, δ)
p→ 1, (3.28)

as n→∞, where

p̃(zo|x, δ) =
∫
ψ(φ̂|φ, V )p(φ|zo)p(zo)dφ∫ ∫
ψ(φ̂|φ, V )p(φ|z)p(z)dφdz

,

and ψ(· | φ, V ) is the normal density function with mean φ and variance V . Second, we show that

|p̃(zo|x, δ)− pg(zo|x, δ)|
p→ 0, (3.29)

as n→∞. Note that

|p̃(zo|x, δ)− pg(zo|x, δ)| ≥ ||p̃(zo|x, δ)− 1| − |pg(zo|x, δ)− 1|| .

Finally, by (3.28) and (3.29), we have that

pg(zo|x, δ)
p→ 1,

as n→∞.
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Proof of Claim (3.28)

Under (A5), since π(z) ∝ 1, p̃(zo|x, δ) reduces to

p̃(zo|x, δ) =
∫
ψ(φ̂|φ, V )p(φ|zo)dφ∑

z∈{0,1}p
∫
ψ(φ̂|φ, V )p(φ|z)dφ

:= f(φ̂|zo)∑
z∈{0,1}p f(φ̂|z)

= 1

1 +
∑
z 6=zo

f(φ̂|z)
f(φ̂|zo)

,

where f(φ̂|z) =
∫
ψ(φ̂|φ, V )p(φ|z)dφ. Under (A4), our proof can be done by showing that for any

z 6= zo,

f(φ̂|z)
f(φ̂|zo)

p→ 0, (3.30)

as n → ∞. Since Σ is symmetric and positive definite, by the spectral decomposition, Σ can

be factorized as Σ = QΛQ−1, where Λ is the diagonal matrix whose diagonal elements are the

eigenvalues of Σ and each column of Q is the eigenvector of Σ. Since V = n−1Σ, we have V =

Q(n−1Λ)Q−1. Let λn,min = n−1λmin and λn,max = n−1λmax, where λmin and λmax indicate the

smallest and the largest diagonal elements of Λ, respectively. Note that λ−1
n,minI − V −1 and V −1 −

λn,maxI are positive semidefinite due to the fact that

λ−1
n,minI − V

−1 = Q
(
λ−1
n,minI − nΛ−1

)
Q−1,

V −1 − λ−1
n,maxI = Q

(
nΛ−1 − λ−1

n,maxI
)
Q−1.

This implies that

λ−1
n,maxw

Tw ≤ wTV −1w ≤ λ−1
n,minw

Tw, (3.31)

for any w. Recall that

ψ(φ̂|φ, V ) = c exp
{
−1

2
(
φ̂− φ

)T
V −1

(
φ̂− φ

)}
,
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where c denotes the normalizing constant. From (3.31), we have

ψ(φ̂|φ, V ) ≥ c exp

−
p∑
j=1

1
2λn,min

(
φ̂j − φj

)2
 , (3.32)

ψ(φ̂|φ, V ) ≤ c exp

−
p∑
j=1

1
2λn,max

(
φ̂j − φj

)2
 . (3.33)

Using (3.32), we construct a lower bound of f(φ̂|z) =
∫
ψ(φ̂|φ, V )p(φ|z)dφ as

f(φ̂|z) ≥ c
p∏
j=1

(
2πνzj

)−1/2 ∫
exp

{
− 1

2λn,min

(
φ̂j − φj

)2
− 1

2νzj
φ2
j

}
dφj

= c2

p∏
j=1

(
λn,min

λn,min + νzj

)1/2

exp

− φ̂2
j

2
(
λn,min + νzj

)
 ≡ Lf (z).

Similarly, using (3.33), we construct an upper bound of f(φ̂|z) as

f(φ̂|z) ≤ c3

p∏
j=1

(
λn,max

λn,max + νzj

)1/2

exp

− φ̂2
j

2
(
λn,max + νzj

)
 ≡ Uf (z).

Hence, we have

f(φ̂|z)
f(φ̂|zo)

≤ Uf (z)
Lf (zo)

. (3.34)

We now claim Uf (z)
Lf (zo)

p→ 0 as n→ 0 for any z 6= zo. Define

Hn(zj , zo,j) =
{
λn,max(λn,min + νzo,j )
λn,min(λn,max + νzj )

}1/2

exp
{
−

φ̂2
j

2(λn,max + νzj )
+

φ̂2
j

2(λn,min + νzo,j )

}
.

Suppose zo,j = 0. Then we have that φ̂j = Op(n−1/2). Recall that from (A5), ν0 = o(n−1). If

zj = 0, then

Hn(0, 0) =
{
λn,max(λn,min + ν0)
λn,min(λn,max + ν0)

}1/2

exp
{
−

φ̂2
j

2(λn,max + ν0) +
φ̂2
j

2(λn,min + ν0)

}

=
{
O(n−2) + o(n−2)
O(n−2) + o(n−2)

}1/2

exp
{
− Op(n−1)
O(n−1) + o(n−1) + Op(n−1)

O(n−1) + o(n−1)

}
.

This implies that Hn(0, 0) = Op(1). From (A5), we have ν1 = O(1). If zj = 1, then

Hn(1, 0) =
{
λn,max(λn,min + ν0)
λn,min(λn,max + ν1)

}1/2

exp
{
−

φ̂2
j

2(λn,max + ν1) +
φ̂2
j

2(λn,min + ν0)

}

=
{
O(n−2) + o(n−2)
O(n−2) +O(n−1)

}1/2

exp
{
− Op(n−1)

2{O(n−1) +O(1)} + Op(n−1)
2{O(n−1) + o(n−1)}

}
.
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This implies that Hn(1, 0) = op(1). Suppose zo,j = 1. Then we have φ̂j = Op(1). If zj = 0, then

Hn(0, 1) =
{
λn,max(λn,min + ν1)
λn,min(λn,max + ν0)

}1/2

exp
{
−

φ̂2
j

2(λn,max + ν0) +
φ̂2
j

2(λn,min + ν1)

}

=
{
O(n−2) +O(n−1)
O(n−2) + o(n−2)

}1/2

exp
{
− Op(1)

2{O(n−1) + o(n−1)} + Op(1)
2{O(n−1) +O(1)}

}
= {O(n)}1/2 exp {−Op(n)} .

This implies that Hn(1, 0) = op(1). When zj = 1, we have

Hn(1, 1) =
{
λn,max(λn,min + ν1)
λn,min(λn,max + ν1)

}1/2

exp
{
−

φ̂2
j

2(λn,max + ν1) +
φ̂2
j

2(λn,min + ν1)

}

=
{
O(n−2) +O(n−1)
O(n−2) +O(n−1)

}1/2

exp
{
− Op(1)

2{O(n−1) +O(1)} + Op(1)
2{O(n−1) +O(1)}

}
.

This implies that Hn(1, 1) = Op(1). Note that

Uf (z)
Lf (zo)

∝
p∏
j=1

Hn(zj , zo,j).

If z 6= zo, then
∏p
j=1Hn(zj , zo,j) must include at least one of Hn(1, 0) or Hn(0, 1). This implies

that
∏p
j=1Hn(zj , zo,j) = op(1) for any z 6= zo. This completes our proof.

Proof of Claim (3.29)

First, we show that our sampling distribution defined in (3.13) converges to the true limiting

distribution in (3.12) as n→∞ in the sense that

g(φ̂|φ) = ψ(φ̂|φ, V̂ ) = ψ(φ̂|φ, V ){1 + op(1)},

where V̂ = n−1Σ̂. In (A6), we have

Σ̂ = Σ {1 + op(1)} .

Under (A4), this implies that

|Σ̂|−1/2 = |Σ|−1/2{1 + op(1)}.

Therefore, we have

ψ(φ̂|φ, V̂ ) = 1
(2π)

p
2 |V |

1
2

exp
[
−1

2
(
φ̂− φ

)T
V −1

(
φ̂− φ

)
{1 + op(1)}

]
{1 + op(1)}.
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To complete the proof, we need to show that

exp
[
−1

2
(
φ̂− φ

)T
V −1

(
φ̂− φ

)
op(1)

]
= Op(1). (3.35)

From (3.31), we have

n

2λmax
‖φ̂− φ‖2 ≤ 1

2
(
φ̂− φ

)T
V −1

(
φ̂− φ

)
≤ n

2λmin
‖φ̂− φ‖2,

where λmin and λmax are the smallest and the largest eigenvalues of Σ, respectively. From the

limiting distribution in (3.12), we have ‖φ̂−φ‖2 = Op(n−1). This implies our claim in (3.35). Note

that

p̃(zo|x, δ) =
∫
ψ(φ̂|φ, V )p(φ|zo)p(zo)dφ∫ ∫
ψ(φ̂|φ, V )p(φ|z)p(z)dφdz

,

and

pg(zo|x, δ) =
∫
ψ(φ̂|φ, V̂ )p(φ|zo)p(zo)dφ∫ ∫
ψ(φ̂|φ, V̂ )p(φ|z)p(z)dφdz

.

Since we have shown that ψ(φ̂|φ, V̂ ) = ψ(φ̂|φ, V ){1 + op(1)}, we thus obtain

|p̃(zo|x, δ)− pg(zo|x, δ)|
p→ 0,

as n→∞.
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CHAPTER 4. A PROFILE LIKELIHOOD APPROACH TO

SEMIPARAMETRIC ESTIMATION WITH NONIGNORABLE

NONRESPONSE

Hejian Sang Kosuke Morikawa Jae Kwang Kim

Abstract

Statistical inference with nonresponse is quite challenging, especially when the response mech-

anism is not missing at random. The existing methods often require correct model specification for

both the outcome regression model and the response model. However, due to nonresponse, both

model assumptions cannot be verified from the data and model misspecification can lead to biased

inference seriously. To overcome this limitation, we develop a robust semiparametric method based

on the profile likelihood obtained from semiparametric response model. The proposed method uses

the observed regression model and the semiparametric response model to achieve robustness. An

efficient algorithm using fractional imputation is developed. The bootstrap testing procedure is

also proposed to test ignorability assumption. The consistency and asymptotic normality of the

proposed method are established. The finite-sample performance is examined in the limited sim-

ulation studies and an application to the Korean Labor and Income Panel Study dataset is also

presented.

key words: Fractional imputation, Kernel regression, Partially generalized linear model, Profile

likelihood, Test

4.1 Introduction

Missing data is frequently encountered in statistics. The complete-case method with ignoring

missing data can lead to biased estimation and misleading inference (Rubin, 1976; Little and Rubin,
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2014). To adjust for the bias due to missing data, some assumption about the response model is

often required. If the response probability does not depend on the unobserved variable, the response

mechanism is called missing at random (Rubin, 1976). Otherwise, the response mechanism is

called not missing at random, also referred to nonignorable missingness. Under the assumption of

missing at random, popular statistical tools include propensity score weighting, multiple imputation

and fractional imputation. See Rosenbaum and Rubin (1983), Rosenbaum et al. (1987), Rubin

(2004) and Kim (2011) for examples. Nonignorable missingness is more challenging than missing

at random, since the response model cannot be estimated from the data without extra assumptions.

Furthermore, both models cannot be justified from the observed data due to missingness.

Let Y be the study variable that is subject to missingness. Let X be the covariate variable

that is always observed. Let δ be the response indicator function of Y , in the sense that δ = 1 if

Y is observed, otherwise, δ = 0. Under the assumption of nonignorable nonresponse, Diggle and

Kenward (1994) propose a fully parametric method, which assumes parametric models for f(Y |X)

and pr(δ = 1 | X,Y ).The fully parametric method is very sensitive to model misspecification.

Scharfstein et al. (1999) , Andrea et al. (2001) and Van Dyk and Meng (2012) suggest the sensitivity

analysis for the fully parametric method. Instead of assuming the parametric model for f(Y | X),

Riddles et al. (2016) propose using f(Y | X, δ = 1). Since the data to fit f(Y | X, δ = 1) are fully

available, the model assumption about f(Y | X, δ = 1) can be verified from the data. However, it

is still a parametric approach subject to model misspecification problem.

To achieve model robustness, Kott and Chang (2010) use a parametric model for pr(δ = 1 |

X,Y ) and estimate the parameters by generalized method of moments. This proposed method

avoids making the additional assumption on the outcome regression model. The method of Kott

and Chang (2010) is still subject to model misspecification of pr(δ = 1 | X,Y ) and is not as efficient

as the likelihood method. Furthermore, Morikawa and Kim (2016) propose a semiparametric

maximum likelihood method with the parametric assumption on the response model and use the

nonparametric kernel method to approximate f(Y | X, δ = 1). Note that all these methods are

based on the assumption of correctly specified response model and the model specification can
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not be verified. To improve the robustness of the response model, Kim and Yu (2011) consider a

semiparametric model. Their proposed method requires validation sample to estimate parameters

in the response model. Shao et al. (2016) extend this method to avoid the requirement of validation

sample. Both methods assume that response model is the generalized linear function of Y . Under

nonignorable nonresponse, we believe that Y plays a critical role in the response model. The

generalized linearity assumption of Y in the response model can be limited. We will verify this

claim from the simulation study.

All of these issues motivate us to propose a more robust method to handle nonignorable non-

response. The proposed method uses the generalized partially linear model with nonparametric

function of Y . The estimation method is developed from the profile likelihood method. An efficient

computation algorithm is proposed based on the fractional imputation (Kim, 2011). Furthermore,

hypothesis testing procedure can be developed to test if the response mechanism is missing at ran-

dom. The proposed method is robust, since the observed regression model can be justified from

the data directly and the response mechanism is an unspecified function of Y .

The rest of this paper is organized as follows. The basic setup of nonignorable nonresponse is

introduced in §4.2. The proposed method and the computation algorithm is presented in §4.3. In

§4.4, the consistency of the proposed method and the asymptotic property are established. The

ignorability test is proposed in §4.5. The performance of the proposed method is examined through

simulation studies in §4.6. The proposed method is applied to the Korean Labor and Income Panel

Study dataset in §4.7. Some discussion and future work are shown in §4.8. Technical proofs are

given in Appendix.

4.2 Setup

Suppose that the sample observations {(x1, y1), (x2, y2), · · · , (xn, yn)} are n independent and

identically distributed realizations from the random vector (X,Y ). Assume xi are fully observed
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and yi are subject to missingness. Let δi be the response indicator function of yi, in the sense that

δi =


1 if yi is observed

0 otherwise.

The parameter of interest is θ ∈ Θ, which is uniquely determined from the estimating equation

E {U(θ;X,Y )} = 0. Under complete data, θ can be estimated by solving

1
n

n∑
i=1

U(θ;xi, yi) = 0. (4.1)

However, if nonresponse occurs, the estimating equation in (4.1) cannot be used directly.

Assume that δi independently follow a Bernoulli distribution with the success probability

π(xi, yi), where π(xi, yi) = pr(δi = 1|xi, yi). Then, a consistent estimator of θ could be obtained by

solving

1
n

n∑
i=1

δi
π(xi, yi)

U(θ;xi, yi) = 0, (4.2)

if π(xi, yi) were known.

We assume that the response mechanism is not missing at random, in the sense that the response

mechanism depends on unobserved y. Under the assumption of not missing at random, we can build

the outcome model as f(y | x; ζ) and the response model as π(x, y;φ), where (ζ, φ) are unknown

parameters. Under fully parametric assumptions, the observed likelihood function is

Lobs(φ, ζ) =
n∏
i=1
{π(xi, yi;φ)f(yi|xi; ζ)}δi

[∫
{1− π(xi, y;φ)} f(y|xi; ζ)dy

]1−δi
. (4.3)

To avoid the non-identifiability, we also assume that

pr(δi = 1 | xi, yi) = pr(δi = 1 | xi1, yi) = π(xi1, yi),

where xi = (xi1, xi2) and xi2 is the response instrumental variable (Wang et al., 2014). However,

the parametric assumptions cannot be justified and the fully parametric method can suffer model

misspecification.

Kim and Yu (2011) and Shao et al. (2016) proposed a semiparametric model for the response

mechanism. They assume the response model can be expressed as

pr(δi = 1|xi, yi) = exp {g(xi1) + γyi}
1 + exp {g(xi1) + γyi}

, (4.4)
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where g(·) is unspecified and γ is the tilting parameter that describes the level of nonignorability.

The consistency of the semiparametric estimation in Kim and Yu (2011) and Shao et al. (2016)

requires the correct assumption of the response model (4.4). Even though they leave g(·) unspecified,

the role of Y in the response model is limited to be generalized linear.

Under the assumption of not missing at random, we believe that the role of Y in the response

model is very important. Therefore, we develop an alternative method to model the response

mechanism without the generalized linearity assumption of Y . Note that, under assumption (4.4),

the predictive model for nonresponse is

f(y | x, δ = 0) = f(y | x, δ = 1) exp(−γy)
E [exp(−γy) | x, δ = 1] ,

and the conditional expectation of Y among nonresponse becomes

E (Y | X, δ = 0) =
∫
y exp(−γy)f(y | X, δ = 1)dy∫
exp(−γy)f(y | X, δ = 1)dy .

However, such assumption may be unrealistic as the log of nonresponse odd function can only be

quadratic functions of Y (Kim and Yu, 2011).

To cover a more general class of nonignorable nonresponse, we assume the response function

satisfies

Pr(δi = 1|xi, yi) =
exp

{
xTi1φ+ g(yi)

}
1 + exp

{
xTi1φ+ g(yi)

} , (4.5)

where φ is the unknown parameter and g(·) is an unspecified function. Thus, the predictive model

for nonresponse is

f(y | x, δ = 0) = f(y | x, δ = 1) exp{−g(y)}
E [exp{−g(y)} | x, δ = 1] . (4.6)

Note that f(y | x, δ = 1) can be estimated and validated from the observed data and g(y) is

unspecified. Thus, the prediction model (4.6) has less chance to suffer model misspecification. The

details of the proposal is presented in next Section.
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4.3 Proposed Method

Under the setup in §4.2, we assume the response model satisfies equation (4.5). To avoid the

non-identifiable issue between xTi1φ and g(yi), we assume that xi1 exclude the intercept. Let

π
{
xTi1φ+ g(yi)

}
=

exp
{
xTi1φ+ g(yi)

}
1 + exp

{
xTi1φ+ g(yi)

} .
Thus, if g(yi) = φ0 + φ1yi, the response model turns to the logistic model. Moreover, the response

mechanism degenerates to missing at random, if g(yi) = φ0. Then, define the nonresponse odds

function as

O(xi, yi) = pr(δ = 0 | xi, yi)
pr(δ = 1 | xi, yi)

,

which leads to O(xi, yi) = exp
{
−xTi1φ− g(yi)

}
= O(φ, g;xi1, yi) under model assumption (4.5) and

the instrumental assumption.

To estimate φ and g(·) under complete response, the maximum profile likelihood method can

be applied. Under complete data, the log-likelihood function is

l(φ, g) =
n∑
i=1

δi log π
{
xTi1φ+ g(yi)

}
+ (1− δi) log

[
1− π

{
xTi1φ+ g(yi)

}]
.

The maximum profile likelihood method first keeps φ fixed and estimate nonparametric function

g(·) as ĝφ(·). That is, maximizing

l̃(φ, g) =
n∑
i=1

(
δi log π

{
xTi1φ+ g(y)

}
+ (1− δi) log

[
1− π

{
xTi1φ+ g(y)

}])
Kh(yi − y)

to obtain ĝφ(y), where Kh(·) is the kernel function with bandwidth h. Then, the profile log-

likelihood function is

l(φ, ĝφ) =
n∑
i=1

δi log π
{
xTi1φ+ ĝφ(yi)

}
+ (1− δi) log

[
1− π

{
xTi1φ+ ĝφ(yi)

}]
.

Maximizing l(φ, ĝφ) respect to φ leads to the consistent estimator φ̂. See Green and Yandell (1985),

Tibshirani and Hastie (1987) and Severini and Wong (1992) for the estimation procedures of the

generalized partial linear models. The maximum profile likelihood estimator φ̂ converges to the

asymptotic normal distribution with rate n−1/2.
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However, due to nonresponse, the completed log-likelihood is infeasible. Instead, the observed

likelihood is used to estimate parameters in missing data problem. Under nonresponse, we can

obtain the observed log-likelihood function as

lobs(φ, g) =
n∑
i=1

[
δi log π

{
xTi1φ+ g(yi)

}
+ (1− δi)E

(
log

[
1− π

{
xTi1φ+ g(y)

}]
| xi, δi = 0

)]
. (4.7)

Note that, in the observed log-likelihood function, nonresponse are integrated out by the predictive

model f(y | x, δ = 0). The parametric model assumption about f(y | x, δ = 0) is not justifiable due

to nonresponse. Thus, we propose to use f(y | x, δ = 1) and the exponential tilting technique (Kim

and Yu, 2011) to avoid the parametric model assumption about f(y | x, δ = 0). We can show that

f(y | x, δ = 0) = f(y | x, δ = 1) exp {−g(y)}
E [exp {−g(y)} | x, δ = 1] , (4.8)

where the observed outcome model f(y | x, δ = 1) can be validated using the observed data.

Assume the parametric model for Y given x and δ = 1 is f(y | x, δ = 1; η), which is known up to

η. The consistent estimator of η, say η̂, can obtained by solving

n∑
i=1

δis(η;xi, yi) = 0, (4.9)

where s(η;xi, yi) = ∂f(yi | xi, δi = 1; η)/∂η is the score function of η. Using (4.8), the observed

log-likelihood function in (4.7) can be rewritten as

lobs(φ, g | η̂) =
n∑
i=1

δi log π
{
xTi1φ+ g(yi)

}

+(1− δi)
E
(
log

[
1− π

{
xTi1φ+ g(y)

}]
exp {−g(y)} | xi, δi = 1; η̂

)
E [exp {−g(y)} | xi, δi = 1; η̂] .

Applying the maximum profile likelihood method to the observed log-likelihood function lobs(φ, g |

η̂) directly is computationally intensive due to the conditional expectation. To solve this issue, we

propose to use the fractional imputation method (Kim, 2011) to estimate φ and g(·). The proposed

algorithm can be described as follows:

I-Step: For sample unit with δi = 0, generate y∗ij independently from f(y | xi, δ = 1; η̂), where

η̂ is the consistent estimator of η from solving (4.9), for j = 1, 2, · · · ,M .
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W-Step: Using the current value g(t)(y) of ĝ(y), we can assign the fractional weights as

w
∗(t)
ij ∝ exp{−g(t)(y∗ij)}, (4.10)

where
∑
j w
∗
ij = 1.

M-Step: The maximum profile likelihood method can be applied to the approximate observed

log-likelihood function

l̂obs(φ, g | w∗(t)) =
n∑
i=1

δi log π
{
xTi1φ+ g(yi)

}
+ (1− δi)

M∑
j=1

w
∗(t)
ij log

[
1− π

{
xTi1φ+ g(y∗ij)

}] ,
where w∗(t) is the set of fractional weights. Maximize l̂obs(φ, g | w∗(t)) using the maximum

profile likelihood method to obtain φ(t+1) and g(t+1)(·).

Repeat W-Step and M-Step iteratively until convergence is achieved. The fractional weights in

(4.10) only depend on g(·). Since g(·) is modeled by a nonparametric method, the proposed method

will automatically generate the fractional weights to make

E
(
log

[
1− π

{
xTi1φ+ g(y)

}]
exp {−g(y)} | xi, δi = 1; η̂

)
E [exp {−g(y)} | xi, δi = 1; η̂]

∼=
M∑
j=1

w∗ij log
[
1− π

{
xTi1φ+ g(y∗ij)

}]
as close as possible. The detail of M-Step is implemented in the following Remark.

Remark 4.1. Note that, in M-step, we need to apply the profile likelihood method to l̂obs(φ, g |

w∗). The full maximization of l̂obs(φ, g | w∗) for each iteration is not necessary. M-step can be

implemented by one-step Newton-Raphson algorithm. Define the smoothed log-likelihood function

as

l̃obs(φ, g | w∗(t)) =
n∑
i=1

(
δi log π

{
xTi1φ+ g(y)

}
Kh(yi − y)

+(1− δi)
M∑
j=1

w
∗(t)
ij log

[
1− π

{
xTi1φ+ g(y)

}]
Kh(y∗ij − y)

 . (4.11)

The details of M-Step can be described as the following two steps.

Step 1: We can update φ by

φ(t+1) = φ(t) −B−1
t At,
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where

At = 5l̂obs(φ, ĝφ | w∗(t))
∣∣∣
φ=φ(t),g=g(t)

is the marginal gradient and

Bt = 4l̂obs(φ, ĝφ | w∗(t))
∣∣∣
φ=φ(t),g=g(t)

is the Hessian matrix.

Step 2: Update g(·) by

g(t+1)(y) = g(t)(y)− Gt(y)
Ht(y) ,

where

Gt(y) = 5l̃obs(φ, g(y) | w∗(t))
∣∣∣
φ=φ(t+1),g=g(t)

is a gradient of the smoothed log-likelihood l̃obs(φ, g(y) | w∗(t)) in (4.11) respect to g(y) and

Ht(y) = 4l̃obs(φ, g(y) | w∗(t))
∣∣∣
φ=φ(t+1),g=g(t)

is a Hessian of l̃obs(φ, g(y) | w∗(t)) respect to g(y)

The derivations of the Step 1 and Step 2 are shown in Appendix 4.9.

Once the convergence of the proposed method is achieved, the final estimator of θ, say θ̂, can

be obtained by solving

1
n

n∑
i=1

δi

π
{
xTi1φ̂+ ĝ(yi)

}U(θ;xi, yi) = 0. (4.12)

Remark 4.2. Note that, if Y is discrete, then the proposed method is degenerated to the parametric

model. For example, Y ∈ {0, 1}. Then, the response mechanism is

pr(δ = 1 | x, y) =
exp

{
xT1 φ+ g(y)

}
1 + exp

{
xT1 φ+ g(y)

} , (4.13)

which is a parametric function of {φ, g(0), g(1)}.
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Remark 4.3. It is worth to mentioning that the parametric observed regression model f(y | x, δ =

1; η) can be build into the fully nonparametric regression model. we can show that for function

A(δ, x1, Y ) = log {1− π(φ, g;x1, Y )}, we have

E {A(δ, x1, Y ) | x, δ = 0} =
∫
A(δ, x1, y)O(φ, g;x1, y)f(y | x, δ = 1)dy∫

O(φ, g;x1, y)f(y | x, δ = 1)dy .

Using the kernel smoothing method, we can approximate E {A(δ, x1, Y ) | x, δ = 0} as

Ê {A(δ, x1, Y ) | x, δ = 0} =
∑n
j=1 δjKH(xj − x)O(φ, g;x1, yj)A(δ, x1, yj)∑n

j=1 δjKH(xj − x)O(φ, g;x1, yj)
. (4.14)

Since we have already shown that O(φ, g;x1, y) = exp
{
−φTx1 − g(y)

}
, we can simply (4.14) as

Ê {A(δ, x1, Y ) | x, δ = 0} =
∑n
j=1 δjKH(xj − x) exp {−g(yj)}A(δ, x1, yj)∑n

j=1 δjKH(xj − x) exp {−g(yj)}
. (4.15)

Using (4.15) to replace the conditional expectation in lobs(φ, g | η̂), we can build the observed

log-likelihood function without parametric assumption about f(y | x, δ = 1).

4.4 Asymptotic Theory

In this section, we establish the consistency and the asymptotic normality of the proposed

estimator in (4.12). The following assumptions are sufficient conditions.

C1: The true response model π(x, y) satisfies (4.5).

C2: The kernel function K(·) satisfies the following properties

K(u) = 0 for |u| > 1;

supu |K(u)| <∞;∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u) <∞.

The bandwidth h satisfies h −→ 0 and nh −→∞.

C3: Regularity conditions to establish the asymptotic normality of η̂.
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C4: Regularity conditions for the partially logistic linear models, including Assumptions 1–4 in

Appendix 4.11.

C5: Regularity conditions for estimating equation (4.12).

Condition (C1) is our semiparametric model assumption and we will test robustness of our

proposed method to this assumption in numerical studies. (C2) is a standard assumption for

kernel method. The regularity conditions in (C3) are standard conditions to obtain asymptotic

normality of maximum likelihood estimator η̂. (C4) introduces the sufficient conditions to establish

the asymptotic normality of φ̂ under complete data. (C5) includes the regularity conditions for

estimating equation (4.12). The details of (C3 )and (C5) are shown in Appendix 4.11.

Lemma 4.1. Under Conditions C1–C4, our proposed algorithm enjoys the monotone increasing

property, in the sense of

l̂obs(φ(t), gφ(t) | w∗(t)) ≤ l̂obs(φ(t+1), gφ(t+1) | w∗(t)), (4.16)

l̃obs(φ(t+1), g(t) | w∗(t)) ≤ l̃obs(φ(t+1), g(t+1) | w∗(t)), (4.17)

where l̃(φ, g | w∗(t)) is defined in (4.11) for any y.

The proof of Lemma 4.1 is shown in Appendix 4.11. From Lemma (4.1), the estimators from our

proposed algorithm make the marginal observed log-likelihood of φ and the smoothed log-likelihood

of g keep increasing.

Theorem 4.1. Under conditions C1–C4, we establish that

√
n(φ̂− φ0) −→ N(0,Σ1), (4.18)

in distribution, as n,M −→ ∞. φ0 is the true parameter value and Σ1 = Ĩ−1
obs + Σ2 + Σ3. Ĩobs is

the observed Fisher information. Σ2 is the variability of estimating η0 and Σ3 is the covariance

between φ̂ and η̂.

The proof of Theorem 4.1 is presented in Appendix 4.11. From Theorem 4.1, we can see that our

proposed method has
√
n convergence rate for parameters, which is the same for fully parametric

models.
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Theorem 4.2. Under conditions C1–C5, we have

√
n(θ̂ − θ0) L−→ N(0,Σ), (4.19)

where θ0 is the true value and Σ > 0.

The proof of Theorem 4.2 is shown in Appendix 4.12. In Appendix 4.12, we have

θ̂ − θ0 ∼= −
[
E

{
∂U(θ0 | φ0, g0)

∂θ0

}]−1 [
U(θ0 | φ0, g0) + E

{
∂U(θ0 | φ0, g0)

∂φ0

}
(φ̂− φ0)

]
.

Then, we can see that Σ is composite of variability from estimating equation (4.12) and variability

from estimating φ0, which already covers estimating η0.

4.5 Ignorability Test

In §4.2, we assume the response mechanism satisfies (4.5). Thus, if g(y) is a constant, say

g(y) = c for some c ∈ R, the response mechanism degenerates to missing at random. If we are

confident that the response mechanism is missing at random, estimation and inference can be greatly

simplified without worrying about nonignorable bias. Our response model is a semiparametric

model of y. It is a great interest to test if the response mechanism is missing at random.

Under the null hypothesis H0 : g(y) = c, the response mechanism is a parametric model of

unknown (φ, c). Thus, (φ, c) can be estimated from maximizing the log-likelihood function. That

is to maximize

l(φ, c) =
n∑
i=1

δi log π(φ, c;xi) + (1− δi) log {1− π(φ, c;xi)} , (4.20)

respect to (φ, c), where

π(φ, c;xi) = exp(xTi1φ+ c)
1 + exp(xTi1φ+ c)

.

The likelihood ratio test statistic does not work here due to the non-negligible smoothing bias and

different likelihood functions (smoothed and unsmoothed functions). See Härdle et al. (1998) and

Lombard́ıa and Sperlich (2008) for related clarification. To solve this issue, Härdle et al. (1998)
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proposed using the weighted distance test statistic based on the quasi-likelihood of logistic model.

Under complete response, we propose using

R =
n∑
i=1

π(φ̂a, ĉa;xi)
{

1− π(φ̂a, ĉa;xi)
}{

xTi1(φ̂− φ̂a) + ĝ(yi)− ĉa
}2
, (4.21)

where (φ̂a, ĉa) is the solution of (4.20) and φ̂ is the estimator of the proposed profile method. Under

the null hypothesis and some regularity conditions, Härdle et al. (1998) showed

v−1
n (R− en) −→ N(0, 1),

in distribution, where (vn, en) is very difficult to compute.

Under nonresponse, the test statistic in (4.21) can be approximated by

R̂ =
n∑
i=1

π(φ̂a, ĉa;xi)
{

1− π(φ̂a, ĉa;xi)
} [
δi
{
xTi1(φ̂− φ̂a) + ĝ(yi)− ĉa

}2

+(1− δi)
M∑
j=1

w∗ij

{
xTi1(φ̂− φ̂a) + ĝ(y∗ij)− ĉa

}2
 . (4.22)

Remark 4.4. Note that, under the null hypothesis,

M∑
j=1

w∗ij

{
xTi1(φ̂− φ̂a) + ĝ(y∗ij)− ĉa

}2
−
[
xTi1(φ̂− φ̂a) + E {ĝ(y) | η̂, δ = 1, xi} − ĉa

]2
−→ 0,

almost surely, as M −→∞. Thus, we can rewrite

R̂ = R+
n∑
i=1

π(φ̂a, ĉa;xi)
{

1− π(φ̂a, ĉa;xi)
}

(1− δi) [ĝ(yi)− E {ĝ(y) | η̂, δ = 1, xi}]2 .

Under the null hypothesis, E [ĝ(yi)− E {ĝ(y) | η̂, δ = 1, xi}]2 = op(1). Thus, R̂ = R {1 + op(1)}.

We can conclude that v−1
n (R̂ − en) also converges to the normal distribution. If M is finite, vn

would be inflated by the variability of imputation and η̂.

Since (vn, en) is unknown and the effect of imputation needs to incorporated, the bootstrap

method can be used to test Ha : g(y) = c. Under H0 : g(y) = c, the parametric bootstrap is

developed. The algorithm of the parametric bootstrap is shown in Appendix 4.10.
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4.6 Simulation Study

4.6.1 Simulation Study I

In this simulation study, we investigate the performance of the proposed method in the finite

sample. The robustness of the proposed method is also examined when the response model as-

sumption is violated. The simulation study can be described as a 3 × 9 factorial design, where

the factors are the outcome regression model and the response mechanism. Assume the covariate

xi = (xi1, xi2) are generated from N(u,Σ) with u = (1, 1)T and Σ = Diag(0.25, 0.25) independently.

For the outcome regression model, let yi = m(xi) + ei, where the mean functions m(x) are one of

followings:

M1 : m(x) = −1 + (x2 − 0.5)2

M2 : m(x) = −2.75 + x1 + x2 + x1x2

M3 : m(x) = −1.75 + x1 + x2

and e ∼ N(0, 0.25).

For the response mechanism, let δi be generated from a Bernoulli distribution with the success

probability πi independently. For the true response mechanism, we consider the following setups:

R1: (Linear MAR)

πi = exp(φ0 + φ1xi1)
1 + exp(φ0 + φ1xi1) ,

where (φ0, φ1) = (0.7, 0.2).

R2: (Linear NMAR)

πi = exp(φ0 + φ1xi1 + φ2yi)
1 + exp(φ0 + φ1xi1 + φ2yi)

,

where (φ0, φ1) = (1, 0.2, 0.2).

R3: (Non-linear NMAR with quadratic term in y)

πi = exp
(
φ0 + φ1xi1 + φ2y

2
i

)
1 + exp

(
φ0 + φ1xi1 + φ2y2

i

) ,
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where (φ0, φ2, φ2) = (0, 0.1, 0.7).

R4: (Non-linear NMAR with quadratic term in both x and y)

πi = exp
{
φ0 + φ1x

2
i1 + φ2y

2
i

}
1 + exp

{
φ0 + φ1x2

i1 + φ2y2
i

} ,
where (φ0, φ1, φ2) = (0, 0.1, 0.5).

R5: (Non-linear NMAR with exponential term in x1 and quadratic term in y)

πi = exp
{
φ0 + φ1 exp(xi1 − 1) + φ2y

2
i

}
1 + exp

{
φ0 + φ1 exp(xi1 − 1) + φ2y2

i

} ,
where (φ0, φ1, φ2) = (0, 0.1, 0.6)

R6: (Non-linear NMAR with exponential term in y and interaction term)

πi = exp
{
φ0 + φ1xi1yi + φ2y

2
i

}
1 + exp

{
φ0 + φ1xi1yi + φ2y2

i

} ,
where (φ0, φ1, φ2) = (0, 0.1, 0.6).

R7: (Probit NMAR)

πi = Φ(φ0 + φ1xi1 + φ2y
2
i ),

where (φ0, φ1, φ2) = (0,−0.1, 0.6) and Φ(·) is the normal cumulative distribution function.

R8: (Complementary log-log NMAR)

πi = 1− exp
{
− exp(φ0 + φ1xi1 + φ2y

2
i )
}
,

where (φ0, φ1, φ2) = (0,−0.05, 0.3).

R9: (x1 instrumental variable)

πi = exp
(
φ0 + φ1xi2 + φ2y

2
i

)
1 + exp

(
φ0 + φ1xi2 + φ2y2

i

) ,
where (φ0, φ1, φ2) = (0, 0.1, 0.7).
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The response mechanism R1 is missing at random, in the sense of g(y) = φ0. R2 is the logistic

linear model assumption, which is mostly used to fit the nonresponse model in Kim and Yu (2011)

and Shao et al. (2016). R3 satisfies all model assumptions of the proposed method. R4 and R5

violate the linearity assumption of xi1 and R6 has the interaction term of xi, yi, which leads to

failure of the linearity assumption. R7 and R8 are used to check the robustness of the link function.

R9 is used to check the violation of the instrumental variable assumption.

For each response mechanism, the overall response rates are approximately 70%. For each setup,

we generate a Monte Carlo sample with n = 500 independently for replication B = 2, 000. Suppose

we are interested in θ = E(y). Thus, U(θ;x, y) = y − θ. For each realized sample, we apply the

following methods.

1. Full estimator θfull: Use the full sample to estimate θ, but which is not practical in real data

analysis.

2. CC estimator θCC : Ignore nonresponse and only use responses to estimate θ.

3. Kott and Chang (2010)’s method θKC : Assume the response model is

Pr(δi = 1 | xi, yi) = π(φ; yi) = exp(φ0 + φ1x1i + φ2yi)
1 + exp(φ0 + φ1x1i + φ2yi)

. (4.23)

And the estimates can be obtained by solving

1
n

n∑
i=1

{
δi

π(φ;x1i, yi)
− 1

}
(1,xi)′ = 0,

1
n

n∑
i=1

δi
π(φ;x1i, yi)

(yi − θ) = 0.

4. Riddles et al. (2016)’s method θFI : The observed regression model is

yi | xi, δi = 1 ∼ N(β0 + β1xi1 + β2xi2 + β3x
2
i1 + β4x

2
i2 + β5xi1xi2, σ

2). (4.24)

The response working model uses (4.23).

5. θSP: The proposed method with x2 as the response instrumental variable. The bandwidths

are chosen by rule of thumb (Silverman, 1986). The working observed regression model is

specified as yi | xi, δi = 1 ∼ N(β0 + β1xi1 + β2xi2 + β3x
2
i1 + β4x

2
i2 + β5xi1xi2, σ

2).
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The simulation results for R1 – R3, R4 – R6 and R7 – R9 are presented in Table 4.1, 4.2 and

4.3, separately.

Table 4.1: Simulation results (part I) from B = 2, 000 Monte Carlo studies

Res Model Estimates θfull θCC θKC θFI θSP

R1

M1

bias -0.001 -0.002 -0.003 -0.002 -0.005
std 0.035 0.042 0.045 0.041 0.039
rmse 0.035 0.042 0.045 0.041 0.039

M2

bias 0.001 0.030 0.001 0.001 -0.000
std 0.067 0.080 0.070 0.069 0.070
rmse 0.067 0.085 0.070 0.069 0.070

M3

bias 0.000 0.015 0.000 0.000 0.000
std 0.038 0.045 0.044 0.044 0.042
rmse 0.038 0.048 0.044 0.044 0.042

R2

M1

bias 0.001 0.027 -0.000 -0.000 0.003
std 0.035 0.041 0.043 0.039 0.039
rmse 0.035 0.049 0.043 0.039 0.039

M2

bias -0.002 0.119 -0.002 -0.002 0.010
std 0.069 0.080 0.071 0.070 0.071
rmse 0.069 0.143 0.071 0.070 0.072

M3

bias -0.000 0.045 -0.001 -0.001 0.008
std 0.039 0.044 0.042 0.043 0.042
rmse 0.039 0.063 0.042 0.042 0.043

R3

M1

bias 0.000 0.098 -0.032 -0.062 -0.004
std 0.036 0.051 0.053 0.045 0.044
rmse 0.036 0.110 0.062 0.076 0.044

M2

bias -0.001 0.095 -0.016 -0.036 -0.004
std 0.068 0.090 0.071 0.069 0.071
rmse 0.068 0.130 0.073 0.078 0.071

M3

bias -0.001 0.065 -0.001 -0.010 0.006
std 0.038 0.053 0.045 0.047 0.045
rmse 0.038 0.084 0.045 0.048 0.045

From Table 4.1, when the response model is logistic linear (R1/R2), all methods are consistent.

For quadratic model M1, θFI and θSP are more efficient than θKC . Under M2,M3, θFI and θSP are

no worse than θKC . When the response model is logistic quadratic (R3), θKC and θFI are biased

under M1. However, the proposed θSP is still consistent and has smaller mean square error. When

the outcome regression model is M2, which is slightly violated the linearity, θFI is biased and θKC



78

is slightly biased. The proposed θSP performs better than θFI and θKC in terms of mean square

error. When the outcome regression model is linear M3, θSP and θKC are consistent, but θFI is

slightly biased. In terms of efficiency, θSP and θGMM are better, because f(Y | X, δ = 1) uses the

full models and induces additional noise from the quadratic terms.

From table 4.2, when the linearity assumption of X in response model is violated, the proposed

method still works well. For nonlinear outcome regression models (M1/M2), θKC and θFI are

biased due to model misspecification. However, the proposed method is always consistent. For

linear outcome regression model (M3), θKC and θSP are consistent.

From Table 4.3, the misspecification of link function in the response model does not effect the

consistency of the proposed method. Furthermore, the violation of the instrumental assumption

also does not effect the proposed method heavily. In summary, the proposed method outperforms

θKC and θFI . Also, the proposed method suffers less model misspecification.

4.6.2 Simulation Study II

In this section, we perform simulation studies to validate the proposed test statistic in §4.5.

The power of the proposed test is related to the non-constant effect of g(y) and sample size. Thus,

we design a 4× 2 factorial studies, where factors are the coefficient of g(y) and the sample size.

Assume the superpopulation model is generated as as follows: First, covariate variables xi =

(xi1, xi2) are generated independently from multivariate normal distribution with mean (1, 1) and

variance Diag(0.25, 0.25). Second, response variables yi are generated independently from normal

distribution N(−1 + xi1 + xi2, 0.25).

Assume the response function is

pi = exp(0.1xi1 + φyy
2
i )

1 + exp(0.1xi1 + φyy2
i )
.

The response indicator functions are generated from a simple random sampling with replacement

process with approximate response rate being 70%. The first order inclusion probabilities are

{pi}ni=1.

The whole simulation process can be described as follows:
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1. Generate the complete sample from the superpopulation model with size n ∈ {100, 500}.

2. Apply the response mechanism to create nonresponse with {0, 0.2, 0.5, 1}.

3. Apply the proposed bootstrap method in Appendix 4.10 to obtain the empirical distribution

of the proposed test statistic.

4. Repeat step 1–3 B = 1, 000 times.

The simulation results are presented in Table 4.4.

The power of the test is that the probability of rejecting the null hypothesis, given that the

alternative hypothesis is true. From Table 4.4, the power of the proposed test statistic is increasing

as the violation (φy) of constant g(y) increases for fixed sample size. For fixed φy, the power of the

proposed test statistic also increases as sample size increases. For φy = 0, which indicates the null

hypothesis is true, the proposed test statistic can achieves the type I error bound approximately

when sample size is 500. In summary, the proposed test statistic and the bootstrap method can be

used to test the ignorability effectively.

4.7 Application

In this section, the proposed method is applied to Korea Labor and Income Panel Survey

(KLIPS). The introduction of the penal survey can be checked out at http://www.kli.re.kr/

klips/en/about/introduce.jsp. The study variable (y) is the average monthly income for the

current year and the auxiliary variable (x) is the average monthly income for the previous year. The

KLIPS has n = 2, 506 regular wage earners. And the boxplots for x and y are presented in Figure

4.1. Note that both x, y has outliers which cause challenging to the nonparametric smoothing

method. Thus, we take the transformation to both x and y.

http://www.kli.re.kr/klips/en/about/introduce.jsp
http://www.kli.re.kr/klips/en/about/introduce.jsp
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(a) The original KLIPS data (b) The transformed KLIPS data: (x, y)←− log(x, y)/2

Figure 4.1: KLIPS data description ( ×106 Korean Won).

Since the KLIPS data are completed, we artificially create the missingness and then apply the

proposed method to the incomplete data. Assume the true response mechanisms are

R1 : Pr(δ = 1 | x, y) = {1 + exp(−1 + y)}−1 ,

R2 : Pr(δ = 1 | x, y) = [1 + exp {−2 + exp(0.5y)}]−1 ,

R3 : Pr(δ = 1 | x, y) =


0.7 if y < 0.5

0.4 otherwise
,

R4 : Pr(δ = 1 | x, y) = Φ {−0.1 + 0.1 exp(0.5y)} .

The process is described as following:

1. Use Simple Random Sampling without Replacement (SRSWOR) to obtain n sample units.

2. Apply the response mechanism R to the sample and get the incomplete sample.

3. Apply the proposed method to the incomplete sample and obtain the parameter estimation.

Let n = 200 and replicate the process B = 2, 000 times. For each realized sample, apply Full,

CC, Proposed and GMM method to estimate θ = E(y). The results are shown in Figure 4.2.

From Figure 4.2, we can see that both proposed and GMM methods achieve consistent estimates

and their efficiencies are comparable. CC methods are always biased. The proposed method is
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Figure 4.2: Boxpliots of the estimators for Full, CC, Proposed, and GMM methods.

consistent, since it does involve model specifications. The GMM method is consistent in the real

data due to the linearity of x and y.

4.8 Discussion

In this paper, we propose a profile likelihood method to achieve robust estimation under a

semiparametric nonignorable nonresponse model. From simulation results, our proposed method

shows more robustness than generalized linear response models. The proposed method uses the

maximum profile likelihood method and an efficient computation algorithm based on fractional

imputation is developed. From asymptotic properties, our proposed method enjoys
√
n-consistency.

Furthermore, our proposed method assumes the response mechanism is a flexible function of Y .

Then, we propose a test procedure to check if the response mechanism is missing at random. The

bootstrap method is proposed to obtain the empirical distribution of the proposed test statistic.

Our proposed method can be used in survey data directly by replacing the likelihood function to

the pseudo likelihood function.

4.9 Appendix A: Derivations in M-Step

Note that, l̃obs(φ, g | w∗(t)) are generalized partially linear function of φ and g. Then, the profile

method likelihood can be applied. The outlined procedures are described as follows. First, g(y)
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can be estimated by maximizing

l̃obs(φ, g | w∗(t)) =
n∑
i=1

δi log π
{
xTi1φ+ g(y)

}
Kh(y − yi)

+(1− δi)
M∑
j=1

w
∗(t)
ij log

[
1− π

{
xTi1φ+ g(y)

}]
Kh(y − y∗ij),

given a fixed φ. Denote it as ĝφ(y). Then, φ can be estimated by maximizing

l̂obs(φ, ĝφ | w∗(t)) =
n∑
i=1

δi log π
{
xTi1φ+ ĝφ(yi)

}
+ (1− δi)

M∑
j=1

w
∗(t)
ij log

[
1− π

{
xTi1φ+ ĝφ(y∗ij)

}]
.

The details of one-step Newton-Raphson algorithm are shown as follows. The maximization of

l̃obs(φ, g | w∗(t)) respect to g(y) is equivalent to taking the first order derivative respect to g(y).

That is

∂l̃obs(φ,g|w∗(t))
∂g(y) =

n∑
i=1

δi
[
1− π

{
xTi1φ+ g(y)

}]
Kh(y − yi)

−(1− δi)
M∑
j=1

w
∗(t)
ij π

{
xTi1φ+ g(y)

}
Kh(y − y∗ij).

To estimate g(y), it is equivalent to solving ∂l̃obs(φ, g | w∗(t))/∂g(y) = 0. Applying the one-step

Newton-Raphson, we can update the estimator by

g(y)(t+1) = g(t)(y)− Gt(y)
Ht(y)

where

Gt(y) =
n∑
i=1

δi
[
1− π

{
xTi1φ

(t) + g(t)(y)
}]
Kh(y−yi)−(1−δi)

M∑
j=1

w
∗(t)
ij π

{
xTi1φ

(t) + g(t)(y)
}
Kh(y−y∗ij)

is the gradient of l̃obs(φ, g | w∗(t)) respect to g(y), and

Ht(y) = −
n∑
i=1

[
1− π

{
xTi1φ

(t) + g(t)(y)
}]
π
{
xTi1φ

(t) + g(t)(y)
}

×

δiKh(y − yi) + (1− δi)
M∑
j

w
∗(t)
ij Kh(y − y∗ij)

 ,
is the Hessian matrix of l̃obs(φ, g | w∗(t)) respect to g(y).
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Note that g(y) is the function of φ. Thus, take the partial derivative of l̃obs(φ, g | w∗(t))/∂g(y)

respect to φ and set it to be 0. That is

∂2 l̃obs(φ,g|w∗(t))
∂g(y)∂φ = −

n∑
i=1

[
1− π

{
xTi1φ+ g(y)

}]
π
{
xTi1φ+ g(y)

}
δiKh(y − yi) + (1− δi)

M∑
j

w
∗(t)
ij Kh(y − y∗ij)

 {xi1 +5g(y)} = 0,

where 5g(y) = ∂g(y)
∂φ . Solving ∂2 l̃obs(φ, g | w∗(t))/ {∂g(y)∂φ} = 0, we can obtain a closed form for

5g(y) as

5g(t)(y) = It(y)
Ht(y) ,

where

It(y) =
n∑
i=1

[
1− π

{
xTi1φ

(t) + g(t)(y)
}]
π
{
xTi1φ

(t) + g(t)(y)
}

×

δiKh(y − yi) + (1− δi)
M∑
j

w
∗(t)
ij Kh(y − y∗ij)

xi1.
Then, φ can be estimated by maximizing

l̂obs(φ, gφ | w∗(t)) =
n∑
i=1

δi log π
{
xTi1φ+ gφ(yi)

}
+ (1− δi)

M∑
j=1

w
∗(t)
ij log

[
1− π

{
xTi1φ+ gφ(y∗ij)

}]
,

which leads to solving

l̂obs(φ, gφ | w∗(t))
∂φ

= 0.

Let

At = 5l̂obs(φ, gφ | w∗(t)) =
n∑
i=1

δi
[
1− π

{
xTi1φ

(t) + g(t)(yi)
}] (

xi1 +5g(t)(yi)
)

−(1− δi)
M∑
j=1

w
∗(t)
ij π

{
xTi1φ

(t) + g(t)(y∗ij)
}(

xi1 +5g(t)(y∗ij)
)
.
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To compute the Hessian matrix of l̂obs(φ, gφ | w∗(t)), we consider 5g to be constant with respect to

φ (Müller, 2001). This leads to

Bt = 4l̂obs(φ, gφ | w∗(t)) = −
n∑
i=1

δiπ
{
xTi1φ

(t) + g(t)(yi)
} [

1− π
{
xTi1φ

(t) + g(t)(yi)
}]

×
(
xi1 +5g(t)(yi)

)⊗2
+ (1− δi)

M∑
j=1

w
∗(t)
ij π

{
xTi1φ

(t) + g(t)(y∗ij)
} [

1− π
{
xTi1φ

(t) + g(t)(y∗ij)
}]

×
(
xi1 +5g(t)(y∗ij)

)⊗2
,

where A⊗2 = AAT . Thus, applying Newton-Raphson algorithm, we can update φ by

φ(t+1) = φt −B−1
t At.

4.10 Appendix B: Algorithm for Bootstrap

From the proposed method in §4.3, a pseudo complete sample {(xi, ŷi, δi)}ni=1 can be obtained,

where

ŷi =


yi if δi = 1∑M
j=1w

∗
ijy
∗
ij otherwise.

As discussed in §4.5, under the null hypothesis, (φ̂a, ĉa) can be obtained by maximizing (4.20).

Then, the proposed parametric bootstrap can be described as follows:

Step 1 : Using (φ̂a, ĉa), we can regenerate the response indicators δ∗i from the Bernoulli

distribution with success probability π(φ̂a, ĉa;xi). Then, we can formulate the new pseudo

sample {xi, δ∗i ŷi, δ∗i }ni=1.

Step 2 : Apply {xi, δ∗i ŷi, δ∗i }ni=1 to (4.20) to obtain (φ̂∗a, ĉ∗a).

Step 3 : Apply {xi, δ∗i ŷi, δ∗i }ni=1 to the proposed method and compute the test statistic R̂k in

(4.22).

Step 4 : Repeat Step 1–3 B times and compute the p-value as

p-value = 1
B

B∑
k=1

I(B̂ < B̂k).
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If the p-value is less than the type I error α, then we reject H0. Otherwise, we have no significant

evidence to reject H0.

4.11 Appendix C: Regularity conditions and Proof of Lemma 4.1 and

Theorem 4.1

Regularity conditions of (C3) are described as follows.

C3(a): For η in an open subset, assume s(η;X,Y ) is twice continuously differentiable for

every X,Y .

C3(b): Assume there exists η0, such that E {s(η0;X,Y )} = 0.

C3(c): For η in a neighborhood of η0, assume E
{
‖s(η;X,Y )‖2

}
<∞ and E

{
∂s(η;X,Y )/∂ηT

}
exists and is nonsingular.

Regularity conditions of (C5) are described as follows.

C5(a): The response probability π(X,Y ) is bonded below from 0 uniformly.

C5(b): There exists θ0, such that E {U(θ0;X,Y )} = 0.

C5(c): For θ in a neighborhood of θ0, assume U(θ;X,Y ) is twice continuously differentiable

for every X,Y .

C5(d): For θ in a neighborhood of θ0, assume E
{
‖U(θ;X < Y )‖2

}
<∞ and E

{
∂U(θ;X,Y )/∂θT

}
exists and is nonsingular.

The road map of this proof can be outlined as follows.

Step 1 : We will show the asymptotic normality of the profile estimator of β under complete

data using

lFull(φ, g) =
n∑
i=1

(δi log π {φ;xi1, g(yi)}+ (1− δi) log [1− π {φ;xi1, g(yi)}]) .
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Step 2 : Then, we can establish the asymptotic distribution under nonresponse using

lobs(φ, g; η0) =
n∑
i=1

[δi log π {φ;xi1, g(yi)}

+(1− δi)E (log [1− π {φ;xi1, g(y)}] | xi, δi = 0; η0)] .

Step 3 : The asymptotic distribution is further extended to incorporate the estimation of η0.

Step 4 : Finally, we will show that the proposed algorithm is equivalent to applying the profile

method to lobs(φ, g; η̂) asymptotically.

Let us first show Step 1. Since g maps a scalar y into some space G, define ζ = g(y) ∈ G. Let

p(δ;φ, ζ) = π {φ, ζ;x1, y}δ [1− π {φ, ζ;x1, y}]1−δ

as the conditional distribution of δ given (x, y). Furthermore, let l(δ;φ, ζ) = log p(δ;φ, ζ). Let ĝφ

be the solution of maximizing

l̃Full(φ, g) =
n∑
i=1

(δi log π {φ;xi1, g(y)}+ (1− δi) log [1− π {φ;xi1, g(y)}])Kh(y − yi).

Let φ̂ be the maximizer of lFull(φ, ĝφ). Furthermore, we define the Fréchet derivative of lFull(φ, g)

respect to function g as

∂lFull(φ, g)
∂g

= ∂lFull(φ, g + λu)
∂λ

∣∣∣∣
λ=0

.

Following the proof in Severini and Wong (1992), we present the sufficient conditions to obtain

the asymptotic distribution.

Assumption 1. For any fixed φ1 ∈ Φ and ζ1 ∈ G, let

ρ(φ, ζ) =
∫

log p(δ;φ, ζ)p(δ;φ1, ζ1)dδ.

If φ 6= φ1, then

ρ(φ, ζ) < ρ(φ1, ζ1).



87

Assumption 2. Define the marginal Fisher information for φ as

Ĩφ(φ, ζ) = Eφ,ζ

{
∂l

∂φ
(δ;φ, ζ)2

}
− Eφ,ζ

{
∂l

∂φ
(δ;φ, ζ) ∂l

∂ζ
(δ;φ, ζ)

}2
Eφ,ζ

{
∂l

∂ζ
(δ;φ, ζ)2

}−1
.

Assume Ĩφ(φ, ζ) > 0 for all φ ∈ Φ and ζ ∈ G.

Assumption 3. Assume that the derivative

∂r+sl

∂φr∂ζs
l(δ;φ, ζ)

exists for all r ≥ 0, s ≥ 0, r + s ≤ 4. Moreover,

E0

sup
φ

sup
ζ

∥∥∥∥∥ ∂r+sl

∂φr∂ζs
l(δ;φ, ζ)

∥∥∥∥∥
2
 ≤ ∞,

where E0 denotes expectation under the true density function.

Assumption 4. Assume the unction g(y) satisfies the Conditions NP (Nuisance parameter) in

Severini and Wong (1992).

The following lemma is established from Severini and Wong (1992) and we are using the special

case of logistic semiparametric model.

Lemma 4.2. Under Assumption 1–4, we can show

√
n(φ̂− φ0) −→ N(0, Ĩ−1

φ0
),

where Ĩφ0 is the marginal Fisher information for φ0. Then, we can also establish that

1√
n

d

dφ

∂lFull(φ, gφ)
∂g

∣∣∣∣
φ=φ0

(ĝ0 − g0) = op(1),

1√
n

∂lFull(φ, gφ)
∂g

∣∣∣∣
φ=φ0

(ĝ′0 − g′0) = op(1),

where g0 = gφ0 is the true function, ĝ0 = ĝφ0 and g′ = dg(y)
dy .

This completes Step 1. Step 1 is a standard conclusion from Severini and Wong (1992).

Then, we want to extent Lemma 4.2 to nonresponse. Note that lobs(φ, g; η0) = E {lFull(φ, g) | X,Yobs, R; η0},

where X = (x1, x2, · · · , xn), Yobs is the observed part of (y1, · · · , yn) and R = (δ1, · · · , δn). Simi-

larly, the smoothed observed log-likelihood is l̃obs(φ, g; η0) = E
{
l̃Full(φ, g) | X,Yobs, R; η0

}
. Then,

we can establish the following lemma.
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Lemma 4.3. Let ĝφ be the maximizer of l̃Full(φ, g), then ĝφ,obs = E(ĝφ | X,Yobs, R; η0) is the

maximizer of l̃obs(φ, g; η0).

The proof can be briefly shown as follows. We can use the Fréchet derivative and expanse

l̃Full(φ, g) ∼= l̃Full(φ, ĝφ) + ∂l̃Full(φ, g)
∂g

∣∣∣∣∣
g=ĝφ

(g − ĝφ) + ∂2 l̃Full(φ, g)
∂g2

∣∣∣∣∣
g=ĝφ

(g − ĝφ)2

= l̃Full(φ, ĝφ) + ∂2 l̃Full(φ, g)
∂g2

∣∣∣∣∣
g=ĝφ

(g − ĝφ)2.

Taking the conditional expectation to both sides, we can obtain that

l̃obs(φ, g; η0) ∼= E
{
l̃Full(φ, ĝφ) | X,Yobs, R; η0

}
+E

 ∂2 l̃Full(φ, g)
∂g2

∣∣∣∣∣
g=ĝφ

| X,Yobs, R; η0

E {(g − ĝφ)2 | X,Yobs, R; η0
}
.

The above equation is upper-bounded at ĝφ,obs. Then, we complete the proof of Lemma 5.4.

Then, denote φ̂obs be the solution of maximizing

l̃obs(φ, ĝφ; η0) = E
{
l̃full(φ, ĝφ; η0) | X,Yobs, R; η0

}
.

Using Lemma 4.2 and following the same procedures in Severini and Wong (1992), we can show

that 4.2 also holds for l̃obs(φ, g; ζ0), in the sense of

Lemma 4.4. Assume infφ,g,x,y π(φ, g;x1, y) > 0. Under the same assumptions in Lemma 4.2, we

can show that show

√
n(φ̂obs − φ0) −→ N(0, Ĩ−1

obs),

where Ĩobs is the marginal Fisher information for φ0 using the observed log-likelihood function.

Then, we can also establish that

1√
n

d

dφ

∂lobs(φ, gφ)
∂g

∣∣∣∣
φ=φ0

(ĝ0 − g0) = op(1).

This completes Step 2.
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Note that φ̂obs in Lemma 4.3 is a function of η0 and we can denote it as φ̂obs(η0). However, our

profiled estimation is applied to l̃obs(φ, ĝφ,obs; η̂), where η̂ is a solution of

U(η) =
n∑
i=1

δis(η;xi, yi) = 0.

Under the regularity conditions of Z-statistics in Van der Vaart (1998), we can establish that

√
r(η̂ − η0) −→ N(0, S), (4.25)

in distribution, where r =
∑n
i=1 δi and

r

{
∂U(η)
∂ηT

}−1
var {U(η)}

[{
∂U(η)
∂ηT

}−1]T
−→ S

in probability.

To obtain the limiting distribution of φ̂obs(η̂), militarization can be used.

φ̂obs(η̂) ∼= φ̂obs(η0) + φ̂obs(η0)
∂η0

(η̂ − η0).

Moreover, φ̂obs(η0) is the solution of

∂lobs(φ, ĝφ,obs; η0)
∂φ

= 0.

Using the derivative of implicit function, we can obtain that

∂φ̂(η0)
∂η0

= −
{
∂2lobs(φ, ĝφ,obs; η0)

∂φ∂φT

}−1
∂2lobs(φ, ĝφ,obs; η0)

∂φ∂ηT0

∣∣∣∣∣∣
φ=φ̂obs(η0)

.

Furthermore,

−
{
∂2lobs(φ, ĝφ,obs; η0)

∂φ∂φT

}−1
∣∣∣∣∣∣
φ=φ̂obs(η0)

−→ n−1Ĩ−1
obs

in probability. Let

Ĉn = ∂2lobs(φ, ĝφ,obs; η0)
∂φ∂ηT0

∣∣∣∣∣
φ=φ̂obs(η0)

= Op(n).

Thus, we have

φ̂obs(η̂) ∼= φ̂obs(η0) + n−1Ĩ−1
obsĈn(η̂ − η0). (4.26)
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Combining (4.25) and (4.26), we have

φ̂obs(η̂) −→ φ0, (4.27)

in probability, since φ̂obs(η0) −→ φ0, n−1Ĩ−1
obsĈn = Op(1) and η̂−η0 = op(1). Then, we can decompose

the variance of φ̂obs(η̂) as

nvar
{
φ̂obs(η̂)

}
∼= nvar

{
φ̂obs(η0) + n−1Ĩ−1

obsĈn(η̂ − η0)
}

∼= Ĩ−1
obs + n−1r−1Ĩ−1

obsĈnSĈ
T
n Ĩ
−1
obs + 2nCov

{
φ̂obs(η0), n−1Ĩ−1

obsĈn(η̂ − η0)
}

−→ Ĩ−1
obs + Σ2 + Σ3, (4.28)

in probability.

Using (4.27) and (4.28), we can show that

√
n
{
φ̂obs(η̂)− η0

}
−→ N(0,Σ1), (4.29)

where Σ1 = Ĩ−1
obs + Σ2 + Σ3. This completes Step 3.

Define

l̂obs(φ, g | w∗(t)) =
n∑
i=1

δi log π {φ;xi1, g(yi)}+ (1− δi)
M∑
j=1

w
∗(t)
ij log

[
1− π

{
φ;xi1, g(y∗ij)

}] .(4.30)

The smoothed function is

l̃obs(φ, g | w∗(t)) =
∑n
i=1 (δi log π {φ;xi1, g(y)}Kh(y − yi)

+(1− δi)
M∑
j=1

w
∗(t)
ij log

[
1− π

{
φ;xi1, g(y∗ij)

}]
Kh(y − y∗ij)

 .
In our proposed algorithm, M-Step is to implement one-step Newton-Raphson method. Finally, we

show the following lemma.

Lemma 4.5. For our proposed algorithm, we have

l̂obs(φ(t), gφ(t) | w∗(t)) ≤ l̂obs(φ(t+1), gφ(t+1) | w∗(t)),

l̃obs(φ(t+1), g(t) | w∗(t)) ≤ l̃obs(φ(t+1), g(t+1) | w∗(t)).
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Given w∗(t), the implementation of M-step is

φ(t+1) = φ(t) −
{
∂2 l̂obs(φ, gφ | w∗(t))

∂φ∂φT

}−1
∂l̂obs(φ, gφ | w∗(t))

∂φ

∣∣∣∣∣∣
φ=φ(t)

, (4.31)

g(t+1) = g(t) −
{
∂2 l̃obs(φ(t+1), g | w∗(t))

∂g2

}−1
∂l̃obs(φ(t+1), g | w∗(t))

∂g

∣∣∣∣∣∣
g=g(t)

. (4.32)

Note that,

l̂obs(φ(t+1), gφ(t+1) | w∗(t)) = l̂obs(φ(t), gφ(t) | w∗(t)) +
∂l̂obs(φ(t), gφ(t) | w∗(t))

∂
(
φ(t))T (φ(t+1) − φ(t))

+1
2(φ(t+1) − φ(t))T

∂2 l̂obs(φ(t), gφ(t) | w∗(t))

∂φ(t)∂
(
φ(t))T (φ(t+1) − φ(t))

+op(‖φ(t+1) − φ(t)‖2). (4.33)

Plugging (4.31) into (4.33), we can obtain

l̂obs(φ(t+1), gφ(t+1) | w∗(t)) = l̂obs(φ(t), gφ(t) | w∗(t))

−1
2
∂l̂obs(φ, gφ | w∗(t))

∂φT

{
∂2 l̂obs(φ, gφ | w∗(t))

∂φ∂φT

}−1
∂l̂obs(φ, gφ | w∗(t))

∂φ

∣∣∣∣∣∣
φ=φ(t)

.

Since

∂l̂obs(φ, gφ | w∗(t))
∂φT

{
∂2 l̂obs(φ, gφ | w∗(t))

∂φ∂φT

}−1
∂l̂obs(φ, gφ | w∗(t))

∂φ

∣∣∣∣∣∣
φ=φ(t)

≤ 0,

we have

l̂obs(φ(t), gφ(t) | w∗(t)) ≤ l̂obs(φ(t+1), gφ(t+1) | w∗(t)) (4.34)

Similarly, we can show

l̃obs(φ(t+1), g(t) | w∗(t)) ≤ l̃obs(φ(t+1), g(t+1) | w∗(t)),

using the Fréchet derivative.

By Monotone convergence theorem, we have

lobs(φ, gφ; η̂)− l̂obs(φ(t), gφ(t) | w∗(t)) −→ 0,

l̃obs(φ, g; η̂)− l̃obs(φ(t+1), g(t) | w∗(t)) −→ 0,
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in probability and for any y, as t −→∞,M −→∞.

Thus, we conclude that our proposed algorithm provides the same solutions as applying the

profile likelihood method to lobs(φ, g; η̂) directly. Thus, our proposed estimators enjoy the same

asymptotic distributions in (4.29).

4.12 Appendix D: Proof of Theorem 4.2

Let θ̂ is the solution of

U(θ | φ̂, ĝ) = 1
n

n∑
i=1

δi

π
{
xTi1φ̂+ ĝ(yi)

}U(θ;xi, yi) = 0, (4.35)

where (φ̂, ĝ) is obtained from our proposed method. Note that ĝ = ĝφ̂. Then, we apply the Taylor

linearization to (4.35) and obtain

U(θ̂ | φ̂, ĝ) ∼= U(θ0 | φ0, ĝ0) + ∂U(θ0 | φ0, ĝ0)
∂θ0

(θ̂ − θ0)

+∂U(θ0 | φ0, ĝ0)
∂φ0

(φ̂− φ0). (4.36)

Moreover, using Fréchet derivative, we have

U(θ0 | φ0, ĝ0) ∼= U(θ0 | φ0, g0) + ∂U(θ0 | φ0, g0)
∂g0

(ĝ0 − g0). (4.37)

Using (4.36) and (4.37), we get the final expansion as

U(θ̂ | φ̂, ĝ) ∼= U(θ0 | φ0, g0) + ∂U(θ0 | φ0, g0)
∂θ0

(θ̂ − θ0)

∂U(θ0 | φ0, g0)
∂φ0

(φ̂− φ0) + ∂U(θ0 | φ0, g0)
∂g0

(ĝ0 − g0).

From Lemma (4.4), we have

1√
n

d

dφ

∂lobs(φ, gφ)
∂g

∣∣∣∣
φ=φ0

(ĝ0 − g0) = op(1).

Assume

sup
y

∣∣∣∣∣ 1√
n

d

dφ

∂lobs(φ, gφ)
∂g

∣∣∣∣
φ=φ0

∣∣∣∣∣ = Op(
√
n).

Then supy |(ĝ0 − g0)| = op(n−1/2).
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Assume

sup
y

∣∣∣∣∂U(θ0 | φ0, g0)
∂g0

∣∣∣∣ = Op(1).

Then,
∂U(θ0 | φ0, g0)

∂g0
(ĝ0 − g0)

is negligible. Thus, we have

U(θ̂ | φ̂, ĝ) ∼= U(θ0 | φ0, g0) + ∂U(θ0 | φ0, g0)
∂θ0

(θ̂ − θ0)

∂U(θ0 | φ0, g0)
∂φ0

(φ̂− φ0),

which leads to

θ̂ − θ0 ∼= −
[
E

{
∂U(θ0 | φ0, g0)

∂θ0

}]−1 [
U(θ0 | φ0, g0) + E

{
∂U(θ0 | φ0, g0)

∂φ0

}
(φ̂− φ0)

]
. (4.38)

Since

U(θ0 | φ0, g0) −→ 0

φ̂− φ0

in probability, we can conclude that

θ̂ − θ0 −→ 0 (4.39)

in probability.

Using (4.38), we have

n
[
E
{
∂U(θ0|φ0,g0)

∂θ0

}]−1
var

[
U(θ0 | φ0, g0) + E

{
∂U(θ0 | φ0, g0)

∂φ0

}
(φ̂− φ0)

]
×
[
E

{
∂U(θ0 | φ0, g0)

∂θ0

}]−1
−→ Σ,

in probability.

Therefore, our final conclusion is that

√
n(θ̂ − θ0) −→ N(0,Σ) (4.40)

in distribution.
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Table 4.2: Simulation results (part II) from B = 2, 000 Monte Carlo studies

Res Model Estimates θfull θCC θKC θFI θSP

R4

M1

bias -0.002 0.085 -0.027 -0.051 -0.002
std 0.035 0.052 0.053 0.045 0.044
rmse 0.035 0.100 0.060 0.068 0.044

M2

bias 0.001 0.112 0.018 -0.038 -0.001
std 0.068 0.092 0.071 0.069 0.071
rmse 0.068 0.145 0.073 0.079 0.071

M3

bias -0.002 0.063 -0.002 -0.011 0.004
std 0.039 0.054 0.046 0.048 0.046
rmse 0.039 0.083 0.046 0.049 0.046

R5

M1

bias -0.000 0.092 -0.029 -0.055 -0.002
std 0.036 0.051 0.054 0.045 0.044
rmse 0.036 0.105 0.061 0.071 0.045

M2

bias 0.001 0.102 0.019 -0.035 -0.001
std 0.065 0.088 0.068 0.066 0.068
rmse 0.065 0.134 0.071 0.074 0.068

M3

bias -0.001 0.063 -0.001 -0.010 0.007
std 0.038 0.053 0.046 0.048 0.045
rmse 0.038 0.082 0.046 0.049 0.046

R6

M1

bias -0.001 0.113 -0.031 -0.061 0.000
std 0.036 0.054 0.056 0.047 0.045
rmse 0.036 0.126 0.064 0.077 0.045

M2

bias -0.000 0.125 0.019 -0.044 -0.001
std 0.067 0.090 0.070 0.068 0.070
rmse 0.067 0.154 0.072 0.081 0.070

M3

bias 0.000 0.080 0.000 -0.011 0.009
std 0.040 0.056 0.047 0.049 0.046
rmse 0.040 0.098 0.047 0.050 0.047
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Table 4.3: Simulation results (part III) from B = 2, 000 Monte Carlo studies

Res Model Estimates θfull θCC θKC θFI θSP

R7

M1

bias -0.000 0.092 0.020 -0.038 -0.001
std 0.068 0.091 0.070 0.068 0.071
rmse 0.068 0.129 0.073 0.078 0.071

M2

bias -0.000 0.092 0.020 -0.038 -0.001
std 0.068 0.091 0.070 0.068 0.071
rmse 0.068 0.129 0.073 0.078 0.071

M3

bias -0.000 0.071 -0.001 -0.011 0.009
std 0.038 0.056 0.046 0.049 0.046
rmse 0.038 0.090 0.046 0.050 0.047

R8

M1

bias -0.002 0.069 0.012 -0.024 -0.003
std 0.068 0.086 0.070 0.068 0.070
rmse 0.068 0.110 0.071 0.072 0.070

M2

bias -0.002 0.069 0.012 -0.024 -0.003
std 0.068 0.086 0.070 0.068 0.070
rmse 0.068 0.110 0.071 0.072 0.070

M3

bias -0.001 0.039 -0.001 -0.005 0.005
std 0.039 0.051 0.045 0.046 0.045
rmse 0.039 0.064 0.045 0.046 0.045

R9

M1

bias 0.002 0.099 0.016 -0.036 -0.001
std 0.069 0.089 0.071 0.069 0.071
rmse 0.069 0.133 0.072 0.078 0.071

M2

bias 0.002 0.099 0.016 -0.036 -0.001
std 0.069 0.089 0.071 0.069 0.071
rmse 0.069 0.133 0.072 0.078 0.071

M3

bias 0.000 0.066 -0.009 -0.018 0.002
std 0.039 0.055 0.046 0.047 0.046
rmse 0.039 0.086 0.046 0.051 0.046
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Table 4.4: Relative number of rejections from B = 1, 000 Monte Carlo studies. α is the predeter-
mined type I error.

n φy α

0.01 0.05 0.1 0.15 0.2

100

0 0 0 0 0 0
0.2 0.009 0.036 0.071 0.125 0.188
0.5 0.013 0.062 0.149 0.251 0.341
1 0.018 0.093 0.229 0.372 0.517

500

0 0.007 0.037 0.079 0.121 0.161
0.2 0.039 0.135 0.239 0.344 0.423
0.5 0.177 0.426 0.634 0.800 0.882
1 0.344 0.705 0.888 0.980 0.995
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CHAPTER 5. SEMIPARAMETRIC FRACTIONAL IMPUTATION USING

GAUSSIAN MIXTURE MODELS FOR HANDLING MULTIVARIATE

MISSING DATA

Hejian Sang Jae Kwang Kim

Abstract

Item nonresponse is frequently encountered in practice. Ignoring missing data can lose efficiency

and lead to misleading inference. Fractional imputation is a statistical tool for handling missing

data. However, the parametric fractional imputation of Kim (2011) may be subject to bias due

to model misspecification. In this paper, we propose a novel semiparametric fractional imputation

method using Gaussian mixture model. The proposed method is computationally efficient and

leads to robust estimation. The proposed method is further extended to incorporate the categorical

auxiliary information. The asymptotic model consistency under missing data is also established.

Several numerical studies are performed to check the finite sample performance of the proposed

method.

key words: Item nonresponse, Robust estimation, Survey sampling, Variance estimation.

5.1 Introduction

Missing data is frequently encountered in survey sampling, clinical trials and many other areas.

Imputation can be used to handle item nonresponse and several imputation methods have been

developed in the literature. Rubin (1996) proposed multiple imputation to create multiple complete

data sets. Alternatively, fractional imputation (Kim, 2011) makes one complete data with multiple

imputed values and corresponding fractional weights. Little and Rubin (2014) and Kim and Shao

(2013) provide comprehensive overviews of the methods for handling missing data.
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For multivariate missing data with arbitrary missing patterns, imputation methods are devel-

oped to preserve the correlation structure in the imputed data. Judkins et al. (2007) proposed

an iterative hot deck imputation procedure that is closely related to the data augmentation al-

gorithm of Tanner and Wong (1987) but did not provide variance estimation. Im et al. (2018)

developed fractional hot deck imputation for multivariate missing data and the procedure is imple-

mented in Proc SurveyImputae (SAS version 14.2). Other non-hot-deck imputation procedures for

multivariate missing data include the multiple imputation approach of Raghunathan et al. (2001)

and parametric fractional imputation of Kim (2011). The approaches of Judkins et al. (2007)

and Raghunathan et al. (2001) are based on conditionally specified models and the imputation

from the conditionally specified model is subject to the model compatibility problem (Chen, 2010).

Conditional models for the different missing patterns calculated directly from the observed pat-

terns may not be compatible with each other. The parametric fractional imputation used the joint

distribution to create imputed values, but correct specification of the joint model is challenging

under missing data. Furthermore, valid inference after multiple imputation requires congeniality

and self-efficiency (Meng, 1994), which is not necessary satisfied in many practical problems (Kim

et al., 2006; Yang and Kim, 2016b). Fractional imputation does not suffer such problems.

Note that parametric imputation requires correct model specification. Nonparametric impu-

tation methods, such as kernel regression imputation (Cheng, 1994; Wang and Chen, 2009), are

robust but may be subject to curse of dimensionality. It is important to develop a unified, robust

and efficient imputation method. The proposed semiparametric method fills in this important gap

by considering a flexible method for imputation.

In this paper, to achieve robustness against model misspecification, we develop an imputation

procedure based on Gaussian mixture models (GMM). GMM is a very flexible model that can

be used to handle outliers, heterogeneity and skewness. Lindsay (1995) and McLachlan and Peel

(2004) showed that any continuous distribution can be approximated by a finite Gaussian mix-

ture distribution. The proposed method using GMM makes a compromise between efficiency and
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robustness. It is semiparametric in the sense that the number of mixture component is chosen

automatically from the data. The computation is relatively simple and efficient.

The proposed method is further extended to handle mixed type data including categorical

variable. By allowing the proportion vector of mixture component to depend on categorical auxiliary

variable, the proposed fractional imputation using GMM can incorporate the observed information

in categorical variables and provide a very flexible tool for imputation.

The paper is structured as follows. The setup of the problem is introduced and a short review

of fractional imputation are presented in §5.2. In §5.3, the proposed semiparametric method and

its algorithm for implementation are introduced. Some asymptotic results are presented in §5.4.

In §5.5, the proposed method is further extended to handle mixed type data. Some numerical

studies and a real data application are presented to show the performance of the proposed method

in §5.6 and §5.7, respectively. In §5.8, we discuss some conclusion and future works. The technical

derivations and proof are presented in Appendix.

5.2 Setup

Consider a p-dimensional vector of study variable Y = (y1, y2, · · · , yp). Suppose that {Y1, Y2, · · · , Yn}

are n independent and identically distributed (IID) realizations from the random vector Y . In this

paper, we use the upper case to represent vector or matrix and the lower case to denote the el-

ements within vector or matrix. Assume that we are interested in estimating parameter θ ∈ Θ,

which is defined through E {U(θ;Y )} = 0, where U(·;Y ) is the estimating function of θ. With no

missingness, a consistent estimator of θ can be obtained by the solution to

1
n

n∑
i=1

U(θ;Yi) = 0. (5.1)

To avoid unnecessary details, we assume that the solotion to (5.1) exists almost everywhere.

However, due to missingness, the estimating equation in (5.1) cannot be applied directly. To

formulate the multivariate missingness problem, we further define the response indicator vector
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R = (r1, r2, · · · , rp) for Y as

rj =


1 if yj is observed

0 otherwise,
(5.2)

where j = 1, 2, · · · , p. We assume that the response mechanism is missing at random (MAR) in the

sense of Rubin (1976). We decompose Y = (Yobs, Ymis), where Yobs and Ymis represent the observed

and missing parts of Y , respectively. Thus, MAR assumption is described as

Pr {R = (r1, r2, · · · , rp) | Yobs, Ymis} = Pr {R = (r1, r2, · · · , rp) | Yobs} , (5.3)

where any rj ∈ {0, 1}, j = 1, 2, · · · , p.

Under MAR, a consistent estimator of θ can be obtained by solving the following estimating

equation:

Ū(θ) = 1
n

n∑
i=1

E {U(θ;Yi) | Yi,obs} = 0, (5.4)

where it is understood that E {U(θ;Yi) | Yi,obs} = U(θ;Yi) if Yi,obs = Yi. To compute the conditional

expectation in (5.4), the parametric fractional imputation (PFI) method of Kim (2011) can be

developed. To apply the PFI, we can assume that the random vector Y follows a parametric model

F0(Y ) ∈ {Fζ(Y ) : ζ ∈ Ω}. Under MAR, a consistent estimator ζ̂ can be obtained from the observed

likelihood. In PFI, M imputed values for Yi,mis, say
{
Y
∗(1)
i,mis, Y

∗(2)
i,mis, · · · , Y

∗(M)
i,mis

}
are generated from

a proposal distribution with same support of F0(Y ) and are assigned with fractional weights, say

{w∗i1, w∗i2, · · · , w∗iM}, so that a consistent estimator of θ can be obtained by solving

1
n

n∑
i=1

{
δiU(θ;Yi) + (1− δi)

M∑
k=1

w∗ikU(θ;Yi,obs, Y
∗(k)
i,mis); ζ̂

}
= 0,

where δi =
∏p
j=1 rij . The fractional weights are constructed to satisfy

M∑
k=1

w∗ikU
(
θ;Yi,obs, Y

∗(k)
i,mis

)
∼= E {U (θ;Yi,obs, Yi,mis) | Yi,obs}

as closely as possible.

However, for multivariate data, it is not easy to find a joint distribution family {Fζ(Y ) : ζ ∈ Ω}

correctly. If the joint distribution family {Fζ(Y ) : ζ ∈ Ω} is misspecified, the PFI can lead to
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biased estimation and inference. All aforementioned concerns motivate us to consider a more

robust fractional imputation method using Gaussian mixture model, which covers a wider class of

parametric models.

5.3 Proposed Method

We assume that the random vector Y follows a Gaussian mixture model

f(Y ;α, ζ) =
G∑
g=1

αgf(Y ; ζg), (5.5)

where G is the number of mixture component, αg is the mixture proportion satisfying
∑G
g=1 αg = 1,

ζg = {µg,Σ} are the parameters belonging to the g-th Gaussian mixture distribution and f(·; ζg) is

the density function of multivariate normal distribution with parameter ζg. Here, we recommend

using the same Σ across all components to get a parsimonious model. Note that, if the true model

F0(Y ) is one of the mixture components, then the mixture distribution should converge to the true

distribution F0(Y ) asymptotically.

To formulate the proposal, define the group indicator vector Z = (z1, z2, · · · , zG), where zg = 1

and zj = 0 for all j 6= g, if sample unit belongs to the g-th group. Note that Z is a latent variable

with parameter pr(zg = 1) = αg, satisfying
∑G
g=1 αg = 1. Without loss of generality, we assume

α1 ≤ α2 ≤ · · · ≤ αG to avoid the non-identification issue. Now, we can express

f(Y ) =
G∑
g=1

pr(zg = 1)f(Y | zg = 1),

which leads to the marginal distribution of Y in (5.5). To estimate ζ, the EM algorithm (Dempster

et al., 1977) can be used under the complete observations of Yi. If {(Zi, Yi)}ni=1 were fully observed,

we could use the joint log-likelihood function

ln(α, ζ) =
n∑
i=1

G∑
g=1

zig {logαg + log f(Yi | zig = 1; ζg)} . (5.6)

Using (5.6), the EM algorithm of estimating α and ζ under the complete observations of

{Y1, · · · , Yn} can be described as follows:
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E-step: Compute the conditional expectation of the complete log-likelihood function in (5.6),

given {Y1, Y2, · · · , Yn} and the current estimators, α(t) and ζ(t), to obtain

Q(α, ζ | α(t), ζ(t)) = E
{
ln(α, ζ) | Y1, · · · , Yn;α(t), ζ(t)

}
.

Since ln(α, ζ) is a linear function of zig, we can express

Q(α, ζ | α(t), ζ(t)) =
n∑
i=1

G∑
g=1

p
(t)
ig {logαg + log f(Yi | zig = 1; ζg)} , (5.7)

where

p
(t)
ig = f(Yi | zig = 1; ζ(t)

g )α(t)
g∑G

g=1 f(Yi | zig = 1; ζ(t)
g )α(t)

g

is the t−th estimate of pig = pr(zig = 1 | Yi).

M-step: Update the parameters by maximizing the conditional expectation of the complete

log-likelihood function, in the sense of

(α(t+1), ζ(t+1)) = argmax
α,ζ

Q(α, ζ | α(t), ζ(t)).

However, in addition to latent variable Z, Y is subject to missingness. Thus, to handle item

nonresponse, we propose to use the fractional imputation method to impute the missing values.

Note that, the joint predictive distribution of (Ymis, Z) given Yobs can be written as

f(Ymis, Z | Yobs) = f(Z | Yobs)f(Ymis | Yobs, Z), (5.8)

which implies that the prediction model for Ymis is

f(Ymis | Yobs) =
G∑
g=1

pr(zg = 1 | Yobs)f(Ymis | Yobs, zg = 1). (5.9)

The first part in (5.9), which is pr(zg = 1 | Yobs), can be obtained by

pr(zg = 1 | Yobs) = f(Yobs | zg = 1)αg∑G
g=1 f(Yobs | zg = 1)αg

where Yobs | (zg = 1) is normal. The second part Ymis | (Yobs, zg = 1) is also normal. Therefore, the

proposed fractional imputation using Gaussian mixture models (FIGURE) can be described as
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I-step: To generate Y ∗i,mis from f(Yi,mis | Yi,obs;α(t), ζ(t)) in (5.9), we use the following two-step

method:

Step 1 : Compute

p
(t)
ig = f(Yi,obs | zig = 1; ζ(t)

g )α(t)
g∑G

g=1 f(Yi,obs | zig = 1; ζ(t)
g )α(t)

g

,

where f(Yi,obs | zig = 1; ζg) is the marginal density of Yi,obs derived from (Yi,obs, Yi,mis) |

(zig = 1) ∼ N(µg,Σ).

Step 2 : Generate Y ∗i,mis from

f(Yi,mis | Yi,obs;α(t), ζ(t)) =
G∑
g=1

p
(t)
ig f(Yi,mis | Yi,obs, zig = 1; ζ(t)

g ), (5.10)

where f(Yi,mis | Yi,obs, zig = 1; ζg) is the conditional distribution derived from (Yi,obs, Yi,mis) |

zig = 1 ∼ N(µg,Σ). To generateM imputed values from (5.10), we first let (M (t)
1 ,M

(t)
2 , · · · ,M (t)

G ) ∼

Multinomial(M ; p
∼

(t)
i

), where p
∼

(t)
i

= (p(t)
i1 , · · · , p

(t)
iG). For each g = 1, 2, · · · , G, we gener-

ate Mg independent realizations of Y ∗i,mis, say
{
Y
∗(g1)
i,mis , Y

∗(g2)
i,mis , · · · , Y

∗(gMg)
i,mis

}
, from the

conditional distribution f(Yi,mis | Yi,obs, zig = 1), which is also normal.

W-step: Compute the fractional weights for Y ∗(gj)i,mis as

w∗igj(t) = p
(t)
ig

1
M

(t)
g

.

Using (w∗igj(t), Y
∗(gj)
i,mis ), we can compute

Q∗(α, ζ | α(t), ζ(t)) =
n∑
i=1

G∑
g=1

M
(t)
g∑

j=1
w∗igj(t)

{
logαg + log f(Y ∗(gj)i | zig = 1; ζg)

}
, (5.11)

where Y ∗(gj)i = (Yi,obs, Y
∗(gj)
i,mis ). If δi = 1, then Y

∗(gj)
i = Yi.

M-step: Update the parameters by maximizing (5.11) with respect to (α, ζ).

Repeat I-step and M-step until the convergence is achieved.
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Then, the final estimator, say θ̂FIGURE , of θ can be obtained by solving the fractionally imputed

estimating equation, given by

1
n

n∑
i=1

G∑
g=1

Mg∑
j=1

w∗igjU(θ;Y ∗(gj)i ) = 0, (5.12)

where w∗igj are the final fractional weights and Mg are the final imputation sizes.

Remark 5.1. We now briefly discuss variance estimation of θ̂FIGURE. To estimate the variance

of θ̂FIGURE, the replication method can be used. First note that, the fractional weight assigned to

Y
∗(gj)
i is

w∗igj = p̂igM
−1
g := p̂igπ̂2j|ig,

where p̂ig is obtained from

p̂ig = f(Yi,obs | zig = 1; ζ̂g)α̂g∑G
g=1 f(Yi,obs | zig = 1; ζ̂g)α̂g

. (5.13)

Thus, the k-th replicate of w∗igj can be obtained by

w
∗(k)
igj = p̂

(k)
ig π̂

(k)
2j|ig, (5.14)

where p̂(k)
ig is obtained from (5.13) using ζ̂(k) and α(k)

g , the k−th replicate of ζ̂ and α̂g respectively,

and

π̂
(k)
2j|ig ∝

f(Y ∗(gj)i,mis | Yi,obs, zig = 1; ζ̂(k)
g )

f(Y ∗(gj)i,mis | Yi,obs)

and
∑G
g=1 π̂

(k)
2j|ig = 1. The calculation of π̂(k)

2j|ig is based on the idea of importance sampling. Con-

struction of replicate fractional weights using importance sampling idea has been used in Berg et al.

(2016).

The replicate parameter estimates (α̂(k), ζ̂(k)) are computed by maximizing

l
(k)
obs(α, ζ) =

n∑
i=1

w
(k)
i log fobs(Yi,obs;α, ζ) (5.15)

respect to (α, ζ), where

fobs(Yi,obs;α, ζ) =
G∑
g=1

αgf(Yi,obs | zig = 1; ζg),
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and w
(k)
i is the k-th replicate of wi = n−1. The maximizer of l(k)

obs(α, ζ) in (5.15) can be obtained

by applying the same EM algorithm using replicate weights and replicate fractional weights in the

M-step. There is no need to repeat I-step. Variance estimation for θ̂FIGURE can be obtained by

computing the k-th replicate of θ̂FIGURE from

n∑
i=1

w
(k)
i

G∑
g=1

Mg∑
j=1

w
∗(k)
igj U(θ;Y ∗(gj)i ) = 0.

Remark 5.2. In survey sampling, let {(Y1, w1), (Y2, w2), · · · , (Yn, wn)} represent the finite sam-

ples, where wi are the sampling weights. The proposed FIGURE method can be applied to handle

multivariate missingness under survey data. I-step is the same with IID setup. However, W-step

is adapted to

w∗igj(t) = wip
(t)
ig

1
Mg

. (5.16)

Note that Q∗(α, ζ | α(t), ζ(t)) in (5.11) is a pseudo log-likelihood function using (5.16). M-step is

to maximize the pseudo log-likelihood function respect to (α, ζ).

5.4 Asymptotic Theory

In our proposed FIGURE method, we assume G is fixed. If G is very large, the proposed mixture

model may be subject to overfitting and increase its variance. If G is small, then the approximation

of the true distribution cannot provide accurate prediction due to bias. Hence, we can allow G

to depend on the sample size n, say G = G(n). The choice of G under complete data has been

well explored in the literature. The popular method are based on Bayesian information criterion

(BIC) and Akaike’s information criterion (AIC). See Wallace and Dowe (1999), Oliver et al. (1996),

Windham and Cutler (1992), Schwarz et al. (1978), Fraley and Raftery (1998) and Dasgupta and

Raftery (1998). The alternative way of using SCAD penalty (Fan and Li, 2001) is studies in Chen

and Khalili (2008) and Huang et al. (2017). The resampling methods, such as cross-validation and

bootstrap, can also be used to choose the number of mixture components. See McLachlan (1987)

and Smyth (2000). Here, we propose to use the Bayesian information criterion to select G. Under
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multivariate missingness, we do not have the complete log-likelihood function. Thus, we propose

to use the observed log-likelihood function to serve the role of the complete log-likelihood function

in the information criterion, in the sense that

BIC = −2
n∑
i=1

log


G∑
g=1

α̂gf(Yi,obs; ζ̂g)

+ {G− 1 +Gp+ p(p+ 1)/2} logn, (5.17)

under the assumption of Σg = Σ, where (α̂, ζ̂) are the estimators obtained from the proposed

method.

Considering the generalized penalties, we can rewrite (5.17) as

BIC(G) = −2
n∑
i=1

log


G∑
g=1

α̂gf(Yi,obs; ζ̂g)

+ lognφ(G), (5.18)

where φ(G) is a monotone increasing function of G. In (5.17), φ(G) = G+Gp if ignoring constants.

In this section, we establish first the consistency of model selection using (5.18) under the Gaussian

mixture model assumption.

Assume that samples {Y1, Y2, · · · , Yn} are IID realizations from f0(Y ) =
∑Go

g=1 α
o
gf(Y ; ζog ), where

(Go, αo, ζo) are true parameter values. For ζog = (µog,Σo), we need the following regularity assump-

tions:

(A1 ) The mean vectors for each mixture component is bounded uniformly, in the sense of

‖µog‖ ≤ C1, for g = 1, 2, · · · , Go.

(A2 ) ‖Σo‖ ≤ C2. Furthermore, the smallest eigenvalue of Σo is positive.

The first assumption means the boundedness of the first moment. Assumption (A2 ) is to make

sure that Σ0 is bounded and nonsingular. Both assumptions are commonly used.

To establish the model consistency, we furthermore make the additional assumptions on the

missingness mechanism:

(A3 ) The response rate for yj is bounded below from 0, say
∑n
i=1 rij/n ≥ C3 , for j =

1, 2, · · · , p, where C3 >.

(A4 ) The response mechanism is MAR as defined in (5.3).
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The following theorem shows that the true number of mixture components can be selected by

minimizing BIC(G) in (5.18) consistently.

Theorem 5.1. Assume the true density f0 is the Gaussian mixture model, satisfying A1–A2. Let

Ĝ be the minimizer of BIC(G) in (5.18). Under assumptions A3–A4, we have

Pr(Ĝ = Go) −→ 1,

in probability, where Go is the true number of mixture components.

The proof of Theorem 5.1 is shown in Appendix 5.9. For any continuous joint distribution, the

selection of G using (5.18) can find the true GMM asymptotically.

Now, we establish the following lemma to measure how well GMM can approximate the arbitrary

density function. We furthermore make additional assumptions about the true density function f0.

Use E0 denote the expectation respect to f0.

(A5 ) Assume f0(Y ) is continuous.

(A6 ) Assume E0 {∂f(Y )/∂α} <∞ and E0 {∂f(Y )/∂µ} <∞, where f(Y ) =
∑G
g=1 αgf(Y ;µg,Σ).

Moreover, assume E0
{
f(Y )−2} <∞.

(A7 )
∫
Y 2f0(Y ) <∞.

Lemma 5.1. Under assumptions (A5)–(A7) and MAR, for any ε > 0, there exist G = ε−γ, such

that

‖f0 − f̂‖1 = O(ε), (5.19)

var(f0 − f̂) = O(ε−γn−1), (5.20)

with probability one, where f̂(Y ) =
∑G
g=1 α̂gf(Y ; µ̂g, Σ̂) is obtained from the proposed method in

§5.3, γ > 0 depends on f0 and ‖f0 − f̂‖1 =
∫
|f0(Y )− f̂(Y )|f0(Y )dY.

The proof of Lemma (5.1) is presented in Appendix 5.11. If f0 is a density function of the

Gaussian mixture model, then γ = 0. Then, our proposed BIC(G) in Theorem 5.1 can select the
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true model consistently. For any f0 satisfies (A5 )–(A7 ) and is not a finite Gaussian mixture model,

the bias can goes to 0 as G −→∞ from (5.19). The variance will increase as G −→∞ from (5.20) for

fixed n. There is a trade-off between bias and variance for the divergence case (γ > 0, G −→∞).

Using Lemma 5.1, we further establish the
√
n-consistency of θ̂FIGURE . The following assump-

tions are the sufficient conditions to obtain the
√
n-consistency.

(A8 ) E0
{
U2(θ;Yi)

}
<∞.

(A9 ) γ ∈ (0, 2).

(A10 ) ε = O(n−1/(2−∆)), for any ∆ ∈ (0, 2).

Theorem 5.2. Under assumptions (A5)–(A10), γ + ∆ < 2 and MAR, we have

1
n

n∑
i=1

G∑
g=1

Mg∑
j=1

w∗igjU(θ;Y ∗(gj)i ) ∼= J1 + op(n−1/2), (5.21)

where

J1 = 1
n

n∑
i=1

E0 {U(θ;Yi) | Yi,obs} ,

if M = ming{Mg} −→ ∞. Furthermore, we have

√
n(θ̂FIGURE − θ0) −→ N(0,Σ), (5.22)

for some Σ which is positive definite and θ0 satisfies E0 {U(θ0;Y )} = 0.

The proof of (5.21) is shown in Appendix 5.12 and (5.22) is the following result from (5.21). From

Theorem 5.2, we have G = O(nγ/(2−∆)) −→∞ with the rate smaller than n. Thus, under divergence

case, our proposed method still enjoys
√
n-consistency.

5.5 Extension

In Section 5.3, we assume that Y is fully continuous. However, in practice, many categori-

cal data, such as demographic variables, can be used to build an imputation model. To extend
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the proposed FIGURE method to incorporate the categorical variables, we propose the following

conditional FIGURE (CFIGURE) method.

To introduce the CFIGURE method, we first introduce the conditional GMM. Suppose that

(X,Y ) is a random vector where X is discrete and Y is continuous. To obtain the conditional

GMM, we assume that Z satisfies

f(Y | X,Z) = f(Y | Z), (5.23)

in the sense that Z is a partition of the sample such that Y is homogeneous within each group.

Furthermore, we assume that f(Y | zg = 1) follows a Gaussian distribution. Combining these

assumptions, we have the following conditional GMM

f(Y | X) =
G∑
g=1

pr(zg = 1 | X)f(Y | X, zg = 1)

=
G∑
g=1

pr(zg = 1 | X)f(Y | zg = 1)

=
G∑
g=1

αg(X)f(Y | zg = 1), (5.24)

where αg(X) is the conditional probability pr(zg = 1 | X) and f(Y | zg = 1) is the density function

of the normal distribution with parameter ζg = {µg,Σ}.

To make group indicator vector Z based on the fully observed samples {(X1, Y1), · · · , (Xn, Yn)},

the following fractional imputation method can be applied. Similarly to §5.3, if Z1, · · · , Zn were

observed, then the complete log-likelihood function could be written as

ln(α, ζ) =
n∑
i=1

G∑
g=1

zig {logαg(Xi) + log f(Yi | zig = 1; ζg)} .

Moreover, since Xi and Zi are discrete, αg(Xi) = pr(zig = 1 | Xi) can be estimated directly from

the empirical distribution. However, Z is latent. The predictive model of Z can be obtained by

pr(zg = 1 | Y,X) = f(Y | zg = 1)pr(zg = 1 | X)∑G
g=1 f(Y | zg = 1)pr(zg = 1 | X)

, (5.25)

due to (5.23). The parameter estimation for the conditional GMM (CGMM) can be described as

follows:
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E-step: Given the current values of parameters, α(t)
g (X) and ζ

(t)
g , using (5.25), compute the

predictive probabilities as

p
(t)
ig ∝ α

(t)
g (Xi)f(Yi | zig = 1; ζ(t)

g ), (5.26)

where
∑G
g=1 p

(t)
ig = 1. Then, we can compute the conditional expectation of ln(α, ζ) as

Q(α, ζ | α(t), ζ(t)) =
n∑
i=1

G∑
g=1

p
(t)
ig {logαg(Xi) + log f(Yi | zig = 1; ζg)} . (5.27)

M-step: Update the proportion vector by

α(t+1)
g (Xi) =

∑
{j:Xj=Xi} p

(t)
jg∑G

g=1
∑
{j:Xj=Xi} p

(t)
jg

. (5.28)

The parameters ζ can be updated by maximizing Q(α(t+1), ζ | α(t), ζ(t)) in (5.27) respect to

ζ.

Next, we extend the above EM algorithm under CGMM to incorporate item nonresponse. For

simplicity, we only consider that X is fully observed and Y is subject to missingness. Under (5.23),

the predictive model of Yi,mis can be expressed as

f(Yi,mis | Yi,obs, Xi) =
G∑
g=1

pr(zig = 1 | Yi,obs, Xi)f(Yi,mis | Yi,obs, zig = 1), (5.29)

where f(Yi,mis | Yi,obs, zig = 1) can be derived from (Yi,obs, Yi,mis) | (zig = 1) ∼ N(µg,Σ). Similarly

to (5.25), the posterior probability of zig = 1 given observed data can be obtained as

pr(zig = 1 | Yi,obs, Xi) = f(Yi,obs | zig = 1)pr(zig = 1 | Xi)∑G
g=1 f(Yi,obs | zig = 1)pr(zig = 1 | Xi)

. (5.30)

Therefore, the proposed CFIGURE can be summarized as follows:

I-step: Creating M imputed values of Yi,mis from (5.29) can be described as the following two

steps.

Step 1 : For each g = 1, 2, · · · , G, given the current parameter values (α(t)
g , ζ

(t)
g ), the

posterior probabilities of zig = 1 given (Yi,obs, Xi) can be obtained from

p
(t)
ig = f(Yi,obs | zig = 1; ζ(t)

g )α(t)
g (Xi)∑G

g=1 f(Yi,obs | zig = 1; ζ(t)
g )α(t)

g (Xi)
.
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Step 2 : Generate M imputed values of Yi,mis following the same procedures in I-step in

§5.3.

W-step: Update the fractional weights for Y ∗(gj)i = (Yi,obs, Y
∗(gj)
i,mis ) as

w∗igj(t) =
p

(t)
ig

Mg
,

for j = 1, 2, · · ·Mg and
∑G
g=1Mg = M .

M-step: Update the parameter values by maximizing

Q∗(α, ζ | α(t), ζ(t)) =
n∑
i=1

G∑
g=1

Mg∑
j=1

w∗igj(t)

{
logαg(Xi) + log f(Y ∗(gj)i | zig = 1; ζg)

}
,

respect to (α, ζ).

Repeat I-step to M-step iteratively until convergence is obtained. The final estimator of θ

can be obtained by solving the fractionally imputed estimating equation in (5.12). Note that the

proposed CFIGURE method builds the proportion vector of mixture components into a function

of auxiliary variable and assumes that mixture components share the same mean and variance

structure. Thus, the proposed method is useful in borrowing information across X. Moreover, the

auxiliary information is incorporated to build a more flexible class of joint distributions.

5.6 Numerical Studies

In this section, we conducted two numerical studies to evaluate the performance of the proposed

method. The first simulation study is used to check the performance of FIGURE under multivariate

continuous variables. Heavy tailed, skewed and nonlinear distributions are used to demonstrate the

efficiency and robustness of the proposed method. The second simulation study considers the case

of multivariate mixed categorical and continuous variables.

5.6.1 Simulation Study I

The design for the first simulation study can be described as a 4× 2 factorial design, where the

two factors are outcome model and response mechanism. We consider the following models.
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M1 : Yi = (Yi1, Yi2, Yi3, Yi4) follows a mixture distribution with density f(Y ) =
∑3
g=1 αgfg(Y ),

where (α1, α2, α3) = (0.3, 0.3, 0.4) and fg(Y ) is a density function for multivariate normal

distribution with mean µg and variance Σ. Let µ1 = (−3,−3,−3,−3), µ2 = (1, 1, 1, 1), µ3 =

(5, 5, 5, 5) and

Σ =



1 0.8 0.82 0.83

0.8 1 0.8 0.82

0.82 0.8 1 0.8

0.83 0.82 0.8 1


. (5.31)

M2 : Use the same model as M1 except for f1(Y ), where f1(Y ) is the density for t distribution

with degree freedom 5 and non-centrality -3.

M3 : Let Xi = (xi1, xi2, xi3, xi4), where xij , j = 1, 2, 3, 4, are independently generated from

Gamma(1, 1). Let Yi = (yi1, yi2, yi3, yi4), where yi1 = xi1, yi2 = xi1 + xi2, yi3 = xi1 + xi2 + xi3

and yi4 = xi1 + xi4.

M4 : Generate xi ∼ N(1, 1) independently. Let Yi = (xi, x2
i , x

3
i , x

4
i ).

Under M1, the proposed FIGURE method correctly specifies the joint model. Non-centered t

distribution is used in M2 to check the robustness of the proposed method to the outliers and heavy

tails. M3 and M4 are used to check the performance of FIGURE under skewness and nonlinearity,

respectively.

The sample size for each realized sample is n = 500. Once the complete sample is obtained, we

apply the following two response mechanisms to create two separate incomplete samples.

1. MCAR: For Yi = (yi1, yi2, yi3, yi4), assume yi1 are fully observed. For j > 1, we use sim-

ple random sampling to select 20% to make missingness equally for each item. There are

about 50% complete data overall. The response mechanism is missing completely at random

(MCAR).
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2. MAR: Define

πi = exp(−0.5 + 0.5yi1)
1 + exp(−0.5 + 0.5yi1) .

For yij , j = 2, 3, 4, we select 20% of the sample independently to make missingness with

the selection probabilities equal to πi. Since we assume yi1 are fully observed, the response

mechanism is MAR.

For each realized incomplete samples, we apply the following methods:

[Full]: As a benchmark, we use the full samples to estimate parameters. 95% confident

intervals are constructed using full sample standard errors.

[CC ]: Only use the complete cases to estimate parameters and construct confidence intervals.

[MICE ]: Apply multivariate imputation by chained equations (Buuren and Groothuis-Oudshoorn,

2011). The variance estimators are obtained using Rubin’s formula in Rubin (2004) and con-

fidence intervals are built using the asymptotic normality.

[FIGURE ]: The proposed method where the number of components G is selected using the

BIC in (5.17). The inference is implemented using the variance estimator presented in Remark

5.1.

The parameters of interest are sample means and sample proportions. For Y = (y1, y2, y3, y4), define

θ2 = E(y2), θ3 = E(y3) and θ4 = E(y4). For outcome model M1, define P2 = Pr(y2 < −2), P3 =

Pr(y3 < −2), P4 = Pr(y4 < −2) and P2 = Pr(y2 < −3), P3 = Pr(y3 < −3), P4 = Pr(y4 < −3)

in M2. For M3, define P2 = Pr(y2 < 2), P3 = Pr(y3 < 3), P4 = Pr(y4 < 2) and P2 = Pr(y2 <

0.6), P3 = Pr(y3 < 1.5), P4 = Pr(y4 < 1) in M4. The simulation is repeated for B = 2, 000 times.

To evaluate the above methods, the relative mean square error (RMSE) is defined as

RMSE = MSEmethod
MSEFull

× 100, (5.32)

where MSEmethod is the mean square error of the parameters of applying method and MSEFull is

the mean square error of the parameters of using full samples. The simulation results of RMSE are
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presented in Table 5.1. The average of coverage probabilities and interval length of 2, 000 Monte

Carlo 95% confidence intervals are presented in Table 5.4 in Appendix 5.10.

From Table 5.1, when the outcome model is the Gaussian mixture model (M1 ), all methods the

are consistent under MCAR. MICE and FIGURE have almost the same performance in term of

relative mean square errors (RMSEs). However, CC is less efficient due to smaller sample size with

ignoring the missingness under MCAR. When the response mechanism is MAR, the CC method is

biased, which leads to large RMSE. When the outcome model has heavy tails and outliers (M2 ),

FIGURE is slightly better than MICE under both MCAR and MAR response mechanisms. When

the outcome model is skewed (M3 ), FIGURE has almost the same RMSE with MICE for mean

estimators, but outperforms MICE for proportion estimation. Thus, our proposed FIGURE method

preserves the correlation structure better than MICE. When the outcome model has nonlinear mean

curves (M4 ), FIGURE has much smaller RMSE than MICE for proportion estimators. Thus, the

proposed FIGURE is more robust and efficient for general purpose estimation.

Interestingly, imputed estimators are sometimes more efficient than the full sample estimators.

This phenomenon, called superefficiency (Meng, 1994), can happenïĳŇ when the method-of-moment

is used in the full sample estimator. Yang and Kim (2016a) give a rigorous theoretical justification

for this phenomenon.

From the coverage probabilities in Table 5.4, the proposed replicate inference procedure in Re-

mark 5.1 estimates confidence intervals consistently. Moreover, for M4, both FIGURE and MICE

suffer under-coverage for proportion estimation. However, FIGURE provides wider confidence inter-

vals and better coverage probabilities than MICE for proportion estimators in all cases. Therefore,

FIGURE is more robust to model misspecification than MICE.

5.6.2 Simulation Study II

The second simulation study is used to check the performance of the proposed CFIGURE in

§5.5 under mixed type data. The outcome model can be generated as follows:
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M5 : Vi = (vi1, vi2, vi3, vi4) are independently generated from Gaussian mixture model with

density function f(V ) =
∑G
g=1 αgfg(V ). Let the mixture proportion vector and mean vectors

be the same with M1. However, we use

Σ =



1 0.5 0.72 0.73

0.5 1 0.7 0.72

0.72 0.7 1 0.7

0.73 0.72 0.7 1


to reduce the correlation. Generate the auxiliary variables from

Xi =


1 if vi1 < 0

2 if 0 ≤ vi1 < 3

3 otherwise

(5.33)

and Yi = (vi2, vi3, vi4).

M6 : Generate the model indicators Xi independently using simple random sampling from

{1, 2, 3} with probabilities (0.3, 0.3, 0.4). Let Yi = (yi1, yi2, yi3) follows a multivariate normal

distribution. If Xi = 1, generate Yi using mean (−3,−3,−3) and variance Σ, where

Σ =


1 0.5 0.49

0.5 1 0.7

0.49 0.7 1

 .

If Xi = 2, generate Yi using mean (1, 1, 1) and variance Σ. For all other Xi, use mean (5, 5, 5)

and Σ.

M7 : Generate Xi using simple random sampling from {1, 2} with probabilities (0.7, 0.3)

independently. If Xi = 1, then, Yi is generated from multivariate normal distribution with

mean (1, 1, 1) and variance

Σ =


1 0.7 0.49

0.7 1 0.7

0.49 0.7 1

 .
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For Xi = 2, let Yi = (yi1, yi2, yi3). Then, generate yij from Gamma distribution with a shape

parameter 1 and a scale parameter 1 independently for j ≥ 1.

M5 is simulated from GMM but using discretized yi1 as the auxiliary variables. In M6, Xi

are the indicators of groups, which often happen in demographical variables. M6 is mixture of

Gaussian and Gamma distributions. We use M7 to test the robustness of Gaussian assumption.

Suppose that Xi are fully observed and Yi are subject to multivariate missingness. For the

response mechanism, MCAR and MAR are applied. MCAR is the same as the simulation study I.

For MAR, define

πi = exp(0.5 + 0.5Xi)
1 + exp(0.5 + 0.5Xi)

.

Then, we select 20% of items to make missingness using probabilities πi for each yij , j = 2, 3, 4,.

The overall response rate is approximately 50%.

The parameters of interest are mean and proportion estimators of Y . For all three models, let

θ1 = E(y1), θ2 = E(y2), θ3 = E(y3). For M5 and M6, let P1 = Pr(y1 < 0), P2 = Pr(y2 < 0), P3 =

Pr(y3 < 0). For M7, let P1 = Pr(y1 < 1.5), P2 = Pr(y2 < 1.5), P3 = Pr(y3 < 1.5).

For comparison, we also apply MICE in Simulation Study I to each realized incomplete sample.

We repeat simulation process B = 2, 000 times. The simulation results are shown in Table 5.2 and

Table 5.5.

Table 5.2 presents RMSE of MICE and CFIGURE. For the proposed CFIGURE, the key as-

sumption is Pr(Y | X, zg = 1) = Pr(Y | zg = 1). Under M5, the assumption of Pr(Y | X, zg = 1) =

Pr(Y | zg = 1) is violated. Even though the assumption is violated, the proposed CFIGURE has

better performance of estimating proportions than MICE and similar RMSE for mean estimators

under both MCAR and MAR. Under M6, the assumption of Pr(Y | X, zg = 1) = Pr(Y | zg = 1)

holds. The proposed CFGMM outperforms MICE to estimate proportions. MICE works well under

M5 and M6, since the normality holds and regression structure, which depends on Σ are constant

across groups. Under M7, the Gaussian mixture assumption is violated and the mixture of in-

dependent gamma distributions destroy the regression structures. Thus, the proposed CFIGURE

uniformly performs better than MICE.
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Table 5.5 shows the average lengths of 95% confidence intervals and coverage probabilities using

Jackknife method introduced in Remark 5.1. Table 5.5 demonstrates that the proposed Jackknife

method can provides valid inferences.

5.7 Application

In this section, we apply the proposed method in §5.3 to a synthetic data that mimics monthly

retail trade survey data at U.S. Census Bureau. The monthly retail trade survey data can be found

in http://www.portal-stat.admin.ch/ices5/imputation-contest/. The sampling scheme is a

stratified simple random sample without replacement sample with six strata: one certain (take-all)

and five non-certainty strata. The sample sizes are computed using Neyman allocation.

The overview of the monthly retail trade survey data is presented in Figure 5.1. The overall

Figure 5.1: “mos” is frame measure of size; “Sales00” denotes current month sales for unit (subject
to missing); “Asales00” is current month administrative data value for sales; “Sales01” means prior
month sales for unit; “Inventories00” is current month inventories for unit (Subject to missing);
“Ainventories00” is current month administrative data value for inventories; “Inventories01” is prior
month inventories for unit.

response rate is approximately 71%. Current month sales and inventories are subject to missingness.

We can find that this monthly retail trade data are highly skewed. The normal quantile-quantile

plots are shown in Figure 5.2. From Figure 5.2, Gaussian assumption is violated and there exist

http://www.portal-stat.admin.ch/ices5/imputation-contest/
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Figure 5.2: Quantile-quantile plots for the monthly retail trade survey data.

three extreme outliers.

To impute current month sales and inventories, we apply the proposed FIGURE method and

MICE. After implementation, MICE fails to converge due to high correlations. See the correlation

plot in Figure 5.3. Therefore, we only present the final results using the proposed method. The

Figure 5.3: Correlation plot of the monthly retail trade survey data only using complete cases.

final results are shown in Table 5.3.

Comparing with the true population statistics, provided by U.S. Census Bureau, we can see

that our proposed FIGURE method works well to preserve the correlation structure and handle
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skewness and outliers. The 95% confidence intervals are also presented using Jackknife method in

Remark 5.1. We can see that all 95% confidence intervals contain their true values.

5.8 Discussion

In this paper, we propose a semiparametric fractional imputation method using GMM to handle

arbitrary multivariate missing data. The proposed method automatically selects mixture compo-

nents and provides a unified framework for robust imputation. Even if the group size G can increase

with sample size n, the resulting estimator is
√
n-consistency. We also extend the proposed method

to incorporate categorical auxiliary variable. The flexible model assumption and efficient compu-

tation are main advantages of our proposed method. The proposed method is directly applicable

in survey sample data. An R software package for the proposed method is under development.

5.9 Appendix A: Proof of Theorem 5.1

The outline of the proof can be described as the following two steps:

Step 1 : Show Pr(Ĝ > Go) −→ 0 in probability.

Step 2 : Show Pr(Ĝ < Go) −→ 0 in probability.

Thus, combining Step 1 and Step 2, we can complete the proof.

Before we show the proof, let us define some notations first. From assumption (A2 ), Σo is

bounded and invertible. Thus, we can define Yi ←− {Σo}−1/2 Yi. Therefore, without loss of general-

ity, we consider the standardized samples {Yi}. Then, ζg = µg.

Given G = Ĝ, we can obtain {(µ̂g, α̂g)}Ĝg=1 from the proposed FIGURE. Similarly, if G = Go,

{(µ̂og, α̂og)}Ĝ
o

g=1 can be obtained.

Using Theorem 1 in Kim (2011), we can obtain the following lemma.

Lemma 5.2. Under the regularity conditions in Kim (2011), given G ≥ Go, {(µ̂og, α̂og)}Ĝ
o

g=1 converge

to true values with rate of Op(1/
√
n).
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We first show Step 1. If Ĝ > Go, we assume the first Go components are non-negligible. Thus,

using Lemma 5.2, we have µ̂g −→ µ̂og and α̂g −→ αog in probability, for g = 1, 2, · · · , Go. Moreover,

α̂g −→ 0 in probability, for g = Go + 1, · · · , Ĝ.

Using Taylor linearization, we have

−2
n∑
i=1

log


Ĝ∑
g=1

α̂gf(Yi,obs; ζ̂g)


= −2

n∑
i=1

log


Go∑
g=1

αogf(Yi,obs; ζog )

+DT
1 β1 +Op(1),

where β1 =
(
µ̂1 − µ1, · · · , µ̂Go − µGo , α̂1 − α1, · · · , α̂Go − αGo , µ̂Go+1, · · · , µ̂Ĝ, α̂Go+1, · · · , α̂Ĝ

)
and

D1 =
∂
[
−2
∑n
i=1 log

{∑Ĝ
g=1 αgf(Yi,obs; ζg)

}]
∂(α, µ)

∣∣∣∣∣∣
α=αo,µ=µo

.

Similarly, we can obtain that

−2
n∑
i=1

log


Go∑
g=1

α̂ogf(Yi,obs; ζ̂og )


= −2

n∑
i=1

log


Go∑
g=1

αogf(Yi,obs; ζog )

+DT
2 β2 +Op(1),

where β2 = (µ̂1 − µ1, · · · , µ̂Go − µGo , α̂1 − α1, · · · , α̂Go − αGo) and

D2 =
∂
[
−2
∑n
i=1 log

{∑Go

g=1 α
o
gf(Yi,obs; ζog )

}]
∂(α, µ)

∣∣∣∣∣∣
α=αo,µ=µo

.

Note that, given true parameter values, the first 2Go entries of D1 are equal to the first 2Go entries

of D2. Therefore, we have

−2
n∑
i=1

log


Ĝ∑
g=1

α̂gf(Yi,obs; ζ̂g)

+ lognφ(Ĝ)

+2
n∑
i=1

log


Go∑
g=1

α̂ogf(Yi,obs; ζ̂og )

− lognφ(Go)

= logn
{
φ(Ĝ)− φ(Go)

}
+
{
D

[(2Go+1):(2Ĝ)]
1

}T (
µ̂Go+1, · · · , µ̂Ĝ, α̂Go+1, · · · , α̂Ĝ

)T +Op(1),

where D[(2Go+1):(2Ĝ)]
1 is the vector of D1 from 2Go + 1 to 2Ĝ.
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We can show that

∂ log
{∑Ĝ

g=1 αgf(Yi,obs; ζg)
}

∂αg
= f(Yi,obs; ζg)

log
{∑Ĝ

g=1 αgf(Yi,obs; ζg)
} ,

∂ log
{∑Ĝ

g=1 αgf(Yi,obs; ζg)
}

∂µg
= αg

log
{∑Ĝ

g=1 αgf(Yi,obs; ζg)
} ∂f(Yi,obs; ζg)

∂µg
.

For g > Go, αg = 0. Thus,

∂ log
{∑Ĝ

g=1 αgf(Yi,obs; ζg)
}

∂µg
= 0.

Since the true model does not have g-th mixture component for g > Go, we can let µg −→∞. Thus,

∂ log
{∑Ĝ

g=1 αgf(Yi,obs; ζg)
}

∂αg
−→ 0.

Therefore, we can show that{
D

[(2Go+1):(2Ĝ)]
1

}T (
µ̂Go+1, · · · , µ̂Ĝ, α̂Go+1, · · · , α̂Ĝ

)T = op(1).

Overall, we show

−2
n∑
i=1

log


Ĝ∑
g=1

α̂gf(Yi,obs; ζ̂g)

+ lognφ(Ĝ)

+2
n∑
i=1

log


Go∑
g=1

α̂ogf(Yi,obs; ζ̂og )

− lognφ(Go)

= logn
{
φ(Ĝ)− φ(Go)

}
+Op(1).

Since φ(G) is a monotone increasing function, we have logn
{
φ(Ĝ)− φ(Go)

}
+Op(1) > 0 in prob-

ability as n −→∞. Thus, Go is the minimizer of (5.18), instead of Ĝ, which completes the proof of

Step 1.

Next step is to prove Pr(Ĝ < Go) −→ 0 in probability. To show that, we first introduce

KullbackâĂŞ-Leibler (KL) divergence. For distributions F and Q of a continuous random vari-

able, the KL divergence is defined as

KL(F |Q) =
∫
f(x) log f(x)

q(x) dx.
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The KL divergence is always non-negative. Applying KL divergence to the two Gaussian mixture

density functions, we have

∫ Go∑
g=1

αogf(Yi; ζog ) log
∑Go

g=1 α
o
gf(Yi; ζog )∑Ĝ

g=1 αgf(Yi; ζg)
d(Yi,obs) ≥ 0,

under complete data.

Under MAR assumption in (A4 ) and non-empty observations in (A3 ), we can show that

∫ Go∑
g=1

αogf(Yi,obs; ζog ) log
∑Go

g=1 α
o
gf(Yi,obs; ζog )∑Ĝ

g=1 αgf(Yi,obs; ζg)
d(Yi,obs) ≥ 0, (5.34)

Since Ĝ < Go, (5.34) is positive and denote it as C4(Ri) > 0.

From Assumption (A3 ), we can define C4 = minRi,
∑

j
rij>0C4(Ri). Then, we can show that

−2
n∑
i=1

log


Ĝ∑
g=1

α̂gf(Yi,obs; ζ̂g)

+ lognφ(Ĝ) + 2
n∑
i=1

log


Go∑
g=1

α̂ogf(Yi,obs; ζ̂og )

− lognφ(Go)

= 2
n∑
i=1

log
∑Go

g=1 α̂
o
gf(Yi,obs; ζ̂og )∑Ĝ

g=1 α̂gf(Yi,obs; ζ̂g)
− logn

{
φ(Go)− φ(Ĝ)

}
−→ 2

∑
Ri

n(Ri)C4(Ri)− logn
{
φ(Go)− φ(Ĝ)

}
,

where n(Ri) is the count of missing pattern Ri and
∑
Ri n(Ri) = n. Since

∑
Ri

n(Ri)C4(Ri) ≥ nC4.

Since nC4 − logn
{
φ(Go)− φ(Ĝ)

}
> 0 when n is large enough, we can conclude that

−2
n∑
i=1

log


Ĝ∑
g=1

α̂gf(Yi,obs; ζ̂g)

+ lognφ(Ĝ) + 2
n∑
i=1

log


Go∑
g=1

α̂ogf(Yi,obs; ζ̂og )

− lognφ(Go) > 0,

in probability, as n −→ ∞. Similarly, we can conclude that Go is the minimizer of (5.17), which

completes proof of Step 2.
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5.10 Appendix B: More simulation results

Table 5.5: Simulation results for the simulation study II from 2, 000 Monte Carlo studies. The

numbers we presented are average coverage probabilities and interval lengths of 95% confidence

intervals (×100).

Model Method Response θ2 θ3 θ4 P2 P3 P4

M1

Full

MCAR

60.8(94.8) 60.8(94.9) 60.8(94.7) 8.3(94.7) 8.3(94.5) 8.3(94.3)

CC 84.9(94.7) 84.9(94.2) 84.9(94.0) 11.7(94.8) 11.7(94.9) 11.7(95.1)

MICE 61.1(94.8) 61.0(94.7) 61.2(94.7) 8.5(94.7) 8.5(94.7) 8.5(94.4)

FIGURE 63.1(95.3) 62.6(95.0) 63.0(95.0) 8.7(94.8) 8.6(95.3) 8.7(94.6)

Full

MAR

60.8(95.0) 60.8(95.2) 60.8(95.3) 8.8(96.0) 8.8(95.2) 8.8(95.7)

CC 83.1(42.4) 83.1(42.8) 83.0(41.9) 12.1(52.8) 12.1(52.5) 12.1(52.3)

MICE 61.3(95.0) 61.2(95.2) 61.2(95.5) 9.0(95.9) 9.0(95.2) 9.0(95.0)

FIGURE 63.6(95.2) 62.9(95.2) 62.8(95.3) 9.2(95.5) 9.2(95.7) 9.2(95.8)

M2

Full

MCAR

60.8(95.0) 60.8(94.5) 60.8(94.8) 8.8(94.3) 8.8(94.8) 8.8(94.3)

CC 84.9(94.5) 84.9(94.8) 84.9(94.9) 12.3(94.0) 12.3(94.3) 12.3(94.0)

MICE 61.3(94.8) 61.2(94.0) 61.2(94.2) 9.0(94.0) 9.0(94.5) 9.0(94.2)

FIGURE 63.5(95.0) 62.7(94.7) 62.7(94.8) 9.2(94.2) 9.2(94.6) 9.2(94.5)

Full

MAR

60.8(95.0) 60.8(95.2) 60.8(95.3) 8.8(96.0) 8.8(95.2) 8.8(95.7)

CC 83.1(42.4) 83.1(42.8) 83.0(41.9) 12.1(52.8) 12.1(52.5) 12.1(52.3)

MICE 61.3(95.0) 61.2(95.2) 61.2(95.5) 9.0(95.9) 9.0(95.2) 9.0(95.0)

FIGURE 63.6(95.2) 62.9(95.2) 62.8(95.3) 9.2(95.5) 9.2(95.7) 9.2(95.8)

M3

Full

MCAR

17.5(95.0) 17.5(96.2) 17.5(94.5) 7.9(94.8) 7.9(94.3) 7.9(95.4)

CC 24.4(95.1) 24.4(95.2) 24.4(95.4) 11.0(95.2) 11.0(93.9) 11.0(95.7)

MICE 19.3(94.5) 19.2(95.2) 19.4(95.0) 8.7(94.2) 8.7(94.5) 8.7(95.5)

FIGURE 19.8(95.2) 19.6(96.0) 19.9(95.3) 8.7(95.2) 8.6(94.8) 8.7(95.9)

Full

MAR

17.5(95.0) 17.5(93.9) 17.5(95.5) 7.9(94.6) 7.9(94.8) 7.9(94.8)

CC 24.4(95.3) 24.5(93.8) 24.4(95.2) 11.0(94.6) 11.0(94.2) 11.0(94.5)

MICE 19.4(95.0) 19.3(94.7) 19.5(95.5) 8.8(93.8) 8.7(94.3) 8.8(94.4)

FIGURE 19.9(95.5) 19.8(95.2) 19.9(96.0) 8.7(95.5) 8.6(94.8) 8.7(96.2)
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5.11 Appendix C: Proof of Lemma 5.1

Bacharoglou (2010) established the following lemma.

Lemma 5.3. For every density function f0 of random variable Y and every ε > 0, there exist

normal distributions φ1, φ2, · · · , φG and positive numbers α1, · · · , αG with
∑G
g αg = 1, such that

sup |f0 −
G∑
g=1

αgφG| < ε,

‖f0 −
G∑
g=1

αgφG‖1 < ε.

Now, assume that f =
∑G
g=1 αgφG. Then, we can establish the following lemma.

Lemma 5.4. There exist G = G(ε), such that

‖f0 − f̂‖1 < ε,

sup |f0 − f̂ | < ε,

with probability one, where f̂ =
∑G
g=1 α̂gφ̂g is a minimizer of

− 1
n

n∑
i=1

log f(Yi)

and f is obtained by minimizing

E0

(
log f0∑G

g=1 αgφG

)
. (5.35)

Proof. Note that the minimizer of (5.35) is unique with probability one under assumption α1 ≥

α2 ≥ . . . αG. Moreover, if f1 satisfies Lemma 5.3, then

E0(log f0
f1

) ≤ E0 {log f0 − log(f0 − ε)} ≤ ε,

for any ε > 0. Thus,

E0 (log f0 − log f) ≥ E0 (log f0 − log f1) .

Therefore, f1 is a minimizer and f = f1 with probability one. If sup |f0 − f | ≥ ε at Y0, then there

exist a ball Br(Y0), such that |f0(Y )− f(Y )| ≥ ε for any Y ∈ Br(Y0), since f0 is continuous. Then,
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we can obtain that ‖f0 − f‖1 ≥ V ε , where V is the volume of Br(Y0). This is a contradiction.

Thus, we complete the proof of Lemma 5.4 for f . Now, consider f̂ =
∑G
g=1 α̂gφ̂g, where f̂ is a

minimizer of

1
n

n∑
i=1

log f0(Yi)
f(Yi)

−→ E0 (log f0 − log f) ,

with probability one, where {Y1, · · · , Yn} are n IID realizations from f0. Thus, Lemma 5.4 holds

for f̂ with probability one.

Using Lemma 5.4, let G = ε−γ +G0, where γ depends on f0. If f0 is a Gaussian mixture model,

then γ = 0. Otherwise, γ > 0. Without loss of generality, we assume Σ = I. Thus, the parameters

are ζg = (µg, αg). Let ζ = (ζ1, · · · , ζG).

var
{
f̂ − f0

}
∼= var

{
f − f0 + ∂f

∂ζT
(ζ̂ − ζ)

}
.

Thus,

var
{
f̂ − f0

}
∼= E

(
∂f

∂ζT

)
var

(
ζ̂ − ζ

)
E

(
∂f

∂ζ

)
. (5.36)

Under MAR assumption, we have

var
(
ζ̂ − ζ

)
∼=

I−1
obs

n
,

where Iobs is the fisher information matrix from the observed likelihood.

Since f =
∑G
g=1 αgφg, we have

∂2 log f
∂µg∂µTg

= −αgφg
f

Ip×p −
α2
gφ

2
g

f2 (Y − µg)(Y − µg)T .

Now, consider the divergence case in the sense that G −→ ∞, as n −→ ∞. Since we assume that

α1 ≥ α2 ≥ · · · ≥ αG, we have αG ≤ O(1/G). G = ε−γ +G0. Then αG ≤ O(εγ). Note that

Iobs = −E
(
∂2fobs
∂ζ∂ζT

)
,

where fobs is the marginal density of f corresponding to the observed part. We can decompose Iobs

as

Iobs =

 A B

BT D

 ,
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where D = E0

{
αGφG
f Ip×p + α2

Gφ
2
G

f2 (Y − µG)(Y − µG)T
}

Then, applying the block inverse form, we

can obtain that

I−1
obs =

? ?

? (D − CA−1B)−1

 (5.37)

If we assume E0
{
f−2(Y )

}
<∞, then D = O(αG). Thus, I−1

obs
∼= O(α−1

G ) = O(ε−γ)

Thus, we can summarize the approximation of GMM as

sup
Y
|f̂ − f0| = O(ε),

var(f̂ − f0) = O(ε−γn−1),

if E
(
∂f/∂ζT

)
are bounded. This assumption is true for GMM.

5.12 Appendix D: Proof of Theorem 5.2

In this section, we will show the
√
n-consistency of the proposed estimator θ̂FIGURE . Note that,

θ̂FIGURE is a solution of

1
n

n∑
i=1

G∑
g=1

Mg∑
j=1

w∗igjU(θ;Y ∗(gj)i ) = 0..

Then, we have

1
n

n∑
i=1

G∑
g=1

Mg∑
j=1

w∗igjU(θ;Y ∗(gj)i )

= 1
n

n∑
i=1

[
RiU(θ;Yi) + (1−Ri)E

{
U(θ;Yi,obs, Yi,mis) | Yi,obs, f̂

}]
+Op

( 1√
M

)
,
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where M = ming{Mg} and we can let M −→ ∞. Ignoring the smaller term, we can rewrite the

estimating equation as

1
n

n∑
i=1

G∑
g=1

Mg∑
j=1

w∗igjU(θ;Y ∗(gj)i )

∼=
1
n

n∑
i=1

[RiU(θ;Yi) + (1−Ri)E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0}]

+ 1
n

n∑
i=1

[(1−Ri)E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0}

+(1−Ri)E
{
U(θ;Yi,obs, Yi,mis) | Yi,obs, f̂

}]
.

= J1 + J2.

Note that,

J1 = 1
n

n∑
i=1

[RiU(θ;Yi) + (1−Ri)E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0}]

is an unbiased estimating equation for θ.

For J2 term, we have

∥∥∥E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0} − E
{
U(θ;Yi,obs, Yi,mis) | Yi,obs, f̂

}∥∥∥
1

=
∫ ∣∣∣∣∣U(θ;Yi,obs, Yi,mis)

{
f̂(Yi)

f̂obs(Yi,obs)
− f0(Yi)
f0,obs(Yi,obs)

}∣∣∣∣∣ f0(Yi)dYi

≤ E0 |U(θ;Yi,obs, Yi,mis)|
∥∥∥∥∥ f̂(Yi)
f̂obs(Yi,obs)

− f0(Yi)
f0,obs(Yi,obs)

∥∥∥∥∥
1
.

Assume E |U(θ;Yi,obs, Yi,mis)| <∞. Moreover,∥∥∥∥∥ f̂(Yi)
f̂obs(Yi,obs)

− f0(Yi)
f0,obs(Yi,obs)

∥∥∥∥∥
1
≤
∥∥∥∥∥ f̂(Yi)
f̂obs(Yi,obs)

− f̂(Yi)
f0,obs(Yi,obs)

∥∥∥∥∥
1

+
∥∥∥∥∥ f̂(Yi)
f0,obs(Yi,obs)

− f0(Yi)
f0,obs(Yi,obs)

∥∥∥∥∥
1
.

For the first term, we can show
∥∥∥∥ f̂(Yi)
f̂obs(Yi,obs)

− f̂(Yi)
f0,obs(Yi,obs)

∥∥∥∥
1
≤ ‖f̂(Y )‖1‖f̂obs(Yobs)− f0,obs(Yi,obs)‖1

1
f2

0,obs(Yi,obs)(1− ε)

≤ ‖f̂(Y )‖1
f2

0,obs(Yi,obs)(1− ε)
‖f̂ − f‖1.

≤ C3ε. (5.38)
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For the second term, we have∥∥∥∥∥ f̂(Yi)
f0,obs(Yi,obs)

− f0(Yi)
f0,obs(Yi,obs)

∥∥∥∥∥
1

= 1
f0,obs(Yi,obs)

‖f̂ − f0‖1 ≤ C4ε. (5.39)

Using (5.38) and (5.39), we can conclude that

∥∥∥E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0} − E
{
U(θ;Yi,obs, Yi,mis) | Yi,obs, f̂

}∥∥∥
1

= O(ε). (5.40)

Next, we can show the variance

var
[
E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0} − E

{
U(θ;Yi,obs, Yi,mis) | Yi,obs, f̂

}]
≤ E

∣∣∣E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0} − E
{
U(θ;Yi,obs, Yi,mis) | Yi,obs, f̂

}∣∣∣2 .
Using the similar technique above, we can show that

var
[
E {U(θ;Yi,obs, Yi,mis) | Yi,obs, f0} − E

{
U(θ;Yi,obs, Yi,mis) | Yi,obs, f̂

}]
≤ E |U(θ;Yi,obs, Yi,mis)|2

∥∥∥∥∥ f̂(Yi)
f̂obs(Yi,obs)

− f0(Yi)
f0,obs(Yi,obs)

∥∥∥∥∥
2

2
.

Assume E |U(θ;Yi,obs, Yi,mis)|2 <∞. Moreover,∥∥∥∥∥ f̂(Yi)
f̂obs(Yi,obs)

− f0(Yi)
f0,obs(Yi,obs)

∥∥∥∥∥
2

2
≤ C5‖f̂ − f0‖22 = C5

{
var(f̂ − f0) + ‖f̂ − f0‖21

}
= O(ε2 + ε−γn−1).(5.41)

Using (5.40) and (5.41), we can prove that

J2 = 1
n

n∑
i=1

(1−Ri)O(ε) +Op

√√√√ 1
n2

n∑
i=1

πi(1− πi)O(ε2 + ε−γn−1)


= Op(ε) +Op

{(
ε2n−1 + ε−γn−2

)1/2
}
,

where πi = Pr(Ri = 1 | Yi).

If ε = O(n−1/(2−∆)) with ∆ ∈ (0, 2) and γ ∈ (0, 2), we have

J2 = op(n−1/2). (5.42)

Finally, using (5.42), we have

1
n

n∑
i=1

G∑
g=1

Mg∑
j=1

w∗igjU(θ;Y ∗(gj)i ) ∼= J1 + op(n−1/2).
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Table 5.1: Simulation results for the simulation study I from 2, 000 Monte Carlo studies. The
numbers we presented are RMSE in (5.32).

Model Method Response θ2 θ3 θ4 P2 P3 P4

M1

Full

MCAR

100 100 100 100 100 100
CC 195 195 195 193 190 195
MICE 101 101 101 100 100 101
FIGURE 101 101 102 100 100 101
Full

MAR

100 100 100 100 100 100
CC 9529 9359 9138 6517 6266 6439
MICE 100 101 101 99 98 100
FIGURE 100 100 102 99 99 103

M2

Full

MCAR

100 100 100 100 100 100
CC 187 186 188 185 187 183
MICE 104 105 105 102 102 104
FIGURE 103 103 103 99 99 99
Full

MAR

100 100 100 100 100 100
CC 8436 8305 8100 6303 6104 6204
MICE 108 108 109 98 99 101
FIGURE 107 107 106 98 100 100

M3

Full

MCAR

100 100 100 100 100 100
CC 207 199 200 196 196 190
MICE 108 111 114 118 114 130
FIGURE 107 109 112 112 110 126
Full

MAR

100 100 100 100 100 100
CC 1251 389 183 152 934 223
MICE 104 104 101 122 240 152
FIGURE 104 105 99 110 183 144

M4

Full

MCAR

100 100 100 100 100 100
CC 195 199 197 195 196 193
MICE 103 102 103 207 171 157
FIGURE 107 105 105 144 141 162
Full

MAR

100 100 100 100 100 100
CC 1251 1147 866 735 1093 890
MICE 104 103 104 227 189 265
FIGURE 104 105 103 147 145 226
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Table 5.2: Simulation results for the simulation study II from 2, 000 Monte Carlo studies. The
numbers we presented are RMSE in (5.32) and coverage probabilities of 95% confidence intervals.

Model Method Response θ2 θ3 θ4 P2 P3 P4

M1

Full

MCAR

100 100 100 100 100 100
CC 196 198 199 197 202 197
MICE 102 101 102 103 103 104
CFIGURE 105 103 104 103 101 102
Full

MAR

100 100 100 100 100 100
CC 1108 1106 1103 922 918 904
MICE 102 102 102 109 106 107
CFIGURE 107 104 104 105 101 102

M2

Full

MCAR

100 100 100 100 100 100
CC 196 199 198 191 200 193
MICE 102 102 102 107 107 107
CFIGURE 104 101 102 103 102 102
Full

MAR

100 100 100 100 100 100
CC 1108 1106 1103 922 918 904
MICE 102 102 102 109 106 107
CFIGURE 107 104 104 105 101 102

M3

Full

MCAR

100 100 100 100 100 100
CC 188 203 190 184 197 183
MICE 121 123 122 127 125 120
CFIGURE 118 117 116 115 112 111
Full

MAR

100 100 100 100 100 100
CC 186 199 196 195 190 197
MICE 120 119 121 126 122 126
CFIGURE 115 113 117 112 106 110

Table 5.3: Imputation results for the monthly retail trade survey. Parameter estimation and 95%
confidence lower and upper bounds.

parameter FIGURE lower bound upper bound Truth
Mean of Sales00 (×10−6) 2.28 2.10 2.46 2.30
Skewness of Sales00 49.68 24.15 74.87 49.67
Mean of Inventories00 (×10−6) 4.76 4.42 5.10 4.81
Skewness of Inventories00 40.00 10.28 69.40 39.02
Correlation of Sales00 and Inventories00 0.97 0.94 0.99 0.97
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Table 5.4: Simulation results for the simulation study I from 2, 000 Monte Carlo studies. The
numbers we presented are average coverage probabilities and interval lengths of 95% confidence
intervals (×100).

Model Method Response θ2 θ3 θ4 P2 P3 P4

M1

Full

MCAR

60.9(94.8) 60.8(94.6) 60.8(94.5) 8.3(94.8) 8.3(94.5) 8.3(94.8)
CC 84.9(94.3) 84.9(94.5) 84.9(94.6) 11.7(94.7) 11.7(95.0) 11.7(95.0)
MICE 61.0(94.8) 61.0(94.7) 61.2(94.4) 8.4(95.4) 8.4(95.5) 8.5(95.5)
FIGURE 60.9(94.2) 61.0(94.2) 61.5(94.5) 8.4(95.2) 8.4(94.8) 8.5(94.6)
Full

MAR

60.8(94.5) 60.8(94.7) 60.8(95.2) 8.3(94.3) 8.3(94.8) 8.3(94.6)
CC 72.7(0.0) 72.8(0.0) 72.9(0.0) 9.0(0.0) 9.0(0.0) 9.0(0.0)
MICE 61.0(94.8) 61.1(94.6) 61.2(94.7) 8.5(95.5) 8.5(95.3) 8.5(95.8)
FIGURE 61.1(93.9) 61.3(94.0) 61.9(94.7) 8.4(94.8) 8.5(94.7) 8.7(95.5)

M2

Full

MCAR

66.6(95.1) 66.7(95.2) 66.7(94.2) 8.3(94.0) 8.3(94.8) 8.3(94.3)
CC 93.2(95.3) 93.2(95.2) 93.1(94.3) 11.7(94.4) 11.7(94.5) 11.7(95.0)
MICE 67.9(95.2) 68.0(95.2) 68.0(94.2) 8.6(95.3) 8.6(95.0) 8.6(95.2)
FIGURE 68.6(94.6) 69.1(94.8) 68.9(94.0) 8.5(95.0) 8.6(94.7) 8.6(95.2)
Full

MAR

66.7(94.0) 66.6(94.3) 66.7(94.5) 8.3(94.0) 8.3(93.9) 8.3(93.9)
CC 78.0(0.0) 78.1(0.0) 78.0(0.0) 9.0(0.0) 9.0(0.0) 9.0(0.0)
MICE 67.7(93.5) 67.8(94.0) 67.8(93.2) 8.6(95.6) 8.6(95.5) 8.7(95.5)
FIGURE 69.5(93.8) 69.6(94.0) 70.1(93.7) 8.5(94.9) 8.5(94.5) 8.6(95.2)

M3

Full

MCAR

24.8(94.7) 30.3(94.3) 24.7(94.2) 8.6(95.0) 8.7(95.2) 8.6(94.5)
CC 34.5(93.8) 42.3(94.0) 34.6(94.2) 12.0(95.4) 12.1(95.2) 12.0(94.2)
MICE 25.8(95.2) 32.0( 94.2) 26.5( 94.9) 9.2( 95.0) 9.4( 95.3) 9.4( 93.7)
FIGURE 26.3(95.0) 32.9(94.7) 27.2(94.8) 9.1(94.7) 9.3(94.7) 9.4(93.4)
Full

MAR

24.8(95.0) 30.3(94.8) 24.8(94.8) 8.6(95.0) 8.7(95.3) 8.6(94.5)
CC 36.9(61.1) 44.3(71.8) 36.8(61.2) 12.1(71.0) 12.2(79.4) 12.1(71.2)
MICE 25.9(94.5) 32.1(94.6) 26.6(94.6) 9.3(94.4) 9.4(95.9) 9.5(92.5)
FIGURE 26.3(94.6) 32.9(94.8) 27.1(95.2) 9.1(93.9) 9.3(94.3) 9.5(93.2)

M4

Full

MCAR

42.7(94.7) 133.1(94.8) 429.5(93.2) 8.5(94.9) 8.7(94.7) 8.8(95.4)
CC 60.0(94.2) 188.3(94.7) 611.4(93.4) 11.8(94.4) 12.2(94.0) 12.2(95.3)
MICE 43.2(94.6) 133.4(94.3) 431.5(93.0) 8.9(84.5) 9.1(88.8) 9.4(91.6)
FIGURE 46.5(95.0) 135.2(93.9) 436.4(91.5) 9.6(93.1) 9.3(91.7) 9.5(90.3)
Full

MAR

42.8(95.1) 134.3(94.9) 438.2(93.1) 8.5(95.4) 8.7(95.6) 8.8(95.4)
CC 65.5(45.7) 212.3(55.4) 714.6(74.8) 11.4(57.4) 12.2(44.2) 12.0(52.9)
MICE 43.4(95.8) 135.5(95.1) 447.3(93.5) 9.0(81.5) 9.1(87.9) 9.4(80.4)
FIGURE 45.0 (95.2) 136.2(94.2) 444.0(93.0) 9.9(93.4) 9.2(92.4) 9.8(86.1)
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CHAPTER 6. SUMMARY AND CONCLUSION

This dissertation investigates four topics in missing data: Bayesian propensity score estimation,

Sparse propensity score estimation, a profile approach to semiprametric estimation with nonig-

norable nonresponse and semiparametric fractional imputation for handling multivariate missing

data.

In Chapter 2, we propose a new Bayesian inference using the idea of approximate Bayesian

computation. The proposed Bayesian method is further extended to incorporate auxiliary infor-

mation from full sample. The proposed method can be widely applicable to causal inference and

combing information from different sources. In Chapter 3, Bayesian approach to propensity score

estimation using the Spike-and-Slab prior for the response propensity model is proposed. Exten-

sion of our proposed method to nonignorable nonresponse is a topic for future research. In Chapter

4, we propose a semiparametric method using the maximum profile likelihood to achieve robust

estimation under nonignorable nonresponse. Then, we also propose a test procedure to check if the

response mechanism is missing at random. The bootstrap procedures are developed to compute

the empirical distribution of the proposed test statistic. In Chapter 5, a unified fractional impu-

tation method using Gaussian mixture models is proposed. The proposed method automatically

selects mixture components using Bayesian information criterion. The flexible model assumption

and efficient computation are main advantages of the proposed method. R software packages for

the proposed methods in this thesis are under development.
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