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ABSTRACT

Survey sampling has been considered a scientific method of collecting data that represent the

target population. Statistical inference using survey data can be improved by incorporating infor-

mation from existing external data sources. The auxiliary information from other sources can be

incorporated into either the design or the estimation stage. In some cases, the original survey data

can be augmented with extra data. The data integration can be viewed as a missing data problem

and a mass imputation approach can be used for data integration. By filling in the missing values

for the study variable in one sample with imputed values incorporating information from the other

sample, we can obtain an improved estimator integrating information from two samples.

This dissertation addresses the development of procedures that incorporate auxiliary informa-

tion or data for three different situations. Three corresponding papers constitute the dissertation

and each paper deals with some aspect of incorporation of auxiliary information with survey data

that enables us to gain efficiency in inference.

The first paper considers the propensity score weighting method that incorporates auxiliary

information from paradata. Paradata are automatically obtainable data about a survey process,

which are generated as by-product, and they can be used to handle nonresponse biases. Conditions

that are necessary to obtain efficiency gain by incorporating auxiliary information from paradata

into the propensity score are considered.

The second paper introduces a new approach to combine two independent probability samples

that are selected from the same target population. Augmenting two surveys increases the amount of

information about the quantities of our interest and enhances precision in estimation. We introduce

the survey data integration method using the measurement error model approach.

The third paper deals with the integration of a two-phase sample where the two samples can be

nested or non-nested. We first present the two-phase sampling using the mass imputation method,



x

which can provide an efficient method to combine two samples where one is nested within the other.

A special case of non-nested two-phase sampling where the second-phase sample is a non-probability

sample is also investigated.
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CHAPTER 1. OVERVIEW

This dissertation addresses methods that enable more accurate and efficient estimation by in-

corporating information from other sources. Many studies investigating various research questions

have used survey data for answering such questions, typically collected using a probability sam-

pling. Advantages of probability sampling are an efficiency in data collection process and theoretical

justification resulting from decades of study. Theories for the probability sampling have been devel-

oped since 1920s (Neyman, 1934) and support its use in providing accurate and efficient collection

methods with assess to the error due to sampling (Lohr and Raghunathan, 2017).

With a long history of probability samples, various methods exist for incorporating information

from other sources for estimation. The additional information is called auxiliary information, and

it can be augmented into the design or estimation process of sampling for efficiency gain. We can

consider a stratification or balanced sampling in order to account for the auxiliary information used

in the design stage. Otherwise, the auxiliary information can be used in the estimation process to

improve the precision of estimates using poststratification or regression estimation.

However, missingness in survey data is frequently encountered in practice and one of the main

reasons is nonresponse. There are two categories of nonresponse: unit nonresponse and item

nonresponse. A propensity score weighting method is often used to handle unit nonresponse. The

propensity score weighting method compensates for nonresponse and undercoverage by producing

appropriate weights on observed units. Auxiliary information can be used to compute the propensity

score when the response mechanism is missing at random.

Combining one survey with another, where the two surveys are collected from the same tar-

get population, also can be considered as incorporating auxiliary information to obtain improved

estimates. Augmenting data by combining two independent surveys can induce a sample with

increased size containing more detailed information. Two-phase sampling is one of the classical
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setups that can be considered for survey data integration, where the measurement in covariate x is

observed in both surveys while the study variable y is observed from only one survey. By combining

the auxiliary information in x from one survey with data from the other survey and filling in the

missing y’s, more efficient estimates can be obtained.

In the meantime, due to the challenges in probability sampling, such as decreasing response

rate and increasing expenses, there is an increasing demand to utilize large amount of data that

are no longer probability samples. Administrative sources, electronic health records, credit card

records or big data sources from web survey panels are examples of the other type of data that

are not collected using the probability sampling. These data can be obtained more easily, quickly

and cheaply than probability samples and can provide detailed information for subpopulation of

interest (Lohr and Raghunathan, 2017). While such data sources can provide valuable auxiliary

information, they are often not representative of the target population due to inherent selection

biases. Such non-probability samples can be considered more carefully when we try to incorporate

them with survey data for increased estimation precision.

In this dissertation, we cover three topics in regard to efficiency gain by incorporating auxiliary

information. In Chapter 2, the propensity score weighting method using auxiliary information often

believed to increase the precision in estimation is investigated. Chapter 2 is devoted to improve

efficiency of estimation using the propensity score weighting that includes surrogate variable when

paradata is available. Paradata is often considered as auxiliary information that is collected during

the survey process to monitor the quality of the survey response. One such useful type of paradata

is the respondent behavior, which can be used to construct response models. The propensity score

weight using the respondent behavior information can be applied to the final analysis to reduce

the nonresponse bias. However, we discover that including the surrogate variable in the propensity

score weighting does not always guarantee increased efficiency. We show that the surrogate variable

is useful only when it is correlated with the study variable. Results from a limited simulation study

confirm the finding. A real data application using the Korean Workplace Panel Survey data is also

presented.
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In Chapter 3, we propose a method to combine two data sets using measurement error model

approach. Combining information from several surveys from the same target population is an

important practical problem in survey sampling. The paper is motivated by the real problem

that the authors addressed in a project sponsored by the Food and Nutrition Technical Assistance

III (FANTA) Project, with funding from the U.S. Agency for International Development (USAID)

Bureau of Food Security (BFS). In the project, two surveys were conducted independently for some

areas and we present a measurement error model approach to integrate mean estimates obtained

from the two surveys. The predicted values for the counterfactual outcome are used to create

composite estimates for the overlapped areas. The proposed method is applied to the real data

from the FANTA Project.

Chapter 4 is devoted to estimation of parameters under two-phase sampling in terms of in-

tegrating information from two samples. Two-phase sampling is a cost effective method of data

collection using outcome-dependent sampling for the second-phase sample. In order to make effi-

cient use of auxiliary information and to improve domain estimation, mass imputation can be used

in two-phase sampling. Rao and Sitter (1995) introduce mass imputation for two-phase sampling

and its variance estimation under simple random samples in both phases. In this paper, we extend

the Rao-Sitter method to the general sampling design. In addition, we also consider a special case

of non-nested two-phase sampling where the second-phase sample is a non-probability sample. The

proposed method requires the outcome model be correctly specified. Two simulation studies are

performed to examine the performance of the proposed methods.

Bibliography

Lohr, S. L. and Raghunathan, T. E. (2017). Combining survey data with other data sources.
Statistical Science, 32(2):293–312.
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CHAPTER 2. A NOTE ON PROPENSITY SCORE WEIGHTING

METHOD USING PARADATA IN SURVEY SAMPLING

Submitted to Survey Methodology (revision invited)

Jae Kwang Kim1, Seho Park1 and Kimin Kim2

Abstract

Paradata is often collected during the survey process to monitor the quality of the survey response.

One such paradata is the respondent behavior, which can be used to construct response models.

The propensity score weight using the respondent behavior information can be applied to the final

analysis to reduce the nonresponse bias. However, including the surrogate variable in the propensity

score weighting does not always guarantee the efficiency gain. We show that the surrogate variable

is useful only when it is correlated with the study variable. Results from a limited simulation study

confirm the finding. A real data application using the Korean Workplace Panel Survey data is also

presented.

Key Words: Unit Nonresponse, Smoothed weight, Surrogate variable

2.1 Introduction

Paradata provides additional information on the quality of the collected survey data. The term

paradata was coined by Couper (1998) to refer to the process data automatically generated from

the data collection. It has been expanded to include various type of data about the data collection

process in sample surveys (Kreuter, 2013).

One possibly useful paradata is the respondent behavior during the survey interview. Response

time to survey can be one of the respondent behaviors. Knowles and Condon (1999) and Bassili

1Department of Statistics, Iowa State University
2Korea Labor Institute, South Korea
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(2003) found that response time has a negative correlation with the tendency of positive answer.

It is called acquiescence bias (Couper and Kreuter, 2013). Longer response times were found to

be an indicator of uncertainty and response error (Draisma and Dijkstra, 2004). Such paradata

is helpful when we want to build a model for non-responses. Increasing non-response may cause

non-response bias and has become a serious problem in recent years. Using the paradata that may

be related to response model, non-response adjustment can be used to handle unit nonresponse

effectively (Kott, 2006).

In addition to the auxiliary variables, Data Collection Process (DCP) variables are considered

for estimation of non-response propensity (Beaumont, 2005). The DCP variable is treated as fixed

in Holt and Elliot (1991) and the DCP variable, sometimes refer to the paradata, is used for non-

response adjustment. On the other hand, Beaumont (2005) suggests to use DCP variable as a

random variable and to be included in the non-response model. They show that using the paradata

does not introduce additional bias and variance. Moreover, if the paradata variable is related to

the study variable and the non-response, it reduces the non-response bias when the study variable

is related to the non-response mechanism directly.

In our study, we show that using the paradata when it is conditionally independent with study

variable given auxiliary variables, it inflates the variance as it brings unnecessary noise. While

such phenomenon has been recognized in the literature (Little and Vartivarian, 2005), up to the

knowledge of authors, it is not fully investigated theoretically. We investigate more rigorously

whether using the paradata always improves data analysis by augmenting the nonresponse model.

This paper is motivated from a real survey data from Korean Workplace Panel Survey (KWPS).

In the KWPS data, the reaction of the interviewee at the first contact was recorded during the

data collection. We investigate possible use of such paradata to enhance the quality of the data

analysis.

The paper is organized as follows. In Section 2, basic setup is introduced and the main theo-

retical results are presented in Section 3. In Section 4, results of simulation studies are presented

and a real data application is presented in Section 5. Concluding remarks are made in Section 6.
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2.2 Basic Setup

Consider a finite population of size N , where N is known. The finite population FN =

{u1,u2, . . . ,uN},ui = (xi, yi) is assumed to be a random sample from a superpopulation dis-

tribution F (x, y). In addition, we assume that x is always observed and y is subject to missingness.

Let δ be the response indicator function that takes the value one if y is observed and takes the

value zero otherwise. Note that x, y, z and δ are all considered as random.

Suppose a sample of size n is drawn from the finite population according to a probability

sampling design, where inclusion in the sample is represented by the indicator variables Ii, with

Ii = 1 if unit i is included in the sample and Ii = 0 otherwise. Let A be the index set of the sample

and wi = π−1i be the design weight, where πi is the first-order inclusion probability.

We are interested in estimating parameter θ that is implicitly defined through an estimating

equation E{U(θ;X,Y )} = 0. Under complete response, an estimator of θ is obtained by solving

1

N

∑
i∈A

wiU(θ;xi, yi) = 0.

In the presence of missing data, the propensity-score adjusted estimator is obtained by solving

1

N

∑
i∈A

wi
δi
pi
U(θ;xi, yi) = 0.

where pi is the response probability of unit i, which is unknown.

Now suppose that there exists additional variable z obtained from paradata, which is always

observed and satisfies

P (δi = 1 | xi, yi, zi) = P (δi = 1 | xi, zi). (2.1)

Then, we can use z to make inference about θ under nonresponse. Such variable z is sometimes

called surrogate variable (Chen et al., 2008). By including a suitable surrogate variable, we can

make the response mechanism missing at random (MAR) in the sense of Rubin (1976). We call

assumption (2.1) as the Augmented MAR (AMAR) since MAR holds only under the augmented

model that includes surrogate variable z.
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Under (2.1), we can build a parametric model for the response mechanism and construct a

propensity score weighted (PSW) estimator that is obtained from

1

N

∑
i∈A

wi
δi

π̂(xi, zi)
U(θ;xi, yi) = 0,

where π̂(xi, zi) is a consistent estimator of π(xi, zi) = P (δi = 1 | xi, zi). Such PSW approach

incorporating z variable has been discussed in Peress (2010) and Kreuter and Olson (2013).

In survey sampling, the surrogate variable z can be obtained from paradata when we are not

directly interested in making inferences about the distribution of z. The information on z, however,

can be helpful in making inferences about the joint distribution of x and y. In some cases, the

surrogate variable z can satisfy

f(y | x, z) = f(y | x). (2.2)

Condition (2.2) means that the surrogate variable z is not related to the study variable y that is

subject to missingness. The model satisfying (2.2) can be called the reduced outcome model. If

condition (2.2) does not hold, we call f(y | x, z) the full outcome model.

If condition (2.2) holds in addition to condition (2.1), we can use this information to obtain a

more efficient PSW estimator. Note that, by (2.1) and (2.2), we can establish

P (δ = 1 | x, y) =

∫
P (δ = 1 | x, y, z)f(z | x, y)dz

=

∫
P (δ = 1 | x, z)f(z | x, y)dz

=

∫
P (δ = 1 | x, z)f(y | x, z)f(z | x)dz∫

f(y | x, z)f(z | x)dz

=

∫
P (δ = 1 | x, z)f(y | x)f(z | x)dz∫

f(y | x)f(z | x)dz

= P (δ = 1 | x),

where the second equality follows from assumption (2.1) and the fourth equality follows from

assumption (2.2). Thus, assumption (2.1) and (2.2) imply

f(y | x, δ = 1) = f(y | x). (2.3)
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Under the reduced model assumption (2.2), then we can use another type of PSW estimator of the

form

1

N

∑
i∈A

wi
δi

π̂1(xi)
U(θ;xi, yi) = 0, (2.4)

where π̂1(xi) =
∫
π̂(xi, zi)f̂(zi | xi)dzi and f̂(z | x) is an estimated conditional density of z given

x. Let the estimator from (2.4) be the smoothed PSW estimator. Note that π̂1(x) is the smoothed

version of π̂(x, z) averaged over the conditional distribution f(z | x).

The smoothed PSW estimator obtained by solving the equation (2.4) is justified under MAR

condition in (2.3). In this case, use of paradata for nonresponse adjustment is not necessarily useful,

which will be justified in Section 3.

2.3 Main Result

We now establish the main result of the paper. We assume that the response indictor functions

δi are independent to each other. To avoid unnecessary details, we assume that P (δi = 1 | xi, zi) =

π(xi, zi) is a known function of (xi, zi). Let θ̂PSW be the PSW estimator of θ obtained from

U1(θ) ≡
1

N

∑
i∈A

wi
δi

π(xi, zi)
U(θ;xi, yi) = 0.

Also, let θ̂PSW2 be the smoothed PSW estimator of θ obtained from

U2(θ) ≡
1

N

∑
i∈A

wi
δi

π1(xi)
U(θ;xi, yi) = 0,

where π1(xi) = P (δi = 1 | xi) for i = 1, · · · , n.

Theorem 1 Under the assumptions (2.1) and (2.2) hold, the smoothed PSW estimator θ̂PSW2 is

asymptotically unbiased and has asymptotic variance smaller than that of θ̂PSW . That is,

V (θ̂PSW | FN ) ≥ V (θ̂PSW2 | FN ). (2.5)

Proof. First note that

E(U2 | δN ,FN ) =
1

N

N∑
i=1

δi
π1(xi)

U(θ;xi, yi),
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where δN = {δ1, · · · , δN}. Thus, asymptotic unbiasedness of θ̂PSW2 can be easily established by

E(U2 | FN ) = E {E(U2 | δN ,FN ) | FN}

=
1

N

N∑
i=1

E

{
δi

π1(xi)
U(θ;xi, yi) | xi, yi

}

=
1

N

N∑
i=1

E (δi | xi, yi)
π1(xi)

U(θ;xi, yi)

=
1

N

N∑
i=1

π1(xi)

π1(xi)
U(θ;xi, yi)

=
1

N

N∑
i=1

U(θ;xi, yi).

For (2.5), it is enough to show that

V (U1 | FN ) ≥ V (U2 | FN ). (2.6)

Note that

V (U1) = V {E(U1|δN ,FN ) | FN}+ E{V (U1|δN ,FN ) | FN}

= V

{
1

N

N∑
i=1

δi
π(xi, zi)

U(θ;xi, yi) | FN

}

+ E

 1

N2

N∑
i=1

N∑
j=1

wiwjCov(Ii, Ij)
δi

π(xi, zi)

δj
π(xj , zj)

U(θ;xi, yi)U(θ;xj , yj)
′ | FN


:= V1 + V2.

Now, since δi are independent,

V1 = E

[
1

N2

N∑
i=1

{
1

π(xi, zi)
− 1

}
U(θ;xi, yi)

⊗2 | FN

]
,
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where B⊗2 = BB′. Also, writing ∆ij = Cov(Ii, Ij),

V2 = E

 1

N2

N∑
i=1

N∑
j=1

wiwj∆ij
δi

π(xi, zi)

δj
π(xj , zj)

U(θ;xi, yi)U(θ;xj , yj)
′ | FN


= E

{
1

N2

N∑
i=1

w2
i ∆ii

E(δi | xi, yi, zi)
π(xi, zi)2

U(θ;xi, yi)
⊗2 | FN

}

+ E

 1

N2

N∑
i=1

∑
j 6=i

wiwj∆ij
E(δi | xi, yi, zi)

π(xi, zi)

E(δj | xj , yj , zj)
π(xj , zj)

U(θ;xi, yi)U(θ;xj , yj)
′ | FN


= E

 1

N2

N∑
i=1

(wi − 1)
1

π(xi, zi)
U(θ;xi, yi)

⊗2 +
1

N2

N∑
i=1

∑
j 6=i

wiwj∆ijU(θ;xi, yi)U(θ;xj , yj)
′

 .

Thus, combining the two results, we obtain

V (U1) =
1

N2
E

[
N∑
i=1

wi

{
1

π(xi, zi)
− 1

}
U(θ;xi, yi)

⊗2 | FN

]
(2.7)

+
1

N2
E

 N∑
i=1

N∑
j=1

wiwj∆ijU(θ;xi, yi)U(θ;xj , yj)
′ | FN

 .
Similarly, we can establish that

V (U2) =
1

N2
E

[
N∑
i=1

wi

{
1

π(xi)
− 1

}
U(θ;xi, yi)

⊗2 | FN

]
(2.8)

+
1

N2
E

 N∑
i=1

N∑
j=1

wiwj∆ijU(θ;xi, yi)U(θ;xj , yj)
′ | FN

 .
Comparing (2.7) with (2.8), in order to show (2.6), we have only to show that

E

[
1

π(x, z)
| x, y

]
≥ 1

E[π(x, z) | x, y]
, (2.9)

where E[π(x, z) | x, y] = π1(x). To show (2.9), note that f(x) = 1/x is a convex function of

x ∈ (0, 1) and π(·) take values on (0,1). We can apply Jensen’s inequality to get

E[f(π)] ≥ f (E(π)) ,

which justifies (2.9) if we use the expectation with respect to the conditional distribution of π(x, z)

given x and y.
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By Theorem 1, under some conditions, using the smoothed PSW estimator θ̂PSW2 leads to

more efficient data analysis. Beaumont (2008) proposed the smoothed weighting for the efficient

estimation with survey data in a slightly different context, but the weight smoothing method of

Beaumont (2008) matches with our finding in the sense that z is the design variable and δ is the

sample indicator function. In this case, P (δ = 1 | x, z) is the first order inclusion probability while

P (δ = 1 | x) is a smoothed version of the first order inclusion probability. Thus, if the sampling

design is non-informative in the sense that P (δ = 1 | x, z, y) = P (δ = 1 | x), then it is better to

use the smoothed weight that uses w̃i = {P (δ = 1 | x)}−1, which is consistent with the claim of

Beaumont (2008) and Kim and Skinner (2013).

Under the reduced model (2.2), adding the surrogate variable z can be regarded as including

unnecessary noise and thus it generates inefficient estimators. For the case when the condition (2.2)

is unsatisfied, which can be common in practice, we can still use the smoothed PSW estimator using

the weight obtained by weight smoothing conditioning on xi, yi, and δi = 1. So, if the surrogate

variable does not satisfy the condition (2.2) and partially or weakly correlated with the study

variable given covariate variables, using the smoothing weight conditioning on xi, yi, and δi = 1

without condition (2.2) can provide the result equivalent to solving (2.4).

2.4 Simulation Study

To test our theory, we perform a limited simulation study. In the simulation, we set a situation

when the augmented MAR assumption holds to see if including the surrogate variable in data

analysis improves the efficiency of the estimation.

We generate B=2,000 Monte Carlo samples of size n = 200 from the outcome model

yi = β0 + β1xi + ei (2.10)

where ei ∼ N(0, 1), (β0, β1) = (1.2, 2.6), and Xi ∼ N(2, 1) for i = 1, · · · , n.

We consider two scenarios: (i) surrogate variable is uncorrelated with study variable; (ii) surro-

gate variable is correlated with study variable. In scenario 1, condition (2.2) is satisfied, while it is
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not satisfied in scenario 2. In scenario 1, we generate a surrogate variable Z from zi ∼ Unif(−10, 10).

In Scenario Two, the paradata model is zi = 1.2yi + εi where εi ∼ N(0, 1) for i = 1, · · · , n.

For the response probability, we consider the response model

δi ∼ Bernoulli(πi)

where

πi =
exp(φ0 + φ1xi + φ2zi)

1 + exp(φ0 + φ1xi + φ2zi)
(2.11)

and (φ0, φ1, φ2) = (−1.2, 0.5, 0.4).

Parameter of interest are regression coefficients in the outcome model (2.10). We compare four

methods for estimation of the parameters using Monte Carlo root mean squared errors for the

estimates. The four methods considered are as follows:

1. Complete case method (CC): Use the complete observations of (xi, yi) and estimate the pa-

rameters by the ordinary least squares method. That is, solve

n∑
i=1

δiU(θ;xi, yi) = 0.

2. Propensity score weighting model method (PSW1): Use the estimated response rates as

weights in estimating equation and solve the equation to estimate the parameters.

(a) Fit a logistic regression model (2.11) for the response probability πi = πi(xi, zi;φ) and

estimate φ = (φ0, φ1, φ2) by using the maximum likelihood method.

(b) Parameter estimates are obtained by solving the estimating equation:

n∑
i=1

δi
π̂i
U(θ;xi, yi) = 0,

where π̂i = π̂(xi, zi; φ̂) and φ̂ is computed from Step (a).

3. Smoothed propensity score weighting model method (PSW2): Use the same procedure of

PSW1, but the response probability is a function of explanatory variable (x) only. A response

probability π(xi) is estimated as

π̂1(xi) =

∫
π̂(xi, zi)f̂(zi | xi)dzi,
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where π̂(xi, zi) is the estimated response probability in PSW1 method. Since the estimated

conditional density of z given x, f̂(z|x), is unknown, we use a nonparametric regression

method for estimating f̂(z|x). Let Kh(·) be the kernel function satisfying certain regularity

conditions and h be the bandwidth. Then, π̂1(xi) is obtained by

π̂1(xi) =

∑n
j=1 π̂(xj , zj)Kh(xi, xj)∑n

j=1Kh(xi, xj)
.

We used the Gaussian Kernel for Kh with bandwidth h = 1.06σ̂n−1/5 chosen by the rule-of-

thumb method of Silverman (1986).

4. Smoothed propensity score weighting estimator (PSW3) using logistic regression for estimat-

ing π̂1(xi): Use the same procedure of PSW1, but the response probability is estimated by a

logistic regression model using only xi.

(a) Fit a logistic regression model for the response probability π∗i = πi(xi;φ
∗) as a function

of explanatory variable (xi) only and estimate φ∗ = (φ∗0, φ
∗
1) by using the maximum

likelihood method.

(b) Parameter estimates are obtained by solving the estimating equation:

n∑
i=1

δi
π̂∗i
U(θ;xi, yi) = 0,

where π̂∗i = π̂(xi; φ̂
∗) and φ̂∗ is computed from Step (a).

Table 2.1 presents the Monte Carlo biases and Monte Carlo root mean squared errors of the

estimator of the three parameters under the scenario 1, where the surrogate variable is uncorrelated

with the study variable. Monte Carlo bias can be obtained by the difference between Monte Carlo

mean and the true mean divided by the true mean. Monte Carlo root squared mean squared error

is the squared value of Monte Carlo mean squared error, which is sum of squared Monte Carlo bias

and Monte Carlo variance. As discussed in Section 3, the Monte Carlo root mean squared errors

obtained using the smoothed propensity score weighting method (PSW2 and PSW3) are smaller

than the standard error of the propensity score weighting method (PSW1) as condition (2.2) is
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satisfied. The result confirms our theory that including the surrogate variable that is uncorrelated

with the study variable may cause unnecessary noise for estimating parameters and decrease the

efficiency.

Table 2.1 Monte Carlo biases (Bias) and Monte Carlo root mean squared errors (RMSE)

of point estimators for scenario 1.

Parameter Method Bias RMSE

β0

CC 0.000 0.248

PSW1 0.001 0.451

PSW2 0.001 0.263

PSW3 0.000 0.252

β1

CC -0.001 0.105

PSW1 -0.001 0.178

PSW2 -0.001 0.115

PSW3 -0.001 0.107

The simulation results for the scenario 2 are presented in Table 2.2. The results show that

the estimators obtained by the propensity score weighting method (PSW1) are unbiased, but the

estimators obtained by CC method, PSW2 method and PSW3 method are biased. The PSW2

and PSW3 method is biased because the surrogate condition (2.2) is not satisfied. It implies that

the surrogate variable contains useful information for estimation that cannot be overlooked. The

PSW2 and PSW3 methods provide estimates with smaller standard errors than PSW1 method in

this simulation setup as they take account the surrogate variable for estimation of propensity score

weights.

2.5 Application

2.5.1 Data Description

The research is motivated by real data analysis in Korean workplace panel survey data, which

is a biennial panel survey of the workplaces in Korea, sponsored by Korean Labor Institute. We

used the KWPS data collected in 2007, 2009, and 2011 for our analysis.
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Table 2.2 Monte Carlo biases (Bias) Monte Carlo standard errors (Std Error) and Monte

Carlo root mean squared errors (RMSE) of point estimators for scenario 2.

Parameter Method Bias Std Error RMSE

β0

CC -0.145 0.206 0.252

PSW1 -0.004 0.236 0.236

PSW2 -0.738 0.356 0.819

PSW3 -0.167 0.240 0.292

β1

CC 0.045 0.088 0.098

PSW1 0.004 0.101 0.101

PSW2 0.200 0.131 0.239

PSW3 0.054 0.104 0.117

Target population of the survey is all company in South Korea with size of greater than 30

people in the company except agriculture, forestry, fishing and hunting. Of all companies in the

target population, which is of size 37,644 companies, 1400 companies were selected using complex

sampling design. Sample size is allocated for the companies that have employees less than 500

people and the companies with size of greater than 500 people were all selected and interviewed.

This is because there are less number of companies whose size is greater than 500.

The sampling design used for the survey is a stratified sampling using the company as both a

sampling unit and an experimental unit. The stratification variable is formed using 3 variables: the

size of the company, the type of the company and the area where it was located. A combination of

the three variables resulted in 200 strata since there are 5 levels of area, 4 levels of size of company,

and 10 levels of type of company results.

In order to determine the sample from the target population, two-stage sampling is used. The

procedure is as follows: In the first stage, the target population is divided into 10 strata using the

type of the company variable. Within the stratum, the size of company is used to form substrata

and the Kish method was applied to allocate samples within the stratum. In the second stage,

within a stratum formed by two variables, the area variable was used to make substrata and the

proportional allocation method was used to assign a sample size according to the size of the area.

From the KWPS data, we are interested in fitting a regression model for the regression of

the log-scaled sales per person (Y=log(Sales)/Person) on two covariates of the company: size of
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company (X1) and type of company (X2). In the dataset, variable Y is not completely observed

for all targets of the survey; they contain some missing values. However, the explanatory variables

are completely observed as the size and type of company are the characteristics that do not change

easily in every two years.

The response variable (Y ), the log-scaled sales per person, is a continuous variable. The two

explanatory variables are categorical. The size of company variable (X1) has four categories; 30-99

people, 100-299 people, 300-499 people, and more than 500 people. The type of company variable

(X2) contains twelve categories: Light industry, chemical industry, electric/electronic industry, etc.

In the KWPS data, the variable regarding the reaction of interviewees at the first contact has

been collected during the survey process and is considered a surrogate variable in our analysis. The

reaction at the first contact is categorical with three categories:

1. Friendly response (Z = 1): the interviewee accepts the survey or answers the pre-questionnaire

or fixes the visit date.

2. Moderate response (Z = 2): the interviewee cannot complete the survey immediately, but

allows the follow-up survey.

3. Negative response (Z = 3): the interviewee who completes the survey uncooperatively or

responded negatively.

Table 2.3 shows the response rates for each category of the first contact reaction. In friendly

and moderate responses, response rates are 0.71 and 0.67, respectively, but the response rate for

negative response is 0.45. This suggests that the surrogate variable is an important predictor for

the response model.

Table 2.3 Response rate corresponding each level of reaction of interviewees

Friendly Response Moderate Response Negative Response

Response Rate 0.71 0.67 0.45

From the dataset, we are interested in estimating the parameters in the regression model

E(Y |X = x) = β0 + β1x1 + β2x2.
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2.5.2 Analysis

We first check whether condition (2.2) is satisfied. Using the idea of Fuller (1984), we test the

hypothesis H0 : γ = 0 in the following model

Y = Xβ + Zγ + e, (2.12)

where X = (1, x1, x2) is a vector of explanatory variables, Z is a vector of surrogate variables, and

e is a random error following N(0, σ2). Under H0, we can roughly say that surrogate condition

(2.2) is satisfied. Table 2.4 presents the result of the hypothesis testing. The F-statistic of the test

is 0.3508 and its p-value is 0.7041, suggesting strong evidence in favor of the null hypothesis that

the surrogate variables are not significant in the augmented regression model (2.11). Thus, we can

safely assume that the vector of surrogate variables Z can be treated as conditionally independent

with the response variable Y given the explanatory variable X and condition (2.2) is satisfied.

Table 2.4 Test of the significance of the surrogate variable in the model (2.11)

F statistic p-value

H0 : γ = 0 0.3508 0.7041

Figure 2.1 confirms the surrogacy condition (2.2). The median of three boxes seems to be almost

the same around 0 and supports the result of the test that the surrogate variable is uncorrelated

with response variable given explanatory variables. Hence, all of these results imply that the

assumption (2.2) holds for the data.

We now compare the three methods for estimating the parameters of the outcome model in

(2.11), which are CC method, PSW1 method and PSW2 method. Estimated coefficients and their

standard errors are presented in Table 2.5. The standard errors are calculated using bootstrap

method. Since the company is an experimental unit as well as a sampling unit, a bootstrap sample

of 1,400 companies is randomly sampled with replacement from the original sample and coefficients

are estimated from the bootstrap sample. The estimates are bootstrap replicate of the coefficients.

We repeat the procedure B=1,000 times and obtain 1,000 bootstrap replicates. Then, a bootstrap

standard error is obtained from the bootstrap replicates.
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Figure 2.1 Boxplots of residuals of the regression of Y given X across each category of Z

Since two explanatory variables are categorical with 4 and 12 levels, respectively, there are

15 coefficient parameters to be estimated. Table 2.5 presents the parameter estimates and their

standard errors. We can see that the estimates obtained by using three methods are similar, but the

standard errors obtained by using PSW2 method are smaller across all levels of variables than the

standard errors calculated by using PSW1 method. The gain of efficiency by using PSW2 method

rather than PSW1 method is not large, we can check there exists an decrease in standard errors for

PSW2 method. The reason why PSW1 method produces larger standard errors compares to PSW2

method is that it incorporates the additional information from the paradata through the surrogate

variable z. As indicated before, including the surrogate variable in calculating the propensity score

weight generated unnecessary noise in estimation as the surrogate variable is uncorrelated with the

study variable. Thus, we conclude that it is desirable to avoid including the paradata’s information

into the data analysis.
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Table 2.5 Estimated coefficient (standard error) from the real data analysis. (CC, com-

plete case; PSW1, propensity score weighting method 1; PSW2, smoothed

propensity score weighting method 2)

CC PSW1 PSW2

Intercept 5.395 (0.212) 5.396 (0.217) 5.414 (0.211)

100-299 people 0.155 (0.200) 0.154 (0.205) 0.138 (0.199)

300-499 people 0.432 (0.206) 0.379 (0.212) 0.378 (0.205)

> 500 people 0.618 (0.216) 0.565 (0.218) 0.556 (0.215)

Chemical 0.379 (0.242) 0.374 (0.246) 0.371 (0.242)

Metal/Auto 0.259 (0.221) 0.260 (0.223) 0.257 (0.221)

Elec/Electronic -0.026 (0.236) -0.006 (0.239) -0.019 (0.235)

Construction 0.207 (0.282) 0.194 (0.286) 0.189 (0.282)

Personal Services 0.339 (0.242) 0.383 (0.245) 0.356 (0.241)

Transportation -1.219 (0.269) -1.195 (0.279) -1.207 (0.268)

Communication 0.090 (0.351) 0.145 (0.356) 0.104 (0.350)

Financial Insur 1.145 (0.299) 1.194 (0.334) 1.152 (0.298)

Business Services -1.155 (0.069) -1.094 (0.070) -1.113 (0.069)

Social Services -0.869 (0.256) -0.841 (0.259) -0.840 (0.256)

Elec/Gas 2.114 (0.261) 2.106 (0.263) 2.099 (0.261)

Chemical, Chemical Industry; Metal/Auto, Metal and Automobile Industry; Elec/Electronic,

Electrical and Electronical Industry; Financial Insur, Finance and Insurance Services; Elec/Gas,

Electric and Gas Services

Although the fact in Theorem 1 can be found in the example, that is PSW1 method produces

larger standard errors because of addition of unnecessary noise, there is no real gain using PSW2

method compared with CC method. That is, disregarding missing values and using only observed

values produces the most efficient estimates in the example. The possible reasons of no real gain

using PSW2 method compared with CC method are 1) the missing pattern in Y is completely

random; or 2) the lack of covariate variables used in the construction of the propensity score

weights. That is, it seems the pattern in missingness in the sales per person (Y) is completely

independent with the size or type of company in the example. In this case, constructing and using

the propensity score weight for adjustment of the missingness brings no gain in estimation.
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2.6 Conclusion

Motivated by the real survey project, we have investigated the propensity score approach incor-

porating the information from paradata into the response propensity model. Use of paradata in the

propensity model has been advocated in the literature. However, it is not always the case. We find

that using more information can decrease the efficiency of analysis, which is justified in Theorem

1. The claim is confirmed in the simulation study and the real data analysis using KWPS data.

When the surrogate variable in the paradata is conditionally independent with the study variable,

conditional on the explanatory variable, it is better not to include the surrogate variable because

the smoothed propensity score weight can provide more efficient estimation. In other words, it

is useful to include the information from paradata only when the surrogate is correlated with the

variable of interest.
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CHAPTER 3. A MEASUREMENT ERROR MODEL APPROACH TO

SURVEY DATA INTEGRATION: COMBINING INFORMATION FROM

TWO SURVEYS

Published in Metron, Volume 75(3), 345-357

Seho Park1, Jae Kwang Kim1 and Diana Stukel2

Abstract

Combining information from several surveys from the same target population is an important

practical problem in survey sampling. The paper is motivated by work that authors undertook,

sponsored by the Food and Nutrition Technical Assistance III Project (FANTA), with funding from

the U.S. Agency for International Development (USAID) Bureau of Food Security (BFS). In the

project, two surveys were conducted independently for some areas and we present a measurement

error model approach to integrate mean estimates obtained from the two surveys. The predicted

values for the counterfactual outcome are used to create composite estimates for the overlapped

areas. An application of the technique to the project is provided.

Key Words: counterfactual outcome; composite estimate; variance estimation.

3.1 Introduction

Survey integration is an emerging research area of statistics, which concerns combining infor-

mation from two or more independent surveys to get improved estimates for various parameters

of interest for the target population. One of the early applications of survey integration is the

Consumer Expenditure Survey (Zieschang, 1990), where two survey vehicles (a Diary survey and

a quarterly interview survey) were used to obtain improved estimates for the Diary survey items.

1Department of Statistics, Iowa State University
2FANTA III Project, FHI 360, Washington, DC, USA
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Renssen and Nieuwenbroek (1997), Merkouris (2004, 2010), Wu (2004) and Ybarra and Lohr (2008)

considered the problem of combining data from two independent surveys to estimate totals at the

population and domain levels.

Combining information from two or more independent surveys is a problem frequently encoun-

tered in survey sampling. One of the classical setups used to combine information is two-phase

sampling, where the measurement x is observed in both surveys and the study variable y is ob-

served only from one survey, say, in Survey A. There is no measurement for y in survey B. In this

case, we can treat the union of Survey A and Survey B samples as a phase one sample and treat the

Survey A sample as a phase two sample. Hidiroglou (2001) formulated this problem and developed

efficient estimation using a two-phase regression estimation method. Fuller (2003), Legg and Fuller

(2009), and Kim and Rao (2012) considered this problem as a missing data problem and developed

mass imputation to obtain improved estimation for the total as well as domain totals. Our setup is

different from the two-phase sampling approach in the sense that we have a different measurement

of y from two surveys.

We consider a situation where two surveys have common measurement for x but different

measurements for y. For example, x can be demographic information that does not suffer from

measurement errors but y can suffer from survey-specific measurement errors. The survey-specific

difference can occur due to differences in survey questions or survey modes (e.g. Dillman et al.

(2009)). In Table 3.1, for example, the Survey A sample contains observations in x and y1 while

the Survey B sample contains observations in x and y2. In the case of y1 being the study variable

of interest, if we can assume that y2 is a measurement for y1 with measurement errors, then at

issue is the estimation of the population mean of y1 combining two surveys.

Table 3.1 Data structure for combining two surveys with measurement errors

x y1 y2
Survey A o o

Survey B o o
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Our research is motivated by work sponsored by The Food and Nutrition Technical Assistance

III Project (FANTA) with funding from U.S. Agency for International Development (USAID), to

produce integrated estimates from two independent surveys conducted in Guatemala where the

geographic areas covered by the two surveys have substantial overlap.

Section 2 provides background on the projects and data descriptions and Section 3 introduces

the proposed method for survey integration. In Section 4, we illustrate the estimation process and

results of the work sponsored by FANTA, and Section 5 provides concluding remarks.

3.2 The Food and Nutrition Technical Assistance III Project

3.2.1 Background

FANTA is a 5-year cooperative agreement between the USAID and FHI 360. FANTA aims to

improve the health and well-being of vulnerable groups through technical support in the areas of

maternal and child health and nutrition in development and emergency contexts, HIV and other

infectious diseases, food security and livelihood strengthening, agriculture and nutrition linkages

and emergency assistance in nutrition crises.

USAID is the lead U.S. government agency that works to end extreme global poverty and enable

resilient, democratic societies to realize their potential. The Feed the Future Initiative (FTF) was

launched in 2010 by the United States government to address global hunger and food insecurity.

The Initiative is coordinated primarily by the USAID and is housed within the Bureau of Food

Security (BFS), but includes the Office of Food for Peace (FFP). The main objectives of the FTF

initiative are the advancement of global agricultural development, increased food production and

food security, and improved nutrition particularly for vulnerable populations such as women and

children. The FTF initiative is active in 19 focus developing countries in Africa, Asia and Latin

America. One of these focus countries is Guatemala.

Both BFS (through the FTF initiative) and FFP sponsor periodic baseline, interim and end-line

household surveys to gauge the extent of progress towards achieving the goals of the FTF initiative.

In 2013, FFP engaged a third party contractor, ICF International, to conduct a baseline household
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survey in 5 departments of the Western Highlands of Guatemala. In the same year, BFS/FTF

(henceforth referred to as FTF) engaged a third party contractor, UNC MEASURE, to conduct

an interim household survey in the same 5 departments in Guatemala. Although the surveys were

conducted in the same 5 departments, the geography of the two surveys did not exactly coincide;

however, there was substantial geographic overlap. The union of the geography covered by the two

surveys represents the FTF Zone of Influence (ZOI), where some of the most food insecure parts of

the population in the country reside. Because, FTF was interested in obtaining ZOI-level estimates

for a number of key indicators using data from the two independent surveys, they provided funding

to FANTA, who in turn, engaged the authors to undertake the work. Because of the overlapped

geography from the two surveys, it was necessary to use data integration methods to produce overall

ZOI-level estimates.

Guatemala has 22 departments, which are geographic entities, divided into 334 municipalities.

The two surveys were each conducted in the following five departments of the Western Highlands

of Guatemala: San Marcos, Totonicapan, Quiche, Quezaltenango, and Huehuetenango. Thus, two

surveys were conducted in the areas and the survey data from the two samples are ready to be

combined for survey integration. More details of this project can be found from the reference

provided by USAID (USAID, 2013).

3.2.2 Common Indicators

ICF International (FFP) and UNC MEASURE (FTF) used their own questionnaire for the

surveys, and among the indicators in the questionnaires, there were 11 common indicators in both

surveys indicating maternal and child health status. Among the 11 common indicators, 4 were

collected at the household-level and the remaining 7 were collected at the individual-level. Five

indicators of the 7 individual-level indicators pertained to children and remaining 2 to women.

Table 3.2 presents the common indicators and their descriptions.

Most indicator variables are dichotomous, taking the values of either 0 or 1 in both data sets,

but the other two indicator variables, which are ‘PCE’ and ‘WDDS,’ are numeric in both data sets.
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Table 3.2 Eleven Common Indicators

Level Indicator

Household Daily Per Capita Expenditures (PCE)

Prevalence of Households with Hunger (HHS)

Prevalence of Poverty (PP)

Mean Depth Poverty (MDP)

Individual(Children) Prevalence of Stunted Children

Prevalence of Wasted Children

Prevalence of Underweight Children

Prevalence of Children Receiving a Minimum Acceptable Diet (MAD)

Prevalence of Exclusive Breastfeeding (EBF)

Individual(Women) Prevalence of Underweight Women

Women’s Dietary Diversity Score (WDDS)

In this paper, we focus on the ‘PCE’ and the ‘HHS’ indicators for analysis as examples of a numeric

variable and a dichotomous variable, respectively.

3.2.3 Survey Design

3.2.3.1 FFP Survey

The survey for the FFP project used a three-stage sampling design. In the first stage, the

primary sampling unit is the village, where the village population for five departments is divided into

two substrata in each department. Each department has two substrata except for Quetzaltenango

which has one stratum. So, we have 9 strata and the first stage sample selection probability is based

on the number of villages in the sampling frame and the size of the village within each stratum.

The sampling frame for the first stage sampling included all the villages identified for program

implementation. Table 3.3 shows the summary of sample clusters in each stratum.

In the second stage sampling, sample households were selected randomly from each sampled

village. The target number of households selected for each village was 40. The second stage sample

selection probability is based on the number of households selected for each village divided by the

total number of households in each village.
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The third stage sampling was done at the individual level to select woman and children in

households. The third stage sample selection probability is based on the total number of individuals

selected for each interview module and the number of eligible individuals in the household. Only

one eligible woman was randomly selected using the Kish grid (Kish, 1949), but all children were

selected to be interviewed.

The final sampling weights are computed as the inverse of products of the three stage first-order

inclusion probabilities.

Table 3.3 Survey Design of the FFP Project

Department Strata Total No. of Clusters No. of Selected Clusters

1. San Marcos
11 89 17

12 30 17

2. Totonicapan
21 85 22

22 22 19

3. Quiche
31 62 22

32 19 13

4. Huehuetenango
41 48 12

42 18 12

5. Quetzaltenango 51 24 16

3.2.3.2 FTF Survey

The survey for the FTF project also used a three-stage sampling design using census sectors

as the primary sampling units. In the first stage, the census areas (urban/rural) were formed

in each department and census sectors were sampled within the census area. From the sampled

census sectors, the sample households were randomly selected in the second stage sampling. For

the third stage sampling, data on individual-level women and children were collected. All women

and children in a household are included in the sample, but the weights associated with women

and children are adjusted for nonresponse. Table 3.4 shows the summary of sample clusters in each

stratum.
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Table 3.4 Survey Design of the FTF Project

Department Strata Total No. of Clusters No. of Selected Clusters

1. San Marcos
Rural 192 25

Urban 99 3

2. Totonicapan
Rural 237 5

Urban 128 1

3. Quiche
Rural 284 33

Urban 97 7

4. Huehuetenango
Rural 336 39

Urban 80 8

5. Quetzaltenango
Rural 117 1

Urban 190 1

3.3 Survey Data Integration

We present the proposed method in the context of measurement error models. In a classical

measurement error model problem, the interest lies in estimating the regression coefficient for the

regression of y on x and the covariate x is subject to measurement errors (Fuller, 2009). In our

problem, the measurement error occurs in y for one survey (Survey B) and we are interested in

combining two surveys to estimate the population mean of y more efficiently. Thus, we still consider

the data structure in Table 3.1. We treat y1 as the gold standard, y1 = y, in the sense that there

is no measurement error in y1.

Let f1(y1 | x; θ1) be the density for the conditional distribution of y1 on x, characterized by

parameter θ1. Model for f1(y1 | x; θ1) can be called a structural equation model (Fornell and

Larcker, 1981). Let f2(y2 | x, y1; θ2) be the density for the conditional distribution of y2 on (x, y1),

characterized by parameter θ2. For parameter identifiability, we assume that

f2(y2 | x, y1) = f2(y2 | y1). (3.1)

Such assumption is sometimes called the nondifferential measurement error assumption (Buonac-

corsi, 2010, p.7) in the measurement error model literature. That is, x is an instrumental variable

for y1. The nondifferential measurement error assumption is used to obtain a reduced model.
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Given the sample with the data structure in Table 3.1, the imputed values for y1 in sample

B are used to obtain the composite estimator that combines direct observations in the sample A

and synthetic values in the sample B. The imputed values are the best predicted values of the

counterfactual outcome variable y1 in sample B, which correct for measurement errors in observed

valued of y2. The imputed values are generated using the prediction model for y1, f(y1 | x, y2).

For the parameter estimation, the (pseudo) maximum likelihood estimator of θ1 and θ2 can be

obtained by using the full EM algorithm as follows:

[E-step ] Compute

Q1(θ1|θ(t)1 , θ
(t)
2 ) =

∑
i∈Sa

wialogf1(y1i|xi; θ1)

+
∑
i∈Sb

wibE
[
logf1(y1i|xi; θ1) | xi, y2i; θ(t)1 , θ

(t)
2

]
and

Q2(θ2|θ̂(t)1 , θ
(t)
2 ) =

∑
i∈Sa

wiaE
[
logf2(y2i|y1i; θ2) | xi, y1i; θ̂(t)1 , θ

(t)
2

]
+

∑
i∈Sb

wibE
[
logf2(y2i|y1i; θ2) | xi, y2i; θ̂(t)1 , θ

(t)
2

]
,

where Sa and Sb are the index sets for the Survey A sample and the Survey B sample,

respectively. Also, wia and wib are the sampling weight for unit i ∈ Sa and for unit i ∈ Sb,

respectively. The conditional expectation in Q1 is taken with respect to

f(y1|x, y2; θ1, θ2) =
f1(y1|x; θ1)f2(y2|y1; θ2)∫
f1(y1|x; θ1)f2(y2|y1; θ2)dy1

evaluated at θ1 = θ
(t)
1 and θ2 = θ

(t)
2 for Q1 and at θ1 = θ̂

(t)
1 and θ2 = θ

(t)
2 . For Q2, the

first conditional expectation is taken with respect to f(y2i|xi, y1i) = f(y2i|y1i) by assumption

(3.1), evaluated at θ2 = θ
(t)
2 .

[M-step ] Update θ1 by maximizing Q1(θ1|θ(t)1 , θ
(t)
2 ) with respect to θ1 and update θ2 by maximizing

Q2(θ2|θ̂(t)1 , θ
(t)
2 ) with respect to θ2.
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Based on the estimated parameters θ̂1 and θ̂2, the best predictor of y1 of the Survey B sample

is obtained as the expectation of the predictive distribution, which is the conditional distribution

of y1 given x and y2. That is, the best predictor of y1i is

ŷ∗1i = E
(
y1i|xi, y2i; θ̂1, θ̂2

)
. (3.2)

The parametric fractional imputation of Kim (2011) can be used to generate fractionally im-

puted values for y1 in sample B under the general parametric models (Park et al., 2016). When

f1(y1|x; θ1) and f2(y2|x, y1; θ2) have general parametric models, the prediction model may not have

a closed form. In this case, the parametric fractional imputation can be used following two-step

method:

1. For each i ∈ Sb, generate y
∗(j)
1i from f1(y1i | xi; θ̂1) for j = 1, · · · ,m.

2. Let y
∗(j)
1i be the j-th imputed value of y1i obtained from Step 1. The fractional weight assigned

to y
∗(j)
1i is

w
∗(j)
i =

f2(y2i | xi, y∗(j)1i ; θ̂2)∑m
k=1 f2(y2i | xi, y

∗(k)
1i ; θ̂2)

.

Once we use the parametric fractional imputation, the conditional expectation in (3.2) can by

computed by a Monte Carlo approximation. That is, the conditional expectation can be written

by

ŷ∗1i
∼=

m∑
j=1

w
∗(j)
i y

∗(j)
1i .

Using the counterfactual values (3.2) of the Sample B and observations of the Survey A sample, we

can construct a composite estimator that combines two values. The combined estimator is

ȳ∗com =

∑
i∈Sa

wiay1i +
∑

i∈Sb
wibŷ

∗
1i∑

i∈Sa
wia +

∑
i∈Sb

wib
.

Kim et al. (2016) have investigated the parametric fractional imputation of Kim (2011) in the

context of statistical matching where the main interest lies in estimating θ2 in f2(y2 | x, y1; θ2).

In their simulation study, the imputation model is based on the nondifferential measurement error

assumption, but they noticed that departure from the assumption does not affect the validity of
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the imputation estimator for the population mean of y1, even though it leads to biased estimation

of the regression parameters. Note that if the assumption does not hold, then the imputation

model (based on the assumption) is incorrectly specified. Under the incorrectly specified model,

the imputed estimator is still unbiased for the mean estimation, as long as an intercept term is

included in the model (Kim and Rao, 2012).

3.4 Application of Methodology to USAID surveys in Guatemala

Based on the two estimates obtained from the two independent surveys on the overlap areas,

we can improve the efficiency of the estimation by combining the two estimates.

3.4.1 Survey Data Integration

In this section, we use a measurement error model approach to integrate two surveys, the FFP

and the FTF, presented in Section 3. In the view of the measurement error model approach, we

treat one sample as a gold standard and the other sample containing measurement errors.

Throughout this study, the FFP sample was used as a benchmark and we predicted the coun-

terfactual outcomes of the FTF sample, which is the value that would have obtained when the FTF

sample was collected by ICF International who conducted the FFP project. This is based on the

idea that measurement errors between two surveys are diminished when we consider the predicted

values of the counterfactual values instead of the original values from the survey. We chose the

FFP sample as a reference point since it has a smaller residual sum of squares compares to the one

from the FTF sample.

3.4.1.1 Case 1: Continuous Study Variable

Since the PCE indicator has continuous values, we treat a structural equation model and a

measurement error model both follow normal distributions. Assume that a structural equation

model for y1 is

y1i = β1x1i + β2x2i + ei, (3.3)
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where x1i is a department indicator and x2i is a variable indicating the total number of household

members, and ei ∼ N(0, σ2e). Also, a measurement error model for y2 is

y2i|y1i = α0 + α1y1i + ui,

where ui ∼ N(0, σ2u). By using the Bayes theorem, the predictive distribution can be derived as

y1i|y2i,xi ∼ N(µi, v
2) (3.4)

where xi = (x1i, x2i) with β = (β1, β2) and

µi = ciβxi + (1− ci)α−11 (y2i − α0)

with

ci =
1/σ2e

1/σ2e + α2
1/σ

2
u

and

v2 =
σ2eσ

2
u/α

2
1

σ2e + σ2u/α
2
1

.

For the analysis of the PCE indicator, we assumed a linear regression model (3.3). The model

diagnostics for the model assumptions are given in Figure 3.1. Two plots show that the normality

assumption and the homogeneity of variance assumption are appropriate. Residual plot also shows

no particular pattern in residuals so the model assumptions in (3.3) are regarded as reasonable.

For the parameter estimation, we write θ1 = (β1, β2, σ
2
e) and θ2 = (α0, α1, σ

2
u). The best

estimator of θ1 and θ2 can be obtained by the full EM algorithm as explained in Section 3. In this

example, the Q1 and Q2 are as follows:

[E-step ] Compute

Q1(θ1|θ(t)1 , θ
(t)
2 ) =

∑
i∈Sa

wia

{
−1

2
log(σ2e)−

1

2σ2e
(y1i − βxi)

2

}
+

∑
i∈Sb

wibE

[
−1

2
log(σ2e)−

1

2σ2e
(y1i − βxi)

2

∣∣∣∣xi, y2i; θ(t)1 , θ
(t)
2

]
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Figure 3.1 Model Diagnostics of Model (3.3)

and

Q2(θ2|θ̂(t)1 , θ
(t)
2 ) =

∑
i∈Sa

wiaE

[
−1

2
log(σ2u)− 1

2σ2u
(y2i − α0 − α1y1i)

2
∣∣∣ xi, y1i; θ̂(t)1 , θ

(t)
2

]
+

∑
i∈Sb

wibE

[
−1

2
log(σ2u)− 1

2σ2u
(y2i − α0 − α1y1i)

2
∣∣∣ xi, y2i; θ̂(t)1 , θ

(t)
2

]
,

where the conditional distribution for

f(y1|x, y2; θ1, θ2) =
f1(y1|x; θ1)f2(y2|y1; θ2)∫
f1(y1|x; θ1)f2(y2|y1; θ2)dy1

is also normal as in (3.4), evaluated at θ1 = θ̂
(t)
1 and θ2 = θ̂

(t)
2 .

[M-step ] Update θ1 by maximizing Q1(θ1|θ(t)1 , θ
(t)
2 ) with respect to θ1 and update θ2 by maximizing

Q2(θ2|θ̂(t)1 , θ
(t)
2 ) with respect to θ2.

Based on the estimated parameters θ̂1 and θ̂2, the best predictor of y1 of the FTF sample is obtained

as a mean of the predictive distribution, which is a conditional expectation of y1 given x and y2.

That is,

ŷ∗1i = Ê (y1i|xi, y2i) =
β̂xi/σ̂

2
e + α̂1(y2i − α̂0)/σ̂

2
u

1/σ̂2e + α̂2
1/σ̂

2
u
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is the best prediction of y1i in the FTF sample that correct for measurement errors in y2i.

Using the counterfactual values of the FTF sample and observations of the FFP sample, we can

construct a composite estimator that combines two values. The combined estimator is

ȳ∗com =

∑
i∈Sa

wiay1i +
∑

i∈Sb
wibŷ

∗
1i∑

i∈Sa
wia +

∑
i∈Sb

wib
, (3.5)

where Sa and Sb denote the FFP sample and the FTF sample, respectively.

3.4.1.2 Case 2: Dichotomous Study Variable

When a study variable is dichotomous, such as the HHS indicator in the project, the normal

distribution assumption does not hold for both the structural equation model and the measurement

error model. In this case, we consider a logistic regression model for the structural equation model

and the misclassification model is used instead of the measurement error model (Buonaccorsi, 2010).

The structural equation model for y1 is

y1i|xi ∼ Ber(ri)

where xi = (x1i, x2i) and

ri =
exp(β1x1i + β2x2i)

1 + exp(β1x1i + β2x2i)
,

where x1i is a department indicator and x2i is a variable indicating total number of household

members. The misclassification model is given

f(y2i|y1i) = py1iy2i(1− p)y1i(1−y2i)q(1−y1i)y2i(1− q)(1−y1i)(1−y2i)

where p = P (y2i = 1|y1i = 1) and q = P (y2i = 1|y1i = 0) are the misclassification parameters.

Denote the parameters θ1 = (β1, β2) and θ2 = (p, q). Then, the implementation of the EM

algorithm via parametric fractional imputation involves the following steps:

[E-step ]

Q1(θ1|θ(t)1 , θ
(t)
2 ) =

∑
i∈Sa

wia [y1i(β1x1i + β2x2i)− log {1 + exp(β1x1i + β2x2i)}]

+
∑
i∈Sb

wib

2∑
j=1

w
∗(j)
1i

[
y
∗(j)
1i (β1x1i + β2x2i)− log {1 + exp(β1x1i + β2x2i)}

]
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and

Q2(θ2|θ̂(t)1 , θ
(t)
2 ) =

∑
i∈Sa

wia

2∑
j=1

w
∗(j)
2i

[
y
∗(j)
2i {y1i log p+ (1− y1i) log q}

]

+
∑
i∈Sa

wia

2∑
j=1

w
∗(j)
2i

[
(1− y∗(j)2i ) {y1i log(1− p) + (1− y1i) log(1− q)}

]

+
∑
i∈Sb

wib

2∑
j=1

w
∗(j)
1i

[
y
∗(j)
1i {y2i log p+ (1− y2i) log(1− p)}

]

+
∑
i∈Sb

wib

2∑
j=1

w
∗(j)
1i

[
(1− y∗(j)1i ) {y2i log q + (1− y2i) log(1− q)}

]
,

where y
∗(1)
ki = 1 and y

∗(2)
ki = 0 for k = 1, 2 and

w
∗(j)
1i = P (y

∗(j)
1i |y2i,xi)

∝ f(y
∗(j)
1i |xi)P (y2i|y∗(j)1i )

w
∗(j)
2i = P (y

∗(j)
2i |y1i,xi)

= P (y
∗(j)
2i |y1i),

where
∑

j w
∗(j)
1i = 1 and

∑
j w
∗(j)
2i = 1.

[M-step ] Update θ1 by maximizing Q1(θ1|θ(t)1 , θ
(t)
2 ) with respect to θ1 and update θ2 by maximizing

Q2(θ2|θ̂(t)1 , θ
(t)
2 ) with respect to θ2.

The best predictor of y1i of the FTF sample can be written by

ŷ∗1i = Ê(y1i|xi, y2i) =
2∑
j=1

w
∗(j)
1i y

∗(j)
1i (3.6)

and the composite estimator combining two samples can be calculated as (3.5) using (3.6).

3.4.2 Variance Estimation of the Combined Estimator

For variance estimation of the combined estimator, replicate variance estimation method is

applied. More precisely, we used the bootstrap method of Rao and Wu (1988). For each bootstrap
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dataset D(b), b = 1, · · · , B, we can calculate estimates for the specific bootstrap sample, say µ̂(b).

Then, the bootstrap approach computes the estimated variance of estimator ȳ by

V̂ (ȳ) =
1

B − 1

B∑
b=1

(
µ̂(b) − ˆ̄µ

)2
,

where ˆ̄µ = B−1
∑B

b=1 µ̂(b) is the mean of B bootstrap estimates. We used B = 500 in this study.

3.4.3 Results

In this section, results of the two examples in Section 2.4 are presented: the PCE indicator’s

result is shown in Table 3.5 and the HHS indicator’s result is shown in Table 3.6. Both tables

contain mean estimates of the FFP project (FFP), mean estimates of the FTF project (FTF) and

combined mean estimates (Combined) using the original estimate of the FFP project and the new

FTF mean estimates. Also, standard errors of each mean estimate are also reported.

Table 3.5 PCE Indicator: Mean Estimates (Standard Errors) of the FFP Project, Mean

Estimates (Standard Errors) of the FTF Project, and Combined Mean Estimates

(Standard Errors)

Department FFP FTF Combined

San Marcos 0.558 1.165 0.563

(0.030) (0.038) (0.026)

Totonicapan 0.388 0.895 0.331

(0.030) (0.085) (0.028)

Quiche 0.382 1.045 0.396

(0.030) (0.031) (0.026)

Huehuetenango 0.456 1.140 0.479

(0.044) (0.036) (0.027)

Quetzaltenango 0.695 1.325 0.795

(0.044) (0.232) (0.043)

Mean estimates of the FFP sample and the new mean estimates of the FTF sample are combined

using (3.5) in order to obtain the composite estimates and the result is listed in the last column of

the both tables. From the results in Table 3.5 and Table 3.6, we find that the combined estimator

provides reasonable estimates for the population mean with smaller standard errors.
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Table 3.6 HHS Indicator: Proportion Estimates (Standard Errors) of the FFP Project,

Proportion Estimates (Standard Errors) of the FTF Project, and Combined

Proportion Estimates (Standard Errors) (%)

Department FFP FTF Combined

San Marcos 3.76 15.35 3.77

(1.01) (2.22) (1.00)

Totonicapan 11.79 15.01 12.08

(1.70) (6.00) (1.60)

Quiche 7.13 9.73 7.19

(1.50) (1.57) (1.42)

Huehuetenango 8.91 15.58 8.75

(1.90) (2.00) (1.90)

Quetzaltenango 6.84 9.94 6.85

(1.80) (8.25) (1.70)

Estimates of parameters of the measurement error model for PCE variable are (α̂0, α̂1) =

(0.261, 0.732). The α̂0 = 0.261 can be thought of as the mean of the measurement error model

and it can explain why some combined estimates are outside the confidence interval of the estimate

from the FTF.

In some cases, the combined estimate is not in between the FFP and the FTF. For example, the

combined estimate of PCE in Totonicapan and the combined estimate of HHS in Huehuetenango

are smaller than the FFP and the FTF. The new estimate of the FTF, which was adjusted for

measurement errors, is even smaller than the FFP and it leads to the combined estimate that is

not between the two original values. The new FTF estimate is not tabulated in the result, but the

new estimate of PCE in Totonicapan is 0.275 and the new one of HHS in Huehuetenango is 8.70,

which are smaller than the FFP for both cases.

3.5 Discussion

This study suggests a new approach to combine information from two surveys using the mea-

surement error model approach and it can be generalized to combine more than two sources of

information. Using a structural equation model and a measurement error model, we present a
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guidance on data integration with illustration of the work sponsored by FANTA. The results shown

in Table 3.5 and Table 3.6 indicate that the reference estimate and the counterfactual predicted

values of the other sample can be used to produce the combined estimates.

The choice of a benchmark among several surveys can be decided in various ways. We considered

a smaller mean squared error as a criterion in our study. If we have auxiliary information, such

as previous experiences on the surveys, it can be used to determine a gold standard among several

surveys.

The proposed approach can be applied to combine more than two survey data. Similarly, we can

implement the method as follows: set one survey data as a benchmark, remove measurement errors

existing in the remaining survey data and calculate the composite estimator using the estimates

from the surveys. Also, multivariate modeling for the structural equation model can provide a more

efficient estimation. Such extension will be a topic for future research.
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CHAPTER 4. MASS IMPUTATION FOR TWO-PHASE SAMPLING

A paper to be submitted to Statistica Sinica

Seho Park1 and Jae Kwang Kim1

Abstract

Two-phase sampling is a cost effective method of data collection using outcome-dependent sampling

for the second-phase sample. In order to make efficient use of auxiliary information and to improve

domain estimation, mass imputation can be used in two-phase sampling. Rao and Sitter (1995)

introduce mass imputation for two-phase sampling and its variance estimation under simple random

sample in both phases. In this paper, we extend the Rao-Sitter method to the general sampling

design. In addition, we also consider a special case of non-nested two-phase sampling where the

second-phase sample is a non-probability sample. The proposed method requires the outcome

model be correctly specified. Two simulation studies are performed to examine the performance of

the proposed methods.

Key Words: outcome-dependent sampling, auxiliary information, domain estimation, non-

nested two-phase sampling, non-probability sample.

4.1 Introduction

Two-phase sampling, which was first proposed by Neyman (1938), is a convenient and econom-

ical sampling design when the sample selection is conducted in two phases. In phase one, a large

sample is collected from population and a relatively inexpensive auxiliary variable x is measured.

In phase two, incorporating the auxiliary information obtained from the first-phase into the second-

phase sampling design, a smaller sample is drawn and a variable of interest y, which is expensive

to measure, is collected.

1Department of Statistics, Iowa State University
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Two-phase sampling or double sampling is effective in increasing the precision of estimates by

using auxiliary information and is a cost-effective technique that enables us to consider two layers of

information rather than one layer of information available from single-phase sampling (Hidiroglou

and Särndal, 1998). Two-phase sampling is also called outcome-dependent sampling since the

second phase sampling depends on the observations from the first phase sampling. Hidiroglou (2001)

and Legg and Fuller (2009) provide comprehensive overviews of two-phase sampling. Moreover, two-

phase sampling can efficiently sample a relatively rare and not easily identifiable population (Blair,

1999) or a highly clustered population (Blair and Czaja, 1982).

In addition to the above mentioned advantages, two-phase sampling is powerful as it is ap-

plicable to various situations. Separate sample collections from sub-population of responses and

non-responses for the cases with rare or low responses is an example of two-phase sampling. For

example, case-control studies in epidemiology or choice-based sampling in econometrics are exam-

ples of two-phase sampling (Breslow and Holubkov, 1997). For the case-control studies, most of

disease cases and relatively small portion of the control cases are sampled separately in order to

examine effects of potential risk factors to the disease (Breslow, 2014).

Structure of two-phase sample can be seen as a missing data problem; some are observed and

the others are missing. Since y’s are observed only in the second-phase sample and are missing

in the remaining part of the first-phase sample, we can regard the two-phase sample as planned

missing data and apply an imputation method. This technique, termed synthetic imputation,

generates synthetic values for the missing values and use the imputed values for the estimation. It

is also called as mass imputation (Kim and Rao, 2012) since it requires generating a large number

of synthetic values. In terms of methodological advantage, the mass imputation is more efficient

than when we use naive weighting since auxiliary information is used and it is also practically

advantageous as of weighting is not necessary to produce estimates (De Waal, 2000).

In the large scale survey, it is sometimes convenient or requested to produce estimates for various

domains from the first phase sample when it is very large. Sometimes the first phase sample is

hard to handle entirely because of its large size, and estimates of detailed or finer-level domains are
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of interest. Estimates for domains, or small area, can be computed using various techniques and

mass imputation is one of them (Moore and Robbins, 2004). Breidt et al. (1996) also considered

using imputation method for domain estimation and they showed that estimates obtained using

mass imputation provide better estimates at finer levels of detail.

Mass imputation for two-phase sampling when both phases use the simple random sampling

design has been introduced by Rao and Sitter (1995). In this paper we extend it to the arbitrary

sampling designs in each of the two phases. We propose a mass imputation estimator and a

replication variance estimation for the estimator for the two-phase sample collected using complex

sampling design. Further, we also consider a non-nested two-phase sampling as an extension when

the second phase sample is not necessarily selected from a probability sampling. If two samples

are selected independently from the same target and one sample observes the auxiliary variable

only and the other sample observes the study variable as well as the auxiliary variable, it is called

non-nested two-phase sample. Filling in the missing values of study variable in one sample with

imputed values, which incorporates information from the other sample, and obtaining improved

estimator integrating information from two samples is presented in this paper.

The rest of the paper is organized as follows. In section 2, we introduce notations used through-

out the paper and two-phase regression estimator and its known properties. In section 3, we present

a proposed mass imputation estimator with its asymptotic properties. In section 4, replication vari-

ance estimation for the proposed mass imputation estimator is discussed. In section 5, non-nested

two-phase sampling is considered. Simulation study result is presented in section 6 and we conclude

in section 7.

4.2 Basic Setup

To discuss the setup for two-phase sampling, consider a finite population, denoted by FN =

{(x1, y1), · · · , (xN , yN )}. Let A1 denote the index set of the first-phase sample of size n1 collected

from the finite population. For the first-phase sample A1, we assume that the first-order inclusion

probability of unit i, denoted by π1i = P (i ∈ A1), is known for all element i ∈ A1. From the
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first-phase sample, we select a second-phase sample by a probability sampling design with known

conditional first-order inclusion probability π2i|1i = P (i ∈ A2|i ∈ A1) for i ∈ A2. The conditional

first-order inclusion probability is random in the sense that it depends on the observations from

the first-phase sample.

Let w1i denote the sampling weight for the first-phase sample and it is the reciprocal of the first-

order inclusion probability for the first-phase; w1i = π−11i . Also, w2i|1i is defined as the conditional

sampling weight for the second-phase sample that is the reciprocal of the conditional inclusion

probability of the second-phase sample, that is w2i|1i = π−12i|1i.

We are interested in estimation of the finite population total of y, denoted as Y =
∑N

i=1 yi.

When the study variable y is observed in the second-phase sample, the population total Y is

estimated by two-phase regression estimator defined by

Ŷtp,reg = Ŷ2 + (X̂1 − X̂2)β̂, (4.1)

where

X̂1 =
∑
i∈A1

w1ixi,

(X̂2, Ŷ2) =
∑
i∈A2

w1iw2i|1i(xi, yi),

and β̂ is obtained using the observations from the second-phase sample. To study the asymptotic

properties of the two-phase regression estimator, we assume a sequence of finite populations and

samples defined in Isaki and Fuller (1982) with bounded fourth moments of (xi, yi). Define XN =∑N
i=1 xi and ni = |Ai| for i = 1, 2.

Lemma 4.2.1 Suppose that the sequence of finite population and samples satisfies the following

assumptions:

A1. E
[
|X̂1 −XN |2 | FN

]
= O(n−11 N2)

A2. E
[
|(X̂2, Ŷ2)− (XN , Y )|2 | FN

]
= O(n−12 N2)

A3. E
[
|β̂ − βN |2 | FN

]
= O(n−12 ) for some βN .
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Then,

N−1(Ŷtp,reg − Ỹtp,reg | FN ) = op(n
−1/2
2 ), (4.2)

where

Ỹtp,reg = Ŷ2 + (X̂1 − X̂2)βN .

Note that

E(Ỹtp,reg) = Y

and

V (Ỹtp,reg − Y ) = V
[
E
(
Ỹtp,reg | A1

)]
+ E

[
V
(
Ỹtp,reg | A1

)]
= V (Ŷ1) + E [V (ê2 | A1)] ,

where ê2 =
∑

i∈A2
w1iw2i|1i(yi − xiβN ).

Proof. From assumption A3, we can obtain that

β̂ = βN +Op(n
−1/2
2 ). (4.3)

Using (4.3) and X̂1 − X̂2 = Op(n
−1/2
2 N), we can obtain that

Ŷtp,reg = Ŷ2 +
(
X̂1 − X̂2

)′

βN +
(
X̂1 − X̂2

)′ (
β̂ − βN

)
= Ŷ2 +

(
X̂1 − X̂2

)′

βN +Op(n
−1
2 N),

which proves (4.2).

Since Ỹtp,reg is design-unbiased for Y , Lemma 1 implies that the two-phase regression estimator

Ŷtp,reg is design-consistent for Y regardless of the form of β̂.

4.3 Proposed method

In this section, we present a new approach for mass imputation under nested two-phase sam-

pling. Mass imputation estimator for the population total Y is composed of observed y values of

the second-phase sample and imputed values for the rest of the first-phase sample. That is, we use
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the second-phase sample to develop a model generating imputed values for unobserved variables

using the observed relationships among the variables (Fetter, 2001).

Denote A2 ∪Ac2 = A1. Then, a mass imputation estimator for population total is written by

Ŷimp =
∑
i∈A2

w1iyi +
∑
i∈Ac

2

w1iŷi, (4.4)

where ŷi = xiβ̂ and β̂ is to be determined later. The first component is a weighted sum of

observations in A2 and the second term is a weighted sum of imputed values in Ac2.

Our goal is to find a mass imputation method for two-phase sampling that makes the imputation

estimator (4.4) algebraically equivalent to the two-phase regression estimator in (4.1).

Lemma 4.3.1 If β̂ satisfies ∑
i∈A2

w1i(w2i|1i − 1)(yi − xiβ̂) = 0, (4.5)

then the mass imputation estimator

Ŷimp =
∑
i∈A2

w1iyi +
∑
i∈Ac

2

w1iŷi

where ŷi = xiβ̂ is algebraically equivalent to the two-phase regression estimator defined in (4.1).

Proof. Condition (4.5) can be expressed as∑
i∈A2

w1iwi2|1(yi − ŷi) =
∑
i∈A2

w1i(yi − ŷi)

and so, ∑
i∈A2

w1iwi2|1(yi − ŷi) +
∑
i∈A2

w1iŷi =
∑
i∈A2

w1iyi (4.6)

Substituting (4.6) into (4.4), we have

Ŷimp =
∑
i∈A2

w1iyi +
∑
i∈Ac

2

w1iŷi

=
∑
i∈A1

w1iŷi +
∑
i∈A2

w1iwi2|1(yi − ŷi) (4.7)

=
∑
i∈A2

w1iw2i|1iyi +

∑
i∈A1

w1ixi −
∑
i∈A2

w1iw2i|1ixi

 β̂

= Ŷ2 + (X̂1 − X̂2)
′β̂,
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which establishes the equivalence between the mass imputation estimator and the two-phase re-

gression estimator.

To discuss condition (4.5), note that if β̂ is of the form

β̂ =

∑
i∈A2

w1ix
′
ixi

−1 ∑
i∈A2

w1ix
′
iyi

and w2i|1i−1 is included in the column space of xi, then condition (4.5) is satisfied. Thus, the mass

imputation estimator (4.4) is also design-consistent for the population total Y . Condition (4.5) is

similar in spirit to internal bias calibration (IBC) condition of Firth and Bennett (1998).

Note that the first term on the right side of (4.7) is defined as a projection estimator or synthetic

estimator in Kim and Rao (2012) and the second term in equation (4.7) can be considered as a

bias-correction term of the projection estimator. The projection estimator is asymptotically design-

unbiased if the intercept is included in the column space of xi.

The mass imputation using ŷi as the imputed values for yi can be called deterministic im-

putation. We can also apply the idea of fractional imputation (Fuller and Kim, 2005) for mass

imputation. To do this, we can write

ŶFI =
∑
i∈A2

w1iyi +
∑
i∈Ac

2

w1i(ŷi +
∑
j∈A2

w∗ij êj), (4.8)

where êi = yi − xiβ̂ and w∗ij is the fractional weight assigned to êj in unit i ∈ Ac2. By (4.5), if we

choose

w∗ij =
w1j(w2j|1j − 1)∑
j∈A2

w1j(w2j|1j − 1)
,

then we have
∑

j∈A2
w∗ij êj = 0 and (4.8) is algebraically equivalent to (4.4).

Note that we can express (4.8) as

ŶFEFI =
∑
i∈A2

w1iyi +
∑
i∈Ac

2

w1i

∑
j∈A2

w∗ijy
∗
ij , (4.9)

where y∗ij = ŷi + êj . Because (4.9) uses all possible imputed values for imputation, it can be called

fully efficient fractional imputation (FEFI) estimator (Fuller and Kim, 2005).
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4.4 Replication Variance Estimation

In this section, we consider a replication variance estimation of the mass imputation estimator

in (4.4). Jackknife variance estimation is considered by Rao and Sitter (1995) under the two-phase

sampling with simple random sampling for both phases and it can be extended to general designs

by augmenting xi to include w2i|1i − 1. Let the replicate variance estimator for the first-phase

sample estimator of total is

V̂1(T̂1) =
L∑
k=1

ck

(
T̂
(k)
1 − T̂1

)2
(4.10)

where T̂
(k)
1 =

∑
i∈A1

w
(k)
1i yi is the k -th replicate of estimated total T̂1 =

∑
i∈A1

w1iyi, k = 1, · · · , L,

L is the number of replications, and ck is the replication factor.

The jackknife variance estimator for the mass imputation estimator using the second-phase

sample has a form of

V̂ (Ŷimp) =
L∑
k=1

ck

(
Ŷ

(k)
imp − Ŷimp

)2
, (4.11)

where

Ŷ
(k)
imp =

∑
i∈A2

w
(k)
1i yi +

∑
i∈Ac

2

w
(k)
1i xiβ̂

(k)
(4.12)

and

β̂
(k)

=

∑
i∈A2

w
(k)
1i x

′
ixi

−1 ∑
i∈A2

w
(k)
1i x

′
iyi.

Note that Ŷ
(k)
imp is the kth replicate of Ŷimp using kth replicated weight of w1i. We can show that the

jackknife variance estimator is consistent for the variance of the mass imputation estimator. For

simplicity we now assume that a Poisson sampling in the second-phase. That is, we assume that

the second-phase sampling is Bernoulli with π2i|1i. Kim and Yu (2011) also consider the unequal

probability Poisson sampling within the second-phase strata and Fuller (1998) observes that Poisson

sampling for second-phase sample is a good approximation and has little impact on the variance

estimation of the mean.

Theorem 2 Assume that a finite population is a sample from an infinite population with 4 + δ,

δ > 0, moments and E(π2i|1i) = κi. Assume that w2i|1i − 1 is in the column space of xi. Assume
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that

E
[
|T̂1z − T1z|2|FN

]
= O(n−11 N2)

E
[
|T̂2z − T2z|2|FN

]
= O(n−12 N2) (4.13)

where (
T̂1z, T̂2z

)
=

∑
i∈A1

w1izi,
∑
i∈A2

w1iw2i|1izi

 .

are total estimators of variable z for the first-phase and the second-phase sample, respectively.

Assume that

V (T̂1y|FN ) ≤ KMV (T̂y,SRS |FN ), (4.14)

for a fixed KM , where V (T̂y,SRS |FN ) is the variance of the Horvits-Thompson estimator based on

a simple random sample of size n1. Assume that the variance of a linear estimator of a total is a

quadratic function of y and assume that

n1N
−2V

∑
i∈A1

w1iyi|FN

 =
N∑
i=1

N∑
j=1

Ωijyiyj (4.15)

where the coefficients Ωij satisfy
N∑
i=1

|Ωij | = O(N−1). (4.16)

Let V̂1(T̂1) be the first-phase sample replicate estimator of the variance of T̂1 given in (4.10) and

assume

E


[

V̂1(T̂1)

V (T̂1|FN )
− 1

]2
|FN

 = o(1) (4.17)

for any y with bounded fourth moments. Assume that the replicates for the first-phase sample

estimator of a total, T̂1, satisfy

E

{[
ck

(
T̂
(k)
1 − T̂1

)2]2
|FN

}
< KTL

−2
[
V (T̂1|FN )

]2
(4.18)

for some constant KT , uniformly in N . Also, assume that

ckN = O(1). (4.19)



50

Then, the jackknife variance estimator of form (4.11) satisfies

V̂JK(Ŷimp) = V (Ŷimp | FN )−
N∑
i=1

κ−1i (1− κi)e2i + op(n
−1
2 N2), (4.20)

where ei = yi − ȲN − (xi − X̄N )βN .

For the proof see appendix A.

The bias of V̂JK(Ŷimp) has order of O(N) and it can be estimated unbiasedly by∑
i∈A2

w1iπ
−1
2i|1i(1− π2i|1i)ê

2
i ,

where êi = yi − xiβ̂. The second term in (4.20) is small relative to the first term if the first-phase

sampling rate, n1/N , is small. Then, replicate variance estimator (4.11) can be used for the variance

of mass imputation estimator of two-phase sample.

We consider the replication method for the variance estimation of the FEFI estimator. A kth

replicate for the FEFI estimator is

Ŷ
(k)
FEFI =

∑
i∈A2

w
(k)
1i yi +

∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
∗(k)
ij y∗ij , (4.21)

where

w
∗(k)
ij =

w
(k)
1j (w2j|1j − 1)∑

j∈A2
w

(k)
1j (w2j|1j − 1)

(4.22)

is a kth replicate of fractional weight. The following theorem provides the asymptotic property of

the replicate variance estimator of the FEFI estimator.

Theorem 3 Assume that

β̂
(k) − β̂ = Op(n

−1
2 ). (4.23)

Then, the jackknife variance estimator of the FEFI estimator, which has a form of

V̂FEFI =

L∑
k=1

ck

(
Ŷ

(k)
FEFI − ŶFEFI

)2
,

satisfies

V̂FEFI = V (ŶFEFI)−
N∑
i=1

κ−1i (1− κi)e2i + op(n
−1
2 N2), (4.24)

where κi and ei are defined in the Theorem 1.
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Proof. Let’s define Ỹ
(k)
FEFI as

Ỹ
(k)
FEFI =

∑
i∈A2

w
(k)
1i yi +

∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
∗(k)
ij y

∗(k)
ij (4.25)

when y
∗(k)
ij = ŷ

(k)
i + ê

(k)
j = xiβ̂

(k)
+
(
yj − xjβ̂

(k)
)

is a kth replicate of y∗ij . Then, a difference between

(4.21) and (4.25) is

Ỹ
(k)
FEFI − Ŷ

(k)
FEFI

=
∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
∗(k)
ij y

∗(k)
ij −

∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
∗(k)
ij y∗ij

=
∑
i∈Ac

2

w
(k)
1i xiβ̂

(k)
+
∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
(k)
1i (w2j|1j − 1)

(
yj − xiβ̂

(k)
)

∑
j∈A2

w
(k)
1i (w2j|1j − 1)

−
∑
i∈Ac

2

w
(k)
1i xiβ̂ +

∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
(k)
1i (w2j|1j − 1)

(
yj − xiβ̂

)
∑

j∈A2
w

(k)
1i (w2j|1j − 1)

=

∑
i∈Ac

2

w
(k)
1i xi −

∑
i∈Ac

2
w

(k)
1i∑

j∈A2
w

(k)
1i (w2j|1j − 1)

∑
j∈A2

w
(k)
1i (w2j|1j − 1)xj

(β̂(k) − β̂
)

=

∑
i∈A1

(1− δi)w(k)
1i xi −

∑
i∈A1

(1− δi)w(k)
1i∑

j∈A1
δiw

(k)
1i (w2j|1j − 1)

∑
j∈A1

δiw
(k)
1i (w2j|1j − 1)xj

× (β̂(k) − β̂
)
,

(4.26)

where the last equation is expressed using δi that is defined by

δi =

 1 if i ∈ A2 when i ∈ A1

0 if i /∈ A2 when i ∈ A1.

Let’s denote X̂
(k)
2c , X̂

(k)
2 and X̂

(k)
1c as

X̂
(k)
2c =

∑
i∈A1

(1− δi)w(k)
1i xi,

X̂
(k)
2 =

∑
i∈A1

δiw
(k)
1i (w2i|1i − 1)xi,

and

X̂
(k)
1c =

∑
i∈A1

(1− π2i|1i)w
(k)
1i xi.
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Further, let N̂
(k)
2c , N̂

(k)
1c and N̂

(k)
2 be denoted similarly using 1 instead of xi. Then, (4.26) can be

written by [
X̂

(k)
2c −

N̂
(k)
2c

N̂
(k)
2

X̂
(k)
2

](
β̂
(k) − β̂

)
. (4.27)

Note that

E
(
X̂

(k)
2c

)
= X̂

(k)
1c = E

(
X̂

(k)
2

)
(4.28)

and

E
(
N̂

(k)
2c

)
= N̂

(k)
1c = E

(
N̂

(k)
2

)
(4.29)

Also, we have

1

N
N̂

(k)
2c =

1

N
N̂

(k)
1c +Op(n

−1/2
2 )

and

1

N
N̂

(k)
2 =

1

N
N̂

(k)
1c +Op(n

−1/2
2 ).

Using the Taylor expansion, the ratio term in (4.27) can be expressed as

N̂
(k)
2c

N̂
(k)
2

=

[
1

N
N̂

(k)
1c +Op(n

−1/2
2 )

] 1
1
N N̂

(k)
1c

−
1
N

(
N̂

(k)
2 − N̂ (k)

1c

)
(

1
N N̂

(k)
1c

)2 + op(n
−1/2
2 )


=

N̂
(k)
1c

N̂
(k)
1c

−
N̂

(k)
1c

(
N̂

(k)
2 − N̂ (k)

1c

)
(
N̂

(k)
1c

)2 + op(n
−1/2
2 )

= 1 +Op(n
−1/2
2 ),

based on (4.29). Hence, the first term in (4.27) can be expressed as

X̂
(k)
2c −

N̂
(k)
2c

N̂
(k)
2

X̂
(k)
2 =

[
X̂

(k)
1c +Op(n

−1/2
2 N)

]
−
[
1 +Op(n

−1/2
2 )

] [
X̂

(k)
1c +Op(n

−1/2
2 N)

]
=

[
X̂

(k)
1c +Op(n

−1/2
2 N)

]
−
[
X̂

(k)
1c +Op(n

−1/2
2 N)

]
= Op(n

−1/2
2 N), (4.30)

based on (4.28). By combining (4.23) and (4.30), we have

Ŷ
(k)
FEFI = Ỹ

(k)
FEFI + op(n

−1
2 N). (4.31)
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With choice of w
∗(k)
ij given by (4.22), we can show that Ỹ

(k)
FEFI in (4.25) is algebraically equivalent

to kth replicate of Ŷimp in (4.12). That is,

Ỹ
(k)
FEFI =

∑
i∈A2

w
(k)
1i yi +

∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
∗(k)
ij

(
xiβ̂

(k)
+ (yj − xjβ̂

(k)
)
)

=
∑
i∈A2

w
(k)
1i yi +

∑
i∈Ac

2

w
(k)
1i xiβ̂

(k)
+
∑
i∈Ac

2

w
(k)
1i

∑
j∈A2

w
∗(k)
ij

(
yj − xjβ̂

(k)
)

=
∑
i∈A2

w
(k)
1i yi +

∑
i∈Ac

2

w
(k)
1i xiβ̂

(k)
, (4.32)

where the last equality follows by
∑

j∈A2
w
∗(k)
ij ê

(k)
j = 0. Since the FEFI estimator (4.9) is equivalent

to the mass imputation estimator (4.4), we have

Ŷ
(k)
FEFI − ŶFEFI = Ỹ

(k)
FEFI − ŶFEFI + Ŷ

(k)
FEFI − Ỹ

(k)
FEFI

= Ŷ
(k)
imp − Ŷimp + op(n

−1
2 N)

based on (4.31) and (4.32). By Theorem 1, the result (4.24) follows.

4.5 Non-nested two-phase sampling

We now extend the idea of two-phase sampling to data integration, which is an area of research

on combining information from multiple sources. We will consider the case of combining two data

sources, where the first one, sample A, observes the auxiliary variable (X) only and the second one,

sample B, observes the study variable (Y ) in addition to the auxiliary variable, and the two samples

are selected independently from the same target population. If the two samples are independently

selected, then it is called non-nested two-phase sampling (Hidiroglou, 2001).

Under the non-nested two-phase sampling, our goal is to combine information from two sources

to get an improved estimator over the naive approach using sample B only. Merkouris (2004, 2010)

presents methods for optimal estimation under this setup, and Kim and Rao (2012) considered

mass imputation for sample A using information from sample B observations. The approach in

Kim and Rao (2012) is design-based and the two samples are probability samples.

Data integration for non-nested two-phase sampling can be extended to the case where sample

B, observing (X,Y ), is a non-probability sample, which is subject to inherent selection bias. By
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assuming that the prediction model for Y , denoted by f(Y |X), can be estimated from sample B,

we can obtain the same mass imputation estimator for the sample A. Unlike the setup of Kim and

Rao (2012), the proposed estimator is no longer design-consistent, but is still justified under the

design-model framework, where the model refers to the superpopulation model corresponding to

f(Y |X).

Under this setup, Rivers (2007) considers a mass imputation estimator based on nearest neighbor

imputation. Nearest neighbor imputation is a nonparametric method of imputation that does

not require any parametric model assumptions. In this paper, we make a parametric moment

assumption,

E(Y |x) = m(xi;β) (4.33)

for some β with known function m(·) and assume that model (4.33) holds for sample B.

4.5.1 Proposed Estimator

We now formally introduce the setup and notation for data integration of survey sample data

and non-probability sample data. Let A denote the index set of survey sample data and B denote

that of the non-probability sample. Let nA = |A| and nB = |B|. Table 4.1 presents the setup of

our data integration problem.

Table 4.1 Data Structure

Data X Y Representativeness

A ! Yes

B ! ! No

Under this setup, we are interested in estimating population mean θN = N−1
∑N

i=1 yi. To

achieve this goal, we use a model, such as (4.33), to create an imputed value ŷi = m(xi; β̂) for each

i ∈ A and construct an imputed estimator of Y given by

θ̂I =
∑
i∈A

wiŷi (4.34)
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where β̂ is a consistent estimator of β obtained from sample B. Instead of deterministic imputation

ŷi = m(xi; β̂), one can also consider a stochastic imputation y∗i = ŷi + ê∗i where ê∗i is randomly

selected from {êi; i ∈ B}.

To justify the mass imputation estimator in (4.34), we first assume missing at random condition

of Rubin (1976) for sample B. That is,

f(y|x, δ = 1) = f(y|x) (4.35)

where δ is defined by

δi =

 1 if i ∈ B

0 if i /∈ B.

We assume p−dimensional x but a scalar y. Also, we assume that β̂ is the unique solution to

∑
i∈B
{yi −m(xi;β)}h(xi;β) = 0

for some p-dimensional vector h(xi;β). If the variance function V (yi|xi) is specified as V (yi|xi) =

σ2a(xi,β) for some known function a(·), then h(xi;β) = ṁ(xi;β)/a(xi,β) where ṁ(xi;β) =

∂(xi;β)/∂β.

Theorem 4 Assume a sequence of finite populations and samples with bounded fourth moments

of (xi, yi,m(xi;β), ṁ(xi;β), h(xi;β)). Assume that β0 satisfies (4.33) and (4.35) holds. Further

assume that:

(1) Under sample B,

β̂ − β0 = Op(n
−1
B ); (4.36)

(2) For each i, m(xi;β) and h(xi;β) are continuous functions of β in a compact set B containing

β0 as an interior point;

(3) For each i, m(xi;β) is differentiable with continuous partial derivatives ṁ(xi;β) in a compact

set containing β0.
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Then, the mass imputation estimator (4.34) satisfies

θ̂I = θ̃I(β0, c
∗) + op(n

−1/2
B ), (4.37)

where

θ̃I(β, c) =
1

N

∑
i∈A

wim(xi;β) +
1

nB

∑
i∈B
{yi −m(xi;β)} c′

h(xi;β) (4.38)

and

c∗ =

[
1

nB

∑
i∈B

ṁ(xi;β0)h
′(xi;β0)

]−1
1

N

N∑
i=1

ṁ(xi;β0). (4.39)

Also,

E{θ̃I(β0, c
∗)− θN |B} = 0, (4.40)

where the expectation in (4.40) is with respect to the joint distribution of the sampling design for

sample A and the superpopulation model, treating sample B fixed, and

V

[
θ̃I(β0, c

∗)− θN
∣∣∣∣B] = V

[
1

N

∑
i∈A

wim(xi;β0)−
1

N

N∑
i=1

m(xi;β0)

]

+ V

[
1

nB

∑
i∈B

eih(xi;β0)
′c∗
∣∣∣∣B
]
. (4.41)

Proof. To prove (4.37), we consider the class of estimators θ̃I(β, c) given in (4.38). Note that

mass imputation estimator (4.34) can be expressed by θ̂I = θ̃I(β̂, c) for all p-dimensional vectors

c. Now we wish to find a particular choice of c, say c∗, that satisfies

θ̃I(β̂, c
∗) = θ̃I(β0, c

∗) + op(n
−1/2
B ). (4.42)

Since θ̂I = θ̃I(β̂, c), (4.42) implies that (4.37). Since we have

θ̃I(β̂, c
∗)− θ̃I(β0, c

∗) = E

[
∂θ̃I(β, c

∗)

∂β

] ∣∣∣∣
β=β0

(β̂ − β0) + op(n
−1/2
B ),

by (4.36), we can show (4.42) if the limiting mean function has a zero differential at β = β0

(Randles, 1982), that is

E

[
∂θ̃I(β, c

∗)

∂β

] ∣∣∣∣
β=β0

= 0. (4.43)
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It implies that

E

[
∂θ̃I(β, c

∗)

∂β

]
= E

[
∂

∂β

1

N

∑
i∈A

wim(xi;β) +
∂

∂β

1

nB

∑
i∈B
{yi −m(xi;β)}h(xi;β)′c∗

]

= E

[
1

N

∑
i∈A

wiṁ(xi;β)′

]
− E

[
1

nB

∑
i∈B

ṁ(xi;β)h(xi;β)′c∗

]

+ E

[
1

nB

∑
i∈B
{yi −m(xi;β)} ∂h(xi;β)′

∂β
c∗

]

=
1

N

N∑
i=1

ṁ(xi;β)− 1

nB

∑
i∈B

ṁ(xi;β)h(xi;β)′c∗ = 0,

where E(·) denotes the design-model expectation and we used E(yi −m(xi;β0)) = 0 in the third

equality. Thus, we show (4.43) with c∗ defined in (4.39) and so result (4.37) follows.

Note that

θ̃I(β0, c
∗)− θN =

1

N

∑
i∈A

wim(xi;β0) +
1

nB

∑
i∈B
{yi −m(xi;β0)}h(xi;β0)

′c∗ − 1

N

N∑
i=1

yi

=
1

N

[∑
i∈A

wim(xi;β0)−
N∑
i=1

m(xi;β0)

]
+

[
1

nB

∑
i∈B

eih(xi;β0)
′c∗ − 1

N

N∑
i=1

ei

]
,

(4.44)

where ei = yi − m(xi;β0). Since the expectation is design-model expectation treating sample B

fixed, it follows that

E{θ̃I(β0, c
∗)− θN |B} =

1

N

[
E

{∑
i∈A

wim(xi;β0)

}
−

N∑
i=1

m(xi;β0)

]

+

[
1

nB

∑
i∈B

E(ei|B)h(xi;β0)
′c∗ − 1

N

N∑
i=1

E(ei|B)

]
= 0.

Based on (4.44), the variance of θ̃I(β0, c
∗) is obtained by

V

[
θ̃I(β0, c

∗)− θN
∣∣∣∣B] = VA + VB + C,
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where

VA = V

[
1

N

{∑
i∈A

wim(xi;β0)−
N∑
i=1

m(xi;β0)

}]
,

VB = V

[
1

nB

∑
i∈B

eih(xi;β0)
′c∗
∣∣∣∣B
]
,

and

C = Cov

[
1

N

{∑
i∈A

wim(xi;β0)−
N∑
i=1

m(xi;β0)

}
,

1

nB

∑
i∈B

eih(xi;β0)
′c∗
∣∣∣∣B
]

=
1

nBN
E

[{∑
i∈A

wim(xi;β0)−
N∑
i=1

m(xi;β0)

}∑
i∈B

eih(xi;β0)
′c∗
∣∣∣∣B
]
.

Note that
∑

i∈Awim(xi;β0)−
∑N

i=1m(xi;β0) is a function of xi and based on a parametric moment

assumption (4.33), we have

E

[∑
i∈B
{yi −m(xi;β0)} t(xi)

∣∣∣∣B,XN

]
= 0,

where t(xi) is any function of xi and XN = {x1, · · · ,xN}. Hence we have C = 0, so (4.41) follows.

4.5.2 Variance Estimation

For the variance estimation of the mass imputation estimator (4.34), we are interested in the

variance estimation of the approximating random variable in (4.37). Since variance of θ̃I(β0, c
∗)

can be treated separately given by (4.41), we estimate VA and VB separately for the estimation

of V (θ̃I(β0, c
∗)). If β0 is known, then m(xi;β0) is observable for all i ∈ A and we can use the

design-unbiased variance estimator, that is

V̂A =
1

N2

∑
i∈A

∑
i∈A

Ωijwim(xi;β0)wjm(xj ;β0),

where Ωij =
πij−πiπj

πij
and πij is a joint inclusion probability for unit i and j assumed to be positive.

If β0 is unknown, it can be replaced by β̂ and the estimated variance estimator has a form of

V̂A =
1

N2

∑
i∈A

∑
i∈A

Ωijwim(xi; β̂)wjm(xj ; β̂).
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For the variance estimation of VB, note that the variance VB can be written by

VB =
1

n2B

∑
i∈B

V (ei|B)
{
h(xi;β0)

′c∗
}2
.

If we assume a variance function of y, such as V (yi|xi) = σ2a(xi;β0), then we can estimate VB by

V̂B =
1

n2B

∑
i∈B

σ̂2a(xi; β̂)
{
h(xi; β̂)′ĉ∗

}2
,

where σ̂2 is an unbiased estimator of σ2 and ĉ∗ = c∗(β̂). If we do not assume any variance function,

then we can use ̂V (ei|B) = ̂E(e2i |B) = e2i as unbiased estimates and the estimated variance is given

by

V̂B =
1

n2B

∑
i∈B

ê2i

{
h(xi; β̂)′ĉ∗

}2
,

where êi = yi −m(xi; β̂). Hence, variance of θ̃I(β0, c
∗) can be estimated by

V̂ (θ̃I(β0, c
∗)) = V̂A + V̂B.

If nA/nB = o(1), then VB is smaller order than VA and total variance is dominated by VA. Oth-

erwise, the two variances both contribute to the total variance. In the big data application, nB is

huge and VB can be safely ignored.

4.6 Simulation Study

4.6.1 Nested Two-phase Sampling

A small simulation study is presented to study the finite sample performance of the regression

imputation estimator and of the replication variance estimator.

The simulation setup has 2× 3 factorial structure with three factors, which are as follows:

1. Two artificial finite populations: linear model yi = 0.8 + 0.5xi + zi + ei where xi ∼ N(2, 1),

ei ∼ N(0, 1) and ratio model yi = 0.7xi + zi + ui where xi ∼ N(2, 1) and ui ∼ N(0, |xi|). For

both models, zi ∼ exp(1) + 2 is used as a size measure for the unequal probability sampling

in the second phase sampling.
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2. One sampling design for the first-phase sample: simple random sampling of size n1 = 500.

3. Three sampling designs for the second-phase sample: 1) Simple random sampling of size n2 =

80, 2) Poisson sampling with expected sample size n2 = 80 and 3) Randomized systematic

probability proportional to size (PPS) sampling of size n2 = 80.

A finite population of size N = 100, 000 is generated from each of models. From each of the

finite population, the first phase sample of size n1 = 500 was collected 1,000 times by simple random

sampling. Then, the second phase sample was collected from the first phase sample using the three

sampling designs as follows.

1) Simple random sampling without replacement.

2) Poisson sampling:

Define δi for selecting unit i as follows:

δi|Ii = 1 ∼ Bernoulli(π2i|1i),

where Ii is an indicator variable having 1 if unit i is included in the first-phase, and having 0

otherwise. We consider a conditional first-order inclusion probability of second phase sample

as

π2i|1i = n2
zi∑
i∈A1

zi
,

which depends on the first phase sample.

3) Randomized systematic PPS sampling (RSPPS): We follow the procedure introduced in

Thompson and Wu (2008).

a. Arrange units in the first phase sample in a random order.

b. Denote qi = zi∑
i∈A1

zi
and let Aj =

∑j
i=1 n2qi be the cumulative totals of n2qi. Note that

A0 = 0 and we have the order of 0 = A0 < A1 < · · · < An1 = n2.

c. Let u be a uniform random number over [0, 1].
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d. Units with indices j satisfying Aj−1 ≤ u+ k < Aj for k = 0, 1, · · · , n2− 1 to be included

in the second phase sample.

Note that the first-order inclusion probability of second phase sample π2i|1i obtained by the

randomized systematic PPS sampling procedure satisfies

π2i|1i = n2
zi∑
i∈A1

zi
,

for i ∈ A1.

To check performance of our proposed method, we compare three estimators for the population

mean θ = N−1
∑N

i=1 yi; 1) direct estimator, 2) classical two-phase regression estimator, and 3)

mass imputation estimator. These are defined as follows:

1. Direct estimator:

θ̂dir =

∑
i∈A2

w1iw2i|1iyi∑
i∈A2

w1iw2i|1i
.

2. Two-phase regression estimator:

θ̂tp,reg = ˆ̄Y2 + ( ˆ̄X1 − ˆ̄X2)β̂,

where

ˆ̄X1 =

∑
i∈A1

w1ixi∑
i∈A1

w1i
,

(
ˆ̄X2,

ˆ̄Y2

)
=

∑
i∈A2

w1iw2i|1i(xi, yi)∑
i∈A2

w1iw2i|1i
.

3. Mass imputation estimator:

θ̂imp =
1

N

∑
i∈A2

w1iyi +
∑
i∈Ac

2

w1iŷi

 .

Further, we investigate the proposed replication variance estimator for the mass imputation

estimator. The replication variance estimator of the mass imputation estimator was computed

using the replication number L = n1. The kth replicate weight is given by

w
(k)
1i =

 w1in1/(n1 − 1) if i 6= k

0 otherwise
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and the replication factor is ck = (1− n1/N)(1− 1/n1). This procedure was repeated 1,000 times

and Monte Carlo bias and variance of the three estimators and Monte Carlo mean and relative bias

of the replication variance estimator are computed.

Table 4.2 Monte Carlo bias and variance of the three estimators: Direct estimator (θ̂dir);

Two-phase regression estimator (θ̂tp,reg); Mass imputation estimator (θ̂imp)

Population Second-phase Estimator Bias Variance

Sampling

Linear SRS θ̂dir -0.001 0.029

θ̂tp,reg -0.001 0.026

θ̂imp -0.001 0.026

Poisson θ̂dir 0.000 0.028

θ̂tp,reg 0.001 0.025

θ̂imp 0.000 0.018

RSPPS θ̂dir -0.001 0.027

θ̂tp,reg 0.000 0.025

θ̂imp -0.002 0.018

Ratio SRS θ̂dir 0.000 0.045

θ̂tp,reg 0.000 0.040

θ̂imp 0.000 0.040

Poisson θ̂dir 0.002 0.045

θ̂tp,reg 0.002 0.040

θ̂imp 0.000 0.034

RSPPS θ̂dir 0.001 0.044

θ̂tp,reg 0.002 0.039

θ̂imp -0.001 0.033

Table 4.2 presents the Monte Carlo bias and variance of the three estimators and we can check

that all three estimators are unbiased for the population mean regardless of sampling design and

specified population model type. Moreover, variances of two-phase regression estimator and mass

imputation estimator for the sample selected using simple random sampling for both phases are the

same, which is 0.026, since the estimators are equivalent with each other under the linear regression

model that is demonstrated in Lemma 2. Further, the mass imputation estimator has smaller

variance compared with a variance of two-phase regression estimator, as the mass imputation
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estimator uses more information for the estimation; auxiliary variable xi in A1 is used for the mass

imputation estimator whereas only xi in A2 is used for the two-phase regression estimator.

Table 4.3 Monte Carlo mean and relative bias (R.B.) of the replication variance estimator

of the mass imputation estimator

Population Second-phase Mean R.B.

Sampling

Linear SRS 0.026 0.002

Poisson 0.018 -0.003

RSPPS 0.018 -0.004

Ratio SRS 0.040 -0.007

Poisson 0.034 0.006

RSPPS 0.033 -0.004

Table 4.3 presents Monte Carlo mean and relative bias of the replication variance estimator of

the mass imputation estimator. The relative bias of the variance estimator is obtained by dividing

Monte Carlo bias of the variance estimator by the Monte Carlo variance of the point estimator.

All Monte Carlo means of the replication variance estimators are consistent for the variance of the

mass imputation estimator given in Table 4.2, and it leads to small relative biases of the replication

variance estimator in Table 4.3. This result supports the Theorem 1, as the bias term in (4.20) can

be safely ignored since the first-phase sampling rate is 500/100, 000 = 0.005, which is small enough.

4.6.2 Non-nested Two-phase Sampling

In this section, we present a simulation study in order to check the performance of the proposed

method under non-nested two-phase sampling.

We can consider two finite populations of size N = 50, 000. One is from a linear regression

model

yi = 0.3 + 1.2xi + ei,

where xi ∼ N(2, 1) and ei ∼ N(0, 1). The other is from a logistic regression model

yi ∼ Bernoulli(pi),
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where logit(pi) = −0.8 + 0.7xi and xi ∼ N(2, 1).

From each of the two populations, we generate two independent samples. We use a simple

random sample of size nA = 500 for sample A. In selecting sample B of size nB = 500, we consider

two cases as follows:

Case 1. We create two strata where Stratum 1 consists of elements with xi ≤ 2 and Stratum 2

consists of elements with xi > 2. Within each stratum, we select nh elements by simple

random sampling independently, where n1 = 300 and n2 = 200. We assume that the stratum

information is unavailable at the time of data analysis.

Case 2. We select sample B with expected size of nB = 500 using Poisson sampling where

δi|Ii = 1 ∼ Bernoulli(π2i|1i),

with

π2i|1i = [1 + exp(−2.8− 1.2xi)]
−1 .

From the two samples, we compute three estimators:

1) Sample mean estimator from sample A (θ̂A)

2) Naive mean estimator from sample B

3) Mass imputation estimator given in (4.34) of sample A (θ̂I)

Sample mean estimator of sample A works as a gold standard estimator. For Monte Carlo simula-

tion, we repeat this procedure B = 5, 000 times.

Table 4.4 presents the Monte Carlo mean, Monte Carlo variance, and root mean squared error

of the three point estimators. Sample mean from sample A is unavailable in practice, but is

computed for the comparison with other estimators as a gold standard. We can see that the mass

imputation estimator is unbiased for the population mean, but naive mean estimator of sample B

underestimates the population mean for all population model types and sampling designs for the

sample B. Table 4.4 also shows that the bias for the naive mean estimator of sample B is increased



65

Table 4.4 Monte Carlo mean, Monte Carlo variance, and root mean squared error (RMSE)

of three point estimators: Sample mean estimator from sample A(Mean A);

Mean estimator from sample B(Naive B); Mass imputation estimator (M.I.)

Case Population Estimator Mean Var(×10−2) RMSE

Case 1 Linear Regression Mean A 2.700 0.480 0.069

Naive B 2.498 0.298 0.208

M.I. 2.700 0.491 0.070

Logistic Regression Mean A 0.632 0.046 0.021

Naive B 0.607 0.044 0.033

M.I. 0.632 0.048 0.022

Case 2 Linear Regression Mean A 2.700 0.475 0.069

Naive B 1.320 0.415 1.381

M.I. 2.700 0.736 0.086

Logistic Regression Mean A 0.632 0.048 0.022

Naive B 0.453 0.044 0.180

M.I. 0.632 0.082 0.028

under case 2, which uses Poisson sampling for the sample B, but the mass imputation estimator still

provides unbiased estimates regardless of population model types and sampling designs. Moreover,

the variance of the mass imputation estimator for case 1 with linear regression population in Table

4.4 can be computed by

V (θ̂I) ∼=
(

1

nA
− 1

N

)
β21σ

2
x +

(
1

nB
+

1∑
i∈B(xi − x̄B)2

{
(µx − x̄B)2 +

σ2x
N

})
σ2e

=

(
1

500
− 1

50, 000

)
× 1.22 +

(
1

500
+

1

488.313

{
0.0276 +

1

50, 000

})
= 0.0049,

where µx is a population mean of x and x̄B is a sample mean of sample B. Similarly, the variance

of the mass imputation estimator for case 2 with linear regression population in Table 4.4 can be

computed by

V (θ̂I) ∼=
(

1

nA
− 1

N

)
β21σ

2
x +

(
1

nB
+

1∑
i∈B(xi − x̄B)2

{
(µx − x̄B)2 +

σ2x
N

})
σ2e

=

(
1

500
− 1

50, 000

)
× 1.22 +

(
1

500
+

1

521.313

{
1.3345 +

1

50, 000

})
= 0.0074.
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Since a variance of sample mean of sample A (θ̂A) with linear regression population is

V (θ̂A) =
1

nA
σ2y =

1

nA

(
β21σ

2
x + σ2e

)
and nA = nB = 500 in our setup, differences between the Monte Carlo variance of the mass

imputation estimator and the Monte Carlo variance of sample mean of sample A in Table 4.4 are

due to the bias of x variable in sample B. That is,(
1∑

i∈B(xi − x̄B)2

{
(µX − x̄B)2 +

σ2x
N

})
σ2e

constitutes for the difference between two estimated variances under linear population model.

Table 4.5 Monte Carlo mean and relative bias (R.B.) of proposed variance estimator of

mass imputation estimator

Case Population Mean (×10−2) R.B.

Case 1 Linear Regression 0.490 -0.002

Logistic Regression 0.049 0.007

Case 2 Linear Regression 0.734 -0.003

Logistic Regression 0.082 -0.007

Table 4.5 presents Monte Carlo mean and relative bias of the replication variance estimator

of the mass imputation estimator. We can check that Monte Carlo means of mass imputation

estimators are consistent for the Monte Carlo variances of the mass imputation estimator in Table

4.4, so as to produce corresponding relative biases, which are small, presented in Table 4.5.

4.7 Conclusion

We treat two-phase sampling as a missing data problem and propose the mass imputation esti-

mator that is equivalent to the two-phase regression estimator. The proposed replication variance

estimation is simple to implement since it does not require replicates of conditional inclusion proba-

bility for the second phase sample, which may be complicated or impossible to compute depending

on sampling designs, are not necessary for the replication variance estimation.
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In addition, we consider a mass imputation when the second-phase sample is a non-probability

sample, which is subject to selection bias. For the data integration, the proposed method is

developed based on the parametric moment assumption. Instead of the parametric model approach,

we can consider a non-parametric model approach such as Kernel regression or nearest neighbor

imputation. Furthermore, the proposed method can be extended to data integration handling

bigdata, which has a relatively large sample size with inherent selection bias.
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APPENDIX A. PROOF OF THEOREM 1

By Lemma 1, we have

Ŷimp = Ŷ2 + (X̂1 − X̂2)β̂.

Since we assume that w2i|1i − 1 is in the column space of xi, we have

∑
i∈A2

w
(k)
1i (w2i|1i − 1)(yi − xiβ̂

(k)
) = 0, (A.1)

where w
(k)
1i is a replicate weight for the first-phase sample for unit i. It follows from (A.1) that

Ŷ
(k)
imp = Ŷ

(k)
2 + (X̂

(k)
1 − X̂(k)

2 )β̂
(k)
,

where

β̂ =

∑
i∈A2

w
(k)
1i x

′
ixi

−1 ∑
i∈A2

w
(k)
1i x

′
iyi

and (Ŷ
(k)
2 , X̂

(k)
2 ) are computed from the second-phase replicate using w

(k)
1i . Using the defined

indicator variable for the second-phase sample, ai, we can write

(
X̂

(k)
1 , X̂

(k)
2 , Ŷ

(k)
2

)
=
∑
i∈A1

w
(k)
1i (xi, π

−1
2i|1iaixi, π

−1
2i|1iaiyi)

and

β̂
(k)

=

∑
i∈A1

w
(k)
1i aix

′
ixi

−1 ∑
i∈A1

w
(k)
1i aix

′
iyi.

Note that, by assumption (4.13) and (4.19),

c
1/2
k

(
X̂

(k)
1 − X̂1

)
= Op(n

−1/2
1 NL−1/2)

c
1/2
k

(
X̂

(k)
2 − X̂2, Ŷ

(k)
2 − Ŷ2

)
= Op(n

−1/2
2 NL−1/2).
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We now determine the order of β̂
(k) − β̂, which is written by

β̂
(k)

=

N−1 ∑
i∈A1

w
(k)
1i aix

′
ixi

−1N−1 ∑
i∈A1

w
(k)
1i aix

′
iyi


:=

[
M̂ (k)
x

]−1 [
M̂ (k)
y

]
.

Let M̂x, M̂y, ∆x and ∆y be

(M̂x, M̂y) = N−1
∑
i∈A1

w1iaix
′
i(xi, yi),

∆x =
M̂

(k)
x − M̂x

M̂x

,

∆y =
M̂

(k)
y − M̂y

M̂y

.

Since M̂
(k)
x = M̂x +Op(n

−1/2
2 L−1/2) and M̂x = Op(1), we have

∆x = Op(1)Op(n
−1/2
2 L−1/2)

= Op(n
−1/2
2 L−1/2)

and similarly ∆y = Op(n
−1/2
2 L−1/2). Therefore, we can determine the order of β̂

(k) − β̂ as

β̂
(k)

=
[
M̂x(1 + ∆x)

]−1 [
M̂y(1 + ∆y)

]
= M̂−1x M̂y(1 + ∆y)

[
1−∆x + (∆x)2 +Op(n

−3/2
2 L−3/2)

]
= M̂−1x M̂y

[
1 +Op(n

−1/2
2 L−1/2)

]
= β̂ +Op(n

−1/2
2 L−1/2),

since β̂ = M̂−1x M̂y.

Next, we write the Ŷ
(k)
imp − Ŷimp as

Ŷ
(k)
imp − Ŷimp = Ŷ

(k)
2 +

(
X̂

(k)
1 − X̂(k)

2

)
β̂
(k) − Ŷ2 − (X̂1 − X̂2)β̂

= Ŷ
(k)
2 − Ŷ2 +

(
X̂

(k)
1 − X̂1

)(
β̂
(k) − β̂

)
−
(
X̂

(k)
2 − X̂2

)(
β̂
(k) − β̂

)
+

(
X̂

(k)
1 − X̂1

)
β̂ −

(
X̂

(k)
2 − X̂2

)
β̂ +

(
X̂1 − X̂2

)(
β̂
(k) − β̂

)
.
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Since

(
X̂

(k)
1 − X̂1

)(
β̂
(k) − β̂

)
= Op(n

−1/2
1 L−1/2N)Op(n

−1/2
2 L−1/2)

= Op(n
−1/2
1 n

−1/2
2 L−1N),(

X̂
(k)
2 − X̂2

)(
β̂
(k) − β̂

)
= Op(n

−1/2
2 L−1/2N)Op(n

−1/2
2 L−1/2)

= Op(n
−1
2 L−1N),(

X̂
(k)
1 − X̂1

)
β̂ =

(
X̂

(k)
1 − X̂1

)(
β̂ − βN

)
+
(
X̂

(k)
1 − X̂1

)
βN

=
(
X̂

(k)
1 − X̂1

)
βN +Op(n

−1/2
1 n

−1/2
2 L−1/2N),(

X̂
(k)
2 − X̂2

)
β̂ =

(
X̂

(k)
2 − X̂2

)(
β̂ − βN

)
+
(
X̂

(k)
2 − X̂2

)
βN

=
(
X̂

(k)
2 − X̂2

)
βN +Op(n

−1
2 L−1/2N),(

X̂1 − X̂2

)(
β̂
(k) − β̂

)
= Op(n

−1/2
2 N)Op(n

−1/2
2 L−1/2)

= Op(n
−1
2 L−1/2N),

we have

Ŷ
(k)
imp − Ŷimp = Ŷ

(k)
2 − Ŷ2 −

(
X̂

(k)
1 − X̂1

)
βN −

(
X̂

(k)
2 − X̂2

)
βN +Op(n

−1
2 L−1/2N)

:= ê
(k)
2 − ê2 −

(
X̂

(k)
1 − X̂1

)
βN +Op(n

−1
2 L−1/2N),

where ei = yi − ȲN − (xi − X̄N )βN . Hence, we can write

c
1/2
k

(
Ŷ

(k)
imp − Ŷimp

)
= c

1/2
k

[
ê
(k)
2 − ê2 −

(
X̂

(k)
1 − X̂1

)
βN

]
+Op(n

−1
2 L−1/2N). (A.2)

by (4.19) and it follows from (A.2) that

L∑
k=1

ck

(
Ŷ

(k)
imp − Ŷimp

)2
=

L∑
k=1

ck

[
ê
(k)
2 − ê2 +

(
X̂

(k)
1 − X̂1

)
βN

]2
+Op(n

−3/2
2 N2). (A.3)

Order in (A.3) follows from that the order of the first term in (A.2) is n
−1/2
2 L−1/2N by (4.18) and

(4.14), and note that Op(n
−3/2
2 N2) is op(n

−1
2 N2).

We now extend the definition of the second-phase sample indicator ai that is defined throughout

the population and this concept has been discussed by Fay (1991) and used by Kim et al. (2006). It
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means that ai is generated for every unit in the population. Then, we can see the sample selection

process as selecting the first-phase sample from the population of (ai,xi, aiyi) vectors. Hence, the

main term of the right side of (A.3) can be written by

ê
(k)
2 − ê2 +

(
X̂

(k)
1 − X̂1

)
βN =

∑
i∈A1

(w
(k)
1i − w1i)κ

−1
i aiei +

(
X̂

(k)
1 − X̂1

)
βN

=
∑
i∈A1

(w
(k)
1i − w1i)

(
xiβN + κ−1i aiei

)
≡

∑
i∈A1

(w
(k)
1i − w1i)ηi,

where ηi = xiβN + κ−1i aiei is defined as a pseudo value and we can express the main tern of right

side of (A.3) as a linear function form of ηi. Then, we are interested in the linearization form for

the variance estimation of Ŷimp.

Let Ỹimp =
∑

i∈A1
w1iκ

−1
i aiei− X̂1βN . By assumption (4.14) and (4.17), conditional on ai, the

replicate variance estimator of Ỹimp satisfies

V̂ (Ỹimp|a,FN ) = V (Ỹimp|a,FN ) + op(n
−1
1 N2). (A.4)

It implies that the replicate variance estimator of Ỹimp is a consistent estimator of conditional

variance of Ỹimp. We now want to show that the replicate variance estimator is also consistent for

the unconditional variance of Ỹimp, V (Ỹimp|FN ). The variance of the mass imputation estimator

can be written by

V (Ỹimp|FN ) = E
[
V (Ỹimp|a,FN )|FN

]
+ V

[
E(Ỹimp|a,FN )|FN

]
. (A.5)

We next show that V̂ (Ỹimp|a,FN ) is a consistent estimator of the first term of (A.5). For this, we

must show that V (Ỹimp|a,FN ) converges to E
[
V (Ỹimp|a,FN )|FN

]
and it is sufficient to demon-

strate that

V (n1N
−2V (Ỹimp|a,FN )|FN ) = o(1).

Since we assumed that ai ∼ Bernoulli(π2i|1i), we have Cov(aiaj , akal|FN ) = κiκj(1 − κiκj) where

if (i, j) = (k, l) or (i, j) = (l, k) and Cov(aiaj , akal|FN ) = 0 otherwise. By assumption (4.15) and
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(4.16), we have

V (n1N
−2V (Ỹimp|a,FN )|FN )

= V

n1N−2V
∑
i∈A1

w1iκ
−1
i aiei − X̂1βN |a,FN

 |FN


= V

 N∑
i=1

N∑
j=1

Ωij(w1iκ
−1
i aiei − xiβN )(w1iκ

−1
i aiei − xiβN )|FN


=

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

ΩijΩklCov(κ−1i aieiκ
−1
j ajej , κ

−1
k akekκ

−1
l alel|FN )

= 2

N∑
i=1

N∑
j=1

Ω2
ij(κ

−1
i κ−1j − 1)e2i e

2
j

≤ 2 max
i,j

{
(κ−1i κ−1j − 1)e2i e

2
j

}(
max
i,j
|Ωij |

) N∑
i=1

N∑
j=1

|Ωij |

= O(N−1).

Therefore, V̂ (Ỹimp|a,FN ) is consistent for E
[
V (Ỹimp|a,FN )|FN

]
.

Now, last term of (A.5) is

V
[
E(Ỹimp|a,FN )|FN

]
= V

E
∑
i∈A1

w1i(κ
−1
i aiei − X̂1βN )|a,FN

 |FN


= V

[
N∑
i=1

(κ−1i aiei − X̂1βN )|FN

]

=
N∑
i=1

N∑
j=1

Cov(κ−1i aiei, κ
−1
j ajej)

=

N∑
i=1

κ−1i (1− κi)e2i .

Therefore, by combining all the results, we have

V̂ (Ỹimp|a,FN ) = V (Ỹimp|FN )−
N∑
i=1

κ−1i (1− κi)e2i + op(n
−1
2 N2) (A.6)

and by (A.3) and (A.6), we have conclusion (4.20).
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