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ABSTRACT

The world population is increasing rapidly and is projected to hit 9.1 billion by 2050.

As the demand for food increases, agriculture production will continue to play a significant

role. As a method to maintain and increase agriculture production, plant breeding is critical.

To improve efficiency in the plant breeding process, an interdisciplinary effort is needed.

Operations research as a discipline focuses on decision making and efficient and effective

strategy design. In this thesis, operations research tools of simulation, optimization and

mathematical modeling are applied to plant breeding, specifically Genomic Selection (GS).

GS techniques allow breeders to select the best plants to make crosses by predicting, for

example, the heights of the plants using the genotypic data at an early stage of the plant

growth cycle, saving both time and cost that would otherwise be necessary to grow the

plants to maturity before their heights can be measured. A major limitation of existing GS

approaches is the trade-off between short-term genetic gains and long-term growth potential.

Some approaches focus on achieving short-term genetic gains at the cost of losing genetic

diversity for long-term gains, and others aim to maximize the long-term genetic gains but

are unable to achieve it by the breeding deadline. Our contribution is to define a new look-

ahead method for assessing a selection decision, which evaluates the probability to achieve

both genetic diversity and breeding deadline. Moreover, we propose a heuristic algorithm

to find an optimal selection decision with respect to the new method. Our new selection

method outperforms the other selection methods in the literature.



1

CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Humans have been breeding plants for food since the dawn of agriculture. Today, we

know that the impact of agriculture is profound on humanity. The world population is

growing fast and is projected to hit 9.1 billion by 2050. Feeding the growing population is

a daunting challenge. Producing new crop varieties that offer higher yields but require less

water, fertilizers or other inputs would greatly help. Plant breeding as a discipline has been

instrumental in this area. National Association of plant breeders defines plant breeding as

the science driven creative process of developing new plant varieties which involves crossing

parental plants to obtain the best characteristics for the future generation.

To improve the efficiency in the breeding process an interdisciplinary effort is needed.

Operations research (OR) as a discipline focuses on decision and strategy design. OR is

an analytical method of problem-solving to achieve efficient and effective decisions. Ana-

lytical methods used in OR include mathematical modeling, simulation, optimization, and

statistics.

The gap between engineering and plant breeding brings several opportunities and chal-

lenges for operations researchers. Trait introgression and genomic selection are two existing

challenges. In recent years, operations research tools have been applied to multi-allelic

introgression Han et al. (2017), and genomic selection Goiffon et al. (2017). This thesis

explores the application of operations research to improve response in genomic selection

by designing a new method, Look-ahead selection with emphasis on optimizing selection,

mating strategies, and resource allocation given a breeding timeline.
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1.2 Literature review

Since the late 19th century, plant breeders have been relying on phenotypic selection

to improve plant verieties. Plants with desirable phenotypes were selected as the breeding

parents. With the advent of molecular markers in the late 1970s, advances have been

made in the plant breeding techniques (Brumlop and Finckh, 2011). Today, with the wider

availability and reduced cost of molecular marker technology, marker assisted selection of

genotypes has become viable (Mcdowell et al., 2016). Marker assisted selection (MAS) is

an indirect selection process that aims to incorporate genotypic information into selection

decisions (Lande and Thompson, 1990). MAS has been a useful tool for plant breeders

but has some limitations in improving complex traits as it cannot capture small effect

quantitative trait loci (QTL) (Heffner et al., 2010). MAS becomes less effective when

selections are made for traits with many contributing genes distributed widely across a

genome that have small effect (Mcdowell et al., 2016). Genomic selection aims at addressing

this limitation of MAS due to its effectiveness for traits controlled by many genes with small

effects.

Genomic selection (GS) is a form of marker assisted selection first proposed by Meuwis-

sen et al. (2001) that uses phenotypic and genotypic data from past trials of individuals to

build a prediction model. The model is then used to predict the value of individuals that

have not been phenotyped. GS’s ability to increase genetic gain has been validated through

a number of simulation and empirical studies. Bernardo and Yu (2007) has compared the

response resulting from GS with MARS by simulation in a bi-parental maize breeding pro-

gram. They showed that GS leads to a larger response than MARS. Similarly, empirical

studies in wheat populations have showed that GS results in greater prediction accuracy

than MAS (Lorenz et al., 2011).

Genomic Estimated Breeding Value (GEBV) for individual plant has been adopted as

the selection criterion in the original GS method and it selects individuals based on the

sum of their estimated marker effects (Meuwissen et al., 2001). This approach has resulted
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in genetic gain due to significant correlation between GEBVs and true breeding values.

Since then, however, three extensions have been proposed to improve GS: weighted genomic

selection (WGS) (Heffner et al., 2010), optimal haploid value (OHV) (Daetwyler et al.,

2015), and optimal population value (OPV) (Goiffon et al., 2017). The conventional GS

method, GEBV, can assure accelerating short-term gain, but doesn’t guarantee achieving

long-term gain (Jannink, 2010). To maximize long-term response, the first extension, WGS

has been proposed as a variation of GS where marker effects are weighted to increase the

frequency of rare favorable alleles (Goddard, 2009). The second extension, OHV calculates

the breeding value of the best possible double haploid derived from an individual (Daetwyler

et al., 2015). This method focuses selection on the haplotype and optimizes the breeding

program toward its end goal of generating an elite fixed line (Daetwyler et al., 2015). GS,

WGS, and OHV are truncation selection approaches as they rank individuals and select

the top ones (typically a fraction of the population based on the available resources), but

recently OPV proposed a different strategy that is population-based. OPV selects the best

population based on the interactive population effects which calculates the breeding value

of the best possible progeny produced after an unlimited number of generations (Goiffon

et al., 2017). Like OPV, we focus on selecting sets of individuals as a unit by proposing

an innovative method, look-ahead selection (LAS). Our new selection method can improve

the genetic gain by maximizing the probability of producing outstanding progenies in the

final targeted generation. The proposed method can focus on achieving both short-term

and long-term genetic gains and has the flexibility of adjusting based on the deadline and

resource availability.

1.3 Thesis organization

This thesis adheres to the Iowa State University Journal Paper format. Chapter 1 begins

with a general background to plant breeding and literature review. Chapter 2 contains an

article to be submitted to the Journal of Genetics which introduces a new selection method,
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Look- ahead selection with a stochastic simulation approach. Chapter 3 outlines the results

with a special emphasis on potential future work.
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CHAPTER 2. LOOK-AHEAD SELECTION: A STOCHASTIC

SIMULATION APPROACH FOR IMPROVING RESPONSE IN

GENOMIC SELECTION

Abstract

Genotyping technologies unleashed a large amount of genotypic data for plant breeders

to accelerate the rate of genetic gains. Genomic selection (GS) techniques allow breeders

to select the best plants to make crosses by predicting, for example, the heights of the

plants using the genotypic data at an early stage of the plant growth cycle, saving both

time and cost that would otherwise be necessary to grow all plants to maturity before their

heights can be measured. A major limitation of existing GS approaches is the trade-off

between short-term genetic gains and long-term growth potential. Some approaches focus

on achieving short-term genetic gains at the cost of losing genetic diversity for long-term

gains, and others maximize the long-term genetic gains but are unable to achieve it by the

breeding deadline. Our contribution is to define a new look-ahead method for assessing

a selection decision, which evaluates the probability to achieve both genetic diversity and

breeding deadline. Moreover, we propose a heuristic algorithm to find an optimal selection

decision with respect to the new method. Our new selection method outperforms the other

selection methods in the literature.

keywords: genetic gain; genomic selection; look-ahead selection; stochastic simulation;

population-based selection
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2.1 Introduction

The world population is expected to grow from 7.6 billion today to 9.1 billion by 2050.

Feeding all the entire population remains a significant challenge. Producing new crop vari-

eties that offer higher yields but require less water, fertilizers or other inputs would greatly

help. Plant breeding discipline has been instrumental in this area. Classical plant breeding

programs rely on the phenotyping of progenies in field trials to identify superior individuals.

The number of phenotyped individuals is limited by high costs and time for relevant field

evaluation (Rincent et al., 2017). This reduced number of selection candidates is a major

limit to genetic progress. Genomic selection (GS) allows predicting the performance of un-

phenotyped individuals (Rincent et al., 2017; Meuwissen et al., 2001). GS refers to using the

whole genome to estimate the breeding value of selection candidates for a quantitative trait

(Goddard, 2009). Genomic Estimated Breeding Value (GEBV) for individual plant has

been adopted as the selection criteria in the original GS method and it selects individuals

based on the sum of their estimated marker effects (Meuwissen et al., 2001). This approach

has resulted in great genetic gain due to significant correlation between GEBVs and true

breeding values. Since then three extensions have been proposed to improve GS: weighted

genomic selection (WGS) (Heffner et al., 2010), optimal haploid value (OHV) (Daetwyler

et al., 2015), and optimal population value (OPV) (Goiffon et al., 2017). The conventional

GS method, GEBV, can assure accelerating short-term gain, but doesn’t guarantee achiev-

ing long-term gain (Jannink, 2010). To maximize long-term response, the first extension,

WGS, has been proposed as a variation of GS where marker effects are weighted to increase

the frequency of rare favorable alleles (Goddard, 2009). The second extension, OHV, cal-

culates the breeding value of the best possible double haploid derived from an individual

(Daetwyler et al., 2015). This method focuses selection on the haplotype and optimizes the

breeding program toward its end goal of generating an elite fixed line (Daetwyler et al.,

2015). GS, WGS, and OHV are truncation selection approaches as they rank individuals

and select the top ones (typically a fraction of the population based on the available re-
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sources), but recently OPV proposed a different strategy that is population-based. OPV

selects the best population based on the interactive population effects which calculates the

breeding value of the best possible progeny produced after an unlimited number of gener-

ations (Goiffon et al., 2017). Like OPV, we focus on selecting sets of individuals as a unit

by proposing an innovative method, look-ahead selection (LAS). Our new selection method

can improve the genetic gain by maximizing the probability of producing outstanding pro-

genies in the final targeted generation. The proposed method can focus on achieving both

short-term and long-term genetic gains and has the flexibility of adjusting based on the

deadline and resource availability.

2.2 Materials and Methods

In this section, we present a uniform formula for all existing GS methods namely, con-

ventional genomic selection (CGS), weighted genomic selection (WGS), optimal haploid

value (OHV), optimal population value (OPV), and our new selection method, look-ahead

selection (LAS). Equations 2.1, 2.2, and 2.3 show this uniform optimization formulation. It

should be observed that the only difference among these four existing methods is in their

objective functions as they aim to maximize different objectives. Equations 2.4, 2.5, 2.6

and 2.7 show the objective functions respectively for CGS, WGS, OHV, and OPV. xn is a

binary variable that shows whether individual n is selected (xn = 1) or not (xn = 0). Each

method aims to select a subset of population (S individuals) as shown by equation 2.2.

maxx FGS (2.1)

such that
N∑

n=1

xn = S (2.2)

xn,∈ {0, 1}, n ∈ {1, ..., N} (2.3)

Here we define the notations used in this paper:

• N : The number of individuals in the population.
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• L: The number of marker loci.

• G ∈ {0, 1}L×M×N : The genotypic information of individual n.

• βl: The effect of having the major allele at locus l.

• M : The ploidy of the plants. We consider that the plants are diploid so M = 2.

We break down GS methods into two groups: 1. Truncation selection; and 2. population-

based selection. In truncation selection approaches (CGS, WGS, and OHV), an individual

is selected by ranking the candidates based on a method and then a fraction of the popula-

tion with highest values are selected. In population-based selection approaches (OPV and

LAS), a group of individuals that make the best combination are selected.

The objective function of the optimization problem, FGS is formulated as FCGS , FWGS

, FOHV , and FOPV in equations 2.4, 2.5, 2.6, and 2.7 respectively. As shown by Meuwissen

et al. (2001), an individual’s genomic estimated breeding value (GEBV) is the sum of all

marker effects across the entire genome (2.4). This conventional GS method ranks the

individuals based on their GEBVs and selects the ones with highest GEBV.

FCGS =
N∑

n=1

L∑
l=1

2∑
m=1

Gl,m,nβlxn. (2.4)

Simulation and some empirical studies have shown that the CGS selection results in

rapid genetic gains (Hayes et al., 2009; Lorenzana and Bernardo, 2009; VanRaden et al.,

2009; Jannink, 2010). However, CGS focuses on one or two cycles of selection and does not

guarantee long-term gain.

WGS has been proposed as a variation of CGS model that can preserve more favorable

alleles than CGS. In this model (2.5), marker effects are weighted to increase the frequency

of rare favorable alleles (Goddard, 2009) (Jannink, 2010).

FWGS =
N∑

n=1

L∑
l=1

2∑
m=1

Gl,m,n
βl√

max(wl, 1/n)
xn. (2.5)
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The weight, wl is defined as the fraction of favorable alleles to the number of individuals

in the population. This model gives a higher weight to the markers that have low-frequency

favorable alleles.

For OHV, OPV, and our new method, LAS, we clustered markers into haplotypes to

define haplotype blocks as adjacent markers are very likely to segregate together. The

following definitions will be used to take the blocks into account:

• B: the number of haplotype blocks per chromosome.

• H(b),∀b ∈ {1, ..., B}: the set of marker loci that belong to haplotype block b.

Double haploids (DH) have been routinely used in breeding programs to accelerate the

process. OHV has been proposed to combine the creation of double haploids with GS

methods and evaluates the potential of producing elite double haploids (Daetwyler et al.,

2015). Equation 2.6 shows the objective function for OHV selection. The OHV of individual

n is the GEBV of the best possible DH individual derived from it. This method ranks the

individuals based on their OHV and selects the best ones (Daetwyler et al., 2015).

FOHV = 2
N∑

n=1

B∑
b=1

max
m∈{1,2}

∑
l∈H(b)

Gl,m,nβlxn. (2.6)

Simulation studies have shown that OHV selection results in more genetic gain and

diversity when compared to conventional GS method (Daetwyler et al., 2015).

As discussed, the second group of GS methods (OPV and LAS) focus on population-

based approaches. OPV selection, a population-based selection method, is an extension

to OHV which evaluates the breeding merit of a set of individuals instead of evaluating

the breeding value of a single individual (Goiffon et al., 2017). The OPV of breeding

population S is the GEBV of the best possible progeny produced after an unlimited number

of generations. Mathematically, OPV is defined as (Goiffon et al., 2017):

FOPV = 2

B∑
b=1

max
n∈{1,...,N}

max
m∈{1,2}

∑
l∈H(b)

Gl,m,nβlxn. (2.7)
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CGS, WGS, OHV and OPV have three major limitations: 1. none of these methods

are time dependent, 2. none of these methods gives an optimal strategy for mating, and

3. resource allocation is not taken into account. These three limitations serve as the

major motivation for this study. In this paper, we define an innovative selection method,

LAS which can address these issues by selecting individuals based on time and resource

constraints, and giving an optimal mating strategy. This new method is described in detail

in next section.

2.2.1 Look-ahead selection

LAS looks into the future and estimates the breeding value of progenies for the terminal

generation. The main idea is to look ahead for a predefined number of generations in

stochastic simulation process so that future information can be incorporated in finding an

optimal selecting and pairing strategy for the current generation. The goal is to increase

the probability of producing outstanding progenies in the terminal generation. Figure 2.1

displays the look-ahead stochastic simulation.

To start, S individuals (in Figure 2.1, S = 8) are picked as breeding parents from the

initial population (generation t). These breeding parents are paired sequentially to make

crosses and produce the next generation (generation t+1 ). From this generation forward,

a lot of random crosses are made to produce progenies for upcoming generations. This

process will continue until getting a large number of progenies in the terminal generation

(generation T ). Now we can evaluate the selected breeding parents as a group by looking

at the breeding values of progenies. The key point is that LAS has the ability of estimating

the breeding value of progenies without necessarily going through all generations. We have

formulated the transition probabilities that allow the simulation jump from generation t+1

to the targeted genetration (generation T ). These transition probabilities are defined as

Look-ahead inheritance distribution in 2.2.1.
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Figure 2.1 Look-ahead stochastic simulation.

Definition 2.2.1. For a given vector of recombination frequencies, r ∈ [0, 0.5]L−1 , and a

given set of individuals, S, the Look-ahead inheritance distribution is defined as transition

probabilities in equation 2.8 and 2.9:

P (GT
1,m′,k = Gt

1,m,i) =
1

2S
, ∀i ∈ {1, 2, ..., S},∀k ∈ {1, 2, ...,K},∀m,m′ ∈ {1, 2}. (2.8)

Where GT ∈ {0, el}L×2×K is the genotypic information of random progenies produced in

terminal generation, and S is the number of breeding parents selected from the initial

population. Equation 2.8 explores the transition probability for the the first locus and

states that the first allele of a progeny has an equal probability of inheriting information

from the initial population. The following matrices show the genotypic notation for the

breeding parents and the progenies that were produced T generations later. The color

codes are a representation of recombination.
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

Gt
1,1,1 Gt

1,2,1

Gt
2,1,1 Gt

2,2,1

...
...

Gt
L,1,1 Gt

L,2,1


×



Gt
1,1,2 Gt

1,2,2

Gt
2,1,2 Gt

2,2,2

...
...

Gt
L,1,1 Gt

L,2,1


, · · · ,



Gt
1,1,S−1 Gt

1,2,S−1

Gt
2,1,S−1 Gt

2,2,S−1

...
...

Gt
L,1,S−1 Gt

L,2,S−1


×



Gt
1,1,S Gt

1,2,S

Gt
2,1,S Gt

2,2,S

...
...

Gt
L,1,S Gt

L,2,S



T generations⇓


GT
1,1,1 GT

1,2,1

GT
2,1,1 GT

2,2,1

...
...

GT
L,1,1 GT

L,2,1


· · ·



GT
1,1,k GT

1,2,k

GT
2,1,k GT

2,2,k

...
...

GT
L,1,k GT

L,2,k


· · ·



GT
1,1,K GT

1,2,K

GT
2,1,K GT

2,2,K

...
...

GT
L,1,K GT

L,2,K



Ti,j,l = P (GT
l+1,m′,k = Gt

l+1,m′′,j |GT
l,m′,k = Gt

l,m,i),∀i, j ∈ {1, 2, ..., S}, (2.9)

∀l ∈ {1, 2, ..., L− 1},∀k ∈ {1, 2, ...,K},∀m,m′ ,m′′ ∈ {1, 2}

Equation 2.9 explores the transition probability for all the loci rather than the first one.

This equation describes the transition matrix of inherited genetic information and is defined

mathematically in equation 2.10. This transition matrix is an extension to the simple case

of having one pair of breeding parents, described by Han et al. (2017).

Ti,j,l =



(1− rl)2(1−Rl), if j ∈ J1

rl(1− rl)(1−Rl), if j ∈ J2

1
2 rl(1−Rl), if j ∈ J3
1
4 Rl

S
2 − 1

, Otherwise

, (2.10)

∀l ∈ {1, 2, ..., L− 1},∀i, j ∈ {1, 2, ..., S}
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Where:

J1 = i (2.11)

J2 = 4di/2e − i− 1 (2.12)

J3 = 8di/4e − i− 3 or i+ 2
√

2(sin(
iπ

2
− π

4
)) (2.13)

Here, Rl is the look-ahead recombination frequency defined in the APPENDIX as (.0.1):

Rl =
(S/2− 1)(1− (1− rl)t)

S/2
(2.14)

To provide a more insightful description of the look-ahead transition matrix, we elabo-

rate on four different cases of transition as follow:

Case 1: No recombination happens (J1).

Gt
1,1,1

Gt
2,1,1

...

Gt
L,m,i


=



GT
1,m′,k

GT
2,m′,k

...

GT
L,m′,k


Case 2: Recombination happens within an individual (J2).

Gt
1,1,1

Gt
2,2,1

...

Gt
L,m,i


=



GT
1,m′,k

GT
2,m′,k

...

GT
L,m′,k


Case 3: Recombination happens within the paired individual (J3).

Gt
1,1,1

Gt
2,1,2

...

Gt
L,m,i


=



GT
1,m′,k

GT
2,m′,k

...

GT
L,m′,k


, or



Gt
1,1,1

Gt
2,2,2

...

Gt
L,m,i


=



GT
1,m′,k

GT
2,m′,k

...

GT
L,m′,k


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Case 4: This case considers all possible remaining recombination (J4).

Gt
1,1,1

Gt
2,1,3

...

Gt
L,m,i


=



GT
1,m′,k

GT
2,m′,k

...

GT
L,m′,k


, or



Gt
1,1,1

Gt
2,2,3

...

Gt
L,m,i


=



GT
1,m′,k

GT
2,m′,k

...

GT
L,m′,k


, or · · · ,



Gt
1,1,1

Gt
2,2,S

...

Gt
L,m,i


=



GT
1,m′,k

GT
2,m′,k

...

GT
L,m′,k


Figure 2.2 shows examples of these transitions through generating a single chromosome

in the targeted generation.

2.2.2 Optimization of Look-ahead selection

A decision-making model is formulated to find the optimal set of the breeding population

in each generation. The decision variable, xn, is a binary variable which becomes 1 when

individual n is selected.

maxx F (S, g) (2.15)

st.

N∑
n=1

xn = S (2.16)

xn ∈ {0, 1}, n ∈ {1, ..., N} (2.17)

The objective function, F, is the probability of producing outstanding progenies in the

terminal generation. The goal is to increase this probability, which is a function of selected

breeding parents, S , and a threshold value. The threshold value, g, is a parameter that

will help define an outstanding progeny. We say a progeny is outstanding if it has a GEBV

greater than the threshold value. Constraint (2.16) indicates that S number of individuals

will be selected in each generation as breeding parents.
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(a) Case 1: No recombination.

(b) Case 2: Recombination within an individual.
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(c) Case 3: Recombination within the paired individual.

(d) Case 4: All possible remaining recombination.

Figure 2.2 Four different cases of transitions.
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We can find F with a two-step simulation approach:

Step 1 : Produce K progenies according to Look-ahead inheritance distribution after t

generations.

Step 2 : Get the proportion of outstanding progenies by dividing the number of outstand-

ing progenies to K and use this proportion as an estimate of F.

To solve the model, we design a four-step heuristic algorithm:

Step 1 : Select S individuals randomly.

Step 2 : Find F.

Step 3 : Propose pairwise swaps between a selected individual and every other unselected

one, evaluate F for all and keep the one with highest F.

Step 4 : Repeat step 3 until no improvements can be achieved.

2.3 Simulation

We compare four different methods of CGS, OHV, OPV, and LAS through simulation

implemented in MATLAB. The genetic data and recombination rates are based on Goiffon

et al. (2017). Genetic data contains 369 maize inbred lines with approximately 1.4 million

SNPs. To facilitate the comparisons, the genetic data was scaled such that the maximum

potential of the initial breeding population is 100. Similar to Goiffon et al. (2017), we

assumed that marker effects were known.

In this paper, the plant breeding process starts with the initial population and iteratively

goes through: 1. selection 2. reproduction. This continues until getting the final population

in T generations. Figure 2.3 describes the in silico breeding process (Goiffon et al., 2017).

Four different methods of CGS, OHV, OPV and LAS are used in the selection step for

comparison.
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Figure 2.3 The simulation diagram.

Two hundred, individuals are randomly selected in each selection step. To make the

comparisons consistent we used the same set of initial population for all GS methods. A

breeding population of S = 20 individuals are selected in each generation to make 10 crosses.

The number of progenies produced for each cross is proportional to the genetic diversity of

the breeding parents. This results in having different number of progenies for each cross by

producing more progenies for the breeding parents that have a higher genetic diversity.

The number of haplotype blocks, B, and the discarded percentage of individuals, F , are

two parameters that can effect the performance of selection methods. When B is small, the

selection method will focus on genetic gain in short-term while when it is a large number

the selection method will focus on long-term gain. F shows the percentage of individuals

with the lowest GEBV that will be removed before optimizing the selection strategy. When

F is large, the process focuses on short-term gain while when it is a small number the focus

would be on long-term gain. The best values for B and F were determined in an experiment

by Goiffon et al. (2017) through testing different combinations of parameters. We adopted

the same optimized parameter setting which is B = 12 , and F = 70% for OHV and,
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B = 1 , F = 40% for OPV. In Look-ahead selection, we do not remove any lowest GEBV

individuals from the population, but we define haplotype blocks. Here B is set to be 1000.

Additionally, LAS has one more parameter which is the number of progenies (K) produced

by the look-ahead method. Here we set K = 10000. The number of progenies produced by

the look-ahead method needs to be large enough to be able to capture different inheritance

possibilities and needs to be small enough due to time constraints. In the next section, we

will discuss the results from the simulation.

2.4 Results

One thousand independent simulations were performed for four selection approaches.

From each approach, the cumulative distribution functions (CDFs) of the population max-

imum in final generation were generated and compared (Figure 2.4).

It should be noted that the best CDF curve should be the farthest right as the vertical

value of each point on the curve gives the percentage of random outcomes which have a lower

GEBV than the corresponding horizontal value. To provide a more insightful assessment of

different selection methods, we identified markers on each curve with a 10 percent interval.

Comparing all methods for the same percentile makes it clear that LAS has the higher

phenotype without any exceptions. As can be seen from the CDF curves, LAS outperforms

truncation selection methods (GEBV and OHV), and also outperforms the only population-

based method (OPV) at every percentile.

Furthermore, simulation results show that population-based methods preserve more ge-

netic diversity. Figure 2.5 displays the genetic diversity of four GS methods in 10 generations

where genetic diversity has been defined as the difference between the maximum potential

and the minimum potential of the current generation. We see that LAS loses diversity

faster in short term, but then has a consistent rate until losing more diversity in final gen-

erations. Overall, population-based methods, OPV and LAS seem to be a better approach

in preserving genetic diversity.
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Figure 2.4 CDFs of population maximum for four selection methods.

Figure 2.6 shows the genetic gain in each generation. We define the genetic gain as the

difference between the mean GEBV of the current generation and the initial mean GEBV.

The interesting thing is that in the first generation, LAS rises faster than other three

approaches and then increases with a consistent slope until generation 8. When reaching

to the deadline LAS rises fast again. CGS performs well in the first three generations and

then the curve flatters. Similarly, OHV and OPV have a higher slope for the first two

generations and then increase with a lower speed until the final generation. This validates

LAS method is able to incorporate the deadline into the selection while other methods are

not. In addition, the look-ahead selection is capable of making a trade-off between achieving

short-term genetic gain and preserving long-term growth potential.

We examined the effectiveness of a look-ahead method against three state-of-the-art
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Figure 2.5 Genetic diversity in 10 generations for four GS methods.

selection methods including conventional genomic selection, optimal haploid value and op-

timal population value. Results of simulation show that LAS outperforms all other methods

with no exception. We did not compare LAS with WGS since WGS has the similar growth

rate to conventional GS method. In conclusion, LAS is able to achieve short-term genetic

gain, preserve long-term genetic diversity and is sensitive to the deadline.

2.5 Conclusions

As global food demand increases, plant breeding has been critical in improving pro-

duction yield. Genomic selection has been instrumental in efficiency improvement in plant

breeding. In this study, we introduce a new selection method, LAS, which has the potential
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Figure 2.6 Genetic gain in 10 generations for four GS methods.

to improve the breeding efficiency given the limited resources and target delivery date.

The new selection method, look-ahead selection evaluates the genetic merit of a set

of selection candidates. We showed that LAS outperforms other methods in a series of

simulation experiments by using empirical data from an inbred maize population. LAS

has three major contributions: The first one is time managing. This method is sensitive

to the deadline and is able to make a trade-off between short-term genetic gain and long-

term genetic diversity. The second contribution is optimizing the pairing strategy. This

method selects an order dependent set of individuals as the breeding parents to find the

best possible pairing strategy. Finally, the third contribution is allocating the recourses

such that the number of progenies produced from each cross is proportional to the genetic
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diversity of the breeding parents. This can preserve more genetic diversity in the breeding

process. The research in this paper was subject to a few limitations which suggest future

research directions. Further research can focus on resource allocation in genomic selection

problems and utilize reinforcement learning for optimizing different parameters discussed

in this research.
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CHAPTER 3. GENERAL CONCLUSIONS AND FUTURE WORK

In order to feed the world’s growing population, an interdisciplinary effort is needed. In

this research, operations research tools are applied to the problem of genomic selection by

integrating stochastic simulation and optimization. This paper considers three components

of a breeding process that have been ignored in previous approaches. The first component is

time dependency. The look-ahead selection method decides on the selection and mating

strategy with considering the deadline. This results in making a trade-off between short-

term genetic gain and long-term growth potential. The second component is optimizing

mating strategy. The LAS method selects a set of individuals which are order dependent.

This results in finding the best pair for each individual and optimizing the pairing strategy.

The third component is resource allocation. While previous approaches make same

number of progenies from each cross, LAS can vary the number of progenies based on the

genetic diversity of their selected parents to produce more progenies for individuals which

have more genetic diversity.

Recently, OPV was proposed as the first population-based selection method and now

LAS pushes the frontier of population-based approaches. In this study, we see that population-

based methods can preserve more genetic diversity than truncation selection methods.

LAS opens a potentially fruitful direction of genomic selection to future research. In

this regard, two follow-up studies are recommended:

1) Investigate the performance of selection methods for different number of generations:

In the present study, the effectiveness of four selection methods are compared in 10 gener-

ations. We believe that LAS can make a trade-off between short-term and long-term goals
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for different number of generations as it is the only time dependent method. Future work

can focus on comparing CGS, OHV, OPV, and LAS for different time horizons through

simulation.

2) Applying reinforcement learning for allocating resources: Genomic selection is imple-

mented in a breeding process to increase the response, but little is known how to allocate

the resources optimally under a budget. Reinforcement learning (RL) is a type of machine

learning that allows agents to automatically determine the ideal action within a specific

context to maximize its performance. The agent can learn the optimal action by getting

a reward feedback. Markov decision processes (MDP) are an intuitive and fundamental

formalism for RL and other learning problems in stochastic domains. RL methods can be

applied to GS for optimizing the resource allocation. Future research can focus on mod-

elling a GS problem in the framework of MDP and using RL methods to allocate resources.

To do this, states, actions and transition probabilities should be defined in the context of

GS. In other words, the RL model can optimize the crossing, and pairing strategies as well

as the number of progenies to be produced from each cross. This new research area would

help breeders to utilize the resources according to their budget in an efficient manner.
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APPENDIX. PROOF FOR CHAPTER 2

Definition .0.1. For a given vector of recombination frequencies, r ∈ [0, 0.5]L−1 , and a

given set of individuals, the look-ahead recombination frequency, R ∈ [0, 0.5]L−1 is defined

as:

R =
(S/2− 1)(1− (1− r)t)

S/2
(.1)

Proof. Define Pi as the probability that two consecutive alleles would stay together after i

generations:

P0 = 1

P1 = P0(1− rl) +
rl
S/2

P2 = P1(1− rl) +
rl
S/2

...

Pt = Pt−1(1− rl) +
rl
S/2
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Where rl is the lth recombination frequency for l ∈ {1, 2, ..., L} and S is number of

breeding parents. The last equation can be expanded as follow:

Pt = Pt−1(1− rl) +
rl
S/2

= Pt−2(1− rl)2 + (1− rl)
rl
S/2

+
rl
S/2

= Pt−3(1− rl)3 + (1− rl)2
rl
S/2

+ (1− rl)
rl
S/2

+
rl
S/2

...

= (1− rl)t + (1− rl)t−1
rl
S/2

+ · · · + (1− rl)
rl
S/2

+
rl
S/2

⇒Pt = (1− rl)t +
rl
S/2

(
t−1∑
i=0

(1− rl)i
)

=
1 + (S/2− 1)(1− rl)t

S/2

We get the last equation by using the finite geometric series formula. From this we

obtain Pt, the probability that two consecutive alleles stay together after t generations.

Next, we compute Pt
′
, the probability that two consecutive alleles would recombine after t

generations:

Pt
′

= 1− Pt

= 1− 1 + (S/2− 1)(1− rl)t

S/2

=
(S/2− 1)(1− (1− rl)t)

S/2
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