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ABSTRACT 

The intrinsic dynamics of globular proteins is the key to the understanding of their function, 

being a consequence of protein structure and geometry. The view of protein structures has 

recently changed from native structures being considered to be a single rigid, static object 

into one where conformational ensembles coexist. Besides, allostery, the transmission of 

signals from a distant site to the active site, is a direct outcome of the detailed dynamics of a 

given protein. Investigating how dynamics controls protein function is one of the overall 

aims of our studies. It is essential to probe protein function by combining information from 

all three types of data: sequence, structure and dynamics, which combine to define their 

functions. The abundance of protein sequence data in repositories like UniProt and Pfam is 

huge and is strongly complementary to the rich data of protein structures in PDB. Exploiting 

this wealth of information and coupling it with molecular simulations that provide 

information on protein dynamics, facilitates the understanding and predicting of protein 

function, which is the underlying motivation and overall objective of the present work. 

The dynamic behavior of proteins is often altered upon the binding of ligands, partner 

proteins or other biological macromolecules such as DNA and RNA. This work describes the 

influence of binding on the intrinsic dynamics of proteins through studies on homooligomeric 

protein assemblies which are comprised of multiple subunits of the same protein. 

Specifically, this work compares the dynamics of functionally important residues of a single 

subunit in isolation with those in its assembled form. Next, is presented a systematic 

investigation of the extent of similarity between the protein dynamic communities obtained 

from molecular dynamics with those from a simpler molecular simulation method, the elastic 

network models. The focus is on the separate dynamic communities, which are those groups 
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of residues, highly cohesive in terms of their motions and which move like a rigid unit. 

Elastic network models are models for protein cohesion and are particularly appropriate for 

application to this task. We also show how they can effectively capture the differences in 

community distributions for mutant and wild type forms of T4 lysozyme. Finally, a machine 

learning classification method is developed wherein protein dynamics information is coupled 

with structure, evolutionary and physicochemical properties to predict regulatory and 

functional binding sites. 

This work emphasizes the collective interplay between sequence, structure and 

dynamics as the key to the understanding of protein function. It also highlights the use of 

simplified molecular representations for simulations, i.e., the elastic network model, which 

can often be suitable as a substitute for atomic molecular dynamics. The machine learning 

models developed as a part of this work strongly point up the importance of including protein 

dynamics to improve predictions. The methods developed have potential practical 

applications, for instance as predictive models for identification of hot spot residues for site-

directed mutagenesis or even for the prediction of sites where potential therapeutics could 

bind to restore dynamics and other disturbed functions, or even to suggest ways to generate 

new functions. 
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CHAPTER 1.    INTRODUCTION 

Proteins, the cellular nanomachines, manifest in diverse structural forms and participate in a 

multitude of functional roles. Some of these roles involve providing structural integrity to the 

cell with cytoskeletons, transporting molecules into and out of the cell with membrane 

transporters, facilitating intracellular signal transduction through G-proteins and even 

facilitating their own expression via RNA polymerase and ribosomes, and degradation with 

proteasome. The role of proteins is not just limited to the intracellular boundary. These 

molecules also facilitate intercellular communication in the form of hormones and are 

bulwarks of host defense mechanisms against pathogens.  

The building blocks of all proteins are amino acids which associate with each other in 

a linear sequence of peptide bonds and later fold into three dimensional structures, referred to 

as the tertiary structure. The functional form of proteins is their tertiary structure. However, 

proteins can self-associate into oligomers or even form large macromolecular complexes to 

execute their function. These complex structural forms are referred to as protein quaternary 

structures. Based on their structural invariabilities proteins can be broadly classified into two 

types: fibrous and globular. Fibrous proteins have a rigid architecture, formed of repetitive 

linear strands of polypeptide units and are responsible for providing structural robustness 

(e.g., keratin and collagen). Globular proteins, on the other hand, are more dynamic and 

exhibit structural plasticity. They frequently undergo structural transitions and thus, exist in a 

continuum of conformational ensembles. Most functional proteins are globular by nature and 

the key to their function is the close association between their sequence, structure and 

dynamics.  
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This dissertation presents a set of computational approaches aimed at exploiting the 

available sequence and structure information for globular proteins to model their dynamics 

and understand their functional mechanisms. 

1.1. Background  

1.1.1. Paradigm Shift: From Protein Sequence-Structure-Function to Sequence-

Structure-Dynamics-Function 

Protein sequences have been used extensively to understand the extent of homology 

between organisms. Proteins showing considerable sequence similarity are usually 

considered as homologs that is, they evolve from the same ancestor and have similar or the 

same function. Even before the first protein structure was available, Linderstrom-Lang 

(Linderstrøm-Lang, 1952) proposed that the amino acid sequence of a protein can order into 

structurally discrete motifs (secondary structure elements), which would then fold into a 

more compact three dimensional structure. The connecting link between sequence and 

structure of proteins, which was debated for many decades, was established by Anfinsen 

through his experiment on ribonuclease A, revealing that the amino acid sequence is the key 

to a protein’s native three dimensional structure (ANFINSEN & HABER, 1961). Later, 

Chothia and Lesk (Chothia & Lesk, 1986) showed that the amino acid sequence of proteins 

can be highly variable while, the protein structure is more conserved during evolution. Many 

examples of proteins showing weak sequence similarity but bearing strong structural 

resemblance and homology have since been reported (Rost, 1999; Sander & Schneider, 

1991). These studies emphasized protein structure as the key determinant of its function and 

led to the inception of databases like CATH and SCOP (Hubbard, Ailey, Brenner, Murzin, & 

Chothia, 1999; Orengo et al., 1997) which assigned homology based on protein structure 

similarity instead of sequence similarity. 
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Proteins were previously viewed as static and rigid molecules, having well-defined 

structures and geometries. The lock-and-key hypothesis (Behr, 2007; Fischer, 1894) 

considered proteins having cavities (locks) of fixed shapes to which, only specific ligands 

(keys) bind. Such static representations of proteins were gradually replaced by a view that 

regards proteins as dynamic entities. Koshland introduced the induced fit model to explain 

the effect of ligand binding to a protein and suggested that binding can induce a change in 

shape of the cavity, aiding complementarity (Koshland, 1958). In quaternary structures, such 

a change induced in one subunit could be transmitted to adjacent subunits. A similar model 

was also proposed by Monod, Wyman and Changeux (Changeux & Edelstein, 2005) which 

assumes that subunits in proteins can either be in the tensed or relaxed state, the latter 

favoring ligand binding, wherein the subunits of quaternary structures are in the same 

conformational state (either tensed or relaxed) at any point in time. It was however, the 

availability of a large number of protein structures determined using advanced X-ray 

crystallography and NMR techniques that provided a clear picture about a protein’s dynamic 

state (Mannige, 2014). In stark contrast to the first crystallized structure of myoglobin 

(Kendrew et al., 1958), the structures of numerous proteins resolved thereafter showed 

disorder (missing regions), providing substantial evidence for the dynamic nature of proteins. 

Structures of proteins from same organisms were reported in multiple conformations further 

confirming protein flexibility and conformational variability (Damm & Carlson, 2007). To 

explain such conformational variability, sometimes even in the absence of ligands, the 

modern view considers the ensemble nature of protein structures. 

According to the modern view, proteins don’t just exist as a single structure or 

conformation. The notion of protein structure from being referred to as a single structure or 
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conformation has evolved into an ensemble one, in which a structure is an ensemble of 

conformations. Each conformation (or a conformer) is associated with a certain amount of 

energy and the ensemble can be outlined by a Boltzmann distribution of the conformational 

energies. Low energy conformations are more favorable than high energy ones. Proteins can 

frequently transition between conformations. The probability of such transitions strongly 

depends on the difference in energy between two conformational states; lesser the difference, 

more probable is the transition. Pathways for such conformation transitions are comprised of 

multiple intermediate conformers each associated with a certain amount of energy and inspire 

the notion of protein energy landscape (Dill, 1999) – a rugged contour having all possible 

conformers and their energies mapped between a starting and an ending conformation 

(Tavernelli, Cotesta, & Di Iorio, 2003).     

The conformational ensemble model for proteins is frequently used to explain the 

effect of ligand binding or in general, any binding partner. Ligands can bind to pre-existing 

conformations, a process referred to as conformation selection, triggering a shift in the 

ensemble distribution towards the favorable binding state (Lindorff-Larsen, Best, DePristo, 

Dobson, & Vendruscolo, 2005; Vértessy & Orosz, 2011). Or they can even bind intrinsically 

disordered proteins and induce order and folding. The conformational plasticity and intrinsic 

dynamics of proteins is by virtue of their structure, sometimes referred to as “structure-

encoded dynamics”. Such conformational variability gives rise to promiscuous binding in 

which, a protein has multiple binding partners or can execute multiple functions, such as 

catalyzing reactions other than the ones they are evolved for (referred to as catalytic 

promiscuity or moonlighting). Examples of promiscuous binding proteins include antibodies 

such as immunoglobulin G, major histocompatibility class 1, aminoglycoside kinase, protein 
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kinase A and aminoglycoside kinase (Chang, McLaughlin, Baron, Wang, & McCammon, 

2008; James & Tawfik, 2009; Sundberg & Mariuzza, 2000) while, some proteins with 

moonlighting functions are gephyrin and cytochrome c (Copley, 2003). These works and 

many more, set the foundations for a strong association between protein dynamics and 

function and led to the paradigm shift, sequence-structure-dynamics-function. 

1.1.2. Role of Dynamics in Regulating Protein Function 

Conformation variability has been shown to strongly correlate with protein function 

(McCammon, 1984). Slow collective motions, also referred to as global motions, involve 

strong coordination between majority protein residues and have been shown to be 

evolutionarily conserved within many protein families (Haliloglu & Bahar, 2015), including 

the amino acid kinase family (Marcos, Crehuet, & Bahar, 2010). Investigations on 

mesophilic and thermophilic adenylate kinase reveal that the enzyme’s catalytic efficiency 

can be greatly influenced by the dynamic opening/closing frequency the nucleotide-binding 

lids (Wolf-Watz et al., 2004). In another study for the same enzyme, local atomic fluctuations 

in hinge regions were shown to facilitate the collective opening/closing motions of the lid (K. 

A. Henzler-Wildman et al., 2007). Intrinsic protein flexibility also plays a key role in 

mediating ligand induced allosteric effects in which binding of effector molecules at an 

allosteric site can induce conformational change at a distant site. Examples of such 

conformational changes have been shown for myosin V and Hsp 70 (Coureux, Sweeney, & 

Houdusse, 2004; General et al., 2014). Other functional significance of large structural 

changes brought about by collective motions are described in (Grant, Gorfe, & Mccammon, 

2010) and the coupling between enzyme catalytic site and collective dynamics in (L. W. 

Yang & Bahar, 2005) and (Z. Kurkcuoglu, Bakan, Kocaman, Bahar, & Doruker, 2012). 
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Given the emerging and underlying importance of dynamics in determining protein function, 

Hensen and co-workers (Hensen et al., 2012) introduced the novel concept of “protein 

dynasome” which hypothesizes that proteins having similar functions share similar dynamics 

and hence, a common dynamic fingerprint. 

1.1.3. Molecular Simulations: Methods for Investigating Protein Dynamics  

 The term dynamics refers to any intrinsic motion within proteins. This includes 

motions at the atomic level as well as collective motions within subunits or even movement 

of domains with respect to one another. While the atomic motions occur at time scales of a 

few nanoseconds, collective motions such as domain motions occur in the microsecond or 

millisecond scale (K. Henzler-Wildman & Kern, 2007; Teilum, Olsen, & Kragelund, 2009). 

At the crux of every molecular simulation method is its potential, sometimes referred to as 

force field. Potentials are used to assess the net energy of a biological system and are broadly 

of two types: physics-based and knowledge-based. Physics-based potentials model inter-

atomic interactions through harmonic springs and typically include bonded interactions (bond 

lengths, bond angles and dihedral angles) and non-bonded interactions (electrostatic and van 

der Waal interactions). The parameters for these potentials are derived from quantum 

mechanical (QM) calculations. Knowledge-based potentials or statistical potentials however, 

use the available protein structures to model interactions within a protein. Simply stated, such 

approaches count the frequency of contacts for different amino acid pairs and come up with a 

table that describes the favorable and unfavorable contact pairs. The methods available to 

study dynamics of molecular systems can be broadly divided into three categories. Each 

method differs from the other with respect to the underlying potential it uses to represent the 

protein structure and also with respect to how the simulation is carried out.  
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1.1.3.1. Molecular dynamics 

Developed first by Fermi et al., (Fermi, Pasta, & Ulam, 1955) molecular dynamics 

(MD) simulations are one of the primary tools used to investigate the dynamics of 

biomolecular systems. The very first MD simulations on biological systems were performed 

by Levitt and Warshel (Levitt & Warshel, 1975), while the first MD simulation on “a 

macromolecule of biological interest” was on the bovine pancreatic trypsin inhibitor by 

Karplus and McCammon (McCammon, Gelin, & Karplus, 1977). A typical MD simulation 

takes into consideration two types of atomic forces that govern molecular motions: forces 

arising from the interactions of chemically bonded atoms and forces from non-bonded atoms. 

Consequently, an MD potential can be broken down into terms that describe bonded 

interactions (bond lengths, bond angles and dihedral angles) and non-bonded interactions 

(electrostatic and van der Waal interactions). In a typical MD run, the molecule of interest is 

first minimized with respect to the underlying potential. A standard MD simulation involves 

solving Newton’s equations of motion for the system of interacting molecules, in this case a 

protein. Each particle in the system is assigned an initial velocity and acceleration and then, 

the position of the particles after a short time t (a few femtoseconds) is calculated from 

Newton’s equations. Using the new positions for each particle, the force on each particle is 

calculated from the slope of the potential and from the force, the acceleration is calculated. 

This information is used to obtain the next positions of the particles, and so on. The 

procedure is repeated for a certain length of time, providing a trajectory which describes the 

dynamics of all the atoms of the system. Besides investigating protein dynamics, MD 

simulations have also been used to study protein folding (Scheraga, Khalili, & Liwo, 2007). 

Reviews by Karplus (Karplus & McCammon, 2002) and Durrant (Durrant & McCammon, 

2011) shed light on some of the applications of MD.       
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1.1.3.2. Normal mode analysis 

 Normal mode analysis (NMA) is based on the vibrational motions of molecules and is 

used to characterize the motions of oscillating systems near the equilibrium state (Goldstein, 

Poole, & Safko, 2002). A normal mode is defined as a motion in which all particles in a 

system (in this case all atoms of a protein) move with the same frequency and in the same 

phase, sinusoidally. The underlying principle for such simulations for biological systems is 

that by virtue of its structure, a biological entity, such as a protein, can vibrate in certain 

ways. These vibrations represent accessible conformations for the protein and have been 

shown to strongly correlate with protein functional dynamics. The slow vibrating modes 

(ones with less frequency) are energetically more favorable than higher modes.  

Classical NMA uses physics-based potentials which, similar to MD, have both 

bonded and non-bonded terms. The protein is first energy minimized with respect to this 

potential and then, a 3N by 3N dimensional Hessian matrix (N is the total number of atoms) 

is obtained by taking the second derivatives of the potential. The Hessian is a matrix of force 

constants describing the force on one atom owing to another. The eigen vectors of this matrix 

are referred to as normal modes. Each normal mode describes the displacement of atoms 

from their equilibrium position in X, Y and Z directions. The eigen values correspond to the 

square of mode frequency. Slower modes i.e., those having low frequency, describe 

collective motions such as inter-domain motions, while fast modes describe local motions as 

side chain vibrations. For motion in 3 dimensions, the first 6 modes correspond to rigid body 

motions and are usually overlooked. 
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1.1.3.3. Elastic network models 

Elastic network models (ENMs) are simpler formulations of NMA which assume that 

a resolved protein structure is a local energy minimum thus, eliminating the requirement for 

energy minimization. Instead of modeling the system with a complex all-atom potential, 

ENM resorts to using the simple Hookean potential. In the ENM formulation, each atom is 

represented as a point mass and atoms within a certain cutoff distance are connected by 

Hookean springs. The total potential of this system is then the sum of the distance of 

separation between all atom pairs weighted by stiffness of the springs connecting them. The 

initial formulation of ENM was proposed by Tirion (Tirion, 1996) who showed that the 

theoretical B factors of residues calculated with ENM shows strong correlation with those 

obtained experimentally.  

Gaussian network model (GNM) (I Bahar, Atilgan, & Erman, 1997; Rader, 

Chennubhotla, Yang, & Bahar, 2006), a more simplified version of ENM was later proposed 

by Bahar and co-workers. GNM assumed that residues fluctuations were isotropic by nature 

and followed a Gaussian distribution, representing proteins as coarse-grained systems of 

residue C
α
 atoms. GNM used an N x N Kirchhoff matrix instead of the 3N x 3N Hessian 

matrix. The off-diagonal elements of the Kirchhoff matrix denote the interacting residue 

pairs with -1 and non-interacting pairs with 0. The diagonal of the matrix gives the 

coordination number for each residue. Mean square fluctuations (MSF) of residues are given 

by the diagonal elements of the inverse of the Kirchhoff matrix while off diagonal elements 

correspond to residue cross-correlations. To account for the anisotropy in residue 

fluctuations, a theme not addressed by GNM, the anisotropic network model (ANM) was 

formulated. The ANM (Atilgan et al., 2001) provided positional displacement in X, Y and Z 

directions for each atom, described by the eigen vector (normal mode) of the 3N x 3N 
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Hessian matrix. The first 6 normal modes are usually eliminated as they correspond to rigid 

body motions. The inverse of the Hessian provides information about the residue mean 

square fluctuations and inter-residue cross-correlations. Excellent reviews on the working 

principles of ENMs and their applications are provided in the articles -  (Ivet Bahar, Lezon, 

Bakan, & Shrivastava, 2010 and Timothy R. Lezon, Indira H. Shrivastava, 2009). 

 ENMs have two adjustable parameters: the distance cutoff 𝑟𝑐 at which atoms are 

considered to be interacting and the spring constant γ describing the stiffness of springs 

connecting an atom pair. These parameters are chosen so as to best reproduce the 

experimental B factors. The distance cutoff 𝑟𝑐 is usually set to 7Å for GNM and 13Å for 

ANM, while γ is set to 1 assuming uniform interaction strengths. Instead of representing 

amino acids just by their C
α
 atoms, other schemes of mixed coarse-grained representations 

have also been attempted (Doruker, Jernigan, & Bahar, 2002; O. Kurkcuoglu, Jernigan, & 

Doruker, 2004; Sinitskiy, Saunders, & Voth, 2012; Tozzini, 2005; Zhang et al., 2008). 

Several formulations of ENMs which take into consideration the different types of 

interactions and assign different γ based on the interaction type have been proposed (Jeong, 

Jang, & Kim, 2006; Kim et al., 2013). Besides, another popular version of ENM is the 

parameter free ENM (pfENM) that weighs the stiffness of springs as (
1

𝑟𝑐
)
𝑘

 (L. Yang, Song, & 

Jernigan, 2009). 

 Owing to their reduced nature, it is easier to formulate and implement ENMs than 

classical NMA and MD. Also, the underlying assumption of ENM that a protein structure 

resolved using experimental methods such as X-ray crystallography and NMR is a local 

energetic minimum excludes the requirement for energy minimization, often a time 

consuming process. Though formulated in different forms, the underlying principle of all 
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ENMs is the same: that protein dynamics is a consequence of the structure and geometry of 

proteins. The conformational transitions that a protein can make are in accordance with its 

geometry. This principle has been extensively used to study the functional dynamics of 

diverse biomolecular systems, some of which even include large macromolecular assemblies 

like virus capsids (Tama & Brooks, 2006) and ribosomes (Kurkcuoglu, Doruker, & Jernigan, 

2009; Wang, Rader, Bahar, & Jernigan, 2004). Studies using ENMs have also been carried 

out to bridge the gap between structure, dynamics and function for tryptophan synthase (I 

Bahar & Jernigan, 1999) and protein-dna and protein-rna complexes (O. Kurkcuoglu, Turgut, 

Cansu, Jernigan, & Doruker, 2009). Other applications and development of ENMs have been 

described in the review article by Lopez-Blanco (López-Blanco & Chacón, 2016). 

Importantly, the dynamics obtained using the simple ENM approach corresponds strongly to 

the dynamics obtained with sophisticated methods such as MD and NMA.  

1.1.4. Investigating Dynamics using Structure Ensembles 

 Another strategy for obtaining knowledge about the intrinsic protein dynamics is by 

principal component analysis (PCA) of protein structure ensembles. This requires the 

availability of either a dynamic simulation trajectory of a protein (can be obtained from MD) 

or even an ensemble of structures obtained from a repository such as PDB. The underlying 

principle of such an approach is to have diverse conformational states of a protein and then 

identify the dominant conformational changes (Howe, 2001). 

First a structural alignment is performed for all members of the ensemble by 

superimposing each conformational state on a representative structure. This is done to 

transform structures from different coordinate frames to a single frame. Then, based on either 

multiple sequence alignment or multiple structure alignment, only the core subset of residues 
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from each structure is retained (Leo-Macias, Lopez-Romero, Lupyan, Zerbino, & Ortiz, 

2005). These residues correspond to those positions that are not aligned to any gaps. A 

covariance matrix is then created from the 3D coordinate information of the core residues. 

Eigen decomposition of this covariance matrix gives principal components (the eigen 

vectors) and the variance explained by each component (eigen value). Each principal 

component explains the positional fluctuation of residues in the X, Y and Z dimensions and 

the associated eigen value tells the extent to which that motion dominates the structure 

ensemble (larger eigen values imply greater importance). Dynamics obtained using such 

ensemble approaches are often referred to as the essential dynamics of proteins (Amadei, 

Linssen, & Berendsen, 1993). Previous works show strong association between the dynamics 

uncovered using PCA and other methods such as MD and ENM (L. Yang, Song, Carriquiry, 

& Jernigan, 2008). Other works using PCA to understand global dynamics of protein 

structures include investigations on GroEL subunit (Skjaerven, Martinez, & Reuter, 2011) 

and on λ-repressor mutants (Maisuradze & Leitner, 2006). 

1.1.5. Data-driven Approaches for Understanding Protein Functions 

 The protein databank (PDB) (Berman et al., 2000) currently holds 138878 structures 

of which 128935 are protein structures and 6720 are protein-nucleic acid complexes. The 

sequence data available for proteins is many folds greater than the structure data. Such a 

wealth of data can be used to carry out large scale computational studies to provide general 

conclusions. Data-driven approaches such as machine learning (ML) can be greatly exploited 

to identify hotspots of functional residues and make predictions for protein functions using 

structural data. A number of machine learning methods exist till date and can range from the 

simple linear regression to more sophisticated random forests and deep learning methods. 
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Machine learning models predict a target property (response variable) using a set of 

pre-calculated features (predictors) considered to be important for the prediction (Kohavi & 

Provost, 1998). Based on the type of predictions they make, ML models may be categorized 

as classification models or regression models. Classification models are used when the 

response variable is categorical such as predicting enzyme class, oligomeric state and so on. 

Regression models are used for response variables that are continuous such as predicting the 

catalytic efficiency of an enzyme, enzyme half-life and so on. ML models can also be 

classified into supervised and unsupervised learning models, based on how they are trained. 

Supervised learning models are usually trained on a single or multiple datasets and are used 

to make predictions on test data (data which the model has not seen before). The data used 

for these models are usually labelled i.e., the correct value of the response variable is known. 

Unsupervised learning models do not require training and are used to make predictions on 

unlabeled data, where the exact labels are not known (Hastie, Tibshirani, Friedman, & others, 

2009). Common examples of supervised learning algorithms include generalized linear 

models, logistic regression, decision trees and random forests while, cluster detection is a 

good example of unsupervised learning. A review on the available supervised learning 

methods are provided by Kotsiantis, 2007 and Ng, 2012.        

The applications of machine learning to problems in computational biology are 

numerous. Machine learning has been used for gene predictions, protein secondary structure 

predictions and even for predicting protein-protein interactions with considerable success. In 

systems biology, they have been used in predicting signaling networks and metabolic 

pathways (Dale, Popescu, & Karp, 2010). They have also been used to predict regulatory 

(Demerdash, Daily, & Mitchell, 2009) and active sites (Petrova & Wu, 2006) in proteins and 
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also in protein tertiary structure predictions (Cheng, Tegge, & Baldi, 2008). A more elaborate 

discussion on the applications of machine learning to bioinformatics is presented by 

Larrañaga et al. 2006.   

1.2. Specific Aims 

The availability of diverse structure and sequence data lays the foundation for using 

data driven methods such as machine learning in addition to computer aided simulations to 

get deeper insight into the working principles of proteins. Biology continues to remain a 

largely unexplored field and there remain quite a few unsolved, unaddressed problems. 

Solving each problem through an experiment is often inconvenient owing to the lack of 

available techniques or the expense at which they are available. Computational simulations 

have two advantages in this context: first they take relatively lesser time and expenditure to 

solve a given problem and second, previous results have shown strong correlation between 

results from computational simulations and experiments.  

In this dissertation, I address three specific aims, each referring to an existing 

biological problem, and I outline the computational schemes to solve these problems. A 

common theme connecting each problem is the essence of dynamics in the context of protein 

function.  

Aim 1. Understanding the Effects of Oligomerization on Intrinsic Protein Dynamics 

As intrinsic dynamics of proteins can be greatly influenced by protein structure, it is 

necessary to understand how the dynamics of oligomeric assemblies differ from their 

monomeric forms. Though previous studies have investigated the effect of oligomerization 

for specific proteins, a large scale study on diverse oligomeric states is yet to be carried out. 

We compile a diverse set of oligomeric proteins and compare their dynamics for the 
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monomeric and oligomeric forms, using elastic network models. For the same set of proteins 

we also verify the effect of oligomerization on the dynamics of key functional residues (those 

which are evolutionarily conserved). Using the specific case of triosephosphate isomerase, 

we investigate changes to the highly correlated parts in the monomeric form (dynamic 

communities) upon oligomerization.    

Aim 2. A Simpler Method for Mining Protein Dynamic Communities 

Dynamic communities are the highly correlated parts of a protein whose residues are 

highly cohesive and exhibit rigid body motions. Identifying these communities is critical for 

the understanding of functional mechanism of proteins. Typically, MD simulations (~ 100 ns 

or longer) have been used to identify these communities (McClendon, Kornev, Gilson, & 

Taylor, 2014). We show that the communities obtained from elastic network models closely 

correspond to the communities from MD. Our study also reveals that atomic formulations of 

ENMs can be used to distinguish between deleterious and stable mutants for a protein. 

Aim 3. Predicting Regulatory and Active Site Residues 

Identification of allosteric and active site residues in proteins is a widely acknowledged 

important biological problem. Numerous prediction schemes have been implemented for the 

prediction of allosteric and active site residues (Lu, Huang, & Zhang, 2014; Sankararaman, 

Sha, Kirsch, Jordan, & Sjölander, 2010; Singh, Biswas, & Jayaram, 2011). However, there is 

a disjoint between most allosteric and active site prediction methods in that they are usually 

trained on separate datasets and make no definite connection between the two categories. To 

address this problem, we use a dataset that has both allosteric and active site residues 

labelled. Also, given the underlying importance of dynamics for protein function prediction, 

we hypothesize that incorporating information on protein dynamics should in principle lead 
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to improved detection of allosteric and active site residues. We develop separate machine 

learning models for the prediction of allosteric and active site residues using a common 

subset of features which involve dynamic, evolutionary, physicochemical and structural 

information. We also perform comparisons with existing methods to verify our method’s 

performance and also compare the predictions for active and allosteric residues for a single 

protein, establishing a close relationship between the predictions. 

 

1.3. Dissertation Organization 

 This dissertation is comprised of six chapters. The background to this work was 

provided in Chapter 1. The content of the other chapters are briefly summarized below. 

Chapter 2 relates to specific aim 1 with the underlying objective to understand the 

effects of oligomerization on the intrinsic protein dynamics and its consequences for 

functionally important residues. This chapter has been published in a peer reviewed journal 

under the title “Altered Dynamics upon Oligomerization Corresponds to Key Functional 

Sites” by Sambit Kumar Mishra, Kannan Sankar and Robert L. Jernigan in Proteins Struct. 

Funct. Bioinformatics 85(8), April 2017.  

Chapter 3 corresponds to specific aim 2 where an exhaustive study that compares 

dynamical communities from MD with ENM has been carried out. It has been formatted as a 

manuscript and submitted with the title “Protein Dynamic Communities from Elastic 

Network Models Align Closely to the Communities Defined by Molecular Dynamics” by 

Sambit K. Mishra and Robert L. Jernigan to PLoS One and is currently under review. 

Chapter 4 implements machine learning classifiers that consider protein dynamic 

information along with protein structure, evolutionary and physicochemical properties to 
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predict allosteric and active site residues. The paper is currently being formatted into a 

manuscript for submission to a peer reviewed journal. 

Chapter 5 compares different formulations of ENMs and their performance in terms 

of predicting experimentally determined conformational dynamics. It has been published 

under the title “Comparisons of Protein Dynamics from Experimental Structure Ensembles, 

Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models” by Kannan 

Sankar, Sambit K Mishra and Robert L. Jernigan in J. Phys. Chem. B, January 2018. 

Chapter 6 summarizes the overall findings in the dissertation and suggests the scope 

and improvements that can be made to the dissertation in future work. 

Appendices A, B, C and D contain the supplemental information for Chapters 2, 3, 4 

and 5, respectively. 
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Abstract 

It is known that over half of the proteins encoded by most organisms function as oligomeric 

complexes. Oligomerization confers structural stability and dynamics changes in proteins. 

We investigate the effects of oligomerization on protein dynamics and its functional 

significance for a set of 145 multimeric proteins. Using coarse-grained elastic network 

models, we inspect the changes in residue fluctuations upon oligomerization and then 

compare with residue conservation scores to identify the functional significance of these 

changes. Our study reveals conservation of about ½ of the fluctuations, with ¼ of the 

residues increasing in their mobilities and ¼ having reduced fluctuations. The residues with 

dampened fluctuations are evolutionarily more conserved and can serve as orthosteric 

binding sites, indicating their importance. We also use triosephosphate isomerase as a test 

case to understand why certain enzymes function only in their oligomeric forms despite the 

monomer including all required catalytic residues. To this end, we compare the residue 
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communities (groups of residues which are highly correlated in their fluctuations) in the 

monomeric and dimeric forms of the enzyme. We observe significant changes to the 

dynamical community architecture of the catalytic core of this enzyme. This relates to its 

functional mechanism and is seen only in the oligomeric form of the protein, answering why 

proteins are oligomeric structures. 

 

2.1. Introduction 

Proteins are critical for diverse cellular functions, including structural integrity, 

transport, and catalysis of biochemical reactions. Some function as independent monomeric 

units and others in multimers, or even form large biological complexes. The process of 

forming oligomers, oligomerization, often confers increased stability and the ability to 

perform complex functions (Ali & Imperiali, 2005; Marianayagam, Sunde, & Matthews, 

2004). Oligomers can exist either as an assembly of identical subunits, homo-oligomers, or 

can combine in a mosaic of hetero-oligomers. Previous work reveals that homo-oligomers 

often tend to display structural symmetry that is generally associated with greater stability 

and robustness (Goodsell & Olson, 2000; Healy, 2015). Apart from their specific 

architecture, oligomers can also be classified based on whether or not complexation is 

required for their biological activity. Obligate cases require oligomerization in order to 

execute their functions, while non-obligate oligomers are transient complexes with the 

subunits capable of performing their functions in isolation (Griffin & Gerrard, 2012). 

Oligomeric complexes can perform complex functions, a role often not possible for 

monomers. For example, the homo-oligomeric complexes Hsp90 and calreticulin play 

significant roles in affecting protein folding (Matthews & Sunde, 2012); the oligomeric 

forms of these proteins are known to bind misfolded proteins with higher affinity than their 
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monomeric counterparts. Moreover, most oligomeric complexes exhibit longer-range 

allosteric regulation than in the monomer, which can be important for signal transduction 

(Ali & Imperiali, 2005; Changeux & Edelstein, 2005). Hemoglobin is a classic example that 

has been investigated frequently to elucidate aspects of allostery and cooperativity with 

respect to protein oligomerization. Also, the increased stability of protein complexes by 

oligomerization is an essential modification for thermophiles to prevent their dissociation 

under extreme temperatures (Walden et al., 2001) 

The dynamics of individual monomers persist in most oligomeric assemblies. 

However, some complexes can develop novel dynamics after oligomerization, especially 

when some critical motions are not accessible to the monomeric form. Previously Voth et al., 

(G. Song, Doruker, Jernigan, Kurkcuoglu, & Yang, 2008), showed that the dimeric form of 

triosephosphate isomerase was required to obtain appropriate motions of the closing loop, 

while the monomer does not show such motions. Bahar et al. (Marcos, Crehuet, & Bahar, 

2011) investigated the low frequency normal modes accessible to an individual subunit of 

amino acid kinases in the monomeric and oligomeric forms and proposed that changes to the 

dynamics upon oligomerization facilitate allostery and ligand binding. A molecular dynamics 

simulation of tryptophan synthase revealed that in its monomeric form the enzyme is more 

rigid and cannot undergo conformational transitions that are seen after oligomerization 

(Qaiser Fatmi & Chang, 2010). In addition, oligomerization is known to increase the catalytic 

efficiency of this enzyme in contrast to the isolated monomer. In another study, we reported a 

similar finding where the functional loops of triosephosphate isomerase preserve their 

dynamics in both natively dimeric and natively tetrameric forms (Katebi & Jernigan, 2014). 
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The conformational flexibilities of globular proteins have often been considered to be 

a central factor for their function (Ivet Bahar, Lezon, Yang, & Eyal, 2010; Goodman, Pagel, 

& Stone, 2000; Henzler-Wildman & Kern, 2007). Soft modes from elastic network models 

have frequently been used to predict energetically favorable conformational changes upon 

substrate binding, and these predictions bear a strong similarity to the different 

experimentally resolved structures (Haliloglu & Bahar, 2015). Previous studies indicated 

strong correlations between dynamic flexibility and conservation levels of amino acids, with 

the most conserved residues showing the smallest fluctuations. These studies emphasized the 

significance of regions having high packing density, low mobility and low solvent 

accessibility by their high level of conservation; this also underscores how important probing 

conformational dynamics is to decipher protein function (Liao, Yeh, Chiang, Jernigan, & 

Lustig, 2005; Liu & Bahar, 2012; Marsh & Teichmann, 2014). These studies, however, have 

assigned functional significance based on residue flexibility in the native protein structure. 

For a native oligomeric protein, subunits of an assembly will exhibit different residue 

flexibility profiles when in isolation than when in the assembly owing to the differences in 

packing densities. A comparative study on residue flexibilities in the monomeric and 

oligomeric forms of a protein was not previously carried out for a diverse set of proteins - the 

aim of the present study, which will inform us about the importance of oligomerization for 

functional sites.  

To understand the changes in dynamics that oligomerization introduces, we 

investigate a diverse set of 145 homo-oligomers with oligomeric states ranging from two 

(homo-dimer) to six (homo-hexamer). For each protein, we compute the change in mean 

square fluctuations (MSFs) of all residues in the monomer upon oligomerization. We then 
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compare the residue conservation profiles of each protein with the MSF changes to ascribe 

functional significance to the changes in dynamics. We limit this study to a consideration of 

only homooligomers, owing to their greater abundance. We investigate the specific cases for 

four enzymes: glutamate dehydrogenase, arginase 1, glycine N-methyltransferase and D-

amino acid oxidase to probe the functional importance of regions showing altered dynamics 

and then, provide more general results that associate changes in dynamics with functional 

significance. Our study reveals the importance of regions with dampened fluctuations 

following oligomerization. Using the specific cases of the four enzymes, we further confirm 

that the residues in regions with dampened mobilities often play a key role in the catalytic 

activity of the enzyme and hence, are orthosteric by nature. In the final section, we also 

address the question of why certain enzymes function only in their oligomeric state with 

triosephosphate isomerase (TIM) as a case study. Specifically we compare the residue 

communities (blocks of residues which are most highly correlated in their motions) for the 

monomeric and oligomeric forms of TIM. We observe a substantial shift in the community 

architecture of the catalytic core in the oligomer, the fundamental characteristic change 

necessary for the enzyme’s activity, and a further change upon substrate binding. 

 

2.2. Materials and Methods 

2.2.1. Protein Structures 

 The initial dataset comprises Protein Data Bank (PDB) files of 174 different 

homooligomers downloaded from PDB. For each protein, the number of subunits in its 

functional quaternary state (biological assembly) ranges from two to six. We identify the 
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biological assembly for each protein based on the assignment made by the authors and 

software in the PDB entry of the protein.  

2.2.2. Homolog Selection and Multiple Sequence Alignment 

 For each protein in the initial dataset, we extract the sequence corresponding to a 

single chain (by default, we consider just the first chain) in the PDB file. We refer to these as 

query sequences. For each query sequence we search for homologous sequences using 

BLAST against the non-redundant protein sequence database with an e-value cutoff of 0.01, 

percentage identity in the range of ≥ 35% and ≤ 95% and query coverage of 80%. To filter 

duplicates, we then cluster the initial set of homologs with CD-Hit (Huang, Niu, Gao, Fu, & 

Li, 2010) at 95% sequence identity and then select only the representative sequences from 

each cluster. Our final dataset has 145 symmetric homooligomeric proteins (Supporting 

Information file ds145.xlsx), each having a minimum of 50 representative hits from BLAST. 

The diversity of the dataset in terms of oligomeric state and residues is depicted in Figure 

A.1 (A and B). 

 We then perform Multiple Sequence Alignment (MSA) for the representative 

homologs collected for each protein with Clustal Omega (Sievers & Higgins, 2014) with its 

default parameters. 

2.2.3. Conservation Scores 

 Using Rate4Site (Pupko, Bell, Mayrose, & Glaser, 2002) with its default parameters 

for the evolutionary model (JTT) and rate inference method (Bayesian), we calculate the 

conservation scores for each protein from its respective MSA file. Rate4Site reports the 

extent of conservation at a position as a z-score, where a lower score indicates higher 

conservation.  
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2.2.4. Mean Square Fluctuations (MSF) from Elastic Network Model (ENM) 

 The fluctuations derived from ENM show remarkable agreement with the 

experimental fluctuations in B-factors (Atilgan et al., 2001; I Bahar, Atilgan, & Erman, 1997; 

Tirion, 1996). Here, we use the Anisotropic Network Model (ANM) (Atilgan et al., 2001) to 

study the protein dynamics. We model individual proteins as coarse-grained elastic networks 

by representing each residue by its C
α
 atom and connecting residue pairs by harmonic 

springs. In equilibrium, the potential of this system is given as  

𝑉 =
1

2
 𝛥𝑅𝑇𝐻𝛥𝑅  (2.1) 

Here, ΔR
 
is the vector of change in position for all residues, ΔR

T
 is the transpose of this 

vector and H is a 3N by 3N-dimensional Hessian matrix that has the second derivatives of the 

potential function. We vary the strength of spring 𝛾 between a residue pair by the inverse of 

their separation distance (𝑑𝑖𝑗), given by the following equation. 

𝛾 = (
1

𝑑𝑖𝑗
)

𝑎

   (2.2) 

Diagonalizing the Hessian matrix results in 3N-6 modes (V) and eigen values (𝜆) which 

correspond to the non-rigid body dynamics of the system and we use these to calculate the 

MSF of residues with the following equation. 

< ∆𝑅𝑖
2 > =

3𝐾𝐵𝑇

𝛾
∑

1

𝜆𝑗
∑ 𝑉𝑗𝑖

23𝑘
𝑖=3𝑘−2

3𝑁−6
𝑗=1    (2.3) 

Here, KB is the Boltzmann constant and T (set to 300) is the temperature in Kelvin. We then 

compute the theoretical B-factors (𝐵𝑓𝑎𝑐𝑡𝑜𝑟𝑀𝑆𝐹) from these mean-square fluctuations 

(MSFs) as 

𝐵𝑖 =
8𝜋2<∆𝑅𝑖

2>

3
       (2.4) 
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and use them to describe residue positional fluctuations. We set a to 3 as it gives the highest 

median correlation with the experimental B-factors (Figure A.1.C). 

2.2.5. MSF of Monomer and Oligomer 

 We use an approach similar to that of Bahar (Marcos et al., 2011) and Chang (Qaiser 

Fatmi & Chang, 2010) to obtain a protein’s monomeric form from the oligomeric assembly. 

For each protein, we extract only the first chain from the PDB file and consider it to be the 

isolated monomer (𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑) and when the same chain is in the oligomeric 

assembly, we refer to it as 𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟. Comparing the fluctuation profiles of 

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑and 𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟 will give us insight into the changes in dynamics 

after oligomerization. As the dataset comprises only symmetric proteins, we assume that 

there is a high overlap in the dynamics of individual chains in the oligomer and thus, we 

proceed with monitoring the change in dynamics for the first chain only. 

 We calculate the 𝐵𝑓𝑎𝑐𝑡𝑜𝑟𝑀𝑆𝐹vectors for the isolated monomer and oligomer of each 

protein and refer to these as 𝐵𝑓𝑎𝑐𝑡𝑜𝑟
𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑
𝑀𝑆𝐹  and 𝐵𝑓𝑎𝑐𝑡𝑜𝑟𝑂𝑙𝑖𝑔𝑜𝑚𝑒𝑟

𝑀𝑆𝐹  respectively. We 

then consider the MSF values of only the first chain of the oligomer to study the fluctuation 

profile of the monomer in the oligomer. 

2.2.6. Z-score Transformation of Raw MSF and Fold Changes 

 For individual proteins, we standardize the raw fluctuation values obtained in the 

𝐵𝑓𝑎𝑐𝑡𝑜𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟
𝑀𝑆𝐹  and 𝐵𝑓𝑎𝑐𝑡𝑜𝑟

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑
𝑀𝑆𝐹  vectors by converting them to z-scores. 

Transforming the raw scores into z-score helps express both vectors on the same scale, i.e. 

the number of standard deviations the fluctuation of a given residue is from the mean 

fluctuation value over all residues. It also helps eliminate any potential bias that may be 
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introduced due to the difference in the number of residues in the 𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑and the 

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟. From the standardized 𝐵𝑓𝑎𝑐𝑡𝑜𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟
𝑀𝑆𝐹  and 𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 we 

obtain the standardized scores for the monomer in assembly and in isolation respectively. We 

refer to these standardized vectors as 𝑍𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 and 𝑍𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟. We then convert 

these vectors into a positive scale as follows: 

𝑍𝑁
𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 = 𝑍𝑁

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 + [ 

1
1
1
⋮

] . | min(𝑍𝑁
𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 , 𝑍𝑁

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟)|  (2.5) 

𝑍𝑁
𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟 =  𝑍𝑁

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟 +  [ 

1
1
1
⋮

] . |min(𝑍𝑁
𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 , 𝑍𝑁

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟)|  (2.6) 

 The min function takes the minimum of the two vectors. We then define Fold Change 

Ratio (FCR) as the ratio of the z-scores of the monomer in assembly to the z-scores of the 

monomer in isolation. 

𝐹𝑜𝑙𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 (𝐹𝐶𝑅) =
𝑍𝑁

𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟

𝑍𝑁
𝑀𝑜𝑛𝑜𝑚𝑒𝑟𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑

    (2.7) 

 To identify residues with significant increases or decreases in fluctuations, we use a 

cutoff of 1.5 𝐹𝐶𝑅. A 𝐹𝐶𝑅 greater than or equal to 1.5 indicates that the residue shows 

increased fluctuations upon oligomerization whereas, a 𝐹𝐶𝑅 less than or equal to 
1

1.5
 suggests 

a significant reduction in fluctuations after oligomerization. As the problem of finding 

residues with significant change in fluctuations has some similarity to the problem of 

identifying differentially expressed genes in RNA-Seq and microarray assays, we proceed 

with the cutoff of 1.5 which was shown to provide significant results for those types of 

experiments (Dalman, Deeter, Nimishakavi, & Duan, 2012; Tibshirani, 2007). 
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2.2.7. Identifying Interface Residues 

 For a particular chain, we identify interface residues as those whose heavy atoms are 

within 4.5Ǻ from the atoms of residues from any of the other subunits (Bordner & Abagyan, 

2005; Ofran & Rost, 2003). 

2.2.8. Packing Density Calculations 

 Residue level packing densities are computed from the atomic structure of each 

protein in the dataset. The packing density values are obtained using the software Voronoia 

(Rother, Hildebrand, Goede, Gruening, & Preissner, 2009). 

2.2.9. Residue Community Analysis 

 We define residue communities as groups of residues which are highly correlated in 

their fluctuations and exhibit motion as rigid units. We perform community analysis for the 

monomer of TIM for 4 cases: the isolated monomer without substrate, the isolated monomer 

with substrate, the monomer in the context of the dimer without the substrate and the 

monomer as part of the dimer with substrate. We use the PDB 1tph as the substrate bound 

form and 8tim as the unbound form. For the substrate bound form of TIM (PDB 1tph) we 

coarse-grain the protein at the C
α

 level while, retaining the substrate in its all-atom form. We 

set the exponent for spring strength a to 2 as this gives high correlation with the experimental 

B Factors and model the interaction strength as given in Equation 2.2. 

 After diagonalization of the Hessian of this system, we use the first twenty low 

frequency modes to construct the inverse hessian matrix as follows.  

𝐻−1 =  ∑ 𝜆𝑖
−120

𝑖=1 𝑉𝑖𝑉𝑖
𝑇      (2.8) 

Here, 𝑉𝑖 is the ith low frequency mode vector, 𝑉𝑖
𝑇  the transpose of 𝑉𝑖 and 𝜆𝑖 is the 
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corresponding eigenfrequency of this mode. The 𝐻−1 has dimensions 3N by 3N, N being the 

number of residues and gives the correlations between residue fluctuations in the x,y and z 

directions. Like the Hessian, the 𝐻−1 can also be viewed as an N-dimensional matrix of sub-

elements, these having a dimension of 3 by 3. We then calculate the correlation between the 

fluctuations of residues i and j as 

𝑐𝑖𝑗 =
𝑡𝑟𝑎𝑐𝑒 𝐻𝑖𝑗

−1

 √𝑡𝑟𝑎𝑐𝑒 𝐻𝑖𝑖
−1 𝑡𝑟𝑎𝑐𝑒 𝐻𝑗𝑗

−1
     (2.9) 

In the above equation, 𝐻𝑖𝑗
−1 is a 3 by 3 block element of the inverse Hessian corresponding to 

residues i and j and it gives the correlation between the fluctutions of residues i and j in the 

x,y and z directions. 𝐻𝑖𝑖
−1 and 𝐻𝑗𝑗

−1 are the block elements corresponding to the self-

correlations of residues i and j. The trace is the sum of the diagonal elements of each block 

matrix. In taking the trace of the block matrices, we are only accounting for the correlations 

of residue fluctuations in the same directions. Performing the above operation results in an 

N-dimensional symmetric correlation matrix, C. 

 We then express the above correlation matrix as a dissimilarity matrix by subtracting 

each element of C from 1. 

𝑐𝑖𝑗
𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

= 1 − 𝑐𝑖𝑗     (2.10) 

Hierarchical clustering of the dissimilarity matrix with complete linkage then yields a 

dendrogram, grouping residues which are correlated to similar extents in their motions. We 

cut the dendrograms for the ligand free form (8tim) and ligand bound form (1tph) of TIM at 

manually selected heights to generate two, three and four clusters and then map these clusters 
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onto the structure for comparisons. To perform hierarchical clustering and generate the 

dendrograms, we use the MATLAB clustering module (https://www.mathworks.com/help/ 

/stats/hierarchical-clustering.html). 

2.2.10. Probability Distribution Fit 

 We fit the residue conservation and packing density data to different distributions 

using the MATLAB function allfitdist  

(https://www.mathworks.com/matlabcentral/fileexchange/34943-fit-all-valid-parametric-

probability-distributions-to-data/content/allfitdist.m). 

2.2.11. Non-parametric Test of Significance 

 We perform the non-parameteric Kruskal-Wallis test to evaluate the significance of 

residue conservation scores for different levels of MSF change using the MATLAB 

kruskalwallis (Kruskal & Wallis, 1952)  function. 

2.2.12. Protein Structure Visualization and Mapping of Critical Residues onto 

Structures 

 We use Pymol to map and visualize the key functional residues and clusters on the 

protein structure (DeLano, 2002). 

 

2.3. Results 

 Our dataset includes 145 different homo-oligomeric proteins having between two 

(homo-dimer) and six (homo-hexamer) subunits. For each protein, we choose a single 

subunit (the first chain from the PDB file) to represent its monomeric form. This method of 

using a single subunit from the oligomeric protein assembly to represent the isolated 

monomer is similar to the approach taken by Bahar (Marcos et al., 2011) and Chang (Qaiser 
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Fatmi & Chang, 2010). We also verify the reliability of this approach by considering the case 

of protein tyrosine phosphatase that has been crystallized in both monomeric (PDB 1L8G) 

and oligomeric (PDB 2CM3) forms. Comparison of the dynamics of the crystallized 

monomer with that of the monomer extracted from the oligomer shows a strong correlation in 

the residue fluctuations for the two forms (Figure A.2), which further verifies this approach. 

 To investigate the effect of oligomerization on protein dynamics, for each protein, we 

compute the Mean Square Fluctuations (MSF) for residues when it is an isolated monomer 

and compare with the fluctuations when the same monomer is in its oligomeric assembly. 

Then, we simply look at the ratio of changes in the scalar mobilities (fold change ratio or 

FCR); with an arbitrary cutoff at 50% either reduced or increased, we identify residues that 

have undergone significant changes in their mobilities upon oligomerization. We attribute 

functional significance to the changes in mobilities by considering them together with the 

degree of conservation of residues, which we compute using Rate4Site (Pupko et al., 2002) 

Regions which are critical to the protein’s function, such as catalytic sites, evolve more 

slowly and hence, are usually more conserved. 

2.3.1. Influence of Oligomerization on Key Functional Residues 

 First we inspect the effect of oligomerization for four enzymes: bovine glutamate 

dehydrogenase (an enzyme known for its allosteric behavior), arginase 1 (a critical enzyme in 

the urea cycle), glycine N-methyltransferase (playing a critical role in methionine 

metabolism) and D-amino acid oxidase (oxidizes D amino acids and enables yeast to use D-

amino acids for nutrition). For each, we identify from the literature those residues known to 

have functional significance and map them onto the protein structure to focus on the changes 

in fluctuations for these. Here, we address the fundamental question: does the mobility of the 
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identified critical residues for a protein change significantly upon oligomerization? If it does, 

then do these functional residues undergo significant reductions or increases in their 

mobilities upon oligomerization? 

2.3.1.1. Glutamate dehydrogenase 

 Glutamate dehydrogenase (GDH) plays a pivotal role in the metabolism of ammonia 

and is universal throughout most domains of life. It catalyzes the inter-conversion of L-

glutamate into α-ketoglutarate and ammonia. In mammals, enriched GDH activity is found in 

liver, kidney, brain and pancreas, and the ammonia produced from glutamate is utilized in the 

urea cycle (Peterson & Smith, 1999). GDH in mammals exists as a homohexamer with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Domains and structural aspects of bovine glutamate dehydrogenase 

(GDH). The mobility of the NAD+-binding domain mediates allostery in the enzyme. 

Glutamate-binding domain is responsible for binding the substrate glutamate. The 

antenna feature is unique only to animal GDH and is also hypothesized to play some 

role in the allosteric behavior of the protein. Table A.1 provides details of the 

functionally significant residues and their roles.  
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dihedral symmetry and is comprised of about 500 residues. It has two structural domains: the 

NAD
+
-binding domain where, the coenzyme NADH binds and the glutamate-binding domain 

where the substrate glutamate binds. In contrast to its isoforms in other life forms, 

mammalian GDH demonstrates allostery (Li, Li, Allen, Stanley, & Smith, 2012). Previous 

studies have shown that the mobility of the enzyme’s NAD
+
-binding domain (Figure 2.1) is 

essential to mediate the enzyme’s allosteric behavior (Li et al., 2012; Smith, Peterson, 

Schmidt, Fang, & Stanley, 2001). Also, the ‘antenna’ protrusion in the enzyme’s structure is 

present only in mammalian GDH, and its role has been implicated in the allosteric regulation 

of the enzyme (Allen, Kwagh, Fang, Stanley, & Smith, 2004).  

The most commonly known allosteric effectors for the enzyme are ADP, GTP and 

NADH, while the enzyme is also known to be regulated by other metabolites such as leucine 

and monocarboxylic acids (Li et al., 2012) GTP and NADH regulate the enzyme by 

facilitating its conformational transition to the inactive state in which the NAD
+
-binding 

domain has a closed conformation and helps in the modification of the glutamate substrate. 

ADP on the other hand is responsible for activating the enzyme to release the substrate 

during which the NAD
+
-binding domain attains the open conformation. While GTP binds on 

the NAD
+
-binding domain below the pivot helix, the binding site for ADP is uncertain 

(Peterson & Smith, 1999; Smith et al., 2001). 

We probe the influence of oligomerization on the dynamics of glutamate 

dehydrogenase using the PDB structure 3mw9. We observe that the NAD
+
-binding domain 

becomes more flexible upon oligomerization while the glutamate binding domain undergoes 

considerable reduction in its mobility (Figure 2.2.A). Residues K90, K114, K126, R211 and 

S381 have been shown to interact with glutamate (Peterson & Smith, 1999) and are of prime  
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importance for the enzyme’s catalytic activity. Interestingly, four of these residues (K90, 

K114, K126 and S381) map to regions with reduced fluctuations (Figure 2.2.A and Table 

A.1). Residues that bind to allosteric regulator GTP, on the other hand, are found either in 

regions with increased fluctuations or where there are no significant changes in fluctuations. 

Figure 2.2 Flexibility change and sequence conservation of four enzymes. For 

each enzyme (A, B, C and D), a figure has three parts. The first part (Left) has the 

enzyme colored by interface (pale yellow) and non-interface (teal). Next, it is colored 

by change in residue fluctuations (Middle). Regions with increases in MSF (1.5 fold 

increase or more) are shown in red, regions with reduced MSF (1.5 fold decrease or 

more) in blue and those without any significant changes in gray. The third part of the 

figure (Right) shows the enzyme colored by residue conservation scores with blue and 

red marking the lower and upper end of the conservation, respectively. In all the three 

parts, the key functional residues of each enzyme are shown as spheres. (A) Bovine 

GDH,  (B) Arginase 1, (C) Glycine n-methyltransferase (GNMT), and (D) D-

aminoacid oxidase. The details of the key functional residues for each enzyme are 

provided in the Supporting Information. 
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Residues H209, R217, R261 and R265 which interact with the allosteric inhibitor GTP fall 

into this category. 

  Oligomerization increases the packing density of interface residues and as a 

consequence, it is reasonable to speculate that the flexibility of these residues will be 

diminished in the assembly. However, in Figure 2.2.A we observe that some residues that are 

not in the interface also undergo reductions in their fluctuations and some of these residues 

are orthosteric (involved in the catalytic activity of the enzyme) by nature. Our findings also 

corroborate results from previous studies which suggest the importance of the mobility of the 

NAD
+
 binding domain for the enzyme’s allosteric behavior (Peterson & Smith, 1999). 

Importantly, the mobility of this domain is significantly higher in the oligomer than in the 

monomer. 

2.3.1.2. Arginase I 

 Mammalian arginase plays a vital role in the urea cycle, a cascade of chemical 

reactions that help to eliminate toxic chemicals inside the body. The enzyme is known to 

exist in two isoforms: arginase I, which catalyzes the hydrolysis of L-arginine to form 

ornithine and urea in the final step of the urea cycle, and arginase II, which regulates the 

concentrations of arginine and ornithine. Both enzymes have significant roles in maintaining 

homeostasis inside the body and in facilitating the elimination of toxic chemicals (Kanyo, 

Scolnick, Ash, & Christianson, 1996). We investigate the effect of oligomerization on the 

arginase I enzyme from Rattus norvegicus (PDB 1rla), which is active as a trimer. 

 On comparing the MSFs of residues of the independent monomer with the monomer 

taken as part of its trimeric assembly, we observe that residues located at the interface 

undergo significant reductions in their mobilities. Some exposed residues which are not part 
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of the interface exhibit increases in fluctuations following oligomerization. We also note that 

there are residues not at the interface undergoing reduced mobilities. Arginase I uses Mn
2+

 as 

a cofactor to catalyze the hydrolysis of arginine. Residues H101, D124, H126, D128, D232 

and D234 form the manganese binding cluster in the enzyme while, H141 and E277 have 

been shown to interact with the substrate and are responsible for its catalytic modification 

(Table A.2) (Cama, Emig, Ash, & Christianson, 2003). Previously, mutation studies of these 

sites indicated that these severely impair the enzyme’s function either by reducing the 

binding affinity of the enzyme for the cofactor or by reducing its catalytic activity (Cama et 

al., 2003; Lavulo, Emig, & Ash, 2002). We explore whether these residues have a special 

preference to exist in regions with increased or dampened mobilities upon oligomerization by 

mapping them onto the structure and verifying their fluctuation changes. All six residues, 

where mutation studies were carried out, map to regions having reduced fluctuations after 

oligomerization. Moreover, residues interacting with the substrate are also seen to be further 

stabilized in the assembly. Interestingly, all of these residues are in the non-interface parts of 

the enzyme and yet they displayed significant reductions in their mobilities upon 

oligomerization (Figure 2.2.B).  

2.3.1.3. Glycine N-methyltransferase 

 Glycine N-methyltransferase (GNMT) is an essential enzyme involved in the 

metabolism of methyl groups. It uses glycine and S-adenosylmethionine (SAM) as substrates 

and catalyzes their conversion into S-adenosylhomocysteine (SAH) and sarcosine. The 

reaction involves the transfer of a methyl group from SAM to glycine. The enzyme is known 

to be active in its tetrameric form and is found in abundance in mammalian liver cells. It 

maintains the SAM/SAH ratio in the cell and thus, controls methylation in the cell (Luka et 



36 

 

al., 2007). Besides, in humans this enzyme is known to play an important role in 

gluconeogenesis (Kerr, 1972) and the expression of the GNMT gene is also linked to prostate 

cancer proliferation (Y. H. Song, Shiota, Kuroiwa, Naito, & Oda, 2011). 

 For the effects of oligomerization on the dynamics of the monomer (PDB 1bhj), we 

observe, similar to the previous cases, a major fraction of residues at the interface showing 

reduced fluctuations while, some residues on the surface showing an increase in mobility. 

Also, we notice that certain residues in the non-interface regions show reductions in their 

fluctuations. We then study the changes in flexibility of key residues that interact with 

substrates. For the rat GNMT, residues Y21, W30, R40, A64, D85, N116, W117, L136, 

H142 have been shown to interact with the substrate SAM while, residues Y33, G137, N138, 

R175,Y194,Y220 and Y242 are known to interact with glycine (Table A.3) (Takata et al., 

2003). We observe a similar pattern as we did for the other enzymes: the key functional 

residues are located in regions where the flexibility is reduced upon oligomerization. While 

most residues involved in binding SAM are located in the interface, residues which bind to 

glycine are found in non-interface parts of the enzyme and show stabilization upon 

oligomerization (Figure 2.2.C). Mutations to certain glycine and SAM-binding residues 

(Y21, Y33, Y194 and Y220) have been shown to be important in contributing to the catalytic 

efficiency of the enzyme (Takata et al., 2003), and of these, three residues map to regions 

with reduced fluctuations (Table A.3). 

2.3.1.4. D-amino acid oxidase 

 D-amino acid oxidase catalyzes the dehydrogenation of D-amino acids into their 

corresponding imino acids. The reaction uses flavine adenine dinucleotide (FAD) as the 

cofactor and results in the reduction of the cofactor. It is an important enzyme in yeast where 
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cell growth is dependent on the effective utilization of D-amino acids. In mammals, the 

enzyme is found in a few organs and is known to be catalytically less efficient than its yeast 

counterpart. In yeast, the enzyme exists as a stable homodimer. Previous studies provided 

evidence that the enzyme dimerizes upon addition of the cofactor FAD, suggesting that the 

transition from the apo to the holoenzyme is essential for dimerization (Pollegioni et al., 

2002; Pollegioni, Langkau, Tischer, Ghisla, & Pilone, 1993; Porter, Voet, & Bright, 1977). 

 From the probing of the dynamic effects of oligomerization on a single subunit (PDB 

1c0k), we observe that most of the enzyme shows no significant changes in mobility. 

Interestingly, we do not find regions with increased mobility for the cutoff of 50% change. 

However, by relaxing the change cutoff to only 25%, we observe that residues on the surface 

and distal to the oligomerization interface exhibit greater flexibilities than in their isolated 

form (Figure 2.2.D). While the dynamic flexibility of most of the residues that form the 

catalytic chamber of the enzyme and interact with substrate (Y1223, Y1238, R1285 and 

S1335) (Pollegioni et al., 2002) remain relatively unchanged, a larger fraction of residues that 

bind to the FAD coenzyme (S1012, S1015, A1034, R1035, A1047, S1048, G1052, N1054, 

V1162, S1334, S1335, G1337, Y1338, Q1339) show reduction in their mobilities (Table A.4 

and A.5 and Figure 2.2.D). All of these critical residues map onto the non-interface regions 

of the enzyme.  

2.3.2. Functional Significance of Dynamic Change 

 Is there a general consensus as observed for the four enzymes above, with most of the 

functional sites undergoing a significant dampening in their fluctuations upon 

oligomerization? Or put conversely, are regions with reduced mobilities more conserved? To 

answer these questions, we consider the residue conservation profiles for all the proteins in 



38 

 

the dataset calculated using Rate4Site and investigate the underlying distributions of the 

conservation scores. On fitting the residue conservation scores to different distributions, we 

observe that the conservation scores are best fit with the generalized extreme value 

distribution (Figure A.5) as has often been observed for biological sequences (Bastien & 

Maréchal, 2008). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

In Figure 2.3, we classify residues as either interface (A) or non-interface (B) and for each 

category we report the distribution of residue conservation scores for the following three 

classes. 

  i. Residues with significant increases in MSF (MSF Increased) 

Figure 2.3. Relationship between changes in MSF and residue conservation. (A) For 

interface residues, the distribution of conservation scores is sharper for regions with 

reduced MSF, followed by regions with no relative change. The regions which show 

increases in flexibility upon oligomerization are least conserved and have a broader 

distribution of conservation scores. (B) For non-interface residues, the same pattern 

is observed i.e. residues with reduced fluctuations are observed to be more conserved 

than their counterparts. Conservation scores are computed from Rate4Site with 

lower scores indicating higher conservation. 

Figure 2.3. Relationship between changes in MSF and residue conservation. (A) 

For interface residues, the distribution of conservation scores is sharper for regions 

with reduced MSF, followed by regions with no relative change. The regions which 

show increases in flexibility upon oligomerization are least conserved and have a 

broader distribution of conservation scores. (B) For non-interface residues, the same 

pattern is observed i.e. residues with reduced fluctuations are observed to be more 

conserved than their counterparts. Conservation scores are computed from Rate4Site 

with lower scores indicating higher conservation. 
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  ii. Residues with significant decreases in MSF (MSF Decreased) 

  iii. Residues with no significant changes in MSF (MSF Unchanged)  

We identify a residue as an interface residue if any of its heavy atoms is within 4.5Å of the 

heavy atoms of the residues from an adjacent subunit of the oligomer. We observe that the 

extent of conservation is higher for both interface and non-interface residues showing 

reduced fluctuations than the residues that show either increases or no significant changes in 

their mobilities following oligomerization. Figure 2.3 also suggests that residues with 

increased mobilities upon oligomerization have a tendency to evolve more quickly than 

others. We also evaluate the statistical significance of the observed results. A non-parametric 

test for statistical significance reveals that the observed differences in residue conservation 

between the three classes is significant both for interface and non-interface residues (Figure 

A.7). Also, the distributions are similar for the choice of different fold change ratio (FCR) 

cutoffs (Figure A.6). To verify the consistency of these observations, we create two smaller 

data sets from the ds145 set, having 40 and 80 structures each, and repeat the calculations at 

FCR cutoff 1.5. For both sets we observe a similar distribution of the conservation scores 

(Figure A.8, A and B) which suggest that the results are consistent across multiple data sets. 

2.3.3. Global Changes in Dynamics upon Oligomerization 

 Oligomerization not only reduces the mobilities, but also increases the mobilities of 

certain residues. This is seen in the four enzymes we described first. We then ask what 

fraction of residues in the entire dataset have significantly reduced or increased mobilities 

upon oligomerization. We investigate the changes in residue fluctuations for the threshold of 

1.5 FCR that is, 50 % or more increase or decrease in fluctuations. In this way, we observe 

that 51.5 % of residues across all the proteins in our dataset show no significant changes in 
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Table 2.1. Extent of Changes in Mobilities. Counts of the number of interface and 

non-interface residues showing increased, decreased and unchanged mobilities for 

145 proteins. Changes indicate at least a 50% gain or loss in mobility. 

their mobilities upon oligomerization, while 26.2 % of the residues undergo a substantial 

reduction in their mobilities upon oligomerization (Figure A.3 and Table 2.1).  

 

 

Class 

Oligomer Interface 

Residues 

(Counts and 

Percentage) 

Oligomer Non-

Interface Residues 

(Counts and 

Percentage) 

Total 

(Counts and 

Percentage) 

MSF 

Increased 
238 (2.7%) 7780 (28.2%) 8018 (22.2%) 

MSF 

Unchanged 
2409 (28.2%) 16185 (58.6%) 18594 (51.5%) 

    

MSF 

Decreased 
5871 (68.9%) 3622 (13.12%) 9493 (26.2%) 

Total 8518 (23.5%) 27587 (76.4%) 36105 (99.9%) 

  

This aligns with one of the most widely accepted consequences of oligomerization, i.e., the 

dampening of residue mobilities at the binding interface. However, we also observe that 22.2 

% of all residues exhibit increases in their flexibilities. 86 % of the proteins (124/145) in the 

dataset exhibit an increase for at least 10 percent of their residues. Interestingly, a small 

percentage of the residues (~ 3 %) with increased fluctuations are actually located at the 

interface of the oligomeric assembly (Table 1, Figure A.4.A). These interface residues with 

increased fluctuations are found in regions with a significantly lower packing density in 

contrast to the other interface residues having reduced fluctuations (Figure A.4.B and A.4.C). 

We also perform this analysis on individual cases, that is, by identifying fractions of residues 

with increased, decreased or unchanged fluctuations upon oligomerization for each protein 

and then plotting the results for each category as box plots (Figure 2.4). We still observe that 

while almost half the residues for each protein show no change in their fluctuations, about a 
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Figure 2.4. Boxplot showing fraction of residues with increased, unchanged 

and decreased fluctuations across all proteins. Residues with no significant 

changes in fluctuations have the highest mean fraction (0.474) while, the average 

fraction of residues with reduced MSF are nearly the same as the fraction of 

residues with increased (0.278 and 0.246 respectively). 

 

quarter show reduced and another quarter show increased mobilities. These observations 

suggest that oligomerization is not just a mechanism that dampens the mobility of residues, 

but is also a means of increasing the flexibility of certain regions of the protein, very nearly a 

conservation of the extent of internal mobility. Those regions with increased mobilities, as 

we saw for bovine glutamate dehydrogenase can play an important role in regulating the 

allosteric behavior of the protein. 

2.3.4. Effect of Oligomerization on Residue Communities: A Case Study on 

Triosephosphate Isomerase (TIM) 

 Triosephosphate isomerase (TIM) plays an important role in the glycolytic pathway 

by catalyzing the reversible interconversion between isomers, dihydroxyacetone phosphate 

(DHAP) and D-glyceraldehyde 3-phosphate (GAP). The enzyme has a “TIM barrel” fold and 

is active as a homodimer in most mesophilic organisms. The catalytic chamber of the enzyme 

is located at the center of each TIM barrel and catalysis is carried out by a Lys-His-Glu triad 

(Figure 2.5). Glu165 and His95 are critical for proton transfer while, Lys13 bonds with the 
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Figure 2.5. Architecture of Triosephosphate isomerase (TIM). The enzyme has 

a TIM barrel structure with the catalytic residues located at the center of the 

molecule. The catalytic triad is formed by Lys13-His95-Glu165 (sticks). The 

mobility of loop 6 plays a key role in bringing in the substrate, protecting the ligand 

when it is bound, and removing the products. 

substrate oxygen (Zhang et al., 1994).  Residues 166-176 correspond to the loop 6 which 

plays a critical role in the presentation and orientation of the ligand to interact with the active 

site residues. Previous studies showed that the dynamics of this loop is essential for the 

enzymatic activity, especially in protecting the substrate from solvent and preventing the 

formation of byproducts (Sampson & Knowles, 1992). 

 

 

 

 

 

 

 

 

 

 

 We study the influence of oligomerization on residue clusters that exhibit significant 

correlation in their mobilities (referred here as residue communities) in the isolated 

monomer. Oligomerization, we hypothesize, by changing the geometry of the molecule can 

facilitate creation of new rigid blocks, often critical for the enzyme’s function. These newly 

introduced communities, present only in the oligomeric state of the molecule, could possibly 

explain why some enzymes are functionally active only in their oligomeric form.  
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 Mesophilic TIM is known to be active only in its dimeric form. Interestingly, the 

enzyme does not form an active site shared between the adjacent subunits at the oligomeric 

interface (Zhang et al., 1994). The monomeric form of the enzyme is equipped with all the 

required catalytic residues to carry out its reaction on the substrate. The question then arises, 

why is oligomerization necessary for TIM if it is catalytically complete in the monomeric 

form. In this context, we investigate the changes in residue communities upon 

oligomerization and their importance for the enzyme’s function. 

 We use two forms of TIM: an unbound form (PDB: 8tim) and a substrate bound form 

(PDB: 1tph). Our aim is to investigate residue communities for four cases: a. single monomer 

from 8tim as an isolated monomer, b. single monomer from 1tph as an isolated monomer, c. 

8tim as a dimer, and d. 1tph as a dimer. For each case, we study the rigid residue blocks in a 

single chain (by taking the first chain in the PDB file) and observing how they change upon 

oligomerization. For both forms we coarse-grain the protein by using only the C
α
 atoms, 

while modeling the substrate in 1tph at an all-atom level. We then model the dynamics of the 

isolated monomer and the monomer bound in the oligomer as elastic networks, the strength 

of interactions between residue pairs given by Equation 2.2. We obtain the matrix for 

correlated fluctuations from the inverse of the Hessian which is constructed using the first 

twenty soft modes, since these modes convey the most important motions (Equations 2.8 and 

2.9). By using a single mode or a combination of these modes, proteins have been shown to 

undergo conformational transitions essential to their function (Dobbins, Lesk, & Sternberg, 

2008; Liu & Bahar, 2012; Marcos et al., 2011). To obtain residue communities, we first 

transform the matrix of fluctuation correlations into a dissimilarity matrix (Equation 2.10) by 

subtracting each element from 1 and then perform hierarchical clustering with complete 
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Figure 2.6. Effect of oligomerization on the distribution of residues into correlated 

communities for TIM. The communities formed upon truncating of the dendrograms at 90 

percent (both 8tim and 1tph) are mapped onto the enzyme. (A) The community structure of 

TIM in isolation without substrate (i), with substrate (ii), as part of the oligomeric complex 

without substrate (iii), and oligomer with substrate (iv). (B) Communities in 1tph in 

isolation and in oligomeric association with bound substrate. Close-up view of the 

architecture of the active site residues and loop 6 for monomeric TIM with substrate (C) and 

oligomeric TIM with substrate (D) The two communities are colored red and blue. The 

substrate is shown as sticks and the active site triad as spheres. Glu165 and the phosphate 

group of the substrate can be seen to be dynamically correlated with loop 6 only in the 

oligomeric form of the enzyme. 

linkage on this matrix (Rokach & Maimon, 2010). The results of hierarchical clustering are 

displayed as a dendrogram (Figure A.9). We truncate the dendrogram at different levels to 

obtain two, three and four clusters and treat them as structural blocks having highly 

correlated fluctuations, refer them as residue communities, and then investigate the influence 

of oligomerization on these communities. 

 In Figure 2.6 we have mapped the clusters formed by cutting the dendrograms at 90  
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percent of their maximum heights onto the TIM structures. Truncation at this level results in 

2 clusters for 1tph and 8tim both in isolation and in their dimeric assembly. Figure 2.6.A 

shows the mapped residue communities observed for 8tim and 1tph in isolation (i and ii 

respectively) and when in association with its adjacent unit (iii and iv respectively). As seen 

in Figure 2.6.A (i and ii), the community structure of TIM in isolation doesn’t change much 

when the substrate is included in the structure. However, the change in the community 

structure is significant when the molecule is in its oligomeric form and the substrate is 

included (Figure 2.6.A.iv).  

 The oligomeric and monomeric forms of TIM show quite different community 

structures in the presence of substrate (Figure 2.6.B). A close up view of the active site of 

1tph in its isolated form (Figure 2.6.C) and in its oligomeric form (Figure 2.6.D) shows the 

splitting of the active site into two communities (blue and red) in the oligomer while it 

remains rigid in the monomer. While two of the active site residues (Lys13 and His95) are 

part of a larger community, Glu165 displays coordinated motion with loop 6 and is part of 

the second community. We also observe the splitting of the substrate into two communities 

in the oligomeric form of the enzyme, with the phosphate group of the molecule moving in 

coordination with Glu165 and loop 6. When the dendrogram for the oligomeric form of TIM 

was cut to yield 3 clusters, Glu165 still moves in coordination with loop 6 while Lys13 and 

His95 are still part of the same community. Interestingly, at this level of clustering we begin 

to observe the coordination of Glu165 with loop 6 even in the unbound oligomeric form of 

TIM (8tim) as shown in Figure A.10.A.c. However, the observed rigidity of the active site in 

the monomeric form of TIM is preserved even after cutting the dendrogram for 1tph at 

different levels to yield three and four clusters (Figure A.10.B).  
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2.4. Discussion 

 Dynamics is critical for the functioning of globular proteins. From its native state, a 

protein can frequently access an ensemble of low energy conformational changes which help 

it to carry out its function. In many cases, however, there is a set of conformations that 

cannot be visited from a protein’s native state as it incurs a huge increase in the net free 

energy of the protein. This energy overhead can be overcome through events like ligand 

binding that can shift the equilibrium population of conformers towards the required 

conformation by reducing the energy barrier. From the perspective of the Monod-Wyman-

Changeux (MWC) model for allostery (Changeux & Edelstein, 2011, 2005), oligomerization 

is a mechanism to introduce larger scale allostery in proteins through conformational 

equilibrium shifts. The results presented here, in part, support this hypothesis.  

 We observe that a major fraction of the proteins in our dataset have a significant 

number of residues that increase in their mobility upon oligomerization. From the case study 

on bovine GDH, it is evident that the NAD
+
-binding domain is more mobile in the oligomer 

than in the monomer. Oligomerization enables tethering of one end of the enzyme (the 

oligomeric interface and GLU-binding domain), while allowing the distal end to exhibit 

increased mobility about the pivot helix. Such mobility, as the MSF comparisons indicate, 

was not possible when the enzyme was in its monomeric form. Previously, researchers have 

proposed that the mobility of the NAD
+
-binding domain can potentially aid in the enzyme’s 

allosteric behavior. If this is true, based on the results presented here it appears reasonable to 

propose that the enzyme may exhibit diminished allosteric behavior in its monomer form. 

 The new conformational flexibility introduced upon oligomerization may also be 

explained in terms of conservation of mobility. For bovine GDH enzyme, an increase in the 

mobility of the NAD
+
 domain upon oligomerization is compensated by the stabilization of 
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the GLU-binding domain and at the oligomeric interface, which exhibit a significant 

reduction in mobility. This explanation is also supported by Figure 2.4 which demonstrates 

that, upon oligomerization, while half the residues in a protein show no significant change in 

flexibility, the remaining fraction are almost equally divided between those exhibiting 

increased and reduced MSF values. Oligomerization could thus be a key contributing factor 

to the functioning of multi-domain enzymes where one domain is required to be stable and 

another, mobile. Owing to the observed rigidity in the NAD
+
 domain, GDH may be also be 

catalytically less efficient as a monomer. With the newly acquired flexibility in its oligomeric 

form, the enzyme can now sample new conformations which may not have been accessible to 

the monomeric form owing to their energetic overhead. Allosteric regulators can exploit this 

newly introduced conformational flexibility which occurs only in the oligomeric state of the 

enzyme. 

 The second part of this study reveals the localization of functionally significant sites 

in regions having reduced flexibility. The results suggest that residues with reduced 

flexibility upon oligomerization are more conserved than residues with either increased or no 

significant changes in flexibility. For the current study, this is true for proteins with 

oligomeric states ranging from two to six, and we observe similar distributions with varying 

choices of the FCR cutoff (Figure A.6). From the case studies, these residues can be in 

regions distant from the oligomeric interface and can present themselves as orthosteric sites 

where mutations may negatively impact the protein’s function. There are also regions which 

have no experimentally assigned functional role that exhibit reductions in fluctuations. As 

can be seen from our four case studies, these residues are present as neighbors to key 

functional sites. We speculate that these residues could possibly serve as key anchoring sites, 
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whose structural robustness may be critical for the efficient catalytic activity of the enzyme. 

This however remains to be confirmed experimentally. 

 The final section of this study investigates the changes in residue communities upon 

oligomerization and their functional role for triosephosphate isomerase (TIM). The study of 

TIM shows the critical role of oligomerization in changing the community structure of the 

active site residues. While the Lys-His-Glu triad remains rigid in the monomer at different 

levels of hierarchical clustering, oligomerization facilitates a change in this dynamic 

architecture and promotes the coordination of the Glu165 with loop 6. Previous studies have 

confirmed a strong correlation between the mobility of loop 6 and Glu165 (Kurkcuoglu, 

Jernigan, & Doruker, 2006). The mobility of Glu165 has also been proposed to play a key 

role in placing the substrate into its proper orientation, a requisite step prior to its catalysis. 

We also observe that the phosphate group of the substrate moves collectively with the same 

community as loop 6 and Glu165. This is in agreement with previous observations according 

to which the phosphate forms hydrogen bond with Gly171 in the closed conformation of the 

loop (Kurkcuoglu et al., 2006). Interestingly, the enzymatic splitting of the substrate is seen 

only in the oligomeric form. And this separate community analysis reflecting the anti-

correlated motions of the active site appears to relate closely to the enzyme mechanism, with 

these motions assisting the chemical reaction and removal of product. The monomeric form 

of TIM has all the residues required for its catalytic activity and doesn’t form such a divided 

active site as seen in its oligomeric form. In principle it might function as a monomer, 

however it does not. The mixed coarse-grained model used here to investigate the change in 

communities shows that the coordination of Glu165 with loop 6 is observed only when the 

enzyme is in its oligomeric form. As stated earlier, the dynamics of these two key elements is 
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critical for the enzyme’s function and hence, the results presented here, in the context of 

residue community changes at the active site elements could explain the inactivity of the 

monomeric TIM. Oligomerization, as seen in the previous test cases, facilitates the enzyme’s 

access to certain critical conformations that are inaccessible or require high energy for the 

monomeric form to change the dynamic architecture of the enzyme. 

 

2.5. Conclusion 

 Our work outlines two key elements of oligomerization. First, it emphasizes the 

importance of sites whose flexibility is reduced upon oligomerization. Given that the 

conservation profile of residues follows an extreme value distribution, a large fraction of 

residues are conserved, making it difficult to identify on this basis alone the potential drug 

binding sites in a protein. In current practice, residues at the oligomeric interface are often 

investigated for candidate drug targets (Cukuroglu, Engin, Gursoy, & Keskin, 2014; 

Kozakov et al., 2011). From this investigation, we conclude that for homooligomeric 

complexes, regions with reduced fluctuations might also be explored as potential drug targets 

even though these regions may not always be on the interface. Second, the test case on 

triosephosphate isomerase states the importance of the residue community changes, 

providing a possible explanation as to why certain enzymes function only in their oligomeric 

form. Both these findings can be further explored to better understand oligomeric systems 

and identify key aspects of their dynamics. 
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Abstract 

Dynamic communities in proteins comprise the cohesive structural units that individually 

exhibit rigid body motions. These can correspond to structural domains, but are usually 

smaller parts that move with respect to one another in a protein’s internal motions, key to its 

functional dynamics. Previous studies emphasized their importance to understand the nature 

of ligand-induced allosteric regulation. These studies reported that mutations to key 

community residues can hinder transmission of allosteric signals among the communities. 

Usually molecular dynamic (MD) simulations (~ 100 ns or longer) have been used to identify 

the communities - a demanding task for larger proteins. In the present study, we propose that 

dynamic communities obtained from MD simulations can also be obtained alternatively with 

simpler models – the elastic network models (ENMs). To verify this premise, we compare 

the specific communities obtained from MD and ENMs for 44 proteins. We evaluate the 

correspondence in communities from the two methods and compute the extent of agreement 
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in the dynamic cross-correlation data used for community detection. Our study reveals a 

strong correspondence between the communities from MD and ENM and also good 

agreement for the residue cross-correlations. Importantly, we observe that the dynamic 

communities from MD can be closely reproduced with ENMs. With ENMs, we also compare 

the community structures of stable and unstable mutant forms of T4 Lysozyme with its wild-

type. We find that communities for unstable mutants show substantially poorer agreement 

with the wild-type communities than do stable mutants, suggesting such ENM-based 

community structures can serve as a means to rapidly identify deleterious mutants. 

 
3.1. Introduction 

The dynamic nature of globular proteins allows them to sample multiple 

conformations around their native equilibrium conformation. Such intrinsic dynamics is 

conferred by their geometry and can be influenced by events such as ligand binding or even 

binding of a partner enzyme (Nussinov, 2016). Such events typically shift the conformational 

equilibrium of proteins allowing them to sample new conformations by lowering energy 

barriers, which were not accessible from the native state (Alberts et al., 2002; Greives & 

Zhou, 2014). Such dynamic plasticity is characteristic for protein function (Benkovic & 

Hammes-schiffer, 2003; Daniel, Dunn, Finney, & Smith, 2003; Yon, Perahia, & Ghélis, 

1998). It facilitates signal transduction through allosteric regulation as well as allowing bio-

molecular machines to undergo large scale conformational changes from their native state 

essential for their function (Brignole, Smith, & Asturias, 2009; Changeux & Edelstein, 2005; 

Kern & Zuiderweg, 2003). 

Inspecting the conformational ensemble arising due to the dynamic nature of proteins 

gives immediate insight into how different parts of a protein move with respect to one 
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another. Some regions may exhibit highly correlated motions while others may be anti-

correlated in their motions. A map describing the extent of dynamic correlation between 

residues can then be used to create a graphical representation which portrays the dynamic 

nature of a protein (McClendon, Kornev, Gilson, & Taylor, 2014). In such a graph, the nodes 

represent the residues and the edges are weighted by the dynamic correlation for a residue 

pair. Residue blocks which are highly correlated in their motions and move as a cohesive unit 

can then be identified from these graphs and are commonly referred to as dynamic 

communities (Calligari, Gerolin, Abergel, & Polimeno, 2017; Doshi, Holliday, Eisenmesser, 

& Hamelberg, 2016). These communities may correspond to structural domains in proteins; 

however, they are often smaller modules whose motions relate to the protein’s function. 

Previous studies have used both normal mode analysis (NMA) and molecular 

dynamics (MD) approaches to detect structural domains and dynamic communities in 

proteins. Hinsen et al. (Hinsen, Thomas, & Field, 1999) used normal modes to compute 

residue-level deformation energy and then, identified dynamically rigid segments using a 

threshold based on the deformation energy. Kundu and co-workers (Kundu, Sorensen, & 

Phillips, 2004) used Gaussian Network Model (GNM) to partition protein structures into 

domains using the eigenvector corresponding the lowest non-zero eigenvalue, also referred to 

as the Fiedler vector. In another study, Yesylevskyy et al. (Yesylevskyy, Kharkyanen, & 

Demchenko, 2006) used GNM to obtain a dynamic correlation matrix for residue pairs and 

used it to calculate a “correlation matrix of correlation patterns” which essentially describes 

the overlap between the correlation patterns for different residues. Then they performed 

hierarchical clustering on this matrix to obtain rigid communities. A similar study used 
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residue dynamic correlations from normal mode analysis to decompose protein kinases into 

residue blocks that are dynamically cohesive (Shudler & Niv, 2009).  

Other studies where MD simulations were used to identify the rigid domains have 

also been carried out. Potestio et al. (Potestio, Pontiggia, & Micheletti, 2009) used MD 

simulations to obtain conformational ensemble describing the essential dynamics of proteins 

and then used dominant eigenvectors from covariance matrix describing the variation in the 

ensemble to identify rigid domains. McClendon and co-workers (McClendon et al., 2014) 

performed a thorough investigation of protein kinase A using microsecond-scale MD 

simulations and then identified communities using residue dynamic correlations from the 

trajectory with the Girvan-Newman clustering scheme to understand the mechanism of 

allostery in the enzyme. A similar study on Bruton’s tyrosine kinase by Chopra et al. (Chopra 

et al., 2016) revealed that inspecting the community changes for the enzyme’s mutant form 

reveals the changes in the allosteric coupling in the enzyme. In another study, Yao and co-

workers (Yao et al., 2016) performed community analysis on G proteins using 80-ns MD 

simulations to identify residues playing a critical role in the allosteric coupling between 

functional domain interfaces. 

MD simulations do provide a high resolution dynamic image of a protein describing 

detailed motions of individual atoms at different time points. However, most proteins require 

energy minimization with respect to an all-atom potential prior to any simulation, a 

computationally demanding task for larger structures. Moreover, to observe large-scale 

conformational changes as often seen in the case of multi-domain proteins, simulations need 

to be performed on the microsecond to millisecond time-scales, which also require 

considerable computing power. In such cases, coarse-grained approaches like ENM have an 
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upper hand (Atilgan et al., 2001; I Bahar, Atilgan, & Erman, 1997; Tirion, 1996). These 

models adopt a coarse-grained representation for proteins by representing each residue by 

only its alpha carbon (C
α
). They also implement a simplified potential that uses Hookean 

springs to connect residue pairs within a cutoff distance to calculate the native state dynamics 

for proteins. In assuming that the crystal structure of a protein corresponds to a local 

minimum on the energy landscape and considering it as the native state conformation, these 

models eliminate the necessity for energy minimization. Owing to their reduced nature, these 

models require minimal computational resources even for large macromolecular structures. 

Previous studies have shown that theoretical B-factors calculated using ENM correspond 

well to the experimental temperature factors (Atilgan et al., 2001; I Bahar et al., 1997; Tirion, 

1996). In addition, normal modes from ENM show significant overlaps with principal 

components from both experimental sets of structures as well as with MD ensembles (Yang, 

Song, Carriquiry, & Jernigan, 2008).  

In this study, we have performed a large set of comparisons between the dynamic 

communities obtained from GNM (I Bahar et al., 1997) (a type of ENM) and from MD for a 

set of 44 non-redundant proteins. After applying a systematic hierarchical clustering scheme 

on the dynamic cross-correlation matrices, we observe a close correspondence between the 

communities from GNM and MD for specific community levels, characterized by a 

significantly high value of Cohen’s kappa coefficient (Cohen, 1960). Centrality measures for 

the weighted dynamic network from GNM and MD also reveal a strong correlation for the 

closeness centrality values. We also verify the extent of agreement for the inter-residue cross-

correlations between GNM and MD by investigating the overlaps of the principal 

eigenvectors calculated from the dynamic cross-correlation matrices and observe a good 
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overlap. A further analysis of the effect of mutations on communities derived using GNM for 

T4 lysozyme confirms that highly deleterious point mutations significantly alter the 

community structure when compared to the neutral mutations. The results from our study 

open up new avenues for mining dynamic communities in macromolecular structures with 

ENM and using their changes to screen for deleterious mutants. 

 

 3.2. Materials and Methods  

3.2.1. Dataset 

We compile a set of 44 non-redundant proteins from the MODEL database (Meyer et 

al., 2010) by considering only those proteins with MD trajectories of 100 ns or above. Each 

protein has a minimum of 50 residues. For each protein, we downloaded the all-atom 

trajectory from the database and parsed the all-atom trajectory into a C
α
 trajectory, having 

only the coordinates for residue C
α
 atoms in each frame. 

3.2.2. Dynamic Cross-Correlations from MD Trajectory 

For each protein, we perform calculations for residue-level dynamic cross-

correlations on the respective C
α
 trajectory using the dccm function in the Bio3D 

package(Grant, Rodrigues, Elsawy, Mccammon, & Caves, 2006) with the following equation 

(Kasahara, Fukuda, & Nakamura, 2014; McCammon, 1984). 

𝐷𝐶𝐶𝑀𝐷(𝑖, 𝑗) =
<∆𝑟𝑖(𝑡).∆𝑟𝑗(𝑡)>𝑡

√<||∆𝑟𝑖(𝑡)||
2

>𝑡 √<||∆𝑟𝑗(𝑡)||
2

>𝑡 

    (3.1) 

Here, 𝑟𝑖(𝑡) and 𝑟𝑗(𝑡) refer to the coordinates of the ith  and jth atoms as a function of 

time t, <
.
> indicates the time ensemble average and ∆𝑟𝑖(𝑡) = 𝑟𝑖(𝑡) − (< 𝑟𝑖(𝑡) >)𝑡 and 

∆𝑟𝑗(𝑡) = 𝑟𝑗(𝑡) − (< 𝑟𝑗(𝑡) >)
𝑡
. 
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3.2.3. Dynamic Cross-Correlations from Gaussian Network Model  

We use GNM (I Bahar et al., 1997; Rader, Chennubhotla, Yang, & Bahar, 2006), a 

form of ENM, to calculate the dynamic cross-correlations between residues. In GNM a 

protein is usually modeled as a coarse-grained system by representing individual residues by 

their alpha-carbons, but these points can also be atoms, which we use for the computations 

on the mutant proteins. Residues within a certain distance cutoff (𝑟𝑐) are connected by 

Hookean springs. GNM assumes the protein crystal structure to be of energetic minimum 

conformation and doesn’t require the structure to be energy minimized. It also assumes that 

residue fluctuations about their mean positions are isotropic and follow a Gaussian 

distribution in their excursions away from the assumed minimum energy structure. The 

potential for GNM is given as 

𝑉 =  
1

2
𝛾 ∑ 𝛤𝑛

𝑖,𝑗  [(∆𝑅𝑖 − ∆𝑅𝑗)
2

]    (3.2) 

Here, ∆𝑅𝑖 and ∆𝑅𝑗  are the fluctuation vectors for residue i and j respectively, 𝛾 is the 

stiffness of the springs connecting residues i and j. 𝛤 is the Kirchhoff matrix defining node 

connectivity and is defined as the following. 

𝛤 =  {

−1,                𝑖𝑓  𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑅𝑖𝑗 ≤ 𝑟𝑐

  0,                 𝑖𝑓  𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑅𝑖𝑗 > 𝑟𝑐

− ∑ 𝛤𝑖𝑗 ,      𝑖𝑓 𝑖 = 𝑗                   𝑗,𝑗≠𝑖         

    (3.3) 

Here, 𝑅𝑖𝑗 is the distance between the alpha carbons of residues i and j while, 𝑟𝑐 is the 

distance cutoff. Diagonalizing 𝛤 yields N-1 modes with non-zero eigenvalues. Each mode is 

a vector that describes the residue fluctuations about its mean position while the eigenvalues 

correspond to the square of the mode frequency and indicate the relative extent of motion of 

each point. The slow modes or the low frequency modes describe the most energetically 

favorable motions of a protein.  
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The Kirchhoff matrix has a zero determinant and is thus, singular. The pseudo-inverse 

of this matrix is calculated using the N-1 or a subset of the N-1 modes with the following 

equation. 

𝛤−1 =  ∑ 𝜆𝑖  −1𝑉𝑖𝑉𝑖
𝑇𝑁−1

𝑖=1      (3.4) 

𝜆𝑖 is the eigenvalue of the ith mode, 𝑉𝑖 is ith mode and 𝑉𝑖
𝑇 is the transpose of 𝑉𝑖. The 

dynamic correlation between residues i and j is then calculated as  

𝐷𝐶𝐶𝐺𝑁𝑀(𝑖, 𝑗) =
𝛤−1(𝑖,𝑗)

√(𝛤−1(𝑖,𝑖) 𝛤−1(𝑗,𝑗) ) 
    (3.5) 

In the present study, we use a range of different values for the distance cutoff 𝑟𝑐 (6, 

6.5, 7, 7.5 and 8 Å) and for each value we calculate 𝐷𝐶𝐶𝐺𝑁𝑀 using 5, 10, 20, 30 and 50 low-

frequency modes. 

3.2.4. Dynamic Communities from Correlation Matrix 

 For each protein in our dataset, we convert the dynamic correlation matrices 𝐷𝐶𝐶𝑀𝐷 

and 𝐷𝐶𝐶𝐺𝑁𝑀 into distance correlation matrices as follows 

𝑑𝑖𝑠𝑡_𝐷𝐶𝐶𝑀𝐷 = 1 − 𝐷𝐶𝐶𝑀𝐷 ,     (3.6) 

𝑑𝑖𝑠𝑡_ 𝐷𝐶𝐶𝐺𝑁𝑀 = 1 − 𝐷𝐶𝐶𝐺𝑁𝑀    (3.7) 

We then perform hierarchical clustering on the distance correlation matrices with weighted 

pair-group method with arithmetic mean (WPGMA), which takes into consideration the 

cluster size when calculating the distance between two clusters (Sokal & Michener, 1958). 

Hierarchical clustering yields dendrograms that can be pruned at different levels to give the 

desired number of clusters. The clusters obtained upon pruning a dendrogram at a certain 

height correspond to the dynamic communities, i.e., the blocks of residues that are highly 

cohesive and move like a rigid body. We cut the dendrograms at different levels to obtain 
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between 2 and 10 communities. The hierarchical clustering was performed using the 

MATLAB linkage (https://www.mathworks.com/help/stats/linkage.html) and cluster 

(https://www.mathworks.com/help/stats/cluster.html) modules. 

3.2.5. Comparing Community Assignment between MD and GNM 

 We use 3 metrics to assess the agreement between the communities from MD and 

GNM.  

1. Cohen’s kappa coefficient. The Cohen’s kappa or simply, kappa is a statistic that is 

often used to evaluate the extent of agreement between data collectors or raters in 

their assignments to the same variables, referred to as inter-rater reliability. Kappa 

coefficient is considered to be more robust than percent agreement as it also takes into 

consideration random agreement (Cohen, 1960). Like correlation coefficients, the 

value of the kappa statistic can range from -1 to 1. A kappa of 0 indicates an 

agreement by chance while kappa of 1 indicates perfect agreement (Cohen, 1960; 

McHugh, 2012). We calculate the kappa coefficient as follows 

𝐾 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
     (3.8) 

Here,  𝑝𝑜 is the observed probability of agreement for cluster assignment between 

MD and GNM while, 𝑝𝑒 is the expected probability of agreement.  

2. Network Centrality.  We model each protein as a weighted network in which a node 

represents a residue and the edge between a pair of nodes is weighted by the distance 

transformed correlation for the residue pair (Eq. 3.6 and Eq. 3.7). Then, we calculate 

the node betweenness and node closeness centralities for the networks from MD and 

GNM. The betweenness centrality of any given node is the number of shortest paths 

between all pairs of nodes that pass through the given node, while the closeness 

centrality is the sum of the lengths of the shortest paths to all other nodes from the 
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given node in the graph. We perform all calculations for network centrality using the 

MatLab graph (https://www.mathworks.com/help/matlab/ref/graph.html) and 

centrality  

(https://www.mathworks.com/help/matlab/ref/graph.centrality.html) modules. 

3. Overlap between principal eigen vectors. We perform singular-value 

decomposition (SVD) on the 𝐷𝐶𝐶𝑀𝐷 and 𝐷𝐶𝐶𝐺𝑁𝑀 matrices and then evaluate the 

overlaps between the MD and GNM eigenvector spaces for subsets of vectors having 

largest eigenvalues using the root-mean square inner product (RMSIP) (Amadei, 

Ceruso, & Di Nola, 1999) as 

𝑅𝑀𝑆𝐼𝑃 = √
1

𝑛
(∑ ∑ (𝑉𝑖 . 𝑈𝑗)

2
  𝑛

𝑗=1
𝑛
𝑖=1     (3.9) 

𝑉 and 𝑈 are the principal eigenvectors obtained from SVD of the 𝐷𝐶𝐶𝑀𝐷 and 

𝐷𝐶𝐶𝐺𝑁𝑀 matrices respectively, while n is the number of vectors to be compared. We 

consider the same number of principal vectors for the two matrices. 

3.2.6. Mutant Dataset 

We use PDB structures for the T4 lysozyme mutants crystallized by Mooers et al. 

(Mooers, Baase, Wray, & Matthews, 2009). In their study, the authors performed circular 

dichroism assays to estimate stability changes upon specific mutations to the enzyme and 

calculated the free energy change (𝛥𝛥𝐺) for the mutants as 𝛥𝐺𝑚𝑢𝑡𝑎𝑛𝑡 − 𝛥𝐺𝑤𝑖𝑙𝑑𝑡𝑦𝑝𝑒.  The 

stability changes were performed at pH 5.35 and 3.05. In our study, we consider the 𝛥𝛥𝐺 

values calculated at pH 5.35. Details of the mutant structures used and their free energy 

changes with respect to the wild-type are given in Table 3.1.  
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3.2.7. Effect of Mutation on Dynamic Communities 

We use all-atom GNM to investigate the community change in the mutant structures 

with respect to the wild-type. For both the mutant and wild-type forms of the enzyme, we 

retain all heavy atoms in the PDB and use a distance cutoff of 3.5Å to identify interacting 

spring locations. Using 5, 10, 20, 30 and 50 modes, we initially calculate the inter-residue 

dynamic correlations and then, perform hierarchical clustering with weighted average linkage 

to obtain the desired number of clusters. We trim the dendrograms for each structure at 

specific heights to obtain 2-10 communities and then compute the agreement between the 

communities for the wild-type and mutant forms with the kappa coefficient. 

 

3.3. Results  

We perform our study on a set of 44 non-redundant proteins (see Table B.1) taken 

from the MOlecular Dynamics Extended Library (MODEL) database (Meyer et al., 2010). 

Each protein has a minimum simulation time of 100 ns for its MD trajectory. We consider 

only the positions of the residue alpha-carbon atoms of each protein from the trajectory file 

and calculate the inter-residue dynamic correlations from the respective MD trajectory 

(𝐷𝐶𝐶𝑀𝐷) using equation 3.1. In our procedure we consider only the first frame of the MD 

trajectory of a given protein as its representative structure to render the protein as a mass-

spring system. In such a system, each residue is represented by a point mass (its C
α

 atom) and 

residue pairs within a given distance cutoff (𝑟𝑐) are connected by hypothetical Hookean 

springs. Such a model is commonly referred to as an elastic network model. The Gaussian 

Network Model is a formulation of ENM that assumes residue fluctuations to be isotropic in 

nature. Details concerning the implementation of GNM are provided in the Materials and 

Methods section.  
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We construct GNM by using a selected set of values for the distance cutoff 𝑟𝑐 (6, 6.5, 

7, 7.5 and 8 Å) and calculate the inter-residue dynamic correlations (𝐷𝐶𝐶𝐺𝑁𝑀) using a subset 

of 5, 10, 20, 30 and 50 modes (Eq. 3.5) for each 𝑟𝑐. This is followed by a systematic 

comparison between the inter-residue dynamic correlations from MD and GNM. Initially, we 

show how closely the dynamic cross-correlation (DCC) matrices from MD and GNM 

compare with each other for two randomly selected proteins. Following this, we then perform 

more thorough comparisons using the following three metrics. 

Kappa coefficient. The DCC matrix for a protein describes the extent of correlation 

between the pairs of its C
α
 atoms. We identify blocks of residues that move cohesively 

(dynamic communities) by first clustering the DCC matrix hierarchically and then, using a 

cutoff on the height of the dendrogram obtained to identify the required number of 

communities (Nc). In the present study, we identify 2-10 communities (Nc = 2, 3, 4 …, 10) 

for a given protein. Agreement between the communities from MD and GNM is then 

assessed with kappa coefficient (Cohen, 1960; McHugh, 2012). 

Network centrality. We model each protein as a weighted network with the nodes 

corresponding to residues and edges between pairs of residues weighted by their distance 

transformed dynamic correlations (Eq 6 and Eq 7). Then, we calculate the residue-level 

betweenness and closeness centralities and verify the correlations for the centralities obtained 

from MD and GNM.  

Overlap between principal eigenvectors. To assess how well the correlation matrices 

obtained from MD and GNM compare for a protein, we perform eigen decompositions of the 

matrices and then use root-mean square inner product (RMSIP) to evaluate the extent of 

overlap between the principal eigenvectors from the two systems. 
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In the final section of this paper, we use GNM to delineate the community structure 

of wild-type and mutant forms of T4 Lysozyme and to show that elastic models can capture 

the difference in community structures for the wild-type and mutant forms. 

3.3.1. DCC Maps from MD and GNM 

We perform an initial visual inspection of the dynamic maps obtained from MD and 

GNM to understand the overall extent of agreement for residue correlations from the two 

methods. Figure 3.1 describes the dynamic map for two randomly selected proteins from our 

dataset; top: copper transporter domain from copper transporting ATPase (PDB 1fvq), 

bottom: alpha-chymotrypsinogen (PDB 1cgi). The figure shows the distance map between C
α
 

atoms (A, D), DCC maps from MD (B, E) and GNM (C, F) for the two molecules. We 

calculated the DCC map for GNM by setting the distance cutoff 𝑟𝑐 to 7Å and then  

Figure 3.1. Examples of Cα-distance maps and dynamic cross-correlations from 

MD and GNM for i. Copper transporter domain from copper transporting 

ATPase (top), and ii. alpha-chymotrypsinogen (bottom). For each protein, the 

figure shows the distance map for alpha-carbons (A and D), DCC_MD (B and E) 

and DCC_GNM (C and F). The color scale for the distance matrix has been inverted 

to agree to the color scale of the DCC matrices (red indicating spatially close 

residues and blue, distant pairs). PDB IDs of the structures used are 1fvq and 1cgi 

for i and ii respectively. 
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considering only the 20 non-zero lowest frequency modes as these have often been shown to 

circumscribe the most energetically favorable conformation fluctuations in proteins 

(Haliloglu & Bahar, 2015). The diagonal elements of the correlation maps describe self-

correlations while off diagonal elements describe inter-residue correlations or cross-

correlations. We note from the outset that there are strong similarities among these 

representations, corresponding to the secondary structures present in these structures.  

 The distance map for a protein provides information about the spatial proximity of 

residues. Spatially close residues are naturally expected to have high correlations in their 

dynamics. For the two proteins, we observe both MD and GNM showing high dynamic 

correlations for the spatially close residues. However, it is interesting to notice that 

correlations for residues in spatial proximity are more strongly indicated with the GNM than 

by MD. The cross-correlation maps from MD and GNM exhibit good overall agreement. It is 

also worth noting that for alpha-chymotrypsinogen, the blocks of residues with high dynamic 

correlation in MD ([1-70], [80-120, 1-70] and [120-220]) are almost closely replicated by 

GNM. Moreover, the extent of similarity in the correlation profiles of the secondary structure 

elements (helical regions along the diagonal and anti-parallel beta strands perpendicular to 

the diagonal, shown in red) for MD and GNM is quite remarkable. 

3.3.2. Metric Based Comparisons 

i. Kappa coefficient. Our objective is to investigate the level of similarity between the 

communities obtained from MD and GNM. As we identify a range of communities for a 

protein (Nc = 2, 3, 4 …, 10), we perform a one-to-one comparison between MD and GNM for 

a given Nc. To this end, we first calculate for each protein, the dynamic cross-correlation 

maps for MD (𝐷𝐶𝐶𝑀𝐷) with Eq. 3.1. For each protein, we then construct GNMs by choosing 
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multiple distance cutoffs (𝑟𝑐) instead of using a single generalized cutoff to address the fact 

that proteins exist in different geometries and a generalized 𝑟𝑐 might not accurately model the 

dynamics of all different geometries. We construct GNMs for all proteins using 𝑟𝑐= 6, 6.5, 7, 

7.5 and 8Å and then, calculate 𝐷𝐶𝐶𝐺𝑁𝑀 using a subset of the low frequency modes (5, 10, 

20, 30 and 50 modes) for each 𝑟𝑐 (Eq. 3.4 and Eq.3.5). We thus have 5 correlation matrices 

for each set of modes and hence, 25 𝐷𝐶𝐶𝐺𝑁𝑀 matrices in total for each protein. For a given 

protein, we then perform hierarchical clustering on the distance transformed 𝐷𝐶𝐶𝑀𝐷 (Eq. 

3.6) and 𝐷𝐶𝐶𝐺𝑁𝑀 (Eq. 3.7) and then truncate the resulting dendrogram to get 2-10 

communities. Using kappa coefficient (Eq. 3.8) (Cohen, 1960; McHugh, 2012), a metric 

which is used to test inter-rater reliability (extent of agreement between data collectors in 

assigning same scores to the same variables), we then determine the extent of similarity 

between the communities from MD and GNM.  

For a given protein, we consider the specific combinations of 𝑟𝑐 (6, 6.5, 7, 7.5 and 8) 

and Nc (2, 3, 4 … 10) that yield the maximum kappa coefficient (𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 ) for a chosen 

subset of modes. For example, if we choose the subset of modes used to calculate 𝐷𝐶𝐶𝐺𝑁𝑀 as 

the first 10, then we first calculate the kappa coefficient for all combinations of 𝑟𝑐 and Nc 

(5x9=45 combinations in total) and then choose the particular combination which gives the 

maximum kappa coefficient. In doing so, we are possibly permitting different 𝑟𝑐 for each 

protein as well as identifying the community level for GNM that shows maximum agreement 

with MD. Also, for a given protein we assume that communities from MD and GNM best 

agree for a particular community number and hence, we consider a single value of Nc that 

satisfies this criterion.  

Figure 3.2 shows the median of 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 for each subset of modes used. Similar to 
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Figure 3.2. Variation of kappa coefficient with the number of modes. The figure 

shows the median Kappa_max for all proteins in the dataset for subsets including 5, 

10, 20, 30 and 50 modes. Vertical bars represent the standard error of Kappa_max. 

correlation coefficient, the kappa coefficient can vary from -1 to 1. A value of -1 indicates 

complete disagreement whereas, 0 indicates the random case. It can be seen that for all 

subsets of modes used, the median value for 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 is at least 0.5, indicating that the 

agreement is reasonably good and is not just random. It is also seen that using the first 20 low 

frequency modes yields a median 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 of 0.61 with the mode of 𝑟𝑐 for 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 for 

20 modes being 7.5 (Table B.2). We also consider all kappa coefficients for all community 

levels obtained using the distance cutoff 7.5 and calculate the median kappa for each subset 

of modes (Fig. B.1). As might be expected, the median kappa when considering all 

community levels for each subset of modes is smaller than the median of 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 (≈ 

0.41). Considering the fact that the conformations sampled by MD might be limited, biased 

by the trajectory time scale whereas ENMs can sample a relatively broader ensemble 

independent of time, a kappa coefficient of 0.4 indicates fair agreement between the 

communities but importantly, the agreement is not random. 
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In Figure 3.3, we show the communities from MD and GNM mapped onto the 

structures of 5 proteins (A. Copper transporting ATPase, B. Adhesion kinase, C. Guanine 

nucleotide dissociation inhibitor, D. Hemoglobin, and E. Ubiquitin).  For each protein, the 

figure shows only the community level Nc that provides the best agreement with MD. The 

figure clearly depicts the close agreement between the communities from GNM and from 

MD. 

 

Figure 3.3. Comparison of communities from MD and GNM. Mapped 

communities for five proteins:  (A) Copper transporting ATPase (PDB ID: 1fvq), (B) 

Focal adhesion targeting domain from adhesion kinase (PDB ID: 1k40), (C) Guanine 

nucleotide dissociation inhibitor (PDB ID: 1gnd), (D) Hemoglobin (PDB ID: 1idr), (E) 

Ubiquitin (PDB ID: 1ubq). The number of communities (Nc) shown for each case 

corresponds to the case of maximum agreement between MD and GNM given by 

𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥. 𝐷𝐶𝐶𝐺𝑁𝑀 calculated with a subset of 20 low frequency modes was used for 

each protein to perform calculations for communities. 
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ii. Network centrality. The node centrality is computed by modeling a protein as a 

network where nodes are the C
α
 atoms and the edges are weighted by the dynamic correlation 

between a residue pair. Centrality measures tell us the importance of nodes in facilitating the 

flow of information within the network (Bonacich, 1987; Borgatti, 2005; O’Rourke, Gorman, 

& Boehr, 2016). The most central nodes act as hubs and can be essential to the transmission 

of information between nodes at the extreme ends of the network. We compare the extent of 

correlation for residue centralities between GNM and MD. 

We consider two types of node centrality: closeness and betweenness. The closeness 

centrality of a given residue is the cumulative sum of the lengths of the shortest paths from 

the residue to all other residues (Bavelas, 1950; Sabidussi, 1966). It is also defined as the 

reciprocal of farness. The betweenness centrality for a node is the number of shortest paths 

between all pairs of nodes that pass through the given node (Freeman, 1977). The closeness 

and betweenness centralities were calculated using the distance transformed 𝐷𝐶𝐶𝐺𝑁𝑀 and 

𝐷𝐶𝐶𝑀𝐷 (Eq. 3.6 and Eq. 3.7). To verify how well the node centralities from MD and GNM 

compare, we choose the distance cutoff 𝑟𝑐 that maximizes the correlations between MD and 

GNM for a selected subset of nodes (Table B.4 and B.5). Figure 3.4 shows the correlations 

for the node closeness (red curve) and node betweenness (blue curve) centralities between 

MD and GNM. There is a significantly higher correlation for the closeness centrality than for 

node betweenness. While the maximum correlation for node betweenness is 0.39 (50 modes), 

the correlation for node closeness is 0.68 (50 modes). It is worth noting that although the 

maximum correlation is obtained using 50 modes for the two curves, a positive rise in the 

slope of the two curves is observed only until 20 modes, after which the curves converge. It 

is also to be noted that the median correlations for 20 modes (closeness = 0.66, betweenness 
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= 0.35) are not significantly smaller than the values observed for 50 modes (closeness = 0.69, 

betweenness = 0.39). 

 

 

iii. Overlap between principal eigen vectors. How well do the dominant motions 

captured from 𝐷𝐶𝐶𝐺𝑁𝑀 quantitatively compare with 𝐷𝐶𝐶𝑀𝐷? How many low frequency 

GNM modes are required to closely reproduce the correlation pattern from MD? To answer 

these questions, we investigate the extent of overlap between the principal eigenvectors from 

𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷.  

Let U
N
 and V

N
 be the set of N principal eigenvectors obtained upon singular value 

decomposition (SVD) of 𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷. By principal eigenvectors we are referring to 

the set of eigenvectors with highest eigenvalues. Because the 𝐷𝐶𝐶 matrix is comparable to a 

covariance matrix, vectors Ui and Vi are comparable to the principal components of a 

Figure 3.4. Node centrality correlations. The median correlation for 

closeness centrality (red curve) and betweenness centrality (blue curve) from 

𝐷𝐶𝐶𝐺𝑁𝑀 with 𝐷𝐶𝐶𝑀𝐷 is shown for different subsets of modes for all proteins. 

For each protein, the highest correlation and the associated value of 𝑟𝑐 is 

considered for a subset of modes. Vertical bars give values of standard errors. 
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covariance matrix, capturing the directions of maximum variance from the residue cross-

correlation matrix. We inspect the overlap between U and V using root-mean square inner 

product (RMSIP) (Eq. 3.9) and quantitatively evaluate the extent of similarity between the 

two matrices. For each set of modes investigated (5, 10, 20, 30 and 50), we consider the 

value of 𝑟𝑐 that maximizes RMSIP. It is also to be noted that we consider the same number of 

principal eigenvectors each from U
N
 and V

N
 as the subset of modes used. Details about the 

calculation of RMSIP are provided in Materials and Methods. In Figure 3.5, we show that the 

overlaps between the principal eigenvectors of the 𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷 matrices are high. 

The figure also depicts sharp increases in RMSIP and hence, a steep positive gradient as the 

subset of modes selected increases from 5 to 10 and then from 10 to 20, following which 

there is convergence.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Overlap between principal vectors from 𝑫𝑪𝑪𝑮𝑵𝑴 with 

𝑫𝑪𝑪𝑴𝑫. The figure shows the extent of agreement between the residue 

cross-correlation matrices from MD and GNM in terms of the principal 

eigenvectors. The principal eigenvectors are obtained from singular value 

decomposition of the 𝐷𝐶𝐶𝐺𝑁𝑀 with 𝐷𝐶𝐶𝑀𝐷 matrices, respectively. The 

median overlap between the vectors from MD and GNM, computed with 

RMSIP, is shown for subsets of 5, 10, 20, 30 and 50 modes. Vertical bars 

represent the standard errors in RMSIP. 
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Table B.6 gives the RMSIP values of individual proteins for different subsets of low-

frequency modes. 

3.3.3. Changes to Dynamic Communities upon Mutations 

Mutations can lead to changes in the structure of dynamic communities (Chopra et 

al., 2016). We hypothesize that highly unstable mutations tend to change the community 

structure in a protein more radically than mutations that are less unstable. To test this, we 

consider 16 mutant structures of T4 Lysozyme crystallized and reported by Mooers et al 

(Mooers et al., 2009). In their study, the authors investigated the effect of mutating Arg96 on 

the stability of the enzyme. 𝛥𝛥𝐺 values were reported that indicate changes in the stabilities 

relative to the wild-type (Table 3.1). We arbitrarily divide the dataset into two groups: the 

more unstable mutants (rows 1-8) having 𝛥𝛥𝐺𝑠 between -4.7 and -2.6 and less unstable 

mutants (rows 9-16), 𝛥𝛥𝐺𝑠 varying between -2.6 and 0. For simplicity, we refer to the more 

unstable type as unstable and the less unstable type as stable. We obtain the dynamic 

communities with GNM using all heavy-atoms from the atomic protein structures and then, 

with 𝐷𝐶𝐶𝐺𝑁𝑀 from 10 modes, we verify the community agreement for each of the two 

mutant types with the wild-type with the kappa coefficients. We consider only 10 modes 

because this shows the maximum difference in the community structures for the two 

categories. Results from using other subsets of modes (5, 20, 30 and 50) are also given in 

Figure B.2.  

In Figure 3.6, we show the variation in kappa coefficient for the two mutant 

categories. For each category, the plot shows the median kappa for individual community 

levels. It is seen that the stable mutants (blue curve) exhibit better agreement with the wild-

type than the unstable mutants (red curve). Also, it is interesting to note that these differences 
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are manifested in the first 6 communities. At higher community levels, the two mutant types 

almost come into agreement. To visualize these differences on the protein structures, we 

consider 3 pairs of unstable and stable mutants:  (PDB IDs: 3c80, 3c81), (PDB IDs: 3c82, 

3c81) and (PDB IDs: 3c82, 3c8s). For each pair, we identify the smallest number of 

communities for which the change is significant. The 𝛥𝛥𝐺 for each of these mutants can be 

seen in Table 3.1.  

 

 

 

Figure 3.6. Community agreement for unstable (red) and stable (blue) mutants of T4 

lysozyme with the wild-type. The figure shows the median kappa coefficient (agreement 

with wild-type) at each community level for the unstable and stable mutants. The 

communities were obtained with 𝐷𝐶𝐶𝐺𝑁𝑀 calculated using 10 low-frequency modes. 

Calculations using 5, 20, 30 and 50 modes are shown in Figure B.2. 
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Table 3.1. Mutants for T4 Lysozyme sorted by 𝜟𝜟𝑮. The set of PDB structures used to 

compare the community structure of stable and unstable mutants is given below. The 

Mutation column gives information on the mutation and has the format “xRy”, where ‘x’ is 

the residue in the wild-type, ‘y’ the residue in the mutant, and R is the position of mutation in 

the protein.  

PDB Identifier Mutation 𝛥𝛥𝐺 (pH 5.35)  

3c80 R96Y -4.7000 

3fi5 R96W -4.5000 

3c7z D89A, R96H -3.8000 

3c82 K85A, R96H -3.6000 

3c8q R96D -3.5000 

3cdt R96N -3.0000 

3cdv R96M -2.7000 

3c8r R96G -2.6000 

3cdq R96S -2.6000 

3c8s R96E -2.5000 

3cdo R96V -2.4000 

3c7y R96A -2.0000 

3c81 K85A -0.6000 

3c83 D89A -0.5000 

3cdr R96Q -0.3000 

3c7w R96K 0.0000 

4s0w None (wild-type) 0 

 

  

Stability 

Decrease  
(unstable) 

Increase 
 (stable) 
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Figure 3.7 (3c80, 3c81), Figure 3.8 (3c82, 3c81) and Figure 3.9 (3c82, 3c8s) show 

communities for each mutant pair relative to the wild-type (4s0w). In each figure, the wild-

type structure with the communities is shown on left, the stable mutant in the center and the 

unstable mutant on the right. Side chains of mutation sites are shown as sticks with the same 

residue side chains displayed in the same color. In Figure 3.7, the difference in community 

structure for 3c80 (unstable) and 3c81 (stable) is distinct showing two different communities.  

 

The stable and unstable forms differ visibly in the dynamic correlation of the N-terminal 

helix (residues 1-12), which is cohesive with the adjacent N-terminal beta sheets and helices 

in the wild-type and stable forms, while it moves in coordination with the C-terminal domain 

Figure 3.7. Comparison of community structures for wild-type (PDB: 4s0w), stable 

(PDB: 3c81) and unstable (PDB: 3c80) mutant forms of T4 lysozyme. Two 

communities (red and cyan) are shown for each structure. We choose Nc = 2 because the 

differences in community structure for the stable and unstable forms are most distinctive at 

this level. Similarly localized communities are colored alike. Sites of mutations are shown 

in sticks with the corresponding residue names labelled. Side chains of same amino acids 

in the sites of mutation are colored alike. 
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in the unstable form. The kappa coefficient for the unstable and stable mutant structures is 

0.74 and 0.98, respectively. For 3c82 (unstable) and 3c81 (stable) (Figure 3.8), the difference 

is apparent at 3 communities (kappa values of 0.65 and 0.97 respectively).  

 

 

Again we observe a change in the N-terminal helix that moves as an independent unit in the 

wild-type and stable forms, but shows more coordinated motion with the N-terminal domain 

in the unstable form. In Figure 3.9, we notice the difference at 3 communities and as 

previously observed, the difference between the stable and unstable forms becomes visible in 

the N-terminal helix. The kappa coefficients for the unstable (3c82) and stable (3c8s) forms 

at the level of 3 communities are 0.65 and 0.94, respectively.  

 

Figure 3.8. Comparison of community structures for wild-type (PDB: 4s0w), 

stable (PDB: 3c81) and unstable (PDB: 3c82) mutant forms of T4 lysozyme. Three 

communities (green, brown and blue) are shown for each structure. Nc = 3 shows 

maximum structural difference between the community structures of mutant and wild-

type forms, hence the choice. Coloring scheme is the same as in Figure 3.7. 
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3.4. Discussion 

Previously methods to investigate dynamic communities in proteins have relied on 

the use of trajectory data from MD simulations. Analyses of dynamic communities stress the 

importance of identifying the cohesive parts of proteins for their functional dynamics and to 

understand the mechanisms of protein function and allostery. However, simulations from 

MD are computationally expensive for large macromolecular structures. There is also a need 

for long time scale simulations to adequately sample the conformational ensemble for any 

given protein. This can be demanding in terms of time and often requires use of the highest 

performance computers. Thus, there is a significant need for a simpler method to aid to 

capture these dynamic communities, which is computationally less expensive and yet 

Figure 3.9. Comparison of community structures for wild-type (PDB: 4s0w), 

stable (PDB: 3c8s) and unstable (PDB: 3c82) mutant forms of T4 lysozyme. 

Three communities (red, blue and green) are shown for each structure. Nc = 3 shows 

the maximum structural differences for the community structures in the mutant and 

wild-type forms, hence its choice. The coloring scheme is same as in Figure 3.7 and 

3.8. 
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maintains substantially good agreement with the results from MD.  This has been 

accomplished here. 

 In this present study, we show that communities extracted from GNM exhibit a 

considerable similarity to the communities from MD. We choose GNM over its anisotropic 

counterpart ANM (Atilgan et al., 2001) because it is simpler and because previous studies 

have shown that GNM exhibits better correlations with experimental B-factors than ANM 

(Kundu, Melton, Sorensen, & Phillips, 2002). Moreover, in preliminary analysis we observe 

that the communities derived with GNM show better agreement with MD than does ANM. In 

Figure 3.1, the 𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷 matrices for two proteins selected randomly from our 

dataset show considerable agreement for the regions with high dynamic correlation. 

However, it is surprising to notice a better cohesive behavior, in the case of GNM, showing a 

close connection between residue dynamic correlation and residue spatial proximity. The 

dispersion of close contacts suggested by the distance matrix is more closely reproduced with 

𝐷𝐶𝐶𝐺𝑁𝑀 than with 𝐷𝐶𝐶𝑀𝐷. This cohesiveness is a hallmark of the elastic network models in 

general, and is one reason that they can show better agreement with various protein behaviors 

than MD. It is however to be noted that we use only the first twenty low-frequency modes 

from GNM to calculate 𝐷𝐶𝐶𝐺𝑁𝑀. As we find in other analysis, the agreement between MD 

and GNM for different metrics converges for the first 20 normal modes, with the addition of 

more modes not providing any significant gains. 

We have considered a range of different distance cutoffs 𝑟𝑐 for each protein and then 

choose the cutoff to maximize the kappa coefficient. In this context, we would like to argue 

that there is no clear and strict rule for selecting 𝑟𝑐. Previous implementations of ENM have 

used a range of different 𝑟𝑐 and then considered the 𝑟𝑐 that best reproduces the experimental 
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B-factors (Atilgan et al., 2001; I Bahar et al., 1997). Besides, using a generalized distance 

cutoff fails to take into account the size and variations in the packing density in different 

proteins and may not accurately represent the protein dynamics. Hence, we presume that the 

choice for 𝑟𝑐 is subjective and proceed by considering a range of values.  

Our results from comparing the communities obtained upon clustering the distance 

transformed 𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷 matrices hierarchically, suggest that for a certain number 

of communities Nc, MD and GNM show near-perfect agreement. A median 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥of 

0.61 is observed for 20 modes and convergence of 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥with 20 modes is quite clear. 

This also corroborates previous studies that showed that the first few low frequency modes 

are adequate to reproduce the experimentally observed conformational ensemble of proteins 

(Ivet Bahar, Lezon, Bakan, & Shrivastava, 2010; Haliloglu & Bahar, 2015). Also, in the case 

of GNM, though the model assumes isotropic, non-directional residue fluctuations not 

accounting for the directional preferences of residue mobilities, previous studies suggested 

that using the first few low frequency modes nonetheless results in good correlations with 

experimental B-factors. When verifying the median kappa for all modes with 𝑟𝑐 = 7.5 Å 

(Figure B.1), it is interesting to note that the median kappa for each subset of modes at all 

community levels is almost the same (≈ 0.41). However, when we consider for each protein 

the 𝑟𝑐 giving the highest median kappa over all communities, for the subset of 20 modes, the 

median kappa increases to 0.49 (Table B.3). While kappa coefficients of 0.41 and 0.49 rule 

out the possibility of random agreement, at the same time, one must also consider that there 

could be possible conformational under-sampling depending on the time scale of the MD 

trajectory that restricts the extent of agreement between MD and GNM. 

 



83 

 

Convergence with a subset of 20 modes is also consistent for the correlation of node 

centralities and RMSIP between MD and GNM. Similar to our approach of comparing the 

communities between MD and GNM, we have used the 𝑟𝑐 for which the correlation for node 

centralities is maximum for a chosen subset of modes. It is quite surprising to observe the 

relatively higher correlation for node closeness (0.66) than for node betweenness (0.35) 

centrality. As betweenness for a given node gives an estimate of how many shortest paths 

between all pairs of nodes pass through the given node, we assume that the networks 

constructed for the MD and GNM correlation matrices might differ in the shortest paths 

between two nodes. As Figure 3.1 suggests, 𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷 do not exhibit 100% 

agreement with each other. They agree to a large extent in the correlations of secondary 

structure elements and residues in spatial proximity, however they differ in their scale of 

inter-residue correlations which could possibly explain the lower correlation for node 

betweenness. 

 Singular value decomposition of 𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷 helps in capturing the 

directions of maximum variations for inter-residue correlations through its principal 

eigenvectors. Upon verifying the overlap of the principal eigenvectors between MD and 

GNM we observe an RMSIP of 0.83 (for 20 modes) followed by convergence. This confirms 

that the 𝐷𝐶𝐶𝐺𝑁𝑀 and 𝐷𝐶𝐶𝑀𝐷 matrices agree to a large extent in terms of the inter-residue 

fluctuation correlation. It is also interesting to note that when using either a smaller number 

of modes (5 modes) or too many modes (50 modes) the standard error in RMSIP increases. 

While using very few modes possibly leads to a loss in information, including more modes in 

the calculations for 𝐷𝐶𝐶𝐺𝑁𝑀 possibly adds to the noise, since the most reliable modes of 

motion for the elastic network models are those at the lower frequency end. Higher frequency 
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modes describe local residue-level dynamics and are less reliable. Hence, including those 

modes in the calculation of the correlation matrix can potentially reduce the signal to noise 

ratio, resulting in observed lower agreement of 𝐷𝐶𝐶𝐺𝑁𝑀 with 𝐷𝐶𝐶𝑀𝐷.    

 The ability of GNM to discriminate stable mutants from unstable ones by evaluating 

community agreement is notable. The extent of change in community structures in unstable 

mutants is much greater than for stable mutants. We have used the atomic structures of T4 

Lysozyme in the GNM as opposed to the coarse-grained version to account for the mutation 

changes. Interestingly, we observe that changes to community structures are more distinct in 

the higher community levels (smaller number of communities) as described by Figure 3.6. 

One should consider that we have performed this study only for a set of 16 mutant structures 

of T4 lysozyme, which is really a very small sample. However, we are limited in the 

availability of experimentally determined mutant structures for a single protein (Ng & 

Henikoff, 2001; Reva, Antipin, & Sander, 2011). There is some data for the changes in free 

energy associated with a single point mutation in proteins (Gromiha et al., 2002) however, 

the crystal structures corresponding to these mutants are not usually available. To use this 

data, previous methods have considered computational approaches to mutate targeted 

residues in a given protein and then, used the modeled structure as a representative of the 

mutant form (Guerois, Nielsen, & Serrano, 2002). However, such computational approaches 

rely upon the potential function used in the modeling tool and hence, the structure of the 

modeled mutant (especially the sidechain positions of the mutant site and its neighbors) may 

be biased by the potential function. The data we have used should be more reliable because 

these are experimentally reported crystal structures.  
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In the present study, we focus on a simple approach for detecting dynamic 

communities in proteins with elastic networks. ENM is simpler to formulate, easier to 

implement and is computationally less expensive when compared to MD. Our results reveal 

that this single-parameter model can closely reproduce the results from a complex, multi-

parameter model like MD. Owing to its reduced nature, ENM also is superior to MD in terms 

of execution time and thus, can contribute significantly to the investigation of the dynamic 

communities in large proteins.  
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Abstract 

Binding interactions of proteins with other molecules is a key determinant of their functional 

role. Binding sites can be either specifically functional binding sites or regulatory binding 

sites. Functional binding sites are also referred to as active sites while, regulatory sites are 

referred to as allosteric sites. The intrinsic dynamics of proteins plays a key role in 

maintaining their function. Such dynamic behavior also controls binding events and their 

induced effect on the protein’s intrinsic dynamics. This study presents a novel binding site 

prediction method, AR-Pred (Active and Regulatory site Prediction), by supplementing 

protein geometry, evolutionary and physicochemical features with information about protein 

dynamics. We use a common subset of these features to train and test separate models to 

separately predict allosteric and active site residues. The models are trained and validated on 

10 balanced training and validation sets. Our models for active site prediction yield a median 
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AUC of 91% and MCC of 0.68, whereas the allosteric site prediction models show a median 

AUC of 80% and MCC of 0.48.  When tested on a subset of proteins, our models for active 

site prediction show comparable performance to two existing methods and gains compared to 

two others, while the allosteric site predictions show significant gains in performance 

compared to three existing prediction methods.  

 

4.1. Introduction 

Many globular proteins are enzymes that catalyze chemical reactions on bound 

substrates with the whole protein facilitating the reaction by lowering energy barriers 

(Alberts et al., 2009). Their catalytic efficiency can be regulated by environmental factors 

such as temperature and pH and, importantly, often also by the binding of effectors or 

allosteric modulators. Such interactions with other molecules are a key regulatory aspect of 

proteins in general, which closely relate to their functions. Consequently, identification of 

possible binding sites is of vital importance. It is a useful step in the process of annotating 

proteins for function, and is a widely acknowledged important problem.  

 Proteins exhibit a broad spectrum of ligand and macromolecule binding sites. 

Metalloproteins have metal ion cofactor binding sites, molecular chaperones like GROEL 

can bind to other proteins, DNA binding sites are found in helicases and topoisomerases, 

while proteases bind to targeted peptides. Specifically, ligand binding sites in most enzymes 

can be broadly classified into two categories: a functional binding site or active site where 

the substrate binds in order to undergo chemical modification, and a regulatory binding site 

or allosteric site where, binding of an effector molecule can regulate and control the activity 

of the protein. The active site may be further divided into the substrate binding site 

comprising all residues that interact with the substrate and a catalytic site, consisting of only 
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residues directly taking part in the chemical reaction for substrate modification. In this study, 

we will use the term active site to refer broadly to include both of these sub-categories.  

A protein’s active site is comprised of a group of residues, most frequently located 

deep in its interior and even sometimes at the interfaces between subunits, and in many cases 

the site is accessible through a network of channels (Pravda et al., 2014). Proteins also 

frequently undergo transitions between different conformations which control access to the 

active site. The structural architecture and the physicochemical nature of the residues in the 

active site are evolutionarily conserved across different species, to retain the specific function 

of the protein. Active sites constitute the functional binding sites of enzymes and play a key 

role in defining an enzyme’s function. Deletion of residues at or near the active site can result 

in total loss of function. While an enzyme’s active site defines directly its biological activity, 

allosteric or regulatory sites control such activity remotely. Residues constituting such sites 

are commonly localized to cavities on protein surfaces and are typically more accessible to 

ligands than are the residues in active sites. Protein allostery is a fundamental biological 

mechanism through which binding of a ligand molecule at a site remote to the functional site 

in an enzyme results in changes to the shape or dynamics of the functional site, either 

activating or inactivating the enzyme’s activity (Tsai, Del Sol, & Nussinov, 2009). Such 

allosteric processes facilitate communication between distant sites in proteins. Allostery is 

key for signal transduction: the receptors on the surface of cells use it to transmit signals 

from the exterior to the interior of the cell (Motlagh, Wrabl, Li, & Hilser, 2014; Nussinov & 

Tsai, 2014). Abnormalities in allosteric regulation have also been linked to several human 

diseases such as cancer and Alzheimer’s (Li et al., 2013). Allosteric drugs currently represent 

a major effort in pharmaceutical industries in contrast to drugs targeted to active sites. 
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Because allosteric residues are subject to lower evolutionary pressure compared to 

orthosteric residues, they are often not conserved across protein families and have the 

advantage of being highly specific to a given protein. Hence, allosteric drugs have a lower 

risk of interfering with a host’s protein. They also have the potential to activate as well as 

inhibit the target protein and can be used in combination with drugs that target active site 

residues.  

 A number of computational methods exist for the prediction of ligand binding sites in 

proteins. Based on the distinguishing properties which they use, such computational 

approaches may either be template-based, utilizing homologous structures with known 

binding sites or even geometry-based, using structural geometry to detect binding site 

pockets. Also, some methods are energy-based and rank putative ligand binding sites by their 

interaction energies with hypothetical ligands (Xie & Hwang, 2015). Specific methods also 

exist for the prediction of functional sites (active sites). The Fuzzy Oil Drop model 

developed by Brylinski and co-workers (Brylinski et al., 2007) accounts for irregularities in 

hydrophobicity distribution of different residues in a protein and assigns functional 

importance to regions with high irregularities. Ondrechen et al. developed a computational 

method that calculates theoretical microscopic titration curves (THEMATICS) and showed 

that residues exhibiting anomalies in their predicted titration curves occur at active sites 

(Murga et al., 2004; Ondrechen, Clifton, & Ringe, 2001). A more sophisticated method 

POOL was later developed that uses electrostatic and geometric properties derived from 

protein structures in addition to sequence conservation and features from THEMATICS to 

assign likelihood estimates for residues being part of the active site (Somarowthu & 

Ondrechen, 2012; Tong, Wei, Murga, Ondrechen, & Williams, 2009). Thornton and co-
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workers developed ConCavity which combines evolutionary sequence conservation with 

geometric features obtained from pocket finding algorithms to predict active site residues 

(Capra, Laskowski, Thornton, Singh, & Funkhouser, 2009). Another method that predicts 

active site pockets is AADS (Singh, Biswas, & Jayaram, 2011) that uses geometric 

information on cavities in addition to physico-chemical properties of residues. Some methods 

have implemented genetic algorithms which use structural information as well as sequence 

and network based properties in combination with machine learning to identify active site 

residues (Izidoro, De Melo-Minardi, & Pappa, 2015; J. Song et al., 2018). More recently, 

protein dynamics was also used as a predictor for active sites. Glantz-Gashai and co-workers 

revealed that normal modes can expose active sites and used changes in solvent 

accessibilities to predict active site residues (Glantz-Gashai, Meirson, & Samson, 2016). 

Numerous initiatives have also been taken to identify allosteric sites. The ASD 

database includes a diverse set of proteins with known allosteric residues. The identifications 

of allosteric sites for the proteins in this database are based on experimental methods which 

include disulfide trapping, high-throughput screening and fragment-based screening (Z. 

Huang et al., 2011). There have also been different approaches taken that use sequence and 

structural information to make predictions of allosteric sites in proteins. Lockless and 

Ranganathan used statistical coupling analysis (SCA) to identify networks of coevolving 

residues for protein families and later, used them to identify potential allosteric sites and 

pathways (Lockless & Ranganathan, 1999). Allosite is a structure-based machine learning 

predictor that uses the physicochemical properties of pockets predicted by FPocket as 

descriptors to train a support vector machine (SVM) model and make predictions of allosteric 

pockets (W. Huang et al., 2013). AlloPred uses normal mode perturbations on different 
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pockets in a protein to identify the pockets whose perturbation induces maximum flexibility 

changes for the catalytic residues (Greener & Sternberg, 2015). A similar method that uses 

normal modes to simulate the effect of ligand binding on protein flexibility is used in the 

protein allosteric and regulatory sites (PARS) server (Panjkovich & Daura, 2012). This 

server tags those pockets in a protein as allosteric that induce maximum flexibility changes in 

the protein upon ligand binding. SPACER is another predictive tool that combines normal 

modes with dynamics and uses ‘binding leverage’ to locate potential sites in proteins where 

ligand binding can trigger a population shift affecting the conformation state of the protein 

(Goncearenco et al., 2013).  

The dynamic nature of proteins is a critical element that can control function  by 

transient reorganization of enzyme active sites (Benkovic and Hammes-Schiffer, 2003) and  

their regulatory behavior by a shift in conformational dynamics upon effector binding 

(Motlagh et al., 2014). In addition, protein dynamics is thought to play a pivotal role in the 

evolution of novel function (Campbell et al., 2016). Collectively these studies suggest that 

supplementing information on protein dynamics with structural and evolutionary features 

inside a machine learning scheme ought to lead to improved predictions of ligand binding 

residues, both for active site and allosteric residues, the underlying premise for this work. To 

test this hypothesis, we use the dataset compiled by Greener and Sternberg (Greener & 

Sternberg, 2015) for AlloPred since it includes information about both allosteric and active 

site residues. In our model, we include features that describe the dynamic behavior of 

residues in a protein molecule by simulating the protein with elastic network models (Atilgan 

et al., 2001; Bahar, Atilgan, & Erman, 1997). This includes mean-square fluctuations of 

residues and the resilience of residues to external perturbations given by dynamic flexibility 
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index (Gerek, Kumar, & Ozkan, 2013). For prediction of allosteric residues, we additionally 

consider the shortest dynamically correlated path between a given residue and the active site 

residues and the effect of perturbing the active site residues on a given residue. In addition, 

we also model a protein structure as a network where each node is a residue and the edge 

between a pair of nodes is weighted by the extent of dynamic correlation between them, 

following which we calculate network centrality features for each residue. We supplement 

dynamic features with structure-based features such as solvent accessibilities, amino acid 

physicochemical properties like hydrophobicity and also evolutionary conservation. Our 

results suggest that residue-level conservation is the most important determinant for both 

allosteric and active site residues. In addition, we observe that for the predictive models of 

both allostery and active site, the dynamic features are one of the top 10 most important 

features. Of the four methods compared using a compiled test set of proteins, our predictive 

models for active sites show comparable performance to two (POOL and ConCavity) and 

outperform two others (Fuzzy Oil Drop and AADS). Our models for allostery however, 

outperform all three of the other methods compared (AlloPred, AlloSitePro and Spacer). Our 

study thus, verifies the importance of incorporating residue-level dynamic information into 

predictive models for ligand binding sites.  

 

4.2. Materials and Methods 

4.2.1. Dataset 

Since our aim is to develop predictive models for both allosteric and active site 

residues, we use the dataset of protein structures (PDB files) compiled by Greener and 

Sternberg (Greener & Sternberg, 2015) for AlloPred that contains information on both 
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allosteric and active site residues. The authors obtained information about allosteric residues 

from ASBench and used Catalytic Site Atlas and UniProt in addition to ASBench to identify 

active site residues. The training and testing datasets provided there include a total of 119 

proteins.  

4.2.2. Dataset Processing 

We split the multimeric proteins in our dataset into their individual chains. This 

resulted in a total of 173 separate protein chains. We then retain those chains which had both 

allosteric and catalytic residues, leaving 165 protein chains (from 105 proteins). For the same 

set, we calculate all the features as described next in the Feature calculations section. For 

some structures, we encountered errors during feature calculations. For example, calculations 

for evolutionary conservation gave errors in the presence of non-standard amino acids and in 

some cases, solvent accessibility and secondary structure calculations couldn’t be performed 

for all residues for some proteins. We discarded these structures and our final dataset 

contains 144 protein monomers taken from 105 proteins.  

4.2.3. Feature Calculations 

For each protein, we calculate features at a residue-level which are based on amino acid 

physico-chemical properties, evolutionary conservation, protein structure geometry, and 

protein dynamics as described below.  

Residue type 

We classify residues based on their hydrophobicity and charge into three classes similar to 

the approach taken by Petrova et al. (Petrova & Wu, 2006). 

Class 1: His, Arg, Lys, Glu and Asp (charged residues) 

Class 2: Gln, Thr, Ser, Asn, Cys, Tyr and Trp (polar residues) 
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Class 3: Gly, Phe, Leu, Met, Ala, Ile, Pro and Val (hydrophobic residues) 

Residue identity 

We label each of the 20 amino acids (A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y 

and V) separately. 

Solvent accessibility 

We perform calculations for solvent accessibility using Naccess (Hubbard & Thornton, 1993) 

with default parameters. Naccess reports the following absolute and relative accessibilities, 

all of which we include in our feature set. 

i. ASA_ALLATOM (Abs/Rel): Relative and absolute solvent accessible surface 

area for a given residue based on all atoms in the residue. 

ii. ASA_SIDECHAIN (Abs/Rel): Relative and absolute solvent accessible 

surface based on only the side chain atoms. Naccess considers the C
α
 atoms to 

be side chain atoms, so that glycine also has side chain accessibility. 

iii. ASA_MAINCHAIN (Abs/Rel): The relative and absolute solvent 

accessibilities for the main chain atoms of a residue, excluding C
α 

atoms. 

iv. ASA_NONPOLAR (Abs/Rel): Relative and absolute solvent accessibilities 

for all non-oxygen and non-nitrogen atoms in the side chains. 

v. ASA_POLAR (Abs/Rel): Relative and absolute solvent accessibilities for all 

oxygen and nitrogen atoms in the side chains. 

Secondary structure 

We use the DSSP program to assign the secondary structures to the residues. DSSP 

assigns a single letter code (H, S, G, T, E, B, I, -) to each residue corresponding to the 

secondary structure type.  
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Mean square fluctuations 

 We use the Anisotropic Network Model (ANM), a type of Elastic Network Model 

(ENM) to calculate the residue-level fluctuations (Atilgan et al., 2001). We model each 

protein as a coarse-grained elastic network by representing its residues by their respective C
α
 

atoms and connecting close pairs of these atoms with harmonic springs. The potential energy 

of this system under equilibrium is given as  

𝑉 =
1

2
 𝛥𝑅𝑇𝐻𝛥𝑅      (4.1) 

 Here, ΔR
 
is the vector of change in position for all residues, ΔR

T
 is its transpose and 

H is the 3N by 3N-dimensional Hessian matrix obtained from the second derivatives of the 

potential function. We vary the strength of the springs 𝛾 between a residue pair by the 

inverse of their separation distance(𝑑𝑖𝑗), given by the following equation (L. Yang, Song, & 

Jernigan, 2009). 

𝛾 = (
1

𝑑𝑖𝑗
)

2

       (4.2) 

Upon diagonalization, the Hessian matrix yields 3N-6 normal modes (V) and eigenvalues (𝜆) 

corresponding to the non-rigid body fluctuation dynamics of the protein. We calculate the 

mean square fluctuations (MSF) for residues in a protein using the eigenvalues and 

eigenvectors obtained  with the following equation. 

< ∆𝑅𝑖
2 > = ∑

1

𝜆𝑗
∑ 𝑉𝑗𝑖

23𝑘
𝑖=3𝑘−2

3𝑁−6
𝑗=1      (4.3) 

Hydropathy index 

We use the Kyte-Doolittle hydropathy scale (Kyte & Doolittle, 1982) to calculate residue 

hydrophobicity. 

Dynamic flexibility index (DFI) 
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From linear response theory, the response vector to an external perturbation in a protein 

structure such as binding of a ligand can be obtained using the equation 

∆𝑅3𝑁×1 = 𝐻3𝑁×3𝑁
−1  𝐹3𝑁 ×1     (4.4) 

Here, ∆𝑅 is the 3N dimensional response vector giving the positional displacement of each 

atom in X, Y and Z. 𝐻−1 is the 3N by 3N dimensional inverse Hessian matrix and 𝐹 is the 

3N dimensional force vector. Based on linear response theory, the metric dynamic flexibility 

index (DFI)  (Gerek et al., 2013; Kumar et al., 2015) estimates the resilience of a given 

residue position to perturbations at all positions within the 3-D structure of the protein. Sites 

with low DFI, such as hinges, are more resilient to perturbations and are hence, dynamically 

more stable than sites having high values of DFI. DFI also measures the significance of each 

position’s contribution to the global functional dynamics of the protein. We perform 

calculations for DFI for each protein and obtain the indices for each residue using the method 

described by Gerek et. al ( Gerek et al., 2013). 

Active site perturbation response (only for allosteric classifier) 

The active site perturbation response is a measure of the effect of perturbations on the 

functional binding site or active site on other residues. Residues which show higher 

fluctuation responses upon perturbation of the active site are often associated with allosteric 

signal transmission. We calculate the active site perturbation response as described by Kumar 

et al. (Kumar et al., 2015). For the calculation of this feature, identification of which residues 

form the active site is essential. 

Residue conservation scores 

For each protein, we extract the sequence from the PDB file and then search for homologous 

sequences using BLAST against the non-redundant protein sequence database with an e-
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value cutoff of 0.01, percentage identity in the range of ≥ 35% and ≤ 95% and query 

coverage of 80%. To filter duplicates, we use CD-Hit and cluster the initial set of homologs 

(Y. Huang, Niu, Gao, Fu, & Li, 2010) at 95% sequence identity and then select only the 

representative sequences from each cluster. We perform multiple sequence alignment (MSA) 

with Clustal Omega (Sievers & Higgins, 2014) with default parameters on a randomly 

selected set of 150 representative homologs for each protein. Using Rate4Site (Pupko, Bell, 

Mayrose, & Glaser, 2002) with its default parameters for the evolutionary model (JTT) and 

rate inference method (Bayesian), we then calculate the conservation scores for each protein 

from its respective MSA file. Rate4Site reports the extent of conservation at a position as a z-

score, where a lower score indicates higher conservation. 

Network centralities 

We render each protein structure as a coarse-grained system in which residues are 

represented by their C
α

 atoms and model the protein as a network in the following different 

ways. 

 i. Network based on distance cutoff. A protein is modeled as a coarse-grained system 

by representing individual residues by their C
α
 atoms and by adduing edges between residue 

pairs which are within a given distance cutoff. The network is unweighted, i.e. there are no 

weights on the edges connecting a pair of nodes in the network. In the present study, we 

explore cutoffs of 10-15 Å and observe, for a subset of features, the predictive performances 

to be very similar. Thus, we choose the cutoff as 13Å. 

 ii. Distance weighted network. The edge between a residue pair is weighted by their 

spatial proximity – in this case the distance between their C
α
 atoms. Such a network can be 

regarded as an interaction strength network – edges between spatially close residues are 
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given higher weights than edges between distant residues. 

 iii. Network weighted by the correlation of inter-residue dynamics. We model each 

protein as a coarse-grained C
α

 system in which a residue pair is connected by a spring with 

stiffness varying inversely with the distance between the two residues (Eq. 4.2). Following 

diagonalization of the Hessian of this system, we use the first 20 low frequency normal 

modes vectors (V) and their corresponding eigenvalues (𝜆) to obtain the inverse Hessian with 

the following equation. 

𝐻−1 =  ∑ 𝜆𝑖
−120

𝑖=1 𝑉𝑖𝑉𝑖
𝑇      (4.5) 

 The 𝐻−1 is a 3N by 3N dimensional matrix, where N corresponds to the number of 

residues and it gives the correlations between residue fluctuations in the X, Y and Z 

directions. We then calculate the correlation between the fluctuations of residues i and j as 

𝑐𝑖𝑗 =
𝑡𝑟𝑎𝑐𝑒 𝐻𝑖𝑗

−1

 √𝑡𝑟𝑎𝑐𝑒 𝐻𝑖𝑖
−1 𝑡𝑟𝑎𝑐𝑒 𝐻𝑗𝑗

−1
      (4.6) 

In this above equation, 𝐻𝑖𝑗
−1 is a 3 by 3 block element of the inverse Hessian corresponding to 

residues i and j. It provides the correlation between the fluctuations of residues i and j in the 

X, Y and Z directions. 𝐻𝑖𝑖
−1 and 𝐻𝑗𝑗

−1 are the block elements corresponding to the fluctuations 

of residues i and j. The trace is the sum of the diagonal elements of each block matrix. We 

express the correlation matrix as a dissimilarity (or distance matrix) by subtracting each 

element from 1. 

𝐷𝑖𝑗 = 1 − 𝑐𝑖𝑗       (4.7) 

Thus, residue pairs with perfect positive correlations in dynamics would have a value of 0, 

while pairs with completely negative correlation would have a value of 2. The network thus 

created, has edges weighted by the extent of correlation in the fluctuation dynamics between 
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residue pairs, such that residues having high correlations in their dynamics are connected by 

edges with higher weights than residues with low correlations. 

 iv. Network weighted by the interaction energy. The edges between residue C
α
 atoms 

are weighted by their interaction strengths obtained by using the Betancourt and Thirumalai 

(BT) potential (Betancourt & Thirumalai, 1999). We convert energies in the BT potential 

matrix into positive scores by calculating their exponential forms. Thus, more favorable 

interacting pairs (lower interaction energies) have larger weights. 

For each of the above four network formulations, we calculate the following node 

centralities. 

 a. Betweenness. Node betweenness of a given node N is the number of shortest paths 

between any two nodes that pass through N. Nodes that are more central in a network have 

high node betweenness values (Freeman, 1977). For weighted graphs, the shortest path is the 

one with minimum edge weight (least cost). When calculating the node betweenness for the 

network constructs in ii and iii, we weigh the edges between residue pairs by their respective 

Euclidean distances and the distance-transformed correlations. However, for the network 

constructed using interaction energies in iv, we weigh the edges by inverse of the Boltzmann 

weights obtained from the interaction energies, so that the shortest path is the path with least 

energy. 

 b. Closeness. Node closeness provides a measure of the closeness of a given node to 

all other nodes and is expressed as the inverse of the sum of the lengths of the shortest paths 

between the given node and all other nodes (Bavelas, 1950; Sabidussi, 1966).  Closeness may 

be considered as a measure of the time taken to transmit the information from a given node to 

all other nodes, sequentially. Like node betweenness, the shortest path has minimum edge 
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weight. When calculating the node closeness, we take a similar approach to node 

betweenness in terms of assigning edge weights for the different network constructs. 

 c. Degree.  The node degree is a measure of the number of edges connected to a 

specific node. For weighted graphs, it provides a measure for the strength of a given node by 

considering the cumulative sum of the weights of the edges connected to this node (Newman, 

2004; Opsahl, Agneessens, & Skvoretz, 2010). The edge weights correspond to their 

importance. In the calculation of degree centrality for the distance-weighted network 

(construct ii), the importance of an edge for a given node falls off with distance (edges to 

spatially close residues are of greater importance than edges connecting to spatially distant 

residues). However, we assign greater importance to correlations in dynamics (network 

construct iii) that is, edge importance increases with increase in the correlation of the inter-

residue dynamics. For networks constructed based on interaction energy (construct iv), the 

edge importance is higher for more favorable interactions. 

 d. Eigenvector. Eigenvector centrality measures the influence of a given node in a 

network. It is based on the principle that connections to high scoring nodes are more 

significant than connections to low scoring nodes (Newman, 2007). In assigning edge 

importance to the different weighted networks, we follow the same rule as in the case of 

degree centrality. 

 e. Page rank. The page rank centrality is a variant of the eigenvector centrality and is 

frequently used by Google to rank webpages rendered by the search engine (Page, Brin, 

Motwani, & Winograd, 1998). It assigns importance to a node not based only on the number 

of nodes it is linked to, but also based on the importance of the linked nodes and their 

centralities. We use the same approach in assigning edge importance to the weighted 
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networks as in degree and eigenvector centralities. 

Pocket residues 

 We use Fpocket (Le Guilloux, Schmidtke, & Tuffery, 2009) to predict cavities or 

pockets in all-atom protein structures and identify residues that are located in pockets. We 

consider a residue to be part of a pocket if any of the residue atoms are in contact with the 

voronoi vertices of the pocket.  

Shortest path to catalytic residues (only for allosteric classifier) 

 Upon binding of effectors, allosteric residues transmit signals to functional binding 

sites via allosteric signaling pathways – chain of residues which lie in between the regulatory 

and active site. For identification of residues involved in effector binding, one of the features 

that we also consider is the shortest dynamically correlated path between a given residue and 

the active site. Our underlying hypothesis is that potential effector binding residues will have 

shorter paths that are dynamically more correlated than other residues. 

 By considering a protein as a system of C
α
 atoms with residues connected by 

Hookean springs with stiffness varying inversely with the square of distance (Eq. 4.2), we 

obtain the correlation between inter-residue dynamics (Eq. 4.6) and transform it into a 

dissimilarity matrix (Eq. 4.7). The protein is then modeled as a network wherein each residue 

pair within 13 Å is connected by an edge having edge weight equal to the distance-

transformed correlation in dynamics obtained using Eq. 4.7. Using such a network 

formulation, we apply Dijkstra’s algorithm to calculate the shortest path between a given 

residue and any of the active site residues. In addition, we also consider the median shortest 

path from a given residue to all active site residues. It is to be noted that for the calculation of 

this feature, identification of active site residues is required. 
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4.2.4. Training, Validation and Test Datasets 

 We investigate the distribution of the number of known allosteric and active site 

residues in 105 proteins (144 subunits) (Fig C.1 and C.2). For allosteric prediction models, 

we divide our dataset of 105 distinct proteins into three groups based on the distribution of 

allosteric residues (Fig. C.1). Group 1: proteins with 2-10 allosteric residues, group 2: 11-19 

allosteric residues and group 3: 20-44 allosteric residues. From each group, we randomly 

sample 90 percent of the proteins to create training and 10 percent to create test sets. We thus 

have 94 proteins (129 protein subunits) for training and the remaining 11 proteins (15 protein 

subunits) for testing. In terms of the number of allosteric residues, our training set for 

allostery has a total number of 1288 allosteric and 44,946 non-allosteric residues, while our 

test set has 167 allosteric and 6.607 non-allosteric residues. We compile the residue-level 

features calculated for the training set into a consolidated training file. The consolidated 

training file is imbalanced (not having an equal number of allosteric and non-allosteric 

residues) and we use it to create 10 pairs of balanced training and validation sets. For each of 

these pairs, the training set has features corresponding to 1000 allosteric residues sampled 

randomly without replacement and an equal number of non-allosteric residues, whereas the 

validation set has the remaining 288 allosteric and an equal number of non-allosteric 

residues.  

For active site residues, we follow a similar protocol as described above for allosteric 

residues. Based on the distribution of the number of active site residues in all proteins (Fig. 

C.2), we also divide this dataset into 3 groups:  Group 1: proteins having up to 10 active site 

residues, group 2: 11-29 active site residues, and group 3: more than 30 active site residues. 

For each group, we randomly sample 90 percent of the proteins for training and 10 percent 

for testing. This gives us 94 proteins (125 subunits) for the training and 11 proteins (19 
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subunits) for testing, which includes 1,018 labelled active site residues and 47,476 non-active 

site residues in the training set and 180 labelled active site residues and 4,344 non-active site 

residues in the test set. We compile the residue-level features calculated for the training 

dataset into a consolidated training file and then create 10 pairs of balanced training and 

validation sets – each balanced training set having features corresponding to 800 positive 

labels randomly sampled without replacement and 800 negative labels, while each balanced 

validation set having the remaining 218 positive labels and a randomly sampled 218 negative 

labels. 

4.2.5. Machine Learning Models 

We use the TreeBagger module (www.mathworks.com/help/stats/treebagger.html) 

in Matlab, an implementation of the random forest algorithm, to develop separate predictive 

models for allosteric and active site residues. For each type, we first train the algorithm with 

each of the 10 balanced training sets and then test it with the corresponding validation set. 

Thus, we have 10 models each trained and tested using a different dataset. Our random forest 

implementation uses 100 trees and a minimum of 2 leaves at each node. To optimize the 

performance of each model we then include misclassification costs (penalty for false 

negatives and false positives) in our model with a cost matrix. Using a brute force approach, 

we verify the classification performance using different cost combinations for false positives 

and false negatives in the range of 0.1 to 1 in steps of 0.1 and select the combination that 

maximizes the Matthews correlation coefficient (MCC) for a given model. Including such 

costs in each model slightly improves the performance as shown in Fig. C.3 and C.4. 

4.2.6. Feature Selection 

 We exclude all features having feature importance below 0.3. 
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4.2.7. Prediction on Test Dataset 

 We weigh the probability score assigned to each residue by a particular model by its 

MCC and then obtain a cumulative weighted score for each residue in a protein from an 

ensemble of 10 models with the following equation. 

 𝑆𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝑖 = (∑ 𝑀𝐶𝐶𝑁 𝑆𝑁

𝑖  )10
𝑁=1 / ∑ 𝑀𝐶𝐶𝑁 10

𝑁=1      (4.8) 

Here, 𝑀𝐶𝐶𝑁 is the MCC of the Nth model and  𝑆𝑁
𝑖  is the score of ith residue assigned by the 

Nth model. We use this formulation of weighted scores on the models trained for allostery 

and also on those trained for active site detection to identify the most probable allosteric and 

active site residues, respectively. 

 

4.3. Results and Discussion 

 We use a previously compiled dataset by Greener and Sternberg for the allosteric 

prediction tool, AlloPred (Greener & Sternberg, 2015). The compiled dataset has information 

on both allosteric and active site residues and thus provides a basis for a scheme to predict 

both allosteric and active site residues. In our approach, we compile a diverse set of features 

based on amino acid physicochemical properties, evolutionary conservation, protein 

structural geometry and supplement them with features that relate to the dynamic nature of 

proteins. Since dynamics is pivotal in maintaining the functional and regulatory roles in 

proteins, we presume that including such information will improve the detection of residues 

important for regulation or substrate modification. 

Our goal is to develop prediction models for active and allosteric site residues (AR-

Pred) using a common subset of features. To this end, we first calculate the features 

described in Methods for all proteins in the dataset and exclude proteins for which any of the 
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features could not be calculated. For multimeric proteins in our dataset, feature calculations 

were performed on each subunit after splitting the multimer into its respective subunits. 

Feature calculation renders a feature vector of size M (M is the number of features) for each 

residue. A single protein having N residues can thus be described by an N by M matrix of 

features. Next, we divide the dataset of protein structures into distinct training, validation and 

test sets based on the distribution of the number of active and allosteric residues (Fig. C.1 and 

Fig. C.2). For each prediction class (allosteric and active site), we create 10 balanced training 

and validation sets. We train a random forest classification model on each training set and 

verify its performance on the respective validation set. Consequently, we have 10 models 

trained and validated for each prediction class. We use this ensemble of 10 models to make 

predictions on test sets created for each class. Details concerning the creation of training, 

validation and test datasets are provided in Materials and Methods. 

 The prediction models for allostery and active sites collectively constitute AR-Pred. 

First we compare the performances for AR-Pred’s allosteric and active site prediction models 

for their respective validation sets. Second, we focus on the features which were important 

determinants for the models’ performance. Third, we compare the performance of our models 

with other existing tools. Fourth, we compare the distribution of Euclidean distance of the 

predicted active and allosteric sites from the known sites with that of sites chosen at random. 

Fifth, we closely inspect the predictions made by the allosteric models on one of the test 

proteins to verify the existence of false positives. Finally, we consider one protein common 

to the test data sets of allostery and active site to verify the localization of predicted allosteric 

and active site residues and show a connection between the intrinsic dynamics of these sites. 
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4.3.1. Performance on Validation Sets 

 Figure 4.1 and Figure 4.2 show the metrics for the average performance of the 10 

models on the validation data set for active site and allosteric site respectively. It is seen that 

the average performance of the models for active site is superior to that of allosteric site. The 

performance for each of the 10 models for active and allosteric sites is shown in Fig. C.5 and 

C.6, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Metrics describing the performance of active site models. 

Median metrics calculated across the ten models for active site prediction. The 

metrics were calculated on the validation set corresponding to each model. 

Figure 4.2. Metrics describing the performance of allosteric site models. 

Median metrics calculated for the ten models for allosteric site prediction. 

Calculations were performed similar to the metrics of the active site models. 
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It is interesting to note a greater inter-model variability in sensitivity and specificity for 

allostery than for active sites. The models for allostery also exhibit higher variance for false 

positive rate (FPR) than the models for active sites. Both of these indicate that predicting 

active sites is more reliable than predicting allosteric residues. The receiver operating 

characteristic (ROC) curves for active site and allosteric models are shown in Fig. C.7 (A and 

B) and the area under the curve (AUC) for active sites is higher than for allostery. 

At first this suggests that the predictive nature of our models for allostery is more 

random than the models for active site, however one must consider that active sites are 

substantially better known and have been investigated more exhaustively in comparison with 

allosteric sites. Active sites have long been exploited as popular drug targets by 

pharmaceutical industries and thus, their identification is supported by a plethora of 

experimental evidence. There have been relatively fewer studies on allostery which may 

indicate that quite a few allosteric sites in a protein remain unknown, explaining the nature of 

the inter-model variance. 

4.3.2. Feature Importance 

 The feature importance for the two model classes is shown in Fig. 4.3 and Fig. 4.4. 

For both the models of allosteric and active site predictions, residue conservation scores are 

the most significant determinants for the models’ predictive performance. We also notice that 

the residue node betweenness centralities obtained by representing proteins as unweighted 

networks and adding edges between residues which are within 13 Å is rated as the second 

most important feature for both allosteric and active site residues. More importantly we 

observe features related to the residue-level dynamics ranked in the top 10 important features 
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for both model types. It is seen that for both predictors, the resilience of residues to external 

perturbations described by the dynamic flexibility index (DFI) is also listed as one of the top 

10 important features. However, the extent of residue mobility described by mean-square 

fluctuations (MSF) is a more important factor for allostery than for active site residues.  

Besides, features which relate residues closely to the active site such as shortest path to the 

active site residues and the dynamic response upon perturbing the active sites are important 

determinants for allostery, as one might expect.  

 Figures 4.3 and 4.4 also suggest that solvent accessibility is more important for 

determining active site residues than allosteric residues. Active sites are often concealed in 

the hydrophobic core, intermittently allowing access to substrates through changes in 

conformations. However, no strict pattern in terms of solvent accessibility has been observed 

in the case of allosteric sites. Also, features relating to the physicochemical properties of 

amino acids such as amino acid hydrophobicity and their secondary structures are important 

Figure 4.3. Feature importance for active site models. The median feature 

importance calculated across the 10 models for active site prediction are shown. The 

features are ordered by their importance. 



112 

 

predictors for the active site residues.  

 

4.3.3. Predictions on Test Datasets 

Active site prediction 

 We have mapped the predictions for active site residues from AR-Pred and compare 

it with the known active sites for 6 proteins in the test dataset. We rank residues by their 

weighted probability scores and for each protein we show only the top 15 residues. In Fig. 

4.5, the known active site residues are colored orange, the predicted ones green, and the 

predicted true positives as red spheres. It is seen from the figure that in the predicted pool of 

residues, a minimum of 2 residues are true positives in all 6 cases, while in two cases (A and 

D) there are 3 true positives and 4 true positives in E. For 4 cases, the top 15 predicted 

residues are tightly clustered around the known active sites (Fig. 4.5 A, B, E and F) while, in 

two cases (Fig. 4.5 C and D) the predicted residues are more scattered. Some of this might 

Figure 4.4. Feature importance for allosteric site models. The median feature 

importance calculated across the 10 models for allosteric site prediction are shown. The 

features are ordered by their importance. 
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possibly be alternative binding sites for ligands, metal ions or even for co-factors.  

 

 

 

 

 

 

 

 

 

To verify that the predictions are not random, we perform two tests. First, for all 

proteins in the test data, we consider the shortest distance between the heavy atoms of the top 

15 residues and any of the known active site residues and plot their distribution. Second, we 

perform 50 iterations of random residue selection by picking 15 residues randomly from each 

protein and verifying the distribution of the shortest distances between the heavy atoms of 

these residues and any of the known active site residues, in each iteration. Such an analysis 

Figure 4.5. Predictions on active site test dataset. Top 15 predicted residues for 

active sites are shown for the 6 proteins in the test dataset. The reported active sites are 

colored orange, the predicted true positives as red and the putative active sites predicted 

are shown as green spheres. The proteins for which these predictions were made are: A. 

Protein tyrosine phosphatase 1B (PDB 1T49, chain A), B. L-Asparaginase I (PDB 

2HIM, chain A), C. Uracil phosphoribosyltransferase (PDB 1JLR, chain A), D. 

Deoxycytidylate deaminase (PDB 2HVW, chain A), E. UMP Kinase (PDB 2V4Y, 

chain A), F. AKT 1 (PDB 3O96, chain A). 
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will tell us how closely clustered the predicted active site residues are around the known 

active site residues. The results are shown in figures C.8 and C.9, respectively. In Fig. C.8, 

we observe the highest peak near 2.5Å and the distribution has a negative gradient at 5Å 

suggesting that the predicted residues are in close proximity to the known ones. Fig. C.9 

suggests that the predictions are not random since the peaks are much sharper for the 

predicted residues (red) than for the random ones (blue). It is also worth noting that there is a 

smaller peak for the predicted residues, around 20Å, suggesting a bimodal distribution of the 

shortest distances and the presence of alternative functional binding sites for a given protein.  

Allosteric site prediction 

In Fig. 4.6, we have mapped the predicted allosteric residues by AR-Pred onto the structures 

of 6 proteins (showing cyan colored spheres for known allosteric residues, green for 

predicted and red for predicted true positives). It is seen that in five out of the 6 cases (Fig. 

4.6 A, C, D, E and F) the predicted residues are tightly clustered around the known ones. We 

also observe a higher number of true positives for the allosteric predictions: a maximum of 

11 residues are true positives out of the top 15 (Fig. 4.6F). One of the six proteins (Fig. 4.6B) 

shows complete mismatch between the predicted and known allosteric residues. The protein 

is DAH7PS from Thermotoga maritima (PDB 3PG9) which is involved in the shikimate 

pathway, essential for the synthesis of aromatic amino acids. We further verify the 

significance of the predicted residues for this protein and investigate whether they constitute 

potential allosteric pathways. 

   DAH7PS has two domains – an N-terminal regulatory domain and a C-terminal 

catalytic domain (Fig. C.10) and catalyzes the condensation between the substrates 

phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) to form 3-deoxy-D-arabino-
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heptulosonate 7-phosphate (DAH7P). It is known to be regulated by tyrosine which binds to 

the regulatory domain and reduces affinity for both substrates (Cross, Dobson, Patchett, & 

Parker, 2011). 

 

Upon binding, tyrosine induces a displacement in the position of the β2-α2 loop in the 

catalytic domain (colored in purple in Fig. C.10). In Fig. C.11 (A, B, C, D, E and F), we have 

mapped the predictions for the top 5, 10, 15, 20, 30 and 40 allosteric residues. It is worth 

Figure 4.6. Predictions on allosteric site test dataset. The top 15 residues predicted for 

allosteric sits are shown for the 6 proteins in the corresponding test dataset. Previously 

reported allosteric sites are shown in cyan, the predicted true positives in red and the 

putative predicted sites as green spheres. The proteins considered are: A. 

Phosphoenolpyruvate carboxylase (PDB 1FIY, chain A), B. DAH7P synthase (PDB 3PG9, 

chain F), C. AKT 1 (PDB 3O96, chain A), D. Aspartate transcarbamoylase (PDB 2BE9, 

chain B), E. MALT1 (4I1R, chain A), F. FadR (1H9G, chain A). 
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noting that one of the top 5 predicted residues (Fig. C.11A) is located on the β2-α2 loop of 

the catalytic domain. We observe that with an increasing number of predicted residues, more 

residues are predicted on the linker connecting the regulatory and catalytic domains and also 

on the β2-α2 loop. Also, it can be seen that in the top 40 predicted residues (Fig. C.11F), 3 

residues are on the regulatory domain of which, 2 are true positives. Figure C.11F also 

describes two putative allosteric pathways (red and blue) originating at the regulatory domain 

and leading to the β2-α2 loop of the catalytic domain. It is seen that the two pathways are on 

either side of the active site (shown as orange spheres). Interestingly, some of the predicted 

residues are in vicinity of the active site residues. Since a protein’s dynamic nature 

introduces the possibility of multiple allosteric pathways, these residues may be part of such 

pathways to control activity or even the dynamics of the catalytic site.  

 To verify the extent of randomness in our predictions for allosteric residues, we 

perform an analysis similar to that of the predicted active site residues: a) we probe the 

distribution of the shortest Euclidean distances between the heavy atoms of the predicted 

residues and any of the true allosteric residues, and b) we compare the distributions for the 

predicted residues against a pool of randomly selected residues. In Fig. C.12, we plot the 

distribution of the shortest distances for the top 15 predicted residues for all proteins in the 

allosteric test data and it shows that the peak density for the predicted residues distances is 

close to 6 Å. This suggests that a major fraction of the predicted residues are tightly clustered 

around the experimentally verified residues. However, as shown for DAH7PS some 

predicted residues constitute allosteric pathways and are of equal importance. Such residues 

can be located away from the effector binding site and can skew the distribution plot. Fig. 

C.13 compares the distribution of the shortest distances for the top 15 predicted allosteric 
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residues in all proteins with 15 randomly chosen residues. The comparison is carried out for 

50 iterations. It is clearly seen that in all iterations, predicted residues are associated with 

sharper peaks at shorter distances than the randomly picked residues, further confirming that 

the predictions are not random. 

4.3.4. Comparisons with Existing Methods 

Active site prediction  

 We compare our AR-Pred’s predictions for active site with the results from four other 

methods: Concavity (Capra et al., 2009), AADS (Singh et al., 2011), POOL (Tong et al., 

2009) and FOD (Brylinski et al., 2007). For each method, we rank the predictions by their 

scores and plot the percentage of true positives predicted (ordinate) for a certain percentage 

of the ranked predictions (abscissa) referred to here as percentage threshold. Our aim is to 

then systematically compare the percentage of predicted true positives under a particular 

percentage threshold from each of these methods with our method. Three out of the four 

methods (Concavity, POOL and FOD) assign scores to residues in a protein based on their 

propensity for being active site residues. However, AADS predicts active site pockets, where 

each pocket contains multiple residues. To make comparisons with such pocket based 

methods, we rank residues based on the rank of their pocket. Thus, all residues in a given 

pocket are assigned the same rank. Then, we filter residues which appear in multiple pockets 

by considering them only as part of the higher ranked pocket and consider the pool of 

residues in every threshold percent to identify the number of predicted true positives.   

 For each protein in the test dataset, Figure 4.7 compares the prediction performance 

of AR-Pred (red curve) with the above mentioned methods. When considering the percentage 

of true positives in the top 10 percent of the predicted residues AR-Pred outperforms FOD in 
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11 out of the 19 cases and AADS in 14 out of 19 cases and we observe similar performance 

for 5 and 3 proteins, respectively. At the same threshold, we perform better than Concavity in 

5 cases and show similar performance in 6 cases. In the case of POOL, we have results only 

for 18 out of the 19 cases (4JAF gave errors). We see similar performance for POOL as that 

of Concavity, with 6 cases of improved performance and 5 cases of at-par performance. 

When considering a threshold of the top 30 percent of the predicted residues, our method 

performs better than Concavity and POOL in 4 and 6 cases, respectively and we observe 

similar performances in 7 and 8 cases, respectively. Upon comparing with FOD and AADS, 

at 30 percent threshold, we perform better in 9 and 12 cases and observe similar performance 

in 8 and 3 cases, respectively. Table C.1 shows the percentage of proteins from the test data 

for which our method predicts the same or higher numbers of true positives than the four 

other methods at different threshold percentages. AR-Pred shows at least similar or better 

performance compared to Concavity, AADS, POOL and FOD for a median 57.9%, 79.0%, 

66.7% and 84.2% of the test proteins, respectively for the threshold of 10–50 percent of the 

predictions. These results clearly indicate that including protein-dynamics information 

together with the physiochemical, structural and evolutionary features, leads to improved 

detection of active site residues.  
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Figure 4.7. Comparison of the AR-Pred’s predicted active sites with existing methods. Prediction comparisons are made between 

the AR-Pred’s active site predictive models and four existing methods (Concavity, AADS, POOL and FOD) for each protein in the 

test data. On the X-axis we have the percentage of predictions considered as a threshold and plot the percentage of true positives 

predicted under a certain threshold by each method. 
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Allosteric site prediction 

We compare the predictive power of our method with three existing methods: AlloPred 

(Greener & Sternberg, 2015), AlloSitePro (K. Song et al., 2017) and SPACER (Goncearenco 

et al., 2013). AlloPred is the source of the dataset we have used to develop our prediction 

models. AlloSitePro is an upgraded implementation of AlloSite (W. Huang et al., 2013). 

SPACER uses binding leverage, the ability of a binding site to couple with the intrinsic 

motions of a protein to identify potential allosteric sites and makes predictions at the residue- 

level; whereas, both AlloPred and AlloSitePro predict pockets. To perform comparisons, we 

follow the same procedure as above for the active site prediction models. 

 With a threshold of 10 percent of the predicted residues, we observe gains in true 

positives against AlloPred, AlloSite and SPACER for 8, 9 and 9 proteins and similar 

performances for 4, 5 and 4 proteins, respectively (Fig. 4.8). In 7 cases, our method performs 

better than all the three methods, at the 10 % threshold. Table C.2 shows the percentage of 

proteins in the test data for which our method shows better or comparable true positive rates 

for different threshold percentages. When compared to AlloPred, AlloSitePro and SPACER, 

our method gives comparable or better predictions for a median 80, 93.3 and 86. 7 percent of 

the test files, respectively. These results confirm our underlying premise – that including 

dynamic information with other features leads to improvements in the prediction of allosteric 

residues.
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Figure 4.8. Comparison of the AR-Pred’s allosteric site predictions with existing methods. We compare the predictive 

performance for our allosteric prediction against three existing methods (AlloSite, AlloPred and SPACER) for each protein in the 

test data. The abscissa and ordinates have same descriptions as in Fig. 4.7. 
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4.3.5. Investigation of False Positives in Allosteric Predictions 

 The protein aspartate transcarbamoylase (ATCase) from Sulfolobus acidocaldarius 

ATCase plays a vital role in the pyrimidine biosynthesis pathway, catalyzing the 

carbamoylation of the α-amino group of L-aspartate by carbamoyl phosphate and forming N-

carbamoyl-L-aspartate and orthophosphate. It is a heteromeric structure comprised of two 

Figure 4.9. Potential allosteric pathways for aspartate transcarbamoylase (PDB 2BE9). 

Predictions made with AR-Pred’s allosteric model for the top 15 allosteric residues (A) and 

top 30 allosteric residues (B) are shown. The two helices previously proposed to play a key 

role in transmitting allosteric signal from the effector binding site to the catalytic site are 

colored in pink. The zinc binding site is shown in orange. The reported allosteric residues are 

colored in cyan, the predicted true positives in red and the putative allosteric residues 

predicted by AR-Pred are shown as green spheres. The two proposed pathways are described 

in (B) by the two arrows. 
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chains, catalytic and regulatory (Lipscomb & Kantrowitz, 2012). While the catalytic chain 

comprises aspartate and carbamoyl phosphate binding domains, the allosteric chain has the 

allosteric domain which binds to regulators and zinc binding domains, which makes contact 

with the catalytic subunits. 

 We consider the regulatory chain of the enzyme (PDB 2BE9, chain F) and the 

predictions made for the allosteric residues. In Fig. 4.9 we show the top 15 (Fig. 4.9A) and 

top 30 (Fig. 4.9B) allosteric residues predicted for the protein. Previously, Vos et. al (De 

Vos, Xu, Aerts, Van Petegem, & Van Beeumen, 2008) compared the crystal structures for 

the CTP (allosteric regulator) bound and unbound structures for the Sulfolobus 

acidocaldarius ATCase and observed changes to the conformation of the bound form relative 

to the unbound form. Based on these observations, the authors proposed two allosteric 

pathways that transmit the effector binding signal to the catalytic subunits. We have shown 

the direction of these pathways with arrows (Fig. 4.9B). The H1’ and H2’ helices (shown in 

pink) show conformational deformations upon effector binding and hence, are considered 

critical for the allosteric signal transmission. For the top 15 predicted allosteric residues (Fig. 

4.9A), we have 4 true positives (red spheres) while, 6 predicted residues lie on the H1’ and 

H2’ helices. Upon considering the top 30 predicted allosteric residues, we observe an 

increase in the number of residues on the two helices. It is interesting to note that the 

predicted residues align closely to the two proposed pathways and one of the residues in the 

pathways (Fig. 4.9B) is in close proximity to the catalytic subunit. Such residues may be 

regarded as “sink” or “terminal” residues in an allosteric pathway in which the “source” is 

the effector binding site. 
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4.3.6. Overlap between Allosteric and Active Site Residue Predictions 

 One of the proteins common to our allosteric and active site test structures is AKT1, a 

serine/threonine AGC protein kinase from human (PDB 3O96) associated with the 

PI3K/AKT and other signaling pathways. AKT1 contains an N-terminal PH domain, inter-

domain linker, a kinase domain and a C-terminal domain often referred to as the C-terminal 

hydrophobic motif (Fig. 4.10A). PH domain binds phosphatidylinositide and directs the 

translocation of the protein from cytosol to the plasma membrane. The kinase domain 

contains the catalytic site responsible for phosphorylation and binds ATP (J. Yang et al., 

2002). We use this protein structure to investigate the extent of agreement between the 

predicted and known allosteric and active site residues. By dividing the proteins into 

cohesive units that move as rigid bodies (McClendon, Kornev, Gilson, & Taylor, 2014), we 

also learn about the localization of the predicted residues with respect to these structural 

blocks. 

Figure 4.10. AKT 1 (PDB 3O96) domains, communities and predictions. (A) The 

three domains of AKT 1 are described. The kinase domain is split into its respective 

N and C-terminus domains. Reported (B) and AR-Pred predicted (C) allosteric and 

active site residues are shown. The protein backbone is colored based on its division 

into four dynamic communities. Regions in the same color show highly correlated 

motions, indicating they are rigid elements in their dynamics. The allosteric residues 

are in cyan, the active site residues in orange. In the predictions made by AR-Pred, 

residues which were predicted both as allosteric and active sites are shown in gray. 
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First, we divide the protein into dynamic cohesive units, also referred to as dynamic 

communities. To do this, we reduce the protein into a coarse-grained C
α
 representation and 

calculate the inverse Hessian for the elastic potential of the system using the first 20 low 

frequency normal modes with Eq. 4.5. Next, we calculate the correlation between residue-

dynamics and express the inter-residue correlation matrix as a dissimilarity matrix using 

equations 4.6 and 4.7, respectively. Then, we identify dynamical structural blocks using the 

method described by Danon (Danon, Díaz-Guilera, & Arenas, 2006), dividing the protein 

into four dynamic communities. 

Figures 4.10B and 4.10C compare the known active and allosteric site residues (B) 

with the top 15 predictions made by our models (C). Upon verifying the dynamic 

communities, it is seen that the kinase domain is divided into two communities - red and 

yellow. The rigid unit in the C-terminus of the kinase domain (in red at the bottom) shows 

dynamic coordination with the PH domain at the top, together forming one community. 4 out 

of the top 15 predicted allosteric residues coincide with the known ones, while we see an 

overlap of 2 residues in the active site. A strikingly common feature shared between the 

predicted and true allosteric residues is their location on the same dynamic communities, 

suggesting that both the predicted and known sites are highly correlated in their dynamics. It 

is even more interesting to notice that some of the predicted active site residues are actually 

reported to be allosteric. On closer observation, we find some of these residues are neighbors 

of residues that form the active site. This could make their feature profile very similar to that 

of the active site residues, making it hard for our models to distinguish between them. This 

suggests that a residue’s functional classification is strongly influenced by its neighboring 

residues. Terminal or sink residues in an allosteric pathway, which are proximate to the 
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active site, may not strictly be only allosteric. Their physicochemical, structural and dynamic 

properties may strongly correlate with active sites, even presenting them as potential 

functional binding sites. Based on these criteria, a strict classification of residues as allosteric 

or active site may not always be feasible owing to the influence of neighboring residues. This 

raises a few intriguing questions: could sharing a similar feature profile with active site 

residues introduce a constraint on a residue’s rate of evolution? It is also interesting to 

consider whether some of these residues might eventually evolve into active site residues. 

 

 

 

  

 

Figure 4.11. Overlap between allosteric and active site residue predictions. (A) Four 

residues predicted by AR-Pred to be both allosteric and active site are shown in gray and 

labelled. The coloring scheme is same as in Fig. 4.10. (B) The protein is colored by its 

evolutionary conservation, with the color scale varying from red to blue – most conserved to 

least conserved. 
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Our model predicts four residues (shown in gray) as both allosteric and active site 

residues (Fig 4.10C and 4.11A). Two of these residues are located on the boundary of a 

dynamic community pair. We hypothesize that these residues are examples of cases where, a 

strict classification scheme is not applicable. These residues may be classified into either 

category. Previous studies have shown that active sites of the proteasome can allosterically 

regulate each other’s activity (Kisselev, Akopian, Castillo, & Goldberg, 1999). Other studies 

have indicated the presence of intrasteric active sites to which a short peptide, mimicking the 

substrate in vicinity of the active site, binds and regulates the activity of the active site (Kobe 

& Kemp, 1999). Such studies suggest that active sites could self-regulate their activity which, 

in a sense, is closely related to allostery. The residues which our model predicts to be both 

functional and regulatory sites could then be such self-regulating residues. Owing to their 

location at the boundaries of dynamic communities, they could also play the key role of 

allosteric signal transmission between communities. We further confirm the functional 

importance of these residues by investigating their evolutionary conservation. Fig 4.11B 

confirms that these residues have strong conservation. More importantly, three of these 

residues, Arg76, Asp325 and Glu314 have not been reported earlier as either active site or 

allosteric. Our method is thus, capable of predicting novel putative binding sites which, in 

principle, should be functionally significant owing to their strong conservation patterns. 

 

4.4. Conclusion 

 We have developed discrete machine learning models using the random forest 

scheme to predict allosteric and active site residues. Our prediction models for allostery and 

active site detection use a common subset of features, which broadly include amino acid 

physicochemical properties, protein structure geometry, residue conservation and intrinsic 
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dynamics of the protein structure. Instead of making predictions from a single model, we 

have used an ensemble approach to make predictions. In such an approach, we make multiple 

models for each prediction class, each model trained and validated on a separate training-

validation set and make predictions using each model. Residue-level scores assigned by each 

model are weighted by the model’s MCC and from this we calculate a weighted-ensemble 

score for each residue that relates to its probability of being an allosteric or active site 

residue. When compared to existing methods, our implementation makes predictions at a 

residue level by assigning them weighted probability scores. Such an implementation is 

useful, especially in the field of protein engineering by providing candidate residues whose 

mutations could possibly alter a protein’s activity. 

When assessed on the test dataset, our models for active site detection show 

comparable performance against two existing methods and gains against two other. Our 

models for allostery however, show superior performance over three of the existing methods. 

It is worth noting that including information on residue dynamics in addition to other 

properties appears to be the origin of the significant gain in performance. It is concerning, 

that our test datasets for allostery and active site prediction have only a small number of 

proteins, 15 and 19 respectively. In this context, we present two arguments which favor our 

selection criteria. First, since our models make predictions at the residue-level, having a 

larger set of residues in the test dataset is a more important consideration than the number of 

proteins. A number of existing methods identify pockets and then, rank them based on their 

propensity of being active or allosteric binding pockets (Akbar & Helms, 2018; Dundas et 

al., 2006; Greener & Sternberg, 2015; Hendlich, Rippmann, & Barnickel, 1997; Panjkovich 

& Daura, 2012; Singh et al., 2011). As proteins have fewer pockets than residues, these 
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methods test on datasets having a diverse number of proteins. On the contrary, our models 

consider the total number of residues in the allosteric and active site test data sets: 167 

allosteric and 6607 non-allosteric, 180 active site and 4344 non-active site residues. Second, 

since our aim is to develop separate models for the predictions of active and allosteric site 

residues, our required dataset needs to have labels for both allosteric and active site residues; 

however, we are limited by the availability of such previously compiled datasets. 

Our study emphasizes that there can be considerable overlap between the feature 

profiles of active and allosteric site residues and hence, our models predict certain allosteric 

residues as active site residues and vice-versa. Residues that are terminal in an allosteric 

pathway often lie in close spatial proximity to the active site. Hence, their physicochemical, 

structural and dynamic properties can closely resemble those of the active site residues. 

Besides, previous studies have also suggested active sites may be allosterically coupled with 

one another. Based on these observations, a rigid classification of residues into allosteric and 

functional classes would, in some cases, be inappropriate. This also brings up another 

important aspect of protein structures and their dynamics – cooperativity. In its classical 

context, cooperativity is defined for proteins with multiple binding sites as an increase in 

substrate binding affinity of one site based on a binding event at another site. In the context 

of this study, we assume that residues sharing similar feature profiles, in principle, may be 

highly cooperative in nature. In contrast to its classical sense, however, cooperativity may not 

just be limited to increasing binding affinities, but more generally related to the energetic 

coupling in correlated dynamics among residues, key to maintaining a protein’s functional 

dynamics. 
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Abstract 

Predicting protein motions is important for bridging the gap between protein structure and 

function. With growing numbers of structures of the same, or closely related proteins 

becoming available, it is now possible to understand more about the intrinsic dynamics of a 

protein with principal component analysis (PCA) of the motions apparent within ensembles 

of experimental structures. In this paper, we compare the motions extracted from 

experimental ensembles of 50 different proteins with the modes of motion predicted by 

several types of coarse-grained elastic network models (ENMs) which additionally take into 

account more details of either the protein geometry or the amino acid specificity. We further 

compare the structural variations in the experimental ensembles with the motions sampled in 

molecular dynamics (MD) simulations for a smaller subset of 17 proteins with available 

trajectories. We find that the correlations between the motions extracted from MD 
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trajectories and experimental structure ensembles are slightly different than for the ENMs, 

possibly reflecting potential sampling biases. We find that there are small gains in the 

predictive power of the ENMs in reproducing motions present in either experimental or MD 

ensembles by accounting for the protein geometry rather than the amino acid specificity of 

the interactions. 

 

5.1. Introduction 

Predicting conformational changes in proteins has long been a topic of interest to 

many who aim to understand protein function and mechanism. Multiple structures of the 

same protein, or closely related proteins,  have been solved by different experimental 

methods - X-ray crystallography (Kohn, Afonine, Ruscio, Adams, & Head-Gordon, 2010), 

NMR spectroscopy (Fenwick, van den Bedem, Fraser, & Wright, 2014) and more recently by 

cryo-electron microscopy (Fernandez-Leiro & Scheres, 2016) under different conditions, in 

the presence of different ligands, or of mutated protein. These techniques reveal information 

about the intrinsic protein dynamics. The set of essential motions accessible to a protein can 

be readily obtained by applying principal component analysis (PCA) (Pearson, 1901) to the 

position coordinates of the aligned set of multiple experimental structures (Amadei, Linssen, 

& Berendsen, 1993; Amadei, Linssen, de Groot, van Aalten, & Berendsen, 1996; Howe, 

2001; Teodoro, Phillips, & Kavraki, 2002; Teodoro, Phillips Jr., & Kavraki, 2003; van 

Aalten et al., 1997).  

Information on protein motions can also be obtained from computational simulations 

such as molecular dynamics (MD) or Monte Carlo (MC). However, these applications 

require significant computer resources, and do not always fully sample the entire 

conformational space accessible to a protein. Coarse-grained elastic network models (ENMs) 
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(Chennubhotla, Rader, Yang, & Bahar, 2005; Jernigan, Yang, Song, Kurkckuoglu, & 

Doruker, 2009; Sanejouand, 2011) on the other hand, offer a faster and cheaper alternative to 

MD or MC simulations for sampling the intrinsic motions accessible to a protein. By 

modeling the protein as a string of beads (usually the C

 atoms) connected by harmonic 

springs (interactions), they are often able to capture the most important global motions. 

ENMs have been used extensively to study the intrinsic dynamics of a variety of 

biomolecules ranging from small globular and membrane proteins (Bahar, Lezon, Bakan, & 

Shrivastava, 2010) to nucleic acids (Setny & Zacharias, 2013) and even large biomolecular 

assemblies such as the ribosome (Burton, Zimmermann, Jernigan, & Wang, 2012; Wang & 

Jernigan, 2005; Wang, Rader, Bahar, & Jernigan, 2004) and GroEL (Keskin, Bahar, Flatow, 

Covell, & Jernigan, 2002; Z. Yang, Májek, & Bahar, 2009) They have been shown to 

accurately predict the crystallographic B-factors of diverse proteins (Soheilifard, Makarov, & 

Rodin, 2008; L. Yang, Song, & Jernigan, 2009a) as well as to capture conformational 

changes between pairs of structures of the same protein (Tama & Sanejouand, 2001; L. 

Yang, Song, & Jernigan, 2007). The normal modes from ENMs have also been shown to 

capture structural variations extracted from multiple experimental structures of the same 

protein (Skjaerven, Martinez, & Reuter, 2011; L.-W. Yang, Eyal, Bahar, & Kitao, 2009; L. 

Yang, Song, Carriquiry, & Jernigan, 2008) or RNA (Zimmermann & Jernigan, 2014). 

Specifically, here we focus on ENMs that provide the changes in the geometry, the 

Anisotropic Network Models (ANM) (Atilgan et al., 2001). A subject of some importance 

has been how to improve ENMs by accounting for either more specific details of protein 

geometry or the chemical nature of amino acids (Frappier & Najmanovich, 2014; Kim et al., 

2013). Hamacher and McCammon have shown that an extended ANM (eANM) (Hamacher 
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& McCammon, 2006) with spring constants based on the values of the Miyazawa-Jernigan 

(MJ) potential amino acid interaction energies(Miyazawa & Jernigan, 1996) to account for 

the amino acid specificity of fluctuations performs better in reproducing crystallographic B-

factors. We have also shown that the ANM can be significantly improved by weighting the 

spring constants between residues by the inverse powers of the distance of separation 

between them (L. Yang, Song, & Jernigan, 2009b), a model referred to as the parameter-free 

ANM (pfANM) (pf means that there is no cutoff parameter as in the traditional ANM). Other 

ways of adjusting  the springs in ENMs are to use information from the variance-covariance 

matrix of position coordinates (Moritsugu & Smith, 2007) or the mean square distance 

fluctuations (Lyman, Pfaendtner, & Voth, 2008) between residues from MD trajectory 

ensembles of the protein. We and others have also shown that using spring constants based 

on the variance of internal distance changes between residues also provides significant gains 

in the ability to reproduce experimentally observed conformational changes (Katebi, Sankar, 

Jia, & Jernigan, 2015; Skjærven, Yao, Scarabelli, & Grant, 2014). 

In this work, we also introduce a modified version of Hamacher and McCammon’s 

extended ANM (called ccANM) in which the spring constants between residues are based on 

the relative entropies of amino acid pairs rather than the relative energies of the pairs. This is 

based on our recent work, where we extracted a scale of relative entropies between amino 

acid pairs (Sankar, Jia, & Jernigan, 2017) based on the frequencies of contact changes 

between amino acid types during conformational changes within a dataset of proteins. This 

entropy measure yields significant gains in identifying native structures among decoy sets. 

Since these entropies measure the tendency for amino acid contacts to change, we 

hypothesize that information on relative entropies of the amino acid pairs might be more 
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useful than their relative energies for differentiating among springs representing the 

interactions.  

First, we systematically test the effectiveness of the classical coarse-grained ANM 

and four different variants of the ANM (that incorporate additional information either 

regarding protein geometry or amino acid specificity) in capturing the motions present in 

experimental structure ensembles of 50 different proteins. In addition, for a smaller subset of 

17 proteins where MD trajectories are available, we also compare the motions present in the 

experimental ensembles to those in the MD ensembles. Our results suggest that the protein 

motions as extracted from experimental ensembles can differ significantly from those 

obtained through MD simulations. Whether this reflects the difference between the crystal 

environments and the simulation conditions, or a failure of simulations to fully capture the 

characteristic dynamics remains an open question. In addition, we also investigate how well 

the motions present in either the experimental or MD ensembles are captured by a variety of 

simple coarse-grained elastic network models.  

 

5.2. Methods 

5.2.1. Experimental Structure Ensemble Data 

A set of experimental structure ensembles for 50 different proteins (Table D.1) were 

collected in our previous work (Sankar, Liu, Wang, & Jernigan, 2015), which we are 

utilizing here. We refer the reader to this previous work for the list of structures in each 

ensemble set. These structures were obtained by a clustering of the Protein Data Bank (PDB) 

(Berman et al., n.d.) at 95% sequence identity level. Only clusters corresponding to 

monomeric proteins were retained. The structures in each cluster were aligned using the 

multiple structure alignment program MUSTANG (Konagurthu, Whisstock, Stuckey, & 
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Lesk, 2006), and the corresponding structure-based sequence alignment was used as a guide 

to remove any residues and/or structures that introduced significant gaps in the middle of the 

alignment (relatively few such cases). The final set of aligned structures from our previous 

work has been used for the experimental protein ensembles. For construction of ANMs, the 

structure with the lowest average root mean square deviation (RMSD) from all other 

structures is chosen as the representative structure for each ensemble (see Table D.1 for the 

list of these representative structures). The distributions of the average RMSDs in each 

ensemble can be found in our previous work (Sankar et al., 2015). 

5.2.2. Molecular Dynamics Trajectories 

For each experimental protein set, we have searched for homologous entries in the 

MoDEL database (Meyer et al., 2010) a repository of publicly available MD trajectories. 

Since the set of proteins in each cluster have a high sequence identity ( 95%), we choose a 

protein randomly from each cluster and search for its homologs. We set a threshold on the 

sequence identity of 35% for this selection. For clusters with multiple available homologs, 

we only choose the one with the highest sequence identity. We then download the C
α
 atom 

trajectories for the selected homologs for each cluster from the MoDEL database. A list of 

the proteins whose trajectories were used is given in Table D.2.  

In order to obtain a common reference frame, we transform the coordinates of the 

MD trajectories from their native frame to the frame of their experimental homologs. We do 

this by superimposing the first frame from each MD trajectory onto the representative 

structure from the corresponding experimental ensemble set; and then superimposing all the 

other frames onto the first frame. In order to identify a common subset of residues between 

the experimental and MD datasets, we then align the sequence of each MD homolog to the 



141 

 

profile alignment of its respective experimental set (with ClustalOmega) (Sievers & Higgins, 

2014) and retain only the subset of residues from the PDB structure in common with the MD 

homolog and the experimental ensemble. For generating ANMs, the starting PDB structure 

of each MD dataset is used as the representative of the ensemble (see Table D.2). 

5.2.3. Principal Component Analysis of Structural Ensembles 

Information about protein dynamics is extracted from either the experimental 

ensemble or the MD trajectory ensemble by using PCA of the aligned set of structures (to 

remove rigid body motions). In each case, the dataset for PCA is a matrix 𝑋𝑛 × 3𝑁 consisting 

of the X-, Y- and Z-coordinates of the C

 atoms of each of 𝑁 residues in the aligned set of 𝑛 

structures. The variance-covariance matrix 𝑪3𝑁 × 3𝑁  of the position coordinates is 

constructed with its elements obtained as 

𝐶𝑖𝑗 = 〈𝑋𝑖𝑗 − 〈𝑋𝑖〉〉 〈𝑋𝑖𝑗 − 〈𝑋𝑗〉〉 ;                                                        (5.1) 

where the brackets refer to averages across all 𝑛 structures. Eigen-decomposition of the 

matrix 𝑪 results in the eigenvectors, which are a set of orthogonal directions of the variations 

present in the dataset having corresponding eigenvalues denoting the variance along the 

corresponding directions. The principal component (PC) scores are obtained directly from the 

projections of the mean centered data points along these eigenvectors. The PCs are sorted in 

decreasing order of the corresponding eigenvalues and referred to as PC1, PC2, PC3 and so 

on, with PC1 capturing the most significant part of the structural variations.  

5.2.4. Coarse-grained Elastic Network Models 

Next, we describe the various coarse-grained bead-spring models that we have used 

in our comparisons. Collectively these are all termed elastic network models (ENMs). 
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Anisotropic Network Model (ANM). The ANM (Atilgan et al., 2001) is an elastic-

network (bead-spring) model in which the C
 

atoms of each residue in the protein are 

represented as beads and all interactions between residues are modeled as harmonic springs. 

Interactions between beads are usually restricted to physically close residues within a fixed 

distance cutoff 𝑅𝑐 . There are two parameters in ANM: the distance cutoff 𝑅𝑐 and the spring 

constant 𝛾𝑖𝑗 between every pair of residues 𝑖 and 𝑗. Throughout this study, the value of 𝑅𝑐 

has been set to 13 Å. In a classical ANM, all springs are assigned uniform values. In other 

words, for a protein with 𝑁 residues, 

𝛾𝑖𝑗 = 𝛾 ∀ 𝑖, 𝑗 𝜖 {1, … , 𝑁}                                                      (5.2) 

All the springs are assumed to be in equilibrium in the starting structure and the 

potential energy 𝑉 of the system is computed as  

𝑉 =  
1

2
∑ 𝛾𝑖𝑗(𝑅𝑖𝑗 − 𝑅𝑖𝑗

0 )
2
,𝑁

𝑖,𝑗=1                                                   (5.3) 

where 𝑅𝑖𝑗 refers to the instantaneous displacement between atoms 𝑖 and 𝑗 and 𝑅𝑖𝑗
0  

refers to their equilibrium displacement. The Hessian matrix 𝑯 of the system, with 𝑁 × 𝑁 

superelements 𝐻𝑖𝑗 is calculated as the matrix of second derivatives of the potential with 

respect to the Cartesian coordinate positions of the residues as 

𝐻𝑖𝑗 =

[
 
 
 
 
 

𝜕2𝑉

𝜕𝑋𝑖𝜕𝑋𝑗

𝜕2𝑉

𝜕𝑋𝑖𝜕𝑌𝑗

𝜕2𝑉

𝜕𝑋𝑖𝜕𝑍𝑗

𝜕2𝑉

𝜕𝑌𝑖𝜕𝑋𝑗

𝜕2𝑉

𝜕𝑌𝑖𝜕𝑌𝑗

𝜕2𝑉

𝜕𝑌𝑖𝜕𝑍𝑗

𝜕2𝑉

𝜕𝑍𝑖𝜕𝑋𝑗

𝜕2𝑉

𝜕𝑍𝑖𝜕𝑌𝑗

𝜕2𝑉

𝜕𝑍𝑖𝜕𝑍𝑗]
 
 
 
 
 

                                                    (5.4) 

The normal modes of motion from ANM are obtained as eigenvectors of the matrix 

𝑯; with the corresponding eigenvalues representing the square of frequencies of the modes. 

The correlations in motion between the residues along the X, Y and Z directions can be 
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obtained from the corresponding super-elements of 𝑯−1 and the mean square fluctuations of 

each residue 𝑖 from the diagonal elements of the corresponding super element 𝐻𝑖𝑖
−1 as 

follows: 

〈Δ𝑅𝑖
2〉 =

𝑘𝐵𝑇

𝛾
𝑡𝑟𝑎𝑐𝑒(𝐻𝑖𝑖

−1)                                                      (5.5) 

The theoretical B-factors from the ANM can be conveniently calculated from the 

mean square fluctuations as 

𝐵𝑖
𝑐𝑎𝑙𝑐 = 8𝜋2〈Δ𝑅𝑖

2〉/3                                                      (5.6) 

In addition to the classical ANM, we also explore some different variants of the 

ANM. The basic idea of each of the modified ANMs is the same, with the only change being 

that the spring constants are modified somehow. 

Parameter-free ANM (pfANM). In the pfANM (L. Yang et al., 2009b), one of the 

parameters, the 𝑅𝑐 is eliminated by allowing all residues to be connected, but instead of 

uniform springs the spring constants are taken to be proportional to a given inverse power 𝑝 

of the distance 𝑟𝑖𝑗 between them as in Eq. 5.7. Previously we found that 𝑝 = 6 gave the best 

representation of the collective motions; whereas 𝑝 = 2 best fit the experimental B-factors 

(L. Yang et al., 2009b).  

𝛾𝑖𝑗 =
1

𝑟𝑖𝑗
𝑝  ∀ 𝑖, 𝑗 𝜖 {1, … ,𝑁}                                                      (5.7) 

Extended ANM (eANM). We use a simplified version of a modified ANM introduced 

by Hamacher and McCammon (Hamacher & McCammon, 2006) in which the spring 

constants between a pair of non-adjacent contacting residues (as identified by 𝑅𝑐) is weighted 

by the absolute value of the Miyazawa-Jernigan (MJ) potential (Miyazawa & Jernigan, 1996) 
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energy |𝜅𝑖𝑗| between them. The spring stiffness between adjacent residues is set to a much 

larger value, 𝐾 = 82 RT/Å
2 

in accordance with the values found for peptide bonds. That is, 

𝛾𝑖𝑗 = {
𝐾      if   |𝑖 − 𝑗| = 1

2|𝜅𝑖𝑗|   if   |𝑖 − 𝑗| ≠ 1 and 𝑟𝑖𝑗 ≤ 𝑅𝑐 
∀ 𝑖, 𝑗 𝜖 {1, … ,𝑁}                              (5.8) 

Contact-change based ANM (ccANM). This is a model similar to the eANM; except 

that the springs between non-adjacent contacting residues falling within the cutoff distance 

𝑅𝑐 are weighted by the inverse of the contact-change based entropies (Sankar et al., 2017) 

𝑠𝑖𝑗  between  the amino acid pair. That is, 

𝛾𝑖𝑗 = {
𝐾      𝑖𝑓   |𝑖 − 𝑗| = 1

1

𝑠𝑖𝑗
    𝑖𝑓   |𝑖 − 𝑗| ≠ 1  and 𝑟𝑖𝑗 ≤ 𝑅𝑐

  ∀  𝑖, 𝑗 𝜖 {1, … , 𝑁}                             (5.9) 

Distance change based ANM (dcANM). This model captures internal distance-

changes as observed within an ensemble of structures. For this variant of the ANM, the 

spring constants between each pair of residues is taken as the inverse of the variance of 

internal distances (𝜎𝑟𝑖𝑗
2 ) between the residue pair over the set of structures (these spring 

constant values were further normalized such that they range between 0 and 1). In other 

words, 

𝛾𝑖𝑗 =
1

𝜎𝑟𝑖𝑗
2    ∀  𝑖, 𝑗 𝜖 {1, … ,𝑁}                                                    (5.10) 

5.2.5. Performance Evaluation of the ENMs 

We measure the performance of each ENM in terms of how well it can reproduce the 

protein structural variations present within an ensemble. The directions of motions from the 

ENM are obtained directly from the ENM modes and the structural variations present in an 

ensemble (experimental/MD) are obtained with PCA. Similarity comparisons between a PC 
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and a mode are evaluated by three measures defined by Tama and Sanejouand (Tama & 

Sanejouand, 2001). 

Overlap (O). This is a measure of how similar the direction of a given mode of 

motion 𝑀𝑗  from an ENM is in comparison with the PC eigenvector 𝑃𝑖 and is calculated as 

𝑂𝑖𝑗 =
|𝑃𝑖∙𝑀𝑗|

‖𝑃𝑖‖‖𝑀𝑗‖
                                                                (5.11) 

where |𝑃𝑖 . 𝑀𝑗| refers to the absolute value of the dot product of 𝑃𝑖 and 𝑀𝑗 and ‖𝑃𝑖‖ 

and ‖𝑀𝑗‖ refer to the length of the PC and mode vectors, respectively. The sign of the dot 

product is not considered since the modes are harmonic in nature. The maximum overlap 

between any of the first 𝑘 modes of motion with the PC eigenvector 𝑃𝑖 is obtained as 

𝑂𝑖
𝑚𝑎𝑥 = max𝑗=1 𝑡𝑜 𝑘 𝑂𝑖𝑗                                                                 (5.12) 

Cumulative Overlap (CO). This is a measure of how well a set of the first 𝑘 modes 

from an ENM capture the motion sampled by a single PC eigenvector 𝑃𝑖 and is calculated as 

𝐶𝑂𝑖
𝑘 = √∑ 𝑂𝑖𝑗

2𝑘
𝑗=1                                                                  (5.13) 

Root Mean Square Inner Product (RMSIP). This quantity measures the similarity in 

directions between the set of first 𝑘 modes from an ENM and the first 𝑙 PC eigenvectors from 

a structural ensemble as 

𝑅𝑀𝑆𝐼𝑃𝑙
𝑘 = √

1

𝑙
∑ ∑ (𝑃𝑖 ∙ 𝑀𝑗)

𝑘
𝑗=1

𝑙
𝑖=1                                                (5.14) 

Based on the above three measures, we use ten different performance metrics to 

evaluate the performance of elastic network models in comparison to PCs from an ensemble 

as follows: the maximum overlap between the first 20 modes from the ENM and each of PC1 

(𝑂1
𝑚𝑎𝑥), PC2 (𝑂2

𝑚𝑎𝑥) and PC3 (𝑂3
𝑚𝑎𝑥); the cumulative overlap between the first 20 modes 
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from the ENM and PC1 (𝐶𝑂1
20), PC2 (𝐶𝑂2

20) and PC3 (𝐶𝑂3
20); and the RMSIP between the 

first 20 ANM modes and sets of the first 3 (𝑅𝑀𝑆𝐼𝑃3
20), 6 (𝑅𝑀𝑆𝐼𝑃6

20), 10 (𝑅𝑀𝑆𝐼𝑃10
20) and 20 

PCs (𝑅𝑀𝑆𝐼𝑃20
20).  

In addition, Pearson’s correlation coefficient is reported between the calculated B-

factors (𝐵𝑐𝑎𝑙𝑐) from the ENM and the crystallographic temperature factors (𝐵𝑒𝑥𝑝) from the 

representative structure in the experimental ensemble as  

 𝜌𝑒𝑥𝑝,𝑐𝑎𝑙𝑐 =
𝑩𝑒𝑥𝑝−〈𝑩𝑒𝑥𝑝〉

‖𝑩𝑒𝑥𝑝−〈𝑩𝑒𝑥𝑝〉‖
 

𝑩𝑐𝑎𝑙𝑐−〈𝑩𝑐𝑎𝑙𝑐〉

‖𝑩𝑐𝑎𝑙𝑐−〈𝑩𝑐𝑎𝑙𝑐〉‖
                                      (5.15) 

 

5.3. Results and Discussion 

5.3.1. Comparison of ENM Modes with the Motions Present within Experimental 

Structure Ensembles 

We have previously shown for HIV-1 protease that the modes of motion from the 

classical ANM of a single structure correspond closely to the motions extracted from a set of 

experimental structures (L. Yang et al., 2008). Several other studies have also demonstrated 

the power of ANMs in capturing the structural variations within experimental ensembles for 

a variety of proteins (Skjaerven et al., 2011; L.-W. Yang et al., 2009). Here, we compare the 

motions predicted by the classical ANM and four other variants of ENMs with the motions 

present in experimental structure ensembles for a much larger dataset of 50 different proteins 

(Sankar et al., 2015) (see Table D.1). 

In addition to the classical ANM, we use the four other types of modified ENMs 

(refer to Methods above for more details): (1) pfANM (L. Yang et al., 2009b) with the spring 

constants between every residue pair weighted by the inverse of the sixth power of the 

distance between them; (2) eANM (Hamacher & McCammon, 2006) where the spring 

constants are weighted by the absolute values of the MJ potential energies between amino 



147 

 

acid pair; (3) ccANM, in which the spring constants are weighted by the inverse of the 

contact-change based entropy value for each amino acid pair (based on our previous work); 

(Sankar et al., 2017) and (4) dcANM (Katebi et al., 2015) with the spring constant between 

every pair of residues weighted by the inverse of the variance of the internal distances 

between them (over all the structures in the experimental ensemble). The performance of 

each ANM is evaluated for the ten different metrics described in Methods. 

We compute the motions for the ENMs of the representative structure from each 

protein ensemble (identified as the structure having the lowest RMSD from all other 

structures). Table 5.1 shows the average values (over the 50 proteins) of the 10 metrics for 

each type of ENM investigated. As expected, the dcANM naturally outperforms all of the 

other kinds of ANM in almost all the metrics. This is because the springs of the dcANM have 

been chosen directly from the internal distance changes between every pair of residues within 

the dataset for each protein; and hence it is naturally able to better reproduce the structural 

variations present in the dataset since it is built directly on the data being compared. The 

performance assessment of the other ENMs against one another is more relevant to 

understanding the behavior of the ENMs. Based on the number of metrics for which the 

ENM is best, the ranking of the models is as follows: pfANM > ccANM > ANM > eANM. It 

is clear from Table 5.1 that the pfANM outperforms the other types of ENMs. Also, the 

ccANM performs essentially at the same level as the ANM on all 10 metrics.
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Table 5.1. Performance of different types of ENMs for the dataset of 50 proteins in 

comparison with the motions present in the experimental ensembles.  

Model 𝑶𝟏
𝒎𝒂𝒙 𝑶𝟐

𝒎𝒂𝒙 𝑶𝟑
𝒎𝒂𝒙 𝑪𝑶𝟏

𝟐𝟎 𝑪𝑶𝟐
𝟐𝟎 𝑪𝑶𝟑

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟑
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟔

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟏𝟎
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟐𝟎

𝟐𝟎 

ANM 
0.41 

± 0.20 

0.42 
± 0.18 

0.44 
± 0.14 

0.67 
± 0.21 

0.70 
± 0.18 

0.71 
± 0.13 

0.70 
± 0.13 

0.67 
± 0.09 

0.63 
± 0.07 

0.56 
± 0.06 

pfANM 
0.39 

± 0.19 

0.44 
± 0.17 

0.45 
± 0.13 

0.68 
± 0.21 

0.73 
± 0.17 

0.74 
± 0.12 

0.73 
± 0.12 

0.70 
± 0.09 

0.66 
± 0.07 

0.59 
± 0.06 

eANM 
0.39 

± 0.20 

0.42 
± 0.18 

0.44 
± 0.14 

0.66 
± 0.22 

0.70 
± 0.18 

0.72 
± 0.13 

0.70 
± 0.13 

0.66 
± 0.10 

0.63 
± 0.08 

0.56 
± 0.06 

ccANM 
0.41 

± 0.20 

0.43 
± 0.18 

0.44 
± 0.13 

0.67 
± 0.22 

0.71 
± 0.17 

0.72 
± 0.12 

0.71 
± 0.13 

0.67 
± 0.10 

0.64 
± 0.07 

0.57 
± 0.06 

dcANM* 
0.56 

± 0.19 

0.49 
± 0.15 

0.50 
± 0.13 

0.83 
± 0.14 

0.82 
± 0.12 

0.82 
± 0.10 

0.83 
± 0.08 

0.78 
± 0.07 

0.73 
± 0.06 

0.64 
± 0.06 

Values for each metric (as defined in Methods) are averaged over the 50 proteins. Values for 

the best performing model for each metric are shown in bold. 

*dcANM is trained using the variances of the internal distance changes between residues in 

each experimental ensemble, and results are shown in italics. 
 

 

5.3.2. Comparison with Protein Motions from MD and Experimental Datasets 

Often only one structure of a protein or its close homolog is available. In such cases, a 

conformational sampling of the protein is often obtained using various computational 

techniques such as MD or Monte Carlo simulations. Once the simulation is run, the set of 

resulting structures are aligned to the starting structure and the ‘essential motions’ (Amadei 

et al., 1993) extracted from the trajectory using PCA as described in the Methods section.  

We perform a sequence-based search on the MODEL database (Meyer et al., 2010), 

an online repository of MD simulations for available MD trajectories of the proteins or their 

homologs present in the dataset of 50 proteins. We identify 17 proteins for which MD 

simulation data were available for the protein or a substantial part of it (Table D.2). We then 

compare how well the motions sampled by MD simulations for the set of 17 proteins 

compare against the variations present in sets of experimental structures of the same protein. 
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Table 5.2 shows this comparison of the PCs extracted from the experimental dataset vs MD 

dataset for the 17 proteins.  

Table 5.2. Comparison of MD and experimental motions for the set of 17 proteins.  

Metric 𝑶𝟏
𝒎𝒂𝒙 𝑶𝟐

𝒎𝒂𝒙 𝑶𝟑
𝒎𝒂𝒙 𝑪𝑶𝟏

𝟐𝟎 𝑪𝑶𝟐
𝟐𝟎 𝑪𝑶𝟑

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟑
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟔

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟏𝟎
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟐𝟎

𝟐𝟎 

Value 
0.37 

± 

0.18 

0.37 
± 

0.13 

0.37 
± 

0.10 

0.63 
± 0.18 

0.65 
± 0.17 

0.70 
± 0.10 

0.67 
± 0.12 

0.65 
± 0.09 

0.62 
± 0.07 

0.56 
± 0.05 

Values for each metric (as defined in Methods) are averaged over the 17 proteins.  

 

The average maximum overlap between the first twenty PC directions from the MD 

ensemble with the PC1, PC2 and PC3 of the experimental ensemble is 0.37; which is 

comparatively smaller than the average values obtained for the classical ANM or any of the 

variants of the ANM. This difference is small and thus probably not significant. Several 

factors can affect the set of structures sampled in the MD trajectory; including the force field 

used, the simulation time, etc. It is also possible that the overlap between the conformational 

space sampled by MD and experiments is relatively small. As a result, a dcANM trained on 

the MD dataset could not reproduce well the set of motions in the experimental (MD) 

ensemble (Table D.3).  The fact that the ENMs reproduce the experimental ensemble better is 

noteworthy. 
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In order to further demonstrate that the motions sampled by MD and the experimental 

ensembles are often different, we provide two examples of dynamical cross-correlations 

(DCCMs) (Ichiye & Karplus, 1991) of the residues from experimental and MD datasets for 

two different proteins in the dataset, lysozyme C (Figure 5.1A and B) and human leukocyte 

Figure 5.1. Comparison of dynamical cross-correlation matrices (DCCMs) between 

experimental and MD datasets for lysozyme C (A, B) and HLA-DRA (C, D). Positive 

correlations between residues are shown red and negative correlations in blue. The two 

domains ( and ) of lysozyme C and HLA-DR (1 and 2) are indicated on top of the 



151 

 

antigen (HLA) class II histocompatibility antigen alpha chain (HLA-DRA) (Figure 5.1C and 

D). These were chosen to demonstrate outliers in terms of being most similar and most 

different. In the case of lysozyme C, the two DCCMs are similar but with intricate 

differences, whereas in the case of the HLA-DRA, there is major differences between the 

correlations shown.  

A closer inspection of the plots for HLA-DRA reveals that in the MD dataset, there 

are stronger correlations among the residues within each of its two domains (1 and 2), 

particularly for 2, suggesting that the domains move almost as if they were rigid bodies. On 

the other hand, within the experimental ensemble, the higher correlations mostly correspond 

to residues within the same secondary structure, which can be easily identified from the plots. 

In other words, higher variabilities are observed in the relative orientations of the secondary 

structures within each domain. Previous studies have also shown that the DCCMs of the 

same protein from distinct simulations over different time-scales in MD simulations can be 

different (Hünenberger, Mark, & van Gunsteren, 1995). Our results further support these 

observations in addition to suggesting that the dynamical cross correlations observed in MD 

often do not correspond to those observed in a set of experimental structures. 

Since the length of each MD simulation is not the same, one probable reason for the 

low level of correspondences between motions from experiments and the simulations is the 

simulation time. In order to ascertain whether this is the case, we divide the dataset into two 

sets: short (< 80ns) and long (≥ 80 ns) simulations (see Table D.4). We then perform 

hypothesis testing to see whether the average values for each of the ten metrics for the short 

simulations are lesser than those for the long simulations. Our analysis suggests that the 

observed differences are not significant (the p-values for all metrics are > 0.4), at least for the 
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current dataset (Table D.4). More detailed studies on larger datasets will need to be 

performed to establish the importance of simulation times or the force-field used in 

reproducing experimental motions. 

5.3.3. Comparison of ENM Modes with Motions Present in MD Structural Ensembles 

It is also interesting to test whether the motions predicted by ENMs correlate with the 

set of motions sampled by MD simulations of the same protein. Starting from the 

representative structure for each protein, we construct the different types of ENMs and 

investigate how well the modes compare with the motions extracted by PCA from the MD 

structural ensemble for each of the 17 proteins. Table 5.3 shows the average values for each 

of the ten performance metrics for the different types of ENMs.  

Again, as expected the dcANM performs the best in all metrics reflecting the fact that 

it was trained on the dataset itself. The other different ENMs rank in the following order for 

the ten performance metrics: pfANM > ccANM > ANM > eANM.  And, this is the same 

order as seen in Table 5.1.  It can be seen that the pfANM systematically outperforms the 

other types of ANM in reproducing the protein motions in the MD dataset, even though by a 

small margin. Taken together with the results from the performance on the experimental 

dataset, this seems to suggest that the overall intrinsic dynamics of the protein is dictated 

primarily by its geometry, i.e., the distances of separation between all pairs of different 

residues. The specific amino acid interactions of course allow the protein perform its specific 

functions; and will account for the differences in behaviors of various mutants of the protein; 

however, they do not much affect its global motions.  
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Table 5.3. Performance of different types of ENMs in comparison with the motions 

present in the MD dataset of 17 proteins. 

Model 𝑶𝟏
𝒎𝒂𝒙 𝑶𝟐

𝒎𝒂𝒙 𝑶𝟑
𝒎𝒂𝒙 𝑪𝑶𝟏

𝟐𝟎 𝑪𝑶𝟐
𝟐𝟎 𝑪𝑶𝟑

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟑
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟔

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟏𝟎
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟐𝟎

𝟐𝟎 

ANM 
0.42 

± 

0.14 

0.46 

± 0.22 
0.40 

± 0.12 
0.68 

± 0.17 
0.68 

± 0.20 
0.68 

± 0.14 
0.68 

± 0.15 
0.70 

± 0.11 
0.70 

± 0.07 
0.65 

± 0.05 

pfANM 
0.44 

± 

0.14 

0.46 

± 0.21 
0.42 

± 0.09 
0.71 

± 0.15 
0.69 

± 0.20 
0.71 

± 0.15 
0.71 

± 0.15 
0.73 

± 0.10 
0.74 

± 0.06 
0.70 

± 0.04 

eANM 
0.41 

± 

0.15 

0.45 

± 0.22 
0.39 

± 0.12 
0.67 

± 0.18 
0.67 

± 0.21 
0.66 

± 0.15 
0.67 

± 0.16 
0.69 

± 0.12 
0.69 

± 0.08 
0.65 

± 0.06 

ccANM 
0.43 

± 

0.14 

0.44 

± 0.21 
0.40 

± 0.11 
0.70 

± 0.16 
0.68 

± 0.20 
0.68 

± 0.14 
0.69 

± 0.15 
0.71 

± 0.10 
0.71 

± 0.07 
0.66 

± 0.05 

dcANM* 
0.51 

± 

0.15 

0.44 

± 0.13 
0.44 

± 0.13 
0.80 

± 0.16 
0.77 

± 0.16 
0.75 

± 0.16 
0.78 

± 0.15 
0.74 

± 0.10 
0.71 

± 0.07 
0.63 

± 0.05 

Values for each metric (as defined in Methods) are averaged over the 17 proteins. Values for 

the best performing model are shown in bold and the next best in italics. 

*dcANM is trained using the variances of the internal distance changes between residues in 

each MD ensemble, and results are shown in italics. 

A comparison between the results in Table 5.1 and Table 5.3 shows a remarkable 

similarity in the abilities of the various ENMs to reproduce the motions in the ensembles of 

both the experimental sets of structures and the MD ensembles. 

5.3.4. Performance of ENMs in Reproducing Crystallographic B-factors 

In addition to being able to reproduce intrinsic protein motions, another strength of 

the ENMs is in their being able to reproduce crystallographic temperature factors of the 

residues in the protein. Here we generate different types of ENMs using the representative 

structure for each of the 17 proteins with MD trajectory data and compute B-factors from the 

models (see Methods). The dcANM models are generated by adjusting the spring constants 

using the internal distance changes present in the experimental and MD ensembles as 

described before. We then compute the Pearson’s correlations between the predicted B-

factors and the crystallographic B-factors of the representative structure in the experimental 

ensemble (Table 5.4). 
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Table 5.4. Correlation between experimental temperature factors and predicted B-

factors from various types of ANMs on the experimental and MD datasets.  

Model Correlation (MD dataset)
*
 

Correlation (experimental 

dataset)
#
 

ANM 0.50 ± 0.14 0.53 ± 0.14 

pfANM 0.52 ± 0.17 0.56 ± 0.14 

eANM 0.51 ± 0.13 0.53 ± 0.12 

ccANM 0.48 ± 0.14 0.50 ± 0.14 

dcANM 0.53 ± 0.20 0.51 ± 0.18 

Values are averaged over the 17 proteins. Value for the best performing model is shown in 

bold. 

*dcANM is trained using internal distance changes between residues in the MD dataset; 
#
dcANM is trained using internal distance changes between residues in the experimental 

dataset;  

Correlation values are with the crystallographic B-factors of the experimental representative 

structure. 

 

As can be seen in Table 5.4, the pfANM gives the highest correlation with 

crystallographic B-factors. The dcANM model based on the MD dataset gives only a slightly 

better correlation with B-factors than the pfANM and is probably not a significant difference. 

Our results also confirm the observation by Hamacher and McCammon (Hamacher & 

McCammon, 2006) that the eANM provides slight gains over the ANM in its being able to 

predict crystallographic B-factors (at least for the cases in the MD dataset). However, the 

values in Table 5.4 are all very similar. Interestingly, the eANM is slightly worse than the 

classical ANM or the ccANM at predicting motions present in the experimental ensembles as 

seen above (Tables 5.1 and 5.3). On the other hand, it is slightly better than the ccANM at 

reproducing crystallographic B-factors. This is in close agreement with observations by 

Fuglebakk and others (Fuglebakk, Reuter, & Hinsen, 2013) that a higher correlation with B-

factors usually comes at the expense of the ability to predict collective protein motions.  
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5.4. Conclusions 

In this study, we have systematically compared the motions extracted from 

experimental structure ensembles of 50 different proteins with the motions predicted using 

several different variants of ENMs. In addition to the classic ANM, we study several 

modified ANMs which account more specifically for the geometry of the protein (pfANM 

and dcANM) or for the amino acid specificity of the residues, either in energy (eANM) or in 

entropy (ccANM). The ccANM is a new model introduced in this paper, which accounts for 

the relative entropies of amino acid pairs; which were derived from the relative frequencies 

of contact changes within a set of experimental protein conformational changes.  Our results 

show that pfANMs (taking into account all distances between residues in a protein structure) 

are best in capturing the structural variations present within an experimental ensemble of the 

same protein. The ccANMs do perform better than eANMs and the classic ANMs suggesting 

that the pair-wise entropies are important for conformational changes. The main conclusion 

is that the distances of separation between residues (i.e. the geometry in pfANM) plays a 

larger role than the chemical nature of the interactions (as in eANM or ccANM) for the 

overall intrinsic dynamics of proteins. Interestingly this is consistent with the strong 

dependence on geometry (shape) for the slowest motions (Doruker & Jernigan, 2003; Ma, 

2004) supporting the overall viewpoint implicit in the elastic network models that geometry 

alone is important for the important protein dynamics. 

In addition, we also have collected large scale molecular dynamics simulation data 

available for 17 proteins in the dataset and compared their structural changes with the 

structural variations present in the experimental set and those predicted by different types of 

ANM. The correspondences observed between the MD and experimental datasets is 

relatively poor when compared to the ANMs, highlighting some of the possible sampling 
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problems in MD datasets, such as the force-field used, and simulation times. We also observe 

that training ANMs based on internal distance changes between residues observed in an MD 

simulation (dcANM) does not necessarily improve the correspondence with experimental 

motions, at least for the dataset of 17 proteins investigated in this study.  

We find that some ANMs, specifically the pfANM or ccANM give better agreement 

with experimental motions extracted from experimental or MD ensembles. On the other 

hand, they provide only relatively small improvements in terms of the correlation with 

experimental B-factors, in agreement with previous studies. However, as observed by others 

(Fuglebakk et al., 2013), we also find that agreement with B-factors and the ability to 

reproduce collective motions do not necessarily go together.  
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CHAPTER 6.    CONCLUSION 

 

“...if we were to name the most powerful assumption of all, which leads one on and on in an 

attempt to understand life, it is that all things are made of atoms, and that everything that 

living things do can be understood in terms of the jigglings and wigglings of atoms.” 

― Richard Feynman 

       The Feynman Lectures on Physics 

 

In this dissertation, we present research that exploits the incredible volume of structure and 

sequence information available for proteins and supplement it with molecular simulations 

that inform about protein dynamics. The protein data bank serves as an excellent resource for 

information on protein structure data and is complemented by cross-references to protein 

sequence repositories such as UniProt and other fold-based classification databases such as 

CATH, SCOP and Pfam. An important aspect of the PDB database that can also be exploited 

for the ensemble nature of proteins is its redundancy in terms of structures (multiple 

structures for the same protein, under different conditions, or mutants). As sequence, 

structure and dynamics are collectively linked to protein function, combining information for 

these three aspects is imperative to truly understand protein function. The challenge, 

however, is in integrating the available sequence and structure information with dynamics 

and correlating with protein function. The research reported in this dissertation addresses this 

concern by developing computational methods that collectively use sequence, structure and 

dynamic information to interpret protein function. In this section, I will first highlight some 

of the important research findings in this dissertation. Then, I will present some extensions 

with the potential to improve and extend this current work in future directions. 

https://www.goodreads.com/author/show/1429989.Richard_Feynman
https://www.goodreads.com/work/quotes/314848
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6.1. Important Research Outcomes 

 

6.1.1. Global Changes to Protein Dynamics upon Oligomerization 

While oligomerization is often perceived as a means of stabilizing proteins, our work 

suggests that certain regions in proteins, especially those residues on the surface, may exhibit 

increases in their mobilities, while residues at the interfaces tend to be more stabilized. It is 

also seen that some residues with lower packing densities in the interface behave in the 

opposite way and become more mobile upon oligomerization. Our findings corroborate 

previous outcomes that suggested some increases in mobilities upon binding to a partner 

ligand (Kay, Muhandiram, Farrow, Aubin, & Forman-Kay, 1996) or even another 

macromolecule, like DNA (Yu, Zhu, Tse-Dinh, & Fesik, 1996). It was previously suggested 

that such losses in mobility upon binding at the interface closely correlate to a loss of entropy 

and is often compensated by an increase in mobility at another site and hence, an increase in 

entropy (Forman-Kay, 1999). We have shown similar results in the context of 

oligomerization for a diverse set of oligomeric proteins. 

6.1.2. Changes to Dynamic Communities upon Oligomerization 

Considering triosephosphate isomerase, we have revealed that oligomerization can 

lead to changes in its dynamic communities. In this particular case, we observe changes to 

the community structure of the active site core; while the active site in the monomer remains 

rigid, the dimer active site is split into two communities that are nearly anti-correlated in their 

dynamics. In this case this community division is essential for the optimal orientation of the 

substrate and execution of the enzyme’s catalytic activity. 
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6.1.3. Significance of Oligomerization for Key Functional Residues 

One of the key findings from investigating the altered dynamics of protein subunits 

upon oligomerization is the increased stability of functional binding residues. Interestingly, 

these residues could be localized distant from the interface, often considered as a hot spot for 

binding residues. These residues could be further investigated as potential drug targets or for 

site-directed mutagenesis experiments to validate this finding. 

6.1.4. Correspondence between Dynamic Communities from MD and ENM and 

Screening Deleterious Mutants 

 We have shown that ENMs can be used to mine dynamic protein communities and 

that there is a significant correspondence between the communities derived from MD and 

from ENM. Comparison of the inter-residue cross-correlation matrices (essential for mining 

communities) shows significant agreement between MD and ENM; there is a high correlation 

for node centrality and significant overlap for the root mean-square inner product for these 

matrices. As MD simulations are expensive in terms of time and also demand considerable 

computing power for larger proteins, a simple alternative such as ENM should be widely 

useful as it directly overcomes these computational limitations. Also, we have shown that 

atomic formulations of ENM capture the community differences for wild type, stable and 

unstable mutants of T4 lysozyme, with the deleterious mutants showing substantial 

differences in the distribution of their communities compared to the wild type. 

6.1.5. Role of Structural Dynamics in Predicting Allosteric and Active Site Residues 

Including information on protein dynamics along with structural, physico-chemical 

and evolutionary features leads to considerable improvements in predictions for functional 

and regulatory binding residues. In addition, we see that there can be considerable overlap 
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between the features of residues in the active and allosteric sites. Also, it is noteworthy that a 

common subset of features can be used for predictions of both allosteric and active site 

residues. A key finding in this work is that our method predicted some residues as both active 

site and allosteric site residues. At initial glance, this may hint at the possibility of false 

positives, however upon verifying their evolutionary conservation, these residues are found 

to be conserved, suggesting that these are functionally important residues. Previous studies 

established that active sites can be allosterically coupled with each other, so that the 

predicted sites with dual character may be sites capable of serving as both functional ligand 

binding and regulation sites.  

Combining the dynamic communities with allosteric pathways immediately brings 

out the suggestion that allosteric pathways that connect between the individual communities 

are particularly important, but the pathways through the communities themselves are likely to 

be redundant and unimportant as long as they connect between allosteric residues on the 

surfaces of the communities. There is a long-standing disagreement between allosteric 

pathways predicted in different ways. These differences in the pathways might be resolved, if 

the connected residues inside of the communities are the only points that differ, a point that 

can be based upon the concept of the communities being quite rigid.    

6.1.6. Comparisons between Different Formulations of ENM 

We have revealed that the intrinsic dynamics of proteins is more closely replicated by 

modeling the stiffness of springs between residue pairs as interactions that weaken with 

distance than by taking into consideration the actual interaction type or by assigning the same 

stiffness between all residue interactions. This type of distance-based interaction modeling is 

utilized in the parameter free ANM (pfANM) and it performs better than four of the other 
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types of ENMs studied. Furthermore, it is seen that deriving the stiffness of springs from 

calculations of internal distance changes from MD trajectories does not lead to improvements 

in performance. Instead, it is observed that including information on residue-residue 

entropies into the stiffness of the springs leads to improved performance compared to two 

other ENM formulations. 

6.2. Scope for Improvement and Future Directions 

 

6.2.1. Investigating the Dynamics of Interface Residues and Prediction of True 

Oligomeric State 

We have shown that most interface residues show considerable reduction in their 

fluctuations upon oligomerization. This observation is consistent with the rationale that upon 

assembly, the degrees of freedom for residues in the interface decreases, thus reducing their 

mobilities. However, it is also seen that certain residues in the interface exhibit increases in 

mobility following oligomerization. Our work suggests that these residues have lower 

packing densities compared to other interface residues. It would be interesting to consider 

specific cases of proteins showing increased mobilities of interface residues to investigate the 

functional roles of these residues. A study which considers proteins with and without these 

residues and their binding efficiency to partner subunits might shed light if these residues 

have any role in facilitating oligomerization. Also, machine learning schemes may be 

implemented that consider the mobility changes of residues in order to predict their 

functional oligomeric forms. 

6.2.2. Changes to Community Architecture of Enzyme Catalytic Residues 

We showed in the case of triosephosphate isomerase that oligomerization changes the 

dynamically cohesive nature of residues in the catalytic core. It will be interesting to further 
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elaborate on this. For example, information for a diverse set of enzymes that function only in 

their oligomeric forms could be collected. These enzymes should be further divided into two 

sets: those having all the catalytic residues within a single subunit and those that form shared 

active sites between subunits. Then it would be interesting to compare the effect of assembly 

on the community structures of these two sets. We hypothesize that those enzymes not 

having an active site shared between subunits might show a similar splitting of the active site 

as we observed for TIM while the same may not be true for the other set.  This would be an 

appropriate extension of our study presented in this thesis. 

6.2.3. Effect of Oligomerization on Heteromers 

The study of the effect of oligomerization may also be extended to heteromers, i.e. 

assemblies whose subunits differ from one another. It would be particularly interesting to 

investigate cases that form multimers with several different other subunits. 

6.2.4. Using Residue Frustration as a Feature for Predicting Functional Residues 

Frustration is inherent to those residues whose rotameric states are not that of the 

minimum energy configuration (Ferreiro, Komives, & Wolynes, 2014). Previous studies 

suggest that frustration is introduced on purpose at certain residues of functional importance. 

The residue level frustration could be calculated using the Frustratometer (Jenik et al., 2012) 

and it would be interesting to see whether the prediction of functional residues is improved 

by including residue frustration as an additional feature. 
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APPENDIX A.    SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

 

Table A.1. Counts of the number of residues in interface and non-interface regions having 

increased, decreased and unchanged MSF values for glutamate dehydrogenase (bovine). 

PDB 

ID 

Residues Function Number 

of 

Residues 

with 

MSF 

Increased 

Number of 

Residues 

with MSF 

Unchanged 

Number 

of 

Residues 

with MSF 

Decreased 

Number 

of Non-

Interface 

Residues 

Fraction of 

Functional 

Non-

Interface 

Residues 

with 

Reduced 

Fluctuation 

3mw9 
K90,K114,K126, 

R211,S381 

Substrate 

binding, 

catalytic 

activity 

0 1 4 5 4/5 

3mw9 H209,R217,R261,R265 

GTP 

binding, 

allosterically 

regulates the 

protein 

1 3 0 4 0/5 

 

 

Table A.2. Counts of the number residues in interface and non-interface regions having 

increased, decreased and unchanged MSF values for arginase 1 (rat). 

PDB 

ID 

Residues Function Number 

of 

Residues 

with 

MSF 

Increased 

Number of 

Residues 

with MSF 

Unchanged 

Number 

of 

Residues 

with MSF 

Decreased 

Number 

of Non-

Interface 

Residues 

Fraction of 

Functional 

Non-

Interface 

Residues 

with 

Reduced 

Fluctuation 

1rla 
H101,D124,H126,D128, 

D232,D234 

Metal 

binding 
0 0 6 6 6/6 

1rla 
H101,D128,H141,D232, 

D234,G235 

Deleterious 

mutation 

sites 

0 0 6 6 6/6 

1rla H141,E277 

Substrate 

binding 

residues 

(involved 

in the 

catalytic 

activity of 

the 

enzyme) 

0 0 2 2 2/2 
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Table A.3. Counts of  the number residues in interface and non-interface regions having 

increased, decreased and unchanged MSF values for glycine N-methyltransferase (rat). 

 
PDB 

ID 

Residues Function Number 

of 

Residues 

with MSF 

Increased 

Number of 

Residues 

with MSF 

Unchanged 

Number of 

Residues 

with MSF 

Decreased 

Number 

of Non-

Interface 

Residues 

Fraction of 

Functional 

Non-

Interface 

Residues 

with 

Reduced 

Fluctuation 

1bhj 

Y21,W30,R40,A64, 

D85, N116,W117, 

L136,H142 

S-adenosyl 

methionine 

binding res 

idues 

0 1 8 2 1/2 

1bhj 

Y33,G137,N138, 

R175, Y194, 

Y220,Y242 

Glycine-

binding 

residues 

0 1 6 7 6/7 

1bhj 
Y21,Y33, 

Y194,Y220 

Mutation sites 

which reduce 

the catalytic 

efficiency of 

the enzyme 

0 1 3 3 2/3 

 

 

 

 

Table A.4. Counts of  the number residues in interface and non-interface regions having 

increased, decreased and unchanged MSF values for D-aminoacid oxidase (yeast) at 1.5 fold 

change cutoff. 

 
PDB 

ID 

Residues Function Number 

of 

Residues 

with 

MSF 

Increased 

Number of 

Residues 

with MSF 

Unchanged 

Number 

of 

Residues 

with MSF 

Decreased 

Number 

of Non-

Interface 

Residues 

Fraction of 

Functional 

Non-

Interface 

Residues 

with 

Reduced 

Fluctuation 

1c0k 

S1012,S1015,A1034, 

R1035,A1047,S1048, 

G1052,N1054,V1162, 

S1334,S1335,G1337, 

Y1338,Q1339 

FAD-

binding 

residues 

0 10 4 14 4/14 

1c0k 
Y1223,Y1238, 

R1285,S1335 

Active 

site 

residues 

0 3 1 4 1/4 
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Table A.5. Counts of the number residues in interface and non-interface regions having  

increased, decreased and unchanged MSF values for d-aminoacid oxidase (yeast) at 1.25 fold 

change cutoff. 

 
PDB 

ID 

Residues Function Number 

of 

Residues 

with 

MSF 

Increased 

Number of 

Residues 

with MSF 

Unchanged 

Number 

of 

Residues 

with MSF 

Decreased 

Number 

of Non-

Interface 

Residues 

Fraction of 

Functional 

Non-

Interface 

Residues 

with 

Reduced 

Fluctuation 

1c0k 

S1012,S1015,A1034, 

R1035,A1047,S1048, 

G1052,N1054,V1162, 

S1334,S1335,G1337, 

Y1338,Q1339 

FAD-

binding 

residues 

0 6 8 14 8/14 

1c0k 
Y1223,Y1238,R1285, 

S1335, 

Active 

site 

residues 

0 3 1 4 1/4 

 

 

 

 

Table A.6. Clusters from dendrograms. We perform hierarchical clustering of the matrix of 

correlated fluctuations using the MATLAB clustering module (http://www.mathworks.com 

/help/stats/hierarchical-clustering.html) and then truncate the dendrograms for the unbound 

(8tim) and substrate bound (1tph) form of TIM in their monomeric and oligomeric forms at 

the above levels to obtain the desired number of clusters. 

 

PDB State Truncation level (%age of max tree height) Number of clusters 

1tph Monomer 90% 2 

1tph Oligomer 90% 2 

8tim Monomer 90% 2 

8tim Oligomer 90% 2 

1tph Monomer 77% 3 

1tph Oligomer 77% 3 

8tim Monomer 83% 3 

8tim Oligomer 83% 3 

1tph Monomer 74% 4 

 

http://www.mathworks.com/
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Figure A.1. Dataset characterization and ANM exponent. (A) The dataset includes a 

similar number of proteins for each type of oligomeric group except for pentamers, which are 

less abundant. (B) Distribution of the number of residues per protein for the proteins included 

in the dataset. (C) Correlation of Anisotropic Network Model (ANM) predicted Mean Square 

Fluctuations (MSF) with experimental B factors for different ANM exponents (a). The 

exponent a = 3 yields the highest average correlation with the experimental B factors. 

Figure A.2. Correlation of mean square fluctuations (MSF) of the monomeric and 

oligomeric forms of tyrosine phosphatase. The MSF calculations are performed on the 

crystallized monomeric form of the enzyme (pdb 1L8G) and a single monomer obtained from 

the enzyme oligomer (pdb 2CM3). We observe a very high correlation in the dynamics of the 

two structures (spearman correlation coefficient 0.98). 
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Figure A.3. Fractions of residues having increased, decreased and no significant 

change in MSF upon oligomerization for each protein (at fold change cutoff 1.5) in 

the dataset of 145 proteins. The plot is sorted by the fraction of residues with increased 

fluctuations. 

Figure A.4. Fluctuation change and packing density distribution for interface 

residues. (A) Interface Residues with Increased MSF. For some proteins, a small fraction 

of the interface residues (red bars) show increased fluctuations upon oligomerization. (B) 

Probability density fit for packing densities. The distribution of packing densities of 

residues computed from Voronoia shows best fit with the Generalized Extreme Value 

(GEV) distribution with a negative log likelihood value of 3.12 e
4
. Other distributions to 

which the packing density data is fit are tlocationscale and extreme value, both of which 

are used to model data with heavy tails. (C) Packing density distribution for interface 

residues. The interface residues with increased MSF have lower packing densities than the 

residues with reduced MSF.  
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Figure A.6. Distribution of conservation scores of interface and non-interface 

residues that have different Fold Change Ratio (FCR) cutoffs. Results are shown 

for FCR 1.25 (A), 1.75 (B) and 2 (C); we observe the same pattern i.e. residues 

having reduced fluctuations are more conserved than the others, both in interface and 

non-interface regions. 

 

 

 

 

Figure A.5. Probability density fits for residue conservation scores. The 

conservation profile of residues shows a best fit with the Generalized Extreme Value 

(GEV) distribution (negative log likelihood 4.29 e
4
) in comparison to several other 

distributions. Both the tlocationscale and logistic distributions are used to model data 

distributions which have heavier tails compared to the normal distribution. 
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Figure A.7. Non-parametric test of significance for residue conservation with MSF 

change. Kruskal-Wallis test of significance for the conservation scores of three MSF 

change categories (increased, unchanged and decreased) for only interface (A), only 

non-interface (B) and all residues (C). The p-values for the respective tests were: 

interface residues p-value = 2.694 e
-29

, non-interface residues p-value = 1.86 e
-266

 and 

all residues p-value = 0. 

Figure A.8. Distribution of conservation scores for two smaller datasets. (A) Dataset 

with 40 proteins, and (B) dataset with 80 proteins. For each figure, the distribution for 

interface residues is shown on left and non-interface residues on right. 
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Figure A.9. Dendrograms from hierarchical clustering of residue fluctuation 

correlations. All trees are truncated at 90 percent of their maximum heights to generate 

2 clusters.  Clusters obtained  for the isolated monomer without substrate (A) and 

monomer with substrate (B). Corresponding PDB files used were 8tim and 1tph. Clusters 

obtained for the monomer computed as part of oligomer without substrate (C) and with 

substrate (D). 
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Figure A.10. Hierarchical clustering for 3 clusters.  A. Mapping of 3 clusters from 

hierarchical clustering. The dendrogram for 8tim was truncated at 83 percent of its maximum 

height (both for the isolated monomer and monomer in the context of the oligomer) and the 

1tph correlation cluster was truncated at 77 percent to yield 3 clusters. Regions of the 

structure that map to the same community are colored the same.  a. Monomer without 

substrate (8tim) in isolation, b. Monomer with substrate (1tph) in isolation, c. Monomer in 

context of the oligomer without substrate (8tim) and d. Monomer in context of the oligomer 

with substrate (1tph). B. Close up view of the monomer with substrate (1tph) in isolation with 

3 and 4 clusters. The dendrogram for 1tph in isolation was cut at 74 percent of its maximum 

height to produce 4 clusters. It can be seen that even with 4 clusters the active site of the 

monomer remains rigid unlike the oligomer, where the E165 residue moves in coordination 

with loop 6 that closes over the active site.    
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APPENDIX B.    SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Table B.1. Dataset of proteins used in the study. The MD trajectories were downloaded 

from the MOlecular Dynamics Extended Library (MODEL) database. We retained proteins 

having at least 50 residues with a minimum trajectory time scale of 100 ns. The table is 

sorted by the number of residues. 

PDB ID 
Simulation 
Program 

Duration Protein Name 
Number of 
residues 

2gb1 Amber 8 1000 ns Protein G 56 
1bpi Amber 8 100 ns Bovine Pancreatic Trypsin Inhibitor 58 
1g6x Amber 8 100 ns Pancreatic trypsin inhibitor 58 
1ark Amber 8 108.93 ns Nebulin 60 
1i6f Amber 8 100 ns Neurotoxin V5 60 
1fas Amber 8 100 ns Fasciculin 1 61 
3ci2 Amber 8 100 ns Chymotrypsin inhibitor 2 64 
1csp Amber 8 100 ns Cold Shock protein 67 
1sdf Amber 8 100 ns Stromal Cell Derived factor 67 
1tba Amber 8 134.2 ns Transcription initiation factor IID 67 
1fvq Amber 8 100 ns Copper transporting ATPase 72 
1jw2 Amber 8 100 ns Hemolysin Expression modulating protein 72 
1txa Amber 8 100 ns Toxin B 73 
4icb Amber 8 100 ns Calbindin D9K 76 
1sro Amber 8 100 ns PNPase 76 
1ubq Amber 8 811.5 ns Ubiquitin 76 
1pht Amber 8 100 ns Phosphatidylinositol kinase 83 
1cei Amber 8 107.06 ns Colicin E7 Immunity Protein 85 
1ls9 Amber 8 100 ns Cytochrome C6 91 
1j5d Amber 8 100 ns Plastocyanin 98 
1opc Amber 8 586.22 ns OMPR 99 
1kte Amber 8 1001.0 ns Thioltransferase 105 
1fkb Amber 8 100 ns Fk506 Binding Protein 107 
1nso Amber 8 100.22 ns Retroviral Protease 107 
1jli Amber 8 100 ns Interleukin 3 112 

1ooi Amber 8 100 ns Odorant binding protein (LUSH) 124 
1agi Amber 8 100 ns Angiogenin 125 
1k40 Amber 8 100.22 ns Adhesin kinase 126 
1bfg Amber 8 105.832 ns Basic fibroblast growth factor 126 
1chn Amber 8 100 ns CHEY 126 
1idr Amber 8 159 ns Hemoglobin Hbn 126 
1lys Amber 8 329.5 ns Hen Egg White Lysozyme 129 
1pdo Amber 8 100 ns Mannose Permease 129 
1lit Amber 8 100 ns Lithostathine 131 

1cbs Amber 8 100 ns Cellular retinoic acid binding protein 137 
1kxa Amber 8 100 ns Sindbis virus capsid protein 158 
1emr Amber 8 100 ns Leukemia Inhibitory Factor 159 
1czt Amber 8 100 ns Protein (Coagulation Factor V) 160 
1il6 Amber 8 100 ns Interleukin 6 166 
1sur Amber 8 100 ns PAPS Reductase 215 
1acb Amber 8 100 ns Alpha Chymotrypsin 241 
1cgi Amber 8 100 ns Alpha Chymotrypsinogen 245 

2hvm Amber 8 100 ns Hevamine 273 
1gnd Amber 8 100 ns Guanine nucleotide dissociation inhibitor 430 
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Table B.2. Distribution of  𝑲𝒂𝒑𝒑𝒂𝒎𝒂𝒙 for the dataset. For each protein, we identified the 

distance cutoff  𝑟𝑐 and community level 𝑁𝑐 for which we obtained the maximum value for 

Kappa coefficient. We show the values for 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 (𝐾_ max) for a subset of 5, 10, 20, 30 

and 50 low frequency modes. The median 𝐾𝑎𝑝𝑝𝑎𝑚𝑎𝑥 (𝐾_ max) for 20 modes is 0.61 and 

mode for 𝑟𝑐is 7.5. 

5 modes 10 modes 20 modes 30 modes 50 modes 

PDB  

ID 

𝑲𝒎𝒂𝒙 
 

𝒓𝒄 
 

𝑵𝒄 
 

𝑲𝒎𝒂𝒙 
 

𝒓𝒄 
 

𝑵𝒄 
 

𝑲𝒎𝒂𝒙 
 

𝒓𝒄 
 

𝑵𝒄 
 

𝑲𝒎𝒂𝒙 
 

𝒓𝒄 
 

𝑵𝒄 
 

𝑲𝒎𝒂𝒙 
 

𝒓𝒄 
 

𝑵𝒄 
 

2gb1 0.54 7 10 0.61 8 8 0.63 7.5 7 0.53 6.5 10 0.64 7 10 

1bpi 0.56 6.5 4 0.63 8 2 0.65 7.5 2 0.59 7.5 2 0.55 6.5 2 

1g6x 0.60 6.5 8 0.60 7 7 0.60 6.5 9 0.60 7 7 0.60 6.5 9 
1ark 0.74 7.5 4 0.70 7 4 0.72 7.5 4 0.69 7.5 4 0.72 7.5 5 

1i6f 0.62 7.5 6 0.58 6 6 0.62 6 6 0.62 7.5 6 0.60 6.5 6 

1fas 0.50 8 10 0.50 8 10 0.50 6.5 9 0.48 7 9 0.47 7 9 

3ci2 0.66 6.5 10 0.65 6.5 10 0.63 6.5 10 0.68 7 10 0.63 7.5 7 

1csp 0.55 8 9 0.67 7 2 0.64 7 2 0.61 7 2 0.61 7 2 

1sdf 0.74 7.5 2 0.74 7.5 2 0.74 7.5 2 0.74 7.5 2 0.74 7.5 2 

1tba 0.81 7.5 2 0.78 8 2 0.64 7.5 7 0.78 8 3 0.83 8 2 
1fvq 0.57 7.5 8 0.75 7.5 2 0.79 8 2 0.54 7.5 10 0.65 7.5 8 

1jw2 0.55 8 6 0.51 7.5 8 0.51 7.5 9 0.57 7.5 8 0.52 8 9 

1txa 0.64 8 6 0.64 8 3 0.65 7 7 0.64 8 3 0.57 8 10 

1sro 0.76 8 2 0.73 7.5 2 0.75 6 3 0.68 7 2 0.66 6 6 

1ubq 0.77 6 4 0.82 6 4 0.82 6 4 0.82 6 4 0.82 6 4 
4icb 0.61 7.5 9 0.62 8 10 0.63 7.5 7 0.58 6.5 10 0.54 8 8 

1pht 0.66 8 6 0.60 7 8 0.65 7 6 0.65 6 6 0.62 6 6 

1cei 0.51 7.5 8 0.49 7 10 0.52 8 9 0.46 6.5 7 0.45 7 10 

1ls9 0.56 6.5 9 0.54 6.5 10 0.60 7 10 0.53 6.5 10 0.58 6.5 9 

1j5d 0.57 7 10 0.56 7 8 0.57 7 7 0.55 7.5 5 0.52 6 5 
1opc 0.49 6.5 6 0.58 6 7 0.55 6 10 0.53 6.5 10 0.57 6 10 

1kte 0.58 6.5 6 0.58 7.5 5 0.62 6.5 6 0.68 7.5 4 0.59 7.5 8 

1fkb 0.58 7 9 0.64 7 10 0.62 7.5 9 0.59 6 5 0.63 6.5 9 

1nso 0.72 7.5 2 0.76 8 2 0.72 8 2 0.72 7.5 2 0.72 8 2 

1jli 0.58 6 10 0.57 6 10 0.58 7.5 10 0.64 7 9 0.59 6 10 

1ooi 0.51 6 10 0.54 6.5 6 0.59 6.5 9 0.54 7 9 0.55 6.5 6 

1agi 0.74 6.5 2 0.74 8 2 0.74 6.5 2 0.69 7.5 3 0.66 6 3 

1bfg 0.60 8 10 0.59 7 10 0.56 7 10 0.55 6 10 0.59 6.5 10 

1chn 0.65 6.5 2 0.70 6.5 2 0.70 6.5 2 0.70 8 2 0.73 6 2 

1idr 0.57 8 6 0.59 7.5 8 0.60 7.5 8 0.62 8 6 0.61 7.5 8 

1k40 1.00 7 2 1.00 6.5 2 1.00 6.5 2 0.98 6 2 1.00 6.5 2 

1lys 0.48 6.5 10 0.54 6 5 0.55 6 9 0.57 7 10 0.50 6.5 9 

1pdo 0.49 6 9 0.45 8 10 0.47 6 10 0.52 7.5 7 0.47 6 8 

1lit 0.57 7.5 9 0.58 7.5 7 0.54 6 10 0.56 6.5 9 0.56 7.5 7 

1cbs 0.59 7.5 2 0.55 6.5 5 0.59 7.5 5 0.67 8 2 0.65 7.5 4 

1kxa 0.43 6.5 8 0.43 6 10 0.44 8 8 0.39 6.5 10 0.46 6.5 9 

1emr 0.58 7 10 0.61 7.5 2 0.58 6 2 0.58 6.5 2 0.58 6.5 2 

1czt 0.38 8 8 0.35 6 7 0.37 8 8 0.42 6 9 0.40 7.5 8 

1il6 0.51 7 9 0.60 7 10 0.57 7 10 0.55 7 10 0.49 6 10 

1sur 0.64 7.5 2 0.50 8 10 0.75 8 2 0.54 7.5 2 0.63 7 2 

1acb 0.55 6 5 0.57 6.5 4 0.53 7.5 5 0.54 7.5 3 0.59 7 5 

1cgi 0.53 7 5 0.52 8 5 0.51 8 5 0.56 7.5 6 0.51 6 6 

2hvm 0.43 7.5 8 0.44 7.5 9 0.41 8 8 0.40 7.5 9 0.44 7.5 8 

1gnd 0.83 7 2 0.80 6 2 0.83 7.5 2 0.81 7.5 2 0.80 7 2 
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Table B.3. Distribution of median Kappa coefficient over all community levels with a 

subset of 20 modes.  We choose a 𝒓𝒄 which maximizes the Kappa coefficient over all 

community levels. The median Kappa when considering all communities and choosing a 

different 𝒓𝒄 for each protein is higher (0.49) than using a generalized 𝒓𝒄 (7.5 Å) for all 

proteins (Kappa coefficient = 0.41).    

 

PDB 
ID 

Median 
Kappa 

(𝒓𝒄 = 6Å) 

Median 
Kappa 

(𝒓𝒄 = 6.5Å) 

Median 
Kappa 

(𝒓𝒄 = 7Å) 

Median 
Kappa 

(𝒓𝒄 = 7.5Å) 

Median 
Kappa 

(𝒓𝒄 = 8Å) 

Max 
Kappa 

𝒓𝒄 for Max 
Kappa 

1acb 0.36 0.31 0.40 0.40 0.35 0.40 7.5 

1agi 0.52 0.55 0.51 0.50 0.52 0.55 6.5 

1ark 0.50 0.52 0.54 0.60 0.48 0.60 7.5 

1bfg 0.28 0.33 0.40 0.34 0.28 0.40 7 

1bpi 0.41 0.44 0.41 0.47 0.49 0.49 8 

1cbs 0.39 0.39 0.42 0.42 0.38 0.42 7.5 

1cei 0.28 0.35 0.32 0.27 0.30 0.35 6.5 

1cgi 0.38 0.40 0.42 0.43 0.38 0.43 7.5 

1chn 0.54 0.47 0.44 0.45 0.41 0.54 6 

1csp 0.45 0.40 0.43 0.42 0.39 0.45 6 

1czt 0.31 0.26 0.22 0.25 0.27 0.31 6 

1emr 0.35 0.43 0.41 0.39 0.33 0.43 6.5 

1fas 0.32 0.29 0.37 0.35 0.29 0.37 7 

1fkb 0.51 0.48 0.44 0.42 0.39 0.51 6 

1fvq 0.42 0.52 0.41 0.42 0.49 0.52 6.5 

1g6x 0.51 0.53 0.46 0.43 0.28 0.53 6.5 

1gnd 0.47 0.46 0.48 0.45 0.48 0.48 8 

1i6f 0.49 0.46 0.49 0.47 0.48 0.49 7 

1idr 0.43 0.43 0.47 0.49 0.51 0.51 8 

1il6 0.38 0.31 0.39 0.39 0.37 0.39 7 

1j5d 0.46 0.39 0.51 0.43 0.46 0.51 7 

1jli 0.37 0.41 0.33 0.36 0.32 0.41 6.5 

1jw2 0.39 0.36 0.36 0.41 0.37 0.41 7.5 

1k40 0.54 0.61 0.47 0.49 0.43 0.61 6.5 

1kte 0.43 0.49 0.41 0.40 0.43 0.49 6.5 

1kxa 0.38 0.36 0.25 0.29 0.38 0.38 8 

1lit 0.32 0.36 0.35 0.35 0.36 0.36 8 

1ls9 0.43 0.36 0.43 0.39 0.39 0.43 6 

1lys 0.39 0.30 0.37 0.33 0.32 0.39 6 

1nso 0.33 0.36 0.34 0.37 0.35 0.37 7.5 

1ooi 0.36 0.52 0.40 0.40 0.35 0.52 6.5 

1opc 0.43 0.42 0.35 0.43 0.42 0.43 6 

1pdo 0.35 0.39 0.35 0.40 0.37 0.40 7.5 

1pht 0.48 0.49 0.57 0.46 0.50 0.57 7 

1sdf 0.50 0.52 0.54 0.54 0.52 0.54 7.5 

1sro 0.58 0.48 0.49 0.41 0.48 0.58 6 

1sur 0.41 0.38 0.42 0.36 0.40 0.42 7 

1tba 0.13 0.51 0.58 0.55 0.61 0.61 8 

1txa 0.37 0.34 0.57 0.48 0.49 0.57 7 

1ubq 0.59 0.54 0.55 0.57 0.47 0.59 6 

2gb1 0.43 0.48 0.47 0.48 0.55 0.55 8 

2hvm 0.27 0.32 0.31 0.32 0.35 0.35 8 

3ci2 0.49 0.41 0.42 0.35 0.39 0.49 6 
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Table B.4. Correlation for node betweenness. We identified the distance cutoff  𝒓𝒄 which 

gives maximum correlation (𝜌𝑚𝑎𝑥 )for node betweenness calculated from MD and GNM. 

For the subset of 5, 10, 20, 30 and 50 modes, we show the correlation for node betweenness 

for each protein and the corresponding value for 𝒓𝒄. 

5 modes 10 modes 20 modes 30 modes 50 modes 
PDB 
ID 𝜌𝑚𝑎𝑥 𝒓𝒄 𝜌𝑚𝑎𝑥 𝒓𝒄 𝜌𝑚𝑎𝑥 𝒓𝒄 𝜌𝑚𝑎𝑥 𝒓𝒄 𝜌𝑚𝑎𝑥 𝒓𝒄 

2gb1 0.09 7.5 0.12 7 0.04 6 0.06 7.5 0.07 7.5 
1bpi 0.28 6 0.38 7.5 0.51 8 0.42 7.5 0.46 8 
1g6x 0.19 7.5 0.37 6 0.43 8 0.35 7.5 0.37 8 
1ark -0.28 8 0.40 7.5 0.56 7.5 0.54 8 0.38 6 
1i6f 0.00 6 0.35 7.5 0.51 8 0.53 8 0.43 6 
1fas 0.24 6 0.41 7.5 0.48 7.5 0.55 7.5 0.41 7.5 
3ci2 -0.31 6 -0.09 7.5 -0.01 7 0.17 8 0.15 7 
1csp 0.21 6 0.39 6.5 0.59 8 0.63 8 0.60 8 
1sdf 0.40 6.5 0.40 6.5 0.50 7.5 0.55 7.5 0.51 7 
1tba 0.23 6 0.42 6.5 0.37 7 0.40 7 0.36 7 
1fvq 0.09 6 0.11 6.5 0.34 8 0.28 8 0.36 8 
1jw2 0.18 6 0.24 6 0.08 8 0.20 8 0.14 8 
1txa 0.29 6 0.12 6.5 0.46 6 0.42 7.5 0.32 8 
1sro 0.32 6 0.40 6 0.50 7.5 0.53 7.5 0.56 7.5 
1ubq 0.35 7 0.40 7 0.57 7 0.61 7.5 0.67 7 
4icb 0.18 6 0.12 7 0.22 8 0.23 8 0.18 7.5 
1pht -0.06 6 0.07 8 0.24 7.5 0.29 8 0.31 8 
1cei 0.14 7.5 0.19 6 0.12 6 0.07 7 0.15 6 
1ls9 0.18 6.5 0.27 6.5 0.42 7.5 0.47 7.5 0.48 7 
1j5d 0.30 6 0.35 6 0.40 8 0.39 7 0.29 7 
1opc 0.11 7.5 0.10 8 0.31 7.5 0.29 7.5 0.28 7 
1kte -0.19 8 -0.22 8 0.00 7.5 0.07 7.5 0.10 7.5 
1fkb 0.24 6.5 0.10 8 0.39 7.5 0.41 7.5 0.47 7.5 
1nso 0.15 6 0.16 6.5 0.18 6 0.20 8 0.24 6.5 
1jli 0.22 7 0.28 7.5 0.40 7.5 0.43 7 0.49 7.5 

1ooi 0.11 6 0.12 7 0.40 8 0.36 8 0.44 8 
1agi 0.35 6 0.29 7 0.39 7.5 0.34 7.5 0.30 7.5 
1bfg 0.01 8 0.21 6.5 0.38 7 0.43 7 0.46 6 
1chn 0.14 6 0.23 6 0.35 8 0.42 8 0.52 8 
1idr 0.08 7.5 0.18 8 0.27 7 0.15 7 0.18 7.5 
1k40 0.03 8 -0.02 8 0.00 6 0.07 8 0.24 7 
1lys 0.16 6 0.22 6.5 0.36 7 0.37 7 0.49 7 
1pdo 0.07 6.5 0.11 6.5 0.30 6.5 0.44 8 0.51 8 
1lit 0.14 6 0.34 7 0.50 6.5 0.57 7 0.60 7 

1cbs 0.13 6 0.19 6 0.26 8 0.32 8 0.32 6.5 
1kxa 0.12 6 0.15 6 0.28 7.5 0.35 6.5 0.40 8 
1emr 0.24 6.5 0.29 6.5 0.39 6.5 0.48 6.5 0.49 6.5 
1czt 0.13 6.5 0.28 7.5 0.53 7.5 0.53 7.5 0.51 7.5 
1il6 0.19 7 0.22 8 0.33 8 0.40 7 0.42 6.5 
1sur 0.10 8 0.18 7.5 0.25 7.5 0.23 7.5 0.27 8 
1acb 0.03 6 0.10 6.5 0.24 6 0.35 8 0.48 8 
1cgi -0.05 6.5 0.11 8 0.29 8 0.36 7.5 0.48 7.5 

2hvm 0.08 6.5 0.09 6 0.11 8 0.14 8 0.22 7.5 
1gnd 0.15 6 0.26 6.5 0.29 6.5 0.33 6 0.37 8 
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Table B.5. Correlation for node closeness. The table shows the correlation for node 

closeness between MD and GNM. Similar to the node betweenness, we consider, for each 

protein, the distance cutoff (𝑟𝑐) which gives maximum correlation (𝜌_max ). 

 

 

 

 

5 modes 10 modes 20 modes 30 modes 50 modes 

PDB 
ID 

𝜌𝑚𝑎𝑥  𝒓𝒄 𝜌𝑚𝑎𝑥  𝒓𝒄 𝜌𝑚𝑎𝑥  𝒓𝒄 𝜌𝑚𝑎𝑥  𝒓𝒄 𝜌𝑚𝑎𝑥  𝒓𝒄 

2gb1 0.04 7.5 0.31 7.5 0.36 7.5 0.36 7.5 0.23 7.5 
1bpi 0.38 6.5 0.80 7 0.80 7 0.84 8 0.86 8 
1g6x 0.18 7.5 0.80 7.5 0.83 6 0.79 6 0.84 6.5 
1ark 0.20 7.5 0.57 7.5 0.65 7.5 0.72 7 0.76 8 
1i6f 0.51 6 0.72 7 0.75 7.5 0.72 8 0.66 7.5 
1fas 0.65 6.5 0.76 7 0.84 7 0.82 7 0.75 7 
3ci2 0.07 8 0.44 7.5 0.34 7.5 0.40 7.5 0.44 7.5 
1csp 0.57 6 0.68 6.5 0.87 6 0.86 8 0.85 6 
1sdf 0.80 6 0.92 7.5 0.86 7.5 0.89 7.5 0.91 6.5 
1tba 0.53 6.5 0.48 6.5 0.52 6.5 0.50 8 0.65 8 
1fvq 0.66 6 0.62 6 0.59 8 0.64 6 0.78 8 
1jw2 0.74 6.5 0.82 6 0.82 6 0.79 6 0.80 6 
1txa 0.32 6 0.56 7.5 0.54 7.5 0.57 7.5 0.44 7.5 
1sro 0.65 6 0.77 6 0.84 7.5 0.90 7.5 0.88 7.5 
1ubq -0.38 6.5 0.29 7 0.15 7 0.47 7 0.16 7.5 
4icb 0.66 8 0.82 7.5 0.72 8 0.75 8 0.81 7.5 
1pht 0.30 7 0.36 7.5 0.71 7.5 0.67 7.5 0.70 7.5 
1cei 0.33 6.5 0.49 6.5 0.53 6.5 0.25 6.5 0.20 6.5 
1ls9 0.18 6 0.55 8 0.66 7.5 0.64 7.5 0.62 7.5 
1j5d 0.42 6 0.61 6 0.51 8 0.51 8 0.46 7.5 
1opc 0.42 7 0.61 6.5 0.69 8 0.66 7.5 0.64 7.5 
1kte 0.15 6 0.21 8 0.44 7.5 0.42 7.5 0.42 8 
1fkb 0.38 6 0.61 7.5 0.80 6.5 0.79 6.5 0.75 6 
1nso 0.59 6 0.58 8 0.67 7.5 0.71 7.5 0.74 7.5 
1jli 0.49 6.5 0.64 7 0.77 7 0.81 7 0.81 7.5 
1ooi 0.12 6 0.28 6 0.51 8 0.51 7.5 0.43 7.5 
1agi 0.76 6.5 0.68 8 0.59 7.5 0.61 8 0.62 7.5 
1bfg 0.20 6.5 0.34 7 0.44 7 0.47 7.5 0.51 7 
1chn 0.37 6 0.72 6 0.74 6 0.67 7.5 0.66 8 
1idr 0.43 6 0.50 8 0.58 7.5 0.47 7.5 0.50 8 
1k40 -0.23 7 -0.12 8 0.27 8 0.52 8 0.78 7.5 
1lys 0.67 6.5 0.76 6.5 0.75 8 0.82 8 0.80 6.5 
1pdo 0.36 7 0.55 7 0.74 7 0.72 7 0.53 7.5 
1lit 0.32 6 0.37 6 0.73 6.5 0.78 6 0.81 6 
1cbs 0.37 6.5 0.57 6 0.74 8 0.72 8 0.71 8 
1kxa 0.28 8 0.28 6.5 0.42 6.5 0.57 6.5 0.61 6.5 
1emr 0.05 6 0.35 7 0.66 8 0.66 8 0.68 8 
1czt 0.45 7 0.59 7.5 0.68 6 0.62 7.5 0.59 6 
1il6 0.55 7 0.32 7 0.77 7 0.78 7 0.72 7 
1sur 0.54 6.5 0.25 7.5 0.54 7.5 0.62 6 0.56 6 
1acb 0.18 7 0.12 6 0.60 8 0.60 6.5 0.68 6.5 
1cgi 0.33 6.5 0.31 7 0.54 6 0.61 6 0.71 6 
2hvm 0.40 7.5 0.47 6 0.59 6 0.62 7.5 0.59 6 
1gnd 0.56 7 0.60 7 0.59 8 0.64 7.5 0.69 8 



188 

 

Table B.6. Distribution of root-mean square inner product (RMSIP) for the dataset. 

The principal eigenvectors are obtained with singular-value decomposition of the cross-

correlation matrices from MD and GNM. They capture the major directions of variations 

from the matrix. We see a considerably good overlap (median RMSIP 0.82 over all subsets 

of modes) between the principal eigenvectors from MD and GNM which suggests a close 

agreement between the two. 

 

 

5 modes 10 modes 20 modes 30 modes 50 modes 

PDB 
ID 

Max 
RMSIP 

𝒓𝒄 
Max 

RMSIP 
𝒓𝒄 

Max 
RMSIP 

𝒓𝒄 
Max 

RMSIP 
𝒓𝒄 

Max 
RMSIP 

𝒓𝒄 

2gb1 0.82 7 0.86 7.5 0.83 6 0.82 6 0.95 6 
1bpi 0.78 8 0.86 6 0.82 6 0.83 6 0.94 6 
1g6x 0.78 7.5 0.83 6.5 0.82 6 0.83 6 0.94 7.5 
1ark 0.82 7 0.86 7.5 0.84 6 0.85 6 0.92 7 
1i6f 0.76 6 0.82 7.5 0.82 6 0.83 6 0.93 6.5 
1fas 0.80 7.5 0.84 7.5 0.85 6 0.83 6 0.92 7.5 
3ci2 0.77 8 0.82 7.5 0.82 7 0.80 7.5 0.90 6 
1csp 0.77 7.5 0.81 6 0.84 6.5 0.84 6 0.90 6 
1sdf 0.83 8 0.86 6.5 0.81 6 0.82 6 0.90 6 
1tba 0.82 8 0.85 7 0.82 6.5 0.79 7 0.89 8 
1fvq 0.70 7.5 0.82 7.5 0.80 6 0.80 6 0.86 6 
1jw2 0.79 6 0.81 7.5 0.81 6 0.80 6 0.85 6 
1txa 0.67 7.5 0.79 7.5 0.81 7.5 0.81 6 0.87 6 
1sro 0.77 8 0.83 8 0.83 6 0.83 6 0.88 6 
1ubq 0.78 8 0.88 8 0.87 6 0.83 6 0.88 6 
4icb 0.71 7 0.83 7.5 0.82 6 0.80 6 0.84 6 
1pht 0.81 7.5 0.86 7.5 0.84 7.5 0.82 6 0.84 6 
1cei 0.71 6 0.81 7 0.83 6 0.81 6 0.82 6 
1ls9 0.69 7 0.84 7.5 0.85 6 0.81 6 0.83 7 
1j5d 0.68 7 0.76 7.5 0.81 7 0.81 6 0.83 6 
1opc 0.72 7 0.84 8 0.86 7 0.83 7 0.82 7 
1kte 0.70 7.5 0.81 6.5 0.83 7.5 0.82 6.5 0.82 6 
1fkb 0.84 8 0.88 7.5 0.88 7.5 0.86 6 0.83 6 
1nso 0.64 7 0.74 8 0.78 6 0.81 6 0.81 6 
1jli 0.66 6.5 0.80 7 0.84 7 0.83 6 0.82 6 

1ooi 0.72 7.5 0.82 7.5 0.87 7.5 0.84 6.5 0.81 6 
1agi 0.71 6 0.80 7.5 0.82 6 0.82 6 0.81 6 
1bfg 0.61 7.5 0.78 7.5 0.84 7 0.82 7 0.82 6 
1chn 0.75 8 0.88 7 0.86 7.5 0.85 7 0.82 6 
1idr 0.73 6.5 0.83 7.5 0.84 7.5 0.81 7 0.79 6 
1k40 0.79 8 0.85 8 0.88 6 0.82 6 0.80 7 
1lys 0.74 6 0.83 7.5 0.86 6.5 0.86 6.5 0.83 6 
1pdo 0.78 6 0.82 7.5 0.83 7.5 0.84 6.5 0.81 6 
1lit 0.73 8 0.82 6 0.87 7.5 0.86 6.5 0.84 6 

1cbs 0.70 7.5 0.79 7.5 0.86 8 0.84 6 0.82 6.5 
1kxa 0.67 7.5 0.81 8 0.82 7.5 0.81 7.5 0.81 6 
1emr 0.63 8 0.78 7.5 0.83 7 0.84 6 0.81 6 
1czt 0.68 8 0.79 8 0.82 7 0.83 7.5 0.83 6 
1il6 0.66 8 0.76 8 0.85 7.5 0.85 7 0.81 6 
1sur 0.78 7.5 0.78 8 0.84 7.5 0.84 7 0.81 7.5 
1acb 0.61 6.5 0.78 7 0.83 7.5 0.86 7.5 0.85 6 
1cgi 0.59 8 0.78 8 0.81 7 0.84 7.5 0.85 6 

2hvm 0.72 7 0.77 8 0.83 7.5 0.85 8 0.85 7 
1gnd 0.73 7.5 0.77 8 0.81 8 0.83 8 0.84 7.5 
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Figure B.1. Distribution of Kappa coefficient for all community levels when using 

a generalized distance cutoff (𝒓𝒄 = 7.5). We verified the variation of Kappa 

coefficient upon choosing a generalized 𝒓𝒄 = 7.5 for all proteins. The figure shows the 

median Kappa over all protein for all community levels for each subset of modes. It is 

interesting to see the median remaining almost the same across all modes, expect for 

50 modes, where it slightly decreases. The error bars indicate standard error for the 

Kappa coefficient for a given subset of modes.  



190 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2. Agreement of communities from unstable and stable mutant forms of T4 

Lysozyme with the wild-type using (A) subset of 5 modes, (B) subset of 10 modes, (C) 

subset of 20 modes, (D) subset of 30 modes , (E) subset of 50 modes. For each plot the 

abscissa is the number of communities and the ordinate is the Kappa coefficient. We observe 

that the stable forms more closely resemble the community structure of the wild-type protein 

(higher Kappa coefficient) than the unstable forms. The agreement/disagreement of the 

stable/unstable forms is more distinct for community levels 2-6 and also using when using a 

subset of 10 and 20 modes.  
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APPENDIX C.    SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

Table C.1. Performance of AR-Pred against other active site prediction methods. The 

percentage of proteins for which AR-Pred predicts the same or more number of true positive 

active site residues relative to the other methods is tabulated. The calculations are performed 

at each percent threshold that considers the top 10, 20, 30, 40 and 50 percent of the 

predictions. 

 

 

Table C.2. Performance of AR-Pred against other allosteric site prediction methods. 

The percentage of proteins for which AR-Pred predicts the same or more number of true 

positive allosteric site residues relative to the other methods is tabulated. The calculations are 

performed at each percent threshold that considers the top 10, 20, 30, 40 and 50 percent of 

the predictions. 

Method 
 
Threshold 
 Percent 

AlloPred AlloSitePro SPACER 

10 80.00 93.33 86.67 
20 80.00 93.33 86.67 
30 73.33 93.33 86.67 
40 86.67 93.33 80.00 
50 86.67 93.33 66.67 

Median 80.00 93.33 86.67 
 

 

              
            Method 
 
Threshold 
 Percent 

Concavity AADS POOL FOD 

10 57.89 89.47 61.11 84.21 
20 36.84 73.68 72.22 89.47 
30 57.89 78.95 77.78 89.47 
40 63.16 78.95 61.11 63.16 
50 68.42 84.21 66.67 78.95 

Median 57.89 78.95 66.67 84.21 
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Figure C.1. Distribution of allosteric residues. The number of proteins having a 

certain number of allosteric residues is shown. Each bin considers a certain range 

of allosteric residues and the number of proteins that have the same range of 

allosteric residues. It is seen that a majority of proteins in the dataset have 10-18 

allosteric residues.  

Figure C.2. Distribution of active site residues. The number proteins having a 

given number of active site residues is shown. Only two groups are prominent 

unlike the allosteric residue distribution which has more bins. 
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Figure C.3. Effect of cost on active site model performance. Median performance 

of models for active site prediction with and without including misclassification 

costs (cost for false positives and false negatives).  

Figure C.4. Effect of cost on allosteric site model performance. Median 

performance of models for allosteric site prediction with and without including 

misclassification costs (cost for false positives and false negatives). 
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Figure C.5. Performance of individual models for active site prediction. 

Different metrics show the performance of AR-Pred’s active site prediction models 

on their respective validation datasets. 

Figure C.6. Performance of individual models for allosteric site prediction. 

Metrics for AR-Pred’s allostery prediction models on their respective validation 

datasets are shown. The performance is considerably less than that of the active site 

prediction models and so are the inter-model variabilities. 
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A B 

Figure C.7. Receiver Operating Characteristics (ROC) Area Under Curve (AUC). 

AUCs for active site models (A) vs allosteric models (B).  

Figure C.8. Distribution of shortest distances for predicted active sites. The shortest 

distances of the top 15 predicted active sites from the reported sites is fit into a 

distribution and plotted. The shortest distance is defined as the minimum distance 

between the heavy atoms of the predicted active sites and any of the reported active site 

residues. All distances are reported in Angstrom.   
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Figure C.9. Comparisons of shortest distance distributions for predicted active site and random residues. The distributions 

of the shortest distances from the reported active sites for the top 15 predicted residues (red) from all the proteins are compared 

with the distributions of 15 randomly picked residues (blue). The comparisons are made for 50 iterations. The distances are 

measured in Angstrom. The distributions are sharper at shorter distances for the predicted residues than the randomly selected 

residues. 
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Figure C.10. Thermotoga maritima (PDB 3PG9) DAH7PS regulatory and 

catalytic domains. The regulatory (cyan) and catalytic (orange) domains for the 

protein are shown. The reported allosteric and active site residues are shown as cyan 

and orange spheres, respectively. The β2-α2 loop is colored in in violet. 
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Figure C.11. Alloteric residue predictions for DAH7S.  The predictions for allosteric residues made on DAH7S considering top 5 (A), 

top 10 (B), top 15 (C), top 20 (D), top 30 (E), and top 40 (F) predicted allosteric residues are shown. Fig F shows the two possibly 

allosteric routes that may be involved in transmitting the signal from the regulatory the active site domain, regulating the conformational 

transition of the β2-α2 loop.  
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Figure C.12. Distribution of shortest distances for predicted allosteric sites. The 

shortest distances of the top 15 predicted allosteric sites from the reported sites is fit 

into a distribution and plotted. The shortest distance is defined in the same way as in  

Fig. C8. All distances are reported in Angstrom.   
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Figure C.13. Comparisons of shortest distance distributions for predicted allosteric site and random residues. The distributions 

of the shortest distances from the reported allosteric sites for the top 15 predicted residues (red) from all the proteins are compared 

with the distributions of 15 randomly picked residues (blue). The comparisons are made for 50 iterations. The distances are measured 

in Angstrom. The distributions are sharper at shorter distances for the predicted residues than for the randomly selected residues. 



201 

 

APPENDIX D.    SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

 

Table D.1. List of proteins in the experimental ensemble dataset. 

Set 

# 
Protein Name 

#Resid

ues 

#Struct

ures 
Organism 

Representative 

Structure 

1 Sarcoplasmic/endoplasmic reticulum calcium 

ATPase 1 isoform (SERCA1a) 
995 63 Oryctolagus 

cuniculus 
3NAL_A 

2 Peptidyl-prolyl cis-trans isomerase A 159 136 Homo sapiens 3ODL_A 

3 Human Lysozyme C 131 218 Homo sapiens 1B5U_A 

4 B. anthracis Dihydrofolate reductase (DHFR) 162 76 Bacillus anthracis 3FL8_F 

5 Cytochrome c peroxidase, mitochondrial 292 165 Saccharomyces 

cerevisiae 
2AQD_A 

6 HLA class II histocompatibility antigen, D-R alpha 

chain 
172 108 Homo sapiens 1T5W_A 

7 Thaumatin I 202 80 Thaumatococcus 

daniellii 
3AOK_A 

8 FK506-binding protein 108 59 Homo sapiens 1D6O_A 

9 Human serum albumin (HSA) 555 99 Homo sapiens 2BXB_B 

10 Phi6 RNA-directed RNA polymerase 665 55 Pseudomonas 

phage Phi6 
1UVJ_A 

11 Squalene synthase 332 61 Homo sapiens 3WCF_F 

12 Camphor 5-monooxygenase 402 134 Pseudomonas 

putida 
1UYU_B 

13 Azurin 129 202 Pseudomonas 

aeruginosa 
1E5Y_C 

14 Proteinase K 280 61 Engyodontium 

album 
3DVR_X 

15 Beta-lactamase 359 143 Escherichia coli 4KZ5_B 

16 Hepatitis C RNA-directed RNA polymerase 548 162 Hepatitis C virus 2XHU_B 

17 Tankyrase-2 186 64 Homo sapiens 4PNN_B 

18 Heparin-binding growth factor 1 122 61 Homo sapiens 2HW9_A 

19 Casein kinase II subunit alpha 326 78 Homo sapiens 3NGA_A 

20 Thioredoxin 1 104 80 Escherichia coli 2H73_A 

21 H-2 class I histocompatibility antigen, alpha chain 272 89 Mus musculus 1S7U_A 

22 T4 lysozyme 163 183 Enterobacteria 

phage T4 
1G0J_A 

23 GTPase HRas 165 100 Homo sapiens 4L9W_A 

24 Heparin-binding growth factor 1 121 130 Homo sapiens 1JQZ_A 

25 Aldose reductase 309 120 Homo sapiens 2IKH_A 

26 Phosphopentomutase 390 60 Bacillus cereus 3M8Z_B 

27 MHC class I antigen 274 64 Homo sapiens 1ZSD_A 

28 Carboxypeptidase B 304 58 Sus scrofa 2PJ5_B 

29 HLA class I histocompatibility antigen, A-2 alpha 

chain 
276 256 Homo sapiens 3KLA_A 

30 Chemotaxis protein CheY 115 109 Escherichia coli 3F7N_B 

31 DNA polymerase beta 326 154 Homo sapiens 8ICZ_A 

32 Human Dihydrofolate reductase 183 74 Homo sapiens 1BOZ_A 

33 Glucosylceramidase 488 64 Homo sapiens 1OGS_B 

34 D-alanyl-D-alanine Carboxypeptidase 461 72 Actinomadura sp. 4BEN_C 

35 WD repeat-containing protein 5 294 80 Homo sapiens 2H6Q_B 

36 LeuT Transporter 503 45 Aquifex aeolicus 3F3D_A 
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37 Cathepsin S 217 58 Homo sapiens 2FRA_B 

38 Thermolysin 317 122 Bacillus 

thermoproteolyticu

s 

1KEI_A 

39 Polymerase 458 55 Human poliovirus 

1 
3OL6_A 

40 Hen egg white lysozyme 130 586 Gallus gallus 194L_A 

41 Beta-2-microglobulin 100 242 Mus musculus 1RJY_E 

42 Phospholipase A2 122 80 Daboia russellii 

pulchella 
1SV9_A 

43 Beta-lactamase TEM 260 59 Escherichia coli 1NYY_A 

44 Guanyl-specific ribonuclease T1 105 89 Aspergillus oryzae 1BU4_A 

45 E-coli Dihydrofolate reductase 160 80 Escherichia coli 1DHI_B 

46 Insulin-degrading enzyme 942 61 Homo sapiens 3OFI_A 

47 Cationic trypsin 224 421 Bos taurus 1S0Q_A 

48 Elastase 1 241 116 Sus scrofa 2BD3_A 

49 Endothiapepsin 331 52 Endothia 

parasitica 
3PI0_A 

50 Macrophage metalloelastase 153 83 Homo sapiens 3F17_A 

 

 

Table D.2. List of proteins with MD trajectory data 

Set 

# 
Protein Name Organism 

Representative PDB with 

MD data 

Simulation 

Details 

1 Beta-2-microglobulin Mus musculus 1HSA Amber 8, 20 

ns 
2 Camphor 5-monooxygenase Pseudomonas putida 1AKD Amber 8, 10.5 

ns 
3 H-2 class I histocompatibility antigen, D-B 

alpha chain 
Mus musculus 1HSA Amber 8, 20 

ns 
4 Thermolysin Bacillus 

thermoproteolyticus 
1FJ3 Amber 8 v1, 

10 ns 
5 Cytochrome c peroxidase, mitochondrial Saccharomyces 

cerevisiae 
1JDR Amber 8, 10 

ns 
6 HLA class I histocompatibility antigen, A-

2 alpha chain 
Homo sapiens 2BVO Amber 8, 20 

ns 
7 MHC class I antigen Homo sapiens 2AXG Amber 8, 10 

ns 
8 Elastase 1 Sus scorfa 1ESA Amber 9, 80 

ns 
9 Thaumatin I Thaumatococcus 

daniellii 
1THV Amber 9, 80 

ns 
10 HLA class II histocompatibility antigen, 

DR alpha chain 
Homo sapiens 1DLH Amber 8, 10 

ns 
11 Peptidyl-prolyl cis-trans isomerase A Homo sapiens 2CPL Amber 8, 80.5 

ns 
12 Heparin-binding growth factor 1 Homo sapiens 1FMM Amber 8, 10 

ns 
13 Hen Egg White Lysozyme C Gus gallus 1DPX Amber 8, 20 

ns 
14 Heparin-binding growth factor 1 Gallus gallus 1FMM Amber 8, 10 

ns 
15 Human Lysozyme C Homo sapiens 1JSF Amber 8, 10 

ns 
16 Phospholipase A2 Daboia russellii 

pulchella 
1BBC Amber 8, 10 

ns 
17 FK506-binding protein Homo sapiens 1FKB Amber 8v1, 

100 ns 
 

 

 



203 

 

Table D.3. Comparison of dcANMs based on experimental and MD datasets. 
T

es
t 

   
  
 

T
ra

in
  

  
  
  

𝑶𝟏
𝒎𝒂𝒙 𝑶𝟐

𝒎𝒂𝒙 𝑶𝟑
𝒎𝒂𝒙 𝑪𝑶𝟏

𝟐𝟎 𝑪𝑶𝟐
𝟐𝟎 𝑪𝑶𝟑

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟑
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟔

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟏𝟎
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟐𝟎

𝟐𝟎 

E
x
p

 

 

M
D

 
0.32 0.33 0.37 0.56 0.57 0.64 0.60 0.57 0.54 0.49 

M
D

 

 

E
x
p

  
  
  

 

0.34 0.32 0.30 0.60 0.56 0.55 0.58 0.58 0.56 0.50 

Values for each metric are averaged over the 17 proteins.  

The ‘Train’ set refers to the ensemble from which the internal distance changes were extracted to 

train the dcANM. The dcANM is built on the representative structure in each dataset. The ‘Test’ set 

refers to the ensemble from which the PCs were extracted. The modes from the dcANM generated 

using the ‘Train’ set are tested against the PCs from the ‘Test’ set using each of the 10 different 

metrics. 

 

 

Table D.4. Comparison of performance metrics between short and long MD 

simulations. 

Represen
tative 
PDB 

Simula
tion 
Type 

Simula
tion 
Time 

𝑶𝟏
𝒎𝒂𝒙 𝑶𝟐

𝒎𝒂𝒙 𝑶𝟑
𝒎𝒂𝒙 𝑪𝑶𝟏

𝟐𝟎 𝑪𝑶𝟐
𝟐𝟎 𝑪𝑶𝟑

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟑
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟔

𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟏𝟎
𝟐𝟎 𝑹𝑴𝑺𝑰𝑷𝟐𝟎

𝟐𝟎 

1HSA Short 20 0.28 0.24 0.30 0.53 0.53 0.66 0.58 0.63 0.62 0.57 

1AKD Short 10.5 0.38 0.31 0.25 0.73 0.61 0.62 0.66 0.61 0.58 0.53 

1HSA Short 20 0.55 0.46 0.43 0.90 0.81 0.78 0.83 0.76 0.68 0.57 

1FJ3 Short 10 0.55 0.32 0.43 0.78 0.58 0.82 0.73 0.67 0.59 0.51 

1JDR Short 10 0.20 0.12 0.32 0.43 0.27 0.56 0.44 0.46 0.45 0.44 

2BVO Short 20 0.76 0.62 0.43 0.89 0.91 0.71 0.84 0.78 0.70 0.62 

2AXG Short 10 0.67 0.29 0.44 0.90 0.54 0.84 0.77 0.68 0.65 0.57 

1ESA Long 80 0.22 0.36 0.23 0.48 0.63 0.65 0.59 0.62 0.62 0.55 

1THV Long 80 0.17 0.41 0.53 0.38 0.66 0.82 0.64 0.60 0.59 0.52 

1DLH Short 10 0.34 0.52 0.36 0.71 0.89 0.75 0.78 0.70 0.67 0.57 

2CPL Long 80.5 0.13 0.21 0.21 0.31 0.42 0.54 0.43 0.52 0.58 0.56 

1FMM Short 10 0.35 0.30 0.34 0.58 0.58 0.75 0.65 0.64 0.60 0.54 

1DPX Short 20 0.37 0.33 0.31 0.56 0.76 0.62 0.65 0.70 0.70 0.67 

1FMM Short 10 0.24 0.39 0.27 0.50 0.61 0.53 0.55 0.54 0.53 0.49 

1JSF Short 10 0.47 0.56 0.39 0.72 0.79 0.74 0.75 0.69 0.69 0.62 

1BBC Short 10 0.38 0.31 0.52 0.78 0.64 0.77 0.73 0.67 0.60 0.53 

1FKB Long 100 0.32 0.54 0.46 0.58 0.84 0.73 0.73 0.74 0.70 0.62 

 

P-value (Wilcoxon Test)* 1.00 0.39 0.56 0.99 0.48 0.69 0.95 0.85 0.61 0.56 

P-value (Welch's t-test)# 1.00 0.44 0.55 0.99 0.57 0.62 0.88 0.74 0.46 0.39 
*
Wilcoxon rank sum test with 𝐻𝑜: 𝜇𝑆 = 𝜇𝐿 and with 𝐻𝐴: 𝜇𝑆 < 𝜇𝐿 

#
Welch’s t- test with 𝐻𝑜: 𝜇𝑆 = 𝜇𝐿 and with 𝐻𝐴: 𝜇𝑆 < 𝜇𝐿 

(S = short simulations; L = long simulations) 
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