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ABSTRACT 

 Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) recently 

emerged in the U.S. swine population resulting in an estimated loss of $481 - $929 million U.S. 

dollars in 2013-14. Both PEDV and PDCoV cause diarrheic disease resulting in dehydration, 

weight loss, and sometimes death. Although pigs of all ages are susceptible to these viruses, 

suckling piglets suffer the most severe disease. During 2013, PEDV associated pre-weaning 

morality rates approached 100% in naïve breeding farms. Many studies to date have 

demonstrated the significant impact of PEDV and PDCoV infections in pre-weaning piglets, but 

information on the diseases impact on older animals is limited or absent. To address this issue, a 

comparative pathogenicity study was conducted to characterize PEDV and PDCoV infection 

using 6-week-old experimentally-infected nursery pigs. Animals were challenged and then 

periodically necropsied until 42 days post inoculation (dpi). As a result, both PEDV and PDCoV 

were pathogenic and caused diarrhea in growing pigs, although the duration of diarrhea was 

shorter than reported in pre-weaning piglets. Compared to PDCoV, PEDV caused more severe 

clinical disease including reduced average daily gain and higher viral load in tissues and feces. 

Additionally, PEDV caused lesions in small intestinal tissues, but no apparent lesions were 

observed in pigs inoculated with PDCoV.  Differences in the magnitude and duration of serum 

antibody response was also apparent between PEDV- and PDCoV-infected animals when 

measured by indirect fluorescent antibody (IFA) test and serum-virus neutralization (SVN) 

assay. Unexpectedly, anti-PDCoV antibodies waned to undetectable levels by 28 dpi, while anti-

PEDV antibodies were detectable through the end of the study (42 dpi).  Taken together, the 

pathogenicity of PEDV and PDCoV in growing pigs clearly differed under the study conditions, 

warranting further studies to elucidate pathogenesis and immunobiology of these coronaviruses 

in different age groups.  
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CHAPTER 1. GENERAL INTRODUCTION  

 

Introduction 

 With the emergence of new swine enteric coronaviruses (SECoV), PEDV and PDCoV 

led to devastating consequences on U.S. swine production. PEDV and PDCoV cause similar 

disease as TGEV, a historical SECoV, but are antigenically distinct from each other. SECoV 

infect villous and sometimes crypt enterocytes inducing atrophic enteritis in young piglets which 

is manifested by clinical effusive diarrhea due to malabsorption and increases osmotic secretions. 

More specifically, PEDV and PDCoV are more virulent to neonate piglets than weaned pigs. For 

example, during the PEDV outbreak in 2013 up to 90% mortality was seen in naïve, pre-weaning 

piglets. In 2013-14, PDCoV had an estimated mortality rate ranging from 40% - 80% (Jung et 

al., 2016). While many pathogenicity studies for PEDV and PDCoV have been completed in 

neonatal and pre-weaning piglets, there is a lack of such studies in older animals. The studies 

presented in this thesis characterized comparative pathogenicity of SECoV in nursery pigs and 

evaluated the diagnostic performance of serological assays with experimentally derived serum.  

  

Thesis Organization 

 This thesis is organized into three chapters. The first chapter presents a review of the 

literature including SECoV disease presentation, pathogenesis, and host immune responses to 

infection. The second chapter discusses specific research projects which compared SECoV 

pathogenesis and antibody response. The third, and final, chapter states general conclusions from 

the research chapters and provides future directions of SECoV research.      
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Literature Review 

I. General overview of Coronaviridae 

Taxonomy and virus family members 

Coronaviruses (CoVs) are a diverse group of viruses belonging to the family 

Coronoviridae. In the order Nidovirales. Within the Coronaviridae family, there are four genera: 

Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. 

Alphacoronaviruses including human strains NL63 and 229E, porcine respiratory coronavirus, 

and feline coronavirus infect the epithelial cells of the lungs causing respiratory illness (Deng et 

al., 2016; Masters and Perlman, 2013). On the other hand, swine alphacoronaviruses, such as 

transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) in pigs, 

canine CoV, and bovine CoV infect the enterocytes lining the gastrointestinal track causing 

diarrhea (Kolb et al., 1998; Masters and Perlman, 2013).   

Two viruses belonging to Betacoronavirus, severe acute respiratory syndrome 

coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), 

cause severe respiratory symptoms and even death in human cases. In 2003, SARS-CoV 

emerged and caused an outbreak in humans attributing to 9% mortality in Asia and secondary 

cases globally. Himalayan palm civets were identified as the primary reservoir responsible for 

virus transmission to humans (Song et al., 2005). Other betacoronaviruses cause disease in 

domestic (murine) and livestock species. For example, bovine coronavirus and canine respiratory 

coronavirus cause respiratory illness, while porcine hemagglutinating encephalomyelitis virus 

(PHEV) causes a chronic wasting disease attributed to neurological symptoms (Masters and 

Perlman, 2013).      
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While alpha- and beta-CoVs are commonly detected in mammalian hosts, 

gammacoronaviruses and deltacoronaviruses are of primarily avian origin. The number of strains 

of avian CoVs is limited when compared to mammalian CoVs, including bat CoVs. With new 

advances in diagnostic technologies, more avian CoVs have been discovered. Due to the vast 

diversity in avian species susceptible to CoVs, it is suspected that avian-derived CoVs could be 

one of the primary reservoirs for emerging coronaviruses, like porcine deltacoronavirus 

(PDCoV) (Woo et al., 2012). Recently, Woo and colleagues identified three new avian 

coronaviruses: bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus 

HKU13. Collectively, PDCoV, a single porcine deltacoronavirus, and nine avian coronaviruses 

represent the genus Deltacoronavirus, while Beluga whale coronavirus SW1, avian infectious 

bronchitis virus, and turkey coronavirus make belong to Gammacoronavirus (Woo et al., 2012). 

The evolution of avian and mammalian CoVs were discussed in a recent publication. It was 

proposed that CoV diversity of avian species within Gammacoronavirus and Detacoronavirus 

and that of bat species in Alphacoronavirus and Betacoronavirus, but not vice versa, provided 

evidence for host specificity and virus evolution of CoV (Woo et al., 2012). In conclusion, both 

avian and mammalian CoVs diversity could attribute to its vast dissemination and transmission 

to other mammalian hosts, such as swine, although this still needs to be addressed. 

Coronavirus structure and protein function 

The single-stranded positive-sense RNA genome of Coronaviridae is the largest of all 

RNA viruses, measuring at 27-32 kilobases (kb) (Masters and Perlman, 2013). CoV are 

enveloped viruses with pleomorphic morphology and characteristic “crown-like” large 

peplomers protruding from the viral envelope, around 120 nm in diameter (Pensaert and De 

Bouck, 1978). There are four major structural proteins that make up the virion: spike (S), 
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membrane (M), envelope (E), and nucleocapsid (N). A subset of betacoronaviruses contain a 

fifth structural protein, hemagglutinin-esterase (HE), which binds sialic acid cell receptors on 

surface glycoproteins and assists the S protein in viral attachment through acetylesterase activity 

(Masters and Perlman, 2013). All the structural proteins except N are located in the viral 

envelope; N protein (55-58 kDa) is associated with the viral genome (Masters and Perlman, 

2013).  

As the largest structural protein ranging in size from 60 to 160 nm, S protein (180-220 

kDa) forms a trimer complex the on the viral surface. S protein binds glycoprotein receptors on 

the surface of host cells which facilitates entry into the host cell. S protein includes 2 domains, 

S1 and S2, which is cleaved late in virion assembly allowing infectious virions to be released 

from the infected cell. S1 is extremely variable with low homology across genera while S2 is 

highly conserved across genera. Overall, S plays a key role in host tropism (Masters and 

Perlman, 2013). Based on the CoV genera and species, the S protein engages different host cell 

receptors. For instance, alphacoronaviruses bind through N-linked glycosylation to the host cell 

receptor, aminopeptidase N (APN) (de Groot-Mijnes et al., 2005; Deng et al., 2016; Li et al., 

2016; Perlman and Netland, 2009; Saif et al., 2012). It has been shown in the presence of trypsin, 

that PEDV binds APN; however, it can also bind sialic acid, suggesting utilization of alternative 

receptors for viral attachment and entry in vitro (Kolb et al., 1998; Li et al., 2016; Taguchi et al., 

2016). While similar, there are differences in the preferred receptors of emerging 

alphacoronaviruses.  

In addition to S protein, some CoV, specifically betacoronaviruses, have an additional 

surface protein called the hemagglutininesterase (HE) protein. Specifically, murine coronavirus, 

betacoronavirus 1, and human CoV HKU1 have HE protein which can act with S protein to 
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facilitate cell attachment and entry (Masters and Perlman, 2013; Perlman and Netland, 2009). 

The main function of the HE protein is to bind sialic acid residues on the cell surface 

glycoproteins (Callebaut and Pensaert, 1980; King and Brian, 1982; Masters and Perlman, 2013). 

HE proteins assists S proteins in the attachment to host cells through HE protein’s acetylesterase 

activity toward sialic acid residues on surface of the host cells (Klausegger et al., 1999; Masters 

and Perlman, 2013; Regl et al., 1999; Smits et al., 2005; Vlasak et al., 1988a, 1988b). Together, 

HE and S proteins bind host cells and facilitate viral entry.     

M protein (29-36 kDa), the relatively conserved structural protein, is embedded in the 

virion envelope by three transmembrane domains which give the envelope its shape (Masters and 

Perlman, 2013; Saif et al., 2012). The M protein attaches to host cell’s cytoplasm at the C-

terminus. The N-terminus of M protein is cleaved by N-terminal signal peptides at the site of N-

linked glycosylation in alphacoronaviruses. N-linked glycosylation by viral proteins may assist 

in virus-cell attachment, virus survival, virulence, and attenuation of the immune system. 

Alternatively, M protein O-linked glycosylation can occur in a subset of betacoronaviruses 

(Masters and Perlman, 2013). Specifically, glycosylation of host-cell membrane receptors by S 

and M proteins of SARS-CoV interacts with cell-associated lectins, specifically, LSECtin and 

DC-SIGN, which promotes viral attachment and entry (Vigerust and Shepherd, 2007).  In 

TGEV, the M protein glycosylation site attributes to the viral tissue tropism and interferon (IFN) 

induction (Masters and Perlman, 2013; Saif et al., 2012). The N-terminus of TGEV M protein 

contains a single glycosylation site which was shown to induce Type I IFN in vitro (Baudoux et 

al., 1998). Additionally, M protein can bind TGEV complement-dependent neutralizing 

monoclonal antibodies (Godet et al., 1992; Saif et al., 2012; Woods et al., 1988). Due to high 

conservation of M protein among CoV, M protein stability may contribute to CoV host 
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specificity. However, these antigenic similarities are a major concern for cross-reactivity which 

may rule out CoV M protein’s ability to differentiate antigens in serology.  

E protein is a very small polypeptide structural protein, weighing only 8-12 kDa on 

average. E protein contains a short hydrophilic N terminus followed by a largely hydrophobic 

region and a large hydrophilic C-terminus tail. E protein is essential for functional virions. For 

example, when GFP-expressing infectious clones of TGEV were created with the E and M 

proteins knocked out. The E and M proteins were both shown to be essential for virion budding, 

as E and M protein defective constructs replicated, but could not produce progeny infectious 

virions. Additionally, a cloned TGEV replicon virus without a functional M protein proved lethal 

to the virion function, as no TGEV virus was recovered from infected cell cultures (Curtis et al., 

2002; Masters & Perlman, 2013; Ortego et al., 2002). The E protein of CoVs insert into the ER, 

where they are transported with M and S to the site of virion assembly, the endoplasmic 

reticulum-Golgi intermediate compartment (ERGIC). N protein in the ERGIC coalesce with E 

and S proteins to form virions. For other alpha-CoV like PEDV and PDCoV, E protein may also 

play a role in virion assembly, but their role in immunogenicity remains a mystery. PEDV E 

protein has been shown to have poor antigenicity in vitro which can be explained by its relatively 

small abundance compared with the other envelope proteins (Gimenez-Lirola et al., 2017).  

Additionally, E protein among different CoV can be widely divergent among CoV leading to a 

variety in how they interact with the immune system. Altogether, CoV E protein plays an 

essential role in virion assembly and has some immunogenic features, although they can vary 

based on CoV strain.   

N protein is the only structural protein not housed in the viral envelope, where it’s 

enclosed in the ribonucleoprotein core. N protein provides structural protection to the viral RNA 



7 

 

genome. The N-terminal domain of CoV N protein contains an RNA-binding groove where it 

binds viral RNA (vRNA) and forms a helical ribonucleoprotein complex (Fan et al., 2005; 

Grossoehme et al., 2009; Masters and Perlman, 2013; Saikatendu et al., 2007). CoV N protein 

undergoes a conformational change triggered by phosphorylation, enhancing its affinity for viral 

versus non-viral RNA (Chen et al., 2005; Masters and Perlman, 2013; Stohlman et al., 1988). N 

protein is known to be highly antigenic and relatively conserved. In such, closely related strains 

have potential to cross-react on serological assays. For example, PEDV and TGEV N proteins 

have been shown to cross-react in N protein-based ELISAs. However, truncation of the N-

terminal region of the protein has shown to reduce such cross-reactivity in serological assays 

(Chen et al., 2016b; Okda et al., 2015).  

Coronavirus genomic organization and gene expression 

 The CoV genome, ranging from 26 – 32 kilobases (kb), is the largest of all RNA viruses 

and contains seven to eight open reading frames (ORFs), of which the two largest ORFs overlap, 

along with the untranslated region at both 5’ and 3’ ends.  Each gene is expressed via production 

of co 3’-end nested subgenomic mRNAs. The CoV genome encodes a large replicase gene which 

includes ORF1a and ORF1b, upstream from the viral structural protein genes (e.g., HE, S, E, M, 

N) and ORF3 (Masters and Perlman, 2013). The CoV replicase complex makes up almost two-

thirds of the entire genome CoV and its product initiates the replication of viral genome and 

production of transcripts (i.e., mRNAs) for structural proteins and accessory proteins. (Masters 

and Perlman, 2013; ViralZone, 2017). 

Coronavirus functional genomic studies have been done in murine hepatitis virus, a 

mammalian betacoronavirus, and TGEV due to the fact that a reverse genetic system (i.e. 

infectious cDNA clone) was available for these viruses. Upstream of all the structural protein 
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genes, making up a majority of the genome, is open reading frame 1ab (ORF1ab) which encodes 

replicase proteins. ORF1 encodes two polyproteins, ORF1a and -1b, from which 16 non-

structural proteins (nsp) are transcribed. ORF1ab serves as the precursor responsible for viral 

genomic replication and transcription (Huang et al., 2008). A programmed -1 ribosomal 

frameshift of ORF1b is required for production of RNA-dependent RNA polymerases which 

initiate transcription of viral genomic proteins, including non-structural proteins (Perlman, 1998; 

Perlman and Netland, 2009; Plant and Dinman, 2008). A leader sequence at the 5’ end serves as 

an anchor to produce subgenomic mRNAs (Perlman and Netland, 2009). The viral RNA-

dependent RNA-polymerase (nsp12) uses a primase (nsp8) to produce the necessary primers 

which initiate viral RNA synthesis (Perlman and Netland, 2009). Additionally, nsps 7 – 10 act as 

co-factors to the other functional nsps, which play an essential role in subgenomic and genomic 

RNA replication (Deming et al., 2007).  

PDCoV, a newly discovered deltacoronavirus, genomic organization is similar to other 

coronaviruses and is organized in the following manner: 5’- replicase ORF1ab, S, E, M, N - 3’  

(Masters and Perlman, 2013; Woo et al., 2012). PDCoV has the smallest genome of all 

mammalian coronaviruses measuring 26 kb which contains only 2 accessory genes, NS6 and 

NS7 (Woo et al., 2012). ORF NS6 is located between the M and N genes, while the other ORFs 

lie downstream from the N gene.  

Coronavirus replication in vitro 

CoVs contain protein domains functionally similar to other RNA viruses, such as: Human 

Immunodeficiency Virus and Influenza A Virus (IAV). The CoV S fusion peptide is exposed and 

interacts with the host cell membrane. A trimerization of the S protein monomers occur, resulting 

in the release of the CoV virion into the infected cell’s cytoplasm (Masters and Perlman, 2013; 
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Saif et al., 2012). Clathrin-mediated endocytosis allows the virion into the cytoplasm moving 

along on actin filaments where nsps 7 – 16 assist in the formation of the replicase-transcriptase 

complex (RTC). Formation of the RTC precedes synthesis of the vRNA, the initial step in CoV 

replication. CoV replication occurs in double membrane vesicles derived from the cell’s 

organelles called viral factories. Due to its single stranded positive-sense RNA genome, a double 

stranded RNA genome must first be synthesized (ViralZone, 2017). CoV transcription occurs 

through discontinuous extension of negative-stranded RNA synthesis, a template for the RTC 

(Masters and Perlman, 2013). CoV structural proteins (S, M, N, E) are inserted into the 

endoplasmic reticulum (ER). From the ER, they transit to the site of virion assembly, the 

endoplasmic reticulum-Golgi intermediate compartment (ERGIC). CoV N protein in the ERGIC 

associates with the other structural proteins in the envelope to form virions. Complete virions are 

released from the ERGIC in vesicles, then travel along actin filaments, through the cytoplasm, 

and finally release from the cell through exocytosis.    

In addition to the essential structural protein genes, CoV genome contains accessory 

genes which are not required for virus growth or expressed by all coronaviruses. Accessory genes 

can regulate and coordinate viral gene expression and function, along with some other ancillary 

roles. These accessory protein genes are located in the region between S and E protein genes as 

well as 3’ to the N protein gene of TGEV, PRCV, and PEDV (Huang et al., 2008). In TGEV, the 

region between S and E proteins genes contains the accessory genes ORF3a and 3b. While not 

critical for TGEV replication, ORF3b has been shown to produce glycosylated M protein in vitro 

(Huang et al., 2008). Other SECoV genomes contain homologs of the ORF3a and 3b genes. 

Additionally, accessory gene 7, located at the 3’ end of N, is present in TGEV but not in other 

SECoV, where it encodes a hydrophobic protein of 9 kDa. This accessory protein does attenuate 
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the virulence of virus if deleted as shown in vivo, but does not affect virus replication in vitro 

(Huang et al., 2008; Ortego et al., 2003). While SECoV accessory proteins are common, they do 

not play an essential role in virion function, but can interfere with virion processes as evidenced 

with TGEV. 

 

II. Swine coronaviruses  

Taxonomy and history 

Swine CoVs are classified into 3 genera: Alphacoronavirus, Betacoronavirus, and 

Deltacoronavirus. Within the Alphacoronavirus genus, there are several swine coronaviruses. 

The two swine CoV that cause enteric disease, include TGEV and PEDV. Another 

alphacoronavirus, PRCV, is a deletion mutant of TGEV and a swine respiratory pathogen. 

Porcine hemagglutinating encephalomyelitis virus (PHEV), a betacoronavirus, causes a 

neurologic disease. PDCoV is the only porcine deltacoronavirus which causes enteric disease 

similar to TGE and PED. Collectively, TGEV, PEDV, and PDCoV have been proposed to be 

swine enteric coronaviruses (SECoV); a collective group of CoVs that are able to cause diarrheic 

disease in pigs of all ages, although disease is most severe in suckling piglets (Curry et al., 2017; 

Saif et al., 2012; Saif, 1996).  

In 1946, TGEV, an emerging pathogen which caused a severe malabsorptive diarrhea, 

was first isolated (Doyle and Hutchings, 1946). The virus became endemic in the U.S. swine 

population, continuing to cause significant pre-weaning mortality and diarrheic disease in pigs of 

all ages. In 1984, a TGEV mutant known as PRCV later emerged (Laude et al., 1993). PRCV 

contains a substantial deletion in the S gene of TGEV, changing its cell tropism to cause a 

respiratory disease instead of enteric disease. Porcine respiratory coronavirus replicates in the 

nasal mucosa, trachea, and lungs of pigs causing mostly a mild or subclinical infection (Saif, 
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1993). Due to their antigenic similarities, it was observed that PRCV-exposed dams can partially 

protect their nursing piglets from TGEV (Bernard et al., 1989; Lanza et al., 1995; Paton & 

Brown, 1990). Today, PRCV antibodies are detectable in the serum and colostrum of most 

lactating sows and prevalence of disease caused by PRCV and TGEV is not common.   

In Europe, a new alphacoronavirus, PEDV was discovered in 1971 and caused diarrheic 

disease similar to TGE, but was antigenically different from TGEV (Pensaert & De Bouck, 1978; 

Saif & Wesley, 1992; Wesley et al., 1997). A common historical strain of prototype PEDV (now 

commonly referred to as G1), CV777, was endemic in multiple countries across Europe and Asia 

(Alvarez et al., 2016; Choudhury et al., 2016; Lin et al., 2016). In 2010, a new strain of PEDV 

called variant PEDV (now commonly referred to as G2) caused devastating mortality in pre-

weaning pigs across Asia. Shortly after, the similar variant PEDV was identified in the U.S. in 

2013 (Stevenson et al., 2013). Variant PEDV emerged in the U.S. with each of the strain’s 

lineage highly related to the 2012 variant PEDV strain identified in Anhui Province in China, 

although it is unclear how the first index case of PED arose in the U.S. (Huang et al., 2013). 

Beginning in 2013, the PEDV U.S. prototype strain quickly spread across North America 

causing epidemics of diarrhea and mortality in 90% of pre-weaning piglets in the United States, 

Canada, and Mexico (Chen et al., 2014; Jung et al., 2015; Madson et al., 2014; Marthaler et al., 

2014).  

Porcine epidemic diarrhea virus is highly infectious and spreads through ingestion or 

inhalation of virus-contaminated feces from infected pigs (Stevenson et al., 2013). In addition, 

PEDV can be transmitted by contact with fecal or organic matter containing infectious PEDV 

through improperly decontaminated animal trailers and farm equipment, known as fomites 

(Lowe et al., 2014). Other studies have observed that proximity of uninfected swine herds to 
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PEDV-infected herds could have played a factor in its rapid dissemination in the U.S. (Alvarez et 

al., 2016; Bottoms et al., 2013; Pensaert & Martelli, 2016). Finally, feedstuff contaminated by 

PEDV is a potential risk to disease spread; however, the ability for contaminated feedstuffs to 

cause disease has not proven successful under experimental conditions (Opriessnig et al., 2014; 

L. Wang et al., 2016). 

Starting in 2014, PED outbreaks continued to occur, but were clinically less severe than 

observed with PEDV U.S. prototype strains. Upon sequence analysis, PEDV with deletions and 

insertions in the S gene was identified and later referred to as PEDV S-INDEL (also known as 

PEDV S gene variant). The PEDV S-INDEL strain demonstrated a less severe clinical disease 

presentation than PEDV U.S. prototype strain, which has been observed under experimental 

conditions. (Chen et al., 2016; Lin et al., 2015).   

PDCoV was detected in diagnostic samples from U.S. swine with diarrhea as early as 

2013 through a retrospective analysis, although it wasn’t reported until 2014 (Sinha et al., 2015; 

Wang et al., 2014; Zhang et al., 2016). PDCoV caused an estimated 40% mortality rates of 

infected suckling piglets, which is less than PEDV infection that can approach greater than 90% 

(Jung et al., 2016; Schulz and Tonsor, 2015). During the 2013-2014 outbreak, the emergence of 

PEDV and to a lesser extent PDCoV cost the U.S. economy anywhere from $900 million to $1.8 

billion when reduced annual pig loss, loss on hog returns, and decreased annual consumer 

surplus are taken into consideration (Paarlberg, 2014; Schulz and Tonsor, 2015). 

Pathogenesis and pathogenicity 

SECoV infect enterocytes of the small intestine causing effusive diarrhea and/or vomiting 

which is indistinguishable among SECoV. Malabsorptive diarrhea caused by SECoV infection 

leads to a reduced absorptive capacity of the intestinal villi due to malabsorption and increased 
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osmotic secretions (Chen et al., 2015; Madson et al., 2014). Additionally, the severity of clinical 

diarrhea can lead to dehydration and eventually mortality in naïve neonatal piglets. While 

clinical disease is similar among the emerging CoVs, PEDV and PDCoV, there are some 

differences when it comes to the disease impact on young animals. More specifically, PEDV-

infected animals suffer lethargy and appetite loss causing reduced daily feed intake during the 

acute clinical phase (Curry et al., 2017). On the contrary, PDCoV-infected animals become 

lethargic, but have a normal feed intake. Due to the malabsorption and reduced intake of feed 

caused by PEDV infection, nutrients are lost resulting in poor performance by the animal (Curry 

et al., 2017, 2016).  

The severity of clinical disease in pigs infected with PEDV cam vary which may relate to 

a difference in pathogenicity by strain. For example, classical PEDV, such as CV777 strain, and 

prototype PEDV strains cause similar acute gastroenteritis and intestinal lesions as the virulent 

TGEV Miller strain (Callebaut et al., 1982; Pensaert, 1992; Pensaert and Martelli, 2016). Other 

studies found similar finding in 3-day old and 1-week old piglets infected with other virulent 

prototype PEDV strains (Lin et al., 2015; Yamamoto et al., 2015). PEDV infection can cause 

prolonged viral detection in young piglets. PED vRNA detection in the feces of pre-weaning 

piglets and exposed dams extended to 14 – 35 dpi, despite the resolution of clinical diarrhea by 7 

– 10 dpi (Vitosh-Sillman et al., 2016). On the other hand, after the emergence of PEDV in the 

U.S., a new variant PEDV strain named PEDV S-INDEL was detected (Lin et al., 2015; Oka et 

al., 2014; Yamamoto et al., 2015). As compared to PEDV U.S. prototype strains, PEDV S-

INDEL infected piglets resulted in diminished clinical signs of disease including lower 

histopathological lesion scores (i.e. less severe lesions) in intestinal tissues and lower viral 

genomic copies in feces and when compared with the U.S. prototype PEDV infected piglets 
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(Chen et al., 2016), suggesting that PEDV S-INDEL strains are less virulent than prototype 

PEDV strains. 

Differences in the viral load detected in the intestinal tissues and feces of different aged 

pigs infected with highly virulent PEDV strains have been demonstrated. Moreover, age-

dependent pathogenicity to the PEDV U.S. prototype infection has been studied in pre-weaning 

and post-weaning piglets, with limited research done on growing pigs. In PEDV-infected 

neonates, slower turnover of infected enterocytes and lack of immunological memory play a role 

in severe pathogenicity. For example, infected nine-day-old pigs had significantly higher viral 

titer in feces than the 26-day-old pigs during the clinical phase of disease (Jung et al., 2015). 

When comparing clinical disease between 9-day-old and 21-day-old piglets, the older piglets 

developed diarrhea starting at 2 – 3 dpi, while the neonatal piglets suffered from severe watery 

diarrhea starting at 1 dpi. While the age-dependent mechanism is unclear, research has shown 

pathogenicity differences in the intestinal function of pre-weaning versus weaned pigs in 

response to PEDV. In PEDV U.S. prototype infected neonates, impaired crypt stem cell and lytic 

activity of infected enterocytes, disrupted intestinal barrier with shortened villi and widening of 

intestinal crypts, and reduced numbers of interferon-gamma (IFN-γ) producing cytotoxic cells 

(NK cells) (Annamalai et al., 2015; Curry et al., 2017, 2016; Jung et al., 2015). Taken together, 

PEDV causes comparable diarrheic disease, but the age of the pig can play a role in PEDV 

pathogenicity. 

In PDCoV pathogenicity studies, the most severe disease occurs in suckling piglets, 

although post-weaning piglets are susceptible to infection, but to a lesser extent than observed 

with PEDV. Similar to PEDV and TGEV, PDCoV induces acute effusive diarrhea, sometimes 

associated with vomiting (Jung et al., 2016). PDCoV infected enterocytes of pre-weaning piglets 
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undergo villous atrophy in the small, but not the large intestine; the majority of small intestinal 

villous enterocytes are infected, with very few crypt cells being infected (Jung et al., 2016). 

Additionally, an experiment using four-day-old pigs showed some non-intestinal tissues positive 

for virus by PCR, such as the lung and mesenteric lymph node, although at low levels (Vitosh-

Sillman et al., 2016). PDCoV infection in 5-day-old and 14-day-old piglets developed watery 

diarrhea and shed virus in their feces at highest RNA levels from 3 – 5 dpi, although duration of 

vRNA detection varied from 7 – 21 dpi between the different aged groups (Chen et al., 2015; Hu 

et al., 2016). There can also be differences between PEDV and PDCoV infection in pre-weaning 

piglets. While clinically both infections present similar manifestation, there can be differences in 

the degree of pathogenesis caused in pre-weaning piglets. For example, 5-day-old PDCoV-

infected piglets developed severe atrophic enteritis, however, lesions were only observed in the 

jejunum and ileum with peak lesions at 3 – 4 dpi (Chen et al., 2015; Hu et al., 2016). In contrast, 

PEDV infection in 5-day-old piglets caused more severe and diffuse lesions throughout the small 

intestine, with virus detected throughout the small and large intestine (Thomas et al., 2015). The 

duration of shedding in PEDV infection is also greater than with PDCoV. Although studies have 

not assessed fecal shedding duration in neonates, 3-week-old weaned pigs infected with PEDV 

continued to shed PEDV in feces until 24 dpi (Madson et al., 2014). 

 

III. Host Immune Response to CoV Infection 

Porcine mucosal immunity  

 The mucosal barrier of the gastrointestinal tract is made up of epithelial cells lined with 

mucus; with the help of secretory IgA (sIgA), together they establish a protective barrier which 

keeps potentially harmful antigens within the lumen where they can be removed. sIgA antibodies 

play a major role in preserving the intestinal barrier by blocking or neutralizing invading 
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pathogens (Murphy et al., 2012; Saif, 1996; Stokes et al., 1991; Yuan and Saif, 2002). Dimeric 

IgA can bind antigens on the basolateral surface of the epithelium and transport them across the 

epithelial cells via PIgR, where they can be dumped into the intestinal lumen and degraded (Saif, 

1996; Yuan and Saif, 2002). The dynamic function of the mucosal immune system not only 

prevents pathogens from invading the epithelium, but also may help to mitigate and clear 

infections when foreign antigens have penetrated through. In order to maintain this balance, the 

majority of intraepithelial lymphocytes (IEL) express CD2 which regulates their activation and 

suppression (Camerini et al., 1993). In older animals, CD8+ T cells interact with intraepithelial 

immune cells to secrete IL-2 and IFN upon antigen stimulation which have some cytotoxic 

capabilities (Saif, 1996; Stokes et al., 1991). Other components of the mucosal immune system 

are classified as mucosal associated lymphoid tissue (MALT). MALT are immunological 

structures that generate different responses to pathogens, without causing harm to commensal 

microorganisms. MALT is separated into two categories: 1. Lymphoid structures, including: 

Peyer’s patches (PP) and mesenteric lymph nodes (MLN) and 2. Diffuse lymphoid tissue, 

including the lamina propria (LP).  

Peyer’s patches are found in the jejunum and ileum of the small intestines which contain 

multiple B cell follicles separated by intrafollicular areas where T cells reside. M cells exist 

between the epithelium and the follicle of the PP where antigen-presenting cells are present; 

more specifically, the presence of Ig-secreting plasma cells, dendritic cells, and intraepithelial 

lymphocytes. M cells play an important role in initiating both innate and adaptive immune 

responses through transepithelial transportation of antigen from the lumen to lymphocytes (Corr 

et al., 2007; Gebert et al., 1996; Murphy et al., 2012; Stokes et al., 1991; Turner, 2009). 

Differentiated lymphocytes migrate from the PP where it enters the lymphatics and migrates to 
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other lymphoid tissues, such as the MLN (Saif, 1996). The MLN is rich in T and B lymphocytes 

which are activated upon by antigen presentation and activation from APCs, mainly dendritic 

cells (DCs) that drain from the intestine and migrate to the MLN through the afferent lymphatics 

(Macpherson and Smith, 2006; Moretó and Pérez-Bosque, 2014). A recent study has shown the 

MLN as the primary site for immune tolerance to food antigens and commensal gastrointestinal 

microbes (Worbs et al., 2006). Additionally, the MLN acts as a border that mitigates 

transportation of immune cells and antigen between the mucosal immunity and systemic immune 

system (Macpherson and Smith, 2006).      

Next, the LP contains immune cells, including macrophages, dendritic cells, neutrophils, 

lymphocytes, and plasma cells, which are activated in response to an antigen. The LP is the layer 

underneath the basement membrane and is an important component of induction and regulation 

of the gastrointestinal barrier (Murphy et al., 2012; Turner, 2009). The LP is in direct contact 

with the epithelium which plays an important role in the maintaining homeostasis. However, the 

immune cells within the LP become activated and induce local cell-mediated immunity (CMI) in 

context of disease-causing dysbiosis (Murphy et al., 2012; Turner, 2009).  The overall function 

of LP lymphocytes prevents expression of active T cell responses to antigens normally present in 

the intestinal lumen which maintains immunological tolerance to self-antigen (Murphy et al., 

2012; Saif, 1996).  

Maintaining integrity of the mucosal barrier is key to preventing infection. When the 

barrier’s integrity is disrupted, a state called dysbiosis, then other immune defenses are initiated 

which cause a pro-inflammatory state. The ability to regulate the barrier lies with the mucosal 

immune components which were discussed previously. The porcine gastrointestinal immune 
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system of young pigs are slow to mature and develop, increasing their susceptibility to disease 

when compared with that of adult pigs (Stokes et al., 1991).   

At weaning, pigs undergo changes in the gastrointestinal barrier in response to stress (i.e. 

changes in diet, transportation, and/or environment), increasing their susceptibility to enteric 

infections. The disruption of the barrier in conjunction with the immaturity of the young pig’s 

mucosal immune system provides an opportunity for pathogens to invade (Saif, 1996; Stokes et 

al., 1991). Stress caused by weaning along with immaturity of mucosal immune system leads to 

disruption of the mucosal barrier which leaves the young pig susceptible to enteric infection.  

Mucosal immune responses to swine viral infections 

Mucosal and systemic immunological responses to enteric viral infections vary in location 

of immune induction and regulation, the virus phenotype, and duration of immunity. All of these 

factors impact immunological memory and protection from re-infection. Immunological memory 

responses to enteric viral infection can be separated into short-term effector memory and long-

term memory responses (Yuan and Saif, 2002). A human rotavirus (HRV) challenge model was 

used to describe the immune activation mechanism of effector and memory antibody secreting 

cells (ASC) locally and systemically during a primary and homologous oral challenge (Yuan et 

al., 2001). In this study, gnotobiotic pigs were challenged orally with 1 dose of a virulent HRV or 

3 doses of an attenuated HRV and subsequently challenged with virulent HRV and observed for 

intestinal and serum ASC. The study showed that after challenge, pigs inoculated with the virulent 

strain elicited higher numbers of IgA ASC and memory B cells in the ileal LP and MLN than pigs 

inoculated with the attenuated strain which consequentially elicited higher systemic IgG ASC and 

memory B cells in the spleen than the induction site (Yuan et al., 2001). This short-term effector 

and memory response at the MALT begins to wane in the weeks following disease recovery most 
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likely due to development of protective mucosal immunity as other previous studies have reported 

that IgA mucosal effector immune responses are correlates of protection against swine enteric viral 

infections (Saif, 1996; Yuan et al., 2001; Yuan and Saif, 2002). In contrast, systemic IgG memory 

B cells remain at the peak level in the pig’s spleen and contribute to long-term memory, although 

it is not shown to be protective (Yuan et al., 2001). Based on this information, direct mucosal 

priming with live virus induces an effective and protective memory response, but requires boosting 

with antigen periodically to maintain protective levels against swine enteric viral infection. 

Furthermore, both immunological and physiological changes occur in the small intestine 

due to this disruption. Increased permeability across the gastrointestinal barrier associated with 

effusive viral diarrhea dysregulates the absorptive capacity and nutrient uptake in the small 

intestine, leaving the animal malnourished. In suckling piglets, this malnourishment can lead to 

death. Also, local immune responses are impacted by changes in the barrier. A naïve mature pig 

relies on a robust innate immune response to help clear SECoV infections. As suckling and 

immature piglets are the most susceptible to infection due to the lack of immunological 

development and memory, proper maternal immunity is required in absence of a robust innate 

immune response (Stokes et al., 1991). As the pig matures and develops immune memory, a 

robust immune response can be activated and help clear infection. When comparing a suckling 

piglet’s immune response to a weaned pig’s immune response to PEDV infection, the neonate 

pigs had lower NK cell frequencies and low IFN-γ producing NK cell populations compared 

with weaned pigs, which may explain more severe clinical disease in the suckling piglets 

compared to the weaned pigs (Annamalai et al., 2015). In the same study, a higher abundance of 

CD4+ T cells were observed in the ileum of suckling pigs compared to weaned pigs; however, 

no differences were observed in the CD8+ T cells frequency and the functionality of these cell 
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populations in neonates was not discussed (Annamalai et al., 2015). Collectively, neonate pigs 

elicit more severe disease manifestation when compared to weaned pigs which may be due to the 

absence of a vigorous immune response.  

Structural and physiological changes to the intestinal tract of pre-weaning piglets are 

observed during viral enteric infections. One study evaluated the local innate immune response 

during an enteric infection which reported increased pro-inflammatory cytokines secreted at the 

site of infection, along with malabsorptive diarrhea in pigs exposed to PEDV (Annamalai et al., 

2015). Additionally, barrier disfunction was attributed to increased paracellular uptake 

accompanied by irregular distribution and reduced expression of tight junction proteins and 

intestinal goblet cells in the small intestine of PEDV-infected pigs (Curry et al., 2016; Jung, 

Kwonil; Saif, 2016; Pearce et al., 2016).  Another example of this was published where PEDV 

infection of 9-day-old pigs caused morphological changes, including: irregular distribution and 

reduced expression of tight junctions and adherens junction proteins in small intestinal villi (Jung 

et al., 2015). Additionally, PEDV infection of 3-week-old weaned pigs altered several intestinal 

proteins involved with cell migration, proliferation, differentiation, apoptosis, and structure, as 

well as immunological response to infection (Pearce et al., 2016). Finally, PEDV can induce 

dysbiosis of the gastrointestinal barrier by increasing populations of obligate anaerobic, non-

spore forming bacteria during infection; this dysbiosis can lead to changes in the gut health and 

metabolism (Koh et al., 2015). Overall, decreased immunity during times of stress along with 

underdeveloped mucosal immune systems in younger pigs can lead to susceptibility to enteric 

viral infections, such as PEDV.  
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Lactogenic immunity to SECoV 

  Piglets are born agammaglobulinemic due to an impermeable placenta accompanied by a 

weakened mucosal immunity and require the transfer of maternally derived immunity for 

protection from pathogens to which they may be exposed to postpartum. Commonly referred to 

as lactogenic immunity, immunoglobulins (Ig) and some APCs, although these APCs are short-

lived, are passively transferred to the suckling piglet through ingestion of the dam’s colostrum 

and milk. Of the Ig that are present in mammary secretions, IgG and IgA are predominant in 

colostrum and milk. IgG is present at a high level in colostrum during the first 24 – 48 hours 

post-partum. As lactation progresses, IgA becomes the dominant Ig in the dam’s milk and 

remains at a high level due to its stability. Studies have shown, 80% of IgA is located in GALT 

and it is the primary Ig involved in conferring lactogenic immunity to suckling piglets against 

enteric pathogens (Lanza et al., 1995). Oral vaccination of live, but not attenuated, TGEV has 

shown to induce a strong sIgA response in the mammary gland of pregnant and post-partum 

sows. This mechanism is activated when TGEV IgA plasmablasts in the gastrointestinal tract 

stimulated via oral vaccination or virulent pathogen and migrate to the LP and mammary gland 

via the network of lymphatics (Bohl et al., 1972; Saif et al., 1972; Song et al., 2015). The 

ingested passively acquired IgA has been shown to be protective (0% mortality) in piglets 

against experimental TGEV and PEDV challenges via oral route (Bohl et al., 1972; Lanza et al., 

1995; Saif, 1993; Saif et al., 1972). In contrast, sow vaccination with inactivated TGEV Ag 

induced IgG predominantly, which rapidly decreases in milk 7 days post challenge and hence 

provided little lactogenic immunity to piglets (Lanza et al., 1995). The development of maternal 

vaccination strategies, such a live vaccination, which induce mucosal immunity, and therefore 
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sIgA in the milk, have been proven successful in the case of TGEV, and potential to protect 

piglets from other SECoV.    

 Immune cells migrate to the mammary gland through homing in and out of the secondary 

lymphoid organs by crossing the vessels’ high endothelial venules (HEV); B and T lymphocytes 

extravasate through HEV (Murphy et al., 2012). During parturition, IgA and T lymphocytes in 

the intestine traffic to the mammary gland and are expressed in the sow’s colostrum. Mucosal 

addressin cellular adhesion molecule 1 (MAdCAM-1) expression on blood vessel endothelial 

cells in the mammary gland increase post-partum into early lactation (Bourges et al., 2008). 

Additionally, expression of mammary gland homing receptors, chemokine receptor 10 (CCR10) 

and chemokine ligand 28 (CCL28), increase in the mammary gland, resulting in peak IgA-

secreting B cells at the time of farrowing (Langel et al., 2016). Throughout lactation, homing 

receptor CCL28 is continually expressed to encourage lymphocyte homing to the mammary 

gland in pigs (Bourges et al., 2008; Langel et al., 2016). When the homing mechanism is 

activated through antigen presentation in the GALT, Ig-secreting lymphocytes traffic to the 

mammary gland where sIgA is secreted in colostrum and milk conferring protective immunity.  

 Physiochemical changes influenced by progesterone and estrogen levels during a sow’s 

pregnancy can promote the selective transport of IgG from the serum to the mammary gland, 

where IgG is secreted in the colostrum. However, IgG can be degraded by the piglet’s small 

intestine starting one week post-partum, but can persist longer in circulation. In contrast, sIgA is 

resistant to proteolysis in the small intestine and can persist in the intestines longer than IgG, 

which is important for mucosal immune protection. During the first week of life, piglets can 

compensate for degradation of intestinal antibodies through physical changes in the gut’s 

integrity. For example, 1 – 7 day-old-piglets can absorb and transport passively-acquired 
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maternal lymphocytes across the small intestinal epithelium, where they can induce local 

immune responses (Tuboly et al., 1988). From previous studies, PEDV-specific IgG is passively 

transferred through colostrum to suckling piglets for the first few days post-partum, but PEDV-

specific IgA is continually transferred to suckling piglets by milk throughout lactation, essential 

for suckling piglet protection from PEDV (Goede et al., 2015; Lanza et al., 1995).   

While lactogenic immunity has been well characterized with TGEV maternal 

vaccination, there is limited evidence on PEDV or PDCoV infections. As with TGEV, sows 

exposed to infectious PEDV relayed partial protection to suckling piglets against virulent PEDV 

challenge (Goede et al., 2015). While increased IgG levels were transferred to suckling piglets 

from sows administered a killed PEDV vaccine versus naïve sows, the IgG levels did reduce 

mortality of piglets exposed to live PEDV (Schwartz et al., 2016). These results suggest killed 

vaccination of sows do not induce sufficient passive immunity in the form of IgA when 

compared to sow exposure to live virus. Furthermore, sufficient passive immunity of IgA is 

required to protect piglets from pre-weaning mortality.  

 Prophylaxis treatment is another option for protecting susceptible neonates, however, this 

approach is not well studied for PEDV or PDCoV. One study evaluated the effects of PEDV 

challenge on suckling piglets that were administered with different levels of PEDV-specific 

antibodies (primarily IgG) via intraperitoneal injection before being exposed to PEDV. This 

study showed piglets that received the passively acquired systemic antibodies had increased 

survival and returned to normal body temperature sooner than the untreated challenged piglets 

independent of dose (Poonsuk et al., 2016). However, treated piglets still suffered from severe 

malabsorptive diarrhea and some mortality, suggesting prophylaxis treatment of piglets with 

PEDV-specific antibodies ameliorate, but do not fully protect against PEDV.  
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IV. Diagnostics of SECoV  

 Various diagnostics are available for PEDV and other SECoV. Virological methods 

target the detection of viral proteins, vRNA, or the virus itself, while serological methods detect 

virus-specific antibodies. Generally, diagnostic samples including serum, feces, tissues, oral 

fluids and milk are collected from infected animals. If the animals suffered mortality, the animal 

is necropsied and samples are taken, such as intestinal tissues and intestinal content, are taken for 

SECoV laboratory testing. For herd monitoring, samples from live animals including oral swabs, 

serum, and feces are taken. Since the 2013 PEDV outbreak, new diagnostic tools have emerged 

that have led to the rapid diagnosis of SECoV.  

Virological assays 

 There are two categories of virological tests a) tests for the detection of viable virus and 

viral antigen and b) detection of vRNA. Virus isolation (VI), tissue immunoassays such as frozen 

tissues section immunofluorescence (FTIF) and immunohistochemistry (IHC), and antigen-

capturing ELISA are all examples of tests that detect viable virus or viral antigen, while 

polymerase chain reaction (PCR) tests detect the vRNA of SECoV. VI involves infecting 

susceptible cells with suspect clinical specimens, generally feces or intestinal content, and 

allowing the virus to infect and grow in cell culture. VI is used to detect or identify the target 

virus; however, VI can be a time-consuming and laborious process with a low success rate due to 

its low diagnostic sensitivity and potential cell culture toxicity from clinical specimen (Chen et 

al., 2014; Jung and Hu, 2016; Oka et al., 2014; Shibata et al., 2000). FTIF and IHC both detect 

antigens by staining with antibodies (Callebaut et al., 1982; Jung et al., 2015a). FTIF stains 

PEDV antigens in fresh tissues while IHC stains antigen in sections of formalin-fixed tissues. 

Feces can also be used with an antigen-capturing ELISA to detect virus particle or antigens in a 
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solid phase by staining with antibodies (Callebaut et al., 1989; De Arriba et al., 2002; Gerber et 

al., 2014).   

 Virological tests that detect viral genetic material are referred to as PCR tests. This is the 

most sensitive diagnostic assay with rapid turnaround for SECoV and can handle a wide range of 

samples, including rectal swabs, feces, intestinal tissues, intestinal contents, and oral fluids for 

(Miller et al., 2016; Ren and Li, 2011; Yoon, 2015; Yu et al., 2015; Zhang et al., 2016). A 

reverse transcription quantitative PCR (RT-PCR), also known as real-time PCR, can enumerate 

the amount of vRNA in a sample by measuring the cycle threshold (Ct), which has an inverted 

correlation with the amount of target in the sample. Other PCR assays, including gel-based RT-

PCR which amplifies vRNA through use of a specific primer and loop-mediated isothermal 

amplification (LAMP), which uses multiple primers specific for target DNA performed under 

isothermal conditions (Ren and Li, 2011). LAMP assays have been used to detect PEDV and 

differentiate it from other enteric pathogens (Ren and Li, 2011; Yu et al., 2015; Zhang et al., 

2016). 

Serological assays 

Serological assays primarily detect and measure virus-specific antibodies in serum and 

other bodily fluids, such as colostrum, milk, and oral fluid, and even feces from animals exposed 

to a pathogen, in this case, SECoV. Upon exposure to SECoV, animals develop a humoral 

immune response characterized by circulating IgG, IgM, and IgA along with mucosal sIgA. 

Following re-exposure to homologous SECoV, the mucosal IgA and serum IgG antibody levels 

are shown to be boosted (Callebaut et al., 1990, 1989; De Arriba et al., 2002; Gerber et al., 2014; 

Gerber and Opriessnig, 2015; Gimenez-Lirola et al., 2017). Virus-specific serum IgG antibodies 

are detected starting at 14 – 21 dpi in most SECoV infections, although there can be differences 
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in antibody kinetics and abundance in neonates (Annamalai et al., 2015; De Arriba et al., 2002; 

Lanza et al., 1995). For example, sows develop virus-specific antibodies to PEDV and TGEV 

sooner and sustain significantly higher serum antibody titers longer as antibodies were still 

detectable 35 – 44 dpi (Gerber et al., 2016). Similarly, other studies observed a higher rate of 

seroconversion of SECoV-specific IgG in weaned pigs compared to neonates which started at 14 

dpi (Gerber et al., 2016; Poonsuk et al., 2016; Saif, 1996; Wesley et al., 1997).  

Serological assays commonly used for SECoV include immunofluorescence assay (IFA), 

serum-virus neutralization test (SVN), and enzyme-linked immunosorbent assay (ELISA). While 

SVN antibodies are detectable 7-14 days post-infection/challenge, there is no apparent cross-

neutralization between PEDV, PDCoV, and TGEV by SVN assay (Lin et al., 2015). However, 

cross-reactivity does occur between some SECoV on ELISAs. For example, anti-PRCV 

neutralizing antibodies can confer partial protection against TGEV infection. Such cross-

neutralization occurs because PRCV is a deletion mutant of TGEV at the antigenic site of the S 

protein (Callebaut et al., 1989; Wesley et al., 1997). In addition, S protein is highly immunogenic 

and can be a target for monoclonal antibodies. In TGEV infection, it has been demonstrated that 

the blocking of S proteins using monoclonal antibodies results in virus neutralization, thus 

preventing infection (Kolb et al., 1998; Saif et al., 2012). Similarly, U.S. prototype PEDV and 

PEDV S-INDEL strains are shown to cross-react in serological most assays and cross-neutralize 

in-vitro although heterologous protection is only partial in vivo (Chen et al., 2016).  
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V. Prevention and Control for SECoV 

Biosecurity  

 Implementation of biosecurity practices mitigate the risk of the introduction and spread of 

a pathogen. Biosecurity is implemented through a set of outlined behaviors by people involved in 

a specific system which reduce the risk in all activities. In livestock production, biosecurity is 

crucial in preventing disease outbreaks which can lead to significant economic losses. During the 

2013 outbreak, U.S. prototype PEDV spread rapidly across states which caused catastrophic 

economic losses to the U.S. swine industry. Between 2013-2014, PEDV cost an estimated $900 

million - $1.8 billion U.S. dollars in profit loss associated with the greater than 90% pre-weaning 

mortality and 100% morbidity observed (Paarlberg, 2014). Many studies have been conducted to 

examine risks that lead to the rapid dissemination of PEDV in the U.S. Of the many possible 

risks, four main risks were research in detail. First, feed ingredients contaminated with PEDV 

that were imported from PEDV-endemic countries were suspected to have been the cause of the 

initial outbreak. While experimentally PEDV-spiked feed was able to survive conditions 

mimicking shipment to the U.S. from China, pigs did not get sick when fed feed ingredients 

positive for PEDV vRNA (Dee et al., 2014; Opriessnig et al., 2014). However, once PEDV has 

broken on a farm, 1 gram of PEDV-infected feces from an infected pig, with a Ct of 37, is 

enough to contaminate up to 500 tons of feed, in a controlled study (Schumacher et al., 2015). 

Next, contaminated transport vehicles, such as animal trailers and rendering trucks, were 

suspected to carry infectious PEDV between farms. A recent study concluded animal trailers that 

hailed PEDV-infected pigs and were not properly disinfected had the potential carry the residual 

virus to other farms, suggesting transportation as a possible transmission source between farms 

(Lowe et al., 2014). The risk of PEDV spread from farm to farm increases as the temporal spatial 
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distance to the infected farm decreases (Alvarez et al., 2016). Finally, PEDV aerosol 

transmission was examined when air contaminated with infectious PEDV and vRNA was 

detected up to 10 miles downwind from the infected farm, suggesting a possible mode of 

transmission between farms (Alonso et al., 2014). While it is unlikely that processed feed 

ingredients of pig origin can transmit viable virus, environmental contamination is a high risk for 

dissemination of infection. 

Mitigation 

 With the PEDV transmission risks discovered, mitigation strategies must be implemented 

to prevent the spread of disease between farms. An economic evaluation of potential PEDV 

mitigation strategies were studied. Due to the limited quantity and quality of protective PEDV 

vaccines, the most cost-effective strategy to control PEDV spread is through a procedure known 

as “feedback.” This practice intentionally controls the exposure of pigs to infectious virus 

material, generally before parturition to induce protective lactogenic immunity. A recent study 

assessed the economic advantages to certain biosecurity procedures. The overall losses were 

decreased by $130,000 U.S. dollars when proper biosecurity procedures were followed. More 

specifically, replacement gilts were front-loaded, followed by performing feedback and closing 

off the herd (Weng et al., 2016). This option proved to be cheaper than the cost to vaccinate and 

more efficacious at preventing or controlling PED. Additionally, mitigation strategies were 

evaluated to prevent contamination of imported feed ingredients. By proper screening of feed 

ingredients using diagnostics, the risk of feeding pigs with contaminated feed decreases (Dee et 

al., 2014; Opriessnig et al., 2014). Overall, better biosecurity practices can help mitigate the risk 

of emerging SECoV outbreaks. 
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Vaccination 

Vaccination could be a useful prevention strategy, albeit with some obstacles, such as 

antigenic variation between related SECoV. In the U.S. there are only 2 approved, but not 

licensed vaccine candidates for PEDV, both killed vaccines (Gerdts and Zakhartchouk, 2016). In 

China, PEDV is endemic and there are licensed vaccines dating back to 1995 for a killed PEDV-

TGEV bivalent vaccine (D. Wang et al., 2016). Over the years, there have been attenuated virus-

based vaccines created, including a trivalent vaccine containing TGEV, PEDV-CV777, and 

porcine rotavirus. While these vaccines do not provide sterilizing immunity, they do help to 

reduce mortality in suckling piglets infected with SECoV when the piglets uptake colostrum and 

milk (Gerdts and Zakhartchouk, 2016; D. Wang et al., 2016). However, the antigenic variation 

between the classical PEDV CV777 and emerging prototype PEDV have made it difficult to 

protect from mortality losses due to the vaccines inability cross-protect (D. Wang et al., 2016). 

Vaccine failure to protect against emerging prototype PEDV strains, such as U.S. prototype 

PEDV, through vaccination with the PEDV CV777 strain has been observed. This is most likely 

due to a variable region in the S protein in the emerging PEDV strains (X. Wang et al., 2016). In 

a recently published study, the S gene sequences of known neutralizing epitopes varied between 

the classical CV777 and prototype strains, which could explain why one vaccine did not cross-

neutralize the other (Lin et al., 2015). More research remains to be done to devise efficacious 

vaccines and vaccination strategies for emerging SECoV.    
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Abstract 

 

In 2013, porcine epidemic diarrhea virus (PEDV) emerged, followed by porcine 

deltacoronavirus (PDCoV), causing severe diarrhea contributing to a high pre-weaning mortality 

in naive herds. These newly emerged swine enteric coronaviruses (SECoV), specifically PEDV 

and to lesser extent PDCoV, caused $481-$929 million U.S. dollars to U.S. swine industry. 

While SECoV is well characterized in young piglet models, there has been no study to compare 

pathogenicity of these two viruses. In the present study, pathogenicity of PEDV and PDCoV was 

evaluated simultaneously in nursery pigs. Six-week-old pigs naïve for SECoV, including 

transmissible gastroenteritis, were allotted to the following treatment groups: 1) sham-inoculated 

control; 2) PEDV-inoculated; 3) PDCoV-inoculated. Clinical signs were monitored daily. 

Animals were serially necropsied with tissues, serum, and intestinal content collected post-

mortem. All tissues were examined for histopathology and viral antigen. Additionally, serum and 

fecal swabs were periodically collected until the study was terminated at 42 days post inoculation 

(dpi). Quantitative RT-PCR (qPCR) was used to measure viral RNA (vRNA) in feces, serum, 

and tissues. Diarrhea did not persist past 5 dpi for PEDV-inoculated and 7 dpi for PDCoV-

inoculated groups, but PEDV vRNA was shed longer and at higher mean viral titers than 
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PDCoV. Similarly, PEDV vRNA was detected at higher levels in small and large intestinal 

tissues and gut-associated tissues when compared to PDCoV. Microscopic lesions were detected 

in the small intestinal tissues of PEDV-inoculated, but not PDCoV-inoculated groups, despite 

detection of both PEDV and PDCoV vRNA in intestinal tissues. Lesion scores in the small 

intestine peaked for PEDV-infected pigs at 5 dpi. Indirect fluorescent antibody and serum-virus 

neutralization tests detected serum antibodies starting at 7 dpi, with the majority of 

seroconversion by 14 dpi PEDV-inoculated and PDCoV-inoculated groups. Antibody detection 

continued until the end of the study for PEDV-inoculated, but not PDCoV-inoculated animals. In 

summary, PEDV appears to be more virulent than PDCoV in growing pigs under the conditions 

presented in this study.  

 

Introduction 

 

Porcine epidemic diarrhea virus (PEDV) emerged in U.S swine population for the first 

time in 2013 causing a devastating epidemic. (Stevenson et al., 2013). PEDV belongs to the 

family Coronaviridae, genus Alphacoronavirus, along with other swine coronaviruses, such as 

transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (Ma et al., 2015; 

Su et al., 2016). PEDV which caused a devastating diarrheal outbreak across several European 

countries was first isolated in 1978 (Pensaert and De Bouck, 1978). Originally, PEDV infection 

was mistaken for a TGE-like outbreak due to their similarities in clinical presentation. However, 

the outbreak was later determined to be caused by a new coronavirus, PEDV, due to its lack of 

serological similarity to TGEV (Pensaert, 1992; Pensaert and De Bouck, 1978). During the 2013 

U.S. outbreak, PEDV caused severe diarrheic disease in pigs of all ages with 100% morbidity. 

Mortality was mostly associated with suckling piglets and approached greater than 90% in naïve 

herds (Jung et al., 2016a; Madson et al., 2014; Stevenson et al., 2013). Today, PEDV remains 
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endemic in the U.S. with a lower incidence and mortality rate associated with previously-

exposed herds, suggesting presence of herd immunity. 

Shortly after the emergence of PEDV, detection of another coronavirus, now named 

porcine deltacoronavirus (PDCoV), was first reported in U.S. swine herds in 2014, although the 

virus may have been introduced to the U.S. in 2013 according to a diagnostic laboratory based 

retrospective study (Sinha et. al., 2015). PDCoV belongs to the genus, Deltacoronavirus, that 

comprises many deltacoronaviruses identified in both avian and mammalian species (Woo et al., 

2012). During the PDCoV outbreak in U.S. swine herds, PDCoV viral RNA was detected in 

clinical specimen from both sows and piglets (Wang et al., 2014).  PDCoV is believed to 

attribute to the economic consequence associated with the 2013-2014 PEDV outbreak, with up to 

40% mortality associated with PDCoV infection of naïve pre-weaning piglets (Jung et al., 

2016a). Today, PDCoV, similar to PEDV, is also endemic in the U.S. 

PEDV and PDCoV cause gastrointestinal infection in pigs leading to diarrhea, similar to 

TGEV, denoting all of them as swine enteric coronaviruses (SECoV) due to the similarity in 

clinical presentation caused by their infections. SECoV are mainly transmitted through fecal-to-

oral route from infectious pigs (Chen et al., 2014; Saif and Wesley, 1992). There are differences 

that exist in the pathogenicity of PEDV and PDCoV, which lead to diminished severity of 

infection in PDCoV-infected piglets versus a more severe disease caused by PEDV (Chen et al., 

2015; Jung et al., 2016; Lin et al., 2016). PEDV viral shedding peaked during the first week of 

clinical disease, with viral shedding diminished after 14 dpi (Crawford et al., 2015). In 5-day-old 

piglets, PEDV viral RNA can be detected in the feces of infected pigs up to 14 dpi versus 26 dpi 

in 21-day-old pigs (Madson et al., 2014; Niederwerder et al., 2016; Thomas et al., 2015). In 
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comparison, PDCoV can be shed in the feces of 10-day-old infected piglets for up to 10 dpi 

(Jung et al., 2016a).  

SECoV can infect pigs of all ages, but mortality and severe disease is most commonly 

associated with neonate or suckling pigs (Lin et al., 2015; D.M. Madson et al., 2014; Saif, 1999; 

Joseph T. Thomas et al., 2015). Severe clinical disease caused by PEDV and PDCoV is 

characterized by the presence of pathological lesions in the small intestine. Pathological changes 

occur in the affected tissues causing both shortening of small intestinal villi and erosion of 

epithelial cells on the tips of the villi. Grossly, the small intestine of the affected pigs was thin-

walled and distended with the presence of yellow to grey liquid contents. Viral antigen was 

detected in both the villous tips and crypts of the small intestine, although the spread to the 

villous crypts is not common with PDCoV infection (Jung, Saif, 2016; Madson et al., 2014b; 

Stevenson et al., 2013). On-set of clinical disease manifested by diarrhea, lethargy, and vomiting 

occurred as early as 12-18 hours post infection for PEDV (Madson et al., 2014; Saif et al., 2012). 

On-set of diarrhea in PDCoV infected pigs is similar to PEDV, however, vomiting is not usually 

seen (Chen et al., 2015; Jung et al., 2016b; Ma et al., 2015).  

Overall, SECoV pathogenicity is affected by both age and type of infection, however, 

most of the comparative pathogenicity studies have focused on only PEDV or PDCoV infections 

in neonate animals. There has not been a pathogenicity study done to compare PEDV and 

PDCoV infections in older animals. The purpose of this study was to evaluate the comparative 

pathogenicity of PEDV and PDCoV in nursery pigs. 
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Materials and Methods 

Animals, Housing, and Experimental Design 

All experimental protocols were approved by the Institutional Animal Care and Use 

Committee at Iowa State University (IACUC# 11-14-7903-S). Seventy-five SECoV naïve 3-

week-old weaned pigs (Choice Genetics) were purchased from a commercial herd and brought to 

Iowa State University’s animal facility. When piglets reached 6 weeks of age they were allotted 

to 3 treatment groups: 1) Sham-control, 2) PEDV inoculated, and 3) PDCoV inoculated. All 

animals were screened prior to and after arrival and determined negative for TGEV, PEDV, and 

PDCoV by serology and qPCR. Animal weights were recorded prior to and during the 

experiment. Across each treatment, either 8 or 17 animals were assigned to 8 pens over a 42-day 

testing period. Using a randomized block design, 4 pigs/group were allotted at each time point 

for necropsy and individual animals were samples across all groups. At 0 dpi, all animals were 

inoculated with 5 ml of Sham, PEDV, or PDCoV via gastric gavage. All animals were housed at 

the Livestock Infectious Disease Isolation Facility operating at BSL2 compliance, with each 

treatment group separated into designated rooms and pens with individual ventilation and 

washing systems.     

Virus Inoculum 

Porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 (Hoang et al., 2013) and 

porcine deltacoronavirus strain US/Iowa/25573/2014 were used for the study. Both isolates were 

made from clinical cases submitted to the Iowa State University Veterinary Diagnostic 

Laboratory (ISUVDL, Ames, IA), plaque-cloned before further propagation. The PEDV isolate 

was propagated in Vero cells (ATCC® CCL-81, Manassas, VA), while the PDCoV isolate was 

propagated in swine testicular (ST) cells (ATCC® CRL-1746, Manassas, VA). The titer of each 
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virus represented by the median tissue culture infectious dose (TCID50/ml) was determined using 

a microtitration infectivity assay in the respective cell lines for each virus, then adjusted to 1 x 

103 TCID50/ml for inoculation. Virus-free cell culture supernatant as Sham inoculum was 

prepared in the identical manner alongside with virus inoculum.  

Clinical Assessment 

After inoculation, animals were monitored daily for signs of clinical disease. Body 

weight and feed intake were recorded prior to inoculation and throughout the course of the 

experiment. Average daily gain (ADG), average daily feed intake (ADFI), and growth to feed 

ratios (G:F) were calculated using weekly pen feed intake and body weight changes. Daily fecal 

samples were taken daily for 1 week, then weekly thereafter and any changes in the fecal 

consistency were recorded.  

At necropsy, intestinal tissues and non-intestinal tissues were assessed for gross lesions 

and placed neutral buffered formalin for histopathology and immunohistochemistry (IHC). 

Intestinal contents were observed for color and texture changes consistent with malabsorptive 

diarrhea.  

Sample Collection, Processing, and Storage 

Four or eight pigs from each treatment group were selected and necropsied at 2, 5, 7, 14, 

and 42 dpi. Colon, cecum, duodenum, jejunum, ileum, mesenteric lymph node, stomach, 

esophagus, spleen, kidney, lung, and tracheobronchial lymph node tissue samples and whole 

blood were collected at each necropsy. Feces, serum, and pen-based oral fluids were taken daily 

from 0 to10 dpi, and weekly thereafter until the end of the study (42 dpi). Tissue homogenates 

and fecal processing were performed on fresh necropsy samples as described previously (Curry 

et al., 2017; Sinha et al., 2015). Sections from each fresh tissue were formalin-fixed, then 
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embedded into paraffin blocks as previously described (Madson et al., 2014). Whole blood that 

was allowed to clot overnight was centrifuged and serum was collected, then frozen until use in 

serological assays. Oral fluid samples were collected as previously described (Poonsuk et al., 

2016), then stored frozen until sample evaluation could be performed. Once processed, all 

samples were aliquoted into 2 ml aliquots and placed in -80o C until testing was performed.    

Viral RNA Extraction 

Tissue homogenates, processed feces, and serum were used for in quantitative reverse 

transcription polymerase chain reaction (RT-qPCR) testing. For viral RNA (vRNA) extraction, 

the MagMax™ viral isolation kit and a Kingfisher™ 96 instrument (ThermoFisher Scientific, 

Waltham, MA) were used with a modification for high volume RNA extraction approved and 

utilized in the ISU-VDL (SOP# 9.3833v2). RNA extracts were used immediately for qPCR assay 

and any remaining extract was stored at -80o C. Virus standards with known viral titers 

(TCID50/ml) were prepared using serial dilutions of virus stock from challenge inoculum and 

extracted with samples as described above. 

Quantitative Reverse Transcriptase-Polymerase Chain Reaction Assays (qPCR) 

Virus-specific qPCR was performed on extracts from tissues, feces, and serum for 

detection of virus genetic material. Positive and negative extracts were used during each run for 

validation of assays. PEDV and PDCoV qPCRs were performed as previously described (Sinha 

et al., 2015; Thomas et al., 2015). Briefly, PEDV nucleocapsid (N) gene primers and probe were 

designed from PEDV sequences assessed through GenBank (accession no. KF272920) and 

PDCoV membrane (M) gene primers and probe were adopted from published work (Sinha et al., 

2015; Woo et al., 2012) were used in combination with Path-ID™ Multiplex One-Step RT-PCR 

kit (ThermoFisher Scientific, Waltham, MA) on all extracts by following manufacturer’s 
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recommended procedure. Cycle threshold (Ct) cut-offs for positive samples were < 37 and > 40, 

respectively, with suspect Ct values ranging from 37 – 40.  

Histopathology and Immunohistochemistry 

Tissues were collected fresh and placed in 10% neutral buffered formalin for up to 48 

hours before being trimmed, processed, and embedded into paraffin, as mentioned previously 

(Madson et al., 2014). Four micron thick sections were cut and stained in duplicates with 

hematoxylin and eosin as per routine procedure at the ISU-VDL. Non-intestinal tissues were 

evaluated for evidence of systemic inflammation by a veterinary pathologist blinded to the 

treatment group and dpi at the ISU-VDL. Small intestinal sections were identified by location, 

and villous length and crypt-depth were evaluated blindly by a veterinary pathologist at the ISU-

VDL (Madson et al., 2014).  

Paraffin-embedded tissue sections were used for immunohistochemistry (IHC) analysis. 

Briefly, for PEDV IHC, formalin-fixed, paraffin-embedded (FFPE) tissue sections were mounted 

and processed as described previously (Madson et al., 2014) and stained using a commercially 

available PEDV N protein-specific monoclonal antibody 6C8 (BioNote, Seoul, Korea). 

Similarly, PDCoV IHC included FFPE sections that were processed and stained using a M 

protein-specific monoclonal antibody as mentioned previously (Okda et al., 2016). IHC scoring, 

as described previously (Madson et al., 2014; Thomas et al., 2015), was used with the following 

criteria: 0 = no staining; 1 = approximately 1-10% enterocytes with antigen positive staining; 2 = 

approximately 10-25% positive staining; 3 = approximately 25-50% positive staining; 4 = 

approximately 50-100% positive staining. 
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Serological Assays 

Virus-specific seroconversion was measured using indirect fluorescent antibody (IFA) 

and serum-virus neutralization (SVN) assays. For IFA assay, 96-well plates with a confluent 

Vero (PEDV) or ST (PDCoV) monolayers were used. The respective cells were inoculated with 

100 μl/well of PEDV (US/Iowa/18984/2013) or PDCoV (US/Iowa/25573/2014) viruses at 103 

TCID50/ml and incubated at 37o C for 1 hour in a 5% CO2 incubator. Following a 1-hour 

incubation, the inoculum was replaced by maintenance media, DMEM GlutaMAX® 

(ThermoFisher Scientific, Waltham, MA), with 10% fetal bovine serum (Atlanta Biologicals, 

Atlanta, GA), 5 μg/ml trypsin, 1X Antibiotic-Antimycotic (Sigma-Aldrich, St. Louis, MO). 

Plates were placed back in the incubator for 24 hours. Once >50% cytopathic effect (CPE) was 

observed, media was removed from plates and cells were fixed with 80% cold acetone aqueous 

solution for 10 minutes at ambient temperature. Acetone was discarded and plates were air dried, 

then stored at -20 degrees C until used. On day of testing, serum was serially diluted starting at 

1:4 dilution followed by 2-fold serial dilutions in 1X phosphate-buffered saline (PBS) at pH 7.4 

(ThermoFisher Scientific Waltham, MA) and 50 μl of each diluted sample was added in 

duplicate to each well on the plates, once they reached room temperature. Plates were incubated 

for 1 hour in a 37o C chamber incubator. After incubation, plates were washed 4 times using PBS 

containing 20% Tween, then tapped dry. Optimally diluted Fluorescein isothiocyanate (FITC) 

conjugated goat anti-swine IgG antibody (Bethyl Laboratories Inc., Montgomery, TX) was added 

and plates were incubated for 30 minutes in the dark at 37o C. Plates were washed, tapped dry, 

and then read under 20X magnification using a fluorescence microscope (Olympus Scientific 

Solutions Americas Corp., Waltham, MA). Each well was determined to be positive or negative 
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based on the similarity to the staining and fluorescence patterns of the positive and negative 

control wells. The cutoff titer for positive samples is 1:8.  

For SVN assay, 96-well plates were prepared with confluent Vero (PEDV) or ST 

(PDCoV) cell monolayers. Serum samples were heat-inactivated in a 56o C water bath for 30 

minutes and were serially diluted in PBS starting at 1:2 ratio. One hundred μl of each diluted 

serum were added in duplicate to each well containing confluent cell monolayers. Virus 

inoculum (100 μl/well) was also added to the plate wells with samples and incubated at 37o C for 

1 hour in a 5% CO2 incubator. Following a 1-hour incubation, the inoculum was replaced by the 

maintenance media. Plates were placed back in the CO2 incubator and observed for signs of 

CPE. Plates were read between 24-120 hours later. SVN antibody titer was determined by the 

inverse of the highest serum dilution that inhibited virus replication (i.e. CPE absent). SVN 

cutoff titer for positive samples was 1:8. After recording results, cells were fixed and stored at -

80o C for later confirmation by IFA.  

Statistical Analysis 

Data was analyzed using analysis of variance (ANOVA) with a p-value of ≤ 0.05 

considered to be significant (GraphPad PRISM 7®, GraphPad Software, La Jolla, CA). Tukey 

multiple comparisons were used to determine statistical difference between treatment groups if 

responses were considered significant. Viral titers (TCID50 equivalent) were converted to log10 

values for analysis.  
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Results 

Clinical Assessment and Fecal Shedding 

Diarrhea occurred as early as 1 dpi for pigs receiving either PEDV or PDCoV inoculum 

with resolution occurring after 6 dpi. As measured by PCR, PDCoV was shed in the feces of 

infected pigs until 5 dpi, while PEDV was shed in the feces until 7 dpi, despite resolution of 

diarrhea by 6 dpi. Based on qPCR estimation, the mean PEDV titer in feces peaked at 5 dpi and 

was significantly higher than PDCoV titers in feces during the first week of infection (Figure 

2.1). In comparison, PDCoV titers in feces peaked at 3 dpi, sooner than PEDV titers (Figure 2.1).  

Grossly, both PEDV- and PDCoV-inoculated pigs displayed thin-walled distended small 

intestines containing liquid contents at 2 dpi. Colon contents were also liquid and effusive. At 5 

dpi, animals from both virus-infected groups continued to exhibit signs of distended thin-walled 

small intestines and watery fecal contents. Fecal contents returned to a normal consistency 

starting at 5 dpi for PDCoV-inoculated and 7 dpi for PEDV-inoculated pigs. No diarrhea was 

observed in any of sham-inoculated negative control animals at any point in the experiment. 

Additionally, all control tissues had normal appearance and fecal contents remained normal 

during the entire study.   

Body Weight and Feed Intake 

While body weight did not decrease as a result of PEDV or PDCoV infection, PEDV-

inoculated pigs suffered from a significant (p < 0.05) reduction in average daily gain during the 

first week of the clinical disease, affecting the overall total body weight gained at 42 dpi 

significantly (p = 0.012). Average daily feed intake (ADFI) was also reduced in the PEDV-

inoculated group until 7 dpi. In contrast, PDCoV-inoculated animals did not gain weight 

differently from the control pigs. Similarly, no differences were seen in the ADFI between the 
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PDCoV-inoculated or negative control groups. Detailed growth performance data from PEDV- 

or PDCoV-infected pigs has been published by a collaborating research group (Curry et al., 

2017). 

Histopathology 

Microscopic lesions consistent with viral enteritis were not observed in intestinal tissues 

from the negative control group. On the other hand, PEDV-inoculated animals exhibited enteritis 

lesions within the small intestinal tissues, with the average lesion score of 1 or greater from 2 to 

5 dpi (Figure 2.2). At 5 dpi, all of the small intestinal tissue sections from PEDV-inoculated pigs 

had lesions with a mean lesion score of one or greater. The highest mean lesion score occurred in 

the PEDV group at 5 dpi with an average lesion score of 2.6, whereas no lesions were observed 

after 7 dpi and remained negative through the remainder of the study (Figure 2.2). In contrast, no 

lesions were found in small intestinal tissue from PDCoV-inoculated pigs or large intestinal 

tissue from both virus groups (Figure 2.2). There were no signs of microscopic lesions or 

inflammation in non-intestinal tissues.  

Viral Load in Intestinal Tissues 

All the small intestinal segments were positive for PEDV or PDCoV vRNA by qPCR 

based on the groups corresponding inoculum (Figure 2.3). In the duodenum and jejunum, the 

mean PEDV titer was greater at 2 and 5 dpi than the corresponding PDCoV titer (Figure 2.3 A-

B). However, PDCoV vRNA titers continued to be detected at a low level until 14 dpi in the 

duodenum (Figure 2.3A). Similarly, the mean PEDV titer in the ileum was significantly (p < 

0.05) greater than the PDCoV titer at 5 dpi (Figure 2.3C). This trend was similar among PEDV-

infected small intestinal tissues throughout the first week post inoculation.  
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vRNA was also detected in some portion of the large intestine. PEDV vRNA was 

detected in the colon starting at 2 dpi, with the mean viral titer quickly declining and becoming 

negative after 7 dpi. At 5 dpi, the mean PEDV titer was higher than PDCoV titer in the colon, 

although it was not statistically significant (Figure 2.3D). In contrast, cecum tissues were 

negative by qPCR for both viruses throughout the study period.  

Viral RNA Detection in Non-Intestinal Tissues 

Both PEDV and PDCoV vRNA were detected outside of the intestinal tissues which 

included the mesenteric lymph node (MLN) and stomach. All other non-gut tissues (esophagus, 

spleen, kidney, lung, and tracheobronchial lymph node) tested negative for viral RNA detection 

by qPCR.  

The mean viral titer was similar between PEDV and PDCoV groups, but peak titers 

occurred at different times (Figure 2.4). In the MLN, the mean PEDV titer peaked at 5 dpi which 

was similar to the observations from intestinal tissues. In comparison, the mean PDCoV titers in 

the MLN peaked at 2 dpi (Figure 2.4A). In the stomach, both PEDV and PDCoV titers peaked at 

7 dpi which was later than seen in the intestinal tissues (Figure 2.4B). Interestingly, PDCoV 

persisted until 14 dpi which was longer than PEDV in the stomach (Figure 2.4B).  

Viremia 

PDCoV-inoculated pigs were not viremic, whereas PEDV-inoculated pigs had detectable 

viral titers in the serum at 2 to 7 dpi (data not shown). 

Serum Antibody Response 

While negative control animals remained seronegative by both IFA and SVN assays 

during the duration of the study, PEDV- and PDCoV-inoculated pigs began seroconversion to 

their corresponding viruses by 5 dpi. At 7 dpi by IFA and 14 dpi by SVN, more than 50% of the 
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animals seroconverted (Table 2.3). All of the PEDV-inoculated pigs developed neutralizing 

antibodies by 28 dpi and remained seropositive until 42 dpi as measured by SVN, while PDCoV 

antibodies were developed in 50% of the PDCoV-inoculated pigs at 14 dpi (Table 2.3). In 

contrast to PEDV antibody response, PDCoV serum antibodies were detected at much lower 

titers by both IFA and SVN with antibodies waning and no longer detectable at 21 dpi. (Figure 

2.5).  

 

Discussion 

Pathogenicity and pathogenesis of either PEDV or PDCoV have been well characterized 

in pre-weaning pigs. However, as these viruses can infect pigs of all ages, our study objective 

was to compare the pathogenicity of PEDV and PDCoV in older post-weaned (6 weeks of age) 

pigs under the same conditions. Published as part of a collaborating study (Curry et al., 2017), 

PEDV-inoculated pigs experienced a 23% reduction in average daily gain during the first week 

after inoculation when compared with PDCoV-inoculated and control groups. In the present 

study, severe histological lesions were found in the small intestinal tissues of PEDV-, but not 

PDCoV-inoculated pigs. Additionally, the viral load was greater in tissues and feces of PEDV-

infected pigs than seen with PDCoV infection. Overall, our data suggests that PEDV is more 

virulent than PDCoV in growing pigs under the conditions presented in the study.  

PEDV infection in growing animals has shown to cause changes in the small intestinal 

morphology of growing pigs (Curry et al., 2016). More specifically, reduction of Claudin 2 

expression in the jejunum was observed in PEDV tissues sections suggesting the gut barrier has 

become compromised or “leaky.” Morphological changes can occur as a result of PEDV 

infection of enterocytes. In the jejunum, PEDV-infected enterocytes displayed shortening of 

villus height, with the most severe changes occurring between 2 to 5 dpi as reported by our 
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collaborating study (Curry et al., 2016). In PDCoV-infected suckling piglets, vacuolation of 

infected enterocytes were shown by immunofluorescence assay; however, no evidence of cell 

death caused by apoptosis or cell lysis occurred as a result of the infection (Jung et al., 2016b). 

Collectively, PEDV appears to induce more severe lesion in the small intestinal wall than 

PDCoV. Furthermore, previous studies show more severe pathogenicity in pre-weaning piglets 

when compared to the pathogenicity in growing pigs as shown in the present study (Chen et al., 

2016; Lin et al., 2016; Thomas et al., 2015).  

While the present study showed that both PEDV and PDCoV were pathogenic to growing 

pigs, the extent of virus replication was different between the 2 viruses in growing pigs. PEDV 

load in the tissues and feces was significantly greater than that of PDCoV. Additionally, PEDV 

vRNA was detected at higher levels in the colonic tissues compared to PDCoV, which was 

predominantly found at moderate levels in the small intestinal tissues, indicating that for some 

reason the PEDV strain used replicated in growing pigs better than the PDCoV strain used in this 

study. Such difference may have influenced lesion development in the intestine as PEDV, but not 

PDCoV, caused lesions in the intestinal tissues, supporting the difference in the extent of 

infection between the two viruses. PEDV has been shown to replicate in both the villous and 

crypts enterocytes while PDCoV is most commonly found in the villous enterocytes, which 

could lead to the difference in the extent of viral replication in the intestinal tissues (Curry et al., 

2016; Jung, Saif, 2016; Saif et al., 2012). In a study conducted to evaluate the minimum 

infectious dose (MID) of PEDV, the PEDV MID for 21-day-old weaned pigs was at least 10-fold 

higher amount of virus than the MID required to infect 5-day-old pigs (Thomas et al., 2015), 

suggesting that more PEDV is required to cause severe disease in older pigs. Unfortunately, there 

have been no studies done to evaluate the MID of PEDV or PDCoV for growing pigs, which 
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would need to be performed to understand the difference in the pathogenicity of PEDV and 

PDCoV in growing pigs observed in this study.   

Serological assays that measure antibody specific for PEDV and, to a lesser extent, 

PDCoV in swine serum, milk, colostrum, and oral fluids have been developed (Chen et al., 

2016b; Lin et al., 2015b; Poonsuk et al., 2016). Of these assays, IFA assay and ELISA have been 

commonly used for the detection of virus-specific IgG and IgA, while SVN assay detects 

neutralizing antibodies which may or may not be IgG. This study used IFA and SVN assays to 

access duration of seroconversion and antibody levels in serum because a PDCoV ELISA was 

not available for the present study. No cross-reactivity was observed between PEDV and PDCoV 

in the IFA and SVN assays. IFA antibodies tended to develop earlier and disappear faster than 

SVN antibodies against the viruses, probably reflecting the difference in antigen representation 

and target antigens between the 2 assays. Interestingly, the antibody response of pigs against 

PEDV and PDCoV differed in our study. PEDV-specific antibodies were detected at higher titers 

and persisted significantly longer than PDCoV-specific antibodies. Strikingly, PDCoV-specific 

neutralizing antibodies waned after only 21 dpi, while PEDV-specific neutralizing antibodies 

continued to be detected in all PEDV-inoculated animals until the end of the study. The early 

disappearance of PDCoV-specific antibodies could be explained by a lack of good and 

continuous antigenic stimulation affecting systemic antibody response to the virus, which may 

coincide with relatively poor replication of the virus in the pigs as shown in the study. Poor 

antigenic stimulation would not activate the appropriate co-stimulatory molecules required for a 

robust antibody response. As a result, there would be a lack of antibodies in response to the 

PDCoV infection (Murphy et al., 2012; Saif, 1996). Alternatively, virus-infected cell killing 

mediated by cytotoxic T lymphocytes, which release co-stimulatory molecules to activate other 
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lymphocytes, including B cells. An absence of robust antigenic stimulation could explain a 

weakened T cell response, hence, the absence of antibodies later in infection. While no studies 

have been done to assess the cell-mediated immune response against PDCoV, another swine 

pathogen, swine influenza A virus, has been studied extensively. A recent study shows a robust T 

cell response mediates protection from subsequent infections and can facilitate better immune 

protection from unrelated strains of influenza (Olson et al., 2017; Sridhar et al., 2015). It is 

possible that PDCoV infection could not induce a strong T cell response in older weaned pigs, 

however, studies need to be conducted to test this hypothesis. In summary, more information is 

needed to determine the mechanism causing differences in PEDV and PDCoV antibody 

responses in growing pigs.   

In summary, both PEDV and PDCoV were pathogenic in growing pigs under the 

conditions of this study. However, the extent of the viral load in tissues and feces and severity of 

disease and lesions was more severe in PEDV-infected pigs when compared to PDCoV-infected 

pigs even though virus dissemination was similar among the two viruses. Furthermore, PEDV-

infected, but not PDCoV-infected, pigs developed a robust serum antibody response which 

developed 1-to-2 weeks post inoculation, suggesting better antigenic stimulation from PEDV 

most likely due to better replication than PDCoV under conditions presented in the study. 

Overall, PEDV can cause more virulent disease than PDCoV in growing pigs and have greater 

clinical impact which should be taken into consideration for prevention and control of SECoV. 
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Figure 2.1 Fecal shedding of porcine epidemic diarrhea virus (PEDV, red rectangle) and 

porcine deltacoronavirus (PDCoV, blue triangle) from pigs orogastrically inoculated with 

each virus at the rate of 103 TCID50/ml compared with sham-inoculated control pigs (black 

circle) over time as estimated by quantitative RT-PCR (p-value < 0.001).  
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Figure 2.2 Scores of microscopic lesions in small intestine of porcine epidemic diarrhea virus 

(PEDV)-inoculated (red bars) and porcine deltacoronavirus (PDCoV)-inoculated (blue bars) 

pigs necropsied at 2, 5, and 7 days post inoculation as compared to Sham-inoculated control 

pigs (black bars). Lesion scores of 0 are considered negative, while lesion scores greater than 

1 are considered positive with increasing degrees of lesions in affected tissues at the following 

rates: (1 = 1-25%; 2 = 26-50%; 3 = 51-75%; 4 >75%). Each bar represents the mean lesion 

score of 4 pigs per group across different necropsy time points. 
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Figure 2.3 Mean porcine epidemic diarrhea (PEDV, red triangle) or porcine deltacoronavirus 

(PDCoV, blue triangle) RNA titers in intestinal tissues of pigs orogastrically inoculated with 

each virus at the rate of 103 TCID50/ml compared with sham-inoculated control pigs (black 

circle) over time as estimated by quantitative RT-PCR (p-value < 0.001). 
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Figure 2.4 Mean porcine epidemic diarrhea virus (PEDV, red rectangle) and porcine 

deltacoronavirus (PDCoV, blue triangle) RNA titers in non-intestinal tissues from pigs 

orogastrically inoculated with each virus at the rate of 103 TCID50/ml compared with sham-

inoculated control pigs (black circle) over time as estimated by quantitative RT-PCR (p-value < 

0.001). 
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Figure 2.5 Serum fluorescence antibody (A) and virus neutralizing antibody (B) from the 

serum of pigs inoculated orogastrically with porcine epidemic diarrhea virus (PEDV) (red, p < 

0.001) or porcine deltacoronavirus (PDCoV) (blue, p > 0.05) at 103 TCID50/ml over time 

compared with sham-inoculated control pigs (black).  
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Mean Ct values of PEDV and PDCoV from pigs orogastrically inoculated with each virus at the 

rate of 103 TCID50/ml compared with Sham-inoculated pigs (control) over time as estimated by 

quantitative RT-PCR.  

Table 2.1 Virus shedding in feces collected from pigs inoculated with PEDV or PDCoV 
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Proportion of seropositive pigs for porcine epidemic diarrhea virus (PEDV) or porcine deltacoronavirus 

(PDCoV) as measured by indirect fluorescent antibody (IFA) assay and serum-virus neutralization 

(SVN) assay at each sampling time (dpi) after experimental infection with each virus via orogastic 

route.  

 

 

 

 

 

 

 

dpi2 

Table 2.2 Percent Positive Serum Antibody in Pigs 
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CHAPTER 3. GENERAL CONCLUSIONS 

 

General Discussion 

 Historically, TGEV, an alphacoronavirus discovered in 1946, was a major cause of 

severe diarrheic disease in young pigs, but is less common today in the U.S. In 2013, PEDV, a 

novel coronavirus, caused a significant outbreak of viral diarrhea U.S. swine herds. In 2014, 

PDCoV, another new deltacoronavirus, was detected as a causal agent of diarrheic disease in 

sows and piglets for the first time in the U.S. The recent emergence of new SECoV caused $481 

to $929 million U.S. dollars, a devastating economic impact on the U.S. swine industry 

(Paarlberg, 2014). In naïve, pre-weaning piglets, PEDV has been shown to cause up to 90% 

mortality and PDCoV can cause between 40% to 90% mortality with 100% morbidity associated 

with both PEDV and PDCoV (Jung, Hu, & Saif, 2016; Madson et al., 2014; Stevenson et al., 

2013). Today, both PEDV and PDCoV are endemic in U.S. swine herds.  

 SECoV are known to infect intestinal enterocytes causing atrophic enteritis leading to 

effusive diarrhea. Increased mortality of naïve neonate piglets resulted from rapid fluid loss and 

dehydration associated with SECoV infection. Age-dependent pathogenicity associated with 

PEDV occurs in the pre-weaning and nursery/growing stages of swine production. Due to a 

slower turnover of infected enterocytes and lack of immunological memory, neonates suffer 

more severe disease than weaned pigs. While the age-dependent mechanism remains unsolved, 

one study showed the evidence that impaired crypt stem cell regeneration and impaired lytic 

activity of infected enterocytes caused severe disease in 9-day-old pigs (Annamalai, Saif, Lu, & 

Jung, 2015; Jung, Eyerly, Annamalai, Lu, & Saif, 2015). In neonates, the intestinal barrier was 

disrupted causing shortening of villi and widening of intestinal crypts and reduced numbers of 

IFN-γ producing cytotoxic cells. In comparison, PEDV infection caused less severe lesions and 
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impact in 26-day-old pigs, resulting in reduced disease severity (Curry, Gabler, Schwartz, Yoon, 

& Burrough, 2016; Jung et al., 2015). In addition to age-related difference, there appears virus 

specific differences in the pathogenicity between PEDV and PDCoV as shown in our present 

work. PEDV infection caused high viral load in feces and tissues, as well as, longer detection of 

vRNA in tissues and feces when compared with PDCoV (Curry et al., 2017). Pathological 

lesions are severely diffuse throughout the small intestine during PEDV infection of 3-week-old 

pigs (Madson et al., 2014). PDCoV infection observed similar results in 2 to 3-week-old pigs, 

but the extent of viral detection was limited when compared with PEDV infection (Jung et al., 

2016). These observed differences between the 2 viruses may be attributed to the ability of virus 

to replicate in older pigs. In conclusion, SECoV pathogenicity differences exist probably due to 

both host and virus factors. 

The emergence of virulent and economically devastating SECoV encourages the 

development of enhanced biosecurity and vaccinations to prevent disease transmission. During 

the 2013 outbreak, more than 29 states across the U.S. had confirmed cases of PEDV (Chen et 

al., 2014). Today, the virus has been confirmed in most of the U.S. and across North America. 

While it is still unclear how PEDV entered the U.S., multiple lapses in biosecurity may have 

been attributed to its rapid spread across North America. From our current study, it was noticed 

that pigs can shed PEDV and PDCoV after the animals were no longer diarrheic. Fecal shedding 

of PEDV from subclinical animals has also been reported by other investigators (Madson et al., 

2014; Niederwerder et al., 2016). As such, animals can contribute to the persistence and lateral 

transmission of the virus across the different stages of pig production and spread on other 

production systems, this observation should be taken into devising biosecurity measure including 
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managing transportation and vehicles (Lowe et al., 2014). Continuous monitoring for SECoV is 

critical particularly for grow-finishers and breeding animals. 

The porcine gastrointestinal immune system of young pigs is slow to mature and develop, 

increasing the susceptibility to enteric viral disease when compared to an adult pig (Stokes, 

Bailey, & Haverson, 1991). The physical integrity of the gastrointestinal barrier is comprised of 

epithelial cells, mucus, and sIgA which form a protective barrier. When exposed to an enteric 

pathogen, gut-associated lymphoid tissue (GALT) stimulates the release of immune cells to 

assist in clearance of the pathogen. In sows exposed to TGEV virus, stimulated GALT increased 

both mucosal and cell-mediated immunity at the site of infection and migration to the mesenteric 

lymph node. When the same sows were given a homologous challenge dose post exposure, high 

levels of IgA B memory cells and T lymphocytes in the intestines prevented re-infection from 

occurring, conferring complete protection (Langel, Paim, Lager, & Vlasova, 2016; Saif, 1996). 

In a recent study, PEDV infected and recovered 8-week-old pigs demonstrated protection from 

homologous challenge. When challenged with PEDV, previously exposed pigs did not develop 

diarrhea or pathological lesions in the intestinal tissues, although 10% of pigs did have vRNA 

detectable in the feces. Moreover, increased levels of PEDV IgA were measured in the feces of 

challenged pigs which were shown to be protective from re-infection of homologous PEDV 

(Gerber et al., 2016). Understanding the mechanisms of immunological protection from SECoV 

infection in young pigs is essential to developing preventative measures that delivery sterilizing 

immunity. 
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Recommendations for Future Research 

The underlying mechanisms of age-dependent and virus-dependent pathogenicity remains 

unsolved. Understanding SECoV pathogenicity comes mainly from studies done in neonate or pre-

weaning pigs. Our study compared pathogenicity of PEDV and PDCoV infection in nursery 

animals and determined differences in the pathogenicity of SECoV in older animals. Both PEDV 

and PDCoV infected older pigs in this study, clinical manifestations of disease varied in growth 

and performance, mean viral load in tissues and feces, viremia, and serum antibody responses 

(Curry et al., 2017). The lack of information on the comparative pathogenesis weaned pigs 

warrants further investigation to understand the consequence of SECoV infection in older animals. 

Other limitations of this study include: use of tissue-culture adapted virus strains, unknown MID 

of PDCoV, lack of replication of observations, and unclear humoral immunity in PDCoV-infected 

pigs. Future studies should address these concerns. In conclusion, completing additional 

comparative pathogenicity studies in weaned pigs and comparing SECoV side-by-side in vivo can 

illuminate possible mechanisms, which can serve as targets for disease prevention.   

A mechanism associated with gastrointestinal barrier disruption could explain the 

discrepancies between SECoV pathogenicity in different age pigs. I hypothesize, gastrointestinal 

barrier impairment caused by pro-apoptotic pathways as a possible mechanism for enhanced 

virulence and age-dependent pathogenicity in young age pigs infected with PEDV, and possibly 

other SECoV.  In neonates, the gastrointestinal system is still immature and the mucosal immune 

system is developing. Phagocytic immune cells are important for maintenance of the mucosal 

immune system, specifically, autophagy influences intestinal T cell compartments by impacting 

antigen processing and lymphocyte homeostasis (Kabat, Pott, & Maloy, 2016). Additionally, TCR 

repertoires can change with age and antigen exposure. γδ-TCR is an important mucosal associated 
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receptor (Holtmeier et al., 2002). In young pigs, PEDV infection impairs the gastrointestinal 

barrier, more specifically it reduces the function of tight junctions, allowing the virus to cross the 

intestinal tissues. In PEDV infection of neonates, crypt cell proliferation declined, as pro-apoptotic 

pathways upregulated, causing severe pathogenicity (De Arriba, Carvajal, Pozo, & Rubio, 2002; 

Jung et al., 2015). PEDV infection of 6-week-old pigs reduced the expression of tight junctional 

proteins, resulting in impaired gastrointestinal barrier function (Curry et al., 2016). Therapies that 

target this pathway could prevent the inflammation and disruption of the gastrointestinal barrier. 

In Inflammatory Bowel Disease, disease drives changes in the homeostatic mechanisms of the 

mucosal immune system. Altering of these mucosal interactions may help mitigate the impact of 

IBD (Pandiyan & Lavelle, 2016). Antigen-presenting cells (APC) in the lamina propria and 

Peyer’s Patch facilitate antigen uptake across the epithelium to induce antigen-specific immunity 

in presence of a gastrointestinal infection. Similarly, APC in the secondary lymphoid tissues, 

specifically the MLN, reside in the LN and sample antigen from lymphatic fluid, inducing an early 

T cell activation (Pandiyan & Lavelle, 2016). Due to the slow maturation of the cellular immune 

response in neonates, this could explain why pathogenicity is more severe than in older, more 

mature animals. Taken together, vaccines that induce effective mucosal immunity could provide 

protection from SECoV infection. 
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