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ABSTRACT

In this dissertation, we intended to construct some g-analogue t-designs and association schemes
in symplectic vector spaces over finite fields. In this process of searching for designs and associ-
ation schemes, we found two new families of association schemes, both of which are families of
Schurian association schemes. They are obtained from the action of finite symplectic groups or

their subgroups

(i) on the sets of totally isotropic projective lines, and

(ii) on subconstituents of the generalized symplectic graphs which are defined on the sets of totally

isotropic projective lines as their vertex sets.

The studies of these associations schemes are treated in Chapter 3. We describe these schemes
in terms of their character tables and their fusion relations. We also present some tables to list

other combinatorial objects that are associated with our association schemes.



CHAPTER 1. INTRODUCTION

In this chapter, we start by introducing the concepts of association schemes, t-designs and ¢-
analogue t-designs. We describe the history and tools required to understand designs and schemes.
We then give explicit constructions of known g-analogue t-designs. Following the constructions, we
introduce the symplectic space in order to understand the lé—designs constructed in the symplectic
vector space using totally isotropic subspaces in the literature. Some of the constructions are re-
explored in Section 2.3 as well as our construction of a D-class association schemes in Chapter 3.

Finally, we end with a summary of the thesis organization.

1.1 Preliminaries

Combinatorial design theory was created in the 1920’s to assist in the work of the design and
analysis of statistical experiments (cf. Stinson, 2003). It is a tool used to figure out if we can
arrange elements of a finite set into subsets so that it has certain “balance” properties. Since their
discovery, many different types of designs have been introduced. A detailed timeline may be found

in (Colbourn and Dinitz, 2006, Chapter 1.2).
Definition 1. A block design is a pair (P, B), where
(i) P is a finite set of elements called points and
(ii) B is a collection of nonempty subsets of P called blocks.

If B contains two identical blocks, then it is denoted as a repeated block design. A design is
simple if it is not a repeated block design. A point block pair (p, B) where p is a point in P and
B is a block in B is called a flag if p € B; otherwise, it is called an antiflag. We can now discuss
the simplest balance property that a design can have as described by certain combinatorial and

algebraic properties.



Definition 2. A tactical configuration also called a 1-design with parameters (v, b, k,r) is a design
(P, B), with |P| = v points and |B| = b blocks such that each block B € B contains k£ points from

P and each point in P is contained in r-blocks.

This concept was further generalized by Fischer and Yates in the 1930’s and became one of the

most studied types of design because of its applications to efficient statistical experiments.

Definition 3. Let v,k and A be positive integers such that v > k > 2. A t-design with parameters

(v, k, ) is a tactical configuration (P, B) where |{B € B|T C B}| = A for each t-subset T' C P.

Balanced incomplete block designs also called 2-designs are the most widely used designs in
applications. In 1989, Teirlinck proved the existence of ordinary t-designs in Teirlinck (1989)
when the known parametric feasibility conditions are satisfied. More recently, Keevash proved the
existence of a Steiner triple system 2 — (v, 3, 1) for feasible v in Keevash (2015). These results are

significant as it justifies searching for new concrete examples of designs.

Example 1. The following is an example of a 2-(7,3,1) design also known as the Fano plane, where

P={1,2,3,4,5,6,7}

B={{1,2,3},{2,4,6},{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7},{3,5,6}}

As seen in the picture below, each line contains three points.

7 Blocks & Points:

{1,2,3} D {1,2},{1,3},{2,3}
{1,4,5} D {1,4},{1,5},{4,5}
9 1 {1,6,7} D {1,6},{1,7},{6,7}
4 {2,4,6} D {2,4},{2,6},{4,6}
{2,5,7} D {2,5},{2,7},{5,7}
{3,4,7} D {3,4},{3,7},{4,7}
5 3 6 {3,5,6} D {3,5},{3,6},{5,6}

Figure 1.1 Fano plane as 2-design



Definition 4. A design (P, B) is called a projective plane if
(i) any two distinct points p1,pe € P are contained in exactly one block B € B;
(ii) any two blocks By, By € B intersect in exactly one point, that is |B; N By| = 1;
(iii) there exist four points such that none of the four subsets of three points lie in the same block.
Definition 5. A design (P, B) is called an affine plane if
(i) any two distinct points p1,pe € P are contained in exactly one block B € B;
(ii) given any antiflag (p, B), there is precisely one flag (p, H) such that BN H = (;
(iii) there exists a triangle, that is, three points that are not contained in a common block.

Definition 6. A divisible design with parameters (v,b, k,r;m, A1, A2) is a triple (P, B,G) where
(P, B) is a tactical configuration and G is a partition of P into m groups such that for any pair of

distinct points p,ps € P

A1 if p; and py belong to the same group
{B € Blp1,p2 € B}| =

Ao otherwise

Definition 7. A partial geometry with parameters (v,b, k,r;7) is a tactical configuration (P, B)

such that
(i) any two points are contained together in at most one block, and

(ii) every antiflag (p, B), p € B, there exists T blocks containing p that intersect non-trivially with
B.

Now, we can construct a design based on flag and antiflag pairs.

Definition 8. A partial geometric design with parameters (v, b, k, r; cr, B) is a tactical configuration
(P, B) with parameters (v, b, k, r) such that for every point p € P and every block B € B, the number

of flags (y,C) such that y € B\{p},C>pand C # Bisaif pg Band fif p € B.



Definition 9. Let (P, B) be a design with |P| = v and |B| = b. The incidence matriz of (P,B) is

the v x b, {0, 1}-matrix N whose entries are:

1 ifp; € B,
Nij:

),

0 otherwise

Definition 10. Supposed that (P;, B1) and (P», B2) are two designs with |Py| = |P»|. We say that

(P1,B1) and (P, By) are isomorphic if there exists a bijection 7w : P — Py such that
[7(B): B € By] = Bs.

That is, if we map every p € P, to P, by 7(p), then the collection of blocks By is transformed into

Bs. The bijection 7 is called an isomorphism.

Definition 11. Suppose that M and N are both v x b incidence matrices of designs. Then two
designs are isomorphic if and only if there exists a permutation « of {1,2,--- ,v} and a permutation

B of {1,2,--- b} such that

1.2 ¢-analogue t-designs

Definition 12. A g-analogue t-design, denoted by t — [n, k, A; g]-design, also referred to as a sub-
space design, is a collection of k-dimensional subspaces (called blocks) of the vector space V = Fy

such that each ¢-dimensional subspace of V' (point) is contained in exactly A\ blocks.

If every k-dimensional subspace is selected, then it is denoted as the trivial design. Such designs
are easily found and give no insight into the algebraic and combinatorial relationship between the
blocks and points. If the same k-dimensional subspace is used more than once the design is called
a repeated block design. When A = 1 and t > 2, we call the designs a Steiner System. These designs

play a special role as we would have a perfect cover of the subspaces.



Let P;(V) denote the collection of all -dimensional subspaces of the vector space V = Fy. It is
apparent that we need to be able to count the total number of ¢t-subspaces, |P,(V)|, as well as how
many points are contained in each block.

For this we turn our attention to the ¢-binomial coefficient also referred to as the Gaussian
binomial coefficient which was introduced in Gauss (1808). This definition will be used throughout

this dissertation and should be thoroughly reviewed before moving on.

Lemma 1.2.1. Let n, k be positive integers with k < n and let q be a prime power. Then the
number of k-dimensional subspaces in the vector space V. =Fy is equal to (Z)q where,

II «-1

<n> _ @ -D(@ T 1) @M 1) enkn
k) (¢" =1 =1)--(¢—1) LE
[I -1

t=1

As shown in Rademacher (1977); Carlitz (1970) the Gaussian binomial coefficients act similar

to the standard binomial coefficients as the ¢-binomial coefficients satisfies the recurrence relation
(), ("), = ()
=z .
k q k q k—1 q
. n n
im = .
q—1 k q k

Example 2. The fano plane from example 1 can also be described as a 1 —[3, 2, 3; 2]-design as seen

In fact,

below. Projective plane of order 2, PG(2,2) =1 — [3,2,3; 2]

Lastly, we will be discussing the use of subspaces of V' = Fy in a graph, we will also do so later
in Chapter 2. We wish to mention this here as an interesting natural construction of graphs using
subspaces where the Gaussian binomial coefficients in Lemma 1.2.1 appear. The following appears

in Godsil and Meagher (2015).

Definition 13. Let V' = Fy a vector space of dimension v over the finite field F,. The g-Kneser
graph denoted by ¢K (v, k), where v > 2k, is the graph whose vertex set is Pr(V). Two vertices

X,Y € Pi(V) are adjacent if dim(X NY) = 0.



Blocks & Points:
[1,2,3] = [g . é]a [0,0,1],[0,1,0]
[0,1,1]
[1,4,5] = [(1) 8 (1]]3 [0,0,1],[1,0,0]
[1,0,1]
001
[1,6,7] = > [0,0,1],[1,1,0]
[1 1 0] [17171]
[2,4,6] = [(1’ . 8]3 [0,1,01,[1,0,0]
[1,1,0]
010
[2,5,7] = > [0,1,0],[1,0,1]
[1 0 1] [17171]
[3,4,7 = [‘1’ . (1]]3 [0,1,1],[1,0,0]
[L,1,1]
011
[3,5,6] = > [0,1,1],[1,0,1]
[1 0 1] [11110]

Figure 1.2 Fano plane as g-analogue 2-design

Calculating the size of the independent set (collection of vertices such that no two are adjacent)
requires Lemma 1.2.10 and calculating the eigenvalues also requires a few counting techniques. See
Godsil and Meagher (2015) for more details.

The first construction of a nontrivial subspace design with ¢ > 2 was due to Thomas (1987).
This work was soon extended by Suzuki (1990a) and Suzuki (1992). The construction was found
to not be extendable past t = 2. We will now discuss Thomas’ construction followed by Suzuki’s
construction. For the sage code as well as the complete description of a 2 — [7, 3, 7; 2] please see A.
Other notable constructions of nontrivial designs can be found in Schram (1989); Miyakawa et al.

(1995); Ttoh (1989).

1.2.1 Thomas’ construction

Let n = £1 (mod 6). Let F* = GF(2™)*, the multiplicative group of GF(2"), that is the group

of all nonzero elements of GF'(2") under multiplication.

Definition 14. Thomas (1987) Let n = +1 (mod 6) where, PG(n — 1,2) is the projective space
whose points are identified with elements of F* = GF(2")*. Let v be a primitive element of F, we

shall denote +? as b.

Under this notation, the set {0, a, b} is a line if and only if ¥* +~? +~% = 0.



b 2b a+b

Figure 1.3 Special triangle

Example 3. Let {0,a,b} be a line. Then 4* + 4 4+ % = 0. We claim that {a,2a,a + b} and

{b,a + b,2b} lie in the same F*-orbit. Let a and b act on {0,a,b} e.g.

a{0,a,b} =¥ (7,7%,7%) = (v, 7%, 7" *?) = {a,2a,a + b},

similarly
b{0,a,b} = (7%, 7%, 1% = (7*, 712, 4") = {b,a + b, 2b},

Now, we can construct a special triangle.

Definition 15. A triangle is a set T' = {c1, ¢2, c3} of three noncollinear points. The lines < ¢;, ¢; >,
1 <i < j <3, are the edges of the triangle. T is said to be a special triangle if its edges lie in the

same [F*-orbit.

Definition 16. F* is said to act semiregular on a set X if for any z,y € X there exists a f € F*

such that fx =y.
Lemma 1.2.2. Rao (1969) F acts semiregularly on the sets of lines and planes.

Lemma 1.2.3. (Thomas, 1987, Lemma 3) Each plane contains at most one special triangle and

each line lies in seven planes.

Definition 17. A k regular simplex is a k-dimensional regular polytope which is the convex hull

of its k + 1 vertices.



For example, a triangle is a 2-simplex while a tetrahedron is a 3-simplex.
The special triangles will be our 3-dimensional subspaces while the lines are our 2-dimensional

subspaces. Under this construction we have the following design.

Theorem 1.2.4. Thomas (1987) If n = +1 (mod 6) and n > 5, then there exists a nontrivial
2 —[n,3,7;2] design whose blocks are B = {< T >: T is a special triangle}, the special triangles

defined from Definition 15.

This was the first nontrivial construction of a family of designs. It is important to note the

following about this construction.
Remark 1.2.5.

e When ¢ # 2, Lemma 1.2.3 fails to hold. We are not guaranteed that each line lies on the

same number of planes.
o If we try to identify our points with & > 1 the semiregularity as in Lemma 1.2.2 fails.

e Lastly, if we try to look at a k simplex from Definition 17 we can not guarantee a special
simplex property as we can in Definition 15.
1.2.2 Suzuki’s construction

Let g be a prime power. In this construction we will view the finite field [Fj» as an n-dimensional

vector space V' = Fy over F,.

Definition 18. Suzuki (1992) Let U be a 2-dimensional subspace of V. For each r € N, let
L.(U)=<ay...ar|la; €U i=1,2,-+- 1>,

the subspace of V' generated by all product of r elements of U.

Corollary 1.2.6. (Suzuki, 1992, Corollary 2.2) Suppose n = £1 (mod r!), then dim(L,.(U)) =

r+1.



Theorem 1.2.7. Suzuki (1992)[Theorem 4.1] If n = £1 mod 6, n > 7 and q odd, then

5= {0 ve (1))

forms a nontrivial 2 — [n,3,¢* + q + 1;q| design.

Lemma 1.2.8. (Suzuki, 1992, Lemma 4.2) Let W C Lo(U), where U =< x,y > Then, W must

have one of the following three forms:
(i) W =< 22, y* >
(ii) W =< 22, 2y >
(iii) W =< xy, 2% + ey? >, where € is a fived nonsquared element in F,.

This was a nice generalization of Thomas’ constructions. It is important to note the following

about this construction.
Remark 1.2.9.

e When ¢ = 2 in Theorem 1.2.7 we obtain Theorem 1.2.4.

e When r # 2, Lemma 1.2.8 fails to hold, that is we are not able to identify the forms of W, so

we do not know what elements are in W.

1.2.3 Existence of g-analogue t-designs

Although Thomas was able to construct a g-analogue t-design for 2 — [n, 3, 7; 2] in 1987, it was
still unknown if they could exist for the other values of n,k and ¢t. The existence of g-analogue
t-designs was studied in Ray-Chaudhuri and Singhi (1989). In this paper, they discuss a generalized
signed design that is constructed using choice functions f for the blocks and F' for the points. Let

V =Ty, a vector space of dimension v over the finite field F,.

Definition 19. A signed t — [v, k, A] design in V is a function f : Pr(V) — Z such that for all

T e Pt(V),

Y. fB)=2A

BEeP,(V),TCB
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Such a function is called a ¢t — [v, k, \] design if f(B) > 0 for all B € Px(V). In a design, we
want every point to occur A times, instead we can generalize this and ask if there is a function F'
such that each T occurs F(T') times. We can take this a step further and say that each B such

that T C B contributes a value of f(B).

Definition 20. For a function F' : Py(V) — Z, an integral k-realization of F is a function f :

Pr(V) — Z such that for all T' € P,(V),

BeP(V),TCB
We are not guaranteed the existence of these functions. Before we can state which conditions
need to be met in order for these functions to exist and give us a design we need a few more tools

to count the interactions of subspaces.

Lemma 1.2.10. Ray-Chaudhuri and Singhi (1989); Brouwer et al. (2011) Let X be a j-space of
V=Fy0<j<w). Let

| = max{0,k — (v —j)} and m = min{k,j}.

Forl < h <m, define

Sy :={Y € Pr(v) : dim(Y N X) = h}.

Then Py (V) is partitioned into the subsets Sy, Si11, -+, Sm; that is,
Pr(V) = Up;Sh, Spy, N S, = 0 whenever hy # ha,h1,he € {I,1+1,--- ,m}.
Also we have the following:

(a) The number of k-spaces Y in'V such that dim(Y N X) = h is given by

_ mGer) (VT (T
Sul =1 (k_h)q(h)q

v m m B a v —j ]
(k:) = Z|5h| - Zq(k h)(G—h) (k_ h) (h)
q h=1 h=l q q

(b)
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Proof. If k < j and k < v — j, then each k-space Y of V intersect with X trivially or in an h-space

for h=1,2,--- k. It is clear that Sy, N Sp, = 0 if hy # hg for any hi, he € {0,1,--- ,k}. So, with

l=0and m=k,S;,Si+1, - ,Sm form a partition of the set of all k-spaces of V. We will only be

proving this case as the other cases below can be verified in a similar manner

e k<jandk>v—3j

e k>jand k<v—3j

e k>jandk>v—j

(a) If h = 0, there are ¢*/ k-spaces Y in V disjoint from X corresponding to the ¢*/ canonical

matrices of shape [Ik]Aka] where I, is the k x k identity matrix and Ayy; is a k X j matrix

with ¢*/ unspecified entries.

For h with [ < h < m, we show that there are

JE-G—h) (U—j> <J>
k—h) \n),

k-spaces Y in V intersecting the given j-space X in a h-space Y N X. The reason is that when
considering the (k + j — h)-space (Y + X) and the h-space Y N X as fixed, these k-spaces
correspond to a (k — h)-space disjoint from the (j — h)-space X\ (Y N X) in the (k—h+j— h)-
space (Y + X)\(Y N X), of which there are ¢*~"U~") corresponding to the canonical matrix

shape [T—p|Ak—n)x(j—n)l-

(b) It follows immediately from the above results.

O]

This count gives us our first insight into the interaction of t-subspaces and k-subspaces. In fact,

c(k,t,m,l) shows the difficulty in counting over a finite field. The deconstruction of the subspace

into a block matrix will play an important role in Chapter 2.



12

Definition 21. Let d(k,t,m,l) be the unique rational number defined by the equations

d(k,t,m,l)=01ifl <m

l
> d(k,t,m,l) - ek, ti,1) =y,

where 6, is the Kronecker delta function which is defined as

1 ifi=
5i,j =
0 otherwise.
Example 4. Let £k = 4,t = 3 and ¢ = 2. Then we can represent the values of ¢(4,3,m,l) and
d(4,3,m,l) for 0 < m < 3 and 0 <[ < 3 in the matrices C' and D respectively. Entry C(i,7) will

represent m =4 and [ = j.

5 1 00
0 14 3 0
C:

0 0 12 7

0O 0 0 8
11 1 1
15 210 840 960
1 1 1
D_ 0 17 —5 1
1 7
0 0 & -Z
1
o o o 1L

Now, we can move to the main result of the paper, that is the existence of a design.

Theorem 1.2.11. (Ray-Chaudhuri and Singhi, 1989, Theorem 2.4) Let k >t and v > k +t. Let
V =Fy. Let I': P(V) = Z be a function. Then F has an integral k-realization f if and only if the
following holds: For any w-space W < V,0 <w <t and (v—t+w)-space U such that W <U <V,
> dk—w,t—w,0,t—dim(TNU))F(T)
TeP,(V),WCT

18 an integer.
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When F(T) = A for all T' € P,(V) we have a standard g-analogue t-design as in Definition 12.
The existence of g-analogue t-designs was taken one step further by Fazeli et al. (2014), which
showed that g-analogue t-designs exist for all ¢. There is still an issue though as constructing the
designs is a laborious task. Luckily, as in ordinary designs, we are able to extract other designs
from a given g-analogue t-design. This is an important result due to the difficulty of finding a

design.

Lemma 1.2.12. (Suzuki, 1990b, Lemma 4.1(1)) Let D be a t — [v,k, \;q] design. For each s €

{0,...,t}, D is a s — [v,k, \s; q] designs with

(=), G,

k—s\ A v—t

(t—s)q (k:—t)q

Lemma 1.2.13. (Suzuki, 1990b, Lemma 4.2) Let D be a t — [v,k, \;q] design. Then the supple-

v—k
mentary design D+ = (V,{B+|Be€B}) isat—[v,v—k )\(( )) q] design.
t/q

As = A

Definition 22. Let D = (V,B) be a t — [v, k, \; q] design. For U € (‘f)q, the derived design of D
in U is defined as
Dery (D) = (V\U,{B\U : B € B,U C B}).
Definition 23. Let D = (V,B) be a t — [v,k, A; ¢| design. For H € (v 1) the residual design of
D in H is defined as
Resp(D) = (H,{B:BeB,BC H}).

Lemma 1.2.14. (Kiermaier and Laue, 2015, Lemma 5) Let D = (V,B) be a t — [v, k, \; q] design.
Then Dery (D) is a (t—1)—[v—1,k—1,\; q] design and Resg(D) is a (t—1)—[v—1,k, )‘ﬁc 1t+1)‘, q]
design, where \i—1 is defined in Lemma 1.2.12.
Theorem 1.2.15. Itoh (1998) Given a 2-[n,3,¢*(¢" —5—1)/(q—1);q] design for an integer n =5
(mod 6(q — 1)), there exists a 2 — [mn,¢*(¢" —5 — 1)/(q — 1);q] design for an arbitrary integer
m > 3.

We are still left with the daunting task of finding a design. To simplify the question of finding

a g-analogue t-design, we turn our attention back to Definition 9. Let us rewrite this definition in

terms of subspaces.
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Definition 24. The incidence matrix A of size (?)q X (Z)q is the {0,1} matrix whose rows are
indexed by the elements in P(V') and whose columns are indexed by the elements of Py(V') such

that:

1 if T, C K;
Aij =

0 otherwise

(2)

Then, a t — [n, k, \; q] design exists if and only if there exists some vector x € sz ? such that
%
Ar =1

Example 5. We now give an example of an incidence matrix from Definition 9.

Incidence matrix for 1 — [3,2, 3;2] design from Example 1.

001 001 001 ot0| |oto| o011 011
010 100 110 100 101 100 101
100 0 1 0 1 0 1 0
010 1 0 0 1 1 0 0
001 1 1 1 0 0 0 0
A= & -
110 0 0 1 1 0 0 1
101 0 1 0 0 1 0 1
011 1 0 0 0 0 1 1
111 0 0 1 0 1 1 0

Clearly A? = 3?. Because we used every block we have the trivial 1 —[3, 2, 3; 2] design. To see

if another design exists, if Ax = Az for A = 1,2 one would have to do a brute force search over all

3 (2)

possible 2()2 —1 non-zero vectors x € 372, In fact, we are solving a system of linear Diophantine
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equations. As n grows, treating this as a system of Diophantine equations become computationally
unfeasible to solve. Instead, when A = 1, this problem is equivalent to the exact cover problem,
which has been studied in Knuth (2011).

The exact cover problem as stated in Knuth (2011) is as follows: Given a matriz of 0’s and 1’s,
does it have a set of rows containing exactly 1 in each column?

In Knuth (2011), Knuth details an algorithm to solve this problem. In order to solve for a
general A, one may modify the algorithm as seen in Braun et al. (2016). We are still left with
trying to reduce the number of equations in this system. In their seminal work Kramer and Mesner
(1976), Kramer and Mesner noticed that they could partition this incidence matrix into smaller

classes.

1.2.4 Kramer-Mesner and Singer cycles

The following definitions and results about group actions may be found in (Colbourn and Dinitz,

2006, Chapter 9).

Definition 25. Let X be a finite set and let G be a group acting on X. The image of x € X under
g € G will be denoted by z9. The orbit of x under G is 2 = {x9 : g € G}. The orbits under G
partition X. The stabilizer of x in G is
Stab,(G) ={g € G : 27 = z}.
The normalizer of A in G, Ng(A) is
Ng(A) ={g e G:gAg~" = A}.

Proposition 1.2.16. Let G be a group acting on a finite set X. The stabilizer Stab,(G) is a
subgroup of G and
|G| = ||| Stabs (G)].

Definition 26. A group action is transitive if and only if X is a single G-orbit. Thus, a group
action, G acting on X, is transitive if and only if for any two elements z,y € X there exists a group

element g € G such that z = y9.
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Definition 27. A group action G on a set S is said to be doubly transitive if given any x1, x2, Y1, Y2 €
S with x1 # y1, 29 # Y2, there exists a g € G such that gz = x9 and gy; = y2. In other words g

maps (21,%1) to (z2,y2).

The following is theorem and lemma are known as the Orbit-Stabilizer theorem and Burnside’s

lemma respectively.

Theorem 1.2.17. Let G be a group acting on a finite set X.Then

|.%'G‘ — ‘G’
|Stab, (G|
Lemma 1.2.18. Let G be a group acting on a finite set X. For g € G, let X9 denote the set of

x € X that are fized by g. Then,

1
\X/GIZQZIXQI,

geG

where | X /G| is the number of orbits that G creates in X.

Theorem 1.2.19. (Kramer and Mesner, 1976, Theorem 2.1) A t — [v, k, \; q]-design exists with
G C Aut(V) if and only if there exists a {0,1}-solution vector z to the Diophantine system of

equations

Agx = A,

where Ag is the incidence matriz indexed by the orbits of the elements under G. If F' is the finite

field GF(q) of order q, we denote this group by GLy,(q).

Let V be a vector space of size n over a field F. The general linear group GL,(F') is the group

of all automorphisms of V. Alternatively, it is the collection of all n x n invertible matrices.

Definition 28. A Singer cycle is an element of GL,(q) that generates a cyclic subgroup of order

q" — 1.

Definition 29. A polynomial p(x) with coefficients in GF(q) is a primitive polynomial if the

deg(p(x)) = m and it has a primitive element ~ as a root in GF(q¢™).
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Definition 30. Let p(z) = ag+a1x+---+a,_ 12" +2" be a polynomial over F. The companion

matrix of p(z) is defined as the square n x n matrix over F' such that

0 0 ... 0 —Co

10 ... 0 —¢
Cp)=101 0 ... —cy

0 0 ... 1 —Cp—1

To construct a Singer cycle, one simply finds a primitive polynomial of order ¢” — 1 and its
corresponding companion matrix. A detailed description of the history and further sources on the

topics of finite fields may be found in Lidl and Niederreiter (1997).
Example 6. We will construct a Singer cycle in GL7(2).
e Factor #2 1 — 1 =227 — 1 in GF(2) to find irreducible polynomials

o 21271 = (z+1) (2" +a+1) (2T+23+1) (2" + 23+ 2%+ 2+ 1) (2T + 2t +1) (2T + 2t + 23+ 22+ 1) (2T +
e’ +r+) ("2 3+ ) (" F bt 22+ ) (2T Pt 3 22 1) (27 + 20+
D (2" +a8+ a3 +a+1) (2" + 242t 42 +1) (27 +20+2t + 22 +1) (2T + 28+ 2P+ 22+ 1) (2 + 20+ 25+

B2 +r+D)(z"+2b+ 20424+ 1) (2" + 2 Pt 2+ D) (2T F 28 2Pt 23 224 1)

e Select 27 + 2 + 1 as our primitive polynomial. Then, its companion matrix is a Singer cycle

of order 27 — 1 = 127.
00 0O0O0TO 01

1000001

01 00O0O

o
o
(e}
—
(e
o
o o o o O
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In Ttoh (1998) and Miyakawa et al. (1995) the underlying actions on the subspaces to construct
the blocks from Thomas (1987) and Suzuki (1992) are shown to rely on Singer cycles. Please see
Appendix A for the corresponding sage code of Thomas’ construction using Singer cycles and the
Kramer-Mesner matrix. In fact, in Itoh (1989), it is shown that there is no nontrivial 2 — [6, 3, A; 2]
design admitting a Singer cycle for any A. This brings us to the current research being done in the

field.

Theorem 1.2.20. (Braun et al., 2016, Theorem 3) Let n be an odd prime. Then the normalizer

of a Singer subgroup is a mazimal subgroup of GLy(q).

Lemma 1.2.21. (Braun et al., 2016, Lemma 4) The normalizer of A, of a Singer subgroup is

self-normalizing in GLy(q).

This theorem and lemma tell us that we want to select subgroups of the normalizer of a Singer
cycle as the group in the Kramer-Mesner method from Theorem 1.2.19. As noted in Braun et al.
(2016), we are still required to perform an intense computer search to find these designs. A more
detailed overview of the computational aspects of the problem may be found in Braun (2010);
however, these approaches are out of the scope of the author. For further software to construct
g-analogue t-designs please see Betten (2013) and Braun (2004).

Below is Thomas’ construction using the normalizer of the Singer cycle S from Example 6.

Example 7. Let n = 7,k = 3,t = 2,qg = 2. Let S be the Singer cycle found by taking the
companion matrix of the irreducible polynomial 7 + x 4+ 1 in GF(2). Let G be the normalizer of
the Singer cycle by Theorem 1.2.19 a 2 — [7, 3, 7; 2]-design exists if there is a {0, 1}-solution vector
x to the Diophantine system of equations Agz’ = 7. The newly formed incidence matrix partitions
the 2-dimensional subspaces into three orbits and the 3-dimensional subspaces in fifteen orbits.

The explicit subspaces in the orbits can be found in A.

53 2231232311210
Ac=]113 3210323225211

1123 302222413250
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The vector z = [0,0,1,1,0,0,0,1,0,0,0,0,0,0,0] gives us Agz’ = 7. Notice that there are
other vectors which can lead to this design and we can also find a design with A = 5 using

z=10,0,0,0,0,0,0,0,0,1,0,0,1,0,1].

1.3 Connection between association schemes and ¢g-analogue ¢-designs

In this section we establish the connection between association schemes and g-analogue ¢-designs.

A g-analogue t-design asks about the relationship between t-spaces and k-spaces. By studying
these relationships we gain a deeper understanding of the underlying geometry in Fy. Specifically,
when looking for partial geometric designs as described in Definition 7, where the blocks are k-
spaces and the points are t-spaces, we want to know the number of blocks containing two points.
The way that these spaces interact will dictate the number of flags and anti-flags. We have seen
the relationship of ¢ and k-spaces in Lemma 1.2.10 which allowed us to count the number of
subspaces that intersect with a given fixed subspace. Partial geometric designs became of great
interest when Brouwer et al. (2012) was able to construct directed strongly regular graphs from a
given partial geometric design. Nowak et al. (2016) was able to show that a three-class association
scheme contains a partial geometric design. The search for three-class association schemes, partial
geometric designs and their derived strongly regular graphs was now formed. Recently, in Chai
et al. (2015) and Feng et al. (2016) new graphs were created by studying the symplectic, orthogonal
and unitary geometries. In Chai et al. (2015) they create a graph whose vertices are symplectic
subspaces satisfying a special bilinear form, furthermore vertices are partitioned into classes based
on their distance from a fixed vertex in the graph. Similar relationships have been studied in Rieck
(2005), Guo (2010), Gao and He (2013a) and J. Guo and Li (2009). The construction of association
schemes in these papers require a strong understanding of the relationships of subspaces and matrix
forms. Some simpler association schemes formed from matrices can be found in Wang et al. (2011).

It is from these relationships that we will explore the symplectic geometry and look for new

association schemes that may form directly strongly regular graphs in Chapter 3.
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1.4 Association schemes

Definition 31. Let X be an n-element set, and let Ry, R1,-- - , Rp be subsets of X x X := {(z,y) :
z,y € X} with Ry = {(z,2) : « € X}. The pair x = (X, {R;}o<i<p) is a D-class association scheme
if

(i) ROUR1U---URp =X x X

RiNRj=0forallije{0,1,---,D}

(i) Rl:={(y,z): (z,y) € R;} is Ry for some ¢ € {0,1,---,D}.
(iii) for any h,i,j € {0,1,---,D}, there exists a constant p?j such that for any (z,y) € Ry,
H{zx e X :(z,2) € Ry, (2,y) € R;}| :plhj
An association scheme is x = (X, {R; }o<i<p) is commutative if
ro=pl for all 4, j D
pi; = pj; for all 4,5 € {0,1,--- , D}
It is symmetric if Rt = R; for all i € {0,1,--- ,D}.
Definition 32. Let A; be the n x n {0,1}- matrix representing R;: i.e.,

1 if (z,y) € R;
(Ai)xy =

0 otherwise

The pair x = (X, {Ri}o<i<p) is and association scheme if Ay, Ay,--- , Ap satisfies the following

requirement:
(i) Ag+ A1+ -+ Ap = J, where J is the all-ones matrix and Ag = I is the identity matrix
(ii) Al € {Ag, Ay, ,Ap} for every i € {0,---,D}

(iii) for any h,i,j € {0,--- , D}, there exists a constant p?j such that

D
AiAj = ZPZAh
h=0
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Now, x is commutative if A;A; = A;A; for all 4,5 € {0,1,--- ,D}. x is symmetric if Al = A,
forall i € {0,1,--- ,D}.

The matrices Ag, A1, , Ap defined above are called the adjacency matrices of X and the
graphs (X, Ry), (X, Rg),---, (X, Rp) are called the relation graphs of X. The constants p?j are
called the intersection numbers of X.

Let B;,i € {0,---,D}, be the ith intersection matriz defined by
(Bi)jn = plj-

D
Then, B;B; = >  pl;Bs.

h=0
Let X = (X, {Ri}o<i<p) be an association scheme with its adjacency matrices Ao, --- , Ap and
intersection matrices By,--- , Bp. Then the C-space with basis {Ag, -, Ap} is an algebra over

the complex numbers called the Bose-Mesner algebra of X, denoted by A(X') or (Ag--- Ap). The
C-algebra generated by {Bg,---,Bp} is called the intersection algebra of X. The Bose-Mesner
algebra A(X') and the intersection algebra (By,- -, Bp) are isomorphic C-algebras induced by the

correspondence A; — B;.

Definition 33. Let I' = (X, R) denote a connected graph with diameter D. T'is said to be a
distance-regular graph whenever for all integers i (i < 0 < D) and for all z,y € X at distance
d(z,y) = i, the scalars

ci=NHzeX:0(x,2) =i—1,0(y,2) = 1}|,

a; =z € X :0(x,2) =1i,0(y,z) = 1}|,

and

b ={z€X:0(x,2z) =i+1,0(y,2) = 1}]
are constant and independent of z and y.

Example 8. The Petersen graph is a distance regular graph.
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Figure 1.4 Petersen graph

We can now give an example of a known association scheme.
Example 9. Let I' = (X, R) denote a distance-regular graph with diameter D, and define
Ri = {(z,y) : (z,y) € X,0(z,y) =i}, (0<i < D).

Then, Yr = (X, {Ri}o<i<p) is a symmetric association scheme.
Using the Petersen graph as I', it has diameter D = 2, so we have a 2-class association scheme,

(V(T'),{Ro, R1, R2}) with relations

Ro = {(0,0),(1,1),(2,2), (3,3), (4,4), (5,5), (6,6), (7,7),(8,8), (9,9)}

Ry ={(0,1),(0,4),(0,5),(1,0),(1,2),(1,6),(2,1),(2,3),(2,7),(3,2),(3,4),(3,8) , (4,0),(4,3) , (4,9)}
U{(5,0),(5,7),(5,8),(6,1),(6,8),(6,9),(7,2),(7,5),(7,9),(8,3),(8,5)}
U{(8,6),(9,4),(9,6),(9,7)}
Ry =V(I)x V(I') — Ry — Ry
The intersection matrices of this 2-class association are
100 010 00 1
Bo=10 1 0f;B1=1(3 0 1| andBy= |0 2 2

0 01 0 2 2 6 4 3
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It is well-known that for a given transitive permutation group G acting on a set {2, the G-orbits

on 2 x Q={(a,b): a € N} constitute an association scheme.

Example 10. Let a finite group G act on a finite set X transitively. Then G acts naturally on X x X
by (z,vy)¢ = (29,99). Let Ry, Ry, -+, Rp be the orbits of G on X x X, with Ry = {(z,z) : x € X }.
Then x = (X, {Ri}o<i<p) is an association scheme, known as a group-case or (Schurian) association

scheme, and denoted x(G, X) in what follows.

Example 11. Let x = (X, {R;}o<i<2) be a symmetric association scheme of class 2. Then the first
relation graph I'; (X, Ry) becomes the strongly regular graph with parameters (n, k, A, v) given by

n=I|Xk==k,A :p%l,l/ :pfl. In this case, we have

0 1 0
Bl_ k )\ 14 )P: 1 r ¢ m17
0 k—=A—1 k—v L s u ma

where r = —t—1=1A-v+VD),s=—-u—1-1(A-v—vVD),m; =(n—1—(2k+(n—1)(A—
V)/VD),ma=n—-mi —1,D = (\—v)?+4(k —v).

An association scheme on §2 obtained by a transitive action of a group G on €2 is called Schurian.
For each z € Q and g € G, we will use zg instead of 29 in what follows.

It is a well-known fact that for a transitive permutation group G on €2, if we let Ry, Ry, -+ , Rp be
the orbits of G on 2x €, then the orbits of Stab, (G) acting on € are precisely Ro(x), Ri(x), -, Rp(x)
where

Ri(z) ={y € Q: (x,y) € R;}.

In this setting, the orbits Ro(z), Ri(z), -, Rp(x) of Staby(G) are called the suborbits of G on
), and the common number D + 1 of suborbits and of G-orbits in Q x €2 is called the rank of the
permutation group G on 2.

In what follows, the pair G acting on 2 is denoted by (G, ). We insist that Ry is the diagonal

{(z,z) : © € Q} and so Ro(z) = {z}, the trivial suborbit. It holds that R;(z)g = Ri(zg) for



24

all g € G, 0 <i<D. The size k; := |R;(z)| are called the subdegrees of (G,€2). Note that the
numbers k; are independent of the choice of z. Since R! := {(z,y) : (y,z) € R;} is also an orbit of
G, there exists some j such that R} = R;. If R} = R;, we say that R; is self-paired. The transitive
permutation group (G,$?) is called generously transitive if all R; are self-paired; i.e., for each 1,
and for each (x,y) € R;, there exists an element g € G such that xg = y and yg = x. With the
G-orbits Ry, Ry, -+, Rp in Q x Q, it is shown that (2, {R;}o<i<p) becomes an association scheme.
We denote this scheme by x(G, ) in what follows. Schurian association schemes are Association
schemes obtained from the action of groups on sets. Schurian association schemes have a rich
connect to algebra. When a finite group G acts transitively on a finite set €1, there is a natural
one-to-one correspondence between the set Q and the set Stab,(G)\G of cosets of a point stabilizer
Stab,(G) for any x € G. Thus the action of G on 2 is identical to that of the action of G on the
set of cosets. There is also a one-to-one correspondence between any two of the three sets, the set
of 2-orbits (on orbitals) of the permutation group (G, 2), the set of suborbits of (G, 2) and the set
of double cosets {Hg;H : 0 < i <D} of H = Stab,(G) in G. This means in terms of algebra, the
Bose-Mesner (adjacency) algebra, the centralizer algebra (Hecke algebra) of (G, ), and the double
coset algebra, the algebra spanned by T; := ﬁ Z g fori=20,1,---,D, are all identical.

g€EHg;H

Let x = (X, {R;}o<i<p) be a symmetric D-class association scheme of order | X| = n with adja-
cency matrices Ag, A1, , Ap. Since Ay, A1, -, Ap pairwise commute, they are simultaneously
diagonalizable, thus we have a decomposition C" = Vy & Vi ...Vp, where each V; is a common
eigenspace for the matrices A;. We may suppose that Vj is the 1-dimensional eigenspace corre-
sponding to the eigenvalue n. Let Fy = %J, Eq, -+, Ep denote the primitive idempotents in A(x).

The dimension m; of V; are called the multiplicities of the scheme. Note that
m; = rank(FE};) = trace(E};), and Eg+ By +---+ Ep = 1.

Then there are p;(j),qi(j) € C for all 4,5 € {0,1,--- ,D} such that

D D

, 1 .
A= pi(OE and B = = 3" aili)A;.
i=0 3=0
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The (D + 1) x (D + 1) matrices P and @ whose (4, j)-entries are defined by

Pij = pj(i) and Q5 = q;(i)

are called the 1st eigenmatriz and 2nd eigenmatriz of x, respectively. The first eigenmatrix of is
often called the character table of the association scheme. The number p;(i) is characterized by
the relation A;F; = p;(i)E;. Since the A; are integral matrices, the p;(i) are algebraic integers.

Thus, the p;(7) are integers if all of the multiplicities m; = rank(E;) are distinct. The numbers qw
which satisfy F; o Ej = (1/|X]) Z qzhth are called the Krein parameters of the scheme. Here we

h=0
use the symbol o for Hadamard multiplication, (A o B);; = (A); j(B);j. The Krein parameters are

known to be nonnegative real numbers.

1.4.1 Identities of parameters

po(i) = qo(i) = 1 holds from Ay = I and Ey = nilJ k; = p;(0) and m; = p;(0) follow from
D
A;J = k;J and trace(E;) = m; . Also p;(h mepl follows from A;A; = ZpﬁjAl Now
=
we have the following identities between the 1ntersect10n numbers and the eigenvalues of the scheme.

(Here and in what follows, @ denotes the complex conjugate of a, and [D] denotes {0,1,---,D}.)

e Row Orthogonality

Do n

z:%k ) :5i17;2m7i1, il,’iQ c [D] (1.1)
e Column Orthogonality

> map;, (i)pj, (V) = 85, onky,, 1, d2 € [D] (1.2)

The multiplicities, the Krein parameters, and the intersection numbers are calculated from the

character table as in the following formulas:

-1

> s ()
ZPJT , i€ D] (1.3)
j=0
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D
aly = =S puipo(pa Bk, (14)
v=0
1 & S
P = e > pi(v)p;()pa(v)my,  hyi,j € [D] (1.5)
v=0
qj (i) =k 'm;pi(j) ford,j € [D] (1.6)

The first two relations are called the orthogonality relations of the character table. They are
obtained from the matrix identities PQ) = nl and QP = nl by writing the identities entry wise in
terms of n, k;, m; and p;(i) repeatedly using the last relation (1.6). (1.6) comes from the relation
D

E; = %qu(l)Al. Namely, multiplying both sides by A; under entry wise product, we have
Ejo A; :l:rtzflqj(i)Ai. Then the sum of all entries E; o A; equals to the trace of EjA; and thus
m;pi(j) while the sum of entries on the right becomes ¢;(i)k;. Similarly, (1.5) is obtained from
the identity p%Ah = (A;Aj) o Aj, by comparing their sums of entries, and (1.4) is coming from the
equality %qlhth = (E; o E;)E}, by observing their traces. Now (1.3) follows from (1.1).

D
Furthermore, p;(h)p;(h) = Zpijpl(h) may be expressed as
1=0
B;P' = P'diag[p;(0),pi(1),--- ,pi(D)] (1.7)

or by
PBjP~! = diagdiag[pi(0),pi(1), - ,pi(D)]-

Consequently if we multiply (1.7) by @’ from the right and left we get

So the I column vector of P’ and the I*" row vector of Q' are recognized as a right eigenvector

and a left eigenvector of B; belonging to the eigenvalue p;(l), respectively.
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1.4.2 Fusion schemes

By using fusion and fission techniques to the character tables of given commutative association
schemes, we can sometimes construct new commutative association schemes called fusion schemes
or fission schemes. It is interesting to observe the nature of many such new schemes, especially,
which are coming from the group schemes of finite simple groups. In this section we review some

of the facts which we will need in the rest of our dissertation.

Definition 34. Let x = (X,{Ri}o<i<p) and X = (X,{Ra}o<a<c) be (commutative) schemes
defined on X. If for each i € [D], R; C R, for some « € [e], then we say that ¥ is a fusion scheme
of x and x is a fission scheme of . Clearly, e < D as we are merging some of the D classes together
from .

For the notation, we will denote all the symbols belonging to x by a () places over the symbols,
such as, ﬁlﬁ,fni, ]5, etc., whenever we need to distinguish them from those belonging to x. The

following two criteria for a fusion will be used throughout when we construct one.

Lemma 1.4.1. Bannai and Song (1993) For a given scheme x = (X, {R;i}o<i<p) and a partition
A={Ao={0},A1,As,..., A} of [D], X = (X, {Ra}o<a<c) becomes a scheme with relations defined
by

Ro = U R;, for each « € [e] if and only if
€A

(i) Rlo = Uiea, Bi = Ujen,, B = Ry for some & € [e], and
(it) for any o, B,y € [e], and any h,l € A,

Where the intersection numbers of the fusion scheme for any o, 3,7 € [e] and any h,k € Ay in
R are

Phs= 2 D= 2 D Py

1€Aa jEAR i€Aa jEAS
Bannai (1991); Muzichuk (1988) Let x = (X, {Ri}o<i<p) be a scheme, and A = {A, }o<a<e be

a partition of [D] such that Ag = {0}. Suppose for every a € [e], U,cp, Rir = Ujen , R for some
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o' € [e]. Then A gives rise to a fusion scheme ¥ = (X, {Ra Yo<a<e) With Ry = Usen,, Ri if and only
if there exists a partition A" = {Af }o<a<e of [D] with Aj = {0} such that each (A}, Aq) block of
the character table P of x has a constant row sum. The constant row sum Z p;(i) for i € A
e
of the block (AE, A.) is the (B, a)-entry p,(8) of the fusion character table P.J eConsequently, if we
know the character table of P of y and the fusion partition A (and A*) of (x), we can determine
the character table P of X- Namely, for the given P, first we combine the corresponding columns
in each part of the partition A, and then from the resulting D + 1 by e + 1 table, delete all the
identical rows except one for each part in (A*), then the resulting e + 1 by e + 1 table becomes the
character table P.

By Bannai (1991); Muzichuk (1988), one can always determine the character table of the fusion
scheme from that of a given scheme if the fusion partition A and A* are known. In some cases,
from an investigation of the given character table of a scheme, one can even find a fusion character
table without know the fusion pattern in advance. However, the calculation of the character table
of a fission scheme for a given scheme is very complicated. Of course, having a character table does
not necessarily imply that there always exists a scheme which realizes the table, either. The rest
of this section will be dedicated to the discussion of determining the character table of a fission
scheme from the given character table of a scheme.

Let x = (X,{Ri}o<i<p) and X = (X, {Ra}o<a<e) be (commutative) schemes defined on X.
Suppose Y is a fission of ¥ with R; = Ry fori =0,1,---,e — 1, LDJRi = R., and imi = Me.
Then, by Bannai (1991); Muzichuk (1988) and the orthogonality ref;‘gions (1.1) and (Z1:§), we have

the following equations which are useful to determine the fission character table P. For notational

simplicity, ke, me and pe (e) are denoted by k,m and p respectively.

pi(i) fo<i<e-1,0<j<e—1

pi(i) = {pjle) ife<i<DO0<j<e—1

Mpe(i) f0<i<e-l,e<j<D
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Foreverye < s<Dand e <u <D,

D
> pils)=p
t=e
D P n n
-1
;pt(S)Pt(S)kt = T m + m—s
D >
;pt(S)Pt(u)kt—l = % - ifs#e
For every e <t <D and e < v <D,
D ”
> mapi(s) = - P
D 2
— ks 9
stpt(s)pt(s) = nk + T (mp® — nk)
D
kiky )
stpt(s)pv(s) = ;2 (mp2 —nk), if t £ v.

These equations are not enough to determine the fission table if d — e > 2.

Lemma 1.4.2. (Bannai and Song, 1993) Let x = (X,{R;}o<i<2) be a symmetric association
scheme of class 2 with character table
1 ki ko) 1
p=|1 r t | m

1 s u/ mg

Suppose X = (X, {Ri}ogigg) is a non-symmetric fission scheme of x with three classes such that

Rg = ]?1/, ]?1 U RQ = Ry, Rg =179, El U EQ = Fy, Eg = F5. Then the character table p of X is given

by
1 Ik k1 ko 1
X 1 P P t %ml =ms
P — _ 1 A~ )
1 p P t | gmi=maq
1 %s %s u | mg=mg
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1.5 Overview

This dissertation is organized in the format of my progress to creating a new association scheme.
In the general introduction, we discuss the original area of research that I started in, g-analogue
t-designs, then state the important background information for the topic.

Chapter 2 contains an outline of the work that inspired the new association scheme. In this
chapter, we will introduce the symplectic subspaces as well as results relating to partial geometric
designs constructed through regular subgraphs of the generalized symplectic graph.

Chapter 3 contains two new families of D-class association schemes, including constructions of
each family.

Chapter 4 contains concluding remarks and recommendations for future research.
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CHAPTER 2. SYMPLECTIC GEOMETRY

In this chapter we investigate the known existence and construction results of lé—designs in
finite classical geometries, specifically in Wan (1993), Feng et al. (2016) and Chai et al. (2015).
We begin our study of the symplectic vector space and its application to the construction of 1%—
designs as proposed by Neumaier (1980). Zhe-xian Wan gave a great foundation for the study of
symplectic spaces in Wan (1997) as well as a more detailed construction in Wan (1993). Through
his work, we were introduced to the notion of type (m, s) subspaces in the symplectic space as well
as totally isotropic subspaces of type (m,0). Feng et al. (2016) used Wan’s construction of the
symplectic geometry, Neumaier’s generalized 1%—design and Olmez’s construction of 1%-designs in
Olmez (2014) to create new 1%—designs using type (m, 0), totally isotropic subspaces. To understand
their constructions we have to understand what symplectic geometry as well as what a 1%—design
is. This section will be dedicated to understanding the symplectic space and the constructions
provided in Feng et al. (2016) and Chai et al. (2015) for possible generalizations to other types of

totally isotropic subspaces.

2.1 Symplectic vector space and some basic counting

We will now discuss the construction of the symplectic group using congruent matrices and

special forms as described in Wan (1993).

Definition 35. Two matrices A and B are said to be congruent (cogredient) if there exists an

invertible matrix P such that A = P*BP.

Definition 36. A matrix K is called alternate if k;; = —kj; fori # jand k;; = O0foralli =1,... n.

Similarly, we can say that tKz! =0 for all z € F q

If K is an n x n alternate matrix of rank 2v, then v is called the index of K.
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Lemma 2.1.1. Let K be an alternate matriz with index v of size 2v x 2v over Fy. Then for any

nonsingular matriz A, AK At is an alternate matriz of index v.

Proof. By Definition 36, a matrix is alternate if 2Kz = 0 for all z € Fg”. Let A be a nonsingular
matrix of size 2v x 2v. Then A may be viewed as a linear transformation. For every y € ]Fg” there

exists a unique z € Fg” such that zA = y. Then, for all z € IF?I”,
rAKA'z! = yKy' = 0.
Therefore, AK A? is an alternate matrix. O

Corollary 2.1.2. (Wan, 1993, Corollary 3.2) Two n xn alternate matrices over F, are congruent,

if and only if they have the same rank, and if and only if they have the same index.

Theorem 2.1.3. (Wan, 1993, Theorem 3.1) Let K be an alternate n x n matriz over Fy, then the
rank of K is even. Furthermore, if the rank of K = 2v < n, then K is congruent to the matrix
o™ 1)
—_1®» o)

on—2v)
If K is an n x n alternate matrixz of rank 2v, then the index of K is v.

The following proof was omitted in Wan (1993) however, a sketch was given and we filled in

the gaps below.

Proof. By induction, starting with base case n = 2. If n = 1, then the index has to be 0, hence
K = [()] and our theorem can be said to be trivially true. When n = 2, we obtain the index is

v = 1. Our alternate matrix is of the form
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1 0 0 k2| |1 O 0 1
PKP'= -
0 kip| |~ki2 0|0 k3 -1 0
Assume that n > 2 and that our theorem holds for all m < n.
If K =0, we are done as the theorem holds. If K # 0, there exists an ¢,j such that k;; # 0.

We can permute the columns and rows to obtain a congruent alternate matrix. We swap (1,7) and

(2,7). This gives us a matrix of the form

0 ki
K=|-F; o0 ;
K
1 0
using the matrix P = | kl_Ql , we have
1
0 1
PKP'=|_1 ¢
K
By induction, K’ is congruent to
0 I
-1 0
0
This gives us the matrix
_ - -
-1 0
0 I
L _I 0_
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We can swap rows and columns to add another row and column to I as well as —1I, giving us our
congruent matrix. As our matrix is congruent to a matrix of the form above, it clearly has even
rank.

O]

Corollary 2.1.4. (Wan, 1993, Corollary 3.3) Let K be an n x n nonsingular alternate matriz.

Then n is necessarily even. Let n = 2v, then K is congruent to
0 Ji)
Ny (CORNN|
Proof. Apply Theorem 2.1.3 O

Notice that this corollary tells us that it does not matter which form we use to describe our

alternating matrix.

Definition 37. Let K be a non-singular 2v x 2v alternate matrix over F,. A 2v x 2v matrix T

over I, is called a symplectic matriz with respect to K if TKT" = K.

As stated in Corollary 2.1.4 we may use any form of our non-singular alternating matrix K.

From now on, when we write K, we will use the form

0 @
K= (2.1)
N COR|

We will now show that we can form a group by collecting all symplectic matrices.
Proposition 2.1.5. The collection of all symplectic matrices T with respect to K forms a group
under matrix multiplication. The group is called the symplectic group of degree 2v with respect to

K over F,. We denote the symplectic group by Spa,(q, K). If we write Spa,(q), it is implied that

K is in the form of equation 2.1.

Clearly Spa,(q) € GL,(q), thus we can act on the vectors Fg” in a similar manner.
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Fg” x Spau(q) — Fg”

((:Cl,xg, ... ,xg,,),T) — (w1,x2, e ,I‘QV)T

The space Fg” along with the group action is denoted as the 2v-dimensional symplectic space

over Fgy, more formally:

Definition 38. Let V' be a 2v-dimensional (v > 2) vector space over F, of prime power ¢, endowed

with a non-singular skew-symmetric bilinear form. Then V is called a symplectic space.

T
Definition 39. Let K = be the representing matrix of the symmetric bilinear form
Ny (CORNNY|

with respect to a suitable basis for V. Then the symplectic group Spa,(q) on V' is
Spa,(q) = {T € GLo,(q) : TKT" = K}.

Definition 40. For each 2-dimensional subspace A of V', we use the same symbol A to denote a

2 x 2v matrix which represents the 2-dimensional subspace A so that
Q = {A € Mayo,(F,) : rank(AK A") = 0}.
We call € the set of totally isotropic projective lines.

The vectors inside the symplectic space can be partitioned further into rank classes as 0 <

rank(Y KY?) < m for an m-dimensional subspace Y in V.

Definition 41. A vector x € Fi” is called an isotropic vector if Kzt = 0.

Proposition 2.1.6. (Wan, 1993, Page 110) Every x € Fg” 1s isotropic with respect to K.
Proof. Notice that for any x € Fg”, we can rewrite r = (x1,72), 21,72 € Fy then,

0 I(V) : T2
cKat =z Tt = [ml xg] =x120 — 2221 =0
-1 0 —71
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Definition 42. Let P be a m-dimensional vector subspace of Fg” . Then the matrix form of P is a
m X 2v matrix over Fy. As P is rank m, it is similar to the matrix P’ = [[m Q:| . Clearly, P’K P"
is an alternate matrix. By Theorem 2.1.3, the rank of P’ is 2s. As P is similar to P’, P has even
rank 2s. We denote such matrices as type (m,s). We start with a matrix of rank m and project it

onto K to form a rank 2s matrix.

If s = 0, we have matrices of type (m,0) which form the m-dimensional totally isotropic sub-
spaces. If m = v, then we say a matrix of type (v,0) is a mazimal totally isotropic subspace.
The maximal totally isotropic subspaces are sometimes referred to as the dual polar space (Wan
and Hua, 1996, Page 181). The collection of all m-dimensional totally isotropic subspaces will be
denoted as D(m,2v;q). Matrices of type (2s,s) form the 2s-dimensional non-isotropic subspaces.
One can also view this as, PK P! = 0 if P is totally isotropic and PK P! = A, where A # 0 if P is

a non-isotropic subspace.

0 W)
Clearly as K = , we can form a totally isotropic subspace of dimension s < v by

I COR
picking any subspace that only spans s vectors in the first v columns or last v columns.

Definition 43. Two vectors x,y € }Fg” are said to be orthogonal with respect to K if x Ky = 0.
A vector x that is self orthogonal is exactly an isotropic vector. The dual subspace of P denoted

by Pt is the set of vectors that are orthogonal to every vector of P,
1 2v t__
P~ ={y eF[yKz" =0 for all z € P}

Example 12. Recall that for every x € }Fg”, rKzt = 0. Take 2 = e; and y = e, 1, then 2Kyt # 0

so they are not orthogonal.

Theorem 2.1.7. (Wan, 1993, Theorem 3.4)
1. A subspace P is totally isotropic if and only if P C P+
2. P is non-isotropic if and only if P N P+ = (0)

Proof.
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1. Let P be a totally isotropic subspace. Then, PK P! = 0. By definition P+ = {y € F2 |y Kzt =

0 for all x € P}. As xKa! =0 for all z € P, x € P+ hence P C P+.

2. (=) We will show the contrapositive. Assume that there exists an € P N P+. Then what
can we say about PKP! = D? Asx € PN P*, z € P and = can be written as a linear

combination of the columns of P. There exists some non-zero vector ¢ such that x = cP.

Then,
PKP'=D
c¢PkP! = ¢D
xK P! =¢D
0=cD

Hence, D is singular and P is not non-isotropic. So, by the contrapositive, if P is non-isotropic,

then PN P+ = (0).

P PKP! 0
(<) Let P' = . Then, PPKP" = . As dim(PUP’) = 2v, P is
pt 0 PKP"
PKP! 0
non-singular and P’ K P'* has full rank thus also has full rank. Therefore,
0 P'KP"

PK P? has full rank, so it is non-isotropic.

O

Now notice that we want to show that for any subspaces P;, P» of type (m,s) there exists a
T € Spay,(q) such that P, = P,T. By Theorem 2.1.3 we know that for any type (m,s) matrix P,

PK P? is similar to

—16) o)
0(m72s)
as it is alternate and has rank 2s. As the matrices are similar there exist ()1 and (o such that

Q1 PLKPLQ = Q2P K PLQY. However, Q1 Py is not invertible as it is of size m x 2v.
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The following example will be used to understand the upcoming constructions.

Example 13. Let

m v—m m V—m

P:(ﬂm) 0O 0 0 >m

First, we shall show that P is totally isotropic.

0 0 0o I1vm/) y_m

As stated in Theorem 2.1.7, P C P*. Clearly, rank(P+K(P+)") = 2(v — m) so P is of type

(2v — m,v —m). In the most extreme case, m = v we have P is of type (v,0). Since P is totally

isotropic, P C Pt | hence P = P+,

Theorem 2.1.8. (Wan, 1993, Theorem 3.6) Subspaces of type (m,s) exist in the 2v-dimensional

symplectic space if and only if 2s < m < v+ s.

Theorem 2.1.9. (Wan, 1993, Theorem 3.7) Spa,(q) acts transitively on subspaces of the same

type (m, s).

Using Theorem 2.1.9 we can take any representative of a type (m, s) matrix and it will tell us

how matrices interact in the symplectic space. For 2s < m < v 4+ s we can describe a subspace of

type (m,s) and it’s dual as shown in the following example.
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Example 14. The following matrix forms a subspace of type (m, s) using K from equation (2.1).

s m-—2s v+s—m s m-—28 v+s—m

109 0 0 0 0 0 s
0 0 0 0o I® 0 s
0 [(m—2s) 0 0 0 0 m — 2s

It’s dual subspace forms a subspace of type (2v — m,v + s —m) and has the following form:

s m—2s v+s—m S m-—28 v+s—m

0 [(m—2s) 0 0 0 0 m — 2s
0 0 [vts=m) 0 0 vt+s—m
0 0 0 0 0 Jwts=m) | L s m

The next general question would be: how many type (m,s) matrices are there? We will be
using the notation from Wan (1993). Please be mindful about the number of terms required for
each function. Although Lemma 2.1.10 and Theorem 2.1.13 are both labeled N, the function in

Lemma 2.1.10 only has two terms while the function in Theorem 2.1.13 has 5 terms.

Lemma 2.1.10 (Lemma 1.2.1). Let 1 < m < n. The number of m-dimensional subspaces of the

vector space By is
n

I «-v

N(m,n) _ i:n:nm—s—l

[[ -1

=1

Theorem 2.1.11. (Wan, 1993, Theorem 3.18) Let 2s < m < v + s. The number of subspaces of
type (m, s) in the 2v-dimensional symplectic space over Fy is given by

v

I @-v

N/((ma S)a 2”) = q28(V+S_m) s i:V+S_m+71L728

I -1 I -1

i=1 =1




40

Corollary 2.1.12. (Wan, 1993, Corollary 3.19) Let 1 < m < v. The number of m-dimensional

totally isotropic subspaces (type (m,0)) in Fg” i

[[ -1

i=1
Theorem 2.1.13. (Wan, 1993, Theorem 3.27) Let 2s < m < v+ s and max{0,m; — s — s1} <

min{m — 2s,my — 2s1}. Let P be a fixzed subspace of type (m,s). Then the number of subspaces of

type (mq,s1) contained in P is given by the following formula:

min{m—2s,mi—2s1}

]\[(,rn17 S13M, S 21/) — Z q251(s+51fm1+k)+(m1fk)(m72sfk)F*(k)

)

k=max{0,m1—s—s1}

where )
11 @-1 JI («-v
* _i=sts1i—mi+k+1 i=m—2s—k+1
F (k) o S1 . mi1—2s1—k ' k A
[[«-v ] @-v][-1
i=1 i=1 i=1
Proof. See (Wan, 1993, Page 135). O

Theorem 2.1.14. (Wan, 1993, Theorem 3.38) The number of type (m,s) subspaces containing a

type (mq,s1) subspace,
N'(my,s1;m,8;,20) = N(2v —m,v + s — m;2v — mq, v + 81 — mq; 2v)

Proof. Let P be a subspace of type (mq,s1) contained in P, a subspace of type (m,s), P1 C P.
Then, P+ C Pj-. Thus, we can instead count the number of P1’s in Pj-. Recall that P+ will be of
type (2v—m, v+s—m) while P~ will be of type (2v—m1,v+s1—m1). Giving us our desired result of
counting the number of type (2v—m, v+ s—m) subspaces in a type (2v—m1, v+ s —m;) subspace.
It is evident that m; < m and sy < msothat 2v—m; >2v—mandv+s . —m1 > v+ s—m.

This gives us our desired result of
NQ2v —m,v+s—m;2v —my, v+ s1 — my;2v),

where N(myq, s1;m, s;2v) is defined in Theorem 2.1.13. O
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1 . .
2.2 1;-designs and their parameters

The partial geometric designs introduced in Section 1.1 are also known as 1%—designs. Now
that we have a general idea of the symplectic group, we can turn our attention to the basics of

1%—designs.

Definition 44. A t%—design is a t-design B over P for which there are integers ay, ..., oy such that
a(T, B) = « for every block B € B and every t-subset T of P with [T'NB| =i (i =0,...,t), where
a(T, B) is the number of flags compatible with (7', B), that is the number of (x, A) where T'C A

and x € Bbut x ¢ T.

So for t=1, we have g and «; only two parameters. In general, what we are doing is charac-
terizing the global property of flags by locally identifying the intersection size of |T'N B|.

1%—designs have been of great interest since their connection to strongly regular graphs as well
as association schemes was described in Brouwer et al. (2012) and Nowak et al. (2016). Many
new constructions have appeared such as in Feng et al. (2016) and Feng and Zeng (2016). The
motivation of Chai et al. (2015) was a result of trying to create a new strongly regular graph from
a 1%—design. Much of the work was already described in Feng and Zeng (2016).

A strongly regular graph is a (simple, undirected) graph G such that every vertex is adjacent
with the same number of other vertices. The number of vertices adjacent with two distinct vertices

a,b depends only on whether a and b are adjacent or not.

Theorem 2.2.1. (Neumaier, 1980, Theorem 3.11) An incidence structure B is a 1%—design with

parameters (v, k,b,r; «, 8) if and only if its incident matriz A satisfies the equations
AJ =rJ, JA=kJ AA'A =nA+ aJ

where

k(kr —n)
r(kr —n)
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B=a+n+1—-r—Fk
kE+r<n+a+1<kr
Lemma 2.2.2. (Neumaier, 1980, Lemma 3.12) If A is the incidence matriz of a proper 1%-desz’gn,

then N = AA? satisfies

NJ =krJ,N? =nN + arJ

2.3 Construction of 1%—designs with symplectic subspaces

For the following construction we need to rewrite the definition of a 1%—design. Let s(z, B)
be the number of flags (y,C) such that y € B\{z},z € C and C # B. For two different points
p,q € P, denote Ay, as the number of blocks containing both p and ¢g. Then the property for a

1%—design is equivalent to saying that for every point € P and every block B € B,

> Ay =a, if z ¢ B,
s(z,B) = yes
Z (Azy —1) =B, otherwise
yeB\{z}

Corollary 2.3.1. (Chai et al., 2015, Corollary 2.3)
Let 1 < k < m < v. Then the number of m-dimensional totally isotropic subspaces in the
symplectic space Fg” containing a given k-dimensional totally isotropic subspace is

N'(m,2v)N (k,m)
N'(k,2v)

N(k,m;2v) =

Proof. Each totally isotropic subspace of dimension % is contained in the same number of m-
dimensional totally isotropic subspaces. Similarly if we take a m-dimensional totally isotropic

subspace and take all of its k-dimensional subspaces, each will be totally isotropic as well. O

It should be noted that this formula and proof will not hold when counting the number of
subspaces containing a non-isotropic subspace. Notice that a type (m,s),s > 0 space always
contains the 1-dimensional totally isotropic subspaces. In fact, it may contain totally isotropic

subspaces of size 1,--- ,m — 1. Therefore, we do not have the case described in the proof above.
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Please see (Wan, 1993, Theorem 3.38) for the formula used to count the number of subspaces

of type (m, s) containing a given subspace of type (m1, s1) where m; < m and s; < s.

2.3.1 First construction

Our natural instinct is to fix v and take the totally isotropic subspaces of dimension k£ and m,
k < m and try to create a design. We would let the points be all isotropic subspaces of dimension
k and the blocks be the isotropic subspaces of dimension m. Then we want to find a collection of
m-~dimensionally totally isotropic subspaces that contain all of the points. If we take all m-totally
isotropic spaces then we know that each k-dimensional subspace will appear exactly W
times. So we could have a type of design, however, it is trivial as we take all isotropic subspaces.

We will let D(k, 2v; q) represent the total number of totally isotropic subspaces of dimension k

in the vector space ]Fgl’ using the form K from equation 2.1.

Corollary 2.3.2. Let P = D(k,2v;q),B = D(m,2v;q) and 1 < k < m < v. Forx € P and
B e B,z € B if and only if xt C B as subspaces of Fg”. Then the incidence structure Ty = (P, B, €)

s a 1-design.

Proof. By the corollary proof above, we have vr = bk. Under the construction above we have:
e v, the number of points is |D(k, 2v; q)| = N'(k, 2v).
e b, the number of blocks is |D(m, 2v;q)| = N'(m, 2v).

e k, the number of points in each block, N(k,m) as a totally isotropic space has all totally

isotropic subspaces
e 7, the number of blocks containing a point, N(k, m;2v).
O

Theorem 2.3.3. (Chai et al., 2015, Theorem 2.4) Let P = D(k,2v;q),B = D(m,2v;q) and

1<k<m<v. Forxze€P and B € B,z € B if and only if x C B as subspaces ofIFg”. Then the
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incidence structure T1 = (P, B,¢€) is a 1%-desz’gn if an only if k =1 and m = v. Furthermore, when

k=1 and m = v, the parameters of Ty is

((q+ (@ +1), (¢ +1)(¢* +1),q+1,¢+1,1,0)

ifv=2, and
ou v v v—1
g -1 i ¢’ —1 i
o= b=+ k= =1+ D)
i=1 i=1
-2 v—2
¢ =177, gl¢" " —1 :
04—(HH(qzﬂLl),ﬁ—(q_l)(H(qzﬂLl)—l)
i=1 i=1

We will now clarify the proof given in Chai et al. (2015) by adding a few more details that were

left to the reader.

Proof. By the above corollary, 71 is a 1-design for all £ and m. The rest of our claim will be shown
as follows: First, when & = 1 and m = v, we will show that 77 is a 1%—design by calculating o and
(. For all other £ and m we will construct multiple blocks to show that the value « for antiflags is

not fixed as required.

1. Let k£ =1 and m = v. We know that type (m, s) matrices are transitive under the symplectic
space. Thus, any representative of points preserves the geometric properties of the space. For

the sake of simplicity, we can let x = e; € Fg” . Pick a block B € B, we then have two cases:

e If x € B, then z is orthogonal to any y € B. There are N(1,m) — 1 1-dimensional
subspaces in B that can form a totally isotropic 2-dimensional subspace with z. Each
2-dimensional space is contained in exactly N (2, m;2vr)—1 m-totally isotropic subspaces
(blocks) different from B. Thus,

B= > (uy—1)=(N(@1,m)—1)(N(@2m:2w)-1)
yeB\{z}

e If x & B, then there exists a non-orthogonal point y € B. This has to be true as m = v,
making B a maximally totally isotropic subspace. If z was orthogonal to every point in

B then the space spanned by x + B would be a totally isotropic subspace of dimension
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v+ 1 which contradicts the maximality of m = v. Using our representative of the points
x = e, we can see that B must contain a point y such that 3,1 = 1 so that Ky’ # 0.
We can row reduce B by zeroing out all entries in the v 4+ 1 column to see that the
other v — 1 rows are still orthogonal to z. Excluding this point y there are N(1,m — 1)
1-dimensional subspaces in B that can form a totally isotropic 2-dimensional subspace
with z. Each 2-dimensional space is contained in exactly N (2, m;2v) m-totally isotropic
subspaces (blocks). Thus,

a =" (\ay) = (N(L,m — 1))(N(2,m; 20)
yEB

2. Let £k =1 and m < v. One may check that the g is still fixed for flags. However when x ¢ B
and m is not maximal, x can be orthogonal to all y € B or non-orthogonal to some y € B.

These blocks can easily be constructed.

e Assume x ¢ B and there exists a y € B such that zKy' = 0. Then as above we can
exclude this point y and there are N(1,m — 1) 1-dimensional subspaces in B that can
form a totally isotropic 2-dimensional subspace with z. Each 2-dimensional space is
contained in exactly N (2, m;2r) m-totally isotropic subspaces (blocks). Thus

a =" (\ay) = (N(Lym — 1))(N(2,m; 20))
yEB

e Assume z ¢ B and zKy' = 0 for all y € B. There there are N(1,m) 1-dimensional
subspaces in B that can form a totally isotropic 2-dimensional subspace with z. Each

2-dimensional space is contained in exactly N(2,m;2v) m-totally isotropic subspaces

(blocks). Thus
Q= Z()‘:vy) = (N(1,m))(N(2,m;2v))

yeB
As1=k<m<v, N1,m) > N(1,m — 1). Hence, « is not fixed so we can not have a

lé—design.

3. k > 1. Again, when k£ > 1, one may check that the § is still fixed for flags; however, when

x ¢ B and k > 1 we run into a new problem. Even if x ¢ B, 0 < dim(x N B) < k, that is
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we can have a non-trivial intersection of the block and the point which will greatly affect our
value of a. Let dim(x N B) =t so 0 <t < k. Intuitively, we know that o will not be fixed as
B C B*, so we can find other totally isotropic subspaces using the vectors in Bt. Similarly,
notice that there has to exist v — m vectors in Bt that are not in B which can extend B to
a maximally totally isotropic subspace. To see this, recall that every type (m, s) subspace is
transitive under the symplectic group. As there exists maximally totally isotropic subspaces
and a maximal totally isotropic space contains a totally isotropic subspace of dimension m,
then we can view the maximal subspace as an extension of the m space. Hence, since m
spaces are transitive, all m spaces are extendable to totally isotropic subspaces. For the rest

of this section we will assume that x and B; for 0 < ¢ < k represents the following point and

block:

k v—k k v-—k

J LN 0 0 0 0 0 0 t
B, =
¢ 0 0 0 0o o0 16 0 0 k—t
0 0 0 0 0 0 [(m—F) 0 m—k

Similarly, BiKB! =0 for all 0 <t < k so By € B.

(i) Assume m < 2k — t. Then, it is impossible to form a block such that z,y € B as
dim(z + y) = 2k — t > m. Thus,
a = Z Azy = 0.
yeEB
(ii) Assume m > 2k —t. Now pick a y € B;. Notice that when m > 2k — ¢, we can fit

two points in a block so dim(B;) > dim(z + y) = dim(x) + dim(y) — dim(zx Ny) = m >
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2k —dim(xzNy). Thus, dim(zNy) > 2k —m and dim(zNy) > 0 thus, max{0, 2k —m} <
dim(z Ny) < dim(x N By) = t. We will count the number of points z in B; that are
orthogonal to = and dim(z N z) = w. We will first notice that dim(z N B;) = ¢ is fixed
as x is fixed and B is fixed.

We can restate our problem as follows:

Given a vector space V', an m-dimensional subspace B; and a t-dimensional subspace
T in B, we look to see how many k-dimensional subspaces K of B exist such that
dim(B N K) = w and are orthogonal to x. This problem has been dealt with many
times, most notably in g-analogues of t-designs by Ray-Chaudhuri and Singhi. Using
their notation: For any k-subspace K of V and a (k—1[)-subspace K; of K, c¢(k,t,m,1) is
the number of t-subspaces T of K satisfying the condition that the dimension of T'N K3
is t — m. The only nuance is that we have to pick our vectorspaces such that they are
orthogonal to z. By our fixed form of B;, we are not dealing with all of B, we can only
use m — k vectors that are orthogonal, that is normally we would have m — t vectors
we can’t pick however, due to orthogonality we can only pick m — k. Using a similar

notation, the number of points z in B such that dim(z Nz) = w is

Cw - cl(m7 k7 k - U), m — t) = q(tfw)(k*w) (m - k) <t>
q q

k—w w

Now, each of these points can form a subspace with x, dim(z+z) = 2k —w. The number
of totally isotropic subspaces of dimension m that contain a given 2k — w subspace is

N(2k —w,m;2v). So for a given By, that is a block B with dim(B N ) = t, we have

t
a=s(z,B) = Z CyN (2k — w, m;2v)
w=max{0,2k—m}

When m < 2k, t can be in case (i) and (ii). We have o = 0 in case (i). Now, for case (ii),
notice that N(2k — w, m;2v) # 0 when m > 2k — w, which gives us w > 2k — m. Note
that N(2k — w, m;2v) is not always 0. Given a totally isotropic subspace of dimension

r we can extend it to a totally isotropic subspace of dimension r + 1,7+ 2,--- ,v. So,
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given a fixed x, we can take a dimension k£ — 1 subspace and extend it to a block of
dimension m such that z ¢ B and ¢t = dim(z N B) = k — 1. We will always be able to
have 2k — (k — 1) = k+ 1 < m, giving us N(2k — w,m;2v) = 1. When this occurs,
Cy > 0 ast > w by assumption and if m—k < k—w, then w < 2k —m which contradicts

w > 2k —m. Therefore, we will have non-zero values. So there are some o > 0 giving us
{s(x,B)|0 <t <k} >1

which contradicts only having a single value for a.

e When m > 2k we only have case (ii). We have already shown what occurs when k = 1
and m < v so now we can assume k > 2. In the instance when k > 2 we can always

construct blocks such that ¢ = 0 or 1. Notice that max{0,2k —m} =0 as m > 2k.

0
s(z, By) = Z CyN (2k — w,m;2v) = CoN (2k, m;2v)
0

1
s(z,B1) = ZC’wN(Qk —w,m;2v) = CoN(2k, m; 2v) + C1N(2k — 1, m;2v)
0

As discussed above, N(2k — 1,m;2v) > 0,C7 > 0. Thus, s(x, By) < s(z, B1). So there

are multiple values for «

O

We have shown that for this construction there is only one possible way to obtain a 1%—design.
This occurs if £ = 1 and m = v. The graph we constructed is also known as the dual polar graph
[Page 212]Wan and Hua (1996).

Note that this construction fails as C,’s vary. By placing restrictions on our blocks we can
reduce the number of blocks containing a point. In order to do this, we need to further understand
the lattice structure of the totally isotropic subspaces in the symplectic space. A similar problem
was studied in Rieck (2005) in which the author constructs association schemes on the set of totally

isotropic subspaces under specific intersection sizes of the blocks and points. An explicit formula
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for the intersection numbers of the general association scheme is still an open problem. In Chapter
3, we get closer to understanding the general relationship of a similar association scheme.
2.3.2 Second construction

The second construction is a bit more complicated and follows the work of Brouwer et al. (2012).

To begin, we will define a new form

M = , (2.2)
0 Jw=—m)

_Jv—m) 0

where 1 < m < v. Recall that all symplectic forms are equivalent. The ones we establish will

simplify our counting arguments.

Definition 45. The generalized symplectic graph I' over I, is the undirected graph whose vertices
are with all m-dimensional subspaces X of Fg” such that XM X! = 0. The two vertices X and Y

are adjacent, denoted X ~ Y if and only if dim(X NY) =m — 1 and rank(XMY?) = 1.

Again, for simplicity, in our counting we will fix an m-dimensional subspace P,

m m UV—m V—1m

P:(ﬂm) 0 0 0 >m

Notice that P € V(I') as PMP" = 0.
Definition 46. Let 0 < d < m — 1 and max{0,2m — v — d} <r < m — d. Then
Sp(r,d) = {N € V(I')| rank(PM N*) = r,dim(P N N) = d}.

Now, we have partitioned the vertices in I' using P and S(r,d). We would like to know when

vertices in two different parts are joined by an edge.
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Lemma 2.3.4. (Zeng et al., 2013, Lemma 2.2) For any verter Q1 € Sp(ri,d1), there exists a
verter Qo € Sp(ra,ds) such that Q1 ~ Q2 if and only if r1,72,d1 and dy satisfy one of the following

conditions:

1. dy=dg and |r1 —ra] =1

2.di—do=1ro—r1=1,—-1 or0

Notice that for our fixed P, (P, Q) = 1 is only satisfied for the set Sp(1,m — 1).
Definition 47. Let I'®)(P) = {X € V(I')|0(P, X) = e}.

Using this definition, the following observation was made in Chai et al. (2015). T™)(X) is the

set of neighborhoods of X in I' and will be labeled as I'(X). T'(P) = S(1,m — 1) and

Sp(0,m — 1), ifm=1<v,

r®(p) = Sp(2,m — 2) ifl<m=v,

Sp(0,m —1)USp(2,m —2), otherwise.

Lemma 2.3.5. (Zeng et al., 2013, Lemma 3.1) The graph induced by I'(P) has q;n__ll connected com-

(v—m)+1

ponents. Every component is a reqular graph with ¢* vertices and with valency (q—l)qQ(”*m),

and the corresponding vertex set I'(i,7y) is composed of the following points: T'(i,7,a,a, f) =

1—1 1 m—1 t1—1 1 m—1 v—m v—m
0 a 0 0 1 ¥ « B 1
=1 ¢ 0 0 0 0 0 0 i—1
0 —t 1m0 0 0 0 0 ) m—i

(m—i)

where the integer 0 < i <m and v € Fy .

We once again follow the proof given in Zeng et al. (2013), filling in the details left to the reader.
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Proof. Assume we have an X € I'(P). Since X € Sp(1,m — 1) as 9(P,X) = 1, we know that

dim(P N X) = m — 1 and rank(PM P!) = 1. Any representative of X can be represented in its

reduced row echelon form.

m m UvV—m V—m

P:(ﬂm) 0 0 0 )m

Therefore, X must have 1™~V in its reduced row echelon form in the first m rows and, it must
have a non-zero entry in the second m rows so that rank(PM X?') = 1. This tells us that X must

have a submatrix of the form (A 0 0 0> where rank(A) = m — 1 and A is of size m x (m — 1).

X =[T1 T2 T3 Ty 1

A 0 0 0 m—1

As X has to be rank m, rank([zex3z4]) = 1. We can assume rank(zg) = 1. Since X € T' and

X € I'(P) we have to satisfy the following two conditions:

e XMX"=0. Notice that x1z} = z{z1 and z3z) = 2fzs.

1 m-1

z} At m
xt—| 24 0 m

z 0 v—m
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1 m—1
m m v—-m v-m [ 2} 0
XMXt=[21 2 T3 T4 ] At |
A 0 0 0 T 0
—zt 0
Thus, we must have Az} = 0.
o rank(PMX') = 1.
1 m—1
zh 0
m m v—m v—m . .
PMX'= —z; A
(I<m> 0 0 0 )
T 0
—a} 0

Hence, rank(z) = 1. Since Azl = 0, there exists a T € GL,—1(F,) such that

1—1 1 m—1

TA=(IY 0 0 i—1
0 —yt I o — g
1 0
If we let T" = then,
0 T
1—1 1 m—1 ¢—1 1 m—1
0 a 0 Toi-1 21 T2m—i
X = )
6= o 0 0 0 0
0 —t 1m0 0 0

,y € T
V—m vV—m
a p
0 0
0 0
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Now, since XK X! = 0, we must have x2i—1 = 0 and x9 1y = 2,m—;. Notice that x9o # 0,
otherwise rank(zg2) = 0 which contradicts the fact that it has rank 1. We can fix 291 =1

so that x2,—; = . This gives us our desired form: X =T'(i,v,a,, ) =

1—1 1 m—1 t1—1 1 m—171 v—m v—m
0 a 0 0 1 y o} B 1
6= o 0 0 0 0 0 i—1
0 —t 1m0 0 0 0 0 /m—i

X represents every possible type of vertex in I'(P). Each X can be further partitioned by the
reduction of A. As P = { ™m o 0 ()] , we can partition the X based on which m — 1 vectors we
select from I(™). This means that there are (m"il) = ("f) ways to select a subspace of dimension

q q

m — 1 from I™). So there are (e )q different partitions of the vertices in I'(X). Each of these

m—1

partitions of X form a connected subgraph. We will call the collection of all vertices in I' of a fixed
type X a cluster. Thus, there are (m”il)q clusters. In each cluster, as rank(x}) = 1, and z3, 24 are
free variables, we have (¢ — 1)q(”_m)q(”_m) = (q— 1)q2(”_m) neighbors for each vertex. If 2 = 0,

we would not have a neighbor. We would still have a vertex in the cluster hence we would have

G@=m)+1 total vertices. Now, assume that there is a vertex X in cluster 1 and a vertex Y in cluster

2 that are not connected. Since each cluster has (g — 1)g?~™

neighbors, there must be a total
of 2(q — 1)?=m) > 2v=m)+l 5 2(v=m)+1 _ 9 yertices in the neighborhood of these two clusters.
So, we have more vertices in the neighborhood than vertices in a cluster. The cluster must overlap
and must be connected.

Now, we will count the number of connected components in I'( P). Each connected component
i)

depends on v € Fgm_ for 0 < ¢ < m, so we just have to count the total number of possible +’s for

varying ¢. The number of connected components is
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Lemma 2.3.6. (Zeng et al., 2013, Lemma 3.2) The graph induced by Sp(0,m — 1) has ¢ -1

q—1
. . 2(v—m) _ . .
connected components. Fvery component is a reqular graph with % vertices and with
valency 2™ The corresponding vertex set of a connected component will be denoted L'(i,v)

Before we move on to the main result, let us understand what we have constructed and why
it is important. As stated in Section 1.3 and Brouwer et al. (2012), if we find a 1%—design, we
have a directed strongly regular graph. By Lemmas 2.3.5 and 2.3.6, we have have found regular
subgraphs existing inside the distance classes. Specifically, distance classes one and two from P
contain regular graphs. Our goal now is to create a strongly regular graph. By looking at the
relationship of a cluster Cy € T'(P) of distance one and a cluster Co € Sp(0,m — 1) of distance two
we can actually form the strongly regular graph.

Using the notation in Chai et al. (2015), I'(¢,7) is a component of I'(P), a connected regular
subgraph whose vertices are in Sp(1,m — 1). Similarly, W is a component of Sp(0,m — 1), a

connected regular subgraph whose vertices are in Sp(0,m — 1).

Theorem 2.3.7. (Chai et al., 2015, Theorem 3.4) Let the integers m and i satisfy 1 < m < v and
0 <i<m. Suppose vy € Fgm_i),P =T(i,7) and B={I'(X)NS(1,m —1)|X € T(i,y)}. Forz € P
and B € B, x € B if and only if x belongs to B. Then, the incidence structure To = (P,B,€) is a
1%—design with parameters

2(v—m
2(U—m)+1’ b— Q(q ( ) — 1) k= q2(1/—m)(q _ 1)77, _ qQ(V—m) —1,

vV=q q—l

4(v—m)+1 2q4(y—m) + q4(l/—m)—1 _ 2(v—m)+1 + q2(u—m)

a=q q

and

B = q4(u—m)+1 _ 2q4(y—m) + q4(v—m)—1 _ 2q2(u—m)+l + 2q2(u—m) +9.
We will now provide an example that illustrates Lemma 2.3.5, Lemma 2.3.6 and Theorem 2.3.7.

Example 15. Let v = 3,m = 2 and ¢ = 2. First we will show the components described in

Lemmas 2.3.5 and 2.3.6.
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Figure 2.1 Neighbor graph, I'(P)

The following is I'(P) = Sp(0,m —1) = Sp(0,1). Each vertex number corresponds to the index

in the list of all vertices. For example, Py =

10 00 0O

010100

For a full list of the corresponding matrices to each vertex please see Appendix B.

Each of these subgraphs are what we call a cluster in the proof of Lemma 2.3.5. The authors
denote each of these cluster as components. The vertices in each of the components can be described
by a matrix X = I'(i,y). We will see the explicit blocks and points at the end of this example.

Similarly, we can construct the component of T'(,~) = Sp(0,1).

Now, we take a component say {1,2,3,216,217,232}. Now, we find the neighborhood of each
vertex in this component. Due to the transitivity of subspaces in the symplectic space, the neigh-

borhood of a vertex in our graph should behave exactly like I'(P). All of these neighborhood graphs

will be regular graphs as described in Lemma 2.3.5. For example P} =

100 000

01 0O0O0T1

gives us the following neighborhood.
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216 92

217 284 7 225

232 24

2o 236
2 8

Figure 2.2 Distance 2 components, Sp(0,1)

Figure 2.3 Neighbor graph of vertex in Sp(0,1)
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We then take each of these neighborhoods and intersect them with I'(P). Each of the six vertices
neighborhoods intersected with I'(P) will then give rise to a block and the points will all lie in one
cluster.

We can now construct the design described in Theorem 2.3.7.

The points are {4,5,6,7,184,185,186, 187}

While the blocks are

By =

{184,185,4,5}
By =

{184, 186,4,6}
By =

{184,187,4,7}
B; =

{185,187,5,7}
By =

{185,186, 5, 6}
Bs =

{186, 187,6,7}
The points are the exact points seen in the first cluster of I'(P).

We know that the vertices can be partitioned into distance classes T()(P), T®)(P), ... T4 (P).
However, as we try to use other distance classes, we run into an issue of finding a regular subgraph.
Even in the case of distance 2 vertices, the set Sp(2,m — 2) is not explicitly connected regular
components as we can see using the above example:

We need to further understand how the vertices inside each I'®)(P) are connected and attempt

to characterize them. Furthermore, we need to study the relationship between the distance classes.
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217

225

224

Figure 2.4 Distance 2 component, Sp(2,0)

Although we are only focusing on the symplectic geometry, similar arguments for the orthogonal
space can be found in Feng et al. (2016). In general, many of the results are given in terms of the

symplectic, orthogonal and unitary groups as well as their singular forms.
Definition 48. (Wan, 1993, Chapter 3.3) Let

K 0
Kl - )
0o oW

where K is the 2v x 2v alternate matrix as defined in Theorem 2.1.3. The set of all (2v+41) x (2v+1)

nonsingular matrices 1" over I, satisfying
TK/T' =K,

forms a group called the singular symplectic group of degree 2v+1 and index v over Fy and denoted

by Spav+i,.(q).

We will only focus on the finite symplectic case however, our results can be realized in the
orthogonal and unitary groups as well as their singular counterparts, as in Definition 48, with a bit
of work. From Lemma 2.3.4 we can identify which distance classes are incident. The dual polar
case, m = v, for the symplectic, unitary and orthogonal groups has been thoroughly studied in

the following works Ma et al. (2011); Rieck (2005); Wan (2009); Wang et al. (2011). Currently,
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work is being done to understand the non-dual polar and non-isotropic cases. The first step is
understanding how these distance classes intersect by studying the orbits of type (m, s)-subspaces
under finite singular classical groups which was done in Guo (2010) and Guo and Wang (2009).
These classes give rise to association schemes which can be found in Rieck (2005); Gao and He
(2013b); Guo and Wang (2009); Gao and He (2013b) and Wang and Gao (2015).

As the distance classes are formed by Sp(r,d) from Definition 46, we need to understand what
vertices make up specific Sp(r,d)’s. By identifying these classes and the relationship between an
X € Sp(r1,d2) and Y € Sp(ra,ds), we will be able to understand the distance classes. It became
clear that the Sp(r,d)’s give rise to a previously unknown association scheme. All of the current
research creates association schemes whose classes are formed by partitioning the Cartesian pairs
of the totally isotropic subspaces (using maximally totally isotropic subspaces). Instead, we had
the idea that follows in the next section.

We will now focus our attention to the association schemes constructed in Rieck (2005) and Ma
et al. (2011). Note that Ma et al. (2011) was motivated by the work of Rieck (2005) and many of
the theorems are viewed over the singular classic groups. The authors of Ma et al. (2011) were able
to extend the results in Rieck (2005) by calculating the intersection numbers for their association
scheme. Thus, if we let [ = 0 in Ma et al. (2011), we will obtain the results described in Rieck
(2005). In the next section, we will begin by introducing the association schemes that these authors

studied.

2.4 Rieck and Gao’s association schemes motivated by Grassmann graph

We will now describe the association scheme found in Rieck (2005). In this paper, Rieck’s

construction is motivated by the distance in the Grassmann graph.

Definition 49. Let n > 2d and V = Fj. The Grassmann graph Jq(n,d) is the graph with the set
of d-dimensional subspaces of V as its vertex set (Z)q and two vertices X, Y are adjacent whenever

dim(XNY)=d— 1.
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LetV = ]Fg” , where ¢ is an odd prime. Equip the space with a non-degenerate symmetric bilinear
form with Witt index v, in other words we will use K from equation 37. Then, for any integer
1 < m < v the points of our association scheme are the m-dimensional totally isotropic subspaces

of the 2v-dimensional orthogonal vector space over F,. We denote this set also by D(m,2v;q).

Definition 50. Rieck (2005) Let U and W be m-dimensional totally isotropic subspaces of V. If
dim(UNW) = m — k and dim(U+ NW) = m — ~, then we say that U and W are (k,~)-associates,

also denoted k., where U7 is the dual subspace as in Definition 43.

Let G = Jy(n,m), then two m-dimensional totally isotropic subspaces U, W that are k., asso-

ciates are distance k in the Grassmann graph J,(n, d).

Theorem 2.4.1. Rieck (2005) Let N = D(m,2v;q), the collection of all m-dimensional totally
isotropic subspaces of the orthogonal vector space FZ”. Let Ry, be the collection of all ordered pairs
of m-dimensional totally isotropic subspaces that are k-associates. Then with D(m,2v;q) as the

set of points, the relations Ry, (0 <~ <k <m) forms an association scheme.
Now, the association scheme studied in Ma et al. (2011) is as follows:

Theorem 2.4.2 (Theorem 1.1). Ma et al. (2011) Let X be the set of all mazimally totally isotropic

subspaces of the orthogonal vector space Fg”. For any two elements of X define
Ry ={(P,Q)[dim(PNQ) = v —i},
where 0 < i < v. Then we obtain a family of symmetric association schemes.

Recall, Theorem 2.1.7 that is if U is totally isotropic subspace then U C U+. If U is maximal
totally isotropic then U = U' and Definition 50 forces k = 7 so that our ordered pairs R,
in Theorem 2.4.1 is the collection of all pairs of maximal totally isotropic subspaces satisfying
dim(UNW)=v—k.

Now, the goal is to calculate the intersection numbers of the association schemes.

For further clarity, Rieck (2005) is studying the association scheme formed over the finite clas-

sical groups for 1 < m < v. While Ma et al. (2011) is studying the association scheme formed over
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finite singular classical groups for m = v. The two association schemes are exactly the same when
Il =0 and m = v. Thus, the associated intersection numbers will only overlap in this case, so we

will be looking at the intersection numbers as derived in Ma et al. (2011) with [ = 0.

Theorem 2.4.3. (van Lint and Wilson, 2001, Theorem 25.2) The number of surjective linear
transformations from an n-dimensional vector space to an m-dimensional vector space V over F,
18

k=0 q

Proof. See page 338 of van Lint and Wilson (2001). O

Corollary 2.4.4. (Wan, 1993, Theorem 1.10) The number of m x n matrices of rank i over Fy is

given by the formula:

ii-1) (m -
N(i =q z [[ -1
(i,mxmn,q) =q 2 <z> (¢ —1)

4 t=n—i+1

Proof. Follows from Theorem 2.4.3.

O

Lemma 2.4.5. (Ma et al., 2011, Lemma 2.1) Let S(t,m) be the set of all m x m symmetric

matrices of rank t over F,. Then,
HQL%JH(QZ -1)
i —
(21 + AT @ - )

Lemma 2.4.6. (Ma et al., 2011, Lemma 2.3) Let 1 < m < n. Then the number of m x n matrices

NIDIETERE

(AB) of rank r over Fy, with A symmetric is given by

N*(r;m x n)

r

= 3 ¢ "TMIN(r —t, (m —t) x (n —m),q) [S(t,m)|,

t=r—min{n—m,r}

where S(t,m) is defined above in Lemma 2.4.5.
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Theorem 2.4.7. (Ma et al., 2011, Theorem 2.5) Let 1 < m < v. Fiz two maximal totally isotropic

subspaces P and @Q, such that dim(P N Q) = i. Where pé-k,(y, v;m) is the set of all mazimal totally

isotropic subspaces, R € D(v,2v;q), such that dim(P N R) = j and dim(RN Q) = k. Then
Pip(vivim) =

>, gD bpr—i=m) H A5 pr i o By, p) N2 (a+B—ji ax (v—i—7)),

a+y<v—i,8+p<i,B+y=k
a+B+y+p=m,B<j<a+p
a+f—j—min{a+B—jv—i—y—a}<t<a+f—j

F*(i,c, 3,7, p) = (V;Z)q(;)q(l/_i_ O‘>q<i;5>q

Corollary 2.4.8. (Ma et al., 2011, Corollary 2.6) Let 1 < m < wv. Then,

. (m—')(m— .+1) s
(v, vym) = g vmm) A (,,) <:1 ‘7.)
i/, i),

where

Notice that their association scheme uses the fact that totally isotropic subspaces are transi-
tive sets, so they only need to fix two representatives. As we can see the intersection numbers
are difficult to calculate and give little understanding to the structure of the S(r,d) = {z,y €
D(m,2v;q),rank(zKy') = r,dim(x Ny) = d} classes used to construct a 1%—design in Theorem
2.3.7. Our goal is to determine whether there exists a 3-class association scheme that gives rise to
new 1%—designs or strongly regular graphs.

Before we move on to the next chapter, we will make a few remarks. The dual polar graphs
(in the extreme case of m = v) form a family of well-known distance-regular graphs (which are P-
and Q-polynomial association schemes, see Brouwer (1989)). Applying the enumeration results of
Wan (1993), many researchers in Wans school calculated the parameters of dual polar graphs. As
a generalization of dual polar graphs, mathematicians Zeng et al. (2013); Tang and Wan (2006);
Liu et al. (2012); Ma et al. (2011) have been studying various subspaces of a given dimension in
classical (symplectic, unitary and orthogonal) spaces. The focus of studies in this vain has been in
the set of the totally isotropic subspaces with the same dimension in a classical space forms an orbit

under the action of the corresponding classical group. Researchers try to determine the orbitals
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and the rank of the permutation action and calculate the length of each suborbit (or the size of
each orbital).

In the next chapter, we have explored the general cases with 1 < m < v. We have taken the
partition of the totally isotropic 2-dimensional subspaces into S(C;)s as association relations and we
calculated their character tables. However, existence of such association schemes has been already

discussed in the work of Derr (1980); Wei and Wang (1996).
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CHAPTER 3. ASSOCIATION SCHEMES AND THEIR INTERSECTION
NUMBERS

3.1 Association schemes defined on D(m,2v;q)

In this section, we construct an association scheme on the set 2 = D(m,2v;q) of all m-
dimensional totally isotropic subspaces of symplectic vector space of degree 2v over [F,. Let x and y

be two elements of 2. Being m-dimensional totally isotropic subspaces in the 2rv-dimensional sym-

0o I®
plectic vector space over F, we know that rank(zKz') = rank(yKy') = 0 where K =

Iy (R

as before. Furthermore, there exist nonnegative integers r, (0 < r < m) and d, (0 < d < m) such
that rank(zKy') = r and dim(z Ny) = d. With an appropriate set of pairs {(r;,d;) : 0 < i < D},
every pair (z,y) € Q x Q holds rank(zKy') = r; and dim(z Ny) = d; for some i, 0 < i < D.
Without loss of generality, let Cyp = (0,m),C1 = (r1,d1),--- ,Cp(rp,dp) be the collection of all
feasible (rank,dimension)-pairs for given m and v.

Then, Q x § is partitioned by the subsets S(Cp), S(C1),---,S(Cp) where
S(C) = {(z,y) € Ax Q: (rk(zKy"),dim(zNy)) =C;}, 0<i<D.

Theorem 3.1.1. Let Q = D(m,2v;q) and S(C;) for i =0,1,...,D as the above. If we define the
relations R; C Q x Q by R; = S(C;) for i = 0,1,...,D, then X = (2,{R;}o<i<p) is a D-class

symmetric association scheme.
Proof.
(1) Ro={(z,z) : z € Q}.

(2) Every pair (z,y) of elements x,y €  belongs to C; for some 0 < i < D according to the rank
of Ky and the dimension of x Ny. The i is uniquely determined, and so, it follows that

Ry, Ry,...,Rp form a partition of 2 x €.
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(3) For each i, 0 <i <D, Rl = R; holds.

(4) For every h,i,j € {0,1,...,D}, and for any (z,y) € Ry, the number of z € S,(C;) NS, (C}) is

a constant pfj The intersection number is independent from the choice of (z,y) in S(C},) as
[52(Ci) N Sy (Cy)| = [S=(Ci) N Sw(Cy)

as long as (z,w) € S(C}). This can be proved by using the facts that G = Spa,(q) acts transi-
tively on Q and doubly transitively on each S(C;), together with the fact that S, (Cp), Sz(C1), ..., Sz(Cp)
are the orbits of the point stabilizer Stab;(G) acting on Q — {z}. See Lemma 3.2.2 below for

further details.

We note that the existence of this association scheme has been noticed by Wei and Wang (1996). [

3.2 Counting S,(r,d) the (r,d)-associates of a point x

Fix 0 < m < v and let ¢ be a power of a prime p. Let, Q = D(m,2v;q), the collection of all
totally isotropic subspaces of type (m,0) in the symplectic vector space of degree 2v over F,. Now
extend Definition 46 to any point in €2, so that we can partition {2 around any one of its points and
include the point itself by allowing d = m. Recall that the set of totally isotropic subspaces is a
transitive set under the action of G by Theorem 2.1.9 thus, the sizes of our partitions will be the
same for any point z € (2.

Before we can construct our association scheme, whose underlying set will be Q and relations

Ry, -+, Rp will be the subsets of 2 x 2, we need to calculate D, the number of classes.

Lemma 3.2.1. Let m =v —a, for 0 < a < v and let Q@ = D(m,2v;q), the collection of all totally
isotropic subspaces of dimension m. Then D is the number of tuples (r,d), 0 < r,d < m such that
S(r,d) > 0, is equal to:

7(m+1)2(m+2) if v <2a

o]
I

(y—m+1)(m—a+1)+% 0. w.
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We then let D be the number of tuples (r,d) excluding the class S(0,m). Hence,
D=D-1.

Proof. The proof will be shown in two cases based on when the max is 0 or 2m — v — d, where
m = v — a. Notice that 2m —v —d < 0 when 2(v —a) —v —d = v — 2a — d < 0. The largest
value occurs when d = 0, giving us v — 2a < 0. When v < 2a we have that 2m — v — d < 0 for all

0<d<m.

e Case 1: As stated above, when v < 2a, 2m —v —d <0 for all 0 < d < m. When d = i,

0 <r <m —i. Thus there will be (m — ¢ + 1) values of r for each 0 < d <m — 1.

m m—+1
S i+ 1) = (ZZ> _ (m+2)2(m+1).

=0 =1

e Case 2: When v > 2a, we are no longer guaranteed that the lower bound of r is 0.

(i) if 0 < d <m —a, we have that 2m —v —d >2m—v—(m—a) =m—v+a =0 as
m =v —a. Thus, max{0,2m —v —d} =2m —v —dand 2m —v —d <r <m — d has
exactly m —d — (2m —v —d) + 1 = v — m + 1 values giving us:

m—a
D= v—-m+l=(m—-a+1)(r—m+1)
d=0

classes.
(ii) if m —a < d < m, then max{0,2m —v —d} = 0 and 0 < r < m — d. Once again this

gives us the geometric sum:

> (m—d+&):§:ﬁzaijn
d=m—(a+1) i=1

Combining the two options we have

ala+1)

(m—a+1)(rv—m+1)+ 5
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Definition 51. Let 0 < d < m and max{0,2m —v —d} < r < m —d. For any z € Q, let the

(r, d)-associates of z be the collection,
S.(r,d) = {y € Q|rank(zKy") = r,dim(z Ny) = d}

Proposition 3.2.2. Let z € D(m,s,2v;q) and r,d be values such that S.(r,d) exists. Then,

H = Stab,(Sp2.(q)) sends x € D(m, s,2v;q) toy € D(m,s,2v;q) and if x € S,(r,d), y € S.(r,d).

Proof. Let x € D(m,s,2v;q). Then rank(zKz') = 2s. As H C Spa,(q), for any T € H we have
TKT! = K. Thus, (2T)K (2T)! = 2TkT'2z! = Kx'. So rank(zKz!) = rank(zT K (2T)!) = 2s.

Let z € S,(r,d) and H = Stab,(Spa2,(q)). We will show that if x € S,(r,d) then T € S, (r,d),
for all T € H. Recall that TKT! = K.

As x € S.(r,d), rank(zKx') = r and dim(z Nx) = d. For any T € H we have the following:

rank(zK (2T)") = rank(zKT'z") = rank(:TKT'z") = rank(zKz') = r

dim(z NaT) = dim(zT NaT) = dim(zNz) =d,

where dim(zT' N aT) = dim(z Nz) as T' can be viewed as a linear transformation which maps the
subspace z N x to the subspace (z Nx)T.

Lastly, we will need to show that T € D(m,2v;q). As x € D(m,2v;q),
tTK(2T)' = s TKT'2' = xK2' = 0.

Hence, T € D(m,2v;q).

Furthermore,
If z = yTh and y = 2T». Then, z = 2157y, hence ToTy € Stab,(Spa(q)). If y = «T’, then
yT1 = 2T'T) and z = 2T'T}.

So if z = yT1 where Ty € H. Then if y = 275, we have yT1 = 12Ty, z = 21T



68

3.3 Basic enumerations

We would now like to calculate the size of |R;| = |Q]|S:(C;)| = |Q2|k;, where k; is the subdegree,
for i =0,---,D. Recall that |S,(C;)| = {y : (z,y) € S(C;)}|. As H is transitive on S,(C;), we can

fix z as

Z:(ﬂm) 0 0 0 )m

The rest of the counting arguments are counting |{y : (z,y) € S(C;)}|. To obtain R; from Theorem
3.1.1, we can multiply [{y : (z,y) € S(C;)}| by |€].

Lemma 3.3.1. Let x be of type (m,0) € Spa,(q). Let
Xd = [{y € D(m,2v;q) : dim(z Ny) = d}|,

with xXm = 1 as x is the only matriz that will intersect itself. Then,
m m
XZ:(i) NG m:2v) = Y
q j=i+1

Proof. Starting with x,, = 1, we have

m
Xm_1 = ( ) (N(m —1,m;2v) — 1)
m—1 q

as there are (m”_ll)q totally isotropic (m — 1)-dimensional subspaces of an m-dimensional totally
isotropic space and each one is contained in N(m—1, m; 2v) totally isotropic subspaces of dimension
m including the original space x, thus we subtract 1 to remove it.

Assume that y; = (T)q (N(i, m;2v) — 30 Xj) for i > 1.

Then let’s find the size of y;_1. There are (Z.Tl)q choices for an 7 — 1 totally isotropic subspace
in an m-dimensional totally isotropic subspace each of which is contained in exactly N (i —1,m;2v)

totally isotropic subspaces of dimension m. Notice that the subspaces also contain all totally

isotropic subspaces that contain an 4,7+ 1,--- ,m. Thus we obtain our desired formula. ]
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Proposition 3.3.2. The subspace

d m-d m-r r 2wv-m)-m—-d—-r m-d-r

7@ 0 0 0 0 0 d
L 0 0o I 0 0 r
0 0 0 0 0 [m=d=r) |y —d — 7y

is in S.(r,d) that is yKy' = 0 and rank(zKy') = r while dim(z Ny) = d.

Proof. Let

m UV—m UV—m

A 0 0 0 d

y= s
0O O 0 C m-—d—r
0 B 0 0 r

where rank(A) = d,rank(B) = r and rank(C') = m — d — r, so that rank(y) = m. Then

d m—d m-—r r v—m V-—m
0 0 0 AB? 0 0 d
Ky' =
YRy 0 0 0 0 0 0 |m-—d—r
—BA? 0 0 0 0 0 T

If —-BA" = 0 and AB' = 0 then y € D(m,0;2v). Let A = [[(d) 0} and B = [0 [(T)} Then

AB! = 0 and —BA! = 0. Finally, when rank(C) = m—d—r, y is an m-dimensional totally isotropic

subspace.

m vVv—m m V-—m

A= 0 0 ) m

then zKy' = I™ B! = Bt. As rank(B) = r we

have rank(B!) = r. Lastly, 2Ny = A as z spans the first m rows and columns. Therefore,

dim(z Ny) = rank(A) = d. Thus, y € S,(r,d).
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Proposition 3.3.3.

|S.(0,m —1)| = ( " ) qi2N’(z’,2(1/—m)) for0<i<m
q

m—i
and has the form

m—-—1 ¢ mMm V—m V-—m
S.(0,m—i)=(1"" 0 0 0 0 \m—i
0 a 0 I5; ~y 7

Proof. Let y = {A B C D] then,
dim(z Ny) = m — 4 and rank(2Ky') = 0. Notice that zKy' = B*, hence rank(B) = 0 so B = 0.

Im=1)
As dim(z Ny) = m — i, we have rank(A) > m — i. We can rewrite A = as we can
0 o

clear the rows and columns using row reduction and for any o € Ff;. Lastly, we notice that we can

clear the first m — ¢ rows of the matrix, giving us the form

S.(0,m—i) =[P 0 0 0 0 \m—i

Lastly, as ¥ must be totally isotropic of dimension m we must have yKy* = 0, multiplying this

out we obtain :
¢

g
yKyt = [5 ,y] Ko—m) t has to be rank 7. Notice that this is exactly, the number of
Y

totally isotropic subspaces of type (4,0) in 2(v — m). Which would be N’(,2(v —m)). There are

(mnzz.)q choices for I(™=) and ¢** choices for a. Combining all of these results we obtain our desired

formula:
m
m—1

1S.(0,m — )| = < ) ¢ N'(4,2(v —m)) for 0 < i < m
q
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Proposition 3.3.4. Let A be an n x n matriz over F,. Then,
rank(A — A") =2k, k € N

Proposition 3.3.5. The number of m x m matrices over F,, A such that rank(A— A") = 2s, where

0<s< |2 isg™ 5

0o g
Proof. Now, notice that A — A’ is skew symmetric. So A — A* = § = , a skew-
-5 0

m(m+1)

symmetric matrix, where S* = —S. Clearly, |[{A € M, (F,) : rank(4 — A') =0}| =¢ 2 . Notice

that rank(A4 — A?) = 0 is the 0 matrix. Then, for each symmetric matrix S of rank i, we can let

0o s
A=A+ , so that A — A* = S. That is, the number of type S matrices is the same as
0 0
m(m+1)
rank 0. Thus, each class has the same number of elements and we have exactly ¢ o ,m X m

matrices such that rank(A — A") = 2s for 0 < s < [1].

O]

r(r+1)
2

Proposition 3.3.6. |S,(r,d)| = (Tg)q(mfd)q(q

T

) (Z;n:i%{r,z(u—m)} N(p,r x (2(v — m)),q)) where

r+d=m.

Proof. Lety = [A B C D] Notice that rank(zKy*) = rank(B*) = r. Similarly, rank(zNy) = d

where r + d = m hence we can always reduce any matrix y to the following form:

y= (@ 0 0 0 0 d
0 a9 0 1) s r
Then .
\ . 0 0 1v=m) 1o
yKy" = —ag +ag + =0,

Bl [-1m 0 | |8

So there are ( d)q choices for (. As we can see this is exactly the same issue as in the case above,

just using smaller matrices. We have ¢"("t1)/2 values for each o and we want to find the 3 of size
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r x 2(v —m) of rank i. Lastly, we have (?)q choices for 19 and (m;d)q choices for I("), giving us

our desired formula:

(1), (" @) (T2 Npyr x (2 = m)). )

Proposition 3.3.7.

m m—d r(r+1)
sl = () ("01) o
q r q

where r +d < m,r >0 and d > 0.

min{r,2(v—m)}

N(p,r % (2(v —m)),q) | N'(m—d—r,2(v—m))q™=4=)*
p=0

Proof. Let
m m 2(v—m)
v (A B C ) m
and
m m 2(v—m)
"“b B F )m
Then

ov—m)  [lv—m)
tKy' = —BD'+ AE' + C F!
_[lv=m) lv—m)

Let a = m —r — d. We claim that

d a r d a r v—(m+a) a v—(m+a) a
I o 0 0 0 0 0 0 0 0\ d
o a, 0 0 0 o0 By Ba B3 1) [ a

0 0 ag 0 0 I0 B4 Bs Be Br/) r
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Originally we have

d a r d a r v—(m+a) a v—(m+a) a
I 0 0 0 0 0 0 0 0 0\d
"l o e a0 0 o0 B B2 B3 1™ a
0 a a 0 0 IW B4 Bs Be Br) r
which gives us
0 O 0 00 O

olv—m)  jlv—m)
yKy'=10 0 0 |+]0 0 ay| +C c!
—_Jwv—m) lv—m)
0 —ab —af 0 0 oy
Now if C' is totally isotropic, then ag = 0 otherwise
0 0 0 00 O
0 0 0 |[+|0 0 ay| #0.
0 —abf —af 0 0 ag
By Proposition 3.3.5 the number of matrices A that satisfy the totally isotropic case must be
the same number as the non-isotropic case. Thus, as must always be 0, otherwise we would be
able to construct more cases for a non-isotropic class.

Similarly, as (") does not have to be in the exact position given, we can have it in the following

form:

d a r d a r v—(m+a) a v—(m+a) a

I 0o 0 0 0 0 0 0 0 0\ d
y =
0 a1 ag 0 IM 0 B1 B2 B3 Ba |7
0 a3 a4 0 0 O s Be b7 1) a
which gives us
0 0 0 0 0 O

olv—m)  jlv—m)
yKy' = |0 —at |+ |0 a1 O +C ol
_[—m) gw-m)
0 0 0 0 a3 O
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Now if C is totally isotropic, then a3 = 0 otherwise

0 0 0 0 0 0
0 —af —af|+ 1[0 a5 0] #0.
0 0 0 0 as O
By Proposition 3.3.5 the number of matrices A that satisfy the totally isotropic case must be
the same number as the non-isotropic case. Thus, a3 must always be 0, otherwise we would be
able to construct more cases for a non-isotropic class.

This gives us our desired form:

d a r d a r v—(m+a) a v—(m+a) a
I 0 0 0 0 0 0 0 0 0\ d
"o a0 00 0 B Ba Bs 1@ | a
0 0 a 0 0 IM B4 Bs Be Br/) T

Now, we have that

00 0 00 0
gv-m)  Jlr-m)
yKy'=10 0 o |+|o 0 of+C C!
_[-m)  lv—m)

0 0 —af 0 0 oy

Therefore, we can choose any value for a; giving us q“2 choices. Let CKC? = 0. Then,

r(r+1)

ay = af. So there are ¢ 2  choices for ay. Now, B B2 B3 I@]| must be of rank a
as well as totally isotropic as in Proposition 3.3.3. There are N'(a,2(v — m)) such subspaces.
Lastly, {54 Bs fe 57} can be of rank 0,1, - ,min{r,2(v — m)}. As in Proposition 3.3.6 we
can use Theorem 2.4.4 to count the number of rank ¢ matrices of size m x n over F,, giving us

Z;i%{r’z(l’_m)} N(p,7 x (2(v —m)),q) choices. In total, we have (Tg)q choices for 19 from z, we

r(r+

r(r+l) . 2 . .
2~ choices for a4, ¢*" choices for ay, N'(a,2(v —m)) choices for

have (m;d)q choices for 1), ¢

min{r,2(v—m)} N(

the a x 2(v —m) rank a row and ¢ p,7,2(v—m), q) choices for the last r x 2(v —m)

row of y. This gives us our desired formula of:
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3.4 List of constructed association schemes

We will use the following order, where (x,y) € R; = (r;,d;) implies that rank(zMy') = r; and

dim(z Ny) = d; where

0 7(m)
_Jm
M = ,
0 J(v=m)
_ J(v—m) 0
RO = (07 2)
Ry = (O, 1)
Ry = (17 1)
Rs = (1,0)
Ry = (270)
When v > 3,
Rs = (070)

We have also fixed our representatives to count x and y via the form

d m—d m-—r r v—m v+d+r m-—d-—r
1@ 0 0 0 0 0 0 d
0 0 0 1) 0 0 0 r

0 0 0 0 0 0 Jm=d=r) |y —d— 7y
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Theorem 3.4.1. For m =2, v =3 and Q = D(2,6;q) with the relations

Ro = 5(0,2), Ry = S(0,1), Ry = S(1,1),

Ry = S(1,0), Ry = 5(2,0)

we have a 4-class association scheme with the following character table:

1

1

q(q+1)?

(2¢ —1)(g+1)

-1

*(g+1) q*(q+ 1)

q(*—=1) ¢*(¢g—2)(¢+1)

a(® +1) —*(g+1)
0 q(g+1)
—q(qg+1) —q(¢® —1)

q

—q¢*

q

q3

sa(+ 1) (> +q+1)

talg+1)(¢* +1)

A+ +1)

P+ +1)

Theorem 3.4.2. Form =2, v > 3 and Q = D(2,2v;q) with the relations defined by

Ro = 8(0,2), Ry = S(0,1), Ry = S(1, 1),

Rs = S5(1,0), Ry = 5(2,0), Rs = S(0,0),

we have 5-class association schemes with the following character table:
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2(1—-2) _ 2(1—-2) _ 2(1—-3) _ 2(1—-2) _
q(g+1)% — L 20241+ 1) 20-2+2(g 4 1)2 —1 1 PU-2+3 ale (qz—ll))((qq—l) D)
-2
p(l) ¢ -1 pa(l) =D+ (0 — 1y
1—2
p1(2) ql—Q(ql—l 4 1) p3(2) q3(l—2)+1 _q2(q2(l—3) _ 1)qu+1
—q — 1 0 q2l—5(q + 1) _q2(l—2) _q(qz(l_g) _ 1)
—(@"?+D(g+1) ¢2q+1) =g+ D@+ PP g(d P (¢ 4 )
@ 2=1D+1)  —¢2q+1) —¢ 2 2=D(g+1) FEIT g¢ P -1) (¢ 1)
where
-2
_ ¢ —1
n) ="+ +q-1)"——
-2
_ _ _ _ qg -1
pg(l):ql l(qlliql27ql371) :
q —
315 | 20-3 -2 2A-4 | 1-1 ¢2-1
=1-¢"7"+q¢" " —q¢ "+ (¢ "+q +qg-1) )
o @+ -~ +q)
pl( ) - 3
¢?lg—1)
(q3 + ql+2 _ ql+1 _ ql) (q2 + ql)qlfG
p3(2) = —
qg—1
N U 0T i i S C et V1 Gt Bk G S (e e
2(q—1) ’ 2(q—1) ’ P -2¢+q
I q4 _ (q3 _q)q3l _ (q4+ 1)q2l + (q3 _q)ql +q4l
! 2(¢% - 2¢* + ¢%)
I q4 + (q3 _q)q3l _ (q4 + 1)q2l _ (q3 _ Q)ql +q4l
s =

2(¢°—2¢*+¢%
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3.5 Action of stabilizer

Note that the action of the stabilizer of a point on the set Q = D(m,2v;q) will yield different
orbit sizes based on type of subspace selected. That is, it depends solely on s for z € D(m, s, 2v; q).

Let H = Stab,(Sp2,(q)) where z € Q, then |H| = % and H acts on 2. Then, the action
yields orbits Oy, O1,--- ,Op. There is a bijection between the orbits obtained by the action of H
on 2 and the cosets of L\ H, where L = Stab,,(H) for z; € O;.

Similarly, if we take a 2’ € D(m,s,2v), we can let H = Stab,/(Spa,(q)), then |H'| = %.
There will also be a bijection between the orbits obtained by the action of H' on € and the cosets
of L'\H', where L = Stab,,(H) for z; € O';. In fact, |L'| = %

Recall that 0 < s < L%j In the special case when v = 3 we only have one non-zero value for s,
s = 1. If we take a 2’ € D(m,1,6), we can let H' = Stab,/(Sps(q)), then |H'| = %. There

will also be a bijection between the orbits obtained by the action of H' on € and the cosets of
L'\H, where L' = Stab,,(H') for z; € O;.

The action of the stabilizer of an isotropic subspace on the symplectic space can be viewed as
an action of the permutation group of a subgroup of the automorphism group of the generalized
symplectic graph on the same space. Similarly, the action of the stabilizer of a non-isotropic
subspace on the symplectic space can be viewed as an action of the permutation group of a subgroup
of the automorphism group of the generalized non-isotropic graph, whose vertices are subspaces of

type (m, s1), where s; # 0.

3.5.1 Thecasev=3, m=2,q=2

Let Q = D(2,6;2). Using our formula from Proposition 3.3.7 we have the following values for
kil
ko =1,k = 18, ky = 24, ks = 144, ky = 128
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1 18 24 144 128 1
1 -3 10 —-24 16 | 27
1 3 -6 -6 8 84

1 9 6 0 —-16| 35

1 -3 0 6 —4 / 168

As we have seen G = Spg(2) acts transitively on each S;(C;) for i =1,2,--- ,D. Thus we have
a Schurian association scheme (G, S, (C;)) for each i. Let z be an element of D(2,0,6;2).

Let A = S,(0,1), where |A| = 18. Let H = Stab,(Sps(2)). Then, |H| = 4608. H is transitive
on S,(0,1) and H acts on A x A. We will obtain a 4-class association scheme. We will have two
orbits of size 72, one orbit of size 144 and two orbits of size 18.

Furthermore, we can write the character table for this scheme due to the classification of asso-
ciation schemes with small vertices by Miyamoto and Hanaki (1998)

The above association scheme is identified in Miyamoto and Hanaki’s list of order 18 schemes,

specifically table # 19.

Agllo]=|1 1 -2 4 —4]2

Let A = S,(1,1), where |A| = 24. Let H = Stab,(Sps(2)). Then, |H| = 4608. H is transitive
on S;(1,1) and H acts on A x A. We will obtain a 4-class association scheme. We will have two
orbits of size 72, one orbit of size 384 and one orbit 24.

Furthermore, we can write the character table for this scheme due to the classification of associ-

ation schemes with small vertices by Miyamoto and Hanaki (1998). The above association scheme
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is identified in Miyamoto and Hanaki (1998) list of order 24 schemes, specifically table # 36.

Then we have two possible stabilizers. Specifically if we pick an z; € D(2,0,6;2), we will have
G G
|Stab., (G)| = wrishy = 4608. Tf 25 € D(2,1,6;2) then |Stab.,(G)| = yraygz = 4320.
Let H = Stab,,(G). Then H acts on N(2,6). We will obtain 9 orbits of the following orders

128,144,24,48,128,144,16,18, 1.

Ov=2x1

O1={y € D(2,0,6;2) : (21,y) € R1},|0:| =18
Oy ={y € D(2,0,6;2) : (21,y) € Ra},|02| =24
O3 ={y € D(2,0,6;2) : (21,9) € R3},|03] =144
O4={y € D(2,0,6;2) : (21,y) € Ra},|O4| =128
Os ={y € D(2,1,6;2) : (21,9) € (0,0)},]05| = 16
Os ={y € D(2,1,6;2) : (21,9) € (1,1)},|0¢| = 48
O7={y € D(2,1,6;2) : (21,9) € (1,0)},|O07] = 144
Os ={y € D(2,1,6;2) : (21,9) € (2,0)}, |Os] = 128

Let’s look at the action of H on ;. As seen above, we obtain A;g[19]. Furthermore, A;g[1]
and Aig[4] are found as fusion schemes of A;5[19].

Ag[l] =

R0:R07R1:R1UR2UR3UR4



Figure 3.1 Kgg6 from fusion scheme

Aigl4] =
1 5 12\ 1

15 =62 Ry=Ry, R =R URs,Ry=RyURy
1 -1 0 15

Furthermore, the 1% relation graph is a complete SRG(18,12,6,12) which is the complete tri-
partite graph Kg 6 whose complement is the disjoint union of three copies of the complete graphs

on 6 vertices. and (18,5,4,0).

Let’s look at the action of H on Os.
These association schemes can be identified in Hanaki’s table. Specifically tables # 1 and #5.
Character Table: Ajg[l]=



Figure 3.2 SRG(16,9,4,6) from action on Os

Furthermore, we can identify the strongly regular graph with parameters (16, 9,4, 6) in Brouwer

(2008).

3.5.2 lé—design as fusion scheme

Let’s look at the action of H on Og. We obtain the following 9-class association scheme.

0100 0 O0OO0OO0OTO0OTO 0 06100 0 0O0OTO0OTFO
4 6 0 00 0 0 O 01 0 0 O 0 0
0 1.0 0 0 0O O0O0OTO0OTO 100 0 0 0 0 0 0 O
0 0 00O 2 0000 0 001 00 0 O0O0O0
By = 0 0006 00 0 O00O0 B, = 0 0001 00 000
0 006 040000 0 00001 0 0 O0O0
0 0 0O0OO OO0 6 00 0 0000 O0OO0OT1TUO0OTFO0
0 0 00O O 6 000 0 000001000
0 0 0000 OO0 3 3 0 0 00OO0O 0O O0OO0OO0T1
00 000 0 O0O0O3 3 0 0000 O0OO0OO0OT1TFO0
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0 00 0 0 0 0 0 0 1
0 0 0 o0 0 o0 0 o0 3 3
0 00 0 0 0 0 O0 1 0
0 0 00 0 0O 1 O00O0
Bo — 0 00 0 0O 0 4 000
00 0O 0 0 O0O0 3 00
00 0 4 0 4 0 0 0O
0 0 O 4 0 0 0 0 O
02 4 0 0 0 0 0 0 O
4 2 0 0 0 OO O 0 O
Furthermore, we can construct 3-class fusion schemes. Specifically, when Ry = R07E1 =

Uicio- (2.3 R;, Ry = Ry, Ry = R3 we obtain the 13-design with parameters (48, 48, 44, 44; 1760,
1776).
Let H = Stab,,(G). Then H acts on N(2,6). We will obtain 9 orbits of the following orders ,

120,135,45,45,180,90,20,15,1.

O = 29

O1={y € D(2,0,6;2) : (z1,y) € (0,0)},|O1| =15
02 ={y € D(2,0,6;2) : (21,y) € (2,0)},]02| = 120
O3 ={y € D(2,0,6;2) : (21,y) € (1,0)},|Os| =135
O4={y € D(2,0,6;2) : (z1,y) € (1,1)},|O4] = 45
Os ={y € D(2,1,6;2) : (21,9) € (0,0)}, |05 =20
Os ={y € D(2,1,6;2) : (z1,y) € (2,1)},|O0¢| = 45
O7 ={y € D(2,1,6;2) : (21,y) € (1,0)}, |07 = 180
Os ={y € D(2,1,6;2) : (z1,y) € (2,0)},|O0s| = 90

Let’s look at the action of H on O;.
These association schemes can be identified in Hanaki’s table. Specifically tables # 1 and #4.

Character Table: Aj5[1] =
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Ais[4] =
1 6 8\1
1 -3 2|5
11 =2/9

Furthermore, we can identify the strongly regular graph with parameters (15,6, 1, 3) in Brouwer

(2008).

Let’s look at the action of H on Os.
These association schemes can be identified in Hanaki’s table. Specifically tables # 1 and #10.
Character Table: Ag[1] =

A20[10] =
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3.5.3 Thecasev=3, m=2,q=3

Let Q = D(2,6;3). Using our formula from Proposition 3.3.7 we have the following values for
ki
ko = 1,k = 48, ko = 108, ks = 1296, ks = 2187
Asea0[2] =
1 48 108 1296 2187 1
1 20 24 36 —81 | 195
1 -4 30 -108 81 168

1 -4 0 12 -9 | 2457

1 8 —-12 -24 27 819

Let v =3, m =2,q=3.

Let A = S.(0,1), where |A| = 48. Let H = Stab,(Sps(3)). Then, |H| = 2519424. H is
transitive on S,(0,1) and H acts on A x A. We will obtain a 4-class association scheme. We will
have two orbits of size 432, one orbit of size 1296 and one orbit of size 96.

Character Table:

1 -3 -3 3 2/ 9

Then we have two possible stabilizers. Specifically if we pick an z; € D(2,0,6;3), we will have
|Stab., (G)| = wrisba; = 2519424, Tf 25 € D(2,1,6;3) then |Stab.,(G)| = wraayesy = 1244160.

Let H = Stab,,(G). Then H acts on N(2,6). We will obtain 9 orbits of the following orders ,
2187,1296, 108, 324, 4374,2592,81,48,1 .

Oo ==

O1={y € D(2,0,6;2) : (21,y) € R1},|O1] =48
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02 ={y € D(2,0,6;2) : (21,y) € Ra},|O2| = 108
O3 ={y € D(2,0,6;2) : (z1,y) € R3},|O03| = 1296
O4 = {y € D(2,0,6;2) : (21,y) € Ry4},|O04| = 2187
Os ={y € D(2,1,6;2) : (21,y) € (0,0)}, 05| = 81
Os ={y € D(2,1,6;2) : (21,9) € (1, 1)}, |O0¢| = 324
O7r ={y € D(2,1,6;2) : (21,9) € (1,0)}, O] = 2592
Os ={y € D(2,1,6;2) : (z1,y) € (2,0)},|Og| = 4374

Let’s look at the action of H on Os.
Character Table:

Agi1[1] =

1 -1/ 80

1 32 48\ 1
1 5 —6132
1 -4 3/ 48

We can identify the strongly regular graph (81,32,13,12) in Brouwer (2008).

Let H = Stab,,(G). Then H acts on N(2,6). We will obtain 9 orbits of the following orders ,
2160, 1280, 160, 320, 2880, 1920, 90, 40, 1.

Oy = 29

O1={y € D(2,0,6;2) : (21,9) € (0,0)},|O1] = 40
Oy ={y € D(2,0,6;2) : (21,9) € (2,0)}, 02| = 2160
O3 ={y € D(2,0,6;2) : (21,9) € (1,0)}, 03| = 1280
Os ={y € D(2,0,6;2) : (21,9) € (1,1)},[O4] = 160
O5 ={y € D(2,1,6;2) : (z1,9) € (0,0)},|0s] = 90
O ={y € D(2,1,6;2) : (21,9) € (2,1)},|O6] = 320

( ) : (21,9) € (1,0)

O7r ={y € D(2,1,6;2) : },107] = 2880
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08 = {y € D(zv 176; 2) : (Zlyy) € (2a0)}7 |08’ = 4080
Let’s look at the action of H on O;.

Character Table:

Agpll] =

1 -1/ 39

1 12 27\ 1
1 2 -=3125

1 -4 3/ 15

We can identify the strongly regular graph (40,12,2,4) in Brouwer (2008).

3.6 Thecasev=4, m=3,q=2

Let Q = D(3,8;2). Let

Ry =(0,3),R1 =(0,2), Ry = (3,0),R3 = (1,1), Ry = (1,2), Rs = (2,0), R = (2,1)

Using our formula from Proposition 3.3.7 we have the following values for k;:

ko =1,k = 42, ko = 4096, k3 = 1008, k4 = 56, ks = 5376, kg = 396

)
—_
)
o o O
)
)
)

)
ja)
@)
—_
)
ja)
)

[a)
[a)
[a)
o o O
[a)
—
[a)



By

By

42 13 0
0 0 21
0 24
0 4 0

0 0 21

2048 1456
0 378
0 28
2048 1848
0 364

0 0 378

1008 360 63

0 48 0
0 384 504

0 192 63

89

0

2

16

1536

256

2048

256

15
256
162

14
432

128

0 0 O
3 0 0
0 16 O

0 15 36 3 9

3 0 0
0 19 24

0 16
2048 1408
0 384
0 16
1536 1984

512 288

36 3

0 384 288

252 81 144

576 450 504

144 84

1664
288
32
1728

384

54




90

By =
00 0 0 1 0 0
0 4 0 2 3 0 0
0 028 0 0 16 32
04 014 0 6 9
5 4 0 0 4 0 3
0 021 32 0 34 0
0 0 7 8 48 0 12
Bs =
o 0o o0 0 0 1 0
0 0 21 16 0 19 24
0 2048 1848 2048 1536 1984 1728
0 384 504 432 576 450 504
0 0 21 32 0 34 0
5376 2432 2604 2400 3264 2416 2832
0 512 378 448 0 472 288
Bs =

0 0 7 8 48 0 12

0 512 378 448 0 472 288

896 192 84 48 192 48 148

Proposition 3.6.1. When m = v and | = 0, the association scheme constructed in Lemma 5.1.1

is a fission scheme of Theorem 2.4.1.

Proof. Merge the orbits of the same intersection size in Lemma 3.1.1. O
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3.7 Remarks

Remark 3.7.1. We have constructed the following strongly regular graphs, 1%—designs and asso-
ciation schemes. We have highlighted certain parameters of Table 3.1 which corresponds to the
current color code found in Brouwer (2008). We have also highlighted unknown parameters in

orange.
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Table 3.1 Parameters of strongly regular graph from fusion schemes
srg q |v|m]| (rds) H Fusion Classes
(18,12,6,12) 2 13| 2] (01,0) | Stab,(G) [[1, 3], [2, 4]
(15,6,1,3) 2 3] 2] (0,0,0) | Stab,,(G) [ 1], [2]]
(25,8,3,2) 22121 2 Stab., (G) [ [1,3], [2]]
(48,36,24,36) 3 13] 2] (0,1,0) | Stab,,(G) [[1, 3], [2, 4]
(40,12,2,4) 31312 (0,0) | Stab.,(G) [ 1], 2]
(16,9,4,6) 2 13| 2] (00,1) | Stab,, (G) [ 1], 2]
(81,32,13,12) 3 13| 2] (00,1) | Stab,,(G) [ 1], [2]
(48,32,13,12) 2 13| 2| (1,11 | Stab,(G) [[1,3,4,5,6,7,8,9], [2]
(48,44,40,44) 2 3] 2] (1,1,1) | Stab,, (G) [[1,4,5,6,7,8,9], 2, 3]
(45,30,15,30) 2 3] 2] (1,1,0) | Stab,,(G) [ [1, 3, 4], [2, 5]]
(120,117,114,117) | 2 | 3 | 2 | (2,0,0) | Stab.,(G) [[1,3,4,5,6,7,8,9], [2]
(120,111,102,111) | 2 [ 3 | 2 | (2,0,0) | Stab,,(G) [[1, 3, 4,5,6,7,9], [8, 2]]
(120,114,108,114) | 2 [ 3 | 2 | (2,0,0) | Stab,,(G) [[1,3,4,5,6,7,8],[9, 2]]
(120,21,6,3) 2 13| 2] (20,0 | Stab,,(G) [[1,3,9], [2,4,5,6, 7, 8]]
(120,63,30,36) 2 13| 2] (20,0 | Stab,,(G) [[1,3,4,7,8,9], [2, 5, 6]
(120,108,96,108) | 2 | 3 | 2 | (2,0,0) | Stab.,(QG) [[1,3,4,5,6,7],[8,9, 2]
(135,132,129,132) | 2 | 3 | 2 | (1,0,0) | Stab.,(G) [[1], [2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15|
(135,108,81,108) | 2 | 3 | 2 | (1,0,0) | Stab,,(G) []1,3,5,7,8,9, 10, 11, 12, 13, 14, 15], [2 4, 6]]
(135,120,105,120) | 2 [ 3 | 2 | (1,0,0) | Stab,,(G) [[1,3,4,5,6,7,8,10, 11, 12, 14, 15], [9, 2, 13]]
(135,126,117,126) | 2 | 3 | 2 | (1,0,0) | Stab,,(G) [[1,3,4,5,6,7,8,9, 10, 12, 13, 14], [2, 11 15]]
(135,96,57,96) 2 13| 2] (1,0,0) | Stab,,(G) I[1, 4, 5, 12, 13], [2, 3, 6, 7, 8, 9, 10, 11, 14, 15]]
(135,102,69,102) | 2 | 3 | 2 | (1,0,0) | Stab.,(QG) [[1, 4,5, 14, 15], [2, 3,6, 7, 8, 9, 10, 11, 12, 13]]
(135,114,93,114) | 2 | 3 | 2 | (1,0,0) | Stab,,(QG) [[1, 12, 13, 14, 15], [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]
(135,90,45,90) 2 3] 2] (1,0,0) | Stab.,(G) [[1,4, 5,12, 13, 14, 15], [2, 3, 6, 7, 8, 9, 10, 11]]
(108,81,54,81) 3 13| 2| (1,1,0) | Stab,, (G) (1], 2, 3, 4, 5, 6]]
(160,120,80,120) | 3 | 3 | 2 | (1,1,0) | Stab.,(G) [ 1, 3], [2, 4, 5]]
(144,142,140,142) | 2 | 3| 2 | (1,0,0) | Stab,, (G) [[1,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15}, [2]]
(144,140,136,140) | 2 | 3 | 2 | (1,0,0) | Stab,, (G) [[1,4,5,6,7,8,9,10, 11, 12, 13, 14, 15], [2, 3]]
(144,126,108,126) | 2 | 3 | 2 | (1,0,0) | Stab,, (G) [[1,3,4,5,6,8,9, 10, 11, 12, 13, 14, 15], [2, 7]]
(144,124,104,124) | 2 | 3 | 2 | (1,0,0) | Stab,, (G) [[1,4,5,6,8,9,10, 11, 12, 13, 14, 15], [2, 3, 7]]
(144,52,16,20) 2 3] 2] (1,00) | Stab,, (G) [[1, 10, 3,7],[2,4,5,6,8,9, 11, 12, 13, 14, 15|
(144,66,30,30) 2 13| 2] (1,0,0) | Stab,, (G) [[1,3,5,6,7, 10, 13], [2, 4, 8, 9, 11, 12, 14, 15]]
(144,78,42,42) 2 13| 2] (1,0,0) | Stab,, (G) [[[1, 5, 7, 9, 10, 11, 13], [2, 3, 4, 6, 8, 12, 14, 15]]
(144,138,132,138) | 2 [ 3 | 2 | (1,0,1) | Stab,,(G) | [ [1, 11}, [2, 3, 4, 5, 6, 7, 8,9, 10, 12, 13, 14, 15, 16]]
(144,122,100,122) | 2 | 3 | 2 | (1,0,1) | Stab,, (G) | [[1, 10, 7], [2, 3, 4, 5, 6, 8,9, 11, 12, 13, 14, 15, 16]]
(144,120,96,120) | 2 | 3 | 2 | (1,0,1) | Stab.,(G) | [ [1, 10, 13, 7], [2, 3, 4, 5, 6, 8,9, 11, 12, 14, 15, 16]]
(160,120,80,120) | 2 | 3 | 2 | (1,0,1) | Stab,, (G) [[1, 3], [2, 4, 5]]
(9,4,1,2) 21313 Stab., (G) [ 1], [2, 3]]
(40,12,2,4) 3 13| 2] (00,0) | Stab,,(G) [ 1], [2]]
(36,20,10,12) 3122 Stab,, (GQ) [[8, 1, 4, 5], [2, 3, 6, 7]]]
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Table 3.2 1%—designs obtained from some fusion schemes

1%-designs qglv|m]|(rd,s) H Fusion Classes
(12, 12, 9, 9; 54, 63) 22 2 Stab., (G 11,121, 3]]
(12,12,8,8;32,48) 22 2 [Stab,,(G): H| =2 | [, [2, 4, 5, 6, 7], [3]]
(48, 48, 44, 44; 1760, 1776) | 2| 3| 2 | (L,L,1) Stab., (G) 1, 4,56 78,9, 2, Bl
(192,192,184,184;34592,34608) | 2 | 4 | 2 Stab., (G) (1, 4,5,6,78,9, 2, Bl
(144,144,140,140;19040,19056) | 2 | 3 | 2 | (1,0,0) Stab,, (G) 1,121, 3,4, , 15]]
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Table 3.3 Association scheme character tables in Miyamoto and Hanaki (1998)
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CHAPTER 4. SUMMARY AND DISCUSSION

4.1 General discussion

The connection between g-analogue t-designs, 1%-designs and association schemes was con-
sidered in Section 1.3. It was shown that certain families of 3-class association schemes yield
1%—designs. The construction of these schemes require the use of the groups and counting tech-
niques prevalent in g-analogue t-designs. In this dissertation, we set out to answer the following
question: Can we find a new 3-class association scheme which gives rise to a partial geometric
design using symplectic geometry? Although I was unable to answer this question in general, I was
able to produce a few examples of 3-class association schemes that are 1%—designs as found in Table
3.7. In Chapter 1, I discussed g-analogue t-designs and the tools used to find them. I give the
explicit SAGE code to construct the blocks and points of the first non-trivial g-analogue t-design in
Appendix A. I then show the current methods to find new g-analogue t-designs using the Kramer-
Mesner method as well as a search algorithm. In Chapter 2, I introduced symplectic geometry and
1%—designs. I showed two known constructions of 1%—designs and describe the blocks and points
for a specific example. I then discussed the issues in generalizing the construction and identified
the relationships we need to study more. Finally, in Chapter 3, I rediscovered a known family of
association schemes and I discovered a new family of Schurian schemes. Specifically, I found the
general character table for m = 2 and have constructed several concrete examples. Furthermore,
I look at fusion schemes from our Schurian scheme, and find previously unknown constructions of

strongly regular graphs, association schemes and lé—designs.

4.2 Future research

I was unable to answer our original question in general and the problem remains open. Moving

forward, I want to identify when the family of Schurian association schemes yields 1%-designs and



96

strongly regular graphs. The latter have been studied by many researchers. See Brouwer (2008);
Spence (2006). In Chapter 2, using the generalized symplectic graph, I created an example where
the distance 2 neighborhood is not regular. There were three regular components which raises the

following questions:
1. Can we characterize the distance classes of sizes larger than 27
2. Can I classify all neighbors of a vertex in distance class i for 0 < ¢ < D?

Similarly, I would like to understand the automorphism group of the generalized non-isotropic
graph as studied in Chai et al. (2015) with respect to the generalized symplectic graph. In Chapter
3, I was able to find the intersection matrices of size m = 2 and would like to find the general
formula for the intersection numbers. Lastly, I will extend this study to the orthogonal and unitary

geometries.
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APPENDIX A. ADDITIONAL MATERIAL

Suzuki sage code

from collections import Counter

m=1

q=2

K.<b> = GF(q"m)

n="7

V = VectorSpace (K,n)

NV.<a> = GF(q " (m#n))

#+#convert to value then back to field, (0,b,1) should be q°0 4+bq~1,
\\which would be 1+42x4

Yotime
ser = [0]%((n))
VtoF={}

##Dictionary that contains the conversion from Vectorspace to underlying field

VtoF [tuple (zer)]=0

Ftov={}

FtoV[0] = tuple(zer)

##Dictionary that contains the conversion from the Field to the Vectorspace

FtoV [0]= =zer

tempv=[0]*(n)

for i in range((n)):
tempv[i] = a”i

tempv.reverse ()

tempv = matrix (tempv)

A = list (V)

A.sort ()

T = list (NV)

T.sort ()

for i in range(q  (m*n)):
VtoF [tuple (A[i])] = T[i]
FtoV [T[i]] = A[i]

ylist = list (NV)
ylist .remove (0)
xlist= list (NV)
for i in K:

if i in xlist:

xlist .remove (i)

Yotime
AllSpaces={}
SpaceGens ={}

for y in ylist:
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for x in xlist:
temptriple = [y,y*x,y*x"2] #original
tempm =[]
for 1 in temptriple:
tempm+=[FtoV [1]]
tempmat = matrix (tempm).rref ()
if tempmat in AllSpaces:
AllSpaces [tempmat] +=1
SpaceGens [tempmat | . append ((y,x))
else:
AllSpaces [tempmat]= 1

SpaceGens [tempmat]= [(y,x)]

keep =[]
for i in AllSpaces.iterkeys ():
keep+=[rank (i)]

Counter (keep)

}
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Kramer-Mesner singer cycle

s+ & B
(LR ']
[ S VIV

Q e
Il

GL(n,q)

V = VectorSpace (GF(q) ,n)

S=list (V.subspaces(t))

K = list (V.subspaces(k))

F.<x> = GF(q)[]

factor (x"(q " (2*n)—1)+1) ##Pick irreducible polynomial to
\\construct your singer cycle

r =companion_matrix (x 74+x"4+41)

GL7 = gap.GL(n,q)

Nr = GL7.Normalizer(r)

SubG = gap.ConjugacyClassesSubgroups (Nr)

##We construct our singer cycle as well as the Normalizer

of the singer cycle. We then find all subgroups of the SingerCycle

import time

start = time.time ()

matrixlist =[]

for j in gap.Elements(Nr):
matrixlist+=[Matrix(j,GF(q))]

end = time.time ()

print (end — start)

##We go through each of the elements in gap and convert them to sage

start = time.time/()

supermatrixlist =[]
for i in SubG:
submatrixlist =[]
for j in gap.Elements(gap.Representative (i)):
submatrixlist+=[Matrix (j,GF(q))]

supermatrixlist+=[submatrixlist]

end = time.time ()
print (end — start)

##We go through each of the elements in gap and convert them to sage

start time . time ()
orbitK =[]

used = list (V.subspaces(k))
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while len (used)>0:
temp =[]
i=used .pop()
for j in matrixlist:
b=span ((j*i.basis_matrix ().transpose ()).transpose())
if b not in temp:
temp +=[ b]
if b in used:
used .remove(b)
orbitK .append (temp)
end = time.time ()
print (end — start)
##We go through the list and find the orbits of the blocks under each group

defined above

start = time.time ()
orbitT =[]
used = list (V.subspaces(t))
while len (used)>0:
temp =]
i=used . pop ()
for j in matrixlist:
b=span ((j*i.basis_matrix ().transpose ()).transpose ())
if b not in temp:
temp +=[ b]
if b in used:
used .remove (b)
orbitT .append (temp)
end = time.time ()
print (end — start)
##We go through the list and find the orbits of the points under each group

defined above

def kspacecounter (j,V,k):
import time

matrixlist=j

start = time.time()
orbitK =[]
used list (V.subspaces (k))

while len (used)>0:
temp =]
i=used .pop ()
for j in matrixlist:
b=span ((j*i.basis_matrix ().transpose ()).transpose())
if b not in temp:
temp +=[ b]
if b in used:
used .remove (b)
orbitK .append (temp)
end = time.time ()

print (end — start)
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return (orbitK)

##creates the k—spaces representative for kramer mesner

def tspacecounter(j,V,t):
import time

matrixlist=j

start = time.time ()
orbitT =[]
used = list (V.subspaces(t))

while len (used)>0:
temp =[]
i=used.pop()
for j in matrixlist:
b=span ((j*i.basis_matrix (). transpose ()).transpose())
if b not in temp:
temp +=[ b]
if b in used:
used .remove(b)
orbitT .append (temp)
end = time.time ()
print (end — start)
return (orbitT)
import time

##creates the t—spaces representative for kramer mesner

def KramerCounter(trep ,Kspace):
if len(trep)==0:
return 0
if len (Kspace)==0:
return 0
trepl = trep [0]
count=0
for i in Kspace:
if trepl.is_subspace(i):
count+=1

return count

allthematrices =[]
start=time.time ()
for i in supermatrixlist:
orbitT=tspacecounter (i,V,t)
orbitK = kspacecounter (i,V,k)
SS= matrix (ZZ,len (orbitT),len (orbitK),lambda x, y: KramerCounter(orbitT [x],orbitK[y]))
allthematrices+=[SS]

print SS

## Gives the Kramer Mesner Matrix for each Group used at the start.
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Table A.1 Blocks for Thomas’ 2 — (7, 3, 7; 2] design.

Orbits for Kramer-Mesner matrix and Thomas’ construction, 2-[7,3,7;2]

The following values are the blocks that will form the 2 — [7, 3, 7; 2] design.

1 0 1 0O O 0 O 1 0 o0 O 1 0 O 1 0 0 0 1 1 0 1 1 0 0 0O 0 O
0o 1 1 0 0 1 1 0O 1 0 o0 1 O 1 o o 1 o o0 1 ©O 0o o0 o o 1 o0 1
0O 0 0 1 1 1 1 0O 0 1 1 0 1 1 o o0 o0 1 1 0 1 0O 0 0O 0 O 1 1
1 0 1 0 0 1 1 1 1 0 o0 1 0 O 1 0 0 o0 1 1 0 1 0 1 0 O 0 1
0o 1 0 0 o0 1 1 0o 0 1 1 0 0 O 0o 1 1 0 0 1 0O o 1 1 0 0 0 O
0o o0 o 1 o 1 o0 0O 0O O o0 o0 O 1 o o o 1 o0 o0 o o o0 o o o 1 1
1 0 0o 0 1 1 1 1 0 0 O o0 1 1 1 1 0 1 O O O 1 0 0 0O O 0 1
0o o0 1 o0 1 0 O 0 1 0 o0 1 0 O o o o o 1 o0 o 0o 1 1 0 1 0 O
0O 0 0 1 1 1 1 0O 0 0 1 1 0 1 o o o o o0 o0 1 o o o 1 o0 1 ©O
1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 O 1 0 O
0o o0 1 0O 0 O 0O 1 0 O o0 0 o 0o 1 1 0 0 1 0O o 1 0o 1 o0 1 1
0O 0 0 1 0o 0 0O 1 0 0 1 O o o o 1 o0 1 o o o0 1 1 0 0 O
1 1 0 0 O 0 O 1 0 1 O O O O 1 1 0 O O 1 o0 1 0 1 0 1 0 O
0o 0 1 1 0 1 0o 1 1 0 0 1 0 o o0 1 o0 1 1 0 0 1 1 0 0 1 1
0O 0 0 1 1 0 1 0O 0 o0 1 O 1 o o0 o0 1 1 0 1 0O 0 o0 1 O 1 0
1 1 0 1 1 1 1 0 1 0 O 1 o0 1 0 o0 1 O 0 ©O 1 0 0 0O 0 1 1
0o o0 1 1 0 1 1 1 1 0 0 1 0 o 1 o 1 0 0 1 0o 1 1 0 0 1 1
o 0 o o 1 0 1 0o o0 o0 1 1 0 O o 0 1 1 0 0 O o 0 o0 1 0 0 O
1 0 O 0o 1 1 0o 1 1 1 0 1 1 0 0O 1 0 O 1 1 1 0 1 0 O
0 O 1 0O 1 0 1 1 0 1 O 0O 0 o0 1 1 0 1 o o0 o 1 0 0 1
0O o0 o o 1 o0 1 0O 0 O o o0 O 1 o o o o o 1 o 0o o0 o o o0 1 1
i1 0 o 1 0 0 1 1 0 o 1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1

o 1 o0 1 0 1 1 0 o 1 0 O o 1 0 O 0o 0 o 0o 1 1 1 0 O

o o0 1 0o 1 0 1 0O 0 1 1 1 1 0 0O 0 1 1 0 0 1 o o o o 1 0 o0
1 0 0 1 1 0 O 1 0 o0 O O 1 o0 1 1 0 1 0 1 1 1 0 0 1 0 1 0
o 1 0o 1 0 1 1 0O 1 0 o0 0 1 1 o o 1 0o 0 o0 o 0 1 0 1 0 0 O
o o0 1 1 1 1 1 0O o0 1 0o 1 0 O o o0 o0 o0 1 1 0 o 0 1 1 0 0 1
i1 0 o o0 1 o0 1 1 1 0 1 1 0 O 1 o o 1 0 1 1 1 0 0o 0O O 1 o0
0o 1 0 0 0 1 1 0O 0 1 1 1 0 1 o o0 1 0 0 0 1 o 1 o0 o0 1 0 1
0o o0 o 1 0 0 1 0 0 o0 o o 1 o0 o o0 o0 o0 1 1 0 o 0 1 1 0 1 0
1 0 1 0 1 1 1 1 0 O 1 0 O 1 1 0 1 0 0 1 O 1 0 0 O O o0 1
0o 1 1 1 1 0 0 1 1 1 0 1 1 o 1 0o o0 1 1 0 o 1 0o o0 0 o0 1
0O 0 0 1 1 0 O 0O 0 0 1 1 1 o 0 o0 1 1 0 1 o o0 1 1 0 0 O
1 1 0 0o 1 0 1 1 0 0 1 O O O 1 0 1 0 1 0 O 1 0 0 0 1 0 O
0o 0 1 1 0 1 0O 1 0 1 1 0 O 0o 1 1 0 1 1 1 0o 1 1 0 0 1 1
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ISOTROPIC POINTS FROM EXAMPLE 15

APPENDIX B.
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