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ABSTRACT 

 

 In the first chapter of this thesis, a background of fundamental quantum chemistry 

concepts is provided. Chapter two contains an analysis of the performance and energy efficiency 

of various modern computer processor architectures while performing computational chemistry 

calculations. In chapter three, the processor architectural study is expanded to include parallel 

computational chemistry algorithms executed across multiple-node computer clusters. Chapter 

four describes a novel computational implementation of the fundamental Hartree-Fock method 

which significantly reduces computer memory requirements. In chapter five, a case study of 

quantum chemistry two-electron integral code interoperability is described. The final chapters of 

this work discuss applications of quantum chemistry. In chapter six, an investigation of the 

esterification of acetic acid on acid-functionalized silica is presented. In chapter seven, the 

application of ab initio molecular dynamics to study the photoisomerization and photocyclization 

of stilbene is discussed. Final concluding remarks are noted in chapter eight.
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 CHAPTER 1: INTRODUCTION 

 

General Overview 

 

 The field of theoretical quantum chemistry is a pursuit to describe chemical properties by 

application of quantum mechanical principles. Applications of theoretical quantum chemistry 

have complemented experimental studies with fundamental explanations of observed physical 

phenomena and prediction of physical properties which are experimentally unobtainable. In 

practice, the modeling of chemical systems is achieved by using complex computer programs to 

compute approximate solutions to the Schrödinger equation. Computational chemists develop the 

expertise to choose the appropriate approximations and theoretical models required to accurately 

compute the chemical properties of interest. As the performance of computer hardware 

architecture progresses, computational chemistry programs are used to model increasingly large 

chemical systems at unprecedented levels of accuracy. 

 

Dissertation Organization 

 

 In the first chapter of this thesis, a background of fundamental quantum chemistry 

concepts is provided. Chapter two contains an analysis of the performance and energy efficiency 

of various modern computer processor architectures while performing computational chemistry 

calculations. In chapter three, the processor architectural study is expanded to include parallel 

computational chemistry algorithms executed across multiple-node computer clusters. Chapter 

four describes a novel computational implementation of the fundamental Hartree-Fock method 
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which significantly reduces computer memory requirements.  In chapter five, a case study of 

quantum chemistry two-electron integral code interoperability is described. The final chapters of 

this work discuss applications of quantum chemistry. In chapter six, an investigation of the 

esterification of acetic acid on acid-functionalized silica is presented. In chapter seven, the 

application of ab initio molecular dynamics to study the photoisomerization and photocyclization 

of stilbene is discussed. Final concluding remarks are noted in chapter eight. 

 

Theoretical Background 

 

 The evolution of quantum systems over time is described by the time-dependent 

Schrödinger equation1:                 

 
    
i! ∂
∂t

Ψ(r,t) = ĤΨ(r,t)   (1) 

for which i is the imaginary unit, ħ is the reduced Planck constant, Ψ is the wavefunction of the 

quantum system with position vector r (e.g. nuclear and electronic coordinates) at time t, and Ĥ 

is the Hamiltonian operator[1]. Much of quantum chemistry addresses atomic and molecular 

orbital stationary state solutions to the Schrödinger equation. If a Hamiltonian without explicit 

time dependence is employed, then the general time-independent Schrödinger equation can be 

derived and expressed as the eigenvalue equation  

    ĤΨ(r) = EΨ(r)  (2) 

for which E is the total energy of the quantum system. For a system comprised of N electrons 

and M nuclei, the molecular Hamiltonian operator is defined as  

                                                
[1] The units used throughout this work are atomic units, unless noted otherwise. 
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Ĥ = -

∇i
2

2i=1

N

∑ -
∇A

2

2M AA=1

M

∑ -
ZA

| ri - RA |A=1

M

∑
i=1

N

∑ + 1
| ri - rj |j>i

N

∑
i=1

N

∑ +
ZAZB

| RA - RB |B>A

M

∑
A=1

M

∑   (3) 

 for which AM  is the mass of nucleus A divided by the mass of an electron, AZ  is the nuclear 

charge of nucleus A, ir  and jr  are the coordinates of electrons i and j,  AR  and BR  are the 

coordinates of nuclei A and B, and   ▽2 is the Laplacian operator with respect to particle 

coordinates. In order, the five terms of the molecular Hamiltonian represent the electronic kinetic 

energy ( êT ), the nuclear kinetic energy ( N̂T ), the electron-nucleus attraction potential energy (

êNV ), the electron-electron repulsion potential energy ( êeV ), and the nuclear-nuclear repulsion 

potential energy ( N̂NV ). The coupling of electronic and nuclear motions in the êNV  term prevents 

separation of nuclear and electronic coordinates, and so computation of the wavefunction is an 

intractable many-body problem beyond trivial cases. In practice, these motions are usually 

assumed to be separable by invoking the Born-Oppenheimer approximation2. Since electrons are 

much lighter than nuclei, electronic motion can be approximated as instantaneous response to 

fixed nuclear positions. Under this assumption, the value of N̂T  is negligible and the N̂NV term 

shifts energy eigenvalues by a constant factor. These terms are neglected from Eq. 3 to define an 

electronic Hamiltonian operator, ˆ elH  

 
  
Ĥel = -

∇i
2

2i=1

N

∑ -
ZA

| ri - RA |A=1

M

∑
i=1

N

∑ + 1
| ri - rj |j>i

N

∑
i=1

N

∑   (4) 

which depends only parametrically on nuclear coordinates. The electronic Hamiltonian is used to 

compute an electronic wavefunction elΨ  by 

    ĤelΨel (r) = EelΨel (r)   (5) 
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, and the electronic energy obtained is used as a potential for a nuclear wavefunction. As such, 

nuclear motions are defined by the nuclear kinetic energy, the nuclear-nuclear electrostatic 

repulsions and the fixed-nucleus electronic energy.  

 

 Solving the electronic Schrödinger equation is a prerequisite for computing a potential 

energy surface. The electronic wavefunction provides the electron probability density via the 

Born postulate and consequently various molecular properties as well. Unfortunately, 

examination of the electronic Hamiltonian reveals an underlying many-body problem in the 

pairwise electronic interaction of the electron-electron repulsion term. The electron-electron 

repulsion term is inseparable due to the inter-electron distance, so an analytical solution for the 

electronic Schrödinger equation is not possible for systems with multiple electrons. Neglecting 

the term is a poor approximation, because electron repulsion contributes significantly to the total 

electronic energy and correlates the spatial occupation of electrons. In Hartree-Fock theory3, êeV  

is replaced with a one-electron potential that captures the repulsion between an electron and the 

mean field of all other electrons ( HFv ).   Now, the exact electronic Hamiltonian ˆ elH  can be 

approximated as a sum of one-electron operators. Before HFv  is explicitly defined, it is useful to 

describe the form of a multielectron wavefunction composed of independent one-electron 

wavefunctions. 

 

 A spin orbital is a wavefunction ( )χ x that describes the spatial and spin components of 

one electron. The Hartree Product HPΨ is a simple N-particle wavefunction constructed from the 

product of N independent spin orbitals. 
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 1 2 1 1 2 2( , ,... ) ( ) ( ) ( )HP
N N Nχ χ χΨ =x x x x x xL   (6) 

 The Hartree product wavefunction is symmetric with respect to exchange of spatial and 

spin coordinates of two electrons, so it is not a valid wavefunction for fermionic systems. The 

Pauli exclusion principle can be satisfied by taking a linear combination of Hartree products. For 

a two electron system, the proper antisymmetric linear combination is  

 
  
Ψ(x1,x2 ) = 1

2
(c1(x1)c2(x2 )− c1(x2 )c2(x1))   (7) 

which can be written as a Slater determinant4  

 

  

Ψ(x1,x2 ) = 1
2

c1(x1) c2(x1)

c1(x2 ) c2(x2 )
  (8) 

and generalized for an N-electron system. 

 

    

Ψ(x1,x2 ,...,x N ) = 1
N !

c1(x1) c2(x1) ! cN (x1)

c1(x2 ) c2(x2 ) ! cN (x2 )

" " # "
c1(x N ) c2(x N ) ! cN (x N )

  (9) 

The wavefunction in (9) is used as the Hartree-Fock wavefunction, HFΨ . By definition, 

the ground state energy obtained from an approximate wavefuction is higher than the exact 

energy. The Hartree-Fock method is used to variationally solve for an optimal set of spin orbitals 

which minimizes the energy. It can be shown that the optimal set of orbitals each satisfy the 

eigenvalue equation 

     f̂ χ(x i ) = εiχ(x i )   (10) 

where f̂  is the one-electron Fock operator, and the eigenvalue   εi  is the orbital energy.  



 6 

The Fock operator consists of the one-electron terms of the Hamiltonian, and the 

previously mentioned Hartree-Fock potential. 

 
    
f̂ = −

▽i
2

2
−

ZA

| ri − R A |A=1

M

∑
i=1

N

∑ + vHF (i)   (11) 

The potential for closed shells is now explicitly defined as  

 
/2

1

ˆ ˆ( ) (2 )
N

HF
j j

j
v i J K

=

= −∑   (12) 

where Ĵ is the coulomb operator 

 * 1
1 2 2 2 12 1

ˆ ( ) ( ) ( ) ( )j i j j iJ d rχ χ χ χ−⎡ ⎤= ⎣ ⎦∫x x x x x   (13) 

and K̂  is the exchange operator. 

 * 1
1 2 2 1 12 2

ˆ ( ) ( ) ( ) ( )j i j j iK d rχ χ χ χ−⎡ ⎤= ⎣ ⎦∫x x x x x   (14) 

 Because of the dependence on the molecular orbitals in the Fock operator, (10) must be 

solved iteratively. The spatial component of a molecular orbital is usually approximated by a 

linear combination of basis functions called atomic orbitals µφ ,  

 
1

i iCµ µ
µ

ψ φ
=

=∑   (15) 

where C is a contraction coefficient. Gaussian basis functions5 are commonly used; they may 

consist of a single Gaussian function or multiple contracted Gaussian functions. In the basis set 

representation, the integro-differential Hartree-Fock equations are represented in matrix form by 

the Roothaan-Hall equations6 

   FC = SCε   (16) 

where F is the Fock matrix defined by the Fock operator, C is a matrix of molecular orbital 

coefficients, S is the overlap matrix of the basis functions, and  ε  is a diagonal matrix containing 
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the orbital energies. The algebraic Roothaan-Hall equations can be solved by standard matrix 

techniques.  

 

The Hartree-Fock method typically accounts for more than 99% of the exact relativistic 

energy 0E . The unrecovered energy is called the correlation energy, corrE .  

 0corr HFE E E= −   (17) 

Although the magnitude of the correlation energy is relatively small, the inclusion of correlation 

effects is crucial for accurate description of chemical bonding and electronic excitation, among 

other important phenomena[2]. The correlation energy can be divided into two distinct categories. 

Dynamic correlation energy arises from correlated electron motion via instantaneous Columbic 

repulsion. Non-dynamic or static correlation energy reflects the inadequacy of the single Slater 

determinant in accurately describing molecular systems with multiple nearly degenerate 

electronic configurations. As both types of correlation energy come from the same physical 

phenomenon, the distinction is artificial. A number of “post-Hartree-Fock” or “correlated” 

methods have been developed in order to improve Hartree-Fock by recovering correlation 

energy. One commonly used approach is Møller–Plesset perturbation theory7, in which a 

perturbation V is added to the unperturbed Hartree-Fock Hamiltonian 0Ĥ :  

 0
ˆ ˆ
elH H Vλ= +   (18) 

The exact eigenfunctions and eigenvalues are expanded in a Taylor series in λ  

 ( ) (0) ( )

1

n
n i i

i
λ

=

Ψ =Ψ + Ψ∑   (19) 

                                                
 [2] Correlation energy in this text specifically refers to Coulomb correlation. The Hartree-Fock electron exchange 
term fully accounts for Fermi correlation.  
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 ( ) (0) ( )

1

n
n i i

i
E E Eλ

=

= +∑   (20) 

The perturbation is truncated at the chosen nth order (PTn). The series often does not converge, 

so the perturbation is commonly truncated at second order. Including higher order terms 

significantly increases computational cost with an unpredictable impact on accuracy. The MP2 

energy expression is 

 
   
EMP2 =

1
4

φiφ j |V |φaφb φaφb |V |φiφ j

εi + ε j − εa − εbi, j ,a,b
∑   (21) 

The i and j indices run over occupied orbitals, and the a and b indices run over virtual orbitals. 

MP theory is size consistent but not variational - the computed energy may be lower than the 

actual ground state energy. MP2 typically recovers 80-90% of the correlation energy, with a 

computational cost scaling at order n5 relative to system size.  Perturbation theory is most 

successful when a small perturbation is applied, which means the Hartree-Fock wavefunction 

should be a good approximation of the exact wavefunction. As such, the reliability of MP 

methods is very system dependent. 

 

 In other popular correlated methods, a multi-determinant electronic wavefunction is 

systematically constructed by combining multiple configuration state functions (CSFs) built from 

spin orbitals. The resulting wavefunction includes excited determinants relative to a reference 

such as the Hartree-Fock wavefunction. One approach is the configuration interaction method 

(CI)8. The CI wavefunction CIΨ  is expanded by applying a linear excitation operator C to the 

reference wavefunction. 

 (1 )CI HFCΨ = + Ψ   (22) 
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1

N

j
j

C C
=

=∑   (23) 

The excitation operator subscript refers to the number of excited electrons. For example, 

2 | HFC φ 〉 represents all terms involving double excitations. The weight (CI coefficient) for each 

determinant is variationally optimized. If the full CI expansion is used, then the exact non-

relativistic energy can be computed within the Born-Oppenheimer and basis set limitations. Full 

CI is currently impractical for more than ~10 electrons with a moderate basis set, as the 

computational cost of the method scales factorially with respect to system size. In practice, the 

CI expansion is typically truncated to include only double excitations (CID), or single and 

double excitations (CISD). Energy eigenvalues for ground and excited electronic states are 

computed during the CI procedure, so the method can be used to calculate excitation energies. 

 

While full CI is size extensive and size consistent, the properties are lost when the 

expansion is truncated. A class of methods based on the related but distinct coupled-cluster (CC) 

theory9 is size extensive and size consistent even after truncation. The main difference between 

CC and CI is the form of the excitation operator. In CC theory, an exponential cluster operator 

Te  acts on the reference wavefunction 

 

1 2 3( ...)

2 2 3
1 2 3 1 2 1 3 1

1 1 1 ...)
2

(
2 6

1

T T TCC HF

HF

e

T T T TT T TT

+ +Ψ = Ψ

+ + + + + ++ Ψ= +   (24) 

where nT  is the operator of all n-electron excitations. The cluster operator is written in terms of 

creation operators ˆaa  and annihilation operators ˆia  acting on occupied orbitals (hole states) i,j 

and virtual orbitals (particle states) a,b, and excitation amplitude coefficients t. 
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 ∂ µ1 2 1 2

1 2 2 1

1 2 1 2

, ,...,
, ,...,2

, ,..., , ,...,

1 ˆ ˆ ˆ ˆ... ...
( !)

n n

n n
n n

i i i aa a
n a a a i i i

i i i a a a
T t a a a a a a

n
= ∑ ∑   (25) 

CC methods are computationally demanding, and inclusion of single, double, and triple 

excitations is usually required for accurate energy calculations. With respect to system size, 

CCSD scales as N6 and CCSDT scales as N8. One approach to reducing the computational cost is 

combining the standard iterative singles and doubles method (CCSD) with an estimation of the 

T3 energy by perturbation theory (CCSD(T))10, which reduces the scaling compared to full 

CCSDT by an order of magnitude. CC and CI theory are equivalent if the excitation operators 

are not truncated, but when truncated at the same excitation level, CC methods include 

contributions from higher-order terms which are missing from the analogous CI expansion. The 

additional contributions are products of lower-order terms. For example, the expansion of the T1 

and T2 operators is: 

 { } 2 2
1 2 1 1 2 2

1 11
2 2

Te T T T TT T⎧ ⎫= + + + + +⎨ ⎬
⎩ ⎭

  (26) 

The first and second bracketed terms are analogous to the C1 and C2 terms of the CI excitation 

operator expansion, respectively. While the computational cost of CC and CI scale similarly at 

the same operator truncation level, these extra terms partially contribute to the larger scaling 

prefactor of CC methods, and to the size consistence of the CC method. 

 

 The truncated CI and CC methods are among the most practical and highly accurate tools 

used by computational chemists over the past few decades. While many molecular systems can 

be successfully studied with these methods, they are based on a single-reference determinant and 

often fail to correctly describe systems with significant static correlation (e.g. homolytic bond 
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cleavage, nearly-degenerate electronic states). Even for well-separated states, truncated CI tends 

to overestimate excitation energies because the ground and excited states are not equivalently 

correlated11. Multi-determinant reference wavefunctions are commonly computed with the multi-

configurational self-consistent field (MCSCF)12 method. The MCSCF wavefunction is a 

truncated CI expansion in which the molecular orbitals for each configuration are optimized in 

addition to the CI coefficients. The choice of which configurations to include is an important 

consideration and highly dependent on the molecular system and physical properties of interest. 

One approach is complete active space SCF (CASSCF)13, in which orbitals are partitioned into 

core, active, and virtual spaces. Core and virtual orbitals are the same as Hartree-Fock occupied 

and virtual orbitals. Active orbitals within a chosen active space can be partially occupied. 

Within the active space, a full CI calculation is performed which generates determinants for 

every possible electron configuration within the space. Considering the computational cost of 

full CI, it is useful to choose the smallest active space that can sufficiently model the problem at 

hand. Once the MCSCF wavefunction is obtained, it may be used as a reference for other 

methods to compute dynamic correlation energy. Common choices include multi-reference CI14 

or multi-reference perturbation methods such as complete active space perturbation theory15. In 

addition to “true” multi-reference methods, some single-reference approaches have been 

developed to describe limited static correlation effects16.  

 

As a crude summary, the Hartree-Fock method is based on the idea that a many-electron 

wavefunction can be represented by a determinant of one-electron wavefunctions. The error 

introduced by this assumption within the nonrelativistic Born-Oppenheimer regime, the 

correlation energy, is physically important but computationally expensive to recover. This 
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expense comes from the requirement to emulate the correlated electron-electron motion 

neglected in Hartree-Fock theory. In 1964, Kohn and Hohenberg introduced density functional 

theory (DFT)17, which is today the most widely used computational chemistry method. Many 

functionals of the electron density have been developed which allow computation of various 

molecular properties. While a wavefunction is a 3N-dimensional variational problem, the 

electronic density depends on only 3 spatial coordinates for any number of electrons. As a result, 

the computational scaling of DFT is similar to Hartree-Fock with the benefit of recovering 

correlation energy.   

 

Kohn-Sham DFT (KS-DFT)18 is the most commonly used implementation of DFT. The 

Kohm-Sham equations are a coupled set of differential equations which define a one-particle 

Schrödinger-like equations similar to the Hartree-Fock equations. As in Hartree-Fock theory, the 

Kohm-Sham equations describe a system of independent particles subject to an external 

potential. The effective one-electron Hamiltonian operator used in KS-DFT is the Kohm-Sham 

operator, ˆKSh .  

 
   
ĥKS = −▽

2

2
+

ZA

| r − rA |A=1

M

∑ + ρ(r ')
| r − r ' |

dr '+Vxc∫   (27) 

The exchange-correlation potential ( )xcV r  and the corresponding energy expression are the only 

unknown variables in KS-DFT. If the exact ( )xcV r  were known, then the energies computed by 

KS-DFT would be exact. The lack of exact exchange and correlation functionals is the major 

shortcoming of DFT.  Many approximate functionals have been developed, often by empirically 

fitting to data obtained from experiment or wavefunction ab initio methods. As a result, the 
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accuracy of properties computed with DFT is dependent on the chosen exchange-correlation 

functional. When a functional is carefully chosen for the problem of interest, DFT can be a 

powerful tool with relatively low computational cost.   

 

 In 1937, physicist Howard Hathaway Aiken wrote:  

 

“At the present time, there exist problems beyond our ability to solve, not because of theoretical 

difficulties, but because of insufficient means of mechanical computation.”19 

 

While the quantum chemistry methods discussed so far are theoretically robust, there are two 

primary limitations which restrict the scope of tractable problems. First, there is a limited number 

of floating point operations per second (FLOPS) that current computer hardware can perform. 

Since 2008, the fastest supercomputers running at peak performance are capable of throughput at 

the magnitude of petaflops20. Reaching exascale performance will require significant advances in 

energy efficiency, memory, and interconnect technology. The second limitation lies in the 

efficient implementation of quantum chemistry methods on supercomputers. Computer hardware 

and software tool technologies are moving targets which advance rapidly compared to 

computational chemistry software. Achieving strong application performance on modern 

supercomputers often requires careful restructuring of core computational kernels.   
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CHAPTER 2: ENERGY EFFICIENT COMPUTATIONAL CHEMISTRY: 

COMPARISON OF x86 AND ARM SYSTEMS 

 

A paper published in the Journal of Chemical Theory and Computation 

 

Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina, 

Allistair Rendell, and Mark S. Gordon 

 

Abstract 

 

 The computational efficiency and energy-to-solution of several applications using the 

GAMESS quantum chemistry suite of codes is evaluated for 32-bit and 64-bit ARM-based 

computers, and compared to an x86 machine. The x86 system completes all benchmark 

computations more quickly than either 3ARM system and is the best choice to minimize time to 

solution. The ARM64 and ARM32 computational performances are similar to each other for 

Hartree-Fock and density functional theory energy calculations. However, for memory-intensive 

second order perturbation theory energy and gradient computations the lower ARM32 read/write 

memory bandwidth results in computation times as much as 86% longer than on the ARM64 

system. The ARM32 system is more energy efficient than the x86 and ARM64 CPUs for all 

benchmarked methods, while the ARM64 CPU is more energy-efficient than the x86 CPU for 

some core counts and molecular sizes. 
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Introduction 

 

 It is widely recognized that energy usage is a major bottleneck in the pursuit of 

improving computational performance.  This reflects in part the demise of Dennard scaling1,2, 

but also fundamental limitations on the energy that can be provided to a single chip regardless of 

the transistor count. Consequently, computational application developers and users will 

increasingly need to consider both speed and energy and the interplay between these two metrics. 

Clear evidence of this trend is seen in the rapid rise of energy-optimized accelerators and co-

processors and in the availability of advanced power management facilities on modern 

processors.  

 

 In the pursuit of new energy-efficient hardware designs, low-power mobile computing 

driven by ARM-based system-on-chip (SoC) processors has aroused significant interest within 

the high performance computing (HPC) community. These systems are designed with energy 

efficiency in mind, typically utilizing 32-bit CPUs that are optimized for 32-bit arithmetic. This 

may be adequate for mobile applications but for quantum chemistry applications large memory 

and double precision floating point arithmetic is usually required. And while ARM-based 

devices are now being used in servers it is not yet clear whether either 32-bit ARM-based SoC 

computers or more recent 64-bit ARM CPUs are viable for HPC workloads. The popular 

GAMESS3 quantum chemistry package is used on a wide range of HPC architectures and is 

therefore a useful test bed for assessing the performance of novel architectures. The present work 

focuses on measuring performance and energy-to-solution of GAMESS workloads on two ARM-

based systems, a 32-bit NVIDIA Jetson TK1 and a 64-bit APM Xgene1 X-C1. The two ARM 
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systems are also compared to a 64-bit Haswell x86 Intel Xeon-E5 processor. A set of commonly 

used computational chemistry techniques are evaluated, namely Hartree-Fock (HF) self-

consistent field (SCF)4, density functional theory (DFT)5-7 and 2nd-order Møller-Plesset (MP2)8,9 

energy and gradient calculations.  

 

Computational Details 

 

 The GAMESS performance evaluations used a benchmark set of molecules that contains 

99-509 basis functions when using the 6-31G(d)10-12 basis set. Power measurements were 

obtained for DFT, HF SCF, MP2 energy, and MP2 gradient calculations. The PBE0 functional13-

15 was used in all DFT calculations.  MP2 energy-to-solution and performance comparisons were 

performed using the distributed data interface (DDI) implementation of MP216-18  in GAMESS. 

In all benchmarks, two-electron integrals were calculated at each (direct) SCF step. The 

molecules used for benchmarking are listed in Table 1. The molecular geometries used for all 

benchmark calculations were obtained by HF/ cc-PVDZ19,20 optimizations. 

 

Hardware 

 

 The 32-bit ARM machine is an NVIDIA Jetson TK1, configured with a quad-core 2.35 

GHz ARM Cortex-A15 CPU (ARMv7-A architecture) paired with 2 GB of LP-DDR3 RAM. 

The 64-bit ARM machine is an AppliedMicro (APM) X-Gene X-C1 with an 8-core 2.4 Ghz 

APM883208-X1 CPU (ARMv8-A architecture) and 16 GB of DDR3 memory. The Haswell x86 
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machine utilizes an 18-core Intel Xeon E5-2699 v3 CPU clocked to the maximum turbo 

frequency of 3.6 GhZ and 32 GB of DDR4 memory.   

 

To consider the impact on computational performance due to the different system 

memory types used in each machine, the DRAM read and write bandwidths were measured with 

the LMBench21 performance analysis suite. For small memory transactions, 1.05MB in size, the 

read/write bandwidth is 18.0/12.6 GB/s for the x86 system, 5.9/9.5 GB/s for the ARM64 system, 

and 4.3/9.2 GB/s for the ARM32 system. For larger memory transactions, 67.11 MB in size, the 

read/write bandwidth is 10.6/7.6 GB/s for the x86 system, 5.1/9.3 GB/s for the ARM64 system, 

and 1.2/3.2 GB/s for the ARM32 system. The 32-bit x86 4 GB physical memory capacity 

limitation is expanded to 1 TB for the 32-bit ARMv7-A architecture via 40-bit physical memory 

address space support. Also, note that on the 32-bit ARM system double precision numbers are 

moved between the CPU registers and system memory locations in two 4-byte segments, while 

on the 64-bit CPUs the entire 8-byte number can be moved to memory with a single instruction. 

 

Software 

 

GAMESS was compiled for the x86 and ARM32 systems with GCC v4.8 and with GCC 

v5.1 on the ARM64 system (v5.1 is the first version with compiler tuning capabilities for the X-

Gene1 CPU). BLAS routines were provided by the ATLAS v3.11 math library22, natively built 

for each machine to take advantage of automatic tuning of BLAS routines for each hardware 

type.  
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Energy/Power Measurements 

 

The Running Average Power Limit (RAPL)23 software interface which reads energy 

consumption information from model-specific registers on an x86 CPU was used to measure the 

DC power consumption of the 18-core Haswell CPU. RAPL measurements were reported every 

0.2 seconds.  The DC power consumption of the 64-bit ARM CPU was measured by placing a 

Fluk i1010 AC/DC current clamp around the wire from the Power Supply Unit (PSU) that 

supplies power to the CPU.  The current clamp was connected to a multimeter which stored 

current measurements every 0.5 seconds on a remote server. The current used by the ARM32 

Jetson system was measured using a uCurrent Gold high precision current measurement tool and 

an mbed LPC1768 micro-controller with a 12 bit analog-to-digital (ADC) converter, ranging 

from 0-3.3V. To measure the current, a 0V supply line for the system was routed through the 

current side of the uCurrent Gold. The ADC was then connected across the voltage output pins 

of the uCurrent Gold. Serial connections were used to send start and stop signals from the Jetson 

to the measuring device and to send the measurements from the measuring device to the 

measuring computer.  

 

The power measurements reported for both the x86 Haswell and ARM64 systems are 

only for the CPU. The RAPL interface used for measurements of the x86 system provides energy 

consumption information for the isolated CPU socket. The current clamp used for ARM64 

measurements probes the +12V wire from the ATX power supply unit that powers the CPU only.  

The ARM32 Jetson uses an AC adapter that has a single power supply output. ARM32 energy 
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measurements are for the entire system and include power consumption for components such as 

the fan and memory in addition to the CPU.  

 

Results and Discussion 

 

Computational Efficiency 

 

The CPU wall clock times for the various methods on the different platforms are shown 

in Figure 1 normalized according to the number of basis functions in each molecule. For all 

methods employed there is an increase in computational time per basis function as the system 

size increases. This reflects the worse-than-linear scaling of all methods. For the DFT energy 

computations in Figure 1A, the x86 single core performance is consistently better by a factor of 

~3 than both ARM CPUs, with little change in the ratio as the system size increases. The x86 

performance relative to ARM64 decreases to a factor of ~2.8 when 8 cores are used. The 

performance of the ARM32 and ARM64 CPUs are within ±10% of each other.  

 

The results for the HF SCF energy shown in Figure 1B are similar to those for the DFT 

energy. That is, on average the ARM32 computation is 3.3% slower than the ARM64 

computation while the ARM64 system takes on average 3.17x/3.16x/2.90x/2.69x longer than the 

x86 system for HF calculation execution time with 1/2/4/8 cores. For the MP2 energy and 

gradient calculations memory requirements limit the calculations on the ARM32 system to four 

molecules that contain 99-250 basis functions, while other restrictions due to the DDI 
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implementation limits the calculations to six molecules in the range 99-405 basis functions on 

the ARM64 and x86 systems.  

 

The computation times for the MP2 energy calculations (Figure 1C) show the largest 

difference in performance between ARM32 and ARM64 among all analyzed computation types. 

Furthermore, the performance degradation of the ARM32 CPU relative to ARM64 worsens with 

increasing system size and the number of cores used. For example, the MP2 energy computation 

time for the smallest system, pentane, is 8.6%/13.6%/20.7% greater on 1/2/4 ARM32 cores 

compared to the same number of ARM64 cores, and 10.0%/22.8%/44.1% greater on 1/2/4 

ARM32 cores than the same number of ARM64 cores for the largest molecule that can be run on 

ARM32 (TNT). By contrast no such correlation is found between the system size or the number 

of active cores and the relative computational performance when comparing the x86 system to 

the ARM64 system. On average, the MP2 energy calculations take 3.27x/3.37x/3.32x/3.25x 

more execution time on the ARM64 system than the x86 system for 1/2/4/8 cores.  

 

 For the MP2 gradient (Figure 1D), there is a weak correlation between the number of 

CPU cores used and the relative system performance for ARM64 vs. ARM32, but no such 

correlation is observed for molecule size. On average, the ARM64 system executes MP2 

gradient calculations in 8.5%/10.3%/10.4% less time than the ARM32 system for 1/2/4 cores. 

The performance benefits of the x86 system relative to the ARM64 system decrease when the 

number of cores used for the computation is increased. With the exception of the largest 

molecule (THC: 405 basis functions) the MP2 gradient calculation using the x86 system is on 

average 2.95x/2.89/2.80/2.67x faster than the ARM64 system with 1/2/4/8 cores. No consistent 
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correlation between system size and relative performance of x86 vs. ARM64 is observed, but the 

relative advantage in computational speed for the x86 machine relative to the ARM64 system for 

the MP2 gradient calculation is greatest for the largest molecule: 3.54x/3.90x/3.61x/3.65x with 

1/2/4/8 cores. In general, the ARM32 system performance is worse than the ARM64 system 

performance for MP2 calculations in contrast to the similar performance observed for the less 

memory-intensive HF SCF and DFT energy calculations. This degradation in performance may 

be due to the relatively low read and write bandwidths which were measured for the LPDDR3 

RAM of the ARM32 device. 

 

Energy Consumption 

 

Figure 2 shows the energy consumption per basis function for (A) the DFT energy, (B) 

the HF SCF energy, (C) the MP2 energy, and (D) the MP2 gradient calculations measured for the 

x86, ARM64, and ARM32 systems. For the DFT calculations averaged over all molecules the 

ARM32 system requires 31.8%/36.5%/44.3% of the energy consumed by the x86 CPU for 1/2/4 

core jobs, while the ARM64 CPU requires 116.2%/102.9%/89.5%/79.5% of the x86 CPU energy 

for calculations on 1/2/4/8 cores. The HF SCF energy calculations (Figure 2B) exhibit similar 

trends for the x86 and ARM64 CPUs for all core counts; that is the x86 calculation is always 

slightly more energy efficient for all benchmark molecules on 1 core and always less efficient 

than the ARM64 CPU on 4 and 8 cores.  The ARM32 system consumes an average of 31.1% of 

the x86 CPU energy for 1 core, 36.3% for 2 cores, and 48.6% for 4 cores.  
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The MP2 energy efficiency results are shown in Figure 1C. The ARM64 calculations on 

average and using 1/2 cores consumes 29.1%/11.1% more energy than 1/2 x86 cores; when using 

4 or 8 cores the x86 machine falls within ±3% of the analogous results obtained on the ARM64 

machine. The ARM32 system is the most energy efficient, but this energy efficiency rapidly 

diminishes when increasing the number of cores. On 1/2/4 cores the MP2 energy calculations on 

the ARM32 system and averaged over all molecules uses 36.5%/48.4%/71.8% of the energy 

required for the equivalent calculations on the x86 system. For the MP2 gradient computations, 

the energy consumption of the ARM64 CPU averaged over all molecules is 

117%/102%/90%/86% of the x86 CPU energy used for the same computations on 1/2/4/8 cores. 

On the ARM32 system the 99-250 basis function computations consume on average 

31.9%/40.0%/51.0% of the energy used by the x86 CPU for 1/2/4 cores, similar to the relative 

energy consumption for the DFT energy and HF SCF computations.   

 

Busy/Idle Core Energy Usage 

 

When running a calculation on less than the total number of CPU cores, the unused cores 

consume energy in the idle state. To examine the efficiency of running parallel versus multiple 

copies of sequential code, and in order to estimate the energy consumed by busy and idle cores, 

the energy usage was measured for MP2 gradient calculations on TNT performed using varying 

levels of CPU core saturation. The energies and times used per basis function are shown in Table 

2. The 1-core values correspond to single 1-core computations while all remaining cores are idle. 

The 8-core values correspond to 8 cores used for a single computation running in parallel. This 
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fully saturates the available ARM64 cores but leaves 10 idle cores for the x86 CPU.   Also 

shown is the energy usage for running 8x1-core jobs simultaneously.  

 

The 8x1-core parallel and 8-core schemes have similar energy consumption and 

calculation times for all computation steps for both x86 and ARM64 CPUs with the exception of 

the MP2 energy on the x86 system. That is, it is as efficient to run 8 identical single core 

calculations simultaneously as it is to run one calculation in parallel using 8 cores, and then to 

repeat that calculation 8 times. For the x86 MP2 energy there is a slight difference: the 8x1 core 

parallel scheme consumes 9.2% more energy and takes 8.3% more execution time per basis 

function compared to the 8-core computation. Overall the results suggest that the HF SCF, MP2 

energy, and MP2 gradient algorithms in GAMESS do not have significant computational cost 

overhead for parallel task coordination. Also, there is no significant off-chip memory or I/O 

contention when running 8 compute processes in parallel.  

 

To calculate the power consumption of individual busy and idle cores their energy usage 

is approximated using Eqs 1 and 2, respectively. CoreMax is the number of physical cores per 

CPU: 18 for x86 and 8 for ARM64. In Eq 1, the “saturated” subscript indicates the value for 

CoreMax jobs running simultaneously, each using one core. This corresponds to the “x86 18x1-

Core, Parallel” and “ARM64 8x1-Core, Parallel” values (Table 2). In Eq 2, the “n-core” 

subscript indicates the value for a single job running on n cores. The value n=1 is chosen for idle 

core calculations in this study and corresponds to the “x86 1-Core” and “ARM64 1-core” values 

in Table 2. 
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Busy Core Power =

EnergySaturated / TimeSaturated

CoreMax

  (1) 

  

 
  
Core Power =

Energyn-Core / Timen-Core - (n *  Busy Core Power)
CoreMax - n

  (2) 

 

The calculated power consumption per busy core during the HF SCF/MP2 energy/MP2 

gradient calculations is 7.93W/7.65W/6.74W for the x86 CPU and 3.35W/3.64W/3.53W for the 

ARM64 CPU. The calculated power consumption per idle core during the HF SCF/MP2 

energy/MP2 gradient calculations is 2.47W/2.57W/2.55W for the x86 CPU and 

2.62W/2.21W/2.10W for the ARM64 CPU. Extrapolating the average idle core power 

consumption during the three calculation types to the CoreMax value, the calculated total power 

consumption for an idle CPU is 45.57W for the x86 CPU and 18.46W for the ARM64 CPU.  

 

For comparison power usage was measured experimentally for both CPUs in the idle 

state over a period of 1 hour. It was found that while on the ARM64 the average measured value 

of 19.10W agreed well with the derived value of 18.46W, the measured value of 16.83W on the 

x86 CPU is significantly less than the derived value of 45.57W.  This 2.7x reduction in power 

usage presumably reflects the fact that the Haswell x86 CPU includes the C7 sleep state feature 

to lower idle core power consumption when the entire CPU is idle. In terms of ideal energy 

efficiency for the quantum chemistry algorithms analyzed, the results clearly demonstrate that it 

is much more important to saturate all available cores regardless of the number of cores per 
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computation than it is to choose between parallel and back-to-back serial computation 

executions. This is particularly true for the Haswell architecture, which incurs a relatively large 

incremental energy cost when left in the completely idle CPU state. This is not observed for the 

ARM64 CPU. 

 

Power Trace 

 

To explore whether energy usage changes significantly during the course of the 

calculations Figure 3 shows a trace of the instantaneous power consumption of the x86 and 

ARM64 CPUs and ARM32 system during an MP2 gradient calculation on TNT running on 4 

CPU cores. The average idle energy consumption over a 1-hour measurement is plotted in 

Figure 3 for the x86, ARM64 and ARM32 systems, indicated by times from -100 to 0 seconds. 

The average x86 idle CPU power consumption of 16.83W is initially lower than the 19.10W 

average of the ARM64 CPU, but within 1 second of the HF SCF calculation, power consumption 

increases by 71.95W for the x86 CPU, but only to 23.12W for the ARM64 CPU. The ARM32 

system uses less power than either ARM64 or x86, with an average idle power consumption of 

3.21W which increases to 10.58W after 1.0 second has elapsed in the HF SCF calculation.  

 

Table 3 shows the mean, standard, and relative standard deviations of the x86, ARM64 

and ARM32 systems during the CPU power trace calculation. On all machines, once the 

computation has begun, fluctuations in power usage are relatively small. For the x86 and 

ARM64 CPUs, the mean power consumption is highest for the MP2 energy calculation, followed 

by the MP2 gradient and the HF SCF calculations. The ARM32 MP2 gradient calculation 
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consumes slightly more power in the gradient step, followed by the HF SCF energy and the MP2 

energy calculation. The standard deviation of CPU power consumption is highest for the x86 

CPU for each calculation step of the power trace at 1.57W for the HF SCF step, 2.17W for the 

MP2 energy step, and 2.52W for the MP2 gradient step. The relative standard deviation, which 

takes the magnitude of the average power consumption into account, is lowest for the x86 CPU 

at 2.52% for the HF SCF step, 2.17% for the MP2 energy step, and 1.57% for the MP2 gradient 

step. The ARM64 CPU power consumption is the most consistent between calculation steps with 

a standard deviation of 0.86W for the HF SCF step, 0.98W for the MP2 energy step, and 0.81W 

for the MP2 gradient step. 

 

Conclusions 

 

 Supercomputers capable of exascale level computations will greatly extend the 

complexity of feasibly solvable problems in computational sciences. The most significant barrier 

to exascale supercomputers is the relatively poor energy efficiency of modern computer 

hardware. To reach the exascale it is therefore imperative that improvements in CPU technology 

address both computational throughput and energy efficiency.  This work has explored these 

issues in the context of a widely used quantum chemistry package running on ARM32, ARM64 

and x86 processors. For all methods and molecules considered the x86 CPU is the clear choice in 

terms of minimizing time to solution. For energy efficiency the ARM32 system offers the best 

performance, but the 32-bit architecture limits the utility of this system for quantum chemistry 

calculations. While these limitations have been lifted with the advent of ARM64 systems, it 

appears that this has come at a significant cost to energy usage without a significant increase in 
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performance. Whether the latter is in part a reflection on the immaturity of the ARM64 compiler 

and runtime remains to be seen. 
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Table 1.  Benchmark molecule specifications 

Molecule Chemical Formula Number of Basis Functions 

Pentane C5H12 99 

Asparagine C4H8N2O3 151 

Nicotine C10H14N2 208 

Trinitrotoluene (TNT) C7H5N3O6 250 

Indigo C16H10N2O2 320 

Tetrahydrocannabinol (THC) C21H30O2 405 

Adenosine Triphosphate (ATP) C10H16N5O13P3 509 
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Table 2.  Energy consumption and computation time per basis function of x86 and ARM64 

CPUs for TNT (250 basis functions) MP2 gradient calculation steps for 1-core and 8-core 

calculations, and for 8 and 18 1-core calculations in parallel 

    Energy/B. Function, J Time/B. Function, s 

HF SCF Energy x86 1-Core 19.849 0.397 

x86 8-Core 5.658 0.062 

x86 8x1-Core, Parallel 5.665 0.063 

x86 18x1-Core, Parallel 4.139 0.029 

ARM64 1-Core, Serial 21.676 1.144 

ARM64 8-Core 4.003 0.158 

ARM64 8x1-Core, Parallel 4.155 0.155 

MP2 Energy x86 1-Core 44.784 0.871 

x86 8-Core 13.362 0.145 

x86 8x1-Core, Parallel 14.597 0.157 

x86 18x1-Core, Parallel 13.352 0.097 

ARM64 1-Core 57.932 3.040 

ARM64 8-Core 13.435 0.480 

ARM64 8x1-Core, Parallel 13.855 0.476 

MP2 Gradient x86 1-Core 22.217 0.444 

x86 8-Core 6.190 0.069 

x86 8x1-Core, Parallel 6.133 0.068 

x86 18x1-Core, Parallel 3.884 0.032 

ARM64 1-Core 25.247 1.384 

ARM64 8-Core 5.132 0.188 

ARM64 8x1-Core, Parallel 5.281 0.187 

 



 33 

Table 3.  Mean, standard deviation, and relative standard deviation of instantaneous power 

consumption during 250 basis function MP2 gradient calculation for ARM64 and x86 CPU, 

ARM32 system  

 Mean, W Standard Deviation, W Relative Standard Deviation, % 

x86    

Hartree-Fock SCF Energy 72.15 2.52 3.50 

MP2 Energy 74.58 2.17 2.91 

MP2 Gradient 72.98 1.57 2.15 

ARM64    

Hartree-Fock SCF Energy 21.57 0.86 3.99 

MP2 Energy 22.96 0.98 4.26 

MP2 Gradient 22.56 0.81 3.60 

ARM32    

Hartree-Fock SCF Energy 11.31 0.97 8.58 

MP2 Energy 10.61 1.71 16.09 

MP2 Gradient 11.96 0.84 7.06 
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A) 

 

B) 

 

C) 

 

D) 

 

 

Figure 1. Computation times per basis function for A) DFT energy, B) HF SCF energy, C) MP2 

energy, and D) MP2 gradient benchmark calculations 
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A) 

 

B) 

 

C) 

 

D) 

 

 

Figure 2. Energy consumption per basis function for A) DFT energy, B) HF SCF energy, C) 

MP2 energy, and D) MP2 Gradient benchmark calculations 
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Figure 3. Power trace during TNT MP2 gradient calculation for ARM64 and x86 CPU, ARM32 

systems, 4 CPU cores 
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Ananta Tiwari, Kristopher Keipert, Adam Jundt, Joshua Peraza, Sarom S. Leang, Michael 

Laurenzano, Mark S. Gordon, and Laura Carrington 

 

Abstract 

 

 Power efficiency is one of the key challenges facing the HPC co-design community, 

sparking interest in the ARM processor architecture as a low-power high-efficiency alternative to 

the high-powered systems that dominate today. Recent advances in the ARM architecture, 

including the introduction of 64-bit support, have only fueled more interest in ARM. While 

ARM-based clusters have proven to be useful for data server applications, their viability for HPC 

applications requires an in-depth analysis of on-node and inter-node performance. To that end, as 

a co-design exercise, the viability of a commercially available 64-bit ARM cluster is investigated 

in terms of performance and energy efficiency with the widely used quantum chemistry package 

GAMESS. The performance and energy efficiency metrics are also compared to a conventional 

x86 Intel Ivy Bridge system. A 2:1 Moonshot core to Ivy Bridge core performance ratio is 

observed for the GAMESS calculation types considered. Doubling the number of cores to 

complete the execution faster on the 64-bit ARM cluster leads to better energy efficiency 
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compared to the Ivy Bridge system; i.e., a 32-core execution of GAMESS calculation has 

approximately the same performance and better energy-to-solution than a 16-core execution of 

the same calculation on the Ivy Bridge system. 

 

Introduction 

 

 The energy consumption of large scale high performance computing (HPC) systems is 

becoming an increasing concern as the computational science community heads towards the 

exascale era. Current estimates indicate that processor efficiencies will have to evolve from the 

current 5 GFLOPS/Watt to 50 GFLOPS/Watt for exascale machines to be viable. While multiple 

processor architectures are being considered in the pursuit of more energy-efficient HPC, it is 

almost certain that the ARM architecture will figure prominently into the solution set, as 

evidenced by its presence in the Mont-Blanc project30. Furthermore, the entire HPC market is 

only a small fraction of the total computing market and, therefore, relies primarily on commodity 

processor technology. In mobile computing, the ARM architecture plays a large role as the most 

ubiquitous energy-efficient processor architecture available. Consequently, investors and 

companies have recognized the potential of the ARM architecture in HPC and enterprise 

computing. For example, HP, Dell, and others are fielding enterprise-class servers based on 

ARM processors. NVIDIA has developed a hybrid ARM-GPGPU system on chip (SoC) which 

was initially deployed at the Barcelona Supercomputing Center for the Mont-Blanc project. 

 

 Given the rapid penetration of ARM systems into the HPC market, it is critical that the 

performance and energy efficiency of ARM is understood in the context of well-established 
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architectures used in HPC. Towards that end, the performance, parallel efficiency, and power 

efficiency of the modern ARM-based HP Moonshot system is analyzed, and compared to an 

Intel Ivy Bridge system. As a co-design exercise, this study is conducted for the prominent large 

scale computational chemistry package GAMESS32. Of primary interest is the investigation of 

which types of computations within the GAMESS package see the best performance scaling and 

energy-efficiency on the Moonshot system, in addition to the identification of architectural 

features that bottleneck the performance. The Intel Ivy Bridge system is used as a reference 

architecture for the bottleneck analysis. The paper is organized as follows: First, descriptions are 

provided for the GAMESS software package and for each type of GAMESS calculation explored 

in this study. Next, the methodology used for system benchmarking is described. This 

description includes details about how the metrics relevant to the performance and energy 

efficiency of the target systems are measured. Next, the results which demonstrate the scalability 

and energy efficiency of various types of chemistry calculations on the Moonshot system are 

presented. The Moonshot system is then compared to Ivy Bridge using the same set of metrics. 

Related work is then summarized, followed by concluding remarks. 

 

Background – GAMESS 

 

 The General Atomic and Molecular Electronic Structure System (GAMESS) is a general 

purpose electronic structure code, with a primary focus on ab initio quantum chemistry 

calculations. GAMESS is used on a wide range of processor technologies all over the world and, 

as such, presents itself as a useful application to assess the performance and energy consumption 

aspects of upcoming processor architectures. The computation parallelization in GAMESS is 
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achieved using the DDI (Distributed Data Interface) library14,28. In GAMESS, for each process 

that computes chemistry calculations, there is an associated “data server” process that services 

data requests from the distributed arrays. A 16-core run of GAMESS will, for example, have 8 

compute processes and 8 data servers. The following specific GAMESS calculations are 

considered in this work, using the CCD basis set10: 

Fragment Molecular Orbital (FMO) 

  In FMO, user specified parameters partition a molecular system, which breaks up the 

computational workload into chunks which are distributed based on the number of compute 

nodes available. FMO allows for the use of highly accurate ab initio quantum chemistry methods 

on large molecular systems. For this benchmark, FMO is used to calculate Hartree-Fock (HF) 

SCF energies. The molecular systems investigated are clusters of 32 and 64 water molecules. 

Hartree-Fock, Second Order SCF (HF-SOSCF) 

  Hartree-Fock energies are computed for several benchmark systems. Second order orbital 

optimizations are performed. Both DISK and DIRECT options are evaluated. For DIRECT runs, 

integrals are recomputed at each SCF iteration instead of reading them from disk. DISK runs 

retrieve the stored integrals from disk. Three benchmark molecules are considered for the HF-

SOSCF calculations: silatrane (C7H17O4NSi), nicotine (C10H14N2), and trinitrotoluene (TNT) 

(C7H5N3O6). 

Configuration Interaction with Single Excitations (CIS) 

   A CIS energy computation of the porphin molecule (C20H14N4) is analyzed. CIS is an 

excited state calculation, for which the computational scaling depends on both system size and 

the number of excited states calculated. A standard HF calculation is first performed to obtain a 
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reference wavefunction, which is used in a linear combination with configuration state functions 

representing single electron excitations while neglecting orbital optimization. 

 

2nd Order Møller-Plesset Perturbation (MP2), and Resolution-of-Identity Variant (RI-MP2) 

   MP2/RI-MP217 are second-order perturbation theory energy calculations. In these post 

Hartree-Fock methods, electron correlation effects are added via a perturbative correction. The 

MP2 energy calculation is more demanding on both CPU and memory compared to both 

Hartree-Fock and CIS computations. The RI-MP236 approximation can be as much as 40 times 

faster than MP2 and is nearly as accurate. Notably, the RI-MP2 approximation employs 

significant use of matrix-matrix operations in comparison to the domination of vector-vector 

operations in HF and standard MP2 calculations. The TNT molecule is used in evaluation of the 

MP2 and RI-MP2 energy calculations. 

 

Methodology 

 

Platforms 

 

 The Moonshot system consists of 128 cores in a multi-node server configuration. The 

system has 16 nodes (also called cartridges) connected via 10GigE interconnect. Each node has 

64 GB memory (DDR3-1600) and one AppliedMicro® X-GeneTM 1 processor, which consists 

of 8 64-bit ARM cores, each of which is clocked at 2.4 GHz. Each core has 32KB L1 data cache 

and 32KB L1 instruction cache. Each core pair shares a 256KB L2 cache and all 8 cores in a 
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node share 8MB L3 cache. Each node is configured with a solid state drive (SSD) for storage 

with 120 GB capacity. In addition to the scaling runs on the Moonshot with multiple core counts, 

this paper compares the performance and energy efficiency of the Moonshot system to a dual-

socket Intel® Ivy Bridge node with 32 GB memory (DDR3-1333). 

 

 Each socket consists of 8 cores, each of which is clocked at 2.6 GHz. Each core has 

32KB L1 data cache, 32KB L1 instruction cache and 256KB L2 cache. 8 cores in a socket share 

20MB L3 cache. The system has traditional disks running at 7200 RPM. It was discovered that 

the performance of some of the benchmark calculations are highly sensitive to the speed of the 

storage sub-system, so an SSD with 120 GB capacity was added to the Ivy Bridge system. 

Unless otherwise noted, all of the relevant results presented in this paper are obtained using the 

SSD drive. 

 

 Iperf12 is used to measure the network bandwidth between nodes on the Moonshot and 

between sockets on the Ivy Bridge system. The tool saturates the link between the nodes/sockets 

and determines the maximum bandwidth between nodes/sockets. Inter-node bandwidth on the 

Moonshot system is 9.89 Gbps (limited by the 10 Gbps switch that connects the nodes of the 

system) and 30.4 Gbps between sockets on the Ivy Bridge. 

 

GAMESS Compilation Environment 

 

 GAMESS is compiled on the Moonshot system using gcc-5.1.0 with the flags “-O2 -

mcpu=xgene1 -fno-aggressive-loop-optimizations -march=armv8-a -mtune=xgene1”. Same 
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compiler version and analogous optimization flags (“-O2 -march=IvyBridge -mtune=intel -fno-

aggressive-loop-optimizations”) are used to compile GAMESS on the Ivy Bridge system. Both 

systems use ATLAS37 version 3.11.34 for BLAS. 

 

Power Measurement 

 

 In addition to performance at different scales, energy consumption is also of interest. 

Only the dynamic power draw is measured. To accomplish this, the idle power of each system is 

measured first. The idle power draw is then subtracted from the total power drawn during 

application runs. Specific methods used to measure the idle power and the active power for each 

of the systems are described below. 

Moonshot 

 The Moonshot power measurements rely on the HP iLO (integrated Lights-Out) server 

management technology1. iLO allows total power draw measurement at the chassis level, as well 

as power draw measurement at the cartridge level. The chassis level power, which can be 

measured at one-second granularity, includes the power drawn by heavy duty chassis fans. Rapid 

changes in the rotational speeds of these fans make the power draw measurement at the chassis 

level noisy and unreliable. Therefore, power measurements are obtained at the per-cartridge 

level. The per-cartridge power is measured once every 15 seconds, and GAMESS is executed 

multiple times for a period of at least 3 minutes to obtain a reliable measurement. Power drawn 

by the networking components can also be measured using the iLO interface. Networking 

components draw a constant power of approximately 50 watts. To calculate dynamic power, the 
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idle power is first measured on each of the Moonshot nodes for a period of 30 minutes. The total 

dynamic power for a scaling run that uses n nodes is calculated using the following formula: 

 
  
PDyn = ( (LPi

− IPi
)

i=1

n

∑ )+
N P

n
  (1)  

In Equation 1, 
iP

L is the on-load power drawn by node i, 
iP
I is the idle power drawn by node i, 

and PN is the constant network power. The second term in the equation adds a proportional 

network power to the dynamic power ( DynP ) calculation. Each run produces a series of series of 

DynP  measurements, which are then averaged to get a power draw value for the run. 

Ivy Bridge 

 Power measurements on the Ivy Bridge are taken using a Wattsup2 device which provides 

total system power measurement at one second granularity. The device provides a USB interface 

to obtain the measurements, and this interface is queried from a separate system to ensure that 

the measurement tools do not increase power draw or slow down the application. The system 

fans are set to manual control in the BIOS and their power draw is lumped into the idle power 

measurement so that their effect on dynamic power draw is minimized. Idle power is measured 

for 30 minutes and DynP  is calculated by deducting idle power from on-load power. 

 

Metrics 

 

 Power, performance, and energy consumption are measured for each of the GAMESS 

calculations considered for this work. On the Moonshot system, these calculations were run 

using 8, 16, 32, 64 and 128 cores; on the Ivy Bridge system, the calculations were run using 8 
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and 16 cores. For scaling studies on Moonshot, an 8-core single node run is taken as the 

reference, and all measurements are normalized using the measurements in the reference run. A 

parallel efficiency metric, defined as: 

 
  
Pen

=
T1

n*Tn

  (2)  

is also measured. In Equation 2, 
ne
P is the parallel efficiency metric for n nodes (i.e., n × 8 cores), 

1T  is the execution time on one node (8 cores) and nT  is the execution time on n nodes. A 
ne
P

metric equal to 1 indicates perfect scaling. For cross-architecture comparisons, two sets of results 

are presented—one that takes a single socket 8-core run on the Ivy Bridge system as the 

reference and normalizes the measurements across different core counts on the Moonshot using 

the reference measurements, and another that takes the dual-socket 16-core run on the Ivy Bridge 

system as the reference for normalization. In addition to power, performance and energy, the 

Energy-Delay Product (EDP) is calculated as (energy × performance). The EDP metric 

emphasizes performance and is widely used in comparing the efficiency of different high-end 

systems15. 

 

Performance Analysis Tools 

 

 To analyze performance on the Intel system, a suite of tools developed on top of a binary 

instrumentation toolkit, PEBIL23, was used. These tools combine static binary analysis 

information (e.g., approximate structure of the program in terms of functions and loops, and 

operations within those structures) with dynamic analyses (e.g., basic block counts and cache 

simulation) to provide an in-depth description of the performance related characteristics of 
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applications. EPAX11 was used to analyze the Moonshot system. EPAX provides static binary 

analyses for both 32-bit and 64-bit ARM architectures. A set of tools that leverages the EPAX 

static analysis information has also been used to, for example, generate an instruction mix for 

different structures in the application. 

 

 To analyze multi-node runs, the PSiNSTracer tool35, a light-weight tool that captures 

communication and computation profiles of MPI applications, was used. The tool intercepts all 

the MPI calls and collects time spent on each of those calls. The portion of the application 

execution time that is not attributed to the MPI events is categorized as computation time. This 

paper analyzes the communication versus computation behavior for only the compute processes. 

Data servers perform only data-servicing tasks. 

 

Moonshot Performance and Energy Results 

 

 This section describes performance scaling and energy efficiency results obtained on the 

Moonshot system. Each metric is collected at five core-counts on the Moonshot system: 8, 16, 

32, 64 and 128. To reduce noise, each data point is measured five times and the average is 

reported. For each of the GAMESS calculations considered in the paper, the single-node 8-core 

run is taken as the reference; measurements across other core counts on the Moonshot systems 

are normalized using the reference measurements. In Figure 1, the parallel efficiency for each 

calculation is shown. Values closer to 1 indicate better scaling. In Figure 1 the parallel efficiency 

for each calculation is shown. Values closer to 1 indicate better scaling. In Figure 2, the energy 
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consumption normalized by the single node case is presented. Normalized EDP values are shown 

in Figure 3. Lower values indicate greater efficiency. 

FMO Results 

 FMO calculations show near linear scaling on Moonshot. For a 128-core run with 64 

water molecules, the speedup with respect to the 8-core run is 15.9 (linear speedup would be 16). 

As mentioned earlier, the implementation of FMO breaks the computational workload into 

chunks, which are then distributed to available compute nodes. The communication between the 

nodes is minimal, which explains the scaling behavior. Communication-computation profiles 

reveal that for 128-core runs with 64 waters, on average, less than 5% of the time spent by 

compute processes is attributed to communication. Normalized EDP (as shown in Figure 3) 

improves the most for FMO calculations at higher core counts on the Moonshot system 

compared to other calculations. Results for the 32 water system are similar to those for the 64 

water system. 

HF-SOSCF Results 

 Recall from the introduction that both disk and direct variants of HF-SOSCF calculations 

are considered. The relative performance of the two methods (disk versus direct) was 

investigated using the silatrane molecule, in addition to analysis of the performance scaling, 

parallel efficiency and EDP. The normalized execution times for the direct method HFSOSCF 

calculations are shown in Figure 4. The execution times for the direct method are normalized to 

the execution times for the disk method. As demonstrated in the graph, disk based calculations 

are faster at all core counts. However, the edge that disk based calculations has on direct 

calculations at 8-core runs diminishes significantly at 128-core runs. Next, the parallel efficiency 

metric is considered. It is shown in Figure 1 that disk based methods rank lowest in terms of 
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parallel efficiency. Parallel efficiency for the silatrane molecule using disk is at 0.4 (at 128 cores) 

versus 0.74 for the direct method[3]. Normalized EDP points to the same conclusion. The 

normalized EDP for disk based calculations stops declining beyond 64-core count runs (Figure 

3); i.e., efficiency stops improving beyond 64 cores. To further investigate the relative difference 

in scaling between the direct and disk based methods, consider the communication and 

computation profiles for these methods. Profiles for both the direct and disk methods for the 

silatrane molecule calculations executed using all 128 cores (16 nodes) on the Moonshot system 

are shown in Figure 5. Poor parallel efficiency with the disk based method can be primarily 

attributed to the greater communication intensity of this method compared to the direct method. 

For 128 core direct runs, time spent in communication by compute processes of GAMESS is 

11%, compared to 35% for disk runs. Most of this communication time is spent in MPI broadcast 

events. 

CIS Results 

 The HF Configuration Interaction-Singles (CIS) calculation using the porphin molecule 

ranks second after the FMO method in parallel efficiency (0.79, see Figure 1). The normalized 

EDP metric indicates higher efficiency at higher core count runs. On average, GAMESS 

compute processes are engaged in communication events for 13% of the run time for 128-core 

runs. 

 

 

 

                                                
[3] Parallel efficiency quantifies what proportion of theoretical maximum speedup is achieved by GAMESS when 
scaled to multiple nodes on the Moonshot. 0.74 means 74% of the achievable speedup was attained. 



 49 

MP2/RI-MP2 Results 

 These calculations show greater parallel efficiency than HF disk based methods but lower 

efficiency than FMO calculations. Both MP2 and RI-MP2 show identical parallel efficiencies of 

0.68 for 128 core runs (Figure 1). The normalized EDP metric, which emphasizes performance, 

continues to decline (Figure 3) for large core counts (i.e., strong scaling will continue beyond 

128-core runs). Analyses of the computation-communication profile for 128-core runs reveal that 

compute processes in MP2 calculations, on average, are engaged in communication events for 

19% of the run time, compared to 20% of RI-MP2. 

 

Cross-Architectural Study Results 

 

 To make cross-architectural performance and energy comparisons, the playing field has 

been made as level as practicably possible, by using the exact same compilation environment on 

the two systems. In the preliminary analysis of the performance differences between the two 

systems, it was discovered that the Moonshot system performed relatively better (even for the 

same core-counts) than the Ivy Bridge system for HF-SOSCF disk-based calculations. An I/O 

profiling analysis (performed with the I/O tracer built on top of PEBIL27) revealed that the Ivy 

Bridge system, which was utilizing the traditional spinning hard-disk drive, was spending 

considerable time on I/O calls. An SSD with similar performance specifications to that of the 

SSD on the Moonshot was added to the Ivy Bridge system, and that addition improved the 

performance of HF-SOSCF disk based calculations by up to 2.2×. This paper reports the 

performance for HF disk based calculations using the SSD on the Ivy Bridge system. The 

performance, energy and EDP metrics obtained on the Moonshot system across multiple core 
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counts were normalized to the same metrics obtained on single-socket (8-core) and dual-socket 

(16-core) runs on the Ivy Bridge system. These comparisons facilitate the investigation of 

whether using more low-power simpler cores can be beneficial in terms of energy efficiency 

compared to using relatively few heavy-duty cores. 

 

Single Socket Ivy Bridge 

 

 Comparative results are shown in Figures 6, 7, and 8 with 8-core Ivy Bridge metrics used 

as references. In Figure 6, the normalized performance across multiple core count runs on the 

Moonshot system is shown. Performance on the Moonshot using 8 cores is 1.6× to 2× slower 

than the 8 core runs on Ivy Bridge. All 8-core runs on the Moonshot use less energy than the 

corresponding 8-core runs on Ivy Bridge (63% to 77% of the energy needed to run on Ivy 

Bridge). The normalized EDP metric for 8-core runs, however, show that the Ivy Bridge system 

is more efficient at running 8-core executions. As the Moonshot scales to 16 cores, the 

performance in all cases exceeds the performance on 8 cores of the Ivy Bridge. The normalized 

EDP metric also suggests that greater efficiency can be achieved with large core count runs on 

the Moonshot. The next natural research questions to ask are—What drives the performance 

differences between 8-core runs on Moonshot and Ivy Bridge, and what architectural 

components on the Moonshot tend to bottleneck its performance? 

Architectural Bottlenecks 

 The Moonshot system exposes a set of performance hardware counters that can be used 

to measure the interactions of software with key on-node architectural components of 

Moonshot—floating point units, caches, memory, and the branch predictor. These counters can 
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be measured using PAPI25, which has support for the X-Gene 1 architecture. The overall idea is 

to investigate which of these counters correlate with the relative performance difference between 

8-core runs on Moonshot and Ivy Bridge. Clearly, measuring these counters for just the 11 

GAMESS calculations considered in this paper may be an insufficient number of data points for 

correlation analysis. Therefore, a set of HPC application benchmarks from different scientific 

domains is added to the analysis. This extended set of benchmarks includes: a subset of 

calculations from the NAS Parallel Benchmarks (CG, FT, IS, LU and MG)5, CoMD (molecular 

dynamics)3, lulesh (shock hydrodynamics)21, miniFE (finite element)19, miniGhost (finite 

difference)6, and smg2000 (semi-coarsening multigrid)7. These applications are run with 

different input sets to generate a total of 38 data-points to supplement the 11 data-points from 

GAMESS. Each data-point consists of 30 performance hardware counters that measure the 

number of total instructions executed, the number of floating point instructions, the number of 

loads/stores from L1 data cache, the number of branch instructions, the number of branches 

accurately predicted, etc. In the correlation analysis, all counters are first normalized for a given 

application by the number of total instructions executed by the application. The correlation 

coefficients are then calculated for each of the normalized counters, and the ratio of performance 

on the 8-core Moonshot to that on the 8-core Ivy Bridge. Only the counters that have absolute 

correlation coefficients of more than 0.6 are considered [4]. 

Floating Point/Integer Performance 

 Counters that measure floating point operations and integer operations rank among the 

highest: 0.7 correlation coefficient for floating point operations and 0.61 for integers. The 

                                                
[4] Correlation coefficients range from -1 to +1, where -1 indicates perfect negative correlation and +1 indicates 
perfect positive correlation. 
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number of floating point operations per instruction is positively correlated to the relative 

performance, suggesting that floating point heavy calculations perform slower on the Moonshot, 

while the number of integer operations is negatively correlated to the relative performance. The 

floating point correlation could be attributed to 1) the faster CPU clock on the Ivy Bridge 

(2.6GHz versus 2.4GHz on Moonshot), and 2) different theoretical floating point operations per 

cycle for the two systems: 16 single precision flops per cycle (using 8 fused multiply-adds) on 

Ivy Bridge compared to 8 single precision flops per cycle (using 4 fused multiply-adds) on the 

Moonshot. 

Memory Subsystem Performance 

 Performance counters which measure the interactions of applications with the memory 

subsystem also register high correlations. In particular, data load instructions are correlated to the 

relative performance with a coefficient of 0.6; higher data loads per instruction lead to lower 

relative performance on the Moonshot system. Cache and main memory read bandwidths are 

measured on both systems using the lmbench tool26. Per core main memory read bandwidth on 

the Ivy Bridge system is 1.45× greater than that on the Moonshot system. L1-cache read 

bandwidth is 2× higher on the Ivy Bridge system. 

Branch Predictor Performance 

 Performance counters that measure branches show high correlation with relative 

performance, with a coefficient of 0.6. The relative performance of the Moonshot improves as 

more branches are accurately predicted. This suggests differences in the capabilities of the 

branch prediction units on the two systems. There appear to be no previous accurate and 

verifiable studies that look at the branch unit performance. This paper introduces a benchmark 

intended to measure the cost of mispredicted branches. The benchmark consists of a small loop 
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containing a single branch. Each path of the branch increments a counter to prevent the path 

from being optimized away. The direction of the branch is determined by the value of a byte read 

from an array, either 0 or 1. The array is indexed by the loop iteration modulo the size of the 

array. Each entry in the array is initialized by rand () modulo 2. The configurable parameters for 

the benchmark are the number of loop iterations and the size of the array. 

 

 The loop is optimized similarly on both the Ivy Bridge and Moonshot systems. The loop 

consists of 3 blocks of 4 instructions each. A head block reads the branch direction from the 

array and branches to one of the other two blocks. Each of the other two blocks increment the 

loop counter, increment the path counter, and branches either to the loop head or departs the 

loop. So, each iteration of the loop consists of 8 instructions, 2 of which are branches. One of 

these branches is a loop branch, which should almost always be correctly predicted, and the other 

is a path branch, which should have a 50% misprediction rate. Four hardware counters are 

collected for several configurations of the benchmark: total instructions, total cycles, branch 

instructions (br_ins) and mispredicted branches (br_msp). Verification of whether the 

benchmark causes branch mispredictions can be done by comparing br_msp to the number of 

loop iterations. If the benchmark is sufficient to break the branch predictor, then there should be 

approximately 1 misprediction per 2 iterations. An array of 32768 random branch directions is 

sufficient to obtain 0.50 branch mispredictions per iteration on the Moonshot, but only 0.46 

branch mispredictions per iteration on the Ivy Bridge. An array of 65536 entries achieved 0.49 

mispredictions per iteration on the Ivy Bridge. This indicates that the Ivy Bridge is more capable 

of predicting branch directions for this benchmark than the Moonshot. 
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 To measure the cycle impact of each misprediction, the benchmark is modified so that 

every entry in the array is 0. This allows the branch predictors on both systems to nearly always 

predict the correct branch path. The cost of a mispredicted branch is then quantified as the 

difference in total cycles between the two benchmarks per br_msp. A branch misprediction on 

the Ivy Bridge increases the total cycle count by 23 cycles while a misprediction on the 

Moonshot increases the total cycle count by 26 cycles. As the Ivy Bridge has a pipeline of only 

14-19 cycles, this also suggests that an application may experience performance loss on a branch 

misprediction in excess of the 14 cycles it takes to flush the pipeline. 

Relationship of Findings to GAMESS Calculations 

 To put all of the bottleneck analysis discussion into perspective for the GAMESS 

calculations studied in this paper, consider two calculations that show the highest and the lowest 

relative performance. The research question is whether the relevant performance counters for 

those calculations corroborate our findings. The HF-SOSCF CIS calculation using the porphin 

molecule run on 8 cores is 2× slower on the Moonshot than on Ivy Bridge. The HF-SOSCF CCD 

calculation done using the disk based method using the silatrane molecule is 1.6× slower on the 

Moonshot system. In terms of the floating point operations, the porphin calculation has 461 

floating point operations for every 1000 instructions, while the silatrane calculation has 390 

floating point instructions for every 1000 instructions. In terms of the load operations, the 

porphin calculation has 274 load operations every 1000 instructions while the silatrane disk 

based calculation has 257. Finally, branches are predicted with 97% accuracy [5] for the porphin 

molecule and with 98% accuracy for the silatrane disk based calculation. 

 

                                                
[5] Accuracy is defined here as (br_ins-br_msp)/br_ins x 100. 
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Dual Socket Ivy Bridge 

 

 Figures 9, 10, 11 show the cross-architecture comparison results that use 16-core Ivy 

Bridge runs as the reference. In each Figure, the performance, energy, and EDP of executions 

performed across multiple core counts on the Moonshot system are normalized using the 

corresponding reference metric on 16-core Ivy Bridge executions. For a given calculation and 

core-count run on Moonshot, a value of less than 1 for performance, energy or EDP (Figures 9, 

10, 11) indicates the performance (energy or EDP) on the Moonshot is better than 16-core run of 

the same calculation on the Ivy Bridge system. The key conclusion here is that the performance 

of the GAMESS calculations using 16 cores with Ivy Bridge is matched by a 32-core run on the 

Moonshot system, suggesting a 2:1 ratio for Moonshot core to Ivy Bridge core performance. 

However, as mentioned previously, Ivy Bridge dual socket executions get up to 3 times more 

communication bandwidth (because the communication is inter-socket) than the multi-node 

executions on the Moonshot (32 core runs use 4 nodes). 

 

 It was previously noted that HF-SOSCF calculations which utilize disk to store and 

retrieve the integrals are engaged in communication events for a significant portion of the total 

run time. Further analysis of the computation-communication profiles of this case reveals that the 

16-core run of a silatrane disk-based calculation on the Moonshot are in communication events 

for 1.4× more time than the same core count run on the Ivy Bridge. Therefore, the 2:1 core-to-

core Moonshot:Ivy Bridge ratio is the upper bound when it comes to the performance of 

GAMESS calculations considered in this paper. This ratio should improve in favor of ARMv8 

with improvements in the interconnect technology. 
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Related Work 

 

 The potential of the ARM architecture for energy efficient HPC has been recognized by 

both system vendors and the academic research community. Vendors such as Cavium8 and 

Hewlett-Packard18 have started to bring new products to market with the HPC community in 

mind, as well as researchers reporting on their own findings of the ARM as a potential design 

point in HPC servers9,34. The Barcelona Supercomputing Center designed a testbed cluster from 

ARMv7 processors and a 1GbE network and stressed the need for an optimized software stack 

and a high performance network31. 

 

 Performance engineers have been reporting their findings on the ARM performance on 

scientific codes as well4,29,33. Padoin et al. report the energy efficiency and performance of an 

ARMv7 processor on the NAS Parallel Benchmarks compared to a Sandy Bridge processor. 

Their findings show that while ARM uses less power, it is less energy efficient than the Sandy 

Bridge due to its lower performance. Laurenzano et al.24 report the effectiveness of the ARMv7 

on HPC computational benchmarks. The authors concluded that ARMv7 FP/SIMD and memory 

subsystem performance would need to be improved in order to be a viable option for use by the 

scientific community. 

 

 Multiple papers have focused on GAMESS performance on different offerings of HPC 

systems13,16. A recent study by Keipert et al.22 compared intra-node performance and energy 

efficiency of GAMESS on commercially available x86, 32-bit ARM, and 64-bit ARM systems. 

Jundt et al.20 adopt a machine-learning based methodology to learn the on-node architectural 
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bottlenecks on 64-bit ARM system. The present work is the first study that takes a 

comprehensive look at the inter-node performance, parallel efficiency and energy efficiency of 

different types of GAMESS calculations on a commercially available 64-bit ARM cluster. 

 

Conclusions 

 

 This paper presented an analysis of the performance, parallel scalability and energy 

efficiency of a widely used quantum chemistry code, GAMESS, on a commercially available HP 

Moonshot 64-bit ARM cluster. GAMESS calculations explored in this work scale to larger core 

counts on the Moonshot system; the extent of the speedup is different for different types of 

calculations. In terms of the EDP metric, higher core count runs on Moonshot are almost always 

more efficient than lower count runs. These results show great promise for the co-design 

approach that considers using many low-power cores rather than a relatively few heavy-duty 

powerful cores to deliver an Exaflop system that can operate within in the 20MW power 

envelope. 

 

 A cross-architecture comparison of performance and energy efficiency metrics was also 

presented, based on the Intel Ivy Bridge system as the reference. For most of the benchmarking 

inputs used in the study, the performance on one node of Ivy Bridge with 16 cores is matched by 

a four node run (with 32 cores) on the Moonshot, notwithstanding the fact that 16-core runs on 

Ivy Bridge benefit from higher inter-socket communication bandwidth than the inter-node runs 

on the 64-bit ARM cluster. The results are interesting and encouraging given the relatively 

nascent entrance of ARM into the HPC world. Advancements in the compiler and the software 
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stacks for the 64-bit ARM architecture, which have only had a short time to evolve, will mitigate 

some of the performance bottlenecks in the 64-bit ARM architecture. 
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Figure 1. Moonshot results: Parallel efficiency (higher is better for large core counts).  
 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. Moonshot results: Normalized energy consumption (lower is better for large core 

counts). Energy is normalized to the energy consumption for a 1-node, 8-core Moonshot run. 
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Figure 3. Moonshot results: Normalized EDP or efficiency (lower is better for large core 

counts). EDP is normalized to the EDP for a 1-node, 8-core Moonshot run. 

 

 

 

 

 

 

Figure 4. Moonshot results: Comparison of execution time for DISK versus DIRECT methods 

across multiple core counts. Execution time is normalized by the DISK method. (HF-SOSCF, 

silatrane). 
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Figure 5. Moonshot results: 128-core MPI profiles for silatrane HF-SOCF energy 

calculation, (A) DIRECT method and (B) DISK method. 
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Figure 6. Cross-architectural comparison: Execution time on Moonshot normalized by execution 

time for 8-core, 1-socket Ivy Bridge run (lower is better for Moonshot). 

 
 

 

 

 

 

 

 

 

 

 

Figure 7. Cross-architectural comparison: Energy consumption on Moonshot normalized by 

energy consumption for 8-core, 1-socket Ivy Bridge run (lower is better for Moonshot). 
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Figure 8. Cross-architectural comparison: EDP or efficiency on Moonshot normalized by EDP 

for 8-core, 1-socket Ivy Bridge run (lower is better for Moonshot). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 9. Execution time on Moonshot normalized by execution time for 16-core Ivy Bridge run 

(lower is better for Moonshot). 
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Figure 10. Energy consumption on Moonshot normalized by energy consumption for 16-core 

Ivy Bridge run (lower is better for Moonshot) 

 

 

 

 

 

 

 

Figure 11. Cross-architectural comparison: EDP or efficiency on Moonshot normalized by EDP 
for 16-core Ivy Bridge run (lower is better for Moonshot) 
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CHAPTER 4: AN EFFICIENT MPI/OPENMP PARALLELIZATION OF THE 

HARTREE-FOCK METHOD FOR THE SECOND GENERATION OF INTEL XEON 

PHI PROCESSOR  

 

A paper accepted for publication in the Proceedings of the 2017 ACM/IEEE conference on 

Supercomputing. 

 

Vladimir Mironov, Yuri Alexeev, Kristopher Keipert, Michael D’mello, Alexander Moskovsky, 

and Mark S. Gordon 

 

Abstract 

 

 Modern OpenMP threading techniques are used to convert the MPI-only Hartree-Fock 

code in the GAMESS program to a hybrid MPI/OpenMP algorithm. Two separate 

implementations that differ by the sharing or replication of key data structures among threads are 

considered, density and Fock matrices. All implementations are benchmarked on a super-

computer of 3,000 Intel Xeon Phi processors. With 64 cores per processor, scaling numbers are 

reported on up to 192,000 cores. The hybrid MPI/OpenMP implementation reduces the memory 

footprint by approximately 200 times compared to the legacy code. The MPI/OpenMP code was 

shown to run up to six times faster than the original for a range of molecular system sizes. 
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Introduction 

 

 The field of computational chemistry encompasses a wide range of empirical, semi-

empirical, and ab initio methods that are used to compute the structure and properties of 

molecular systems. These methods therefore have a significant impact on not only chemistry, but 

materials, physics, engineering and the biological sciences as well. Ab initio methods are 

rigorously derived from quantum mechanics. In principle, ab initio methods are more accurate 

than methods with empirically fitted parameters. Unfortunately, this accuracy comes at 

significant computational expense. For example, the time to solution for Hartree-Fock (HF) and 

Density Functional Theory (DFT) methods scale as approximately O(N3), where N is the number 

of degrees of freedom in the molecular system. The HF solution is commonly used as a starting 

point for more accurate ab initio methods, such as second order perturbation theory and coupled-

cluster theory with single, double, and perturbative triple excitations. These post-HF methods 

scale as O(N5) and O(N7), respectively. These computational demands clearly require efficient 

utilization of parallel computers to treat increasingly large molecular systems with high 

accuracy. Modern high performance computing hardware architecture has substantially changed 

over the last 10 to 15 years. Nowadays, a “manycore” philosophy is common to most platforms. 

For example, the Intel Xeon Phi processor can have up to 72 cores. For good resource utilization, 

this necessitates (hybrid) MPI+X parallelism in application software.  

 

 The subject of this work is the successful adaptation of the HF method in the General 

Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package to 

the second generation Intel Xeon Phi processor platform. GAMESS is a free quantum chemistry 
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software package maintained by the Gordon research group at Iowa State University15. 

GAMESS has been cited more than 10,000 times in the literature, downloaded more than 30,000 

times and includes a wide array of quantum chemistry methods. The objective here is to start 

with the MPI-only version of GAMESS HF and systematically introduce optimizations which 

improve performance and reduce the memory footprint. Many existing methods in GAMESS are 

parallelized with MPI. OpenMP is an attractive high-level threading application program 

interface (API) that is scalable and portable. The OpenMP interface conveniently enables sharing 

of the two major objects in the HF self-consistent field (SCF) loop: the density matrix and the 

Fock matrix. The density and Fock data structures account for the majority of the memory 

footprint of each MPI process. Indeed, since these two objects are replicated across the MPI 

processes, memory capacity limits can easily come into play if one tries to improve the time to 

solution using a large number of cores. By sharing one or both of the aforementioned objects 

between threads, one can reduce the memory footprint and more easily leverage all of the 

resources (cores, fast memory etc.) of the Intel Xeon Phi processor. Reducing the memory 

footprint is also expected to lead to better cache utilization, and, therefore, enhanced 

performance.  

 

 Two hybrid OpenMP/MPI implementations of the publicly available version of the 

GAMESS (MPI-only) code base were constructed for this work. The first version is referred to 

as the “shared density private Fock”, or “private Fock” version of the code. The second version 

is referred to as the “shared density shared Fock”, or “shared Fock” version. In the following 

section, a brief survey of related work is presented. Next, key algorithmic features of the HF SCF 

method are discussed. Then, a description of the computer hardware test bed that was used for 
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benchmarking purposes is presented. An explanation of the code transformations employed in 

the hybrid implementation in this work follows. Next, the memory and time-to-solution results of 

the hybrid approach are shown. Results on up to 3,000 Intel Xeon Phi processors are presented 

for a range of chemical system sizes. The work ends with concluding remarks and a discussion 

of directions for future work. 

 

Related Work 

 

 The HF algorithm has been a primary parallelization target since the onset of parallel 

computing. The primary computational components of the HF algorithm are construction of the 

density and Fock matrices, which are described within this work. The irregular task and data 

access patterns during Fock matrix construction bring significant challenges to efficient parallel 

distribution of the computation. The poor scaling of Fock matrix diagonalization is a major 

expense as well. Linear scaling methods like the fragment molecular orbital method (FMO) have 

been successfully applied to thousands of atoms and CPU cores5,27, but such methods introduce 

additional approximations11,12. In any case, fragmentations methods may benefit from 

optimizations of the core HF algorithm as well. Early HF parallelization efforts focused on the 

distributed computation of the many electron repulsion integrals (ERIs) required for Fock matrix 

construction via MPI or other message passing libraries. The Fock and density matrices were 

often replicated for each rank, and load balancing algorithms were a primary optimization target. 

Blocking and clustering techniques were explored in depth in a landmark14. Contributions from 

that work were implemented in the quantum chemistry package NWChem28. In a follow-up 

paper16 a node-distributed HF implementation was introduced. In this work, both the density and 
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Fock matrices were distributed across nodes using globally addressable array (GA). In a more 

recent work UPC++ library was used to achieve this goal22. A similar approach was used to 

implement distributed data parallel HF by in the GAMESS code4,6. This implementation utilizes 

the Distributed Data Interface (DDI) message passing library13. To further address the load 

balancing issues, a work stealing technique was introduced by Liu et al.20.  

  

 A detailed study and analysis of the scalability of Fock matrix construction and density 

matrix construction10, including the effects of load imbalance, was explored in a work by Chow 

et al.9. In this work, density matrix construction was achieved by density purification techniques 

and the resulting implementation was scaled up to 8,100 Tianhe-2 Intel Xeon Phi first generation 

co-processors. In fact, a number of attempts have been made to design efficient implementations 

of HF for accelerators8,9,25,26,29 and other post-HF methods7. A major issue in this context is the 

management of shared data structures between cores – in particular, the density and Fock 

matrices. OpenMP HF implementations with a replicated Fock matrix and shared density matrix 

have been explored in the work of Ishimura et al.17 and Mironov et al.21. The differences between 

these works are in the workload distribution among MPI ranks and OpenMP threads. The current 

work borrows some techniques from these previous works which implement HF for accelerators. 

The result is a hybrid MPI/OpenMP implementation that is designed to scale well on a large 

number of Intel Xeon Phi processors, while at the same time managing the memory footprint and 

maintaining compatibility with the original GAMESS codebase. 
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Hartree-Fock Method 

 

 The HF method is used to iteratively solve the electronic Schrödinger equation for a 

many-body system. The resulting electronic energy and electronic wave function can be used to 

compute equilibrium geometries and a variety of molecular properties. The wave function is 

constructed of a finite set of basis functions suitable for algebraic representation of the integro-

differential HF equations. Central to HF is an effective one-electron Hamiltonian called the Fock 

operator which describes electron-electron interactions by mean field theory. In computational 

practice, the Fock operator is defined in matrix form (Fock matrix). The HF working equations 

are then represented by a nonlinear eigenvalue problem called the Hartree-Fock equations:  

  FC = εSC   (1) 

where ϵ is a diagonal matrix corresponding to the electronic orbital energies, F is a Fock matrix, 

C is matrix of molecular orbital (MO) coefficients, and S is the overlap matrix of the atomic 

orbital (AO) basis set. The HF equations are solved numerically by self-consistent field (SCF) 

iterations. The SCF iterations are preceded by computation of an initial guess density matrix and 

core Hamiltonian. An initial Fock matrix is constructed from terms of the core Hamiltonian and a 

symmetric orthogonalization matrix. Next, the Fock matrix is diagonalized to provide the MO 

coefficients C. These MO coefficients are used to compute an initial guess density matrix. The 

SCF iterations follow, in which a new Fock matrix is constructed as a function of the guess 

density matrix. Diagonalization of the updated Fock matrix provides a new set of MO 

coefficients which are used to update the density matrix. This iterative process continues until 

convergence is reached, which is defined by the root-mean-squared difference of consecutive 

densities lying below a chosen convergence threshold. 
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  Contrary to what one might expect, the most time-consuming part of the calculation is 

not the solution of the Hartree-Fock equations, but rather the construction of the Fock matrix18. 

The calculation of the Fock matrix elements can be separated into one-electron and two-electron 

components. The computational complexity of these two parts are formally O(N2) and O(N4), 

respectively. In most cases of practical interest, the calculation of the two-electron contribution 

to the Fock matrix occupies the majority of the overall compute time. 

 

Optimization and Parallelization of the Hartree-Fock Method 

 

General Considerations and Design 

 

In this section, three implementations of the HF algorithm are presented: the original MPI 

algorithm24 and two new hybrid MPI/OpenMP algorithms. As mentioned earlier, the most 

expensive steps in HF are the computation of ERIs and the contribution of ERIs multiplied by 

corresponding density elements during construction of the Fock matrix. The symmetry-unique 

ERIs are labeled in four dimensions over i, j, k, l shell1 indices. The symmetry-unique quartet 

shell indices are traversed during Fock matrix construction. Parallelization over the four indices 

is complicated by the high order of permutational symmetry for shell indices. In addition, many 

integrals are very small in magnitude and are screened out using the Cauchy-Schwarz inequality 

equation. Each ERI is used to construct six elements of the Fock matrix shown in equations. 

(2a)–(2f) where (i,j | k,l) corresponds to a single ERI: 
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(a)      Fij ← (i, j | k,l) i Dkl

(b)      Fkl ← (i, j | k,l) i Dij

(c)      Fik ← (i, j | k,l) i Djl

(d)     Fjl ← (i, j | k,l) i Dik

(e)      Fil ← (i, j | k,l) i Djk

( f )    Fjk ← (i, j | k,l) i Dil

  (2) 

 

The irregular storage and access of ERIs during Fock matrix construction is a significant 

computational challenge. Also, the Fock matrix construction is distributed among ranks, and the 

final Fock matrix is summed up by a reduction. A detailed explanation of the SCF 

implementation in GAMESS can be found elsewhere24. 

 

MPI-based Hartree-Fock Algorithm 

 

 The MPI parallelization in the official release of the GAMESS code is shown in 

Algorithm 1. While this implementation has been remarkably successful, it has the disadvantage 

of a very high memory footprint. This is because a number of data structures (including the 

density matrix, the atomic orbital overlap matrix, and the one and two-electron contributions to 

the Fock matrix) are replicated across MPI ranks. It is a major issue for processors which have a 

large number of cores (like the Intel Xeon Phi). For example, running 256 MPI ranks on a single 

Intel Xeon Phi processor increases the memory footprint for both density and Fock matrices by a 

factor of 256 times. This implementation is therefore severely restricted when it comes to the 

size of the chemical systems that can be made to fit in memory. In a typical calculation, the 

number of shells (see NShells in Algorithm 1) is less than one thousand. Most often, the number 
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can be on the order of a few hundred shells. Thus, parallelization over a two shell indices 

(Algorithm 1) frequently results in load imbalances. The HF algorithm in GAMESS was 

originally designed for small- to medium-sized x86 CPU architecture clusters when load 

balancing is not such a significant issue. However, switching to computer systems with larger 

parallelism (large number of compute nodes) requires a change of approach for load balancing. 

Multiple solutions exist for this problem. Perhaps the simplest one is to use more shell indices to 

increase the iteration space and improve the load balance or introduce multilevel load balancing 

schemes. 

 

Hybrid OpenMP/MPI Hartree-Fock Algorithm 

 

 In this section, the hybrid MPI/OpenMP two-electron Fock matrix code implementations 

of the current work are described. The main goal of this implementation is to reduce the memory 

footprint of the MPI-based code and to improve the load balancing by utilizing the OpenMP 

runtime library. Modern computational cluster nodes can have a large number of cores operating 

on a single random access memory. In order to efficiently utilize all of the available CPU cores, 

it is necessary to run many threads of execution. The major disadvantage of an MPI-only HF 

code is that all of the data structures are replicated across MPI processes (ranks) – since to spawn 

a process is the only way to use a CPU core. In practice, it is found that the memory footprint 

gets prohibitive rather quickly as the chemical system is scaled up. It follows from Algorithm 1 

that only the Fock matrix update incurs a potential race-condition (write dependencies) when 

leveraging multiple threads. Other large memory objects like the density matrix, the atomic 
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orbital overlap matrix, and others do not exhibit this problem, because they are read-only 

matrices, and as a result they can be safely shared across all threads for each MPI rank. 

 

  In a first attempt, a hybrid MPI/OpenMP Hartree-Fock code was developed with the 

Fock matrix replicated across threads (Algorithm 2). This is what is referred to as the private 

Fock (hybrid) version of the code. In the first loop, the master thread of each MPI rank updates 

the i index. This operation is protected by implicit and explicit barriers. OpenMP parallelization 

is implemented over combined j and k shell loops. Joining loops provides a much larger pool of 

tasks and thereby alleviates any load balancing issues that may arise. To lend credence to this 

idea, static and dynamic schedules of OpenMP were tested for the collapsed loop. No significant 

difference between the various OpenMP load balancer modes was observed. The l loop is the 

same as in the original implementation of GAMESS. The last step is the same as in the MPI-

based algorithm: reduction of the Fock matrix over MPI processes. Sharing all of the large 

matrices except the Fock matrix saves an enormous amount of memory on the multicore 

systems. The observed memory footprints on the latest Xeon and Xeon Phi CPUs were reduced 

about 5 times. However, the ultimate goal of this work is to move all of the large data structures 

to shared memory.  

 

 It is not straightforward to remove Fock matrix write dependencies in the OpenMP 

region. As shown in Equation 2, up to six Fock matrix elements are updated at one time by each 

thread. The ERI contribution is added to the three shell column-blocks of the Fock matrix 

simultaneously – namely the i, j, and k blocks. Each block corresponds to one shell and to all 

basis set functions associated with this shell. The main idea of the present approach is to use 
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thread-private storage for each of these blocks. They are used as a buffer accumulating partial 

Fock matrix contribution and help to avoid write dependency. Partial Fock matrix contributions 

are flushed to the full matrices when the corresponding shell index changes. The access pattern 

of the Fock matrix by k index corresponds to only one Fock matrix element. If threads have 

different k and l shell indices, it would be possible to skip saving data to the k buffer and instead, 

to directly update the corresponding parts of the full Fock matrix. This condition will be satisfied 

if OpenMP parallelization over k and l loops is used. In this case, private storage is necessary for 

only the i and j blocks of the Fock matrix. In the shared Fock matrix algorithm (Algorithm 3) the 

original four loops (Algorithm 1) are arranged into two merged index loops. The first and second 

loops correspond to the combined ij and kl indices, respectively. MPI parallelization is executed 

over the top (ij) loop, while OpenMP parallelization is accomplished over the inner (kl) loop.  

 

 In contrast to the private Fock matrix algorithm (Algorithm 2), this partitioning favors 

computer systems with a large number of MPI ranks and is the preferred strategy because this 

implementation of MPI iteration space is larger and the load balance is finer. By using this 

partitioning, it is also possible to utilize Schwarz screening across the i and j indices. Partitioning 

is especially important for very large jobs with very sparse ERI tensor because it allows the user 

to completely skip the most costly top-loop iterations. Another difference from the private Fock 

matrix algorithm is that the ERI contribution is now added in three places (Algorithm 3, lines 25-

27): to the private i buffer (Fij , Fik , Fil ), the private j buffer (Fjk , Fjl ), and the shared Fock 

matrix (Fkl ). At the end of the joint kl-loop, the partial Fock matrix contribution from i and j 

buffers needs to be added to the full Fock matrix. It is computationally expensive for a 

multithreaded environment because it requires explicit thread synchronization. However, it is 
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possible to reduce the frequency of i buffer flushing. After each kl loop, the i index very likely 

remains the same and there will be no need for i buffer flushing. In the present algorithm, the old 

i index is saved after the kl loop (Algorithm 3, line 33). The flushing of the i buffer contribution 

to the Fock matrix is only performed if the i index were changed since the last iteration. Flushing 

the j buffer is still required after each kl loop (Algorithm 3, line 31).  

 

 A special array structure is required for flushing and reducing buffers for the i and j 

blocks. Buffers are organized as two-dimensional arrays. The outer dimension of these arrays 

corresponds to threads, and the inner dimension corresponds to the data. Using Fortran notation, 

data is stored in matrix columns, with each thread displayed in its own column. This (column-

wise) access pattern is used when threads add an ERI contribution to the buffers (Figure 1 (A)). 

The access patter is different when it is necessary to flush a buffer into the full Fock matrix. The 

tree-reduction algorithm is used to sum up the contribution from different columns and add them 

to the full Fock matrix. In this case, the access of threads to this matrix is row-wise (Figure 1 

(B)). Padding bytes were added to the leading dimension of the array and chunking was used on 

the reduction step to prevent false sharing. After the buffer is flushed into the Fock matrix, it is 

filled in with zeroes and is ready for the next cycle. 
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Methodology 

 

Description of Hardware and Software 

 

 The benchmarks reported in this paper were performed on the Intel Xeon Phi systems 

provided by the Joint Laboratory for System Evaluation (JLSE) and the Theta supercomputer at 

the Argonne Leadership Computing Facility (ALCF)1, which is a part of the U.S. Department of 

Energy (DOE) Office of Science (SC) Innovative and Novel Computational Impact on Theory 

and Experiment (INCITE) program3. Theta is a 10-petaƒop Cray XC40 supercomputer consisting 

of 3,624 Intel Xeon Phi 7230 processors. Hardware details for the JLSE and Theta system are 

shown in Table 1. The Intel Xeon Phi processor used in this paper has 64 cores each equipped 

with L1 cache. Each core also has two Vector Processing Units, both of which need to be used to 

get peak performance. This is possible because the core can execute two instructions per cycle. 

In practical terms, this can be achieved by using two threads per core. Pairs of cores constitute a 

tile. Each tile has an L2 cache symmetrically shared by the core pair. The L2 caches between 

tiles are connected by a two dimensional mesh. The cores themselves operate at 1.3 GHz.  

 

 

 Beyond the L1 and L2 cache structure, all the cores in the Intel Xeon Phi processor share 

16 GBytes of MCDRAM (also known as high bandwidth memory) and 192 GBytes of DDR4. 

Œe bandwidth of MCDRAM is approximately 400 GBytes/sec while the bandwidth of DDR4 is 

approximately 100 GBytes/sec. These two levels of memory can be configured in three different 

ways (or modes). The modes are referred to as Flat mode, Cache mode, and Hybrid mode. Flat 
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mode treats the two levels of memory as separate entities. The Cache mode treats the MCDRAM 

as a direct mapped L3 cache to the DDR4 layer. Hybrid mode allows the user to use a fraction of 

MCDRM as L3 cache allocate the rest of the MCDRAM as part of the DDR4 memory. In Flat 

mode, one may choose to run entirely in MCDRAM or entirely in DDR4. The ”numactl” utility 

provides an easy mechanism to select which memory is used. It is also possible to choose the 

kind of memory used via the ”memkind” API, though as expected this requires changes to the 

source code. Beyond memory modes, the Intel Xeon Phi processor supports five cluster modes. 

The motivation for these modes can be understood in the following manner: to maintain cache 

coherency the Intel Xeon Phi processor employs a distributed tag directory (DTD). This is 

organized as a set of per-tile tag directories (TDs), which identify the state and the location on 

the chip of any cache line. For any memory address, the hardware can identify the TD 

responsible for that address. The most extreme case of a cache miss requires retrieving data from 

main memory (via a memory controller). It is therefore of interest to have the TD as close as 

possible to the memory controller. This leads to a concept of locality of the TD and the memory 

controllers. It is in the developer’s interest to maintain the locality of these messages to achieve 

the lowest latency and greatest bandwidth of communication with caches.  

 

 Intel Xeon Phi supports all-to-all, quadrant/hemisphere and sub-NUMA cluster SNC-

4/SNC-2 modes of cache operation. For large problem sizes, different memory and clustering 

modes were observed to have little impact on the time to solution for the three versions of the 

GAMESS code. For this reason, we simply chose the mode most easily available to us. In other 

words, since the choice of mode made little difference in performance, our choice of quad-Cache 

mode was ultimately driven by convenience (this being the default choice in our particular 
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environment). Our comments here apply to large problem sizes, so for small problem sizes, the 

user will have to experiment to find the most suitable mode(s). 

 

 

Description of Chemical Systems 

 

 For benchmarks, a system consisting of parallel series of graphene sheets was chosen. 

This system is of interest to researchers in the area of microlubricants19. A physical depiction of 

the configuration is provided in Figure 2. The graphene-sheet system is ideal for benchmarking, 

because the size of the system is easily manipulated. Various Fock matrix sizes can be targeted 

by adjusting the system size. In all, five configurations of the graphene sheets system were 

studied. The datasets for the systems studied are labeled as follows: 0.5 nm, 1.0 nm, 1.5 nm, 2.0 

nm, and 5.0 nm. Table 2 lists size characteristics of these configurations. The same 6-31G(d) 

basis set (per atom) was used in all calculations. For N basis functions, the density, Fock, AO 

overlap, one-electron Fock matrices and the matrix of MO coefficients are N×N in size. These 

are the main data structures of significant size. The benchmarks performed in this work process 

matrices which range from 660×660 to 30,240×30,240. For each of the systems studied, Table 2 

lists the memory requirements of the three versions of GAMESS HF code. Denoting NBF as the 

number of basis functions, the following equations describe the asymptotic (NBF → ∞) memory 

footprint for the studied HF algorithms: 
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(a)    M MPI =
5
2

i N BF
2 i N MPI _ per _ node

(b)    MPr F = (2+ Nthreads i N BF
2 i N MPI _ per _ node

(c)    MShF = 7
2

i N BF
2 i N MPI _ per _ node

  (3) 

where MMPI, MPrF, MShF denote the memory footprint of MPI-only, private Fock, and shared 

Fock algorithms respectively; Nthreads denotes the number of threads per MPI process for the 

OpenMP code, and NMPI_per_node denotes the number of MPI processes per KNL node. For 

OpenMP runs NMPI_per_node = 4, while for MPI runs the number of MPI ranks was varied from 64 

to 256. If one compares columns MPI versus Pr.F and Sh.F. in Table 2, you will see that the 

private Fock code has about a 50x smaller footprint compared to the stock MPI code. For the 

shared Fock code, the difference is even more dramatic with a savings of about 200 times. The 

ideal difference is 256 times since we compare 256 MPI ranks in the stock MPI code where all 

data structures are replicated versus 1 MPI rank with 256 threads for the hybrid MPI/OpenMP 

codes. But we introduced additional replicated structures (see Figure 1) and many relatively 

small data structures are replicated also in the MPI/OpenMP codes. This explains the difference 

between the ideal and observed footprints. Each of the aforementioned datasets was used to 

benchmark three versions of the GAMESS code. The first version is the stock GAMESS MPI-

only release that is freely available on the GAMESS website2. The second version is a hybrid 

MPI/OpenMP code, derived from the stock release. This version has a shared density matrix, but 

a thread-private Fock matrix. The third version of the code is in turn derived from the second 

version; it has shared density and Fock matrices. A key objective was to see how these 

incremental changes allow one to manage (i.e., reduce) the memory footprint of the original code 

while simultaneously driving higher performance. 
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Results and Discussion 

 

Single Node Performance 

 

 The second generation Intel Xeon Phi processor supports four hardware threads per 

physical core. Generally, more threads per core can help hide latencies inherent in an application. 

For example, when one thread is waiting for memory, another can use the processor. The out-of-

order execution engine is beneficial in this regard as well. To manipulate the placement of 

processes and threads, the I_MPI_DOMAIN and KMP_AFFINITY environment variables were 

used. We examined the performance picture when one thread per core is utilized and when four 

threads per core are utilized. As expected, the benefit is highest for all versions of GAMESS for 

two threads (or processes) per core. For three and four threads per core, some gain is observed, 

albeit at a diminished level. Figure 3 shows the scaling curves with respect to the number of 

hardware threads utilized observed by us.  

 

 As a first test, single-node scalability was examined with respect to hardware threads of 

all three versions of GAMESS. For the MPI-only version of GAMESS, the number of ranks was 

varied from 4 to 256. For the hybrid versions of GAMESS, the number of ranks times the 

number of threads per rank is the number of hardware threads targeted. The larger memory 

requirements of the original MPI-only code restrict the computations to, at most, 128 hardware 

threads. In contrast, the two hybrid versions can easily utilize all 256 hardware threads available. 

Finally, in general terms, on cache based memory architectures, it is expected that larger memory 
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footprints potentially lead to more cache capacity and cache line conflict effects. These effects 

can lead to diminished performance, and this is yet another motivation to look at a hybrid 

MPI+X approach. The results of our single-node tests are plotted in Figure 4. It is found that 

using the private Fock version leads to the best time to solution for the 1.0 nm dataset, for any 

number of hardware threads. This version of the code is much more memory-efficient than the 

stock version but, because the Fock matrix data structure is private, it has a much larger memory 

footprint than the shared Fock version of GAMESS. Nevertheless, because the Fock matrix is 

private, there is less thread contention than the shared Fock version.  

 

 It was mentioned previously that shared Fock algorithm introduces additional overhead 

for thread synchronization. For small numbers of Intel Xeon Phi threads, this overhead is 

expected to be low. Therefore the shared Fock version is expected to be on par with the other 

versions. Eventually, as the overhead of the synchronization mechanisms begins to increase, the 

private Fock version of the code is found to dominate. In the end, the private Fock version 

outperforms stock GAMESS because of the reduced memory footprint, and outperforms the 

shared Fock version because of a lower synchronization overhead. Therefore, on a single node, 

the private Fock version gives the best time-to-solution of the three codes, but the shared Fock 

version strikes a better balance between memory utilization and performance. Beyond this, one 

must consider the choice of memory mode and cluster mode of the Intel Xeon Phi processor. It 

should be noted that, depending on the compute and memory access patterns of a code, the 

choice of memory and cluster mode can be a potentially significant performance variable.  
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 The performance impact of different memory and cluster modes is examined for the 0.5 

nm (small) and 2.0 nm (large) datasets. The results are shown in Figure 5. For both datasets, 

some variation in performance is apparent when different cluster modes and memory modes are 

used. The smaller dataset indicates more sensitivity to these variables than the larger dataset. 

Also, for both data sizes the private Fock version performs best in all cluster and memory modes 

tested. Also, except in the All-to-All cluster mode, the shared Fock version significantly 

outperforms the MPI-only stock version. In the All-to-All mode, the MPI-only version actually 

outperforms the shared Fock version for small datasets, and the two versions are close to parity 

for large datasets. In total, it is concluded that the quadrant-cache cluster memory mode is best 

suited to the design of the GAMESS hybrid codes. 

 

Multi-node Performance 

 

 It is very important to note that the total number of MPI ranks for GAMESS is actually 

twice the number of compute ranks because of the DDI. The DDI layer was originally 

implemented to support one-sided communication using MPI-1. For GAMESS developers, the 

benefit of DDI is convenience in programming. The downside is that each MPI compute process 

is complemented by an MPI data server (DDI) process, which clearly results in increased 

memory requirements. Because data structures are replicated on a rank-by-rank basis, the impact 

of DDI on memory requirements is particularly unfavorable to the original version of the 

GAMESS code. To alleviate some of the limitations of the original implementation, an 

implementation of DDI based on MPI-3 was developed23. Indeed, by leveraging the “native” 

support of one-sided communication in MPI-3, the need for a DDI process alongside each MPI 
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rank was eliminated. For all three versions of the code benchmarked here, no DDI processes 

were needed.  

 

 Figure 6 shows the multi-node scalability of the MPI-only version of GAMESS versus 

the private Fock and the shared Fock hybrid versions. It is important to appreciate at the outset 

that the multinode scalability of the original MPI-only version of GAMESS is already 

reasonable. For example, the code scales linearly to 256 Xeon Phi nodes, and it is really the 

memory footprint bottleneck that limits how well all the Xeon Phi cores on any given node can 

be used. This pressure is reduced in the private Fock version of the code, and it is essentially 

eliminated in the shared Fock version. Overall, for the 2.0 nm dataset, the shared Fock code runs 

about six times faster than stock GAMESS on 512 Xeon Phi processors. It resulted from the 

better load balance of the shared Fock algorithm that uses all four shell indices – two are used in 

MPI and two are used in OpenMP workload distribution. The actual timings and efficiencies are 

listed in Table 3. Figure 7 shows the behavior of the shared Fock version of GAMESS for the 5 

nm dataset. It is the largest dataset we could fit in memory on Theta. Since we run on 4 MPI 

ranks the memory footprint is approximately 208 GB per node. This figure displays good scaling 

of the code up to 3,000 Xeon Phi nodes, which is equal to 192,000 cores (64 cores per node). 

 

Conclusion 

 

 In this paper, conversion of the MPI-only GAMESS HF code to hybrid MPI-OpenMP 

versions is described. The resulting hybrid implementations are benchmarked to exhibit 

improvements in the time-to-solution and memory footprint compared to the original MPI-only 
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version. The code design decisions taken here were justified and implemented in a systematic 

way. Focus was placed on sharing the two primary (memory consuming) objects, the density and 

Fock matrices, in the SCF loop among the computation units. We have discussed two new HF 

implementations, each of which maintains full functionality of the underlying GAMESS code. In 

the first version, the density matrix was shared across threads, while the Fock matrix was kept 

private. The second version leveraged the first step, and focused entirely on making the Fock 

matrix a shared object. As a result, the memory footprint of the original code was lowered 

systematically while improving cache utilization and time-to-solution.  

 

 Clearly, we have taken only the first steps towards an efficient hybrid HF implementation 

in GAMESS. In future work, we plan to tune our hybrid OpenMP/MPI code more thoroughly. 

Our new hybrid MPI/OpenMP codes significantly outperform the official stock MPI-only code 

in GAMESS. Our best case implementation has about 200 times smaller memory footprint and 

runs up to 6 times faster than the original MPI-only version. Both our hybrid versions also have 

better scalability with respect to cores and nodes on single node and multi-node Intel Xeon Phi 

systems respectively. It is also noted that the code optimizations reported in this paper are 

expected to be applicable to all previous and future generations of Intel Xeon Phi processors, as 

well as beneficial on the Intel Xeon multicore platform. The fact that the code already scales well 

on a large number of second generation Intel Xeon Phi processors enables us to help bring the 

promise of the “many-core” philosophy to the large scientific community that has long benefited 

from the extensive functionality of the GAMESS code.  
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 Like the MPI-only version, the hybrid versions of GAMESS can be deployed on systems 

ranging from a single desktop to large supercomputers. In addition, the hybrid codes offer 

enhanced configurability and parallel granularity. Finally, the lessons learned here are applicable 

to virtually any code that handles non-linear partial differential equations using a matrix 

representation. In this paper, we treat the problem of assembling a matrix in parallel subject to 

highly non-regular data dependencies. Indeed, a variety of methods, such as Unrestricted Hartree 

Fock (UHF), Generalized Valence Bond (GVB), Density Functional Theory (DFT), and Coupled 

Perturbed Hartree-Fock (CPHF), all have this structure. The implementation of these methods 

can therefore directly benefit from this work. Beyond quantum chemistry, we note, the SCF 

approach shares much in common with generic non-linear solvers. We therefore conclude that 

the strategies discussed in this work are directly applicable to computer programs encountered in 

other areas of science. 
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Algorithm 1. MPI parallelization of SCF in stock GAMESS 
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Algorithm 2. Hybrid MPI-OpenMP SCF algorithm; Fock matrix is replicated across all threads 

(Fock matrix is private) 
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arti 

Algorithm 3. Hybrid MPI-OpenMP SCF algorithm; Fock matrix is shared across all threads 
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Figure 1. (A) i and j Fock vector update and (B) summation of all Fock elements from all 

vectors. “bf” means basis function and “thr” means thread. 

 

Table 1.  Hardware and software specifications 

Intel Xeon Phi Node Characteristics 

Xeon Phi Model 7210 and 7230 (64 cores, 1.3 GHz) 

Memory Per Node 16 GB MCDRAM, 192 GB DDR4 

Compiler Intel Parallel Studio XE 2016v3 

JLSE Xeon Phi Cluster (26.2 TFLOPS peak)  

# Intel Xeon Phi Nodes 10 

Interconnect Type Intel Omni-Path 

Theta supercomputer (9.65 PFLOPS peak) 

# Intel Xeon Phi Nodes 3,624 

Interconnect Type Aries interconnect, Dragonfly topology 
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Table 2. Size characteristics of chemical systems used in benchmarks 

Edge Length # Atoms # BFs 
Memory Footprint, GB 

MPI Pr.F. Sh.F. 

0.5 nm 44 660 6.5 0.1 0.5 

521.0 nm 120 1800 47.6 0.9 3.8 

1.5 nm 220 3300 159.6 3.1 12.9 

2.0 nm 356 5340 416.8 8.2 33.7 

5.0 nm 2016 30240 9869.2 208.7 1026.3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model system of a C2016 graphene bilayer. In the text, we refer to this system as 5 nm. 

There are two layers with dimensions 5 nm by 5 nm. Each grapheme layer consists of 1,008 

carbon atoms. 
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Figure 3. Performance dependence on OpenMP thread affinity type for the shared Fock version 

of the GAMESS code on a single Intel Xeon Phi processor, 1.0 nm benchmark. All calculations 

are performed in quad-cache mode. Four MPI ranks were used in all cases. The number of 

threads per MPI rank was varied from 1 to 64. 
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Figure 4. Scalability with respect to the number of hardware threads of the original MPI code 

and both MPI/OpenMP implementations on a single Intel Xeon Phi processor, 1.0 nm 

benchmark. 
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Figure 5. Time-to-solution (x-axis is time, in seconds) for different clustering and memory 

modes. Left column displays the smallest benchmark system (0.5 nm), and right column displays 

the larger 2.0 nm benchmark system. 
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Figure 6. Multi-node scalability of the private and shared Fock implementation compared to the 

MPI-only GAMESS code on Theta with the 2.0 nm benchmark dataset. The quad-cache cluster-

memory mode was used for all data points. 
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Table 3. Parallel efficiency of the three different HF algorithms, 2.0 nm benchmark dataset 

# Nodes Time-to-solution, s Parallel efficiency, % 

 MPI Pr. F. Sh. F. MPI Pr. F. Sh. F. 

4 2661 1128 1318 100 100 100 

16 685 288 332 97 98 99 

64 195 78 85 85 90 97 

128 118 49 43 70 72 96 

256 85 44 23 49 40 90 

512 82 44 13 25 20 79 
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Figure 7. Scalability of the shared Fock HF implementation on Theta for the 5.0 nm benchmark 

dataset running on up to 3,000 Intel Xeon Phi processors. The results here are for 4 MPI ranks 

per node, with 64 threads per rank, giving full saturation (in terms of hardware threads) on every 

Intel Xeon Phi node. For each point in the figure, we show the computation time in seconds. 
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CHAPTER 5: INTEROPERABILITY OF ELECTRON REPULSION INTEGRAL 

SOLVERS WITH GAMESS 

 

Kristopher Keipert and Mark Gordon 

 

Abstract 

 

 The evaluation of electron repulsion integrals is a central component of many quantum 

chemistry computations. Isolated software libraries that contain efficient implementations of 

integral evaluation methods are attractive as drop-in replacements of less efficient codes.  In this 

work, several of the key challenges of software interoperability in computational chemistry are 

discussed and demonstrated. Details of the integration of the ERD and SIMINT integral 

evaluation libraries with GAMESS are presented. Initial benchmarks of the GAMESS-ERD code 

show performance improvements of 6.9-14.6% for commonly used basis sets, but the computed 

integrals must be reordered to maintain compatibility with GAMESS. The reordering overhead 

essentially nullifies any observed performance benefits. A new Hartree-Fock code is written to 

integrate SIMINT with GAMESS, with speedups of 23.8-26.4% observed for a limited 

benchmark set. While the GAMESS-SIMINT interface is straightforward to implement, several 

valuable functionalities are lost by circumventing the GAMESS Hartree-Fock code. 
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Introduction 

 

  Progress in the field of computational chemistry is driven by a combination of several 

distinct but coupled efforts.  One aspect is the development of new mathematical theories which 

can accurately model molecular systems and predict physical properties. Theoretical methods 

must be expressed as efficient computer algorithms, which requires strong familiarity with 

computer science and the limitations of computer hardware. The implemented computer 

programs are then used by trained scientists to solve various chemical problems. Through 

significant improvements in computational power and efficient implementations of quantum 

chemistry (QC) methods, accurate physical models are being applied to increasingly large 

chemical systems.  Unfortunately, the size and complexity of QC codebases have also increased 

accordingly.  

 

 With a large number of QC codes in popular use, significant programming effort is 

expended on redundant tasks to maintain reasonable performance on new computer hardware, 

and to implement novel methods which already exist in other software packages. Ideally an end-

user would be able to leverage the unique advantages of multiple QC codes in a single workflow. 

However, many existing QC applications are built on rigid software frameworks, thereby 

hindering easy integration. In light of these challenges, the computational QC community has 

recently strengthened efforts to improve software interoperability through standardized data 

formats and component-based software development practices.  Several of those efforts will be 

highlighted in the present work, along with a discussion of the challenges faced when attempting 
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to interface a pair of two-electron integral evaluation packages with the widely used QC code 

GAMESS1,2. 

 

Software Interoperability in Quantum Chemistry  

 

 Today, dozens of molecular science software packages with unique capabilities are under 

active development. Many of these software packages are feature-rich and are sufficient for 

complete standalone computational studies. For many scientific problems, the set of methods 

with optimal physical accuracy and computational efficiency, as well as the desired features, 

may span several different programs or different physical scales of molecular systems. 

Furthermore, combinations of various methods may lead to new scientific discovery. In practice, 

even highly experienced domain software developers may face roadblocks when combining QC 

codes.  

 

  A major challenge is the variability of data representation in QC. Data can be broadly 

categorized as either metadata (MD) or large data (LD)3-5. MD is the human-readable 

information typically stored in input files (e.g. molecular geometries, basis set information, ab 

initio method parameters) and output files (e.g. electronic energy, molecular orbital coefficients). 

LD quantities are runtime objects often stored in binary form, with storage costs that rapidly 

increase with molecular system size (e.g. integrals, expansion coefficients, cluster amplitudes). 

While the format of LD may be somewhat constrained by computational performance 

considerations, a single MD quantity can be represented in dozens of ways by different scientific 

codes. This is clearly illustrated by the Open Babel program6, which supports interconversion of 
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more than 110 chemical file formats used with various molecular science software packages. 

Matching up input parameters from multiple codes, whether to reproduce scientific results or 

support component interoperability, is often a daunting task.  These same issues persist for the 

presentation of computed results as well. Different QC programs report different subsets of the 

total raw computed data, depending on what is assumed to be important to the end user, with 

varying formats even for equivalent results (e.g. numerical precision). These issues only grow 

with the rapidly increasing amount of data generated by computational chemists.  

  

 One possible approach to the incompatibility issue discussed in the previous paragraph is 

the development of standard formatting and nomenclature for MD. For example, molecular 

science domains outside of QC have developed very successful standards for specifying 

chemical structures such as the Protein Data Bank7 and Crystallographic Information File8 

formats. Recently proposed standardized data formats that are tailored to QC calculations9-11 are 

designed with an emphasis on efficient storage of QC information in databases. Adoption of 

common data standards for publication in scientific journals has been suggested as a route 

toward improving the reproducibility of computed results12. An existing approach toward MD 

interoperability is found in the interface between the Psi413and CFOUR14 QC codes. Psi4 

includes a frontend input pre-processer that allows users to dictate flexible workflows in Python 

syntax. The Psi4 input may direct execution to external plugin codes linked into Psi4, or invoke 

other binaries directly (e.g. CFOUR). Depending on the options chosen in the Psi4 input file, a 

set of reasonable CFOUR parameters is chosen automatically. Advanced users can manually 

specify any CFOUR options in the Psi4 input file if desired. Quantities computed with CFOUR 
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are parsed from the output stream, and stored in Psi4 variables. This allows users to further 

process the results with functionalities that are available in Psi4. 

 

 Manipulation of LD is generally more challenging than MD quantities. For example, LD 

exists during runtime and is not usually stored after program execution. Therefore, sharing LD 

between QC codes requires understanding and modification of runtime workflows. Since LD is 

not meant to be human readable, the data formats are usually motivated by efficient storage and 

computational manipulation. If LD entities are shared between QC codes which require different 

layouts of the data, reordering the data may introduce a significant computational cost.  

 

As with MD objects, one approach is to adopt a standard format for LD. For example, in 

work associated with the common component architecture (CCA) forum15, standards were 

proposed for the indexing (and normalization) of a computed batch of electron repulsion 

integrals16, according to a proposed standard order for Gaussian Cartesian functions. Because the 

layout of LD is often coupled with the implementation of the corresponding software algorithms, 

adopting a standardized format can require significant effort for existing codes.  

 

In another approach, the Q5Cost format and library were developed to facilitate data 

exchange between QC programs with different data layouts3-5. An XML-based MD format was 

proposed, along with a binary format for LD quantities. The LD component of the Q5Cost 

architecture is an abstraction for QC data built upon the HDF5 data format17. HDF5 was 

designed for portable, efficient storage and I/O access of general scientific data, particularly in 

high performance computing environments. In order to minimize the effort required by QC 
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software developers, the Q5Cost library includes wrapper functions which translate data between 

various proprietary data formats and the Q5Cost format. This strategy is not practical for all LD 

quantities, as two data transformations are required when using an intermediate format, 

compared to a single transformation for a 1:1 interface between proprietary formats. 

Alternatively, QC software developers could make the effort to support the Q5Cost format 

natively. A standard is only valuable if it is utilized, and this “two-tier” approach can be used to 

add support for a common data format relatively quickly. Adoption of the Q5Cost format and 

library has been relatively poor, but the general approach to data interoperability is promising.  

 

In order to facilitate integration of software components from different QC programs, the 

interface to use individual software components should be well defined. It is particularly difficult 

to isolate functionalities in QC codes such as GAMESS that were not designed using an object-

oriented approach. The implementation of software interfaces also depends on the programming 

language used to develop the particular component. Several interfaces have been developed for a 

set of common QC functionalities by the CCA forum using the scientific interface description 

language (SIDL)18. The SIDL templates are used with the Babel language interoperability tool18 

to generate implementation files in the desired programming languages (Fortran, C, C++, etc.).  

The interface with the QC software component is then defined within the implementation files. 

This strategy was used to isolate the two-electron integral computation in GAMESS, with an 

interface computation overhead of approximately 17%19. In another study, a CCA-type interface 

was developed for the IntV3 integral package with MPQC and benchmarked for Hartree-Fock, 

density functional theory (DFT), and second order perturbation theory (MP2) energy and 

gradient calculations16. The interface overhead for that work ranged from 0.3-7.3%. Even 
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without a standardized interface, simply compartmentalizing a useful QC method can be very 

beneficial for software interoperability (e.g. libint20, libxc21, LIBEFP22). In this work, the 

integration of two standalone integral libraries with GAMESS is discussed. 

 

Two-Electron Repulsion Integrals 

 

 The most computationally expensive component of the Hartree-Fock (HF) self-consistent 

field (SCF) method is the construction of the Fock matrix Fµν by: 

 
  
Fµν = Hµν

core + Dλσ
λσ

AO

∑ [2(µν |λσ )− (µλ |νσ )]   (1) 

where Hcore is the core Hamiltonian matrix, the sum runs over all atomic orbitals (AO), D is the  

density matrix, and µ, ν, λ, and σ are indices which range over n basis functions. Each (µν|λσ) 

quantity is an electron repulsion integral (ERI) defined by: 

 
   
(µν |λσ ) = d∫ r1dr2φµ (r1)φν (r1)r12

−1φλ (r2 )φσ (r2 )   (2) 

where Φ are Gaussian basis functions centered at atomic coordinates and r12 is the distance |r2-

r1|. Each Gaussian basis function is a linear combination of k primitive Gaussians centered on a 

nucleus, defined by:
 
 

 
		
φα = Nkα

k
∑ xa ybzce−ζkr

2
  (3) 

 
here Nkα is a contraction coefficient, x,y,z are the Cartesian coordinates of the nucleus, a,b,c  are 

positive integers controlled by the angular momentum of the basis function (L=a+b+c), ζ is an 

exponent which controls the width of the orbital, and r2=x2+y2+z2.  Basis functions are grouped 

into sets called shells with the same angular momentum and atomic center. For computational 
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efficiency, ERIs are computed at the granularity of “shell quartets” which group the basis set 

information of four shells. The number of ERIs computed varies for each shell quartet according 

to the number of basis functions contained in each shell.  

 

 The computational effort required to compute a shell quartet depends on the angular 

momenta of the quartet shells. An (ff|ff) quartet includes many more Gaussian functions than an 

(ss|ss) quartet, and each integral of the former type is generally more expensive to compute. This 

complicates the efficient distribution of shell quartets across computer processes. Various 

algorithms are available to compute ERIs such as the Obara-Saika23,24, Rys Quadrature25,26, and 

McMurchie-Davidson27 schemes. The most computationally efficient algorithm depends on the 

angular momenta of the shell quartet, and the extent of Gaussian primitive contraction.  

 

Integral Evaluation in GAMESS 

 

 The general routine for evaluation of two-electron integrals in the FORTRAN 77 

GAMESS program is discussed here.  A pseudocode representation of the main two-electron 

integral evaluation driver TWOEI is shown in Figure 1. 

 

For each iteration over the inner loop, up to three symmetry-unique integral batches are 

computed. This is a blocking technique called “triple sort”, which reduces the number and size of 

data transfer messages compared to canonical ordering28. MPI parallelization is implemented 

over the ISHELL and JSHELL loops, with dynamic load balancing implemented after the 

JSHELL loop. The innermost loop passes unscreened shell quartets to the SHELLQUART 
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subroutine. Depending on the angular momenta of the quartet shells, an ERI computation 

algorithm is chosen among the ERIC38, rotated axis39, and Rys Quadrature25,26 methods in 

SHELLQUART. Cartesian Gaussians within shells are arranged into groups with descending 

powers of Cartesian products, with each group arranged in alphabetical order (e.g. X3, Y3, Z3, 

X2Y, X2Z, Y2X, Y2Z, Z2X, Z2Y, XYZ).  The computed integrals are immediately used to 

compute a partial contribution to the Fock matrix. 

 

ERD Integral Evaluation Library 

 

 The Electron Repulsion Direct (ERD) integral library29 is an implementation of the Rys 

Quadrature (RQ) method written in FORTRAN. The core idea of the RQ method is to represent 

the 6-dimensional ERI expression as a product of three 2-dimensional integrals that are evaluated 

using horizontal and vertical recurrence relations.  The integrals are evaluated over an exact 

numerical quadrature of orthogonal Rys polynomials.  The RQ method is most suitable for large 

angular momentum combinations because of the computational cost required to compute roots 

and weights of the Rys polynomials. A detailed description of the RQ method can be found 

elsewhere25,26. The ERD RQ implementation has been reported to offer improved performance 

over the GAMESS FORTRAN RQ code29 with two key implementation advantages. First, the 

code is carefully structured to make efficient use of the CPU cache size, which is specified by the 

user as a tuning parameter. Second, primitive integrals are not redundantly recomputed for 

generally contracted basis sets. The second point is important for generally contracted basis sets, 

for which ERI computation has been reported to be an order of magnitude faster with ERD 

compared to GAMESS RQ29.  
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GAMESS-ERD Integration 

 

 The GAMESS SHELLQUART routine is modified to redirect the GAMESS RQ calling 

function to an ERD subroutine called ERD_WRAPPER. Parameters passed to ERD_WRAPPER 

include the coordinates of Gaussian centers, the shell indices, a set of index parameters that 

assign shell information to individual shells, basis function exponents/contraction coefficients, 

and a buffer to store computed integrals. In comparison, the only parameters passed to the native 

GAMESS integral computation functions are the shell indices and output integral buffer.  

GAMESS is written primarily in FORTRAN 77, so large sets of parameters are shared between 

subroutines with common blocks. Every subroutine that uses any number of variables in the 

common block must include a declaration of the entire common block.  Any change to a 

common block must be copied to every declaration of the common block throughout the code.  

Passing the variables as parameters to ERD_WRAPPER removes explicit dependence on the 

GAMESS common block within the wrapper.  

 

 Inside the ERD_WRAPPER function, some of the data passed from GAMESS must be 

transformed into a different format that is expected by the ERD subroutines. For example, the 

contraction coefficients required to compute a batch of integrals must be gathered into a single 

array before being passed to ERD. In GAMESS, contraction coefficients are placed in separate 

arrays, with each array storing all contraction coefficients corresponding to basis functions of the 

same angular momentum. Gaussian functions are also normalized within ERD, with no 

parameter exposed to the user to disable normalization. In order to avoid modification of the 
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ERD library, the primitive functions must be unnormalized prior to integral computation. As 

mentioned previously, it is usually most efficient to use multiple methods for integral 

computation if the basis set includes functions that range from angular momenta s and p to d or 

higher. Therefore, the GAMESS normalization routine should not simply be disabled. Instead, all 

contraction coefficients are copied into a static local array and unnormalized upon the first 

execution of  ERD_WRAPPER. This strategy isolates the implementation details to the wrapper 

function with only a minimal memory footprint penalty. Once all required variables are stored in 

the appropriate format, an ERD function is called to compute the minimum amount of integer 

and floating point memory required to compute the integral batch. Dynamic integer and floating 

point arrays of the optimum size are then allocated in ERD_WRAPPER. Finally, the ERD 

integral evaluation function is called. Because the ordering of Cartesian functions in ERD is 

different from that in GAMESS, the order of computed integrals in the output buffer differs for 

shells with angular momentums L>2. For example, the Cartesian functions for d shells are 

ordered as: 

dGAMESS = x2, y2, z2, xy, xz, yz 

dERD = x2, xy, xz, y2, yz, z2 

and the integrals computed for a dpss shell quartet are ordered as: 

dpssGAMESS = [ (x2 x | 1 1), (x2 y | 1 1), (x2 z | 1 1), (y2 x | 1 1), (y2 y | 1 1), (y2 z | 1 1), ...]  

         dpssERD = [ (x2 x | 1 1), (x2 y | 1 1), (x2 z | 1 1), (xy x | 1 1), (xy y | 1 1), (xy z | 1 1), …] 

Modifying GAMESS or ERD to add support for a shared integral ordering is not trivial, and is 

outside the scope of an isolated external interface. A generalized routine was added to 

ERD_WRAPPER which reorders computed integrals before they are passed back to the 

GAMESS SCF driver.  The overhead associated with reordering the integrals is significant, 
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particularly for the high angular momentum quartets for which the RQ method is best suited. The 

time between initiation of the SCF routine and the end of the first SCF iteration was 

benchmarked for the testosterone molecule with GAMESS and GAMESS-ERD (Table 1).  

 

 Even without reordering, the ERD speedup is relatively poor. Any speedup is essentially 

nullified by the reordering overhead, with GAMESS-ERD performing 6.9% worse than 

GAMESS-RYS in the worst case. The results are inconsistent with the benchmark comparisons 

between GAMESS and ERD for isolated ERI evaluation as reported in the original ERD 

implementation29. For example, computation of ERIs for staggered D3d ethane using the cc-pvdz 

basis set32 was reported to reduce the GAMESS computation time of 10.2 seconds down to 1.7 

seconds for ERD. Across extended benchmarking of GAMESS-ERD vs. GAMESS-RYS, the 

largest speedup observed without reordering was 28.2% (PF6
- anion with the NASA Ames ANO 

basis set). One deficiency in the GAMESS-ERD interface is that primitive integrals are still 

recomputed for contracted basis sets. To change this would require substantial modification of 

GAMESS. A standalone FORTRAN integral driver was implemented to illustrate the 

performance benefit of batching large generally contracted basis sets. All ERD function 

parameters were manually initialized for a single carbon atom with the ANO-RCC basis set40, 

and the computed integral buffer was overwritten in subsequent function calls without any 

manipulation of the computed values. The ERD-type integral batching reduced the computation 

time from 115.7 seconds to 2.2 seconds. While this is an artificial benchmark, the performance 

benefit should be considered in context of the order of magnitude speedup previously reported 

for ERD compared to GAMESS using other generally contracted basis sets. In consideration of 
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the popularity of generally contracted basis sets compared to segmented contractions, efforts to 

implement batching in GAMESS were not pursued further.  

 

SIMINT Integral Evaluation Library 

 

 The SIMINT integral library34 is an implementation of the Obara-Saika23,24 (OS) method 

written in the C programming language. SIMINT was written to take advantage of single-

instruction, multiple-data (SIMD) vectorization capabilities of computer processors. SIMD 

instructions apply a single operation to multiple data points at the same time. Vectorization is 

becoming increasingly important as high performance computing hardware trends toward larger 

vector register lengths. While software compilers can automatically vectorize code in limited 

cases, careful manual restructuring of algorithms is usually required to maximize vectorization. 

The SIMINT library is built with a C++ code generator, which provides flexibility to easily 

modify the library. For example, the generator can be configured to optimize SIMINT code for 

the SIMD vector length of a target hardware system, or to change the ordering of computed 

integrals (including GAMESS ordering). The ability to generate complex code that is customized 

for hardware targets and/or software interfaces is an extremely powerful tool for performance 

portability and software interoperability. Several code generators have been widely adopted in 

computational chemistry, including other code generators for ERI evaluation20,35.  

 

 Instead of the canonical four-index loop over shells presented Figure 1, the loop structure 

in SIMINT is implemented as a two-index loop over pairs of shells. Data corresponding to pairs 

of shells (e.g. coordinates of Gaussian centers, primitives and contraction coefficients) are stored 
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in shell pair data structures. A shell pair combines two shells corresponding to the bra or ket part 

of an integral quartet. Data corresponding to multiple shell pairs with the same angular 

momentum can be stored in a single shell pair data structure. This scheme presents two main 

advantages. First, several prefactors required for integral evaluation can be computed from pairs 

of shells in advance of the main loops over shells and primitives. Second, the integral evaluation 

function can operate on multiple shell quartets in one function call. SIMD registers can be 

efficiently utilized by filling vector lanes with primitives from different contracted shell quartets. 

Further details regarding the SIMINT implementation and OS method can be found elsewhere. 

In the present work, only the key differences between SIMINT and GAMESS that impact 

integration of the codes are discussed further. 

 

GAMESS-SIMINT Integration 

 

 Supporting the loop structure over shell pairs in SIMINT requires significant 

modification of the GAMESS SCF driver.  Because the SCF algorithm is relatively 

straightforward, the strategy for SIMINT-GAMESS integration is to encapsulate an entire SCF 

kernel in a C++ interface with GAMESS. First, the call to the GAMESS SCF driver was 

replaced with a conditional option to call a FORTRAN wrapper subroutine that directs execution 

to the GAMESS-SIMINT SCF code.  The wrapper routine imports all of the input data required 

for the SCF routine that was initialized by GAMESS (e.g. basis set data, nuclear charges, SCF 

convergence tolerances) and passes the information as function parameters to the GAMESS-

SIMINT SCF driver. The parameters are matched to equivalent C++ data types and specified as 

const to avoid data modifications which might impact post-Hartree-Fock routines. Next, an 
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initialization function is called to copy the GAMESS Gaussian shell data into simint_shell data 

structures. The simint_shell structures are stored in a two-dimensional C++ vector for 

convenience, with shells of the same angular momentum grouped into rows. GAMESS sp shells 

(pairs of s-type and p-type primitives with shared exponent values) are separated into individual 

s and p simint_shell structures. Next, arrays are allocated to store overlap integrals and the core 

Hamiltonian, and the one-electron integral driver is called. The OED one-electron integral 

library29 was interfaced with GAMESS-SIMINT for this task.  OED was developed concurrently 

with ERD, and the function arguments are almost identical to ERD. The one-electron integral 

driver is a four-fold loop that iterates over pairs of simint_shell vector rows and columns. 

Overlap, kinetic, and nuclear attraction integrals are computed for all unique pairs of shells. As 

with ERD, the optimum integer and floating point memory requirement are computed before 

each call to an integral evaluation function. For most of the OED function parameters, members 

of the simint_shell structs are passed directly. One exception is the basis set contraction 

coefficients and exponents for shell pairs, which must first be copied into a single array. Once all 

one-electron integrals are computed, core Hamiltonian and overlap integrals are returned to the 

GAMESS-SIMINT SCF driver. The typical SCF routine follows, with an initial Fock matrix 

formed using the core Hamiltonian as a guess, and construction of an initial density matrix.   

 

 Prior to the start of the SCF iterations, the two-electron integrals are computed with 

SIMINT and stored in memory. First, a two-fold loop iterates over the simint_shell vector and 

initializes simint_multi_shellpair (SMS) structures (corresponding to the integral bra or ket 

pairs). All shell pairs of a given type are grouped into the same SMS structure, but the shell pairs 

could potentially be distributed into separate SMS structures if desired (for example, to distribute 
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the work into multiple function calls during a parallel run). The SIMINT integral evaluation 

routine is then called within a second two-fold loop over symmetry-unique pairs of SMS 

structures. The output buffer of computed integrals typically contains integral values 

corresponding to multiple shell quartets. A final loop over the output buffer determines the i,j,k,l 

indices for each value, and stores the quantities accordingly in a one-dimensional array 

containing all computed integral values. Once all two-electron integrals are computed, a 

conventional SCF iterative procedure is executed. CBLAS/LAPACK are used for all low-level 

linear algebra routines throughout the GAMESS-SIMINT code, as provided by Intel MKL. 

The time between initiation of the SCF routine and the end of the first SCF iteration was 

benchmarked for the testosterone molecule with GAMESS and GAMESS-SIMINT (Table 2).  

  

 Modest speedups are observed with GAMESS-SIMINT for a range of basis sets. The 

speedups are low relative to reported speedup of the isolated SIMINT integral timings in 

comparison with ERD and libint34. This can be attributed to the overhead of the GAMESS-

SIMINT interface (e.g. copying and reformatting basis set data), and possible inefficiencies in 

the SCF implementation compared to GAMESS. Performance profiling to identify these 

deficiencies is an ongoing effort. With regard to software interoperability, reimplementation of 

the entire Hartree-Fock routine unnecessarily reduces the functionality of GAMESS-SIMINT 

compared to GAMESS. For example, while individual iterations are faster with GAMESS-

SIMINT, more iterations are required for convergence compared to GAMESS. GAMESS 

reduces the number of iterations with an improved initial orbital guess, second order orbital 

optimization36, and/or extrapolation techniques such as the direct inversion of iterative subspace 

(DIIS)37 method. Upon reflection, additional GAMESS functionalities could be preserved by 
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restricting the GAMESS-SIMINT interface to ERI evaluation and density matrix contraction 

only. Considering the successful performance benefits of ERI vectorization demonstrated for 

both SIMINT and libint, improving the performance of the GAMESS-SIMINT interface is a top 

priority moving forward. Adding support to the C++ interface for derivative integral evaluation 

by ERD is another topic of interest.  

 

Conclusions 

 

 Software interoperability can potentially benefit the field of computational chemistry by 

allowing users to leverage the unique advantages of multiple QC codes in a single workflow.  

Differences in the layout of data structures between different QC codes can be a substantial 

obstacle for software integration. Various standard formats have been proposed for key QC data 

structures, but adding support for new data layouts in existing codes can require a substantial 

programming effort. A second major obstacle to interoperability is the difficulty of isolating 

software components from code that was not designed to be modular. This problem diminishes 

as QC methods are encapsulated in software libraries at an increasing rate. 

  

 In this work, software interfaces were created to integrate the ERD and SIMINT integral 

evaluation libraries with GAMESS. For a limited set of Hartree-Fock energy calculations for the 

testosterone molecule, computing integrals with ERD reduces the timing for the first SCF 

iteration by 6.9-14.6% for commonly used basis sets. The arrangement of integrals computed by 

ERD differs from GAMESS, so the integrals must be reordered. After including the performance 

penalty incurred by the reordering routine, the ERD speedup is essentially nullified. For the 
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GAMESS-SIMINT interface, an entirely new Hartree-Fock code was written. Speedups for the 

same benchmark set as ERD range from 19.8-26.4%. Several important GAMESS functionalities 

were lost by constructing a new Hartree-Fock routine, including methods that reduce the number 

of SCF iterations required for convergence. Writing a more minimal GAMESS-SIMINT 

interface with the addition of GAMESS parallelization with the distributed data interface is a 

focus of interest for future work.  

 

Acknowledgements 

 

 This work was supported in part by a Department of Energy Exascale Computing Project 

grant. K.K. thanks Graham Fletcher and Yuri Alexeev for helpful discussions during 

implementation of the ERD interface. The GAMESS-ERD interface was written as a joint effort 

by K.K. and Alexander Findlater. 

 

References 

 

1. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. 

H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; 

Montgomery, J. A. J. Comput. Chem. 1993, 14(11), 1347. 

2. Gordon, M. S.; Schmidt, M. W. In theory and applications of computational chemistry: 

The first forty years; Elsevier: Amsterdam, The Netherlands, 2005. 



 122 

3. Scemama, A.; Monari, A.; Angeli, C.; Borini, S.; Evangelisti, S.; Rossi, E. 

Computational Science and Its Applications – ICCSA 2008 Lecture Notes in Computer 

Science 2008, 1094–1107. 

4. Borini, S.; Monari, A.; Rossi, E.; Tajti, A.; Angeli, C.; Bendazzoli, G. L.; Cimiraglia, R.; 

Emerson, A.; Evangelisti, S.; Maynau, D.; Sanchez-Marin, J.; Szalay, P. G. J. Chem. Inf. 

Mod. 2007, 47(3), 1271. 

5. Angeli, C.; Bendazzoli, G. L.; Borini, S.; Cimiraglia, R.; Emerson, A.; Evangelisti, S.; 

Maynau, D.; Monari, A.; Rossi, E.; Sanchez-Marin, J.; Szalay, P. G.; Tajti, A. Int. J. 

Quantum Chem. 2007, 107(11), 2082. 

6. Oboyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. 

R. J. Cheminform 2011, 3(1), 33. 

7. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M. D.; Rodgers, 

J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. FEBS J. 1977, 80(2), 319. 

8. Hall, S. R.; Allen, F. H.; Brown, I.D. Acta Cryst. A. 1991, 47(6), 655. 

9. Hanwell, M. D.; de Jong, W. A.; Harris, C. J. arXiv preprint:1707.04330 2017 

10. Wang, B.; Dobosh, P. A.; Chalk, S.; Sopek, M.; Ostlund, N. S. J. Phys. Chem. A 2017, 

121(1), 298. 

11. Álvarez-Moreno, M.; De Graaf, C.; Lopez, N.; Maseras, N.; Poblet, J. M.; Bo, C. J. 

Chem. Inf. Mod. 2014, 55(1), 95. 

12. Coudert, F. C. A.-X. Chem. Mater. 2017, 29(7), 2615. 

13. Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.; 

Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J.; 

Leininger, M. L.; Janssen, C. L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F.; King, R. A.; 



 123 

Valeev, E. F.; Sherrill, C. D.; Crawford, T. D. Wiley Interdisciplinary Reviews: 

Computational Molecular Science 2011, 2(4), 556. 

14. Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G.; Auer, A. A.; Bartlett, R. J.; 

Benedikt, U.; Berger, C.; Berndholdt, D. E.; Bomble, Y. J.; Cheng, L. 2009 

15. Kenny, J. P.; Benson, S. J.; Alexeev, Y.; Sarich, J.; Janssen, C. L.; McInnes, L. C.; 

Krishnan, M.; Nieplocha, J.; Jurrus, E.; Fahlstrom, C.; Windus, T. L. J. Comput. Chem. 

2004, 25(14), 1717. 

16. Kenny, J. P.; Janssen, C. L.; Valeev, E. F.; Windus, T. L. J. Comput. Chem. 2007, 29(4), 

562. 

17. Folk, M.; Heber, G.; Koziol, Q.; Pourmal, E.; Robinson, D. Proceedings of the 

EDBT/ICDT 2011 Workshop on Array Databases - AD 11 2011 

18. Armstrong, R.; Gannon, D.; Geist, A.; Keahey, K.; Kohn, S.; Mcinnes, L.; Parker, S.; 

Smolinski, B. Proceedings. The Eighth International Symposium on High Performance 

Distributed Computing (Cat. No.99TH8469) 1999 

19. Peng, F.; Wu, M.-S.; Sosonkina, M.; Windus, T.; Bentz, J.; Gordon, M.; Kenny, J.; 

Janssen, C. Proceedings of the 2007 symposium on Component and framework 

technology in high-performance and scientific computing - CompFrame 07 2007 

20. libint. http://libint.valeyev.net/ Accessed June, 2017. 

21. Marques, M. A.; Oliveira, M. J.; Burnus, T. Comput. Phys. Commun. 2012, 183(10), 

2272. 

22. Kaliman, I. A.; Slipchenko, L. V. J. Comput. Chem. 2013, 34(26), 2284. 

23. Obara, S.; Saika, A. J. Chem. Phys. 1986, 84(7), 3963. 

24. Obara, S.; Saika, A. J. Chem. Phys. 1988, 89(3), 1540. 



 124 

25. Dupuis, M.; Rys, J.; King, H. F. J. Chem. Phys. 1976, 65(1), 111. 

26. Rys, J.; Dupuis, M.; King, H. F. J. Comput. Chem. 1983, 4(2), 154. 

27. Mcmurchie, L.; Davidson, E. J. Comput. Phys. 1976, 26(2), 218. 

28. Foster, I. T.; Tilson, J. L.; Wagner, A. F.; Shepard, R. L.; Harrison, R. J.; Kendall, R. A.; 

Littlefield, R. J. J. Comput. Chem. 1996, 17(1), 109. 

29. Flocke, N.; Lotrich, V. J. Comput. Chem. 2008, 29(16), 2722. 

30. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54(2), 724.  

31. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56(5), 2257. 

32. Dunning, T. J. J. Chem. Phys. 1989, 90(2), 1007. 

33. Krishnan, R. B.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72(1), 650. 

34. Pritchard, B. P.; Chow, E. J. Comput. Chem. 2016, 37(28), 2537. 

35. Hirata, S. J. Phys. Chem. A 2003, 107(46), 9887. 

36. Chaban, G.; Schmidt, M. W.; Gordon, M. S. Theor. Chem. Acc. 1997, 97(1-4), 88. 

37. Pulay, P. C. A. Chem. Phys. Lett. 1980, 73(2), 393. 

38. Fletcher, G. D. Int. J. Quantum Chem. 2006, 106(2), 355. 

39. Ishimura, K.; Nagase, S.; Theor. Chem. Acc. 2008, 120(1-3), 186. 

40. Roos, B. O.; Lindh, R.; Malmqvist, P. A.; Veryazov, V.; Widmark, P. O. J. Phys. Chem. 

 A 2004, 108(15), 2851. 

 

 

 

 

 



 125 

DO ISHELL=1, NSHELL 
 DO JSHELL=1, ISHELL 
  DO KSHELL=1, JSHELL 
   DO LSHELL=1, KSHELL 
    1. SCREEN INTEGRAL SHELL 
    IF (NOT SCREENED) THEN  
     2. COMPUTE ERIs OVER UNIQUE SHELLS: 
      (IJ|KL) 
      (IK|JL) 
      (IL|JK) 
     3. UPDATE FOCK MATRIX 
    END IF 
   END DO 
  END DO 
 END DO 
END DO 

 

Figure 1. Pseudocode representation of GAMESS Integral Driver Subroutine TWOEI 
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Table 1. Comparison of GAMESS and GAMESS-ERD Timings for First SCF Iteration, 

Testosterone  

Basis Set # Basis 
Functions 

ERD 
Timing 

ERD-
REORDER 

Timing 

GAMESS-RYS 
Timing 

GAMESS 
Timing % Speedup 

6-31G(d)30,31 352 73.1 81.4 78.5 50.4 6.9 / -3.7 
cc-pVDZ32 430 321.0 350.1 375.9 211.4 14.6 / -6.9 

6-311G(d,p)33 536 250.8 278.9 277.0 221.9 9.5 / -0.7 
AUG-cc-pVDZ32 734 1901.4 2104.3 2148.4 1408.0 11.5 / 2.1 

cc-pVTZ32 1090 3372.5 3571.5 3687.6 3421.2 8.6 / 3.1 
All times are in seconds, running on a single Intel E5-2699 v3 core. Integral screening was 

disabled. ERD-REORDER includes the time required to compute and reorder all integrals to 

GAMESS format. For GAMESS-RYS, Rys Quadrature was used to compute all integrals. The 

timings in the GAMESS column are with the default GAMESS integral option, which chooses an 

optimum integral evaluation method based on the shell angular momentum. The speedup 

percentage is for (ERD / ERD-REORDER) relative to GAMESS-RYS. 

 

 

 

Table 2. Comparison of GAMESS and GAMESS-SIMINT timings for first SCF Iteration, 

Testosterone  

Basis Set # Basis Functions GAMESS-SIMINT 
Timing 

GAMESS Timing % Speedup 

6-31G(d)30,31 352 38.4 50.4 23.8 
cc-pVDZ32 430 157.6 211.4 25.4 

6-311G(d,p)33 536 168.9 221.9 23.9 
AUG-cc-pVDZ32 734 1129.9 1408.0 19.8 

cc-pVTZ32 1090 2518 3421.2 26.4 
All times are in seconds, running on a single Intel E5-2699 v3 core. Integral screening was 

disabled.  
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CHAPTER 6: FIRST PRINCIPLES COMPUTATIONAL INVESTIGATION OF 

ACETIC ACID ESTERIFICATION BY PROPYLSULFONIC ACID-

FUNCTIONALIZED SILICA  

 

A paper to be submitted to the Journal of Physical Chemistry A 

 

Kristopher Keipert and Mark S. Gordon 

 

Abstract 

 

 The reactant adsorption behavior and reaction mechanism of acetic acid esterification 

with methanol by acid-functionalized silica was investigated with computational methods. 

Reactant adsorption energies were computed for both a simple silica surface model, and an 

extended mesoporous silica surface. For adsorption on a single catalyst site, the computed 

adsorption energies for both models are in agreement. For reactant co-adsorption across two 

adjacent catalyst sites, it is demonstrated that the adsorption energies and adsorbate positions are 

sensitive to the relative orientations of the two catalyst sites.  Two single-catalyst stepwise 

esterification reaction mechanisms were proposed, which differ primarily by the mechanism of 

acetic acid protonation. It is concluded that a single catalyst site is sufficient to catalyze the 

esterification reaction. Furthermore, the reaction mechanism following methanol pre-adsorption 

on the catalyst site is energetically competitive with direct protonation of acetic acid by methanol 

from the gas phase. Both proposed mechanisms are reversible, with similar reaction barrier 

heights. 
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Introduction 

 

 Biodiesel is a renewable alternative to diesel fuel which can be used directly in 

unmodified diesel engines. Almost all biodiesel is produced by base-catalyzed transesterification 

of fats and oils with short-chain alcohols. Over 95% of biodiesel is produced from refined edible 

vegetable oils, and the material cost of oil feedstocks accounts for 70-80% of total biodiesel 

production expenses1. Many cheaper alternative feedstocks such as waste cooking oils and 

animal fats contain a high amount of free fatty acids (FFAs). Reaction of FFAs with alkaline 

transesterification catalysts produces soap, which inhibits separation of the biodiesel product. Oil 

feedstocks with high FFA concentrations are typically pretreated with an acid-catalyzed 

esterification reaction which converts FFAs to methyl esters.  

 

 Acid-functionalized mesoporous silica nanoparticles (MSNs) have been identified as 

efficient heterogeneous catalysts for esterification of free fatty acids 2-5. Acid-functionalized 

MSNs are easily separated from the reaction vessel, and may be continuously reused for multiple 

esterification reactions without significant loss of activity5. Furthermore, MSN materials exhibit 

high surface area, and thermal and chemical stability6-8. While the reaction mechanism and 

kinetics of homogeneous acid-catalyzed carboxylic acid esterification are well known, the 

reaction mechanisms proposed in the literature that utilize solid acid catalysts are inconclusive9-

13. Two competing classes of mechanisms have been suggested, which differ primarily in the 

nature of the surface reaction mechanism. For the Langmuir-Hinshelwood mechanism14,15 (LH), 

the carboxylic acid and alcohol reactants are both adsorbed prior to interaction. For the Eley-

Rideal mechanism16,17 (ER), only one reactant is adsorbed on the acid catalyst surface, and the 
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second reactant interacts directly with the adsorbed reactant. Various experimental studies have 

fit the reaction to either mechanism type10,18,19. It has been proposed that the solid-catalyst 

esterification mechanism type may also depend on the alcohol structure, with one work reporting 

an ER-type mechanism for n-butanol and an LH-type mechanism for ethanol20. In an 

investigation of carbinolamine formation by functionalized MSN, the MSN surface was shown 

to directly participate in some chemical reactions by assisting the formation of reaction 

intermediates21. In the esterification reaction of interest in this work, silica is a supporting 

material for the propylsulfonic acid catalyst and is not expected to participate directly in the 

reaction. Understanding the surface reaction mechanism serves to provide guidance for 

distribution of the acid catalyst over the silica support in order to maximize the catalytic surface 

area. 

 

  Density functional theory (DFT) has been used to computationally model adsorption 

behavior and chemical reactions on silica surfaces22-25. In a previous study26, the single-site 

esterification mechanism between acetic acid and ethanol over a small silica cage functionalized 

with a propylsulfonic acid catalyst was investigated with DFT using the B3LYP functional27,28. 

Two mechanisms were suggested, each proceeding through two transition states in a concerted 

transformation. It was proposed that the acid catalyst does not protonate acetic acid as it does in 

the homogenous reaction mechanism, but rather acts through hydrogen bond activation of acetic 

acid. In the present work, DFT is used to investigate the esterification reaction of acetic acid and 

methanol by silica functionalized with propylsulfonic acid. Two reaction mechanisms are 

proposed, one each of the LH and ER type. In order to determine the importance of bulk effects 

when modeling adsorption on the acid-functionalized MSN surface, adsorption energies and 
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substrate orientations are compared between functionalized minimal silica models and extended 

MSN pore surface models. Additionally, reactant adsorption on single isolated catalyst sites is 

compared to adsorption across adjacent catalyst pairs. 

 

Computational Details 

 

Model Systems 

 

 The local catalytic surface of MSN is represented with both minimal model (mm) and 

embedded model (em) schemes. The minimal silica cluster models are shown in Figure 1. For a 

single catalytic site, the minimal model consists of a central silicon atom bonded to a 

propylsulfonic acid catalyst and three oxygen atoms, each terminated with SiH3 groups. The 

dual-site minimal model was formed as follows. First, two single-site models were constructed 

from the optimized minimal model coordinates. The duplicated sites were oriented to fix the 

distance between the central catalyst-bonded Si atoms to 5.07Å. This distance is based on the Si-

Si distance found in x-ray studies of the β-cristobalite crystal structure29, which resembles the 

structure of amorphous silica. This structure has been used to model MSN materials in previous 

computational works21,30. Finally, the duplicated sites were joined by replacing a pair of adjacent 

terminal hydrogen atoms (one from each single-catalyst model) with an oxygen atom. For all 

dual-site minimal model geometry optimizations, the positions of both SiO3 groups at the 

catalyst site centers were frozen. This strategy was employed to maintain the relative orientations 

of the propylsulfonic acid groups, thereby mimicking the surface stability of the bulk MSN 

surface. The structures obtained from constrained optimizations are only referenced in 
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discussions of reactant adsorption behavior. Geometry constraints were not used with any of the 

other surface models in this study.  

 

For the second modeling scheme, the single and dual-site minimal models were 

embedded in a large MSN MCM-41 pore model via the surface integrated molecular orbital / 

molecular mechanics method (SIMOMM)31,32 (Figure 2). The MCM-41 pore was previously 

constructed and optimized30 with the MM3 molecular mechanics force field33-34 and used to 

study benzene diffusion barriers computed with the fragment molecular orbital (FMO)35 method. 

In the present study, the minimal model region is treated with quantum mechanical (QM) 

methods and the remaining MSN pore region is treated with molecular mechanics (MM) using 

the MM3 force field implemented in Tinker36,37. The terminal silica atoms in the QM region 

were capped with hydrogen atoms.  

 

Computational Methods 

 

All QM structures were optimized at the DFT level of theory with the M06-2X 

functional38 and the 6-31G++(d,p) basis set39,40. All minima and transition states for fully-

optimized QM structures were confirmed by calculation and diagonalization of the energy 

second derivatives (Hessian calculations). All references to energy values in this text are for the 

MP2 results, unless explicitly stated otherwise. Reactant adsorption energies (Eads) were 

computed by the following equation: 

 Eads = Esurface/reactant (s ) − (Esurface + Ereactant (s ) )   (1) 

  



 132 

In order to focus on the atoms relevant to adsorption and esterification activities, the MSN 

surface and hydrogen atoms bonded to carbon are hidden in most figures which show chemical 

structures. All computations were performed with the GAMESS software package41,42, and 

Chemcraft43 was used for structure visualization.  

 

Structure Notation 

 

 A simple notation is used throughout this work to refer to the various molecular 

structures. First, structures are prefixed with {mm,em}, where mm, em refer to minimal and 

embedded models. The initials p, a, m, and s are used for propylsulfonic acid, acetic acid, 

methanol, and silanol, respectively. The letters following p denote the reactants adsorbed on the 

propylsulfonic acid catalyst site. A numerical subscript is added to the end of the structure name 

if multiple structures are located with the same adsorption scheme. The structures are numbered 

in ascending order, from highest to lowest adsorption energy computed by MP2. As an example, 

consider a minimal model structure with a single acid catalyst site with methanol and acetic acid 

adsorbed on the surface, mm-pam. Four structures were located with this adsorption scheme, so 

the structure with the highest adsorption energy is denoted mm-pam4. For dual-site structures, 

hydrogen bonding interactions are present between the catalyst sites. The hydrogen-donor 

catalyst is referred to by pd, and the hydrogen acceptor site is referred to as pa. The pd site is 

listed first in the structure name. As an example, consider a minimal model dual catalyst 

structure located with acetic acid adsorbed on pd, and methanol adsorbed on pa. This structure is 

denoted mm-papm. An additional naming scheme is used to refer to propylsulfonic acid oxygen 

atoms. The sulfonyl hydroxy oxygen is labeled O1. From a top-down view of the sulfonyl group, 
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the oxygen clockwise from O1 is O2, and the remaining oxygen is O3. The catalyst 

nomenclature scheme is illustrated in Figure 3. 

 

Results and Discussion 

 

Adsorption 

 

Minimal Model Catalytic Surface 

 The adsorption energies of acetic acid and methanol were computed for single and dual-

site catalyst minimal models. Optimized mm-pa structures are shown in Figure 4.  Both 

structures demonstrate hydrogen bonding between the acetic acid carbonyl oxygen atom and 

sulfonyl hydroxide group, and between the acetic acid hydroxy hydrogen and a sulfonyl oxygen. 

The structures differ by which of the two sulfonyl oxygens is hydrogen bonded to acetic acid, 

with an MP2 difference in computed adsorption energy of 2.3 kcal mol-1.  

 

Optimized geometries for the mm-pm structures are shown in Figure 5. While the 

methanol hydroxy hydrogen may form a hydrogen bond with a sulfonyl oxygen atom (mm-pm1), 

the methanol molecule is adsorbed more strongly if a hydrogen bond is formed between the 

methanol hydrogen and the sulfonyl hydroxy groups (e..g., (mm-pm2)). Two structures [(mm-

pm2) and (mm-pm3)] were located that exhibit methanol-sulfonyl hydroxyl hydrogen bonding, 

differing primarily by the orientation of the methanol hydroxyl hydrogen atom. For mm-pm2, no 

interaction between the methanol hydroxyl hydrogen atom and the catalyst site is noted. For the 

mm-pm3 structure, the analogous hydrogen atom is oriented toward O2 with a hydrogen bond 
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distance of 2.04Å. The sulfur atom and all oxygen and hydrogen atoms involved in hydrogen 

bonding interactions for mm-pm3 form a planar ring structure.  

 

In a previous study10, minimal model structures resembling mm-pa1 and mm-pm1 were 

optimized with DFT/B3LYP.  The adsorption energies reported are 34 kcal mol-1 for acetic acid 

and 14 kcal mol-1 for methanol, indicating that acetic acid is adsorbed much more strongly.  The 

difference in adsorption strengths is in agreement with the adsorption energies for the analogous 

structures located in the present study (19.3 kcal mol-1 and 5.2 kcal mol-1, respectively for DFT 

and 20.8 vs. 5.6 kcal mol-1 for MP2). However, as noted above, mm-pm3 has a much stronger 

MP2 binding energy of 15.2 kcal mol-1. Therefore, when comparing the acetic acid complex to 

the most strongly bound methanol complex, the difference in adsorption energy may be as small 

as 3.6 kcal mol-1. Given the similarity of the adsorption energies for acetic acid and methanol, 

reactant adsorption on free catalyst sites is expected to be competitive energetically. 

   

Adsorption properties of functionalized mesoporous silica surfaces are affected by the 

presence and density of surface silanol groups44. Since acetic acid and methanol adsorption 

occurs through hydrogen bonding interactions, hydrophilic surface silanol groups may quench 

the adsorbates and lower the overall reaction yield.  Optimized structures presented in Figure 6 

show minimal model single-site silanol structures with acetic acid and methanol hydrogen 

bonding interactions. The computed MP2 adsorption energies for acetic acid and methanol on 

silanol are nearly equal, with methanol adsorption only 1.0-1.7 kcal mol-1 weaker than acetic acid 

adsorption. One interesting observation is the presence of two hydrogen bonds between the 

single hydroxyl (silanol) group and acetic acid carboxyl group.  
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The methanol-silanol interaction in mm-sm1 resembles the hydrogen bond in mm-pm1, 

and mm-sm2 resembles mm-pm2. For the mm-pm structures, both MP2 and DFT predict that the 

hydrogen bond involving the methanol hydroxy hydrogen (mm-pm2) is stronger (by 

approximately 7 kcal mol-1) than the hydrogen bond that is formed with the methanol oxygen 

(mm-pm1). For the analogous mm-sm structures, the adsorption energies computed with both 

MP2 and DFT are nearly identical. Acetic acid adsorbs significantly more strongly on the mm-p 

acid catalyst site than silanol (ΔEads=9.5 kcal mol-1). For methanol, the adsorption energies for 

both mm-sm structures are larger than the mm-pm1 adsorption energy, and smaller than the mm-

pm2 adsorption energy by less than 3 kcal mol-1. Therefore, methanol adsorption in the vicinity 

of catalyst and silanol surface groups is expected to be more competitive than acetic acid (which 

clearly adsorbs more strongly on the catalyst). Retention of either methanol or acetic acid by 

silanol lowers the amount of reactant available for interaction with the acid catalyst. Ongoing 

experimental efforts to tune the hydrophilicity of mesoporous silica surfaces are promising routes 

for improving the efficiency of esterification when catalyzed by functionalized MSN.45-47  

 

Optimized dual-catalyst minimal model structures and adsorption energies are shown in 

Figure 7. One mm-ppa structure was located, for which the acetic acid carbonyl oxygen is 

hydrogen bonded to the pd hydroxy hydrogen, and the acetic acid hydroxy group is hydrogen 

bonded to O2. The adsorption energy for mm-ppa is a negligible 0.7 kcal mol-1 higher than that 

for the corresponding single-site structure mm-pa1. A mm-pap structure in which acetic acid 

forms a hydrogen bond with O3 (the more strongly bound conformation with the mm-p scheme) 

was not located. Hydrogen bonding between the catalysts in the dual-site models reduces free 



 136 

rotation of the sulfonyl groups during optimization, so locating the O2-bound conformation is 

likely a result of the relative propylsulfonic acid orientation chosen for the initial optimization 

geometry.  

 

One mm-ppm structure was located. The structure is similar to mm-pm3, exhibiting a 

primary hydrogen bond between the alcohol oxygen and sulfonyl hydroxy hydrogen, and a 

secondary hydrogen bond between the methanol hydroxyl hydrogen and O2. The dual-catalyst 

structure also exhibits the planar orientation of the catalyst sulfur atom and hydroxy groups 

involved in the hydrogen bonding interactions. While the primary hydrogen bond lengths are 

nearly equal in the two structures, the secondary hydrogen bond length is 2.21Å for mm-ppm 

compared to 2.04Å for the single-catalyst structure. When comparing the single and dual-site 

minimal models, the adsorption energies for a single reactant are virtually equivalent with 

differences on the order of just 1 kcal mol-1.  

 

In order to describe the addition of acetic acid by methanol during the reaction of interest, 

it is important to know the relative orientations of the reactants when both are simultaneously 

adsorbed on the single (Figure 8) and dual-site (Figure 9) models. An effective reactant co-

adsorption energy is computed in the same manner as the single-reactant adsorption energies, 

according to Equation 1. 

 

The adsorption energy for mm-pam4  is more than 7.7 kcal mol-1 higher than any of the 

other three mm-pam structures. The mm-pam4 structure exhibits a hydrogen bonded ring structure 

between the catalyst site and both reactants. The plane of the ring is roughly perpendicular to the 
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plane of the silica support structure, which might be sterically hindered by an extended MSN 

surface. The co-adsorption energies of the remaining three mm-pam structures are similar, falling 

within a range of 1.6 kcal mol-1. Structure mm-pam3 is the only mm-pam structure located that 

shares the dual hydrogen-bonded acetic acid conformation found for all previously discussed 

mm-p/mm-pp structures.  The positions of both reactants strongly resemble those found for 

structure mm-ppam. Structures mm-pam1 and mm-pam3 are comparable, differing by the 

presence of a second hydrogen bond between the acetic acid hydroxy group hydrogen and O3 for 

mm-pam3, and by rotation of the methanoxy moiety about the methanol hydroxy bond. No 

optimized structure with hydrogen bonding between the O1 oxygen and methanol was found.  

 

Three dual-adsorbate mm-pp structures were located. For the mm-ppam system, both 

reactants are adsorbed onto a single catalyst site. There is no change in the inter-catalyst 

hydrogen bond length compared to the mm-pp structure without adsorbates present. The mm-

ppam adsorbate orientations closely resemble mm-pam3. In fact, the lengths of hydrogen bonds 

between the catalyst and adsorbates differ by less than 3% compared to mm-pam3, and the co-

adsorption energy is just 1.1 kcal mol-1 larger for mm-ppam. This mm-ppam structure 

demonstrates that in the presence of two catalyst sites, one catalyst may remain essentially 

dormant during the co-adsorption event. For the remaining two structures in Figure 9, reactants 

are adsorbed on both catalysts. The adsorption scheme for both adsorbates in mm-papm resemble 

the corresponding single-adsorbate mm-ppa and mm-ppm structures. Since the mm-papm pd 

hydroxy hydrogen is engaged in hydrogen bonding interactions with both acetic acid (1.95Å) and 

pa (2.06Å), both hydrogen bond distances are significantly longer than mm-ppa (1.48Å, 1.78Å, 

respectively).  



 138 

 

The co-adsorption energy for the mm-pmpa complex is 10.9 kcal mol-1 greater than for 

mm-papm, and 13.8 kcal mol-1 greater than mm-ppam. In a feature unique to this structure, 

methanol bridges the catalysts via two hydrogen bonding interactions.  The hydrogen bond 

distance between the methanol hydroxy hydrogen and pa is 1.80Å, in agreement with the pd-pa 

hydrogen bond lengths found for other mm-pp structures. The methanol-pd hydrogen bond 

distance is shorter (1.46Å) than the methanol-pa hydrogen bond, while the catalyst S-S distance is 

elongated by 0.15Å compared to the average of all other mm-pp structures. Acetic acid 

adsorption on catalyst sites which participate in the pd-pa hydrogen bond weaken the inter-

catalyst interaction, which presumably reduces the subsequent adsorption energy of methanol in 

the bridging orientation. The mm-pmpa structure is the only mm-pp complex that exhibits 

explicit interaction of one adsorbate with both catalyst sites. In summary, co-adsorption of acetic 

acid and methanol on separate neighboring sites is found to be energetically favorable to co-

adsorption on a single site by 3 kcal mol-1. With the exception of mm-pmpa, the mm-p models 

were sufficient for modeling adsorption behavior of individual adsorbates in terms of 

adsorption/co-adsorption energies and adsorbate orientations. Notably, the co-adsorption energy 

of mm-pmpa is significantly larger than that of any other mm structure located, and the structure 

cannot be modeled with a single-catalyst model. 

 

Embedded Model Catalytic Surface 

 Optimized em-p structures with adsorbed reactants are shown in Figure 10. The 

orientation of acetic acid in the em-pa structure closely resembles that of the single-adsorbate 

acetic acid minimal model structures. The adsorption energy for the em structure is 17.4 kcal 
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mol-1, compared to 17.9 kcal mol-1 for the analogous mm-pa1 structure. Likewise, the geometry 

of the adsorbed methanol structure located with the em model is very similar to mm-pm3, while 

the adsorption energy is lower by 2.1 kcal mol-1 than the mm structure. Stronger hydrogen 

bonding interactions in the mm structure contribute to the higher adsorption energy, as indicated 

by shorter distances between the alcohol oxygen and sulfonyl hydrogen (1.56Å vs. 1.59Å), and 

between the alcohol hydroxy hydrogen and sulfonyl carbonyl oxygen (2.04Å vs. 2.38Å). 

Structure em-pam1 resembles mm-pam1, as the co-adsorbed reactants are well-separated and just 

a single hydrogen bond is exhibited between acetic acid and the catalyst sulfonyl group. The 

adsorbate orientations for em-pam2 most closely resemble mm-pam3. The em-pam2 co-adsorption 

energy of 24.6 kcal mol-1 is nearly identical to that of mm-pam3 (24.7 kcal mol-1), and the 

orientation of acetic acid is nearly the same for both structures. The structures differ primarily by 

the orientation of the methanol molecule. For the mm structure, the methanol hydroxy hydrogen 

forms a hydrogen bond with O2 (2.05Å), and the methanol methyl group is oriented toward the 

acetic acid molecule. For the em structure, the methanol hydroxy hydrogen forms a weaker 

hydrogen bond (2.45Å) with O3, which is also engaged in a hydrogen bonding interaction with 

acetic acid. In the context of the prototypical Fischer esterification mechanism, this difference in 

methanol orientation is critical. The first step in the Fischer esterification mechanism is the 

formation of a covalent bond between the alcohol oxygen and acid carboxyl carbon atoms48. For 

the em-pam2 structure, the atoms are unobstructed at a distance of 2.76Å. For the mm-pam3 

structure, the atoms are 4.9Å apart and oriented away from each other (the carboxyl carbon faces 

the methanol methyl group). Therefore, the structure predicted with the em surface is more 

accessible for general Fischer-type esterification compared to the most similar mm structure. 
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   While the mm-pp structures are obtained by optimization with the catalyst center SiO3 

coordinates frozen, no coordinates are frozen during optimization of em-pp structures. Instead, 

the em-pp structures are embedded in a bulk MSN surface which is simulated with a molecular 

mechanics force field. The optimizations of em-pp structures are geometrically constrained by 

interaction with the external forces of the bulk MSN surface. While the distance between the 

catalyst-anchoring silica atoms was fixed at 5.07Å for the mm-pp structures, the same Si-Si 

distance varies from 5.84-5.87Å among the optimized em-pp structures. The spatial flexibility of 

the propylsulfonic acid chain enables inter-catalyst hydrogen bonding interactions for a range of 

catalyst-anchoring Si-Si distances.  Optimized without reactants present (Figure 11), the 

hydrogen bond distance between the catalyst sulfonyl groups is the same as for mm-pp (1.82Å).  

Although the catalyst-anchoring Si-Si distances are larger for the em-pp structure than for mm-

pp, the propylsulfonic acid S-S distances are significantly shorter (4.21Å vs 4.87Å). The 

amorphous MSN surface is realistically represented with the em model, as the two SiO3 groups 

anchoring the acid catalyst are oriented at different relative angles and surface depths. While the 

mm-pp and em-pp structures do exhibit some qualitative similarities, the reactant adsorption 

behavior differs significantly.  

 

With the exception of the mm-pmpa structure, adsorbates on the mm-pp surface are 

generally localized to a single catalyst site in orientations similar to complexes found with the 

mm-p model. The steric accessibility of both mm-pp catalyst sites is nearly identical, and 

anchored at the same depth and orientation on the silica surface. Conversely, the inequality in 

steric accessibility of the two em-pp catalyst sulfonyl groups leads to delocalized adsorption 

across both catalysts.  
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 Because of the relative orientations of the catalyst-anchoring SiO3 groups, the catalyst 

sulfonyl groups are roughly perpendicular to one another for the em-pp structures. The relatively 

short distance between the MSN surface and the sulfonyl group perpendicular to the silica 

surface (pra) hinders the accessibility of the pra O2 and O3 atoms. The orientation of this 

sulfonyl group also exposes the adjacent alkane hydrogen atoms to the MSN pore. In 

comparison, the prd catalyst more closely resembles the mm catalyst sites. Hydrogen bonding 

between the catalyst sites and the reactants has been demonstrated to be the primary means of 

interaction during adsorption events. Clearly, variations in the number and morphology of 

potential hydrogen bonding sites as a result of the local MSN surface will significantly impact 

adsorption and reaction energetics. 

 

Optimized em-pp structures with single adsorbates are shown in Figure 12. A hydrogen 

bond is formed between acetic acid and the prd  O1 in the em-pap structure. The acetic acid 

carbonyl group is rotated between both catalyst sulfonyl groups at a distance of 2.25Å from a pra 

alkane hydrogen atom and 2.40Å from the prd O1 hydrogen. The acetic acid adsorption energy 

of 11.0 kcal mol-1 is less than the adsorption energy computed for the mm-ppa (18.7 kcal mol-1) 

and em-pa (17.4 kcal mol-1) structures. This may be attributed to the presence of only one 

hydrogen bond between the catalyst and acetic acid for the em-pap structure. Based on the O-H 

distance of the lone hydrogen bond, the interaction is also the weakest among those structures. 

The hydrogen bond length is 1.92Å, while the analogous hydrogen bond distances for the other 

structures range from 1.52-1.69Å. A hydrogen bond between a sulfonyl carbonyl oxygen and the 

methanol hydroxy hydrogen is exhibited in the em-pmp structure. The methanol orientation 
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resembles that of mm-pm1, with methanol acting as the hydrogen donor in the hydrogen bond 

with the catalyst. The methanol adsorption energy for the em-pmp structure is 7.1 kcal mol-1 with 

a 2.03Å hydrogen bond length. This adsorption energy is comparable to the 5.2 kcal mol-1 value 

observed for the mm-pm1 structure (2.02Å hydrogen bond length). While the methanol methyl 

group of the em-pmp structure is rotated toward the neighboring catalyst site, the methanol 

adsorption observed is relatively localized to pd.  

 

 Two em-pp structures with both reactants adsorbed were located (Figure 13). In the study 

of dual reactant adsorption with the mm-pp surface, structures were found for reactants adsorbed 

on separate catalyst sites, and on the same catalyst site. A search for analogous structures with 

the em-pp surface was unsuccessful. In both cases, acetic acid adsorption orientation is 

delocalized across both catalyst sites (denoted in the structure names by (a)). A hydrogen bond is 

present between the acetic acid hydroxy group and prd O1 in both structures. Based on the metric 

of the hydrogen bond distance, this hydrogen bond involving the acetic acid carbonyl group is 

weaker for the two-reactant structures (em-ppm(a)=2.17Å, em-pmp(a)=2.22Å) than the em-pap 

structure. The most significant difference between the dual-adsorbate em-pp structures is the 

position of methanol, which is adsorbed on prd in one structure, and on pra in the second 

structure. For the em-ppm(a) structure, methanol interacts more strongly with acetic acid than 

with the catalyst site. The methanol hydroxy hydrogen is oriented toward the acetic acid 

carbonyl oxygen at a bond length of 2.00Å. In comparison, the methanol hydroxy hydrogen is 

2.32Å away from the closest sulfonyl oxygen atom. The em-pmp(a) structure exhibits a 

hydrogen bonding interaction between methanol and prd O2, just as seen for the em-pmp 

structure. The em-pmp(a) hydrogen bond is slightly weaker (2.12Å vs 2.03Å). The methanol 
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methyl group is also rotated about the methanol O-H bond axis compared to em-pmp, oriented 

away from the acetic acid molecule. The methanol hydroxy oxygen may interact weakly through 

a hydrogen bond with an acetic acid methyl hydrogen with a distance of 2.34Å. The adsorption 

energies for both two-adsorbate em-pp structures are similar: 21.3 kcal mol-1 for em-pmp(a) and 

20.6 kcal mol-1 for em-ppm(a). The co-adsorption energy is notably weaker than was computed 

for the mm-pp dual-adsorbate structures (25.7-39.6 kcal mol-1) and equivalent em-pp structures 

(23.6, 24.6 kcal mol-1).  

Analysis of Adsorption Results 

For the reactants of interest, the single-catalyst molecular geometries and adsorption 

energies predicted by the minimal and embedded models are in agreement. The catalyst 

adsorption site is spatially separated from the MSN surface by the propyl chain, and the bulk 

effects of the local MSN surface do not seem to be particularly important. For the dual-site mm, 

both catalysts are nearly equivalent in terms of steric accessibility as the anchoring SiO3 groups 

are at equal angle and depth relative to the plane of the silica surface. The adsorption energies of 

mm-pp single-adsorbate structures are in agreement with the analogous mm-p and em-p results.  

With the exception of the mm-pmpa catalyst-bridging methanol molecule, reactant adsorption on 

the mm-pp surface mimics that of the isolated single-catalyst systems. The mm-pp catalysts are 

both spatially accessible for adsorption, and are essentially equivalent to two isolated single-

catalyst complexes with the exception of the inter-catalyst hydrogen bond. The em-pp structures 

represent the amorphous surface of an actual MSN system. The two catalyst sites are not equally 

accessible for surface adsorption, and neither site resembles an isolated single-catalyst site. 

Acetic acid adsorption is universally weaker for the em-pp structures compared to the other 

surface models, and is not strongly isolated to a single catalyst site. For the two instances of 
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methanol hydrogen bonding on em-pp catalyst sites, methanol acts as the hydrogen donor with 

adsorption energy similar to the analogous mm structures. The em-pp dual-adsorbate adsorption 

energies are lower than any of the dual-adsorbate adsorption energies computed for the other 

surface models.  

 

Esterification Reaction Mechanisms 

 

While the adsorption energies are sensitive to the catalytic surface, other important 

factors for initiation of the esterification reaction include the relative location and orientations of 

the adsorbed species. The initial step of the general Fischer esterification reaction is protonation 

of the carboxylic acid reactant by the acid catalyst. Therefore, acetic acid must be oriented such 

that the carbonyl oxygen can be protonated or activated by hydrogen bonding with 

propylsulfonic acid. Based on the em-pp results, the relative orientations of catalyst sites are 

shown to have a significant effect on adsorption energies and adsorbate orientations. In order to 

separate this work from the discussion of the relative orientation of catalyst species, a single-

catalyst surface is used to investigate the reaction mechanism. For other studies in which dual-

catalyst mechanisms are proposed for the reaction of interest, the catalyst site with adsorbed 

methanol serves primarily to mediate methanol diffusion to an adjacent catalyst site with pre-

adsorbed acetic acid10. The esterification reaction then proceeds at a single catalyst site, which is 

the main focus in this work. Two potential reaction mechanisms are presented. In Scheme 1, a 

methanol molecule interacts directly with a pre-adsorbed acetic acid (ER-type) molecule.  In 

Scheme 2, both reactants are initially co-adsorbed and non-interacting (LH-type). All reaction 

mechanism structures were located with the single-catalyst em surface. 
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The optimized structures for the Scheme 1 pathway are shown in Figure 14. The initial 

structure A is em-pam2, in which methanol is positioned above acetic acid without strong 

interactions with the catalyst surface. Proceeding through TS1, the acetic acid molecule is rotated 

about the hydrogen bond with O1, disrupting the hydrogen bond with O3. A covalent bond is 

formed between the methanol oxygen and carboxyl carbon, and the methanol hydroxy hydrogen 

is transferred directly to the acetic acid carbonyl oxygen. Following TS1, it is proposed that the 

reaction proceeds through structure B. Notably, a transition state (with a barrier of 8.8 kcal mol-

1) connected to B was located in which the reactant hydroxy group hydrogen bonded to the 

catalyst protonates O2 while the catalyst protonates the same oxygen site. A structure (B1) 

resembling the B intermediate was also located with the em-pp surface. B1 is higher in energy 

than the dual-adsorbate em-pp structures by an amount that is in sub-kcal mol-1 agreement with 

the difference between A and B.  Structure B rotates about the carboxyl-hydroxy bond that is 

hydrogen bonded to the catalyst to reach C. Structure C is 3.4 kcal mol-1 lower in energy than B, 

and exhibits an additional hydrogen bond with the catalyst O3 site which is present in the 

subsequent structures. The forward reaction proceeds through TS2 with a barrier of 11.0 kcal 

mol-1. In TS2 the hydroxy group formed through TS1 bonds to the sulfonyl O1 hydrogen while 

the ester intermediate protonates the catalyst sulfonyl group. The final product structure D is 2.9 

kcal mol-1 lower in energy than A. The highest energy barrier for the forward reaction in Scheme 

1 (40.6 kcal mol-1) is greater than the highest energy barrier for the reverse ester hydrolysis 

reaction (32.1 kcal mol-1).  
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The optimized structures for the Scheme 2 pathway are shown in Figure 15. Unlike 

Scheme 1, all structures in Scheme 2 exhibit two hydrogen bonds between the reactants and 

catalyst surface. Initial structure A’ is em-pam1, which represents stepwise co-adsorption of the 

adsorbates. Through the first transition state TS1’, the methanol oxygen and carboxyl carbon 

atoms form a covalent bond. The O2 oxygen with respect to structure A’ is protonated by 

methanol, while the acetic acid carbonyl oxygen is simultaneously protonated by the O1 

hydrogen. This proton exchange pathway is significantly different from Scheme 1, in which the 

acetic acid carbonyl oxygen is directly protonated by methanol. The A’→TS1’ energy barrier of 

12.9 kcal mol-1 is decidedly smaller than the direct methanol protonation barrier as well. 

Structure B’ is just 4.3 kcal/mol-1 higher in energy than A’. Considering the relatively low 

energy barrier though TS1’, interconversion between A’ and B’ is highly reversible. The 

hydrogen bond between the oxygen from the methanol oxygen and the catalyst is shifted to O3 in 

the structures located for TS2’ and C’, compared to O2 for the first three structures.  A relatively 

large barrier height of 40.6 kcal mol-1 is associated with the B’→TS2’ transition. The high 

energy of TS2’ is due to the formation of a strained four-member ring structure. A similar 

structure was proposed in a previous work investigating the esterification mechanism between 

acetic acid and ethanol26, but the transition state is stabilized by only one hydrogen bond in that 

study. The product structure C is 1.2 kcal mol-1 lower in energy than A.  The forward reaction is 

energetically favorable relative to the reverse reaction, with a barrier height of 40.6 kcal mol-1 

compared to 46.0 kcal mol-1 for ester hydrolysis.  MP2 predicts larger reaction barriers than DFT 

in this work. Many functionals are well known to underestimate the heights of reaction barriers.  
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Conclusions 

 

 The esterification of acetic acid with methanol by propylsulfonic acid-functionalized 

silica was investigated in this work. The adsorption behavior of acetic acid and methanol across 

single and dual catalyst sites was investigated on both simple silica surfaces, and on an extended 

MSN surface. It was determined that the single-catalyst adsorbate orientation and adsorption 

energies on the mm-type surface are in agreement with the more realistic and more 

computationally expensive em-type surface. The same results for single-adsorbate dual-catalyst 

structures are in agreement as well. The differences between the dual-adsorbate dual-catalyst 

computations are attributed not to the differences in the silica support structure, but rather the 

relative orientation of the catalyst pairs. The amorphous surface of silica captured by the em 

model offers the potential to sample many catalyst pair orientations. These orientations have a 

measured effect on adsorption activity, and thus the subsequent esterification reaction. 

 

 Two stepwise reaction mechanisms were proposed with the em single-catalyst model. 

Both reactions begin with protonation of acetic acid. In the first scheme, pre-adsorbed acetic acid 

is protonated directly by methanol. The transition state corresponding to the initial protonation 

step is the highest energy structure, and the highest energy barrier for the forward is 40.6 kcal 

mol-1, compared to 32.1 kcal mol-1 for the reverse reaction. In the second scheme, acetic acid and 

methanol are co-adsorbed on adjacent sites of the catalyst. Acetic acid protonation by the catalyst 

is coupled with protonation of the catalyst by methanol. The highest energy reaction barrier for 

the forward reaction is the same as in the first scheme (40.6 kcal mol-1), and is favored over ester 

hydrolysis by 5.5 kcal mol-1. Both schemes are reversible and energetically similar, so the chosen 
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reaction pathway is proposed to depend primarily on the whether or not both reactants are 

initially co-adsorbed. For both pathways, the highest energy transition state structures exhibit 

strained 4-member rings. In a separate study49, a reaction pathway involving a 4-member ring 

transition state was converted to a lower energy pathway with a 6-member transition state 

following the addition of a water molecule. Although the presence of water is detrimental to the 

esterification reaction yield because of ester hydrolysis, the addition of explicit aqueous solvent 

effects may reveal a similar transition state stabilization effect.  

 

While the initial interaction of reactants may be mediated by diffusion following reactant 

adsorption on adjacent catalyst sites, adsorption on dual-catalyst sites is highly sensitive to the 

variability in relative catalyst orientations on the amorphous MSN surface. Further investigation 

of the relationship between relative catalyst orientations and adsorption behavior on the MSN 

surface with the em-pp surface is a current research effort.  
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Figure 1. Minimal model silica structures for (clockwise from top-left) acid-functionalized 

single-site, acid-functionalized dual-site, and the isolated silica structures which support the dual 

site, and single-site models. H atoms are white, C atoms are black, Si atoms are blue, O atoms 

are red, and S atoms are yellow. 
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Figure 2. (A) Mesoporous silica pore system, and (B) embedded acid-functionalized dual-

catalyst system. Atoms in (B) treated with MM methods are grey, and atoms treated with QM 

methods are displayed in color. The color scheme is the same as that in Figure 1. 

 

 

 

 

 

 

Figure 3. Diagram of atom nomenclature for catalyst sulfonyl atoms. 
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Figure 4. Optimized structures for acetic acid adsorption on the single-catalyst minimal model 

surface. The adsorption energies shown were computed with MP2 (DFT). The color scheme is 

the same as that in Figure 1. 

 

 

 

Figure 5. Optimized structures for methanol adsorption on the single-catalyst minimal model 

surface. The methyl hydrogens are not shown. The adsorption energies shown were computed 

with MP2 (DFT). The color scheme is the same as that in Figure 1. 
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Figure 6. Optimized structures for acetic acid and methanol adsorption on the silanol minimal 

model surface. The methyl hydrogens are not shown. The adsorption energies shown were 

computed with MP2 (DFT). The color scheme is the same as that in Figure 1. 

 

 

Figure 7. Optimized structures for acetic acid (left) and methanol (right) adsorption on the dual-

catalyst minimal model surface. The methyl hydrogens are not shown. The adsorption energies 

shown were computed with MP2 (DFT). The color scheme is the same as that in Figure 1. 
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Figure 8. Optimized structures for acetic acid and methanol co-adsorption on the single-catalyst 

minimal model surface. The adsorption energies shown were computed with MP2 (DFT). The 

color scheme is the same as that in Figure 1. 

 

 

Figure 9. Optimized structures for acetic acid and methanol co-adsorption on the dual-catalyst 

minimal model surface. The methyl hydrogens are not shown. The adsorption energies shown 

were computed with MP2 (DFT). The color scheme is the same as that in Figure 1. 

mm-pam1 
Eads = 23.1 (25.4) kcal mol-1 

 mm-pam2 
Eads = 24.1 (25.0) kcal mol-1 

 

mm-pam3 
Eads = 24.7 (26.8) kcal mol-1 

 mm-pam4 
Eads = 32.4 (34.9) kcal mol-1 

 

mm-pmpa 
Eads = 39.6 (38.4) kcal 

mol-1 

mm-ppam 
Eads = 25.7 (26.8) kcal 

mol-1 

mm-papm 
Eads = 28.7 (29.2) kcal 

mol-1 



 157 

 

Figure 10. Optimized structures for acetic acid and methanol adsorption and co-adsorption on 

the single-catalyst embedded model surface. The methyl hydrogens are not shown. The 

adsorption energies shown were computed with MP2 (DFT). The color scheme is the same as 

that in Figure 1. 

 

 

 

Figure 11. Optimized structure of dual-catalyst embedded model surface. The color scheme is 

the same as that in Figure 1. 
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Figure 12. Optimized structures for acetic acid and methanol adsorption on the dual-catalyst 

embedded model surface. The methyl hydrogens are not shown. The adsorption energies shown 

were computed with MP2 (DFT). The color scheme is the same as that in Figure 1. 

 

 

 

Figure 13. Optimized structures for acetic acid and methanol co-adsorption on the dual-catalyst 

embedded model surface. The methyl hydrogens are not shown. The adsorption energies shown 

were computed with MP2 (DFT). The color scheme is the same as that in Figure 1. 
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Figure 14. Proposed esterification reaction mechanism for single-catalyst surface, Scheme 1. The 

methyl hydrogens are not shown. ΔE is relative to the MP2 (DFT) energy of structure A. The 

color scheme is the same as that in Figure 1. 
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Figure 15. Proposed esterification reaction mechanism for single-catalyst surface, Scheme 2. The 

methyl hydrogens are not shown. ΔE is relative to the MP2 (DFT) energy of structure A’. The 

color scheme is the same as that in Figure 1. 
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CHAPTER 7: DYNAMICS SIMULATIONS WITH SPIN-FLIP TIME-DEPENDENT 

DENSITY FUNCTIONAL THEORY: PHOTOISOMERIZATION AND 

PHOTOCYCLIZATION MECHANISMS OF cis-STILBENE IN ππ* STATES 

 

A paper published in the Journal of Physical Chemistry A 

 

Yu Harabuchi, Kristopher Keipert, Federico Zahariev, Tetsuya Taketsugu, and Mark S. Gordon 

 

Abstract 

 

 On-the-fly dynamics simulations were carried out using spin-flip time dependent density 

functional theory (SF-TDDFT) to examine the photoisomerization and photocyclization 

mechanisms of cis-stilbene following excitation to the ππ* state. A state tracking method was 

devised to follow the target state among nearly degenerate electronic states during the dynamics 

simulations. The steepest descent path from the Franck-Condon structure of cis-stilbene in the 

ππ* state is shown to reach the S1-minimum of 4,4-dihydrophenanthrene (DHP) via a cis-

stilbene-like structure (referred to as (S1)cis-min) on a very flat region of the S1-potential energy 

surface. From the dynamics simulations, the branching ratio of the photoisomerization is 

calculated as trans: DHP = 35: 13, in very good agreement with the experimental data, trans: 

DHP = 35: 10. The discrepancy between the steepest descent pathway and the significant trans-

stilbene presence in the branching ratio observed experimentally and herein computationally is 

clarified from an analysis of geometrical features along the reaction pathway, as well as the low 

barrier of 0.1 eV for the pathway from (S1)cis-min to the twisted pyramidal structure on the S1-
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potential energy surface. It is concluded that ππ*-excited cis-stilbene propagates primarily 

toward the twisted structural region due to dynamic effects, with partial branching to the DHP 

structural region via the flat-surface region around (S1)cis-min. 

 

Introduction 

 

 1,2-diphenylethylene (stilbene) and its derivatives play many roles in both science and 

everyday life. The combination of tunable photophysical properties and high thermal and 

chemical stability have led to a wide variety of research and practical applications of stilbenoids. 

Stilbene and its derivatives are commonly used as optical brightening agents, molecular probes, 

and gain mediums in blue dye lasers for both spectroscopic and laser medicine purposes. 

Stilbenoids absorb light in the UV (usually 340-370 nm) region, and re-emit light in the blue 

region (typically 420-470 nm). These tunable photophysical properties have been utilized to 

make stilbenoid whitening agents, which enhance the appearance of fabric and paper by causing 

a "whitening" effect. These additives make materials look less yellow by increasing the relative 

amount of blue light reflected. Stilbenoids are naturally present in some plants, such as the 

presence of the phytoalexin agent 3,5,4’-trihydroxystilbene (reservatrol) in groundnuts, 

raspberries and blackberries. Humans have taken advantage of stilbenoid biological properties to 

produce medicine, such as the traditional “Puag-Haad” natural extract, which contains an 

abundance of oxyresveratrol, used to treat tapeworm infections in Southeast Asia.  

 

 Stilbene is a widely studied molecule that undergoes photoisomerization.1-3 There are two 

isomers in the ground state of stilbene, i.e. cis and trans-forms, cis-stilbene can undergo 
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photocyclization to produce 4,4-dihydrophenanthrene (DHP). Due to interest in the reaction 

mechanism of photo-excited molecules, the photoisomerization mechanism of cis-stilbene has 

been examined extensively both experimentally4-36 and theoretically.31,36-50 It is known5,7,13,15,17 

that photo-excited cis-stilbene can lead to all three of the structures as shown in Figure 1. In 

early experimental research, the quantum yield for the photoreaction of the ππ* excitation of cis-

stilbene is reported to be 0.10 for DHP, 0.35 for trans-stilbene, and 0.55 for the cis-stilbene.5,7,13 

The observation of three photoreaction products indicates that reaction channels for both trans-

stilbene and DHP are open in the ππ* state of cis-stilbene. Experimental time-resolved studies 

report that the lifetime of cis-stilbene after excitation to the ππ* state is very short,8,10,12,14,18-21,24-

26,28,29,32,33,35 and that the photoreaction process proceeds rapidly following photoexcitation. The 

ring formation mechanism of cis-stilbene, i.e., cyclization to DHP, is important when 

considering diarylethene derivatives for photo-switching molecule applications.51-53 Several 

experimental studies have examined the cis-DHP cyclization of stilbene.4,5,7,13,15,23 

 

 Two important optical experiments were performed very recently by Tahara and co-

workers in which both time resolved Raman spectra31 and femtosecond time-resolved 

fluorescence spectra were performed.35 From the Raman spectra, it is shown that stilbene 

exhibits a vibrational mode frequency downshift from 239 cm-1 (0.3 ps) to 224 cm-1 (1.2 ps) to 

215 cm-1 (2.0 ps) after an initial upshift from 231 cm-1 (0.0 ps) to 239 cm-1 (0.3 ps). The authors 

assign the vibrational mode to twisting about the C=C bond based on both the steepest descent 

path in the excited state and vibrational analyses along the path. They conclude that the gradual 

downshift of the experimental frequency corresponds to gradual twisting of the central C=C 

bond which accompanies the pyramidalization of carbon atoms in the central C=C bond. Based 
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on the fluorescence spectra,35 it is shown that the decay of cis-stilbene is bi-exponential, 

corresponding to a 0.23 ps fast process and a 1.2 ps slow process with oscillator strengths of 0.32 

and 0.21 respectively. The fast fluorescence component (0.23 ps) is attributed by the authors to 

the cis*A state which is reached just prior to the twisting of the C=C bond, but after the initial 

elongation of the central C=C bond. The slow fluorescence component (1.2 ps) is attributed to 

the cis*B state in which the central C=C bond has twisted substantially around a shallow S1 

potential energy minimum. In addition, it was concluded that the observed oscillator strengths 

indicate that the population branching selection to either trans-stilbene or DHP occurs in a very 

early stage of the photoreaction process of cis-stilbene. 

 

 The cis-trans photoisomerization process has been widely examined in many theoretical 

studies.31,37-50 A major focus has been to clarify both geometric and electronic structures along 

the relaxation paths including the conical intersection (CI) region corresponding to the decay 

channel from the excited state to the ground state (S1/S0).38,40,45,47,49,50 It is generally accepted that 

the relaxation of cis-stilbene in the ππ* state involves a twisting motion about the central C=C 

bond,37,38,40,45,47,49,50 and that the S1/S0-CI region exists near the twisted minimum of the ππ* 

state.38,40,45,47,49,50 The molecular motion of the cis-trans photoisomerization has been predicted 

to be a “hula-twist” motion, in which the central C=C bond rotates out of plane; the C-H bonds 

remain out of the plane, while the other atoms reorient to remain coplanar.27 With regard to the 

cyclization process from cis-stilbene to DHP (denoted cis-DHP), Bearpark was the first to report 

the location of the conical intersection corresponding to DHP formation with a hybrid molecular 

mechanics-valence bond method (MMVB).38 Very recently, the detailed potential energy 

surfaces (PES) for both photoreactions of cis-stilbene were examined using spin-flip (SF) time-
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dependent density functional theory (TDDFT)47 and extended multiconfiguration quasi-

degenerate second order perturbation theory (XMCQDPT2).50 It was reported that the twisting 

motion about the central C=C bond, i.e. cis-trans isomerization, appears to be preferred in a ππ* 

state of cis-stilbene, rather than the ring closing motion, i.e. cis-DHP cyclization. One MMVB 

study38 draws the opposite conclusion. 

 

 There have been two reports of dynamics simulations of the photoreaction in cis-stilbene. 

Berweger employed singly excited configuration interaction (CIS) with the 6-31G basis set to 

study dynamics simulations on a three-dimensional constrained PES which was obtained by an 

interpolation scheme.39 The authors were unable to consider the S1/S0-crossing regions due to 

their limited dimensional PES. However, they reported that the dihedral angle of the central C=C 

torsion changes from 0° to 180° along the trajectories in the stilbene excited state, corresponding 

to the cis-trans isomerization. Dou et al.43,44,46 performed a semi-classical electron-radiation-ion 

dynamics (SERID) simulation on the excited state of cis-stilbene. They reported three different 

trajectories in three papers, cis-trans isomerization,44 cis-cis (no isomerization),43 and cis-DHP 

cyclization.46 Based on the cis-trans isomerization trajectory,44 they reported that the excitation 

from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO) of cis-stilbene rapidly leads to the formation of DHP at 0.2 ps, and that a subsequent 

cis-trans photoisomerization occurs via a twisted pyramidal CI which has an intermediate 

dihedral angle (90°) about the central C=C bond. For the cis-cis trajectory,43 they reported that 

stilbene passes through twisted pyramidal CI regions which are similar to those in the cis-trans 

photoisomerization. For the cis-DHP trajectory,46 they proposed that a new chemical bond is 

formed between two phenyl rings at 0.6 ps via the trans-isomer (dihedral angle = 180° about the 
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central C=C bond). These reports by Dou et al. indicate very interesting stilbene phenomena, 

since DHP-trans and trans-DHP reactions in the excited state were observed in the trajectories of 

the cis-trans and cis-DHP reactions, respectively. To date there has been no report of ab initio 

dynamics simulations dealing with full dimensional motions for cis-stilbene, possibly due to both 

the prohibitive computational cost and the difficulties of accurately describing the CI region 

discussed below. There has also been no report about the photoreaction branching mechanism, 

i.e. the comparison of trajectories, between cis-trans and cis-DHP in the ππ* state. 

The main focus of the present study is to clarify the photoreaction branching mechanism of 

stilbene from cis-stilbene to both trans-stilbene and DHP by utilizing on-the-fly dynamics 

simulations. Also, the time scale of the photoreaction is examined based on comparisons with 

experimental results, and the origin of the experimental spectra is discussed by considering the 

predicted molecular motions. 

 

 Dynamics simulations have become a powerful tool for examining the mechanisms of 

chemical reactions. Computational advances now allow for practical on-the-fly dynamics 

simulations for photochemical reactions that occur in the sub-picosecond timeframe. Such 

simulations can provide insights that cannot currently be obtained experimentally. These 

dynamics simulations generally use classical trajectories in combination with some level of 

electronic structure theory. Many chemical reaction mechanisms have been clarified using on-

the-fly dynamics simulations.54-56 

 

 When studying photochemical reactions with dynamics simulations, there are several 

issues that occur in the study of non-adiabatic transitions through CI regions.57-64 One issue is 
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how to deal with intersystem crossing in non-adiabatic regions. Since non-adiabatic transitions 

cannot be considered within the Born-Oppenheimer approximation, wavepacket methods or 

semi-classical approximations must be employed to treat non-adiabatic transitions. The other 

difficulty is that multi-configurational effects and dynamic correlation are usually necessary to 

correctly and quantitatively describe excited state PESs in CI regions. Thus, the computational 

methods employed must be chosen carefully to accurately describe the excited state dynamics.  

 

 For dynamics simulations in excited states, multi-configurational methods such as the 

complete active space self-consistent field (CASSCF) method are commonly used to describe CI 

regions. To include dynamic correlation, one must build upon the CASSCF wavefunction in the 

form of multi-reference perturbation theory (MRPT),65-67 or multi-reference configuration 

interaction (MRCI).68,69 This requirement can be a significant obstacle when performing excited 

state dynamics, because application of multi-reference methods can have prohibitively high 

computational cost, and because of the possibility that the most appropriate active space may 

change along a PES. Analytic gradients are not universally available for post-CASSCF methods, 

which further contributes to the high computational cost of including dynamic correlation. 

  

 In the present study, time dependent density functional theory (TDDFT) is used for the 

excited-state dynamics simulations. TDDFT often provides reasonable results for excited 

electronic states, at a relatively low cost. TDDFT has been employed extensively to describe 

PESs of excited states, and most functionals incorporate dynamic correlation. The computational 

cost of TDDFT is much lower than that of multi-reference methods, such as MRPT and MRCI, 

especially for large molecules.70-72 TDDFT also avoids the active space decisions that are 
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frequently necessary for multi-reference methods. However, the usual linear response TDDFT 

(LR-TDDFT) calculations have some disadvantages for the study of excited-state mechanisms.73 

The most serious problem is that TDDFT provides a discontinuous PES at the crossing point 

between the reference ground state and the first excited state (S1), as the reference state becomes 

the excited state following an intersystem crossing. In dynamics simulations of ultrafast photo-

decay processes in which CI regions are very important, LR-TDDFT is not a good choice. 

Furthermore, LR-TDDFT within the adiabatic approximation cannot describe configurations 

corresponding to doubly excited states. This limitation can be important for rotations about 

double bonds, because the ground state and the doubly excited state can cross during such 

rotations. 

 

 To overcome the aforementioned drawbacks to LR-TDDFT, spin-flip (SF) TDDFT was 

developed.47,71,74-82 In SF-TDDFT, the lowest energy high spin triplet state is used as the 

reference state, and both the ground state (S0) and S1 are treated as response states following a 

single electron spin flip. Therefore, the reference state does not change at S0/S1 crossing points, 

and the PES is continuous in the crossing region. Also, the HOMO-LUMO doubly excited state 

can be described by SF-TDDFT as discussed below. Shao et al. developed the SF-TDDFT 

analytic gradient.74 Minezawa and Gordon implemented the SF-TDDFT analytic gradient in the 

GAMESS program package76 so it is possible to optimize the minimum energy S0/S1-CI SF-

TDDFT geometries.47,76 Also, analytic derivative couplings at the SF-TDDFT level have been 

developed.83 Very recently, an automated search for minimum energy SF-TDDFT S0/S1-CI 

geometries has been reported.81 
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 In the present study, the interface of the SF-TDDFT method with excited state dynamics 

simulations is described. Several problems must be addressed. The primary issue is the 

description of states by the SF-TDDFT method. Since the SF-TDDFT solutions are not spin 

eigenstates, multiple undesired states appear in the solutions with significant spin contamination. 

Additionally, identification of the target state during dynamics simulations is complex since state 

ordering and orbital switching can both occur. To date, no method has been reported that 

successfully tracks the target state during SF-TDDFT dynamics simulations. In this work, these 

issues are discussed, and the crossing regions among the SF-TDDFT states are also carefully 

examined. 

 

Methodology 

 

 The SF-TDDFT method can describe all of the excited states that are expressed as linear 

combinations of Slater determinants obtained by one-electron transitions from the reference 

state. The spin-flip methodology also successfully exploited in wave-function methods.85-88 As 

shown in Figure 2(a), the reference SF-TDDFT state is the high spin triplet state. Response 

states are generated by the spin-flip of an electron from α to β. Thus, SF-TDDFT can only treat 

four states correctly; i.e. the ground state, the HOMO-LUMO doubly excited state, and the open 

shell singlet and triplet states of the singly-occupied molecular orbitals (SOMOs), as shown in 

Figures 2(b), 2(c) and 2(d), respectively. The other states cannot be described correctly in the 

SF-TDDFT framework, because several of the required determinants cannot be generated by a 

single spin flip. The missing determinants are indicated by gray crosses in Figure 2(e). These 

unphysical states appear as mixed states of singlet, triplet and quintet spins.  
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 To accomplish SF-TDDFT dynamics simulations, a method is needed that can follow a 

target state throughout a wide swath of the PES. A trajectory might pass through a crossing 

region between the target state and some undesired state, such as a mixed state (Figure 2(e))or a 

triplet state. These undesired states should be ignored in crossing regions, but unequivocal 

identification of the target state at each dynamics step is not straightforward. It was reported that 

<S2> values for singlet states are commonly 0.0 - 0.2 at local minima or minimum energy CI 

coordinates,79 while <S2> for the triplet state and the mixed states is normally ~2.0 and ~1.0, 

respectively. However, due to the SF-TDDFT spin contamination problem noted above, <S2> 

can deviate considerably from the exact values and can vary significantly during a simulation. 

Therefore, it is not feasible to identify the target states by monitoring only <S2> values. Although 

the use of approximate spin projection formulas may be useful for this problem,89-92 they cannot 

easily be applied, because of the possible existence of many undesired states. Previous authors 

have discussed this issue in some detail.79,81 Various spin adaptation techniques have been 

considered as a solution to the spin-contamination issues of SF-TDDFT.78,87,88,93 For the purpose 

of the present study, a method to distinguish the target state automatically based on properties 

other than <S2> values is considered.  

 

 Figure 3a schematically illustrates the state tracking method that follows the target state 

during the SF-TDDFT dynamics simulations. In Figure 3, black circles indicate the target state, 

and the black triangles indicate the SF-TDDFT undesired states. The present method monitors 

several types of data at every point along trajectories: the energies of the states, the eigenvectors 

of the states (the CI coefficients), the ordering of the MOs, and the <S2> values of the states. The 

first criterion of the state tracking method is that the target state is selected as long as each value 
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is continuous between the previous step and the present step. However, the monitored values 

sometimes do not provide meaningful information especially in the crossing region as discussed 

below, and the state tracking sometimes fails. 

 

 The ordering of the MOs is maintained at each step by using a built-in GAMESS option. 

By fixing the ordering of the MOs, the ordering of the eigenvectors is also maintained, and the 

comparison from step to step becomes much easier. One possible approach is to calculate the dot 

product of the eigenvectors of the states. However, this strategy sometimes does not work well, 

because the signs of the elements in the eigenvectors of the states frequently change. Thus, such 

a method can misread the target state. This sign change is caused by the solution of the LR SF-

TDDFT equations and is difficult to control. Thus, two additional eigenvector properties are 

monitored, as shown in Eqs (1) and (2) below. The CI coefficients of two successive 

eigenvectors, n and n+1, are represented by the terms labeled ci.  

 
		
Va = ci

nci
n+1

i
∑   (1) 

 
		
Vd = ci

n − ci
n+1

i
∑   (2) 

 

The target state is chosen as the state that has the largest Va and smallest Vd values in the present 

method. By using Va and Vd, the method can almost always identify the target state correctly. 

 

 Figure 3(b) shows a typical SF-TDDFT crossing region of the PES. The nature of the two 

crossing states always changes in the crossing region (indicated by the white squares in Figure 

3(b)), and the crossing PESs resemble an avoided crossing. Consequently, it is very difficult in 
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the crossing region to distinguish the target state based only on the eigenvectors and the <S2> 

value. Likewise, it is difficult to distinguish the target state based on the energies and the 

gradient vector due to the nature of the avoided crossing. In the present scheme, when the target 

state is well isolated from the adjacent states in energy, the eigenvectors of the previous step are 

compared with those of the present step. In mixing regions, the last step of the previous stable 

region (k in Figure 3(b)) and the present step are compared. After the trajectory passes through 

the mixing region, the method updates the reference eigenvectors. This strategy works well in 

most SF-TDDFT dynamics simulations. 

 

 In the present study, non-adiabatic transitions are not considered, because the calculation 

of non-adiabatic coupling matrix elements (NACME) within the SF-TDDFT formalism is not yet 

available in GAMESS. The energy difference threshold between S1 and S0 for the termination of 

the trajectories is defined as 0.1eV or less. Due to the current lack of non-adiabatic transition 

probabilities, the lifetime of the excited state and the quantum yield of the photoisomerization 

cannot be discussed quantitatively. However, the qualitative time relationship between the 

experimental decay time and the statistical time in which the trajectories reach the crossing 

region from the Franck-Condon (FC) region are summarized, and the mechanism of the 

photoreaction branching in the excited state is discussed. 

 

 The present method does not work well in two situations. First, consider a case in which 

the trajectory remains in a mixing region for more than ~10 fs. Then, the comparison of the 

eigenvectors becomes meaningless, since the molecular coordinates are very different from those 

of the last step in the stable region. Although the trajectories pass through the crossing region in 
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less than 1 fs in most cases in the present study, the occurrence of trajectories lingering in the 

crossing region is not negligible due to the large number of crossings along dynamics 

simulations. Second, difficulties occur when the absolute values of the molecular orbital 

coefficients for the open shell triplet and the open shell singlet SOMOs are too similar. Since the 

elements of Va and Vd are likely to be very similar in this situation, it is difficult to distinguish 

these states. To improve the treatment for the latter situation, the two values are scaled by the 

energy difference between the calculated state and the target state, and only states within ±1 eV 

from the target state are considered in the present state tracking method.  

 

 The main purpose of the present study is to clarify the photoreaction branching 

mechanism of cis-stilbene using the SF-TDDFT dynamics simulation method. An advantage of 

the proposed dynamics method is that relatively accurate and low-cost excited state dynamics 

simulations become possible with SF-TDDFT, while also avoiding the need to choose active 

spaces.  

 

Computational Details 

 

 The dependence of SF-TDDFT predictions on the chosen functional and basis set was 

analyzed by performing single point energy calculations at several previously reported stilbene 

geometries.47 Based on benchmarking of a variety of density functionals on stilbene and basis 

sets, the BHHLYP functional with the 6-31G(d) basis set was chosen for all of the stilbene 

excited state dynamics simulations and reaction path calculations. The SF-TDDFT cis-stilbene 

vertical excitation energies are compared with both experiment and ab initio theoretical 
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predictions reported in previous studies.37,45,47,50 The vertical excitation energy was also 

calculated with CASPT2(2,2)/cc-pVDZ in order to isolate the effect of dynamic correlation. The 

(2,2) active space includes the HOMO(π) and the LUMO(π*). The ground state calculations, 

including equilibration, were performed at the DFT(BHHLYP)/6-31G(d) level. 

 

 To understand the dominant decay pathway after the vertical excitation of cis-stilbene, a 

SF-TDDFT(BHHLYP)/6-31G(d) steepest descent path calculation in the ππ* state was 

performed, starting from the Franck-Condon (FC) structure of cis-stilbene. A minimum energy 

conical intersection (MECI) was located by using the penalty function method76 with SF-

TDDFT(BHHLYP)/6-31G(d). The description of conical intersections by several electronic 

structure methods has been discussed extensively, and the SF-TDDFT method was shown to give 

the correct shapes of conical intersections.84 Also, a transition state (TS) and corresponding 

intrinsic reaction coordinate (IRC) path in the ππ* state have been determined with SF-

TDDFT(BHHLYP)/6-31G(d). 

 

 In order to sample initial conditions for the excited state dynamics simulations, an 

equilibration dynamics simulation in the ground state of cis-stilbene was performed for 5 ps, 

followed by a 20 ps production run. In the equilibration dynamics simulation, the bath 

temperature was set to 300 K by a Nose-Hoover thermostat.94 The initial coordinates and 

velocities for the excited state dynamics were taken once every 400 fs from the equilibration 

dynamics simulation in the ground state; i.e. 50 trajectories were calculated. The excited state 

dynamics simulations were started upon excitation to the lowest ππ* singlet state. Each trajectory 

in the excited state was terminated if the trajectory reached the S1/S0-crossing region, or if the 
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simulation time reached 1.5 ps (with respect to a 1.2 ps experimental lifetime) in order to manage 

the computational cost. Recall that the statistical treatment of non-adiabatic transitions is beyond 

the scope of this work. All of the DFT and MP2 calculations were performed with the GAMESS 

program package,95,96 while the CASPT2 calculations were performed with the MOLPRO2010 

program package.97 

 

Results and Discussion 

 

 In Table 1, the lowest vertical excitation energies of cis-stilbene obtained by both 

experimental and theoretical studies are summarized. The experimental vertical excitation energy 

varies from 4.0 eV to 4.7 eV,8,16,18,20,23,29,30,33-35 but based on the most recent 

experiments,23,29,30,33-35 the vertical excitation energy of cis-stilbene is ~4.6 eV. CASSCF 

generally predicts excitation energies that are more than 1 eV higher than experimental results. 

The addition of dynamic correlation via CASPT2 provides reasonable agreement with 

experiment for the relatively small active spaces. The same is true for SF-TDDFT, as long as a 

hybrid functional is used. If one uses GGA functionals, the agreement is much worse as shown in 

Table 1. The failure of GGA functionals for excited states has been noted in a recent 

benchmarking survey.98 It is concluded that dynamic correlation is important to accurately 

describe the ππ* state of stilbene. 

 

 To examine the SF-TDDFT basis set dependence, single point energies at several stilbene 

geometries were calculated with the BHHLYP functional and a variety of basis sets. In Table 2, 

all of the (S0)trans-min reported geometries were optimized using the indicated basis set; the 
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remaining single point energies in the table were calculated at the geometries reported by 

Minezawa et al.47 As shown in Table 2, the SF-TDDFT basis set dependence is very small. This 

small basis set dependence is an advantage of SF-TDDFT, because the computational cost can be 

lowered by choosing a relatively small basis set without a significant loss of accuracy.  

 

 In Figure 4, the definitions of the structural parameters used in the present study are 

summarized. Five structural parameters are defined to describe the photoisomerization 

mechanism of cis-stilbene, i.e. rC1C2, rC1C3, rC13C14, aC1C2C4 and dC3C1C2C4. rij indicates the distance 

between two atoms, aijk indicates the angle that connects three atoms ijk, and dijkl indicates the 

dihedral angle between the two planes formed by atoms ijk and jkl. Each structural parameter of 

the optimized geometries for (S0)cis-min is summarized in Table 3. The experimental values 

measured by X-ray analysis are also shown. The optimized geometries obtained with each 

method in Table 3 show good agreement with the experimental values.99 This led to the 

consistent choice of DFT(BHHLYP)/6-31G(d) for the equilibration dynamics simulation in the 

ground state of cis-stilbene.  

 

 In the present study, two different S1/S0-crossing regions were found during the dynamics 

simulations. Two twisted-pyramidalized MECI structures, (S1/S0)twist-I and (S1/S0)twist-II, were 

located. As shown in Figure 5, (S1/S0)twist-II has a larger dC3C1C2C4 dihedral angle than (S1/S0)twist-I. 

(S1/S0)twist-I and (S1/S0)twist-II correspond to the MECI structures previously reported in refs 47,50 

and refs 45,49, respectively. Figure 6(a) shows the variations of structural parameters along the 

SF-TDDFT(BHHLYP)/6-31G(d) steepest descent paths from the FC structure of cis-stilbene in 

the ππ* state (denoted (S1)FC). (S1)FC and (S0)cis-min indicate the same geometries, but different 
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electronic states. rC13C14 and dC3C1C2C4 were plotted to develop an understanding of the 

photoreaction mechanism of cis-stilbene in the ππ* state. The minima in the ground state are 

indicated as black circles. DHP in the ground state (S0)DHP-min has a short rC13C14 distance and a 

small dC3C1C2C4 angle, while trans-stilbene in the ground state (S0)trans-min has a long rC13C14 and a 

large dC3C1C2C4 angle. Therefore, these two parameters that correspond to the axes in Figure 6(a) 

can efficiently differentiate the photoreaction branching mechanisms from cis-stilbene to both 

trans-stilbene and DHP. The same plots are used to discuss the trajectories of the dynamics 

simulations in Figures 7(a)-7(d). 

 

 As shown in Figure 6(a), the steepest descent path from (S1)FC leads to a cis-stilbene-like 

structure (referred to as (S1)cis-min) in the first stage, where movements of two hydrogen atoms are 

dominant, resulting in a geometry consisting of two near-planar structures of H-C-C6H5.31 This 

cis-stilbene-like structure is reported to be a true minimum on the S1-PES in several studies,31,37-

39,45,50 although some studies indicate otherwise.36,47,50 At the present SF-TDDFT(BHHLYP)/6-

31G(d) level of theory, the steepest descent path goes through a very-flat region of the PES in the 

range s = 4.0 ~ 5.0 bohr amu1/2 around (S1)cis-min, with a large reaction-path curvature as shown in 

Figure 6(b), and eventually reaches (S1)DHP-min. This result is interesting because previous studies 

predict that the reaction pathway leading from the FC region of cis-stilbene to the twisted 

structures is preferred.5,7,13 It is suggested that branching for the twisted structure and the DHP 

structure occurs in this sharply curved region, and that dynamic effects may be important in 

determining the branching ratio of the products. It is also noted that the molecule should stay at 

this very-flat region around (S1)cis-min for some length of time. Although (S1)cis-min does not 

correspond to a true minimum, it sits is a very flat region of the PES.  
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 To clarify the photoreaction dynamics of cis-stilbene in the ππ* state, 50 trajectories were 

calculated using SF-TDDFT(BHHLYP)/6-31G(d). Trajectories going toward both the DHP and 

twist directions are sampled by the dynamics simulations. 64% of the trajectories reach the S1/S0-

crossing region near (S1/S0)DHP, (S1/S0)twist-I or (S1/S0)twist-II within t = 1.5 ps, while the remaining 

trajectories linger on the S1-PES. Based on the rC13C14 and dC3C1C2C4 values at the terminal points 

of the respective trajectories, the 50 trajectories are divided into three groups: 13 trajectories 

(26%) lead to the formation of DHP, 35 trajectories (70%) undergo rotation via the torsion of the 

C1=C2 bond, and two trajectories (4%) first began torsional rotation, and then change to DHP. 

As mentioned previously, quantum yields of the photoreaction cannot be discussed from the 

present dynamics simulations in a rigorous way, because the trajectories branch into three 

structures, i.e. DHP, cis-stilbene and trans-stilbene, after relaxing to the ground state. However, 

the calculated branching ratio (trans-stilbene : DHP = 35 : 13) is in good agreement with 

experimental data (trans-stilbene : DHP = 35 : 10), and indicates that the dynamics simulations 

qualitatively reproduce the experimental quantum yield. 

 

 Figures 7(a), 7(b), and 7(c) show examples of typical trajectories which pass through 

each of three S1/S0-crossing regions. The structural parameters along each trajectory and the 

S1/S0-crossing geometries that the trajectories pass through are also shown. The blue squares 

indicate the terminal points where the energy differences between S1 and S0 becomes 0.1 eV or 

less. It should be noted that the terminal points of the respective trajectories are not exactly the 

same as the S1/S0-MECI points; the S1/S0-crossing regions are distributed around the S1/S0-MECI 

points in configuration space. All of the trajectories from the FC region of cis-stilbene move in 

the direction of (S1)cis-min in the early stage of the photo-decay process, and all but two of the 
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trajectories remain on a single path toward either DHP or one of the two twisted MECIs. Thus, it 

is expected that DHP and the twisted region in the ππ* state are separated by a barrier between 

(S1)cis-min and (S1)twist-min. Although the trajectories were not terminated by following the 

termination criteria described above, the S1/S0 energy differences of the two trajectories 

decreased to < 0.15 eV one time. 

 

 The barrier height on the SF-TDDFT(BHHLYP)/6-31G(d) IRC path from (S1)DHP-min to 

(S1)twist-min via (S1)TS was calculated to be only 0.1 eV, as shown in Figure 6(a). This TS was also 

reported in a previous study.47,50 As indicated in Figure 6(c), the energy variation along the IRC 

path is very flat around the region s = -12 ~ -2 bohr amu1/2, which should include the (S1)cis-min 

structure. Thus, it is expected that the photoreaction branching in the ππ* state of cis-stilbene 

occurs in (S1)cis-min where the steepest descent path from (S1)FC curves dramatically and the PES 

is very flat. 

 

 The calculated population decay of cis-stilbene in the ππ* state is shown as a black line in 

Figure 8. To calculate the population of the ππ* state, the trajectories terminated by reaching 

S1/S0-crossing regions are regarded as the trajectories decaying from S1 to S0. 28 trajectories 

reached the S1/S0-crossing region before 1.0 ps. As a consequence, as shown in Figure 8, the 

population of the ππ* state at t = 0 is 1.0, i.e. all the trajectories are in the ππ* state, and the 

population decreases to 0.44 at 1.0 ps. As mentioned before, the lifetimes cannot be discussed 

rigorously, because non-adiabatic coupling calculations were not performed. However, the time 

scale of the calculated population decay for the ππ* state is in good agreement with the 

experimental decay of 1.2 ps.35 The calculated population decay of the ππ* state is also plotted 
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for the trajectories leading to the twist-side (35 trajectories) and for the trajectories leading to 

DHP-side (13 trajectories), separately, in Figure 8. It is clearly shown that the lifetime for the 

DHP-side is relatively longer than that for the twist-side. This difference can be understood by 

considering the initial atomic motions for ππ* excited cis-stilbene. Since the steepest descent 

path starting at (S1)FC denotes a direction with increasing torsional angle, dC3C1C2C4, the torsional 

motion will receive kinetic energy in the early stage. The direction is related to a structural 

transformation toward the twist side, while it is almost perpendicular in the direction leading to 

the DHP-side, indicating that the molecule should reach the (S1/S0)twist region faster than the 

(S1/S0)DHP region. As shown in Figure 7(c), the trajectory exhibits strong fluctuations and stays 

around (S1)cis-min for a relatively long time before reaching the (S1/S0)DHP region, while the 

trajectories in Figure 7(a) and 7(b) reach the (S1/S0)twist region more smoothly. 

 

 As mentioned previously, evidence from femotosecond time-resolved fluorescence 

spectra led to the proposal that the photoreaction process of cis-stilbene is a two-step 

mechanism.35 Experimental results include measurements of the oscillator strengths for the initial 

0.23 ps fast step (0.32), and that of the 1.2 ps second step that follows (0.21).35 Based on the 

energy variations of the S0 and S1 states along the IRC in Figure 6(c), fluorescence can only be 

observed when the molecule stays around the (S1)cis-min region. This is because the observed 

fluorescence wavelength, 420 nm,35 nearly coincides with the energy difference between the S0 

and S1 states, 3.1 eV, for (S1)cis-min in Figure 6(c), while the energy difference between the S0 and 

S1 states in other regions along the IRC is too small to be observed. Thus, it is suggested that 

both the fast step and the second fluorescence decay in the experiment35 indicate an escape of the 

molecule from the (S1)cis-min region. Therefore, the fast decay may correspond to an escape of the 
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molecules going to the twist-side, while the second decay may correspond to an escape of the 

molecules headed to the DHP-side. This attribution is consistent with the decay times of the twist 

and DHP sides shown in Figure 8.  It is also interesting that the larger oscillator strength of the 

fast decay mode corresponds to the major product, i.e. twist-side, while the second decay with 

smaller oscillator strength corresponds to the DHP-side. 

 

 Finally, consider the photoreaction branching mechanism of cis-stilbene in the ππ* state. 

As mentioned above, there are three types of related results: the experimental quantum yields of 

the photoreaction,5,7,13 the steepest descent path, and the trajectories of the dynamics simulation. 

From the experimental results, the cis-trans isomerization is preferred to the cis-DHP cyclization 

in the ππ* state, although the steepest descent path connects (S1)FC and (S1)DHP-min directly. Also, 

since the cis-trans photoisomerization proceeds more favorably than the cis-DHP 

photocyclization in dynamics simulations, dynamic effects are important as mentioned above. 

 

 The branching mechanism in the ππ* state can be explained based on the nature of the 

PES around (S1)cis-min-(S1)TS-(S1)twist-min and around (S1)FC. As mentioned above, since the energy 

barrier between (S1)cis-min and (S1)TS is only 0.1 eV even though the path-length is relatively long, 

the PES is very flat in the region of (S1)cis-min-(S1)TS-(S1)twist-min. Thus, it is easy to pass through 

the barrier between DHP- and the twist-side. In the FC region of cis-stilbene, the steepest descent 

direction promotes a slight increase of the torsional angle, dC3C1C2C4. The torsional motion 

receives kinetic energy in the early stage of the photo-decay process of cis-stilbene. If the kinetic 

energy corresponding to the torsional motion is not sufficient to overcome the barrier between 

(S1)cis-min and (S1)twist-min, the trajectory will follow the steepest descent path and may lead to 
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(S1/S0)DHP. On the other hand, if the molecule can overcome the barrier between (S1)cis-min and 

(S1)twist-min, then it should reach (S1/S0)twist-I or (S1/S0)twist-II. This means that the molecular motion 

in the early stages following photoexcitation determine the photoreaction branching of cis-

stilbene. Also, it is clear that the low barrier between (S1)cis-min and (S1)twist-min plays an important 

role in the branching ratio of the photoreaction of cis-stilbene. This is the first report that 

discusses the full photoreaction mechanism for cis-stilbene, involving both cis-DHP cyclization 

and cis-trans isomerization based on on-the-fly excited state dynamics simulations. 

 

Conclusions 

 

 This is the first attempt to examine the photoreaction process of cis-stilbene by full-

dimensional on-the-fly dynamics simulations, in order to examine the photoreaction branching 

mechanism of cis-stilbene in the ππ* state. In SF-TDDFT calculations, the characters of nearly 

degenerate electronic states mix with each other, which makes it difficult to follow a target state 

along a trajectory in a simple way. To solve this problem, a state tracking method is newly 

proposed to follow the target state along trajectories, in which reference eigenvectors are used to 

distinguish states from one another. In the cis-stilbene ππ* state the steepest descent path is 

shown to lead to (S1)DHP directly from (S1)FC, although the cis-trans isomerization is preferred to 

the cis-DHP cyclization in experiments. Although non-adiabatic coupling calculations were not 

performed, the branching ratio calculated from dynamics simulations (trans : DHP = 35 : 13) 

qualitatively reproduces the experimental quantum yield very well. This result indicates that 

dynamic effects play a significant role in the photoreaction branching mechanism of cis-stilbene. 

The hopping time from the ππ* state to the ground state in dynamics simulations is in good 
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agreement with the decay time of the femotosecond time-resolved fluorescence spectra (~1.2 

ps).35 

 

 The branching mechanism for ππ*-excited cis-stilbene is analyzed in a two-dimensional 

coordinate space of rC13C14 (related to cis-DHP cyclization) and dC4C2C1C3 (related to cis-trans 

isomerization). Three relevant MECIs have been located between the ground and ππ* states of 

cis-stilbene including a new MECI (S1/S0)twist-II. Directly following photoexcitation, trajectories 

starting from the FC region of cis-stilbene go downhill in the direction of (S1)cis-min, and then 

bifurcate toward DHP or twisted geometries. It is shown that 64% of the trajectories reach the 

S1/S0-crossing region near (S1/S0)DHP, (S1/S0)twist-I or (S1/S0)twist-II within t = 1.5 ps, while the 

remaining trajectories linger on the S1-PES. The exploration of the S1-PES clarifies that there is a 

very-low barrier from (S1)cis-min to (S1)twist-min (~ 0.1 eV), and the PES is very flat around the 

(S1)cis-min region where the branching should occur. The downhill direction at (S1)FC corresponds 

to a rotational motion about the central C=C bond, and the barrier height for the path from (S1)cis-

min to (S1)twist-min is very low compared with the kinetic energy of the torsional motion. As a 

consequence, the cis-trans photoisomerization is preferred to cis-DHP photocyclization in the 

ππ* state of cis-stilbene, and dynamic effects decide the branching rate. 

 

 Finally, it should be mentioned that an additional improvement in the state tracking 

method is required in order to apply SF-TDDFT dynamics simulations to general photoreactions. 

However, SF-TDDFT is clearly a feasible method for performing excited-state dynamics 

simulations with a qualitative accuracy and low-cost, and applications of the method to large 

chemical systems would be of interest. 
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Figure 1. Schematic of the photoisomerization and photocyclization branching of cis-stilbene 

after ππ* excitation. The quantum yields reported in the experimental study13 are shown as 

percentages. 
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Figure 2.  The complete set of configurations considered in SF-TDDFT. (a) depicts the 

configuration of the reference triplet state. In (b)-(e), all possible Slater determinants obtained by 

the one-electron spin-flip excitation of the reference triplet state are depicted without blue 

slashes, and the missing configurations are depicted with blue slashes: (b) denotes the singlet 

ground state, (c) denotes the [SOMO1(s) → SOMO2(s)] doubly-excited state, (d) denotes the 

open shell singlet and triplet states of [SOMO1 → SOMO2] and (e) denotes the excited states 

involving excitations corresponding to the occupied orbitals (o) and the virtual orbitals (v). 
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Figure 3. Schematic pictures of a state tracking method. In both pictures, the target states of the 

dynamics simulation are indicated by black circles, while the undesired states, i.e. a triplet state 

or a mixed state, are indicated by black triangles. (a) illustrates the concept of the state tracking 

method. The target state is selected from all of the states, as the character of the target state is 

continuous between the previous step and the present step. (b) depicts a crossing region of the 

PES along a SF-TDDFT trajectory. The region in which the characters of the two states mix is 

indicated by dashed lines, and the states in the crossing region in which the target state and an 

undesired state mix are indicated by white squares. The state tracking method does not update 

the reference eigenvectors in the mixing region. The state tracking method compares the 

eigenvector of the last step before the crossing region (indicated by k) to the eigenvector in the 

mixing region, and updates the information after passing through the mixing region (indicated by 

l). 
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Table 1. Vertical excitation energies of cis-stilbene from the ground state. 

Level ΔE [eV] 

Experiment 4.6a 

CASSCF(2,2)/6-31G(d,p) 6.07b 

CASPT2(2,2)/cc-pVDZ 4.23c 

XMCQDPT2(14,14)/cc-pVDZ 4.43d 

TDDFT(PBE0)/6-311+G(2d,2p)  4.09e 

SF-TDDFT(BHHLYP)/DH(d,p)  4.78f 

SF-TDDFT(B3LYP)/6-31G(d) 3.86c 

SF-TDDFT(BHHLYP)/6-31G(d)  4.96c 

SF-TDDFT(PBE0)/6-31G(d)  4.02c 

SF-TDDFT(BLYP)/6-31G(d)  6.64c 

SF-TDDFT(BOP)/6-31G(d)  6.66c 

SF-TDDFT(PBE)/6-31G(d) 6.66c 

 

aReference 35. bReference 45. cComputed values in the present study. All vertical excitation energies were calculated at the 

MP2/cc-pVTZ geometry. dReference 50. eReference 37. fReference 47. 
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Table 2.  SF-TDDFT(BHHLYP)/6-31G(d) relative energies (eV) of the ground state and the first 

excited ππ* states of stilbene. All trans isomers are optimized in the ground state with the 

indicated basis set; the reference energies are the energies of the ground state equilibrium 

structure of trans-stilbene, (S0)trans-min, for each basis set. The other single point energies were 

calculated at the geometries reported by Minezawa et al.47 The names of the structures are 

defined in Ref. 47. Since there is another, twisted-pyramidalized, conical intersection as (Figure 

5(a)), the reported structure of (S1/S0)pyr is denoted (S1/S0)twist-I to distinguish the two MECIs. 

(S1)cis-min is not a true minimum due to the constrained optimization.44 

 State 6-31G 6-31G(d) 6-31+G(d) cc-pVDZ cc-pVTZ DH(d,p) 

(S0)trans-min S0 0.00 0.00 0.00 0.00 0.00 0.00 

 S1 4.70 4.62 4.48 4.53 4.48 4.45 

(S0)cis-min S0 0.20 0.19 0.16 0.21 0.24 0.21 

 S1 5.22 5.11 4.92 5.04 4.99 4.99 

(S0)DHP-min S0 2.05 1.84 1.80 1.84 1.93 1.75 

 S1 5.17 4.93 4.79 4.88 4.93 4.75 

(S1)twist-min S0 3.18 3.11 3.06 3.09 3.15 3.07 

 S1 4.27 4.12 4.00 4.05 4.10 4.05 

(S1)cis-min S0 1.05 1.05 1.02 1.06 1.12 1.04 

 S1 4.28 4.19 4.05 4.13 4.13 4.08 

(S1)DHP-min S0 2.69 2.64 2.61 2.66 2.74 2.60 

 S1 3.92 3.79 3.73 3.78 3.84 3.72 

(S1/S0)twist-I S0 4.34 4.19 4.13 4.17 4.24 4.16 

 S1 4.52 4.23 4.15 4.18 4.26 4.18 

(S1/S0)DHP S0 4.04 3.93 3.89 3.93 4.01 3.87 

 S1 4.13 3.96 3.91 3.95 4.02 3.89 
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Figure 4. Definitions of the numbering of the atoms and definitions of the internal coordinates. 

Five structural parameters were defined to discuss the mechanism of cis-stilbene, i.e. rC1C2, rC1C3, 

lC13C14,  aC1C2C4 and dC3C1C2C4. rC1C2, rC1C3 and rC13C14 indicate the distances between two atoms, 

aC1C2C4 indicates the angle connecting three atoms, C1C2C4, and dC3C1C2C4 indicates the dihedral 

angle of two planes, C3C1C2 and C1C2C4. 
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Table 3.  Optimized structural parameters in the ground state of cis-stilbene. The three distances, 

rC1C2, rC1C3 and rC13C14, are shown in Å, and the angle and dihedral angle,  aC1C2C4 and dC3C1C2C4, 

are shown in degrees. The numbering of the atoms is defined in Figure 4. The experimental 

values measured by X-ray structure analysis99 are also shown. 

 

Method rC1C2 rC1C3 rC13C14 aC1C2C4 dC3C1C2C4 

aX-ray 1.334 1.489 --- 129.5 --- 

bMP2/cc-pVTZ  1.348 1.469 3.127 127.0 5.9 

bSF-TDDFT(BHHLYP)/6-31G* 1.336 1.472 3.236 129.5 6.3 

bDFT(BHHLYP)/6-31G* 1.335 1.473 3.249 129.6 6.4 

 

aReference 99. bThe present study. 
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Figure 5. The geometries of two SF-TDDFT S1/S0-MECIs. (a) (S1/S0)twist-I was optimized with 

BHHLYP(SF-TDDFT)/DH(d,p).47 (b) (S1/S0)twist-II was optimized with BHHLYP(SF-TDDFT)/6-

31G(d). (S1/S0)twist-II corresponds to the MECI reported by Quenneville.45 The angle and the 

dihedral angle corresponding to the twisted-pyramidalized structures, i.e. aC4C2C1 and dC3C1C2C4 

defined in Figure 4 are also shown. 
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Figure 6. SF-TDDFT(BHHLYP)/6-31G(d) steepest descent path and the IRC path in the ππ* 

state of stilbene. The reference for the relative energies is the energy of the ground state 
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equilibrium structure of cis-stilbene, (S0)cis-min. (a) describes the structural parameters in the two-

dimensional plot along the steepest descent paths from the Franck-Condon (FC) region of cis-

stilbene (denoted (S0)FC), and the IRC path via the TS between (S1)DHP-min and (S1)twist-min 

(denoted (S1)TS). The structural parameters of the minima in the ground state, the minima in the 

ππ* state, and the S1/S0-MECIs are shown. The x and y axes correspond to rC13C14 and dC4C2C1C3, 

respectively, defined in Figure 4. The red solid line corresponds to the SF-TDDFT(BHHLYP)/6-

31G(d) steepest descent path, and the blue dot line indicates the SF-TDDFT(BHHLYP)/6-

31G(d) IRC path via (S1)TS. The black circles indicate the minima in the ground state, the red 

circles indicate minima in the ππ* state, the red triangle indicates (S1)TS, and the red crosses 

indicate the S1/S0-MECIs. The geometry of (S1/S0)twist-II was optimized with SF-

TDDFT(BHHLYP)/6-31G(d) in the present study, and the other MECI and S1-minimum 

geometries are calculated with BHHLYP(SF-TDDFT)/DH(d,p).47 Note that the (S1)cis-min is not a 

true minimum due to the constrained optimization.47 The relative energies of the indicated 

geometries are shown in eV. (b) and (c) show the values of the energies along the steepest 

descent path from (S1)FC and the IRC path via (S1)TS, respectively. The black solid line indicates 

the energy of the ground state, and the red solid line indicates the energy of the ππ* state. 
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Figure 7. Variations of geometric parameters along three typical types of trajectories [(a), (b), (c)] and a 

rare trajectory (d), with SF-TDDFT(BHHLYP)/6-31G(d). x and y axes correspond to rC13C14 and dC4C2C1C3, 

respectively, defined in Figure 4. (a)-(c) indicate the trajectories that reach S1/S0-crossing regions 

corresponding to (S1/S0)twist-I, (S1/S0)twist-II, and (S1/S0)DHP, respectively. (d) represents a trajectory that first 

goes to the twist-side and then crosses over to the DHP-side (this trajectory did not reach the S1/S0-

crossing until 1.5 ps). Black solid lines indicate the geometric parameters along the trajectories, and blue 

squares indicate the S1/S0-crossing points at which the trajectories were terminated as discussed 

previously. Black circles indicate minima in the ground state, and red circles indicate minima in the ππ* 

state; the red triangle indicates (S1)TS, and red crosses indicate the S1/S0-MECIs denoted in Figure 6(a). 
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Figure 8. Calculated population decay of the ππ* state for 50 trajectories (black), with the 35 

trajectories of the twist-side in blue and the 13 trajectories of the DHP-side in red. All trajectories 

started in the ππ* state at t = 0, and the population is 1.0 at t = 0. 
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CHAPTER 8: GENERAL CONCLUSIONS 

 

 As we move closer to the exascale era of high performance computing, computer 

hardware is changing faster than ever before. Computational chemists are working diligently to 

adapt current methods to next-generation hardware, encouraged by the completely new areas of 

scientific innovation made possible at exascale. In light of the rapidly evolving computational 

sciences landscape, the work presented in this dissertation was motivated by three primary 

topics. First, the viability of novel low-power ARM CPUs for energy-efficient computational 

chemistry was thoroughly evaluated to reflect the energy consumption challenges associated 

with exascale computing. Second, the adoption of fundamental quantum chemistry methods to 

next-generation hardware was discussed from the approaches of both algorithm redesign, and 

utilization of standalone community software libraries.  Third, the current capabilities of 

computational chemistry were leveraged to investigate applications of heterogeneous catalysis in 

biodiesel production, and to model photochemical and photoisomerization pathways of cis-

stilbene.  

 

 In Chapter 2, the performance and energy-efficiencies of low-power 32-bit and 64-bit 

ARM CPUs were compared against commodity workstation-class Intel x86 processors for 

quantum chemistry workloads. All comparisons were between single-socket CPUs. The Intel 

processor is the clear choice for minimizing time to solution. Depending on the quantum 

chemistry method analyzed, between 2 and 4 32-bit or 64-bit ARM cores are required to process 

a workload as quickly as a single Intel core. In terms of energy to solution, 32-bit ARM is 

consistently the most efficient processor and 64-bit ARM is consistently the least efficient. The 
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transition from 32-bit to 64-bit ARM requires additional energy usage, with no observable 

increase in computational throughput. Furthermore, the idle power consumption of the 18-core 

Intel CPU is lower than the idle power consumption of the 8-core 64-bit ARM CPU due to low-

power CPU states unique to the Intel microarchitecture. While the energy efficiency of 32-bit 

ARM is promising, it appears that the workstation-class 64-bit ARM CPUs require further 

development to compete with commodity processors in high performance computing. 

 

 In Chapter 3, the performance and energy-efficiency analysis of 64-bit ARM and Intel 

x86 CPUs was extended to include parallel quantum chemistry methods which utilize connected 

computer clusters. For a combined metric of time and energy to solution, increasing the number 

of 64-bit ARM cores used for a computation almost always improves the overall efficiency for 

the methods analyzed. The only exceptions are jobs which were intentionally configured to 

heavily utilize hard disk drives for storage of integral data. In general, twice as many 64-bit 

ARM cores are required to match the time to solution for a given number of Intel x86 cores. 

Additionally, an in-depth analysis of 64-bit ARM architectural bottlenecks was performed using 

an extended benchmark set with applications outside of quantum chemistry. It was found that 

fewer floating point operations are executed per instruction on the 64-bit ARM compared to Intel 

x86. Furthermore, the 64-bit ARM exhibited inferior memory subsystem performance in terms of 

main memory and L1 cache read bandwidth. 

 

 Implementation details for a new hybrid MPI/OpenMP GAMESS Hartree-Fock 

algorithm targeting the Intel Xeon Phi Knight’s Landing (KNL) processor were presented in 

Chapter 4. The KNL processor exemplifies the current trend in supercomputing to increase CPU 
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core counts while reducing the amount of memory per core. By sharing Fock and density matrix 

data structures which were replicated among computation units in the legacy implementation, the 

overall memory requirement of the code is reduced by as much as ~200x.  The substantial 

reduction in memory footprint enables utilization of all KNL hardware threads simultaneously, 

which was demonstrated to reduce the time to solution by 2-3x on average compared to the 

legacy implementation. Excellent strong scaling was demonstrated while utilizing as many as 

3,000 KNL nodes (192,000 cores). This work represents the “algorithm redesign” approach to 

porting legacy codes to new hardware architectures. 

 

 In Chapter 5, challenges in quantum chemistry software interoperability were discussed. 

Interoperability is useful for sharing software components among different quantum chemistry 

packages, which can potentially enable new scientific workflows and/or improve computational 

efficiency. A software interface was constructed to streamline integration of external two-

electron integral computation packages with GAMESS. The ERD solver was interfaced with 

GAMESS, and improved integral computation times by as much as 28% for a large generally 

contracted basis set, and 7-15% for more commonly used basis sets. Unfortunately, differences 

in the integral data formats required by the respective codes requires an additional integral 

reordering operation which essentially negates any performance benefits. A second integral 

solver called SIMINT was also integrated with GAMESS. Instead of applying substantial 

modifications to the GAMESS Hartree-Fock driver to enable integration with SIMINT, a new 

Hartree-Fock driver was written from scratch (SIMGMS). Compared to the original GAMESS 

code, serial execution of SIMGMS Fock matrix construction was demonstrated to be faster by 

20-26%%.  Converged Fock and density matrices computed with SIMGMS can be reordered and 
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passed to GAMESS for post-Hartree-Fock computations if desired. While the SIMGMS code 

offers GAMESS the additional flexibility of the SIMINT package, a more minimal interface 

must be implemented to take advantage of GAMESS features such as the extended Hückel 

orbital guess, and effective fragment potential electrostatic and polarization terms. 

 

 In Chapter 6, the esterification of acetic acid and methanol by heterogeneous catalysis 

was investigated. Mesoporous silica nanoparticles (MSN) functionalized with propylsulfonic 

acid were represented with both a minimal all-quantum surface model, and an embedded 

QM/MM surface model of an extended MSN pore. The adsorption of acetic and methanol was 

modeled on both isolated single-site catalysts, and pairs of adjacent catalyst sites. It was 

determined that the minimal models are sufficient for computing optimized structures and 

adsorption energies at the DFT and MP2 levels of theory for single-catalyst structures. For dual-

catalyst structures, the computed adsorption energies and adsorbate orientations largely depend 

on the relative orientations of the adjacent catalyst sites. Therefore, any proposed reaction 

mechanisms that require adjacent catalyst sites should be evaluated for a range of relative 

catalyst orientations. Two single-catalyst stepwise esterification reaction mechanisms were 

proposed. The mechanisms differ primarily by the mechanism of acetic acid protonation, either 

directly by methanol, or by the acid catalyst. Both proposed mechanisms are reversible, with 

similar reaction barrier heights. 

 

 In Chapter 7, on-the-fly ab initio molecular dynamics simulations with spin-flip time-

dependent density functional theory was used to study the photocyclization and 

photoisomerization mechanisms of cis-stilbene following excitation to the ππ* state. A state 
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tracking method was developed to distinguish the target electronic states of interest from nearly 

degenerate states during subsequent dynamics time steps. The dynamics simulations were used 

to compute a trans: dihydrophenanthrene branching ratio of 35:13, which qualitatively 

reproduces the experimentally measured ratio of 35:10. The favorable ratio of trans-stilbene 

compared to the photocyclization product was attributed to a lower energy barrier corresponding 

to rotational motion about the central C=C bond from the ππ* cis-stilbene minimum energy 

structure compared to the kinetic energy of the torsional motion.  

 

 Moving forward from the progress presented in this dissertation, future work will be 

focused on efficiently mapping data management in quantum chemistry software to emerging 

hardware designs. While there is no consensus as to which hardware architecture will be used to 

construct the first exascale system, trends such as increasing complex memory hierarchies and 

manycore massive parallelism are sure to continue.  Considering the fascinating science that is 

already produced within today’s computational limitations, the future of computational 

chemistry is very promising. 

 

 

 

 

 

 


