

Knowledge is power: Quantum chemistry on novel computer architectures

by

Kristopher William Keipert

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Physical Chemistry

Program of Study Committee:
Mark S. Gordon, Major Professor

Theresa L. Windus
Monica H. Lamm
Jacob W. Petrich

Xueyu Song

Iowa State University

Ames, Iowa

2017

Copyright © Kristopher William Keipert, 2017. All rights reserved.

 ii

DEDICATION

This work is dedicated to my daughter Madeleine.

 iii

 TABLE OF CONTENTS

 Page

ABSTRACT .. vi

CHAPTER 1 INTRODUCTION .. 1
 General Overview .. 1
 Dissertation Organization .. 2
 Theoretical Background ... 2
 References ... 14

CHAPTER 2 ENERGY EFFICIENT COMPUTATIONAL CHEMISTRY:
 COMPARISON OF x86 AND ARM SYSTEMS 16

 Abstract ... 16
 Introduction ... 17
 Computational Details ... 18
 Results and Discussion .. 21
 Conclusions ... 28
 Acknowledgements .. 29
 References ... 29

CHAPTER 3 PERFORMANCE AND ENERGY EFFICIENCY
 ANALYSIS OF 64-BIT ARM USING GAMESS 37

 Abstract ... 37
 Introduction ... 38
 Methodology .. 41
 Moonshot Performance and Energy Results .. 46
 Cross-Architectural Study Results ... 49
 Related Work ... 56
 Conclusions ... 57
 Acknowledgements .. 58
 References ... 58

 iv

CHAPTER 4 AN EFFICIENT MPI/OPENMP PARALLELIZATION
 OF THE HARTREE-FOCK METHOD FOR THE
 SECOND GENERATION OF INTEL XEON PHI
 PROCESSOR .. 68

 Abstract ... 68
 Introduction ... 69
 Optimization and Parallelization of the Hartree-Fock Method 74
 Methodology .. 80
 Results and Discussion .. 84
 Conclusion ... 87
 Acknowledgements .. 89
 References ... 90

CHAPTER 5 INTEROPERABILITY OF ELECTRON REPULSION
 INTEGRAL SOLVERS WITH GAMESS 104

 Abstract ... 104
 Introduction ... 105
 Integral Evaluation in GAMESS ... 111
 ERD Integral Evaluation Library ... 112
 SIMINT Integral Evaluation Library ... 116
 Conclusion ... 120
 Acknowledgements .. 121
 References ... 121

CHAPTER 6 FIRST PRINCIPLES COMPUTATIONAL INVESTIGATION
 OF ACETIC ACID ESTERIFICATION BY
 PROPYLSULFONIC ACID – FUNCTIONALIZED SILICA 127

 Abstract ... 127
 Introduction ... 128
 Computational Details ... 130
 Results and Discussion .. 133
 Conclusions ... 147
 Acknowledgements .. 148
 References ... 149

 v

CHAPTER 7 DYNAMICS SIMULATIONS WITH SPIN-FLIP
 TIME-DEPENDENT DENSITY FUNCTIONAL THEORY:
 PHOTOISOMERIZATION AND PHOTOCYCLIZATION
 MECHANISMS OF cis-STILBENE IN ππ* STATES 161

 Abstract ... 161
 Introduction ... 162
 Methodology .. 169
 Computational Details ... 173
 Results and Discussion .. 175
 Conclusions ... 182
 Acknowledgements .. 184
 References ... 184

CHAPTER 8 GENERAL CONCLUSIONS ... 203

 vi

ABSTRACT

 In the first chapter of this thesis, a background of fundamental quantum chemistry

concepts is provided. Chapter two contains an analysis of the performance and energy efficiency

of various modern computer processor architectures while performing computational chemistry

calculations. In chapter three, the processor architectural study is expanded to include parallel

computational chemistry algorithms executed across multiple-node computer clusters. Chapter

four describes a novel computational implementation of the fundamental Hartree-Fock method

which significantly reduces computer memory requirements. In chapter five, a case study of

quantum chemistry two-electron integral code interoperability is described. The final chapters of

this work discuss applications of quantum chemistry. In chapter six, an investigation of the

esterification of acetic acid on acid-functionalized silica is presented. In chapter seven, the

application of ab initio molecular dynamics to study the photoisomerization and photocyclization

of stilbene is discussed. Final concluding remarks are noted in chapter eight.

 1

 CHAPTER 1: INTRODUCTION

General Overview

 The field of theoretical quantum chemistry is a pursuit to describe chemical properties by

application of quantum mechanical principles. Applications of theoretical quantum chemistry

have complemented experimental studies with fundamental explanations of observed physical

phenomena and prediction of physical properties which are experimentally unobtainable. In

practice, the modeling of chemical systems is achieved by using complex computer programs to

compute approximate solutions to the Schrödinger equation. Computational chemists develop the

expertise to choose the appropriate approximations and theoretical models required to accurately

compute the chemical properties of interest. As the performance of computer hardware

architecture progresses, computational chemistry programs are used to model increasingly large

chemical systems at unprecedented levels of accuracy.

Dissertation Organization

 In the first chapter of this thesis, a background of fundamental quantum chemistry

concepts is provided. Chapter two contains an analysis of the performance and energy efficiency

of various modern computer processor architectures while performing computational chemistry

calculations. In chapter three, the processor architectural study is expanded to include parallel

computational chemistry algorithms executed across multiple-node computer clusters. Chapter

four describes a novel computational implementation of the fundamental Hartree-Fock method

 2

which significantly reduces computer memory requirements. In chapter five, a case study of

quantum chemistry two-electron integral code interoperability is described. The final chapters of

this work discuss applications of quantum chemistry. In chapter six, an investigation of the

esterification of acetic acid on acid-functionalized silica is presented. In chapter seven, the

application of ab initio molecular dynamics to study the photoisomerization and photocyclization

of stilbene is discussed. Final concluding remarks are noted in chapter eight.

Theoretical Background

 The evolution of quantum systems over time is described by the time-dependent

Schrödinger equation1:

i! ∂
∂t

Ψ(r,t) = ĤΨ(r,t) (1)

for which i is the imaginary unit, ħ is the reduced Planck constant, Ψ is the wavefunction of the

quantum system with position vector r (e.g. nuclear and electronic coordinates) at time t, and Ĥ

is the Hamiltonian operator[1]. Much of quantum chemistry addresses atomic and molecular

orbital stationary state solutions to the Schrödinger equation. If a Hamiltonian without explicit

time dependence is employed, then the general time-independent Schrödinger equation can be

derived and expressed as the eigenvalue equation

 ĤΨ(r) = EΨ(r) (2)

for which E is the total energy of the quantum system. For a system comprised of N electrons

and M nuclei, the molecular Hamiltonian operator is defined as

[1] The units used throughout this work are atomic units, unless noted otherwise.

 3

Ĥ = -

∇i
2

2i=1

N

∑ -
∇A

2

2M AA=1

M

∑ -
ZA

| ri - RA |A=1

M

∑
i=1

N

∑ + 1
| ri - rj |j>i

N

∑
i=1

N

∑ +
ZAZB

| RA - RB |B>A

M

∑
A=1

M

∑ (3)

 for which AM is the mass of nucleus A divided by the mass of an electron, AZ is the nuclear

charge of nucleus A, ir and jr are the coordinates of electrons i and j, AR and BR are the

coordinates of nuclei A and B, and ▽2 is the Laplacian operator with respect to particle

coordinates. In order, the five terms of the molecular Hamiltonian represent the electronic kinetic

energy (êT), the nuclear kinetic energy (N̂T), the electron-nucleus attraction potential energy (

êNV), the electron-electron repulsion potential energy (êeV), and the nuclear-nuclear repulsion

potential energy (N̂NV). The coupling of electronic and nuclear motions in the êNV term prevents

separation of nuclear and electronic coordinates, and so computation of the wavefunction is an

intractable many-body problem beyond trivial cases. In practice, these motions are usually

assumed to be separable by invoking the Born-Oppenheimer approximation2. Since electrons are

much lighter than nuclei, electronic motion can be approximated as instantaneous response to

fixed nuclear positions. Under this assumption, the value of N̂T is negligible and the N̂NV term

shifts energy eigenvalues by a constant factor. These terms are neglected from Eq. 3 to define an

electronic Hamiltonian operator, ˆ elH

Ĥel = -

∇i
2

2i=1

N

∑ -
ZA

| ri - RA |A=1

M

∑
i=1

N

∑ + 1
| ri - rj |j>i

N

∑
i=1

N

∑ (4)

which depends only parametrically on nuclear coordinates. The electronic Hamiltonian is used to

compute an electronic wavefunction elΨ by

 ĤelΨel (r) = EelΨel (r) (5)

 4

, and the electronic energy obtained is used as a potential for a nuclear wavefunction. As such,

nuclear motions are defined by the nuclear kinetic energy, the nuclear-nuclear electrostatic

repulsions and the fixed-nucleus electronic energy.

 Solving the electronic Schrödinger equation is a prerequisite for computing a potential

energy surface. The electronic wavefunction provides the electron probability density via the

Born postulate and consequently various molecular properties as well. Unfortunately,

examination of the electronic Hamiltonian reveals an underlying many-body problem in the

pairwise electronic interaction of the electron-electron repulsion term. The electron-electron

repulsion term is inseparable due to the inter-electron distance, so an analytical solution for the

electronic Schrödinger equation is not possible for systems with multiple electrons. Neglecting

the term is a poor approximation, because electron repulsion contributes significantly to the total

electronic energy and correlates the spatial occupation of electrons. In Hartree-Fock theory3, êeV

is replaced with a one-electron potential that captures the repulsion between an electron and the

mean field of all other electrons (HFv). Now, the exact electronic Hamiltonian ˆ elH can be

approximated as a sum of one-electron operators. Before HFv is explicitly defined, it is useful to

describe the form of a multielectron wavefunction composed of independent one-electron

wavefunctions.

 A spin orbital is a wavefunction ()χ x that describes the spatial and spin components of

one electron. The Hartree Product HPΨ is a simple N-particle wavefunction constructed from the

product of N independent spin orbitals.

 5

 1 2 1 1 2 2(, ,...) () () ()HP
N N Nχ χ χΨ =x x x x x xL (6)

 The Hartree product wavefunction is symmetric with respect to exchange of spatial and

spin coordinates of two electrons, so it is not a valid wavefunction for fermionic systems. The

Pauli exclusion principle can be satisfied by taking a linear combination of Hartree products. For

a two electron system, the proper antisymmetric linear combination is

Ψ(x1,x2) = 1

2
(c1(x1)c2(x2)− c1(x2)c2(x1)) (7)

which can be written as a Slater determinant4

Ψ(x1,x2) = 1
2

c1(x1) c2(x1)

c1(x2) c2(x2)
 (8)

and generalized for an N-electron system.

Ψ(x1,x2 ,...,x N) = 1
N !

c1(x1) c2(x1) ! cN (x1)

c1(x2) c2(x2) ! cN (x2)

" " # "
c1(x N) c2(x N) ! cN (x N)

 (9)

The wavefunction in (9) is used as the Hartree-Fock wavefunction, HFΨ . By definition,

the ground state energy obtained from an approximate wavefuction is higher than the exact

energy. The Hartree-Fock method is used to variationally solve for an optimal set of spin orbitals

which minimizes the energy. It can be shown that the optimal set of orbitals each satisfy the

eigenvalue equation

 f̂ χ(x i) = εiχ(x i) (10)

where f̂ is the one-electron Fock operator, and the eigenvalue εi is the orbital energy.

 6

The Fock operator consists of the one-electron terms of the Hamiltonian, and the

previously mentioned Hartree-Fock potential.

f̂ = −

▽i
2

2
−

ZA

| ri − R A |A=1

M

∑
i=1

N

∑ + vHF (i) (11)

The potential for closed shells is now explicitly defined as

/2

1

ˆ ˆ() (2)
N

HF
j j

j
v i J K

=

= −∑ (12)

where Ĵ is the coulomb operator

 * 1
1 2 2 2 12 1

ˆ () () () ()j i j j iJ d rχ χ χ χ−⎡ ⎤= ⎣ ⎦∫x x x x x (13)

and K̂ is the exchange operator.

 * 1
1 2 2 1 12 2

ˆ () () () ()j i j j iK d rχ χ χ χ−⎡ ⎤= ⎣ ⎦∫x x x x x (14)

 Because of the dependence on the molecular orbitals in the Fock operator, (10) must be

solved iteratively. The spatial component of a molecular orbital is usually approximated by a

linear combination of basis functions called atomic orbitals µφ ,

1

i iCµ µ
µ

ψ φ
=

=∑ (15)

where C is a contraction coefficient. Gaussian basis functions5 are commonly used; they may

consist of a single Gaussian function or multiple contracted Gaussian functions. In the basis set

representation, the integro-differential Hartree-Fock equations are represented in matrix form by

the Roothaan-Hall equations6

 FC = SCε (16)

where F is the Fock matrix defined by the Fock operator, C is a matrix of molecular orbital

coefficients, S is the overlap matrix of the basis functions, and ε is a diagonal matrix containing

 7

the orbital energies. The algebraic Roothaan-Hall equations can be solved by standard matrix

techniques.

The Hartree-Fock method typically accounts for more than 99% of the exact relativistic

energy 0E . The unrecovered energy is called the correlation energy, corrE .

 0corr HFE E E= − (17)

Although the magnitude of the correlation energy is relatively small, the inclusion of correlation

effects is crucial for accurate description of chemical bonding and electronic excitation, among

other important phenomena[2]. The correlation energy can be divided into two distinct categories.

Dynamic correlation energy arises from correlated electron motion via instantaneous Columbic

repulsion. Non-dynamic or static correlation energy reflects the inadequacy of the single Slater

determinant in accurately describing molecular systems with multiple nearly degenerate

electronic configurations. As both types of correlation energy come from the same physical

phenomenon, the distinction is artificial. A number of “post-Hartree-Fock” or “correlated”

methods have been developed in order to improve Hartree-Fock by recovering correlation

energy. One commonly used approach is Møller–Plesset perturbation theory7, in which a

perturbation V is added to the unperturbed Hartree-Fock Hamiltonian 0Ĥ :

 0
ˆ ˆ
elH H Vλ= + (18)

The exact eigenfunctions and eigenvalues are expanded in a Taylor series in λ

 () (0) ()

1

n
n i i

i
λ

=

Ψ =Ψ + Ψ∑ (19)

 [2] Correlation energy in this text specifically refers to Coulomb correlation. The Hartree-Fock electron exchange
term fully accounts for Fermi correlation.

 8

 () (0) ()

1

n
n i i

i
E E Eλ

=

= +∑ (20)

The perturbation is truncated at the chosen nth order (PTn). The series often does not converge,

so the perturbation is commonly truncated at second order. Including higher order terms

significantly increases computational cost with an unpredictable impact on accuracy. The MP2

energy expression is

EMP2 =

1
4

φiφ j |V |φaφb φaφb |V |φiφ j

εi + ε j − εa − εbi, j ,a,b
∑ (21)

The i and j indices run over occupied orbitals, and the a and b indices run over virtual orbitals.

MP theory is size consistent but not variational - the computed energy may be lower than the

actual ground state energy. MP2 typically recovers 80-90% of the correlation energy, with a

computational cost scaling at order n5 relative to system size. Perturbation theory is most

successful when a small perturbation is applied, which means the Hartree-Fock wavefunction

should be a good approximation of the exact wavefunction. As such, the reliability of MP

methods is very system dependent.

 In other popular correlated methods, a multi-determinant electronic wavefunction is

systematically constructed by combining multiple configuration state functions (CSFs) built from

spin orbitals. The resulting wavefunction includes excited determinants relative to a reference

such as the Hartree-Fock wavefunction. One approach is the configuration interaction method

(CI)8. The CI wavefunction CIΨ is expanded by applying a linear excitation operator C to the

reference wavefunction.

 (1)CI HFCΨ = + Ψ (22)

 9

1

N

j
j

C C
=

=∑ (23)

The excitation operator subscript refers to the number of excited electrons. For example,

2 | HFC φ 〉 represents all terms involving double excitations. The weight (CI coefficient) for each

determinant is variationally optimized. If the full CI expansion is used, then the exact non-

relativistic energy can be computed within the Born-Oppenheimer and basis set limitations. Full

CI is currently impractical for more than ~10 electrons with a moderate basis set, as the

computational cost of the method scales factorially with respect to system size. In practice, the

CI expansion is typically truncated to include only double excitations (CID), or single and

double excitations (CISD). Energy eigenvalues for ground and excited electronic states are

computed during the CI procedure, so the method can be used to calculate excitation energies.

While full CI is size extensive and size consistent, the properties are lost when the

expansion is truncated. A class of methods based on the related but distinct coupled-cluster (CC)

theory9 is size extensive and size consistent even after truncation. The main difference between

CC and CI is the form of the excitation operator. In CC theory, an exponential cluster operator

Te acts on the reference wavefunction

1 2 3(...)

2 2 3
1 2 3 1 2 1 3 1

1 1 1 ...)
2

(
2 6

1

T T TCC HF

HF

e

T T T TT T TT

+ +Ψ = Ψ

+ + + + + ++ Ψ= + (24)

where nT is the operator of all n-electron excitations. The cluster operator is written in terms of

creation operators ˆaa and annihilation operators ˆia acting on occupied orbitals (hole states) i,j

and virtual orbitals (particle states) a,b, and excitation amplitude coefficients t.

 10

 ∂ µ1 2 1 2

1 2 2 1

1 2 1 2

, ,...,
, ,...,2

, ,..., , ,...,

1 ˆ ˆ ˆ ˆ... ...
(!)

n n

n n
n n

i i i aa a
n a a a i i i

i i i a a a
T t a a a a a a

n
= ∑ ∑ (25)

CC methods are computationally demanding, and inclusion of single, double, and triple

excitations is usually required for accurate energy calculations. With respect to system size,

CCSD scales as N6 and CCSDT scales as N8. One approach to reducing the computational cost is

combining the standard iterative singles and doubles method (CCSD) with an estimation of the

T3 energy by perturbation theory (CCSD(T))10, which reduces the scaling compared to full

CCSDT by an order of magnitude. CC and CI theory are equivalent if the excitation operators

are not truncated, but when truncated at the same excitation level, CC methods include

contributions from higher-order terms which are missing from the analogous CI expansion. The

additional contributions are products of lower-order terms. For example, the expansion of the T1

and T2 operators is:

 { } 2 2
1 2 1 1 2 2

1 11
2 2

Te T T T TT T⎧ ⎫= + + + + +⎨ ⎬
⎩ ⎭

 (26)

The first and second bracketed terms are analogous to the C1 and C2 terms of the CI excitation

operator expansion, respectively. While the computational cost of CC and CI scale similarly at

the same operator truncation level, these extra terms partially contribute to the larger scaling

prefactor of CC methods, and to the size consistence of the CC method.

 The truncated CI and CC methods are among the most practical and highly accurate tools

used by computational chemists over the past few decades. While many molecular systems can

be successfully studied with these methods, they are based on a single-reference determinant and

often fail to correctly describe systems with significant static correlation (e.g. homolytic bond

 11

cleavage, nearly-degenerate electronic states). Even for well-separated states, truncated CI tends

to overestimate excitation energies because the ground and excited states are not equivalently

correlated11. Multi-determinant reference wavefunctions are commonly computed with the multi-

configurational self-consistent field (MCSCF)12 method. The MCSCF wavefunction is a

truncated CI expansion in which the molecular orbitals for each configuration are optimized in

addition to the CI coefficients. The choice of which configurations to include is an important

consideration and highly dependent on the molecular system and physical properties of interest.

One approach is complete active space SCF (CASSCF)13, in which orbitals are partitioned into

core, active, and virtual spaces. Core and virtual orbitals are the same as Hartree-Fock occupied

and virtual orbitals. Active orbitals within a chosen active space can be partially occupied.

Within the active space, a full CI calculation is performed which generates determinants for

every possible electron configuration within the space. Considering the computational cost of

full CI, it is useful to choose the smallest active space that can sufficiently model the problem at

hand. Once the MCSCF wavefunction is obtained, it may be used as a reference for other

methods to compute dynamic correlation energy. Common choices include multi-reference CI14

or multi-reference perturbation methods such as complete active space perturbation theory15. In

addition to “true” multi-reference methods, some single-reference approaches have been

developed to describe limited static correlation effects16.

As a crude summary, the Hartree-Fock method is based on the idea that a many-electron

wavefunction can be represented by a determinant of one-electron wavefunctions. The error

introduced by this assumption within the nonrelativistic Born-Oppenheimer regime, the

correlation energy, is physically important but computationally expensive to recover. This

 12

expense comes from the requirement to emulate the correlated electron-electron motion

neglected in Hartree-Fock theory. In 1964, Kohn and Hohenberg introduced density functional

theory (DFT)17, which is today the most widely used computational chemistry method. Many

functionals of the electron density have been developed which allow computation of various

molecular properties. While a wavefunction is a 3N-dimensional variational problem, the

electronic density depends on only 3 spatial coordinates for any number of electrons. As a result,

the computational scaling of DFT is similar to Hartree-Fock with the benefit of recovering

correlation energy.

Kohn-Sham DFT (KS-DFT)18 is the most commonly used implementation of DFT. The

Kohm-Sham equations are a coupled set of differential equations which define a one-particle

Schrödinger-like equations similar to the Hartree-Fock equations. As in Hartree-Fock theory, the

Kohm-Sham equations describe a system of independent particles subject to an external

potential. The effective one-electron Hamiltonian operator used in KS-DFT is the Kohm-Sham

operator, ˆKSh .

ĥKS = −▽

2

2
+

ZA

| r − rA |A=1

M

∑ + ρ(r ')
| r − r ' |

dr '+Vxc∫ (27)

The exchange-correlation potential ()xcV r and the corresponding energy expression are the only

unknown variables in KS-DFT. If the exact ()xcV r were known, then the energies computed by

KS-DFT would be exact. The lack of exact exchange and correlation functionals is the major

shortcoming of DFT. Many approximate functionals have been developed, often by empirically

fitting to data obtained from experiment or wavefunction ab initio methods. As a result, the

 13

accuracy of properties computed with DFT is dependent on the chosen exchange-correlation

functional. When a functional is carefully chosen for the problem of interest, DFT can be a

powerful tool with relatively low computational cost.

 In 1937, physicist Howard Hathaway Aiken wrote:

“At the present time, there exist problems beyond our ability to solve, not because of theoretical

difficulties, but because of insufficient means of mechanical computation.”19

While the quantum chemistry methods discussed so far are theoretically robust, there are two

primary limitations which restrict the scope of tractable problems. First, there is a limited number

of floating point operations per second (FLOPS) that current computer hardware can perform.

Since 2008, the fastest supercomputers running at peak performance are capable of throughput at

the magnitude of petaflops20. Reaching exascale performance will require significant advances in

energy efficiency, memory, and interconnect technology. The second limitation lies in the

efficient implementation of quantum chemistry methods on supercomputers. Computer hardware

and software tool technologies are moving targets which advance rapidly compared to

computational chemistry software. Achieving strong application performance on modern

supercomputers often requires careful restructuring of core computational kernels.

 14

References

1. (a) Schrödinger, E. Ann. Phys. 1926, 79, 361. (b) Schrödinger, E. Ann. Phys. 1926, 79,

489. (c) Schrödinger, E. Ann. Phys. 1926, 79, 734. (d) Schrödinger, E. Ann. Phys. 1926,

80, 437. (e) Schrödinger, E. Ann. Phys. 1926, 81, 109. (f) Schrödinger, E.

Naturwissenschaften 1926, 14, 664.

2. Born, M.; Oppenheimer, R. Ann. Phys. 1927, 389, 457.

3. (a) Hartree, D.R. Math. Proc. Cambridge Philos. Soc. 1928, 24, 89 (b) Fock, V. Z. Phys.

1930, 61, 126. (c) Fock, V. Z. Phys. 1930, 62, 795.

4. Slater, J.C. Phys. Rev. 1929, 34, 1293.

5. Boys, S.F. Proc. R. Soc. London Ser. A. 1950, 200, 542.

6. (a) Roothan, C.C.J. Rev. Mod. Phys. 1951, 23, 69. (b) Hall, G.G. Proc. R. Soc. A 1951,

205, 541.

7. Møller, C.; Plesset, M.S. Phys. Rev. 1934, 46, 618.

8. (a) Kellner, G.W. Z. Phys. 1927, 44, 91. (b) Bacher, R.F. Phys. Rev. 1933, 43, 264. (c)

Ufford, C.W. Phys. Rev. 1933, 44, 732.

9. (a) Coester, F. Nucl. Phys. 1958, 7, 421. (b) Coester, F.; Kümmel, H. Nucl. Phys. 1960,

17, 477. (c) Čížek, J. J. Chem. Phys. 1966, 45, 4256.

10. Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. Chem. Phys. Lett. 1989,

157, 479.

11. Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009.

12. Hartree, D.R.; Hartree, W.; Swirles, B. Phil. Trans. R. Soc. A 1939, 738, 229.

 15

13. (a) Hegarty, D.; Robb, M.A. Mol. Phys. 1979, 38, 1795. (b) Siegbahn, P.E.M.; Heiberg,

A.; Roos, B.O.; Levy, B. Phys. Scripta 1980, 21, 323.

14. Buenker, R.; Peyerimhoff, S.; Butscher, W. Mol. Phys. 1977, 35, 771.

15. (a) Andersson, K.; Malmqvist, P.-A.; Roos, B.O.; Sadlej, A.J.; Wolinski, K. J. Phys.

Chem. 1990, 94, 5483. (b) Andersson, K.; Malmqvist, P.-A.; Roos, B.O. J. Chem. Phys.

1992, 96, 1218.

16. (a) Kowalski, K.; Piecuch, P. J. Chem. Phys. 2000, 113, 18. (b) Piecuch, P.; Włoch, M. J.

Chem. Phys. 2005, 123, 71.

17. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, 864.

18. Kohn, W.; Sham, L.J. Phys. Rev. 1965, 140, 1133.

19. Aiken, H.H. Proposed automatic calculating machine. 1937, 18.

20. Barker, K.J.; Davis, K.; Hoisie, A.; Kerbyson, D.J.; Lang, M.; Pakin, S.; Sancho, J.C.

Supercomputing ‘08 2008, 1.

 16

CHAPTER 2: ENERGY EFFICIENT COMPUTATIONAL CHEMISTRY:

COMPARISON OF x86 AND ARM SYSTEMS

A paper published in the Journal of Chemical Theory and Computation

Kristopher Keipert, Gaurav Mitra, Vaibhav Sunriyal, Sarom S. Leang, Masha Sosonkina,

Allistair Rendell, and Mark S. Gordon

Abstract

 The computational efficiency and energy-to-solution of several applications using the

GAMESS quantum chemistry suite of codes is evaluated for 32-bit and 64-bit ARM-based

computers, and compared to an x86 machine. The x86 system completes all benchmark

computations more quickly than either 3ARM system and is the best choice to minimize time to

solution. The ARM64 and ARM32 computational performances are similar to each other for

Hartree-Fock and density functional theory energy calculations. However, for memory-intensive

second order perturbation theory energy and gradient computations the lower ARM32 read/write

memory bandwidth results in computation times as much as 86% longer than on the ARM64

system. The ARM32 system is more energy efficient than the x86 and ARM64 CPUs for all

benchmarked methods, while the ARM64 CPU is more energy-efficient than the x86 CPU for

some core counts and molecular sizes.

 17

Introduction

 It is widely recognized that energy usage is a major bottleneck in the pursuit of

improving computational performance. This reflects in part the demise of Dennard scaling1,2,

but also fundamental limitations on the energy that can be provided to a single chip regardless of

the transistor count. Consequently, computational application developers and users will

increasingly need to consider both speed and energy and the interplay between these two metrics.

Clear evidence of this trend is seen in the rapid rise of energy-optimized accelerators and co-

processors and in the availability of advanced power management facilities on modern

processors.

 In the pursuit of new energy-efficient hardware designs, low-power mobile computing

driven by ARM-based system-on-chip (SoC) processors has aroused significant interest within

the high performance computing (HPC) community. These systems are designed with energy

efficiency in mind, typically utilizing 32-bit CPUs that are optimized for 32-bit arithmetic. This

may be adequate for mobile applications but for quantum chemistry applications large memory

and double precision floating point arithmetic is usually required. And while ARM-based

devices are now being used in servers it is not yet clear whether either 32-bit ARM-based SoC

computers or more recent 64-bit ARM CPUs are viable for HPC workloads. The popular

GAMESS3 quantum chemistry package is used on a wide range of HPC architectures and is

therefore a useful test bed for assessing the performance of novel architectures. The present work

focuses on measuring performance and energy-to-solution of GAMESS workloads on two ARM-

based systems, a 32-bit NVIDIA Jetson TK1 and a 64-bit APM Xgene1 X-C1. The two ARM

 18

systems are also compared to a 64-bit Haswell x86 Intel Xeon-E5 processor. A set of commonly

used computational chemistry techniques are evaluated, namely Hartree-Fock (HF) self-

consistent field (SCF)4, density functional theory (DFT)5-7 and 2nd-order Møller-Plesset (MP2)8,9

energy and gradient calculations.

Computational Details

 The GAMESS performance evaluations used a benchmark set of molecules that contains

99-509 basis functions when using the 6-31G(d)10-12 basis set. Power measurements were

obtained for DFT, HF SCF, MP2 energy, and MP2 gradient calculations. The PBE0 functional13-

15 was used in all DFT calculations. MP2 energy-to-solution and performance comparisons were

performed using the distributed data interface (DDI) implementation of MP216-18 in GAMESS.

In all benchmarks, two-electron integrals were calculated at each (direct) SCF step. The

molecules used for benchmarking are listed in Table 1. The molecular geometries used for all

benchmark calculations were obtained by HF/ cc-PVDZ19,20 optimizations.

Hardware

 The 32-bit ARM machine is an NVIDIA Jetson TK1, configured with a quad-core 2.35

GHz ARM Cortex-A15 CPU (ARMv7-A architecture) paired with 2 GB of LP-DDR3 RAM.

The 64-bit ARM machine is an AppliedMicro (APM) X-Gene X-C1 with an 8-core 2.4 Ghz

APM883208-X1 CPU (ARMv8-A architecture) and 16 GB of DDR3 memory. The Haswell x86

 19

machine utilizes an 18-core Intel Xeon E5-2699 v3 CPU clocked to the maximum turbo

frequency of 3.6 GhZ and 32 GB of DDR4 memory.

To consider the impact on computational performance due to the different system

memory types used in each machine, the DRAM read and write bandwidths were measured with

the LMBench21 performance analysis suite. For small memory transactions, 1.05MB in size, the

read/write bandwidth is 18.0/12.6 GB/s for the x86 system, 5.9/9.5 GB/s for the ARM64 system,

and 4.3/9.2 GB/s for the ARM32 system. For larger memory transactions, 67.11 MB in size, the

read/write bandwidth is 10.6/7.6 GB/s for the x86 system, 5.1/9.3 GB/s for the ARM64 system,

and 1.2/3.2 GB/s for the ARM32 system. The 32-bit x86 4 GB physical memory capacity

limitation is expanded to 1 TB for the 32-bit ARMv7-A architecture via 40-bit physical memory

address space support. Also, note that on the 32-bit ARM system double precision numbers are

moved between the CPU registers and system memory locations in two 4-byte segments, while

on the 64-bit CPUs the entire 8-byte number can be moved to memory with a single instruction.

Software

GAMESS was compiled for the x86 and ARM32 systems with GCC v4.8 and with GCC

v5.1 on the ARM64 system (v5.1 is the first version with compiler tuning capabilities for the X-

Gene1 CPU). BLAS routines were provided by the ATLAS v3.11 math library22, natively built

for each machine to take advantage of automatic tuning of BLAS routines for each hardware

type.

 20

Energy/Power Measurements

The Running Average Power Limit (RAPL)23 software interface which reads energy

consumption information from model-specific registers on an x86 CPU was used to measure the

DC power consumption of the 18-core Haswell CPU. RAPL measurements were reported every

0.2 seconds. The DC power consumption of the 64-bit ARM CPU was measured by placing a

Fluk i1010 AC/DC current clamp around the wire from the Power Supply Unit (PSU) that

supplies power to the CPU. The current clamp was connected to a multimeter which stored

current measurements every 0.5 seconds on a remote server. The current used by the ARM32

Jetson system was measured using a uCurrent Gold high precision current measurement tool and

an mbed LPC1768 micro-controller with a 12 bit analog-to-digital (ADC) converter, ranging

from 0-3.3V. To measure the current, a 0V supply line for the system was routed through the

current side of the uCurrent Gold. The ADC was then connected across the voltage output pins

of the uCurrent Gold. Serial connections were used to send start and stop signals from the Jetson

to the measuring device and to send the measurements from the measuring device to the

measuring computer.

The power measurements reported for both the x86 Haswell and ARM64 systems are

only for the CPU. The RAPL interface used for measurements of the x86 system provides energy

consumption information for the isolated CPU socket. The current clamp used for ARM64

measurements probes the +12V wire from the ATX power supply unit that powers the CPU only.

The ARM32 Jetson uses an AC adapter that has a single power supply output. ARM32 energy

 21

measurements are for the entire system and include power consumption for components such as

the fan and memory in addition to the CPU.

Results and Discussion

Computational Efficiency

The CPU wall clock times for the various methods on the different platforms are shown

in Figure 1 normalized according to the number of basis functions in each molecule. For all

methods employed there is an increase in computational time per basis function as the system

size increases. This reflects the worse-than-linear scaling of all methods. For the DFT energy

computations in Figure 1A, the x86 single core performance is consistently better by a factor of

~3 than both ARM CPUs, with little change in the ratio as the system size increases. The x86

performance relative to ARM64 decreases to a factor of ~2.8 when 8 cores are used. The

performance of the ARM32 and ARM64 CPUs are within ±10% of each other.

The results for the HF SCF energy shown in Figure 1B are similar to those for the DFT

energy. That is, on average the ARM32 computation is 3.3% slower than the ARM64

computation while the ARM64 system takes on average 3.17x/3.16x/2.90x/2.69x longer than the

x86 system for HF calculation execution time with 1/2/4/8 cores. For the MP2 energy and

gradient calculations memory requirements limit the calculations on the ARM32 system to four

molecules that contain 99-250 basis functions, while other restrictions due to the DDI

 22

implementation limits the calculations to six molecules in the range 99-405 basis functions on

the ARM64 and x86 systems.

The computation times for the MP2 energy calculations (Figure 1C) show the largest

difference in performance between ARM32 and ARM64 among all analyzed computation types.

Furthermore, the performance degradation of the ARM32 CPU relative to ARM64 worsens with

increasing system size and the number of cores used. For example, the MP2 energy computation

time for the smallest system, pentane, is 8.6%/13.6%/20.7% greater on 1/2/4 ARM32 cores

compared to the same number of ARM64 cores, and 10.0%/22.8%/44.1% greater on 1/2/4

ARM32 cores than the same number of ARM64 cores for the largest molecule that can be run on

ARM32 (TNT). By contrast no such correlation is found between the system size or the number

of active cores and the relative computational performance when comparing the x86 system to

the ARM64 system. On average, the MP2 energy calculations take 3.27x/3.37x/3.32x/3.25x

more execution time on the ARM64 system than the x86 system for 1/2/4/8 cores.

 For the MP2 gradient (Figure 1D), there is a weak correlation between the number of

CPU cores used and the relative system performance for ARM64 vs. ARM32, but no such

correlation is observed for molecule size. On average, the ARM64 system executes MP2

gradient calculations in 8.5%/10.3%/10.4% less time than the ARM32 system for 1/2/4 cores.

The performance benefits of the x86 system relative to the ARM64 system decrease when the

number of cores used for the computation is increased. With the exception of the largest

molecule (THC: 405 basis functions) the MP2 gradient calculation using the x86 system is on

average 2.95x/2.89/2.80/2.67x faster than the ARM64 system with 1/2/4/8 cores. No consistent

 23

correlation between system size and relative performance of x86 vs. ARM64 is observed, but the

relative advantage in computational speed for the x86 machine relative to the ARM64 system for

the MP2 gradient calculation is greatest for the largest molecule: 3.54x/3.90x/3.61x/3.65x with

1/2/4/8 cores. In general, the ARM32 system performance is worse than the ARM64 system

performance for MP2 calculations in contrast to the similar performance observed for the less

memory-intensive HF SCF and DFT energy calculations. This degradation in performance may

be due to the relatively low read and write bandwidths which were measured for the LPDDR3

RAM of the ARM32 device.

Energy Consumption

Figure 2 shows the energy consumption per basis function for (A) the DFT energy, (B)

the HF SCF energy, (C) the MP2 energy, and (D) the MP2 gradient calculations measured for the

x86, ARM64, and ARM32 systems. For the DFT calculations averaged over all molecules the

ARM32 system requires 31.8%/36.5%/44.3% of the energy consumed by the x86 CPU for 1/2/4

core jobs, while the ARM64 CPU requires 116.2%/102.9%/89.5%/79.5% of the x86 CPU energy

for calculations on 1/2/4/8 cores. The HF SCF energy calculations (Figure 2B) exhibit similar

trends for the x86 and ARM64 CPUs for all core counts; that is the x86 calculation is always

slightly more energy efficient for all benchmark molecules on 1 core and always less efficient

than the ARM64 CPU on 4 and 8 cores. The ARM32 system consumes an average of 31.1% of

the x86 CPU energy for 1 core, 36.3% for 2 cores, and 48.6% for 4 cores.

 24

The MP2 energy efficiency results are shown in Figure 1C. The ARM64 calculations on

average and using 1/2 cores consumes 29.1%/11.1% more energy than 1/2 x86 cores; when using

4 or 8 cores the x86 machine falls within ±3% of the analogous results obtained on the ARM64

machine. The ARM32 system is the most energy efficient, but this energy efficiency rapidly

diminishes when increasing the number of cores. On 1/2/4 cores the MP2 energy calculations on

the ARM32 system and averaged over all molecules uses 36.5%/48.4%/71.8% of the energy

required for the equivalent calculations on the x86 system. For the MP2 gradient computations,

the energy consumption of the ARM64 CPU averaged over all molecules is

117%/102%/90%/86% of the x86 CPU energy used for the same computations on 1/2/4/8 cores.

On the ARM32 system the 99-250 basis function computations consume on average

31.9%/40.0%/51.0% of the energy used by the x86 CPU for 1/2/4 cores, similar to the relative

energy consumption for the DFT energy and HF SCF computations.

Busy/Idle Core Energy Usage

When running a calculation on less than the total number of CPU cores, the unused cores

consume energy in the idle state. To examine the efficiency of running parallel versus multiple

copies of sequential code, and in order to estimate the energy consumed by busy and idle cores,

the energy usage was measured for MP2 gradient calculations on TNT performed using varying

levels of CPU core saturation. The energies and times used per basis function are shown in Table

2. The 1-core values correspond to single 1-core computations while all remaining cores are idle.

The 8-core values correspond to 8 cores used for a single computation running in parallel. This

 25

fully saturates the available ARM64 cores but leaves 10 idle cores for the x86 CPU. Also

shown is the energy usage for running 8x1-core jobs simultaneously.

The 8x1-core parallel and 8-core schemes have similar energy consumption and

calculation times for all computation steps for both x86 and ARM64 CPUs with the exception of

the MP2 energy on the x86 system. That is, it is as efficient to run 8 identical single core

calculations simultaneously as it is to run one calculation in parallel using 8 cores, and then to

repeat that calculation 8 times. For the x86 MP2 energy there is a slight difference: the 8x1 core

parallel scheme consumes 9.2% more energy and takes 8.3% more execution time per basis

function compared to the 8-core computation. Overall the results suggest that the HF SCF, MP2

energy, and MP2 gradient algorithms in GAMESS do not have significant computational cost

overhead for parallel task coordination. Also, there is no significant off-chip memory or I/O

contention when running 8 compute processes in parallel.

To calculate the power consumption of individual busy and idle cores their energy usage

is approximated using Eqs 1 and 2, respectively. CoreMax is the number of physical cores per

CPU: 18 for x86 and 8 for ARM64. In Eq 1, the “saturated” subscript indicates the value for

CoreMax jobs running simultaneously, each using one core. This corresponds to the “x86 18x1-

Core, Parallel” and “ARM64 8x1-Core, Parallel” values (Table 2). In Eq 2, the “n-core”

subscript indicates the value for a single job running on n cores. The value n=1 is chosen for idle

core calculations in this study and corresponds to the “x86 1-Core” and “ARM64 1-core” values

in Table 2.

 26

Busy Core Power =

EnergySaturated / TimeSaturated

CoreMax

 (1)

Core Power =

Energyn-Core / Timen-Core - (n * Busy Core Power)
CoreMax - n

 (2)

The calculated power consumption per busy core during the HF SCF/MP2 energy/MP2

gradient calculations is 7.93W/7.65W/6.74W for the x86 CPU and 3.35W/3.64W/3.53W for the

ARM64 CPU. The calculated power consumption per idle core during the HF SCF/MP2

energy/MP2 gradient calculations is 2.47W/2.57W/2.55W for the x86 CPU and

2.62W/2.21W/2.10W for the ARM64 CPU. Extrapolating the average idle core power

consumption during the three calculation types to the CoreMax value, the calculated total power

consumption for an idle CPU is 45.57W for the x86 CPU and 18.46W for the ARM64 CPU.

For comparison power usage was measured experimentally for both CPUs in the idle

state over a period of 1 hour. It was found that while on the ARM64 the average measured value

of 19.10W agreed well with the derived value of 18.46W, the measured value of 16.83W on the

x86 CPU is significantly less than the derived value of 45.57W. This 2.7x reduction in power

usage presumably reflects the fact that the Haswell x86 CPU includes the C7 sleep state feature

to lower idle core power consumption when the entire CPU is idle. In terms of ideal energy

efficiency for the quantum chemistry algorithms analyzed, the results clearly demonstrate that it

is much more important to saturate all available cores regardless of the number of cores per

 27

computation than it is to choose between parallel and back-to-back serial computation

executions. This is particularly true for the Haswell architecture, which incurs a relatively large

incremental energy cost when left in the completely idle CPU state. This is not observed for the

ARM64 CPU.

Power Trace

To explore whether energy usage changes significantly during the course of the

calculations Figure 3 shows a trace of the instantaneous power consumption of the x86 and

ARM64 CPUs and ARM32 system during an MP2 gradient calculation on TNT running on 4

CPU cores. The average idle energy consumption over a 1-hour measurement is plotted in

Figure 3 for the x86, ARM64 and ARM32 systems, indicated by times from -100 to 0 seconds.

The average x86 idle CPU power consumption of 16.83W is initially lower than the 19.10W

average of the ARM64 CPU, but within 1 second of the HF SCF calculation, power consumption

increases by 71.95W for the x86 CPU, but only to 23.12W for the ARM64 CPU. The ARM32

system uses less power than either ARM64 or x86, with an average idle power consumption of

3.21W which increases to 10.58W after 1.0 second has elapsed in the HF SCF calculation.

Table 3 shows the mean, standard, and relative standard deviations of the x86, ARM64

and ARM32 systems during the CPU power trace calculation. On all machines, once the

computation has begun, fluctuations in power usage are relatively small. For the x86 and

ARM64 CPUs, the mean power consumption is highest for the MP2 energy calculation, followed

by the MP2 gradient and the HF SCF calculations. The ARM32 MP2 gradient calculation

 28

consumes slightly more power in the gradient step, followed by the HF SCF energy and the MP2

energy calculation. The standard deviation of CPU power consumption is highest for the x86

CPU for each calculation step of the power trace at 1.57W for the HF SCF step, 2.17W for the

MP2 energy step, and 2.52W for the MP2 gradient step. The relative standard deviation, which

takes the magnitude of the average power consumption into account, is lowest for the x86 CPU

at 2.52% for the HF SCF step, 2.17% for the MP2 energy step, and 1.57% for the MP2 gradient

step. The ARM64 CPU power consumption is the most consistent between calculation steps with

a standard deviation of 0.86W for the HF SCF step, 0.98W for the MP2 energy step, and 0.81W

for the MP2 gradient step.

Conclusions

 Supercomputers capable of exascale level computations will greatly extend the

complexity of feasibly solvable problems in computational sciences. The most significant barrier

to exascale supercomputers is the relatively poor energy efficiency of modern computer

hardware. To reach the exascale it is therefore imperative that improvements in CPU technology

address both computational throughput and energy efficiency. This work has explored these

issues in the context of a widely used quantum chemistry package running on ARM32, ARM64

and x86 processors. For all methods and molecules considered the x86 CPU is the clear choice in

terms of minimizing time to solution. For energy efficiency the ARM32 system offers the best

performance, but the 32-bit architecture limits the utility of this system for quantum chemistry

calculations. While these limitations have been lifted with the advent of ARM64 systems, it

appears that this has come at a significant cost to energy usage without a significant increase in

 29

performance. Whether the latter is in part a reflection on the immaturity of the ARM64 compiler

and runtime remains to be seen.

Acknowledgements

 The authors thank Intel Corp. and NVIDIA Corp. for their support of this work. K.K.,

V.S., S.L., M.S., and M.S.G. thank the Air Force Office of Scientific Research for their support

of this work under AFOSR Award No. FA9550-12-1-0476.

References

1. Dennard, R. H.; Gaensslen, F.; Yu, H-N.; Rideout, L.; Bassous, E.; LeBlanc, A. IEEE J.

Solid-State Circuits 1974, SC-9, 256.

2. The impact of Dennard’s scaling theory. IEEE Solid-State Circuits Society News 2007, 12

(1).

3. Gordon, M. S.; Schmidt, M. W. In theory and applications of computational chemistry:

The first forty years; Elsevier: Amsterdam, The Netherlands, 2005.

4. Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory; Dover Publications, Mineola, NY, 1996.

5. Hohenberg, P.; Kohn, W. Phys. Rev. B. 1964, 136, 864.

6. Kohn, W.; Sham, J. J. Phys. Rev. A 1965, 140, 1133.

7. Parr, R.; Yang, W. Density-Functional Theory of Atoms and Molecules; International

Series of Monographs on Chemistry; Oxford University Press, New York, 1989.

 30

8. Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

9. Bartlett, R. J. Annu. Rev. Phys. Chem. 1981, 32, 359.

10. Ditchfield, R.; Hehre, W. J.; Pople, J. A.. J. Chem. Phys. 1971, 54, 724.

11. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.

12. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput.

Chem. 2001, 22, 976.

13. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

14. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.

15. Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.

16. Fletcher, G. D.; Schmidt, M. W.; Bode, B. M.; Gordon, M. S Comput. Phys. Commun.

2000, 128, 190.

17. Olson, R.; Schmidt, M.; Gordon, M.S.; Rendell, A. Supercomputing 03’ 2003, 41.

18. Federov, D. G.; Olson, R. M.; Kitaura, K.; Gordon, M. S.; Koseki, S. J. Comput. Chem.

2004, 25, 872.

19. Dunning, Jr., T. H. J. Chem. Phys. 1989, 90, 1007.

20. Woon, D. E.; Dunning, Jr., T. H. J. Chem. Phys. 1995, 103, 4572.

21. McVoy, L.; Staelin, C. Proceedings of the 1996 annual conference on USENIX Annual

Technical Conference 1996, 23.

22. Whaley, R. C.; Petitet, A.; Dongarra, J. J. Parallel Computing, 2000, 27, 3.

23. David, H.; Gorbatov, E.; Hanebutte, Ulf R.; Khanna, R.; Le, C. In ACM/IEEE

International Symposium on Low-Power Electronics and Design 2010, 189.

 31

Table 1. Benchmark molecule specifications

Molecule Chemical Formula Number of Basis Functions

Pentane C5H12 99

Asparagine C4H8N2O3 151

Nicotine C10H14N2 208

Trinitrotoluene (TNT) C7H5N3O6 250

Indigo C16H10N2O2 320

Tetrahydrocannabinol (THC) C21H30O2 405

Adenosine Triphosphate (ATP) C10H16N5O13P3 509

 32

Table 2. Energy consumption and computation time per basis function of x86 and ARM64

CPUs for TNT (250 basis functions) MP2 gradient calculation steps for 1-core and 8-core

calculations, and for 8 and 18 1-core calculations in parallel

 Energy/B. Function, J Time/B. Function, s

HF SCF Energy x86 1-Core 19.849 0.397

x86 8-Core 5.658 0.062

x86 8x1-Core, Parallel 5.665 0.063

x86 18x1-Core, Parallel 4.139 0.029

ARM64 1-Core, Serial 21.676 1.144

ARM64 8-Core 4.003 0.158

ARM64 8x1-Core, Parallel 4.155 0.155

MP2 Energy x86 1-Core 44.784 0.871

x86 8-Core 13.362 0.145

x86 8x1-Core, Parallel 14.597 0.157

x86 18x1-Core, Parallel 13.352 0.097

ARM64 1-Core 57.932 3.040

ARM64 8-Core 13.435 0.480

ARM64 8x1-Core, Parallel 13.855 0.476

MP2 Gradient x86 1-Core 22.217 0.444

x86 8-Core 6.190 0.069

x86 8x1-Core, Parallel 6.133 0.068

x86 18x1-Core, Parallel 3.884 0.032

ARM64 1-Core 25.247 1.384

ARM64 8-Core 5.132 0.188

ARM64 8x1-Core, Parallel 5.281 0.187

 33

Table 3. Mean, standard deviation, and relative standard deviation of instantaneous power

consumption during 250 basis function MP2 gradient calculation for ARM64 and x86 CPU,

ARM32 system

 Mean, W Standard Deviation, W Relative Standard Deviation, %

x86

Hartree-Fock SCF Energy 72.15 2.52 3.50

MP2 Energy 74.58 2.17 2.91

MP2 Gradient 72.98 1.57 2.15

ARM64

Hartree-Fock SCF Energy 21.57 0.86 3.99

MP2 Energy 22.96 0.98 4.26

MP2 Gradient 22.56 0.81 3.60

ARM32

Hartree-Fock SCF Energy 11.31 0.97 8.58

MP2 Energy 10.61 1.71 16.09

MP2 Gradient 11.96 0.84 7.06

 34

A)

B)

C)

D)

Figure 1. Computation times per basis function for A) DFT energy, B) HF SCF energy, C) MP2

energy, and D) MP2 gradient benchmark calculations

 35

A)

B)

C)

D)

Figure 2. Energy consumption per basis function for A) DFT energy, B) HF SCF energy, C)

MP2 energy, and D) MP2 Gradient benchmark calculations

 36

Figure 3. Power trace during TNT MP2 gradient calculation for ARM64 and x86 CPU, ARM32

systems, 4 CPU cores

 37

CHAPTER 3: PERFORMANCE AND ENERGY EFFICIENCY ANALYSIS OF 64-BIT

ARM USING GAMESS

A paper published in the Proceedings of the 2nd International Workshop on Hardware-Software

Co-Design for High Performance Computing, Co-HPC 2015

Ananta Tiwari, Kristopher Keipert, Adam Jundt, Joshua Peraza, Sarom S. Leang, Michael

Laurenzano, Mark S. Gordon, and Laura Carrington

Abstract

 Power efficiency is one of the key challenges facing the HPC co-design community,

sparking interest in the ARM processor architecture as a low-power high-efficiency alternative to

the high-powered systems that dominate today. Recent advances in the ARM architecture,

including the introduction of 64-bit support, have only fueled more interest in ARM. While

ARM-based clusters have proven to be useful for data server applications, their viability for HPC

applications requires an in-depth analysis of on-node and inter-node performance. To that end, as

a co-design exercise, the viability of a commercially available 64-bit ARM cluster is investigated

in terms of performance and energy efficiency with the widely used quantum chemistry package

GAMESS. The performance and energy efficiency metrics are also compared to a conventional

x86 Intel Ivy Bridge system. A 2:1 Moonshot core to Ivy Bridge core performance ratio is

observed for the GAMESS calculation types considered. Doubling the number of cores to

complete the execution faster on the 64-bit ARM cluster leads to better energy efficiency

 38

compared to the Ivy Bridge system; i.e., a 32-core execution of GAMESS calculation has

approximately the same performance and better energy-to-solution than a 16-core execution of

the same calculation on the Ivy Bridge system.

Introduction

 The energy consumption of large scale high performance computing (HPC) systems is

becoming an increasing concern as the computational science community heads towards the

exascale era. Current estimates indicate that processor efficiencies will have to evolve from the

current 5 GFLOPS/Watt to 50 GFLOPS/Watt for exascale machines to be viable. While multiple

processor architectures are being considered in the pursuit of more energy-efficient HPC, it is

almost certain that the ARM architecture will figure prominently into the solution set, as

evidenced by its presence in the Mont-Blanc project30. Furthermore, the entire HPC market is

only a small fraction of the total computing market and, therefore, relies primarily on commodity

processor technology. In mobile computing, the ARM architecture plays a large role as the most

ubiquitous energy-efficient processor architecture available. Consequently, investors and

companies have recognized the potential of the ARM architecture in HPC and enterprise

computing. For example, HP, Dell, and others are fielding enterprise-class servers based on

ARM processors. NVIDIA has developed a hybrid ARM-GPGPU system on chip (SoC) which

was initially deployed at the Barcelona Supercomputing Center for the Mont-Blanc project.

 Given the rapid penetration of ARM systems into the HPC market, it is critical that the

performance and energy efficiency of ARM is understood in the context of well-established

 39

architectures used in HPC. Towards that end, the performance, parallel efficiency, and power

efficiency of the modern ARM-based HP Moonshot system is analyzed, and compared to an

Intel Ivy Bridge system. As a co-design exercise, this study is conducted for the prominent large

scale computational chemistry package GAMESS32. Of primary interest is the investigation of

which types of computations within the GAMESS package see the best performance scaling and

energy-efficiency on the Moonshot system, in addition to the identification of architectural

features that bottleneck the performance. The Intel Ivy Bridge system is used as a reference

architecture for the bottleneck analysis. The paper is organized as follows: First, descriptions are

provided for the GAMESS software package and for each type of GAMESS calculation explored

in this study. Next, the methodology used for system benchmarking is described. This

description includes details about how the metrics relevant to the performance and energy

efficiency of the target systems are measured. Next, the results which demonstrate the scalability

and energy efficiency of various types of chemistry calculations on the Moonshot system are

presented. The Moonshot system is then compared to Ivy Bridge using the same set of metrics.

Related work is then summarized, followed by concluding remarks.

Background – GAMESS

 The General Atomic and Molecular Electronic Structure System (GAMESS) is a general

purpose electronic structure code, with a primary focus on ab initio quantum chemistry

calculations. GAMESS is used on a wide range of processor technologies all over the world and,

as such, presents itself as a useful application to assess the performance and energy consumption

aspects of upcoming processor architectures. The computation parallelization in GAMESS is

 40

achieved using the DDI (Distributed Data Interface) library14,28. In GAMESS, for each process

that computes chemistry calculations, there is an associated “data server” process that services

data requests from the distributed arrays. A 16-core run of GAMESS will, for example, have 8

compute processes and 8 data servers. The following specific GAMESS calculations are

considered in this work, using the CCD basis set10:

Fragment Molecular Orbital (FMO)

 In FMO, user specified parameters partition a molecular system, which breaks up the

computational workload into chunks which are distributed based on the number of compute

nodes available. FMO allows for the use of highly accurate ab initio quantum chemistry methods

on large molecular systems. For this benchmark, FMO is used to calculate Hartree-Fock (HF)

SCF energies. The molecular systems investigated are clusters of 32 and 64 water molecules.

Hartree-Fock, Second Order SCF (HF-SOSCF)

 Hartree-Fock energies are computed for several benchmark systems. Second order orbital

optimizations are performed. Both DISK and DIRECT options are evaluated. For DIRECT runs,

integrals are recomputed at each SCF iteration instead of reading them from disk. DISK runs

retrieve the stored integrals from disk. Three benchmark molecules are considered for the HF-

SOSCF calculations: silatrane (C7H17O4NSi), nicotine (C10H14N2), and trinitrotoluene (TNT)

(C7H5N3O6).

Configuration Interaction with Single Excitations (CIS)

 A CIS energy computation of the porphin molecule (C20H14N4) is analyzed. CIS is an

excited state calculation, for which the computational scaling depends on both system size and

the number of excited states calculated. A standard HF calculation is first performed to obtain a

 41

reference wavefunction, which is used in a linear combination with configuration state functions

representing single electron excitations while neglecting orbital optimization.

2nd Order Møller-Plesset Perturbation (MP2), and Resolution-of-Identity Variant (RI-MP2)

 MP2/RI-MP217 are second-order perturbation theory energy calculations. In these post

Hartree-Fock methods, electron correlation effects are added via a perturbative correction. The

MP2 energy calculation is more demanding on both CPU and memory compared to both

Hartree-Fock and CIS computations. The RI-MP236 approximation can be as much as 40 times

faster than MP2 and is nearly as accurate. Notably, the RI-MP2 approximation employs

significant use of matrix-matrix operations in comparison to the domination of vector-vector

operations in HF and standard MP2 calculations. The TNT molecule is used in evaluation of the

MP2 and RI-MP2 energy calculations.

Methodology

Platforms

 The Moonshot system consists of 128 cores in a multi-node server configuration. The

system has 16 nodes (also called cartridges) connected via 10GigE interconnect. Each node has

64 GB memory (DDR3-1600) and one AppliedMicro® X-GeneTM 1 processor, which consists

of 8 64-bit ARM cores, each of which is clocked at 2.4 GHz. Each core has 32KB L1 data cache

and 32KB L1 instruction cache. Each core pair shares a 256KB L2 cache and all 8 cores in a

 42

node share 8MB L3 cache. Each node is configured with a solid state drive (SSD) for storage

with 120 GB capacity. In addition to the scaling runs on the Moonshot with multiple core counts,

this paper compares the performance and energy efficiency of the Moonshot system to a dual-

socket Intel® Ivy Bridge node with 32 GB memory (DDR3-1333).

 Each socket consists of 8 cores, each of which is clocked at 2.6 GHz. Each core has

32KB L1 data cache, 32KB L1 instruction cache and 256KB L2 cache. 8 cores in a socket share

20MB L3 cache. The system has traditional disks running at 7200 RPM. It was discovered that

the performance of some of the benchmark calculations are highly sensitive to the speed of the

storage sub-system, so an SSD with 120 GB capacity was added to the Ivy Bridge system.

Unless otherwise noted, all of the relevant results presented in this paper are obtained using the

SSD drive.

 Iperf12 is used to measure the network bandwidth between nodes on the Moonshot and

between sockets on the Ivy Bridge system. The tool saturates the link between the nodes/sockets

and determines the maximum bandwidth between nodes/sockets. Inter-node bandwidth on the

Moonshot system is 9.89 Gbps (limited by the 10 Gbps switch that connects the nodes of the

system) and 30.4 Gbps between sockets on the Ivy Bridge.

GAMESS Compilation Environment

 GAMESS is compiled on the Moonshot system using gcc-5.1.0 with the flags “-O2 -

mcpu=xgene1 -fno-aggressive-loop-optimizations -march=armv8-a -mtune=xgene1”. Same

 43

compiler version and analogous optimization flags (“-O2 -march=IvyBridge -mtune=intel -fno-

aggressive-loop-optimizations”) are used to compile GAMESS on the Ivy Bridge system. Both

systems use ATLAS37 version 3.11.34 for BLAS.

Power Measurement

 In addition to performance at different scales, energy consumption is also of interest.

Only the dynamic power draw is measured. To accomplish this, the idle power of each system is

measured first. The idle power draw is then subtracted from the total power drawn during

application runs. Specific methods used to measure the idle power and the active power for each

of the systems are described below.

Moonshot

 The Moonshot power measurements rely on the HP iLO (integrated Lights-Out) server

management technology1. iLO allows total power draw measurement at the chassis level, as well

as power draw measurement at the cartridge level. The chassis level power, which can be

measured at one-second granularity, includes the power drawn by heavy duty chassis fans. Rapid

changes in the rotational speeds of these fans make the power draw measurement at the chassis

level noisy and unreliable. Therefore, power measurements are obtained at the per-cartridge

level. The per-cartridge power is measured once every 15 seconds, and GAMESS is executed

multiple times for a period of at least 3 minutes to obtain a reliable measurement. Power drawn

by the networking components can also be measured using the iLO interface. Networking

components draw a constant power of approximately 50 watts. To calculate dynamic power, the

 44

idle power is first measured on each of the Moonshot nodes for a period of 30 minutes. The total

dynamic power for a scaling run that uses n nodes is calculated using the following formula:

PDyn = ((LPi

− IPi
)

i=1

n

∑)+
N P

n
 (1)

In Equation 1,
iP

L is the on-load power drawn by node i,
iP
I is the idle power drawn by node i,

and PN is the constant network power. The second term in the equation adds a proportional

network power to the dynamic power (DynP) calculation. Each run produces a series of series of

DynP measurements, which are then averaged to get a power draw value for the run.

Ivy Bridge

 Power measurements on the Ivy Bridge are taken using a Wattsup2 device which provides

total system power measurement at one second granularity. The device provides a USB interface

to obtain the measurements, and this interface is queried from a separate system to ensure that

the measurement tools do not increase power draw or slow down the application. The system

fans are set to manual control in the BIOS and their power draw is lumped into the idle power

measurement so that their effect on dynamic power draw is minimized. Idle power is measured

for 30 minutes and DynP is calculated by deducting idle power from on-load power.

Metrics

 Power, performance, and energy consumption are measured for each of the GAMESS

calculations considered for this work. On the Moonshot system, these calculations were run

using 8, 16, 32, 64 and 128 cores; on the Ivy Bridge system, the calculations were run using 8

 45

and 16 cores. For scaling studies on Moonshot, an 8-core single node run is taken as the

reference, and all measurements are normalized using the measurements in the reference run. A

parallel efficiency metric, defined as:

Pen

=
T1

n*Tn

 (2)

is also measured. In Equation 2,
ne
P is the parallel efficiency metric for n nodes (i.e., n × 8 cores),

1T is the execution time on one node (8 cores) and nT is the execution time on n nodes. A
ne
P

metric equal to 1 indicates perfect scaling. For cross-architecture comparisons, two sets of results

are presented—one that takes a single socket 8-core run on the Ivy Bridge system as the

reference and normalizes the measurements across different core counts on the Moonshot using

the reference measurements, and another that takes the dual-socket 16-core run on the Ivy Bridge

system as the reference for normalization. In addition to power, performance and energy, the

Energy-Delay Product (EDP) is calculated as (energy × performance). The EDP metric

emphasizes performance and is widely used in comparing the efficiency of different high-end

systems15.

Performance Analysis Tools

 To analyze performance on the Intel system, a suite of tools developed on top of a binary

instrumentation toolkit, PEBIL23, was used. These tools combine static binary analysis

information (e.g., approximate structure of the program in terms of functions and loops, and

operations within those structures) with dynamic analyses (e.g., basic block counts and cache

simulation) to provide an in-depth description of the performance related characteristics of

 46

applications. EPAX11 was used to analyze the Moonshot system. EPAX provides static binary

analyses for both 32-bit and 64-bit ARM architectures. A set of tools that leverages the EPAX

static analysis information has also been used to, for example, generate an instruction mix for

different structures in the application.

 To analyze multi-node runs, the PSiNSTracer tool35, a light-weight tool that captures

communication and computation profiles of MPI applications, was used. The tool intercepts all

the MPI calls and collects time spent on each of those calls. The portion of the application

execution time that is not attributed to the MPI events is categorized as computation time. This

paper analyzes the communication versus computation behavior for only the compute processes.

Data servers perform only data-servicing tasks.

Moonshot Performance and Energy Results

 This section describes performance scaling and energy efficiency results obtained on the

Moonshot system. Each metric is collected at five core-counts on the Moonshot system: 8, 16,

32, 64 and 128. To reduce noise, each data point is measured five times and the average is

reported. For each of the GAMESS calculations considered in the paper, the single-node 8-core

run is taken as the reference; measurements across other core counts on the Moonshot systems

are normalized using the reference measurements. In Figure 1, the parallel efficiency for each

calculation is shown. Values closer to 1 indicate better scaling. In Figure 1 the parallel efficiency

for each calculation is shown. Values closer to 1 indicate better scaling. In Figure 2, the energy

 47

consumption normalized by the single node case is presented. Normalized EDP values are shown

in Figure 3. Lower values indicate greater efficiency.

FMO Results

 FMO calculations show near linear scaling on Moonshot. For a 128-core run with 64

water molecules, the speedup with respect to the 8-core run is 15.9 (linear speedup would be 16).

As mentioned earlier, the implementation of FMO breaks the computational workload into

chunks, which are then distributed to available compute nodes. The communication between the

nodes is minimal, which explains the scaling behavior. Communication-computation profiles

reveal that for 128-core runs with 64 waters, on average, less than 5% of the time spent by

compute processes is attributed to communication. Normalized EDP (as shown in Figure 3)

improves the most for FMO calculations at higher core counts on the Moonshot system

compared to other calculations. Results for the 32 water system are similar to those for the 64

water system.

HF-SOSCF Results

 Recall from the introduction that both disk and direct variants of HF-SOSCF calculations

are considered. The relative performance of the two methods (disk versus direct) was

investigated using the silatrane molecule, in addition to analysis of the performance scaling,

parallel efficiency and EDP. The normalized execution times for the direct method HFSOSCF

calculations are shown in Figure 4. The execution times for the direct method are normalized to

the execution times for the disk method. As demonstrated in the graph, disk based calculations

are faster at all core counts. However, the edge that disk based calculations has on direct

calculations at 8-core runs diminishes significantly at 128-core runs. Next, the parallel efficiency

metric is considered. It is shown in Figure 1 that disk based methods rank lowest in terms of

 48

parallel efficiency. Parallel efficiency for the silatrane molecule using disk is at 0.4 (at 128 cores)

versus 0.74 for the direct method[3]. Normalized EDP points to the same conclusion. The

normalized EDP for disk based calculations stops declining beyond 64-core count runs (Figure

3); i.e., efficiency stops improving beyond 64 cores. To further investigate the relative difference

in scaling between the direct and disk based methods, consider the communication and

computation profiles for these methods. Profiles for both the direct and disk methods for the

silatrane molecule calculations executed using all 128 cores (16 nodes) on the Moonshot system

are shown in Figure 5. Poor parallel efficiency with the disk based method can be primarily

attributed to the greater communication intensity of this method compared to the direct method.

For 128 core direct runs, time spent in communication by compute processes of GAMESS is

11%, compared to 35% for disk runs. Most of this communication time is spent in MPI broadcast

events.

CIS Results

 The HF Configuration Interaction-Singles (CIS) calculation using the porphin molecule

ranks second after the FMO method in parallel efficiency (0.79, see Figure 1). The normalized

EDP metric indicates higher efficiency at higher core count runs. On average, GAMESS

compute processes are engaged in communication events for 13% of the run time for 128-core

runs.

[3] Parallel efficiency quantifies what proportion of theoretical maximum speedup is achieved by GAMESS when
scaled to multiple nodes on the Moonshot. 0.74 means 74% of the achievable speedup was attained.

 49

MP2/RI-MP2 Results

 These calculations show greater parallel efficiency than HF disk based methods but lower

efficiency than FMO calculations. Both MP2 and RI-MP2 show identical parallel efficiencies of

0.68 for 128 core runs (Figure 1). The normalized EDP metric, which emphasizes performance,

continues to decline (Figure 3) for large core counts (i.e., strong scaling will continue beyond

128-core runs). Analyses of the computation-communication profile for 128-core runs reveal that

compute processes in MP2 calculations, on average, are engaged in communication events for

19% of the run time, compared to 20% of RI-MP2.

Cross-Architectural Study Results

 To make cross-architectural performance and energy comparisons, the playing field has

been made as level as practicably possible, by using the exact same compilation environment on

the two systems. In the preliminary analysis of the performance differences between the two

systems, it was discovered that the Moonshot system performed relatively better (even for the

same core-counts) than the Ivy Bridge system for HF-SOSCF disk-based calculations. An I/O

profiling analysis (performed with the I/O tracer built on top of PEBIL27) revealed that the Ivy

Bridge system, which was utilizing the traditional spinning hard-disk drive, was spending

considerable time on I/O calls. An SSD with similar performance specifications to that of the

SSD on the Moonshot was added to the Ivy Bridge system, and that addition improved the

performance of HF-SOSCF disk based calculations by up to 2.2×. This paper reports the

performance for HF disk based calculations using the SSD on the Ivy Bridge system. The

performance, energy and EDP metrics obtained on the Moonshot system across multiple core

 50

counts were normalized to the same metrics obtained on single-socket (8-core) and dual-socket

(16-core) runs on the Ivy Bridge system. These comparisons facilitate the investigation of

whether using more low-power simpler cores can be beneficial in terms of energy efficiency

compared to using relatively few heavy-duty cores.

Single Socket Ivy Bridge

 Comparative results are shown in Figures 6, 7, and 8 with 8-core Ivy Bridge metrics used

as references. In Figure 6, the normalized performance across multiple core count runs on the

Moonshot system is shown. Performance on the Moonshot using 8 cores is 1.6× to 2× slower

than the 8 core runs on Ivy Bridge. All 8-core runs on the Moonshot use less energy than the

corresponding 8-core runs on Ivy Bridge (63% to 77% of the energy needed to run on Ivy

Bridge). The normalized EDP metric for 8-core runs, however, show that the Ivy Bridge system

is more efficient at running 8-core executions. As the Moonshot scales to 16 cores, the

performance in all cases exceeds the performance on 8 cores of the Ivy Bridge. The normalized

EDP metric also suggests that greater efficiency can be achieved with large core count runs on

the Moonshot. The next natural research questions to ask are—What drives the performance

differences between 8-core runs on Moonshot and Ivy Bridge, and what architectural

components on the Moonshot tend to bottleneck its performance?

Architectural Bottlenecks

 The Moonshot system exposes a set of performance hardware counters that can be used

to measure the interactions of software with key on-node architectural components of

Moonshot—floating point units, caches, memory, and the branch predictor. These counters can

 51

be measured using PAPI25, which has support for the X-Gene 1 architecture. The overall idea is

to investigate which of these counters correlate with the relative performance difference between

8-core runs on Moonshot and Ivy Bridge. Clearly, measuring these counters for just the 11

GAMESS calculations considered in this paper may be an insufficient number of data points for

correlation analysis. Therefore, a set of HPC application benchmarks from different scientific

domains is added to the analysis. This extended set of benchmarks includes: a subset of

calculations from the NAS Parallel Benchmarks (CG, FT, IS, LU and MG)5, CoMD (molecular

dynamics)3, lulesh (shock hydrodynamics)21, miniFE (finite element)19, miniGhost (finite

difference)6, and smg2000 (semi-coarsening multigrid)7. These applications are run with

different input sets to generate a total of 38 data-points to supplement the 11 data-points from

GAMESS. Each data-point consists of 30 performance hardware counters that measure the

number of total instructions executed, the number of floating point instructions, the number of

loads/stores from L1 data cache, the number of branch instructions, the number of branches

accurately predicted, etc. In the correlation analysis, all counters are first normalized for a given

application by the number of total instructions executed by the application. The correlation

coefficients are then calculated for each of the normalized counters, and the ratio of performance

on the 8-core Moonshot to that on the 8-core Ivy Bridge. Only the counters that have absolute

correlation coefficients of more than 0.6 are considered [4].

Floating Point/Integer Performance

 Counters that measure floating point operations and integer operations rank among the

highest: 0.7 correlation coefficient for floating point operations and 0.61 for integers. The

[4] Correlation coefficients range from -1 to +1, where -1 indicates perfect negative correlation and +1 indicates
perfect positive correlation.

 52

number of floating point operations per instruction is positively correlated to the relative

performance, suggesting that floating point heavy calculations perform slower on the Moonshot,

while the number of integer operations is negatively correlated to the relative performance. The

floating point correlation could be attributed to 1) the faster CPU clock on the Ivy Bridge

(2.6GHz versus 2.4GHz on Moonshot), and 2) different theoretical floating point operations per

cycle for the two systems: 16 single precision flops per cycle (using 8 fused multiply-adds) on

Ivy Bridge compared to 8 single precision flops per cycle (using 4 fused multiply-adds) on the

Moonshot.

Memory Subsystem Performance

 Performance counters which measure the interactions of applications with the memory

subsystem also register high correlations. In particular, data load instructions are correlated to the

relative performance with a coefficient of 0.6; higher data loads per instruction lead to lower

relative performance on the Moonshot system. Cache and main memory read bandwidths are

measured on both systems using the lmbench tool26. Per core main memory read bandwidth on

the Ivy Bridge system is 1.45× greater than that on the Moonshot system. L1-cache read

bandwidth is 2× higher on the Ivy Bridge system.

Branch Predictor Performance

 Performance counters that measure branches show high correlation with relative

performance, with a coefficient of 0.6. The relative performance of the Moonshot improves as

more branches are accurately predicted. This suggests differences in the capabilities of the

branch prediction units on the two systems. There appear to be no previous accurate and

verifiable studies that look at the branch unit performance. This paper introduces a benchmark

intended to measure the cost of mispredicted branches. The benchmark consists of a small loop

 53

containing a single branch. Each path of the branch increments a counter to prevent the path

from being optimized away. The direction of the branch is determined by the value of a byte read

from an array, either 0 or 1. The array is indexed by the loop iteration modulo the size of the

array. Each entry in the array is initialized by rand () modulo 2. The configurable parameters for

the benchmark are the number of loop iterations and the size of the array.

 The loop is optimized similarly on both the Ivy Bridge and Moonshot systems. The loop

consists of 3 blocks of 4 instructions each. A head block reads the branch direction from the

array and branches to one of the other two blocks. Each of the other two blocks increment the

loop counter, increment the path counter, and branches either to the loop head or departs the

loop. So, each iteration of the loop consists of 8 instructions, 2 of which are branches. One of

these branches is a loop branch, which should almost always be correctly predicted, and the other

is a path branch, which should have a 50% misprediction rate. Four hardware counters are

collected for several configurations of the benchmark: total instructions, total cycles, branch

instructions (br_ins) and mispredicted branches (br_msp). Verification of whether the

benchmark causes branch mispredictions can be done by comparing br_msp to the number of

loop iterations. If the benchmark is sufficient to break the branch predictor, then there should be

approximately 1 misprediction per 2 iterations. An array of 32768 random branch directions is

sufficient to obtain 0.50 branch mispredictions per iteration on the Moonshot, but only 0.46

branch mispredictions per iteration on the Ivy Bridge. An array of 65536 entries achieved 0.49

mispredictions per iteration on the Ivy Bridge. This indicates that the Ivy Bridge is more capable

of predicting branch directions for this benchmark than the Moonshot.

 54

 To measure the cycle impact of each misprediction, the benchmark is modified so that

every entry in the array is 0. This allows the branch predictors on both systems to nearly always

predict the correct branch path. The cost of a mispredicted branch is then quantified as the

difference in total cycles between the two benchmarks per br_msp. A branch misprediction on

the Ivy Bridge increases the total cycle count by 23 cycles while a misprediction on the

Moonshot increases the total cycle count by 26 cycles. As the Ivy Bridge has a pipeline of only

14-19 cycles, this also suggests that an application may experience performance loss on a branch

misprediction in excess of the 14 cycles it takes to flush the pipeline.

Relationship of Findings to GAMESS Calculations

 To put all of the bottleneck analysis discussion into perspective for the GAMESS

calculations studied in this paper, consider two calculations that show the highest and the lowest

relative performance. The research question is whether the relevant performance counters for

those calculations corroborate our findings. The HF-SOSCF CIS calculation using the porphin

molecule run on 8 cores is 2× slower on the Moonshot than on Ivy Bridge. The HF-SOSCF CCD

calculation done using the disk based method using the silatrane molecule is 1.6× slower on the

Moonshot system. In terms of the floating point operations, the porphin calculation has 461

floating point operations for every 1000 instructions, while the silatrane calculation has 390

floating point instructions for every 1000 instructions. In terms of the load operations, the

porphin calculation has 274 load operations every 1000 instructions while the silatrane disk

based calculation has 257. Finally, branches are predicted with 97% accuracy [5] for the porphin

molecule and with 98% accuracy for the silatrane disk based calculation.

[5] Accuracy is defined here as (br_ins-br_msp)/br_ins x 100.

 55

Dual Socket Ivy Bridge

 Figures 9, 10, 11 show the cross-architecture comparison results that use 16-core Ivy

Bridge runs as the reference. In each Figure, the performance, energy, and EDP of executions

performed across multiple core counts on the Moonshot system are normalized using the

corresponding reference metric on 16-core Ivy Bridge executions. For a given calculation and

core-count run on Moonshot, a value of less than 1 for performance, energy or EDP (Figures 9,

10, 11) indicates the performance (energy or EDP) on the Moonshot is better than 16-core run of

the same calculation on the Ivy Bridge system. The key conclusion here is that the performance

of the GAMESS calculations using 16 cores with Ivy Bridge is matched by a 32-core run on the

Moonshot system, suggesting a 2:1 ratio for Moonshot core to Ivy Bridge core performance.

However, as mentioned previously, Ivy Bridge dual socket executions get up to 3 times more

communication bandwidth (because the communication is inter-socket) than the multi-node

executions on the Moonshot (32 core runs use 4 nodes).

 It was previously noted that HF-SOSCF calculations which utilize disk to store and

retrieve the integrals are engaged in communication events for a significant portion of the total

run time. Further analysis of the computation-communication profiles of this case reveals that the

16-core run of a silatrane disk-based calculation on the Moonshot are in communication events

for 1.4× more time than the same core count run on the Ivy Bridge. Therefore, the 2:1 core-to-

core Moonshot:Ivy Bridge ratio is the upper bound when it comes to the performance of

GAMESS calculations considered in this paper. This ratio should improve in favor of ARMv8

with improvements in the interconnect technology.

 56

Related Work

 The potential of the ARM architecture for energy efficient HPC has been recognized by

both system vendors and the academic research community. Vendors such as Cavium8 and

Hewlett-Packard18 have started to bring new products to market with the HPC community in

mind, as well as researchers reporting on their own findings of the ARM as a potential design

point in HPC servers9,34. The Barcelona Supercomputing Center designed a testbed cluster from

ARMv7 processors and a 1GbE network and stressed the need for an optimized software stack

and a high performance network31.

 Performance engineers have been reporting their findings on the ARM performance on

scientific codes as well4,29,33. Padoin et al. report the energy efficiency and performance of an

ARMv7 processor on the NAS Parallel Benchmarks compared to a Sandy Bridge processor.

Their findings show that while ARM uses less power, it is less energy efficient than the Sandy

Bridge due to its lower performance. Laurenzano et al.24 report the effectiveness of the ARMv7

on HPC computational benchmarks. The authors concluded that ARMv7 FP/SIMD and memory

subsystem performance would need to be improved in order to be a viable option for use by the

scientific community.

 Multiple papers have focused on GAMESS performance on different offerings of HPC

systems13,16. A recent study by Keipert et al.22 compared intra-node performance and energy

efficiency of GAMESS on commercially available x86, 32-bit ARM, and 64-bit ARM systems.

Jundt et al.20 adopt a machine-learning based methodology to learn the on-node architectural

 57

bottlenecks on 64-bit ARM system. The present work is the first study that takes a

comprehensive look at the inter-node performance, parallel efficiency and energy efficiency of

different types of GAMESS calculations on a commercially available 64-bit ARM cluster.

Conclusions

 This paper presented an analysis of the performance, parallel scalability and energy

efficiency of a widely used quantum chemistry code, GAMESS, on a commercially available HP

Moonshot 64-bit ARM cluster. GAMESS calculations explored in this work scale to larger core

counts on the Moonshot system; the extent of the speedup is different for different types of

calculations. In terms of the EDP metric, higher core count runs on Moonshot are almost always

more efficient than lower count runs. These results show great promise for the co-design

approach that considers using many low-power cores rather than a relatively few heavy-duty

powerful cores to deliver an Exaflop system that can operate within in the 20MW power

envelope.

 A cross-architecture comparison of performance and energy efficiency metrics was also

presented, based on the Intel Ivy Bridge system as the reference. For most of the benchmarking

inputs used in the study, the performance on one node of Ivy Bridge with 16 cores is matched by

a four node run (with 32 cores) on the Moonshot, notwithstanding the fact that 16-core runs on

Ivy Bridge benefit from higher inter-socket communication bandwidth than the inter-node runs

on the 64-bit ARM cluster. The results are interesting and encouraging given the relatively

nascent entrance of ARM into the HPC world. Advancements in the compiler and the software

 58

stacks for the 64-bit ARM architecture, which have only had a short time to evolve, will mitigate

some of the performance bottlenecks in the 64-bit ARM architecture.

Acknowledgements

 This work was supported in part by the Air Force Office of Scientific Research under

AFOSR Award No. FA955012-1-0476 and by DoE SBIR Award No. DE-SC0013164.

Sponsorship of the Department of Defense High Performance Computing Modernization

Program, through a HASI grant, is gratefully acknowledged.

References

1. Server remote management with HP integrated lights out (iLO).

 http://tinyurl.com/o6so5bk (accessed August, 2015).

2. WattsUp? meters. https://www.wattsupmeters.com/ (accessed August, 2015).

3. CoMD proxy application. http://www.exmatex.org/comd.html (accessed August, 2015).

4. Abdurachmanov, D.; Bockelman, B.; Elmer, P.; Eulisse, R.; Knight, R.; Muzaffar, S.

 Journal of Physics: Conference Series 2015, 601, 1.

5. Bailey, D.H.; Barszcz, E.; Barton, J.T.; Browning, D.S.; Carter, R.L.; Dagum, L.;

 Fatoohi, R.A.; Frederickson, P.O.; Lasinski, T.A.; Schreiber, R.S.; Simon, H.D;

 Venkatakrishnan, V.; Weeratunga, S.K. Supercompting 1991, 158.

6. Barett, R.F.; Vaughan, C.T.; Heroux, M.A. Sandia National Laboratories, 2012, Tech.

 Rep. SAND 5294832.

 59

7. Brown, P.N.; Falgout, R.D.; Jones, J.E. J Sci. Comput. 2000, 21(5), 1823.

8. Cavium ThunderX ARM processors. http://tinyurl.com/mj2ayo4 (accessed August,

 2015).

9. Cloutier, M.F.; Paradis, C.; Weaver, V.M. Proceedings of the 1st International Workshop

 on Hardware-Software Co-Design for High Performance Computing 2014, 1.

10. Dunning, T.H. J. Chem. Phys. 1989, 90(2), 1007.

11. EP Analytics, Inc. EPAX toolkit: Binary analysis for ARM. http://epaxtoolkit.com

 (accessed August, 2015).

12. iPerf – The network bandwidth measurement tool. https://iperf.fr/ (accessed August,

 2015).

13. Fletcher, G.D.; Fedorov, D.G.; Pruitt, S.R.; Windus, T.L.; Gordon, M.S. J. Chem. Theory

 Comput. 2012, 8(1), 75.

14. Fletcher, G.D.; Schmidt, M.W.; Bode, B.M.; Gordon, M.S. Comput. Phys. Commun.

 2000, 128, 190.

15. Gonzalez, R.; Horowitz, M. IEEE J. Solid-State Circuits 1996, 31(9), 1277.

16. Gordon, M.S.; Fedorov, D.G.; Pruitt, S.R.; Slipchenko, L.V. Chem. Rev. 2012, 112(1),

 632.

17. Head-Gordon, M.; Pople, J.A.; Frisch, M.J. Chem. Phys. Lett. 1988, 153 (6), 503-506.

18. Moonshot moves HPC closer to ARM’s reach. http://tinyurl.com/pvuwnpb (accessed

 August, 2015).

19. Heroux, M.A.; Doerfler, D.W.; Crozier, P.S.; Willenbring, J.M.; Edwards, H.C.;

 Williams, A.; Rajan, M.; Keiter, E.R.; Thornquist, H.K.; Numrich, R.W. 2009, Tech.

 Rep. SAND 2009-5574.

 60

20. Jundt, A.; Cauble-Chantrenne, A.; Tiwari, A.; Peraza, J.; Laurenzano, M.; Carrington,

 L. International Workshop on Energy Efficient Supercomputing (E2SC), E2SC ’15 2015,

 No. 6.

21. Karlin, I.; Bhatele, A.; Keasler, J.; Chamberlain, B.; Cohen, J.; DeVito, Z.; Haque, R.;

 Laney, D.; Luke, E.; Wang, F.; Richards, D.; Schulz, M.; Still, C. Proceedings of the

 2013 IEEE International Symposium on Parallel and Distributed Processing 2013, 919.

22. Keipert, K.; Mitra, G.; Sundriyal, V.; Leang, S.S.; Sosonkina, M.; Rendell, A.P.;

 Gordon, M.S. J. Chem. Theory Comput. 2015, 11(11), 5055.

23. Laurenzano, M.; Tikir, M.; Carrington, L.; Snavely, A. Performance Analysis of Systems

 Software (ISPASS) 2010, 175.

24. Laurenzano, M.; Tiwari, A.; Jundt, A.; Peraza, J.; Ward, J.; William, A.; Campbell,

 R.; Carrington, L. Euro-Par 2014 Parallel Processing. 2014, 8632, 124.

25. London, K.; Moore, S.; Mucci, P.; Seymour, K.; Luczak, R. Department of Defense

 Users Group Conference Proceedings. 2001, 18.

26. McVoy, L.; Staelin, C. Proceedings of the 1996 annual conference on USENIX Annual

 Technical Conference 1996, 23.

27. Meswani, M.; Laurenzano, M.; Carrington, L.; Snavely, A. High Performance

 Computing Modernization Program Users Group Conference (HPCMP-UGC) 2010,

 478.

28. Olson, R.; Schmidt, M.; Gordon, M.; Rendell, A. Supercomputing 2003, 41.

29. Padoin, E.L.; Pilla, L.L.; Castro, M.; Boito, F.Z.; Navaux, P.O.A.; Méhaut, J.F. IET

 Comput. Digit. Tec. 2015, 9(1), 27.

 61

30. Rajovic, N.; Puzovic, N.; Vilanova, L.; Villavieja, C.; Ramirez, A. Proceedings of the

 Second Workshop on Scalable Algorithms for Large-scale Systems 2011, 1.

31. Rajovic, N.; Rico, A.; Puzovic, N.; Adeniyi-Jones, C.; Ramirez, A. Future Gener.

 Comput. Syst. 2014, 36, 322.

32. Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.;

 Koseki, S.; Matsunaga, N.; Nyugen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.;

 Montgomery, J.A. J. Comp. Chem. 1993, 14(11), 1347.

33. Stanisic, L.; Videau, B.; Cronsioe, J.; Degomme, A.; Marangozova-Martine, V.;

 Legrand, A.; Mehaut, J.F. Design, Automation & Test in Europe Conference &

 Exhibition 2013, 475.

34. Stanley-Marbell, P.; Cabezas, V. Parallel and Distributed Processing Workshops and

 PhD Forum (IPDPSW) 2011, 863.

35. Tikir, M.; Laurenzano, M.; Carrington, L.; Snavely, A. Euro-Par 2009 Parallel

 Processing 2009, 5704, 135.

36. Weigend, F.; Häaser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett. 1998, 294, 143.

37. Whaley, R.C.; Dongarra, J.J. Supercomputing 1998, 1.

 62

Figure 1. Moonshot results: Parallel efficiency (higher is better for large core counts).

Figure 2. Moonshot results: Normalized energy consumption (lower is better for large core

counts). Energy is normalized to the energy consumption for a 1-node, 8-core Moonshot run.

 63

Figure 3. Moonshot results: Normalized EDP or efficiency (lower is better for large core

counts). EDP is normalized to the EDP for a 1-node, 8-core Moonshot run.

Figure 4. Moonshot results: Comparison of execution time for DISK versus DIRECT methods

across multiple core counts. Execution time is normalized by the DISK method. (HF-SOSCF,

silatrane).

 64

Figure 5. Moonshot results: 128-core MPI profiles for silatrane HF-SOCF energy

calculation, (A) DIRECT method and (B) DISK method.

(A)

(B)

 65

Figure 6. Cross-architectural comparison: Execution time on Moonshot normalized by execution

time for 8-core, 1-socket Ivy Bridge run (lower is better for Moonshot).

Figure 7. Cross-architectural comparison: Energy consumption on Moonshot normalized by

energy consumption for 8-core, 1-socket Ivy Bridge run (lower is better for Moonshot).

 66

Figure 8. Cross-architectural comparison: EDP or efficiency on Moonshot normalized by EDP

for 8-core, 1-socket Ivy Bridge run (lower is better for Moonshot).

Figure 9. Execution time on Moonshot normalized by execution time for 16-core Ivy Bridge run

(lower is better for Moonshot).

 67

Figure 10. Energy consumption on Moonshot normalized by energy consumption for 16-core

Ivy Bridge run (lower is better for Moonshot)

Figure 11. Cross-architectural comparison: EDP or efficiency on Moonshot normalized by EDP
for 16-core Ivy Bridge run (lower is better for Moonshot)

 68

CHAPTER 4: AN EFFICIENT MPI/OPENMP PARALLELIZATION OF THE

HARTREE-FOCK METHOD FOR THE SECOND GENERATION OF INTEL XEON

PHI PROCESSOR

A paper accepted for publication in the Proceedings of the 2017 ACM/IEEE conference on

Supercomputing.

Vladimir Mironov, Yuri Alexeev, Kristopher Keipert, Michael D’mello, Alexander Moskovsky,

and Mark S. Gordon

Abstract

 Modern OpenMP threading techniques are used to convert the MPI-only Hartree-Fock

code in the GAMESS program to a hybrid MPI/OpenMP algorithm. Two separate

implementations that differ by the sharing or replication of key data structures among threads are

considered, density and Fock matrices. All implementations are benchmarked on a super-

computer of 3,000 Intel Xeon Phi processors. With 64 cores per processor, scaling numbers are

reported on up to 192,000 cores. The hybrid MPI/OpenMP implementation reduces the memory

footprint by approximately 200 times compared to the legacy code. The MPI/OpenMP code was

shown to run up to six times faster than the original for a range of molecular system sizes.

 69

Introduction

 The field of computational chemistry encompasses a wide range of empirical, semi-

empirical, and ab initio methods that are used to compute the structure and properties of

molecular systems. These methods therefore have a significant impact on not only chemistry, but

materials, physics, engineering and the biological sciences as well. Ab initio methods are

rigorously derived from quantum mechanics. In principle, ab initio methods are more accurate

than methods with empirically fitted parameters. Unfortunately, this accuracy comes at

significant computational expense. For example, the time to solution for Hartree-Fock (HF) and

Density Functional Theory (DFT) methods scale as approximately O(N3), where N is the number

of degrees of freedom in the molecular system. The HF solution is commonly used as a starting

point for more accurate ab initio methods, such as second order perturbation theory and coupled-

cluster theory with single, double, and perturbative triple excitations. These post-HF methods

scale as O(N5) and O(N7), respectively. These computational demands clearly require efficient

utilization of parallel computers to treat increasingly large molecular systems with high

accuracy. Modern high performance computing hardware architecture has substantially changed

over the last 10 to 15 years. Nowadays, a “manycore” philosophy is common to most platforms.

For example, the Intel Xeon Phi processor can have up to 72 cores. For good resource utilization,

this necessitates (hybrid) MPI+X parallelism in application software.

 The subject of this work is the successful adaptation of the HF method in the General

Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package to

the second generation Intel Xeon Phi processor platform. GAMESS is a free quantum chemistry

 70

software package maintained by the Gordon research group at Iowa State University15.

GAMESS has been cited more than 10,000 times in the literature, downloaded more than 30,000

times and includes a wide array of quantum chemistry methods. The objective here is to start

with the MPI-only version of GAMESS HF and systematically introduce optimizations which

improve performance and reduce the memory footprint. Many existing methods in GAMESS are

parallelized with MPI. OpenMP is an attractive high-level threading application program

interface (API) that is scalable and portable. The OpenMP interface conveniently enables sharing

of the two major objects in the HF self-consistent field (SCF) loop: the density matrix and the

Fock matrix. The density and Fock data structures account for the majority of the memory

footprint of each MPI process. Indeed, since these two objects are replicated across the MPI

processes, memory capacity limits can easily come into play if one tries to improve the time to

solution using a large number of cores. By sharing one or both of the aforementioned objects

between threads, one can reduce the memory footprint and more easily leverage all of the

resources (cores, fast memory etc.) of the Intel Xeon Phi processor. Reducing the memory

footprint is also expected to lead to better cache utilization, and, therefore, enhanced

performance.

 Two hybrid OpenMP/MPI implementations of the publicly available version of the

GAMESS (MPI-only) code base were constructed for this work. The first version is referred to

as the “shared density private Fock”, or “private Fock” version of the code. The second version

is referred to as the “shared density shared Fock”, or “shared Fock” version. In the following

section, a brief survey of related work is presented. Next, key algorithmic features of the HF SCF

method are discussed. Then, a description of the computer hardware test bed that was used for

 71

benchmarking purposes is presented. An explanation of the code transformations employed in

the hybrid implementation in this work follows. Next, the memory and time-to-solution results of

the hybrid approach are shown. Results on up to 3,000 Intel Xeon Phi processors are presented

for a range of chemical system sizes. The work ends with concluding remarks and a discussion

of directions for future work.

Related Work

 The HF algorithm has been a primary parallelization target since the onset of parallel

computing. The primary computational components of the HF algorithm are construction of the

density and Fock matrices, which are described within this work. The irregular task and data

access patterns during Fock matrix construction bring significant challenges to efficient parallel

distribution of the computation. The poor scaling of Fock matrix diagonalization is a major

expense as well. Linear scaling methods like the fragment molecular orbital method (FMO) have

been successfully applied to thousands of atoms and CPU cores5,27, but such methods introduce

additional approximations11,12. In any case, fragmentations methods may benefit from

optimizations of the core HF algorithm as well. Early HF parallelization efforts focused on the

distributed computation of the many electron repulsion integrals (ERIs) required for Fock matrix

construction via MPI or other message passing libraries. The Fock and density matrices were

often replicated for each rank, and load balancing algorithms were a primary optimization target.

Blocking and clustering techniques were explored in depth in a landmark14. Contributions from

that work were implemented in the quantum chemistry package NWChem28. In a follow-up

paper16 a node-distributed HF implementation was introduced. In this work, both the density and

 72

Fock matrices were distributed across nodes using globally addressable array (GA). In a more

recent work UPC++ library was used to achieve this goal22. A similar approach was used to

implement distributed data parallel HF by in the GAMESS code4,6. This implementation utilizes

the Distributed Data Interface (DDI) message passing library13. To further address the load

balancing issues, a work stealing technique was introduced by Liu et al.20.

 A detailed study and analysis of the scalability of Fock matrix construction and density

matrix construction10, including the effects of load imbalance, was explored in a work by Chow

et al.9. In this work, density matrix construction was achieved by density purification techniques

and the resulting implementation was scaled up to 8,100 Tianhe-2 Intel Xeon Phi first generation

co-processors. In fact, a number of attempts have been made to design efficient implementations

of HF for accelerators8,9,25,26,29 and other post-HF methods7. A major issue in this context is the

management of shared data structures between cores – in particular, the density and Fock

matrices. OpenMP HF implementations with a replicated Fock matrix and shared density matrix

have been explored in the work of Ishimura et al.17 and Mironov et al.21. The differences between

these works are in the workload distribution among MPI ranks and OpenMP threads. The current

work borrows some techniques from these previous works which implement HF for accelerators.

The result is a hybrid MPI/OpenMP implementation that is designed to scale well on a large

number of Intel Xeon Phi processors, while at the same time managing the memory footprint and

maintaining compatibility with the original GAMESS codebase.

 73

Hartree-Fock Method

 The HF method is used to iteratively solve the electronic Schrödinger equation for a

many-body system. The resulting electronic energy and electronic wave function can be used to

compute equilibrium geometries and a variety of molecular properties. The wave function is

constructed of a finite set of basis functions suitable for algebraic representation of the integro-

differential HF equations. Central to HF is an effective one-electron Hamiltonian called the Fock

operator which describes electron-electron interactions by mean field theory. In computational

practice, the Fock operator is defined in matrix form (Fock matrix). The HF working equations

are then represented by a nonlinear eigenvalue problem called the Hartree-Fock equations:

 FC = εSC (1)

where ϵ is a diagonal matrix corresponding to the electronic orbital energies, F is a Fock matrix,

C is matrix of molecular orbital (MO) coefficients, and S is the overlap matrix of the atomic

orbital (AO) basis set. The HF equations are solved numerically by self-consistent field (SCF)

iterations. The SCF iterations are preceded by computation of an initial guess density matrix and

core Hamiltonian. An initial Fock matrix is constructed from terms of the core Hamiltonian and a

symmetric orthogonalization matrix. Next, the Fock matrix is diagonalized to provide the MO

coefficients C. These MO coefficients are used to compute an initial guess density matrix. The

SCF iterations follow, in which a new Fock matrix is constructed as a function of the guess

density matrix. Diagonalization of the updated Fock matrix provides a new set of MO

coefficients which are used to update the density matrix. This iterative process continues until

convergence is reached, which is defined by the root-mean-squared difference of consecutive

densities lying below a chosen convergence threshold.

 74

 Contrary to what one might expect, the most time-consuming part of the calculation is

not the solution of the Hartree-Fock equations, but rather the construction of the Fock matrix18.

The calculation of the Fock matrix elements can be separated into one-electron and two-electron

components. The computational complexity of these two parts are formally O(N2) and O(N4),

respectively. In most cases of practical interest, the calculation of the two-electron contribution

to the Fock matrix occupies the majority of the overall compute time.

Optimization and Parallelization of the Hartree-Fock Method

General Considerations and Design

In this section, three implementations of the HF algorithm are presented: the original MPI

algorithm24 and two new hybrid MPI/OpenMP algorithms. As mentioned earlier, the most

expensive steps in HF are the computation of ERIs and the contribution of ERIs multiplied by

corresponding density elements during construction of the Fock matrix. The symmetry-unique

ERIs are labeled in four dimensions over i, j, k, l shell1 indices. The symmetry-unique quartet

shell indices are traversed during Fock matrix construction. Parallelization over the four indices

is complicated by the high order of permutational symmetry for shell indices. In addition, many

integrals are very small in magnitude and are screened out using the Cauchy-Schwarz inequality

equation. Each ERI is used to construct six elements of the Fock matrix shown in equations.

(2a)–(2f) where (i,j | k,l) corresponds to a single ERI:

 75

(a) Fij ← (i, j | k,l) i Dkl

(b) Fkl ← (i, j | k,l) i Dij

(c) Fik ← (i, j | k,l) i Djl

(d) Fjl ← (i, j | k,l) i Dik

(e) Fil ← (i, j | k,l) i Djk

(f) Fjk ← (i, j | k,l) i Dil

 (2)

The irregular storage and access of ERIs during Fock matrix construction is a significant

computational challenge. Also, the Fock matrix construction is distributed among ranks, and the

final Fock matrix is summed up by a reduction. A detailed explanation of the SCF

implementation in GAMESS can be found elsewhere24.

MPI-based Hartree-Fock Algorithm

 The MPI parallelization in the official release of the GAMESS code is shown in

Algorithm 1. While this implementation has been remarkably successful, it has the disadvantage

of a very high memory footprint. This is because a number of data structures (including the

density matrix, the atomic orbital overlap matrix, and the one and two-electron contributions to

the Fock matrix) are replicated across MPI ranks. It is a major issue for processors which have a

large number of cores (like the Intel Xeon Phi). For example, running 256 MPI ranks on a single

Intel Xeon Phi processor increases the memory footprint for both density and Fock matrices by a

factor of 256 times. This implementation is therefore severely restricted when it comes to the

size of the chemical systems that can be made to fit in memory. In a typical calculation, the

number of shells (see NShells in Algorithm 1) is less than one thousand. Most often, the number

 76

can be on the order of a few hundred shells. Thus, parallelization over a two shell indices

(Algorithm 1) frequently results in load imbalances. The HF algorithm in GAMESS was

originally designed for small- to medium-sized x86 CPU architecture clusters when load

balancing is not such a significant issue. However, switching to computer systems with larger

parallelism (large number of compute nodes) requires a change of approach for load balancing.

Multiple solutions exist for this problem. Perhaps the simplest one is to use more shell indices to

increase the iteration space and improve the load balance or introduce multilevel load balancing

schemes.

Hybrid OpenMP/MPI Hartree-Fock Algorithm

 In this section, the hybrid MPI/OpenMP two-electron Fock matrix code implementations

of the current work are described. The main goal of this implementation is to reduce the memory

footprint of the MPI-based code and to improve the load balancing by utilizing the OpenMP

runtime library. Modern computational cluster nodes can have a large number of cores operating

on a single random access memory. In order to efficiently utilize all of the available CPU cores,

it is necessary to run many threads of execution. The major disadvantage of an MPI-only HF

code is that all of the data structures are replicated across MPI processes (ranks) – since to spawn

a process is the only way to use a CPU core. In practice, it is found that the memory footprint

gets prohibitive rather quickly as the chemical system is scaled up. It follows from Algorithm 1

that only the Fock matrix update incurs a potential race-condition (write dependencies) when

leveraging multiple threads. Other large memory objects like the density matrix, the atomic

 77

orbital overlap matrix, and others do not exhibit this problem, because they are read-only

matrices, and as a result they can be safely shared across all threads for each MPI rank.

 In a first attempt, a hybrid MPI/OpenMP Hartree-Fock code was developed with the

Fock matrix replicated across threads (Algorithm 2). This is what is referred to as the private

Fock (hybrid) version of the code. In the first loop, the master thread of each MPI rank updates

the i index. This operation is protected by implicit and explicit barriers. OpenMP parallelization

is implemented over combined j and k shell loops. Joining loops provides a much larger pool of

tasks and thereby alleviates any load balancing issues that may arise. To lend credence to this

idea, static and dynamic schedules of OpenMP were tested for the collapsed loop. No significant

difference between the various OpenMP load balancer modes was observed. The l loop is the

same as in the original implementation of GAMESS. The last step is the same as in the MPI-

based algorithm: reduction of the Fock matrix over MPI processes. Sharing all of the large

matrices except the Fock matrix saves an enormous amount of memory on the multicore

systems. The observed memory footprints on the latest Xeon and Xeon Phi CPUs were reduced

about 5 times. However, the ultimate goal of this work is to move all of the large data structures

to shared memory.

 It is not straightforward to remove Fock matrix write dependencies in the OpenMP

region. As shown in Equation 2, up to six Fock matrix elements are updated at one time by each

thread. The ERI contribution is added to the three shell column-blocks of the Fock matrix

simultaneously – namely the i, j, and k blocks. Each block corresponds to one shell and to all

basis set functions associated with this shell. The main idea of the present approach is to use

 78

thread-private storage for each of these blocks. They are used as a buffer accumulating partial

Fock matrix contribution and help to avoid write dependency. Partial Fock matrix contributions

are flushed to the full matrices when the corresponding shell index changes. The access pattern

of the Fock matrix by k index corresponds to only one Fock matrix element. If threads have

different k and l shell indices, it would be possible to skip saving data to the k buffer and instead,

to directly update the corresponding parts of the full Fock matrix. This condition will be satisfied

if OpenMP parallelization over k and l loops is used. In this case, private storage is necessary for

only the i and j blocks of the Fock matrix. In the shared Fock matrix algorithm (Algorithm 3) the

original four loops (Algorithm 1) are arranged into two merged index loops. The first and second

loops correspond to the combined ij and kl indices, respectively. MPI parallelization is executed

over the top (ij) loop, while OpenMP parallelization is accomplished over the inner (kl) loop.

 In contrast to the private Fock matrix algorithm (Algorithm 2), this partitioning favors

computer systems with a large number of MPI ranks and is the preferred strategy because this

implementation of MPI iteration space is larger and the load balance is finer. By using this

partitioning, it is also possible to utilize Schwarz screening across the i and j indices. Partitioning

is especially important for very large jobs with very sparse ERI tensor because it allows the user

to completely skip the most costly top-loop iterations. Another difference from the private Fock

matrix algorithm is that the ERI contribution is now added in three places (Algorithm 3, lines 25-

27): to the private i buffer (Fij , Fik , Fil), the private j buffer (Fjk , Fjl), and the shared Fock

matrix (Fkl). At the end of the joint kl-loop, the partial Fock matrix contribution from i and j

buffers needs to be added to the full Fock matrix. It is computationally expensive for a

multithreaded environment because it requires explicit thread synchronization. However, it is

 79

possible to reduce the frequency of i buffer flushing. After each kl loop, the i index very likely

remains the same and there will be no need for i buffer flushing. In the present algorithm, the old

i index is saved after the kl loop (Algorithm 3, line 33). The flushing of the i buffer contribution

to the Fock matrix is only performed if the i index were changed since the last iteration. Flushing

the j buffer is still required after each kl loop (Algorithm 3, line 31).

 A special array structure is required for flushing and reducing buffers for the i and j

blocks. Buffers are organized as two-dimensional arrays. The outer dimension of these arrays

corresponds to threads, and the inner dimension corresponds to the data. Using Fortran notation,

data is stored in matrix columns, with each thread displayed in its own column. This (column-

wise) access pattern is used when threads add an ERI contribution to the buffers (Figure 1 (A)).

The access patter is different when it is necessary to flush a buffer into the full Fock matrix. The

tree-reduction algorithm is used to sum up the contribution from different columns and add them

to the full Fock matrix. In this case, the access of threads to this matrix is row-wise (Figure 1

(B)). Padding bytes were added to the leading dimension of the array and chunking was used on

the reduction step to prevent false sharing. After the buffer is flushed into the Fock matrix, it is

filled in with zeroes and is ready for the next cycle.

 80

Methodology

Description of Hardware and Software

 The benchmarks reported in this paper were performed on the Intel Xeon Phi systems

provided by the Joint Laboratory for System Evaluation (JLSE) and the Theta supercomputer at

the Argonne Leadership Computing Facility (ALCF)1, which is a part of the U.S. Department of

Energy (DOE) Office of Science (SC) Innovative and Novel Computational Impact on Theory

and Experiment (INCITE) program3. Theta is a 10-petaƒop Cray XC40 supercomputer consisting

of 3,624 Intel Xeon Phi 7230 processors. Hardware details for the JLSE and Theta system are

shown in Table 1. The Intel Xeon Phi processor used in this paper has 64 cores each equipped

with L1 cache. Each core also has two Vector Processing Units, both of which need to be used to

get peak performance. This is possible because the core can execute two instructions per cycle.

In practical terms, this can be achieved by using two threads per core. Pairs of cores constitute a

tile. Each tile has an L2 cache symmetrically shared by the core pair. The L2 caches between

tiles are connected by a two dimensional mesh. The cores themselves operate at 1.3 GHz.

 Beyond the L1 and L2 cache structure, all the cores in the Intel Xeon Phi processor share

16 GBytes of MCDRAM (also known as high bandwidth memory) and 192 GBytes of DDR4.

Œe bandwidth of MCDRAM is approximately 400 GBytes/sec while the bandwidth of DDR4 is

approximately 100 GBytes/sec. These two levels of memory can be configured in three different

ways (or modes). The modes are referred to as Flat mode, Cache mode, and Hybrid mode. Flat

 81

mode treats the two levels of memory as separate entities. The Cache mode treats the MCDRAM

as a direct mapped L3 cache to the DDR4 layer. Hybrid mode allows the user to use a fraction of

MCDRM as L3 cache allocate the rest of the MCDRAM as part of the DDR4 memory. In Flat

mode, one may choose to run entirely in MCDRAM or entirely in DDR4. The ”numactl” utility

provides an easy mechanism to select which memory is used. It is also possible to choose the

kind of memory used via the ”memkind” API, though as expected this requires changes to the

source code. Beyond memory modes, the Intel Xeon Phi processor supports five cluster modes.

The motivation for these modes can be understood in the following manner: to maintain cache

coherency the Intel Xeon Phi processor employs a distributed tag directory (DTD). This is

organized as a set of per-tile tag directories (TDs), which identify the state and the location on

the chip of any cache line. For any memory address, the hardware can identify the TD

responsible for that address. The most extreme case of a cache miss requires retrieving data from

main memory (via a memory controller). It is therefore of interest to have the TD as close as

possible to the memory controller. This leads to a concept of locality of the TD and the memory

controllers. It is in the developer’s interest to maintain the locality of these messages to achieve

the lowest latency and greatest bandwidth of communication with caches.

 Intel Xeon Phi supports all-to-all, quadrant/hemisphere and sub-NUMA cluster SNC-

4/SNC-2 modes of cache operation. For large problem sizes, different memory and clustering

modes were observed to have little impact on the time to solution for the three versions of the

GAMESS code. For this reason, we simply chose the mode most easily available to us. In other

words, since the choice of mode made little difference in performance, our choice of quad-Cache

mode was ultimately driven by convenience (this being the default choice in our particular

 82

environment). Our comments here apply to large problem sizes, so for small problem sizes, the

user will have to experiment to find the most suitable mode(s).

Description of Chemical Systems

 For benchmarks, a system consisting of parallel series of graphene sheets was chosen.

This system is of interest to researchers in the area of microlubricants19. A physical depiction of

the configuration is provided in Figure 2. The graphene-sheet system is ideal for benchmarking,

because the size of the system is easily manipulated. Various Fock matrix sizes can be targeted

by adjusting the system size. In all, five configurations of the graphene sheets system were

studied. The datasets for the systems studied are labeled as follows: 0.5 nm, 1.0 nm, 1.5 nm, 2.0

nm, and 5.0 nm. Table 2 lists size characteristics of these configurations. The same 6-31G(d)

basis set (per atom) was used in all calculations. For N basis functions, the density, Fock, AO

overlap, one-electron Fock matrices and the matrix of MO coefficients are N×N in size. These

are the main data structures of significant size. The benchmarks performed in this work process

matrices which range from 660×660 to 30,240×30,240. For each of the systems studied, Table 2

lists the memory requirements of the three versions of GAMESS HF code. Denoting NBF as the

number of basis functions, the following equations describe the asymptotic (NBF → ∞) memory

footprint for the studied HF algorithms:

 83

(a) M MPI =
5
2

i N BF
2 i N MPI _ per _ node

(b) MPr F = (2+ Nthreads i N BF
2 i N MPI _ per _ node

(c) MShF = 7
2

i N BF
2 i N MPI _ per _ node

 (3)

where MMPI, MPrF, MShF denote the memory footprint of MPI-only, private Fock, and shared

Fock algorithms respectively; Nthreads denotes the number of threads per MPI process for the

OpenMP code, and NMPI_per_node denotes the number of MPI processes per KNL node. For

OpenMP runs NMPI_per_node = 4, while for MPI runs the number of MPI ranks was varied from 64

to 256. If one compares columns MPI versus Pr.F and Sh.F. in Table 2, you will see that the

private Fock code has about a 50x smaller footprint compared to the stock MPI code. For the

shared Fock code, the difference is even more dramatic with a savings of about 200 times. The

ideal difference is 256 times since we compare 256 MPI ranks in the stock MPI code where all

data structures are replicated versus 1 MPI rank with 256 threads for the hybrid MPI/OpenMP

codes. But we introduced additional replicated structures (see Figure 1) and many relatively

small data structures are replicated also in the MPI/OpenMP codes. This explains the difference

between the ideal and observed footprints. Each of the aforementioned datasets was used to

benchmark three versions of the GAMESS code. The first version is the stock GAMESS MPI-

only release that is freely available on the GAMESS website2. The second version is a hybrid

MPI/OpenMP code, derived from the stock release. This version has a shared density matrix, but

a thread-private Fock matrix. The third version of the code is in turn derived from the second

version; it has shared density and Fock matrices. A key objective was to see how these

incremental changes allow one to manage (i.e., reduce) the memory footprint of the original code

while simultaneously driving higher performance.

 84

Results and Discussion

Single Node Performance

 The second generation Intel Xeon Phi processor supports four hardware threads per

physical core. Generally, more threads per core can help hide latencies inherent in an application.

For example, when one thread is waiting for memory, another can use the processor. The out-of-

order execution engine is beneficial in this regard as well. To manipulate the placement of

processes and threads, the I_MPI_DOMAIN and KMP_AFFINITY environment variables were

used. We examined the performance picture when one thread per core is utilized and when four

threads per core are utilized. As expected, the benefit is highest for all versions of GAMESS for

two threads (or processes) per core. For three and four threads per core, some gain is observed,

albeit at a diminished level. Figure 3 shows the scaling curves with respect to the number of

hardware threads utilized observed by us.

 As a first test, single-node scalability was examined with respect to hardware threads of

all three versions of GAMESS. For the MPI-only version of GAMESS, the number of ranks was

varied from 4 to 256. For the hybrid versions of GAMESS, the number of ranks times the

number of threads per rank is the number of hardware threads targeted. The larger memory

requirements of the original MPI-only code restrict the computations to, at most, 128 hardware

threads. In contrast, the two hybrid versions can easily utilize all 256 hardware threads available.

Finally, in general terms, on cache based memory architectures, it is expected that larger memory

 85

footprints potentially lead to more cache capacity and cache line conflict effects. These effects

can lead to diminished performance, and this is yet another motivation to look at a hybrid

MPI+X approach. The results of our single-node tests are plotted in Figure 4. It is found that

using the private Fock version leads to the best time to solution for the 1.0 nm dataset, for any

number of hardware threads. This version of the code is much more memory-efficient than the

stock version but, because the Fock matrix data structure is private, it has a much larger memory

footprint than the shared Fock version of GAMESS. Nevertheless, because the Fock matrix is

private, there is less thread contention than the shared Fock version.

 It was mentioned previously that shared Fock algorithm introduces additional overhead

for thread synchronization. For small numbers of Intel Xeon Phi threads, this overhead is

expected to be low. Therefore the shared Fock version is expected to be on par with the other

versions. Eventually, as the overhead of the synchronization mechanisms begins to increase, the

private Fock version of the code is found to dominate. In the end, the private Fock version

outperforms stock GAMESS because of the reduced memory footprint, and outperforms the

shared Fock version because of a lower synchronization overhead. Therefore, on a single node,

the private Fock version gives the best time-to-solution of the three codes, but the shared Fock

version strikes a better balance between memory utilization and performance. Beyond this, one

must consider the choice of memory mode and cluster mode of the Intel Xeon Phi processor. It

should be noted that, depending on the compute and memory access patterns of a code, the

choice of memory and cluster mode can be a potentially significant performance variable.

 86

 The performance impact of different memory and cluster modes is examined for the 0.5

nm (small) and 2.0 nm (large) datasets. The results are shown in Figure 5. For both datasets,

some variation in performance is apparent when different cluster modes and memory modes are

used. The smaller dataset indicates more sensitivity to these variables than the larger dataset.

Also, for both data sizes the private Fock version performs best in all cluster and memory modes

tested. Also, except in the All-to-All cluster mode, the shared Fock version significantly

outperforms the MPI-only stock version. In the All-to-All mode, the MPI-only version actually

outperforms the shared Fock version for small datasets, and the two versions are close to parity

for large datasets. In total, it is concluded that the quadrant-cache cluster memory mode is best

suited to the design of the GAMESS hybrid codes.

Multi-node Performance

 It is very important to note that the total number of MPI ranks for GAMESS is actually

twice the number of compute ranks because of the DDI. The DDI layer was originally

implemented to support one-sided communication using MPI-1. For GAMESS developers, the

benefit of DDI is convenience in programming. The downside is that each MPI compute process

is complemented by an MPI data server (DDI) process, which clearly results in increased

memory requirements. Because data structures are replicated on a rank-by-rank basis, the impact

of DDI on memory requirements is particularly unfavorable to the original version of the

GAMESS code. To alleviate some of the limitations of the original implementation, an

implementation of DDI based on MPI-3 was developed23. Indeed, by leveraging the “native”

support of one-sided communication in MPI-3, the need for a DDI process alongside each MPI

 87

rank was eliminated. For all three versions of the code benchmarked here, no DDI processes

were needed.

 Figure 6 shows the multi-node scalability of the MPI-only version of GAMESS versus

the private Fock and the shared Fock hybrid versions. It is important to appreciate at the outset

that the multinode scalability of the original MPI-only version of GAMESS is already

reasonable. For example, the code scales linearly to 256 Xeon Phi nodes, and it is really the

memory footprint bottleneck that limits how well all the Xeon Phi cores on any given node can

be used. This pressure is reduced in the private Fock version of the code, and it is essentially

eliminated in the shared Fock version. Overall, for the 2.0 nm dataset, the shared Fock code runs

about six times faster than stock GAMESS on 512 Xeon Phi processors. It resulted from the

better load balance of the shared Fock algorithm that uses all four shell indices – two are used in

MPI and two are used in OpenMP workload distribution. The actual timings and efficiencies are

listed in Table 3. Figure 7 shows the behavior of the shared Fock version of GAMESS for the 5

nm dataset. It is the largest dataset we could fit in memory on Theta. Since we run on 4 MPI

ranks the memory footprint is approximately 208 GB per node. This figure displays good scaling

of the code up to 3,000 Xeon Phi nodes, which is equal to 192,000 cores (64 cores per node).

Conclusion

 In this paper, conversion of the MPI-only GAMESS HF code to hybrid MPI-OpenMP

versions is described. The resulting hybrid implementations are benchmarked to exhibit

improvements in the time-to-solution and memory footprint compared to the original MPI-only

 88

version. The code design decisions taken here were justified and implemented in a systematic

way. Focus was placed on sharing the two primary (memory consuming) objects, the density and

Fock matrices, in the SCF loop among the computation units. We have discussed two new HF

implementations, each of which maintains full functionality of the underlying GAMESS code. In

the first version, the density matrix was shared across threads, while the Fock matrix was kept

private. The second version leveraged the first step, and focused entirely on making the Fock

matrix a shared object. As a result, the memory footprint of the original code was lowered

systematically while improving cache utilization and time-to-solution.

 Clearly, we have taken only the first steps towards an efficient hybrid HF implementation

in GAMESS. In future work, we plan to tune our hybrid OpenMP/MPI code more thoroughly.

Our new hybrid MPI/OpenMP codes significantly outperform the official stock MPI-only code

in GAMESS. Our best case implementation has about 200 times smaller memory footprint and

runs up to 6 times faster than the original MPI-only version. Both our hybrid versions also have

better scalability with respect to cores and nodes on single node and multi-node Intel Xeon Phi

systems respectively. It is also noted that the code optimizations reported in this paper are

expected to be applicable to all previous and future generations of Intel Xeon Phi processors, as

well as beneficial on the Intel Xeon multicore platform. The fact that the code already scales well

on a large number of second generation Intel Xeon Phi processors enables us to help bring the

promise of the “many-core” philosophy to the large scientific community that has long benefited

from the extensive functionality of the GAMESS code.

 89

 Like the MPI-only version, the hybrid versions of GAMESS can be deployed on systems

ranging from a single desktop to large supercomputers. In addition, the hybrid codes offer

enhanced configurability and parallel granularity. Finally, the lessons learned here are applicable

to virtually any code that handles non-linear partial differential equations using a matrix

representation. In this paper, we treat the problem of assembling a matrix in parallel subject to

highly non-regular data dependencies. Indeed, a variety of methods, such as Unrestricted Hartree

Fock (UHF), Generalized Valence Bond (GVB), Density Functional Theory (DFT), and Coupled

Perturbed Hartree-Fock (CPHF), all have this structure. The implementation of these methods

can therefore directly benefit from this work. Beyond quantum chemistry, we note, the SCF

approach shares much in common with generic non-linear solvers. We therefore conclude that

the strategies discussed in this work are directly applicable to computer programs encountered in

other areas of science.

Acknowledgements

 This research was made possible by the resources of the Argonne Leadership Computing

Facility, which is a U.S. Department of Energy (DOE) Office of Science User Facility supported

under Contract DE-AC02- 06CH11357. We gratefully acknowledge the computing resources

provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne

National Laboratory. Kristopher Keipert and Prof. Mark S. Gordon acknowledge the support of a

Department of Energy Exascale Computing Project grant to the Ames Laboratory. We thank the

Intel® Parallel Computing Centers program for funding. The authors would like to thank the

RSC Technologies staff for discussions and assistance.

 90

References

1. Argonne National Laboratory Leadership Computing Facility. http://www.alcf.anl.gov

(accessed May, 2017)

2. The General Atomic and Molecular Electronic Structure System.

http://www.msg.ameslab.gov/gamess/index.html (accessed May, 2017)

3. U.S. Department of Energy INCITE Program. http://www.doeleadershipcomputing.org/

(accessed May, 2017)

4. Alexeev, Y.; Kendall, R. A.; Gordon, M. S. Comput. Phys. Comm. 2002, 143 (1), 69.

5. Alexeev, Y.; Mahajan, A.; Leyffer, S.; Fletcher, G.; Fedorov, D. G. Supercomputing

2012, 1.

6. Alexeev, Y.; Schmidt, M. W.; Windus, T. L.; Gordon, M. S. J. Comp. Chem. 2007,

28(10), 1685.

7. Apra, E.; Klemm, M.; Kowalski, K. Supercomputing 2014, 674.

8. Asadchev, A.; Gordon, M. S.; J. Chem. Theory Comput. 2012, 8(11), 4166.

9. Chow, E.; Liu, X.; Misra, S.; Dukhan, M.; Smelyanskiy, M.; Hammond, J. R.; Du, Y.;

Liao, X.; Dubey, P. Int. J. High Perform. Comput. Appl. 2015, 85.

10. Chow, E.; Liu, X.; Smelyanskiy, M.; Hammond, J. R. J. Chem. Phys. 2015, 142(10)

11. Fedorov, D.G.; Kitaura, K. J. Phys. Chem. A 2007, 111(30), 6904.

12. Fedorov, D. G.; Kitaura, K.; The Fragment Molecular Orbital Method: Practical

Applications to Large Systems. CRC Press, Boca Raton, Fl, USA

13. Fletcher, G. D.; Schmidt, M. W.; Bode, B. M.; Gordon, M. S. Comput. Phys. Comm.

2000, 128(1), 190.

 91

14. Foster, I. T.; Tilson, J. L.; Wagner, A. L.; Shepard, R. L.; Harrison, R. J.; Kendall, R. A.;

Littlefield, R. J. J. Comp. Chem. 1996, 17(1), 109.

15. Gordon, M. S.; Schmidt, M. W. In theory and applications of computational chemistry:

The first forty years; Elsevier: Amsterdam, The Netherlands, 2005.

16. Harrison, R. J.; Guest, M. F.; Kendall, R. A.; Bernholdt, D. E.; Wong, A. T.; Stave, M.;

Anchell, J. L.; Hess, A. C.; Littlefield, R. J.; Fann, G. L. et. al. J. Comp. Chem. 1996,

17(1), 124.

17. Ishimura, K.; Kuramoto, K.; Ikuta, Y.; Hyodo, S. J. Chem. Theory Comput. 2010, 6(4),

1075.

18. Janssen, C. L.; Nielson, I. M. B. Parallel computing in quantumchemistry. CRC Press,

Boca Raton, Fl, USA

19. Kawai, S.; Benassi, A.; Gnecco, E.; Sode, H.; Pawlak. R.; Feng, X.; Mullen, K.;

Passerone, D.; Pignedoli, C.; Ruffieux, P. et. al. Science 2016, 6276, 957.

20. Liu, X.; Patel, A.; Chow, E. In Parallel and Distributed Processing Symposium, 2014

IEEE 28th International 902.

21. Mironov, V.; Khrenova, M.; Moskovsky, A. High Performance Computing: 30th

International Conference 2015, 113.

22. Ozog, D.; Kamil, A.; Zheng, Y.; Hargrove, P.; Hammond, J. R.; Malony, A.; de Jong,

W.; Yelick, K. In Parallel and Distributed Processing Symposium 2016, 453.

23. Pruitt, S. private communication 2016

24. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J.

H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.;

Montgomery, J. A. J. Comp. Chem. 1993, 14(11), 1347.

 92

25. Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2008, 4(2), 222.

26. Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5(4), 1004.

27. Umeda, H.; Inadomi, Y.; Watanabe, T.; Yagi, T.; Ishimoto, T.; Ikegami, T.; Tadano, H.;

Sakurai, T.; Nagashima, Um. J. Comp. Chem. 2010, 31(13), 2381.

28. Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.;

Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L. et. al. Comput. Phys. Commun. 2010,

181(9), 1477.

29. Wilkinson, K. A.; Sherwood, P.; Guest, M. F.; Naidoo, K. J. J. Comp. Chem. 2011,

32(10), 2313.

 93

Algorithm 1. MPI parallelization of SCF in stock GAMESS

 94

Algorithm 2. Hybrid MPI-OpenMP SCF algorithm; Fock matrix is replicated across all threads

(Fock matrix is private)

 95

arti

Algorithm 3. Hybrid MPI-OpenMP SCF algorithm; Fock matrix is shared across all threads

 96

Figure 1. (A) i and j Fock vector update and (B) summation of all Fock elements from all

vectors. “bf” means basis function and “thr” means thread.

Table 1. Hardware and software specifications

Intel Xeon Phi Node Characteristics

Xeon Phi Model 7210 and 7230 (64 cores, 1.3 GHz)

Memory Per Node 16 GB MCDRAM, 192 GB DDR4

Compiler Intel Parallel Studio XE 2016v3

JLSE Xeon Phi Cluster (26.2 TFLOPS peak)

Intel Xeon Phi Nodes 10

Interconnect Type Intel Omni-Path

Theta supercomputer (9.65 PFLOPS peak)

Intel Xeon Phi Nodes 3,624

Interconnect Type Aries interconnect, Dragonfly topology

 97

Table 2. Size characteristics of chemical systems used in benchmarks

Edge Length # Atoms # BFs
Memory Footprint, GB

MPI Pr.F. Sh.F.

0.5 nm 44 660 6.5 0.1 0.5

521.0 nm 120 1800 47.6 0.9 3.8

1.5 nm 220 3300 159.6 3.1 12.9

2.0 nm 356 5340 416.8 8.2 33.7

5.0 nm 2016 30240 9869.2 208.7 1026.3

Figure 2. Model system of a C2016 graphene bilayer. In the text, we refer to this system as 5 nm.

There are two layers with dimensions 5 nm by 5 nm. Each grapheme layer consists of 1,008

carbon atoms.

 98

Figure 3. Performance dependence on OpenMP thread affinity type for the shared Fock version

of the GAMESS code on a single Intel Xeon Phi processor, 1.0 nm benchmark. All calculations

are performed in quad-cache mode. Four MPI ranks were used in all cases. The number of

threads per MPI rank was varied from 1 to 64.

 99

Figure 4. Scalability with respect to the number of hardware threads of the original MPI code

and both MPI/OpenMP implementations on a single Intel Xeon Phi processor, 1.0 nm

benchmark.

 100

Figure 5. Time-to-solution (x-axis is time, in seconds) for different clustering and memory

modes. Left column displays the smallest benchmark system (0.5 nm), and right column displays

the larger 2.0 nm benchmark system.

 101

Figure 6. Multi-node scalability of the private and shared Fock implementation compared to the

MPI-only GAMESS code on Theta with the 2.0 nm benchmark dataset. The quad-cache cluster-

memory mode was used for all data points.

 102

Table 3. Parallel efficiency of the three different HF algorithms, 2.0 nm benchmark dataset

Nodes Time-to-solution, s Parallel efficiency, %

 MPI Pr. F. Sh. F. MPI Pr. F. Sh. F.

4 2661 1128 1318 100 100 100

16 685 288 332 97 98 99

64 195 78 85 85 90 97

128 118 49 43 70 72 96

256 85 44 23 49 40 90

512 82 44 13 25 20 79

 103

Figure 7. Scalability of the shared Fock HF implementation on Theta for the 5.0 nm benchmark

dataset running on up to 3,000 Intel Xeon Phi processors. The results here are for 4 MPI ranks

per node, with 64 threads per rank, giving full saturation (in terms of hardware threads) on every

Intel Xeon Phi node. For each point in the figure, we show the computation time in seconds.

 104

CHAPTER 5: INTEROPERABILITY OF ELECTRON REPULSION INTEGRAL

SOLVERS WITH GAMESS

Kristopher Keipert and Mark Gordon

Abstract

 The evaluation of electron repulsion integrals is a central component of many quantum

chemistry computations. Isolated software libraries that contain efficient implementations of

integral evaluation methods are attractive as drop-in replacements of less efficient codes. In this

work, several of the key challenges of software interoperability in computational chemistry are

discussed and demonstrated. Details of the integration of the ERD and SIMINT integral

evaluation libraries with GAMESS are presented. Initial benchmarks of the GAMESS-ERD code

show performance improvements of 6.9-14.6% for commonly used basis sets, but the computed

integrals must be reordered to maintain compatibility with GAMESS. The reordering overhead

essentially nullifies any observed performance benefits. A new Hartree-Fock code is written to

integrate SIMINT with GAMESS, with speedups of 23.8-26.4% observed for a limited

benchmark set. While the GAMESS-SIMINT interface is straightforward to implement, several

valuable functionalities are lost by circumventing the GAMESS Hartree-Fock code.

 105

Introduction

 Progress in the field of computational chemistry is driven by a combination of several

distinct but coupled efforts. One aspect is the development of new mathematical theories which

can accurately model molecular systems and predict physical properties. Theoretical methods

must be expressed as efficient computer algorithms, which requires strong familiarity with

computer science and the limitations of computer hardware. The implemented computer

programs are then used by trained scientists to solve various chemical problems. Through

significant improvements in computational power and efficient implementations of quantum

chemistry (QC) methods, accurate physical models are being applied to increasingly large

chemical systems. Unfortunately, the size and complexity of QC codebases have also increased

accordingly.

 With a large number of QC codes in popular use, significant programming effort is

expended on redundant tasks to maintain reasonable performance on new computer hardware,

and to implement novel methods which already exist in other software packages. Ideally an end-

user would be able to leverage the unique advantages of multiple QC codes in a single workflow.

However, many existing QC applications are built on rigid software frameworks, thereby

hindering easy integration. In light of these challenges, the computational QC community has

recently strengthened efforts to improve software interoperability through standardized data

formats and component-based software development practices. Several of those efforts will be

highlighted in the present work, along with a discussion of the challenges faced when attempting

 106

to interface a pair of two-electron integral evaluation packages with the widely used QC code

GAMESS1,2.

Software Interoperability in Quantum Chemistry

 Today, dozens of molecular science software packages with unique capabilities are under

active development. Many of these software packages are feature-rich and are sufficient for

complete standalone computational studies. For many scientific problems, the set of methods

with optimal physical accuracy and computational efficiency, as well as the desired features,

may span several different programs or different physical scales of molecular systems.

Furthermore, combinations of various methods may lead to new scientific discovery. In practice,

even highly experienced domain software developers may face roadblocks when combining QC

codes.

 A major challenge is the variability of data representation in QC. Data can be broadly

categorized as either metadata (MD) or large data (LD)3-5. MD is the human-readable

information typically stored in input files (e.g. molecular geometries, basis set information, ab

initio method parameters) and output files (e.g. electronic energy, molecular orbital coefficients).

LD quantities are runtime objects often stored in binary form, with storage costs that rapidly

increase with molecular system size (e.g. integrals, expansion coefficients, cluster amplitudes).

While the format of LD may be somewhat constrained by computational performance

considerations, a single MD quantity can be represented in dozens of ways by different scientific

codes. This is clearly illustrated by the Open Babel program6, which supports interconversion of

 107

more than 110 chemical file formats used with various molecular science software packages.

Matching up input parameters from multiple codes, whether to reproduce scientific results or

support component interoperability, is often a daunting task. These same issues persist for the

presentation of computed results as well. Different QC programs report different subsets of the

total raw computed data, depending on what is assumed to be important to the end user, with

varying formats even for equivalent results (e.g. numerical precision). These issues only grow

with the rapidly increasing amount of data generated by computational chemists.

 One possible approach to the incompatibility issue discussed in the previous paragraph is

the development of standard formatting and nomenclature for MD. For example, molecular

science domains outside of QC have developed very successful standards for specifying

chemical structures such as the Protein Data Bank7 and Crystallographic Information File8

formats. Recently proposed standardized data formats that are tailored to QC calculations9-11 are

designed with an emphasis on efficient storage of QC information in databases. Adoption of

common data standards for publication in scientific journals has been suggested as a route

toward improving the reproducibility of computed results12. An existing approach toward MD

interoperability is found in the interface between the Psi413and CFOUR14 QC codes. Psi4

includes a frontend input pre-processer that allows users to dictate flexible workflows in Python

syntax. The Psi4 input may direct execution to external plugin codes linked into Psi4, or invoke

other binaries directly (e.g. CFOUR). Depending on the options chosen in the Psi4 input file, a

set of reasonable CFOUR parameters is chosen automatically. Advanced users can manually

specify any CFOUR options in the Psi4 input file if desired. Quantities computed with CFOUR

 108

are parsed from the output stream, and stored in Psi4 variables. This allows users to further

process the results with functionalities that are available in Psi4.

 Manipulation of LD is generally more challenging than MD quantities. For example, LD

exists during runtime and is not usually stored after program execution. Therefore, sharing LD

between QC codes requires understanding and modification of runtime workflows. Since LD is

not meant to be human readable, the data formats are usually motivated by efficient storage and

computational manipulation. If LD entities are shared between QC codes which require different

layouts of the data, reordering the data may introduce a significant computational cost.

As with MD objects, one approach is to adopt a standard format for LD. For example, in

work associated with the common component architecture (CCA) forum15, standards were

proposed for the indexing (and normalization) of a computed batch of electron repulsion

integrals16, according to a proposed standard order for Gaussian Cartesian functions. Because the

layout of LD is often coupled with the implementation of the corresponding software algorithms,

adopting a standardized format can require significant effort for existing codes.

In another approach, the Q5Cost format and library were developed to facilitate data

exchange between QC programs with different data layouts3-5. An XML-based MD format was

proposed, along with a binary format for LD quantities. The LD component of the Q5Cost

architecture is an abstraction for QC data built upon the HDF5 data format17. HDF5 was

designed for portable, efficient storage and I/O access of general scientific data, particularly in

high performance computing environments. In order to minimize the effort required by QC

 109

software developers, the Q5Cost library includes wrapper functions which translate data between

various proprietary data formats and the Q5Cost format. This strategy is not practical for all LD

quantities, as two data transformations are required when using an intermediate format,

compared to a single transformation for a 1:1 interface between proprietary formats.

Alternatively, QC software developers could make the effort to support the Q5Cost format

natively. A standard is only valuable if it is utilized, and this “two-tier” approach can be used to

add support for a common data format relatively quickly. Adoption of the Q5Cost format and

library has been relatively poor, but the general approach to data interoperability is promising.

In order to facilitate integration of software components from different QC programs, the

interface to use individual software components should be well defined. It is particularly difficult

to isolate functionalities in QC codes such as GAMESS that were not designed using an object-

oriented approach. The implementation of software interfaces also depends on the programming

language used to develop the particular component. Several interfaces have been developed for a

set of common QC functionalities by the CCA forum using the scientific interface description

language (SIDL)18. The SIDL templates are used with the Babel language interoperability tool18

to generate implementation files in the desired programming languages (Fortran, C, C++, etc.).

The interface with the QC software component is then defined within the implementation files.

This strategy was used to isolate the two-electron integral computation in GAMESS, with an

interface computation overhead of approximately 17%19. In another study, a CCA-type interface

was developed for the IntV3 integral package with MPQC and benchmarked for Hartree-Fock,

density functional theory (DFT), and second order perturbation theory (MP2) energy and

gradient calculations16. The interface overhead for that work ranged from 0.3-7.3%. Even

 110

without a standardized interface, simply compartmentalizing a useful QC method can be very

beneficial for software interoperability (e.g. libint20, libxc21, LIBEFP22). In this work, the

integration of two standalone integral libraries with GAMESS is discussed.

Two-Electron Repulsion Integrals

 The most computationally expensive component of the Hartree-Fock (HF) self-consistent

field (SCF) method is the construction of the Fock matrix Fµν by:

Fµν = Hµν

core + Dλσ
λσ

AO

∑ [2(µν |λσ)− (µλ |νσ)] (1)

where Hcore is the core Hamiltonian matrix, the sum runs over all atomic orbitals (AO), D is the

density matrix, and µ, ν, λ, and σ are indices which range over n basis functions. Each (µν|λσ)

quantity is an electron repulsion integral (ERI) defined by:

(µν |λσ) = d∫ r1dr2φµ (r1)φν (r1)r12

−1φλ (r2)φσ (r2) (2)

where Φ are Gaussian basis functions centered at atomic coordinates and r12 is the distance |r2-

r1|. Each Gaussian basis function is a linear combination of k primitive Gaussians centered on a

nucleus, defined by:

		
φα = Nkα

k
∑ xa ybzce−ζkr

2
 (3)

here Nkα is a contraction coefficient, x,y,z are the Cartesian coordinates of the nucleus, a,b,c are

positive integers controlled by the angular momentum of the basis function (L=a+b+c), ζ is an

exponent which controls the width of the orbital, and r2=x2+y2+z2. Basis functions are grouped

into sets called shells with the same angular momentum and atomic center. For computational

 111

efficiency, ERIs are computed at the granularity of “shell quartets” which group the basis set

information of four shells. The number of ERIs computed varies for each shell quartet according

to the number of basis functions contained in each shell.

 The computational effort required to compute a shell quartet depends on the angular

momenta of the quartet shells. An (ff|ff) quartet includes many more Gaussian functions than an

(ss|ss) quartet, and each integral of the former type is generally more expensive to compute. This

complicates the efficient distribution of shell quartets across computer processes. Various

algorithms are available to compute ERIs such as the Obara-Saika23,24, Rys Quadrature25,26, and

McMurchie-Davidson27 schemes. The most computationally efficient algorithm depends on the

angular momenta of the shell quartet, and the extent of Gaussian primitive contraction.

Integral Evaluation in GAMESS

 The general routine for evaluation of two-electron integrals in the FORTRAN 77

GAMESS program is discussed here. A pseudocode representation of the main two-electron

integral evaluation driver TWOEI is shown in Figure 1.

For each iteration over the inner loop, up to three symmetry-unique integral batches are

computed. This is a blocking technique called “triple sort”, which reduces the number and size of

data transfer messages compared to canonical ordering28. MPI parallelization is implemented

over the ISHELL and JSHELL loops, with dynamic load balancing implemented after the

JSHELL loop. The innermost loop passes unscreened shell quartets to the SHELLQUART

 112

subroutine. Depending on the angular momenta of the quartet shells, an ERI computation

algorithm is chosen among the ERIC38, rotated axis39, and Rys Quadrature25,26 methods in

SHELLQUART. Cartesian Gaussians within shells are arranged into groups with descending

powers of Cartesian products, with each group arranged in alphabetical order (e.g. X3, Y3, Z3,

X2Y, X2Z, Y2X, Y2Z, Z2X, Z2Y, XYZ). The computed integrals are immediately used to

compute a partial contribution to the Fock matrix.

ERD Integral Evaluation Library

 The Electron Repulsion Direct (ERD) integral library29 is an implementation of the Rys

Quadrature (RQ) method written in FORTRAN. The core idea of the RQ method is to represent

the 6-dimensional ERI expression as a product of three 2-dimensional integrals that are evaluated

using horizontal and vertical recurrence relations. The integrals are evaluated over an exact

numerical quadrature of orthogonal Rys polynomials. The RQ method is most suitable for large

angular momentum combinations because of the computational cost required to compute roots

and weights of the Rys polynomials. A detailed description of the RQ method can be found

elsewhere25,26. The ERD RQ implementation has been reported to offer improved performance

over the GAMESS FORTRAN RQ code29 with two key implementation advantages. First, the

code is carefully structured to make efficient use of the CPU cache size, which is specified by the

user as a tuning parameter. Second, primitive integrals are not redundantly recomputed for

generally contracted basis sets. The second point is important for generally contracted basis sets,

for which ERI computation has been reported to be an order of magnitude faster with ERD

compared to GAMESS RQ29.

 113

GAMESS-ERD Integration

 The GAMESS SHELLQUART routine is modified to redirect the GAMESS RQ calling

function to an ERD subroutine called ERD_WRAPPER. Parameters passed to ERD_WRAPPER

include the coordinates of Gaussian centers, the shell indices, a set of index parameters that

assign shell information to individual shells, basis function exponents/contraction coefficients,

and a buffer to store computed integrals. In comparison, the only parameters passed to the native

GAMESS integral computation functions are the shell indices and output integral buffer.

GAMESS is written primarily in FORTRAN 77, so large sets of parameters are shared between

subroutines with common blocks. Every subroutine that uses any number of variables in the

common block must include a declaration of the entire common block. Any change to a

common block must be copied to every declaration of the common block throughout the code.

Passing the variables as parameters to ERD_WRAPPER removes explicit dependence on the

GAMESS common block within the wrapper.

 Inside the ERD_WRAPPER function, some of the data passed from GAMESS must be

transformed into a different format that is expected by the ERD subroutines. For example, the

contraction coefficients required to compute a batch of integrals must be gathered into a single

array before being passed to ERD. In GAMESS, contraction coefficients are placed in separate

arrays, with each array storing all contraction coefficients corresponding to basis functions of the

same angular momentum. Gaussian functions are also normalized within ERD, with no

parameter exposed to the user to disable normalization. In order to avoid modification of the

 114

ERD library, the primitive functions must be unnormalized prior to integral computation. As

mentioned previously, it is usually most efficient to use multiple methods for integral

computation if the basis set includes functions that range from angular momenta s and p to d or

higher. Therefore, the GAMESS normalization routine should not simply be disabled. Instead, all

contraction coefficients are copied into a static local array and unnormalized upon the first

execution of ERD_WRAPPER. This strategy isolates the implementation details to the wrapper

function with only a minimal memory footprint penalty. Once all required variables are stored in

the appropriate format, an ERD function is called to compute the minimum amount of integer

and floating point memory required to compute the integral batch. Dynamic integer and floating

point arrays of the optimum size are then allocated in ERD_WRAPPER. Finally, the ERD

integral evaluation function is called. Because the ordering of Cartesian functions in ERD is

different from that in GAMESS, the order of computed integrals in the output buffer differs for

shells with angular momentums L>2. For example, the Cartesian functions for d shells are

ordered as:

dGAMESS = x2, y2, z2, xy, xz, yz

dERD = x2, xy, xz, y2, yz, z2

and the integrals computed for a dpss shell quartet are ordered as:

dpssGAMESS = [(x2 x | 1 1), (x2 y | 1 1), (x2 z | 1 1), (y2 x | 1 1), (y2 y | 1 1), (y2 z | 1 1), ...]

 dpssERD = [(x2 x | 1 1), (x2 y | 1 1), (x2 z | 1 1), (xy x | 1 1), (xy y | 1 1), (xy z | 1 1), …]

Modifying GAMESS or ERD to add support for a shared integral ordering is not trivial, and is

outside the scope of an isolated external interface. A generalized routine was added to

ERD_WRAPPER which reorders computed integrals before they are passed back to the

GAMESS SCF driver. The overhead associated with reordering the integrals is significant,

 115

particularly for the high angular momentum quartets for which the RQ method is best suited. The

time between initiation of the SCF routine and the end of the first SCF iteration was

benchmarked for the testosterone molecule with GAMESS and GAMESS-ERD (Table 1).

 Even without reordering, the ERD speedup is relatively poor. Any speedup is essentially

nullified by the reordering overhead, with GAMESS-ERD performing 6.9% worse than

GAMESS-RYS in the worst case. The results are inconsistent with the benchmark comparisons

between GAMESS and ERD for isolated ERI evaluation as reported in the original ERD

implementation29. For example, computation of ERIs for staggered D3d ethane using the cc-pvdz

basis set32 was reported to reduce the GAMESS computation time of 10.2 seconds down to 1.7

seconds for ERD. Across extended benchmarking of GAMESS-ERD vs. GAMESS-RYS, the

largest speedup observed without reordering was 28.2% (PF6
- anion with the NASA Ames ANO

basis set). One deficiency in the GAMESS-ERD interface is that primitive integrals are still

recomputed for contracted basis sets. To change this would require substantial modification of

GAMESS. A standalone FORTRAN integral driver was implemented to illustrate the

performance benefit of batching large generally contracted basis sets. All ERD function

parameters were manually initialized for a single carbon atom with the ANO-RCC basis set40,

and the computed integral buffer was overwritten in subsequent function calls without any

manipulation of the computed values. The ERD-type integral batching reduced the computation

time from 115.7 seconds to 2.2 seconds. While this is an artificial benchmark, the performance

benefit should be considered in context of the order of magnitude speedup previously reported

for ERD compared to GAMESS using other generally contracted basis sets. In consideration of

 116

the popularity of generally contracted basis sets compared to segmented contractions, efforts to

implement batching in GAMESS were not pursued further.

SIMINT Integral Evaluation Library

 The SIMINT integral library34 is an implementation of the Obara-Saika23,24 (OS) method

written in the C programming language. SIMINT was written to take advantage of single-

instruction, multiple-data (SIMD) vectorization capabilities of computer processors. SIMD

instructions apply a single operation to multiple data points at the same time. Vectorization is

becoming increasingly important as high performance computing hardware trends toward larger

vector register lengths. While software compilers can automatically vectorize code in limited

cases, careful manual restructuring of algorithms is usually required to maximize vectorization.

The SIMINT library is built with a C++ code generator, which provides flexibility to easily

modify the library. For example, the generator can be configured to optimize SIMINT code for

the SIMD vector length of a target hardware system, or to change the ordering of computed

integrals (including GAMESS ordering). The ability to generate complex code that is customized

for hardware targets and/or software interfaces is an extremely powerful tool for performance

portability and software interoperability. Several code generators have been widely adopted in

computational chemistry, including other code generators for ERI evaluation20,35.

 Instead of the canonical four-index loop over shells presented Figure 1, the loop structure

in SIMINT is implemented as a two-index loop over pairs of shells. Data corresponding to pairs

of shells (e.g. coordinates of Gaussian centers, primitives and contraction coefficients) are stored

 117

in shell pair data structures. A shell pair combines two shells corresponding to the bra or ket part

of an integral quartet. Data corresponding to multiple shell pairs with the same angular

momentum can be stored in a single shell pair data structure. This scheme presents two main

advantages. First, several prefactors required for integral evaluation can be computed from pairs

of shells in advance of the main loops over shells and primitives. Second, the integral evaluation

function can operate on multiple shell quartets in one function call. SIMD registers can be

efficiently utilized by filling vector lanes with primitives from different contracted shell quartets.

Further details regarding the SIMINT implementation and OS method can be found elsewhere.

In the present work, only the key differences between SIMINT and GAMESS that impact

integration of the codes are discussed further.

GAMESS-SIMINT Integration

 Supporting the loop structure over shell pairs in SIMINT requires significant

modification of the GAMESS SCF driver. Because the SCF algorithm is relatively

straightforward, the strategy for SIMINT-GAMESS integration is to encapsulate an entire SCF

kernel in a C++ interface with GAMESS. First, the call to the GAMESS SCF driver was

replaced with a conditional option to call a FORTRAN wrapper subroutine that directs execution

to the GAMESS-SIMINT SCF code. The wrapper routine imports all of the input data required

for the SCF routine that was initialized by GAMESS (e.g. basis set data, nuclear charges, SCF

convergence tolerances) and passes the information as function parameters to the GAMESS-

SIMINT SCF driver. The parameters are matched to equivalent C++ data types and specified as

const to avoid data modifications which might impact post-Hartree-Fock routines. Next, an

 118

initialization function is called to copy the GAMESS Gaussian shell data into simint_shell data

structures. The simint_shell structures are stored in a two-dimensional C++ vector for

convenience, with shells of the same angular momentum grouped into rows. GAMESS sp shells

(pairs of s-type and p-type primitives with shared exponent values) are separated into individual

s and p simint_shell structures. Next, arrays are allocated to store overlap integrals and the core

Hamiltonian, and the one-electron integral driver is called. The OED one-electron integral

library29 was interfaced with GAMESS-SIMINT for this task. OED was developed concurrently

with ERD, and the function arguments are almost identical to ERD. The one-electron integral

driver is a four-fold loop that iterates over pairs of simint_shell vector rows and columns.

Overlap, kinetic, and nuclear attraction integrals are computed for all unique pairs of shells. As

with ERD, the optimum integer and floating point memory requirement are computed before

each call to an integral evaluation function. For most of the OED function parameters, members

of the simint_shell structs are passed directly. One exception is the basis set contraction

coefficients and exponents for shell pairs, which must first be copied into a single array. Once all

one-electron integrals are computed, core Hamiltonian and overlap integrals are returned to the

GAMESS-SIMINT SCF driver. The typical SCF routine follows, with an initial Fock matrix

formed using the core Hamiltonian as a guess, and construction of an initial density matrix.

 Prior to the start of the SCF iterations, the two-electron integrals are computed with

SIMINT and stored in memory. First, a two-fold loop iterates over the simint_shell vector and

initializes simint_multi_shellpair (SMS) structures (corresponding to the integral bra or ket

pairs). All shell pairs of a given type are grouped into the same SMS structure, but the shell pairs

could potentially be distributed into separate SMS structures if desired (for example, to distribute

 119

the work into multiple function calls during a parallel run). The SIMINT integral evaluation

routine is then called within a second two-fold loop over symmetry-unique pairs of SMS

structures. The output buffer of computed integrals typically contains integral values

corresponding to multiple shell quartets. A final loop over the output buffer determines the i,j,k,l

indices for each value, and stores the quantities accordingly in a one-dimensional array

containing all computed integral values. Once all two-electron integrals are computed, a

conventional SCF iterative procedure is executed. CBLAS/LAPACK are used for all low-level

linear algebra routines throughout the GAMESS-SIMINT code, as provided by Intel MKL.

The time between initiation of the SCF routine and the end of the first SCF iteration was

benchmarked for the testosterone molecule with GAMESS and GAMESS-SIMINT (Table 2).

 Modest speedups are observed with GAMESS-SIMINT for a range of basis sets. The

speedups are low relative to reported speedup of the isolated SIMINT integral timings in

comparison with ERD and libint34. This can be attributed to the overhead of the GAMESS-

SIMINT interface (e.g. copying and reformatting basis set data), and possible inefficiencies in

the SCF implementation compared to GAMESS. Performance profiling to identify these

deficiencies is an ongoing effort. With regard to software interoperability, reimplementation of

the entire Hartree-Fock routine unnecessarily reduces the functionality of GAMESS-SIMINT

compared to GAMESS. For example, while individual iterations are faster with GAMESS-

SIMINT, more iterations are required for convergence compared to GAMESS. GAMESS

reduces the number of iterations with an improved initial orbital guess, second order orbital

optimization36, and/or extrapolation techniques such as the direct inversion of iterative subspace

(DIIS)37 method. Upon reflection, additional GAMESS functionalities could be preserved by

 120

restricting the GAMESS-SIMINT interface to ERI evaluation and density matrix contraction

only. Considering the successful performance benefits of ERI vectorization demonstrated for

both SIMINT and libint, improving the performance of the GAMESS-SIMINT interface is a top

priority moving forward. Adding support to the C++ interface for derivative integral evaluation

by ERD is another topic of interest.

Conclusions

 Software interoperability can potentially benefit the field of computational chemistry by

allowing users to leverage the unique advantages of multiple QC codes in a single workflow.

Differences in the layout of data structures between different QC codes can be a substantial

obstacle for software integration. Various standard formats have been proposed for key QC data

structures, but adding support for new data layouts in existing codes can require a substantial

programming effort. A second major obstacle to interoperability is the difficulty of isolating

software components from code that was not designed to be modular. This problem diminishes

as QC methods are encapsulated in software libraries at an increasing rate.

 In this work, software interfaces were created to integrate the ERD and SIMINT integral

evaluation libraries with GAMESS. For a limited set of Hartree-Fock energy calculations for the

testosterone molecule, computing integrals with ERD reduces the timing for the first SCF

iteration by 6.9-14.6% for commonly used basis sets. The arrangement of integrals computed by

ERD differs from GAMESS, so the integrals must be reordered. After including the performance

penalty incurred by the reordering routine, the ERD speedup is essentially nullified. For the

 121

GAMESS-SIMINT interface, an entirely new Hartree-Fock code was written. Speedups for the

same benchmark set as ERD range from 19.8-26.4%. Several important GAMESS functionalities

were lost by constructing a new Hartree-Fock routine, including methods that reduce the number

of SCF iterations required for convergence. Writing a more minimal GAMESS-SIMINT

interface with the addition of GAMESS parallelization with the distributed data interface is a

focus of interest for future work.

Acknowledgements

 This work was supported in part by a Department of Energy Exascale Computing Project

grant. K.K. thanks Graham Fletcher and Yuri Alexeev for helpful discussions during

implementation of the ERD interface. The GAMESS-ERD interface was written as a joint effort

by K.K. and Alexander Findlater.

References

1. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J.

H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.;

Montgomery, J. A. J. Comput. Chem. 1993, 14(11), 1347.

2. Gordon, M. S.; Schmidt, M. W. In theory and applications of computational chemistry:

The first forty years; Elsevier: Amsterdam, The Netherlands, 2005.

 122

3. Scemama, A.; Monari, A.; Angeli, C.; Borini, S.; Evangelisti, S.; Rossi, E.

Computational Science and Its Applications – ICCSA 2008 Lecture Notes in Computer

Science 2008, 1094–1107.

4. Borini, S.; Monari, A.; Rossi, E.; Tajti, A.; Angeli, C.; Bendazzoli, G. L.; Cimiraglia, R.;

Emerson, A.; Evangelisti, S.; Maynau, D.; Sanchez-Marin, J.; Szalay, P. G. J. Chem. Inf.

Mod. 2007, 47(3), 1271.

5. Angeli, C.; Bendazzoli, G. L.; Borini, S.; Cimiraglia, R.; Emerson, A.; Evangelisti, S.;

Maynau, D.; Monari, A.; Rossi, E.; Sanchez-Marin, J.; Szalay, P. G.; Tajti, A. Int. J.

Quantum Chem. 2007, 107(11), 2082.

6. Oboyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G.

R. J. Cheminform 2011, 3(1), 33.

7. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M. D.; Rodgers,

J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. FEBS J. 1977, 80(2), 319.

8. Hall, S. R.; Allen, F. H.; Brown, I.D. Acta Cryst. A. 1991, 47(6), 655.

9. Hanwell, M. D.; de Jong, W. A.; Harris, C. J. arXiv preprint:1707.04330 2017

10. Wang, B.; Dobosh, P. A.; Chalk, S.; Sopek, M.; Ostlund, N. S. J. Phys. Chem. A 2017,

121(1), 298.

11. Álvarez-Moreno, M.; De Graaf, C.; Lopez, N.; Maseras, N.; Poblet, J. M.; Bo, C. J.

Chem. Inf. Mod. 2014, 55(1), 95.

12. Coudert, F. C. A.-X. Chem. Mater. 2017, 29(7), 2615.

13. Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.;

Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J.;

Leininger, M. L.; Janssen, C. L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F.; King, R. A.;

 123

Valeev, E. F.; Sherrill, C. D.; Crawford, T. D. Wiley Interdisciplinary Reviews:

Computational Molecular Science 2011, 2(4), 556.

14. Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G.; Auer, A. A.; Bartlett, R. J.;

Benedikt, U.; Berger, C.; Berndholdt, D. E.; Bomble, Y. J.; Cheng, L. 2009

15. Kenny, J. P.; Benson, S. J.; Alexeev, Y.; Sarich, J.; Janssen, C. L.; McInnes, L. C.;

Krishnan, M.; Nieplocha, J.; Jurrus, E.; Fahlstrom, C.; Windus, T. L. J. Comput. Chem.

2004, 25(14), 1717.

16. Kenny, J. P.; Janssen, C. L.; Valeev, E. F.; Windus, T. L. J. Comput. Chem. 2007, 29(4),

562.

17. Folk, M.; Heber, G.; Koziol, Q.; Pourmal, E.; Robinson, D. Proceedings of the

EDBT/ICDT 2011 Workshop on Array Databases - AD 11 2011

18. Armstrong, R.; Gannon, D.; Geist, A.; Keahey, K.; Kohn, S.; Mcinnes, L.; Parker, S.;

Smolinski, B. Proceedings. The Eighth International Symposium on High Performance

Distributed Computing (Cat. No.99TH8469) 1999

19. Peng, F.; Wu, M.-S.; Sosonkina, M.; Windus, T.; Bentz, J.; Gordon, M.; Kenny, J.;

Janssen, C. Proceedings of the 2007 symposium on Component and framework

technology in high-performance and scientific computing - CompFrame 07 2007

20. libint. http://libint.valeyev.net/ Accessed June, 2017.

21. Marques, M. A.; Oliveira, M. J.; Burnus, T. Comput. Phys. Commun. 2012, 183(10),

2272.

22. Kaliman, I. A.; Slipchenko, L. V. J. Comput. Chem. 2013, 34(26), 2284.

23. Obara, S.; Saika, A. J. Chem. Phys. 1986, 84(7), 3963.

24. Obara, S.; Saika, A. J. Chem. Phys. 1988, 89(3), 1540.

 124

25. Dupuis, M.; Rys, J.; King, H. F. J. Chem. Phys. 1976, 65(1), 111.

26. Rys, J.; Dupuis, M.; King, H. F. J. Comput. Chem. 1983, 4(2), 154.

27. Mcmurchie, L.; Davidson, E. J. Comput. Phys. 1976, 26(2), 218.

28. Foster, I. T.; Tilson, J. L.; Wagner, A. F.; Shepard, R. L.; Harrison, R. J.; Kendall, R. A.;

Littlefield, R. J. J. Comput. Chem. 1996, 17(1), 109.

29. Flocke, N.; Lotrich, V. J. Comput. Chem. 2008, 29(16), 2722.

30. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54(2), 724.

31. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56(5), 2257.

32. Dunning, T. J. J. Chem. Phys. 1989, 90(2), 1007.

33. Krishnan, R. B.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72(1), 650.

34. Pritchard, B. P.; Chow, E. J. Comput. Chem. 2016, 37(28), 2537.

35. Hirata, S. J. Phys. Chem. A 2003, 107(46), 9887.

36. Chaban, G.; Schmidt, M. W.; Gordon, M. S. Theor. Chem. Acc. 1997, 97(1-4), 88.

37. Pulay, P. C. A. Chem. Phys. Lett. 1980, 73(2), 393.

38. Fletcher, G. D. Int. J. Quantum Chem. 2006, 106(2), 355.

39. Ishimura, K.; Nagase, S.; Theor. Chem. Acc. 2008, 120(1-3), 186.

40. Roos, B. O.; Lindh, R.; Malmqvist, P. A.; Veryazov, V.; Widmark, P. O. J. Phys. Chem.

 A 2004, 108(15), 2851.

 125

DO ISHELL=1, NSHELL
 DO JSHELL=1, ISHELL
 DO KSHELL=1, JSHELL
 DO LSHELL=1, KSHELL
 1. SCREEN INTEGRAL SHELL
 IF (NOT SCREENED) THEN
 2. COMPUTE ERIs OVER UNIQUE SHELLS:
 (IJ|KL)
 (IK|JL)
 (IL|JK)
 3. UPDATE FOCK MATRIX
 END IF
 END DO
 END DO
 END DO
END DO

Figure 1. Pseudocode representation of GAMESS Integral Driver Subroutine TWOEI

 126

Table 1. Comparison of GAMESS and GAMESS-ERD Timings for First SCF Iteration,

Testosterone

Basis Set # Basis
Functions

ERD
Timing

ERD-
REORDER

Timing

GAMESS-RYS
Timing

GAMESS
Timing % Speedup

6-31G(d)30,31 352 73.1 81.4 78.5 50.4 6.9 / -3.7
cc-pVDZ32 430 321.0 350.1 375.9 211.4 14.6 / -6.9

6-311G(d,p)33 536 250.8 278.9 277.0 221.9 9.5 / -0.7
AUG-cc-pVDZ32 734 1901.4 2104.3 2148.4 1408.0 11.5 / 2.1

cc-pVTZ32 1090 3372.5 3571.5 3687.6 3421.2 8.6 / 3.1
All times are in seconds, running on a single Intel E5-2699 v3 core. Integral screening was

disabled. ERD-REORDER includes the time required to compute and reorder all integrals to

GAMESS format. For GAMESS-RYS, Rys Quadrature was used to compute all integrals. The

timings in the GAMESS column are with the default GAMESS integral option, which chooses an

optimum integral evaluation method based on the shell angular momentum. The speedup

percentage is for (ERD / ERD-REORDER) relative to GAMESS-RYS.

Table 2. Comparison of GAMESS and GAMESS-SIMINT timings for first SCF Iteration,

Testosterone

Basis Set # Basis Functions GAMESS-SIMINT
Timing

GAMESS Timing % Speedup

6-31G(d)30,31 352 38.4 50.4 23.8
cc-pVDZ32 430 157.6 211.4 25.4

6-311G(d,p)33 536 168.9 221.9 23.9
AUG-cc-pVDZ32 734 1129.9 1408.0 19.8

cc-pVTZ32 1090 2518 3421.2 26.4
All times are in seconds, running on a single Intel E5-2699 v3 core. Integral screening was

disabled.

 127

CHAPTER 6: FIRST PRINCIPLES COMPUTATIONAL INVESTIGATION OF

ACETIC ACID ESTERIFICATION BY PROPYLSULFONIC ACID-

FUNCTIONALIZED SILICA

A paper to be submitted to the Journal of Physical Chemistry A

Kristopher Keipert and Mark S. Gordon

Abstract

 The reactant adsorption behavior and reaction mechanism of acetic acid esterification

with methanol by acid-functionalized silica was investigated with computational methods.

Reactant adsorption energies were computed for both a simple silica surface model, and an

extended mesoporous silica surface. For adsorption on a single catalyst site, the computed

adsorption energies for both models are in agreement. For reactant co-adsorption across two

adjacent catalyst sites, it is demonstrated that the adsorption energies and adsorbate positions are

sensitive to the relative orientations of the two catalyst sites. Two single-catalyst stepwise

esterification reaction mechanisms were proposed, which differ primarily by the mechanism of

acetic acid protonation. It is concluded that a single catalyst site is sufficient to catalyze the

esterification reaction. Furthermore, the reaction mechanism following methanol pre-adsorption

on the catalyst site is energetically competitive with direct protonation of acetic acid by methanol

from the gas phase. Both proposed mechanisms are reversible, with similar reaction barrier

heights.

 128

Introduction

 Biodiesel is a renewable alternative to diesel fuel which can be used directly in

unmodified diesel engines. Almost all biodiesel is produced by base-catalyzed transesterification

of fats and oils with short-chain alcohols. Over 95% of biodiesel is produced from refined edible

vegetable oils, and the material cost of oil feedstocks accounts for 70-80% of total biodiesel

production expenses1. Many cheaper alternative feedstocks such as waste cooking oils and

animal fats contain a high amount of free fatty acids (FFAs). Reaction of FFAs with alkaline

transesterification catalysts produces soap, which inhibits separation of the biodiesel product. Oil

feedstocks with high FFA concentrations are typically pretreated with an acid-catalyzed

esterification reaction which converts FFAs to methyl esters.

 Acid-functionalized mesoporous silica nanoparticles (MSNs) have been identified as

efficient heterogeneous catalysts for esterification of free fatty acids 2-5. Acid-functionalized

MSNs are easily separated from the reaction vessel, and may be continuously reused for multiple

esterification reactions without significant loss of activity5. Furthermore, MSN materials exhibit

high surface area, and thermal and chemical stability6-8. While the reaction mechanism and

kinetics of homogeneous acid-catalyzed carboxylic acid esterification are well known, the

reaction mechanisms proposed in the literature that utilize solid acid catalysts are inconclusive9-

13. Two competing classes of mechanisms have been suggested, which differ primarily in the

nature of the surface reaction mechanism. For the Langmuir-Hinshelwood mechanism14,15 (LH),

the carboxylic acid and alcohol reactants are both adsorbed prior to interaction. For the Eley-

Rideal mechanism16,17 (ER), only one reactant is adsorbed on the acid catalyst surface, and the

 129

second reactant interacts directly with the adsorbed reactant. Various experimental studies have

fit the reaction to either mechanism type10,18,19. It has been proposed that the solid-catalyst

esterification mechanism type may also depend on the alcohol structure, with one work reporting

an ER-type mechanism for n-butanol and an LH-type mechanism for ethanol20. In an

investigation of carbinolamine formation by functionalized MSN, the MSN surface was shown

to directly participate in some chemical reactions by assisting the formation of reaction

intermediates21. In the esterification reaction of interest in this work, silica is a supporting

material for the propylsulfonic acid catalyst and is not expected to participate directly in the

reaction. Understanding the surface reaction mechanism serves to provide guidance for

distribution of the acid catalyst over the silica support in order to maximize the catalytic surface

area.

 Density functional theory (DFT) has been used to computationally model adsorption

behavior and chemical reactions on silica surfaces22-25. In a previous study26, the single-site

esterification mechanism between acetic acid and ethanol over a small silica cage functionalized

with a propylsulfonic acid catalyst was investigated with DFT using the B3LYP functional27,28.

Two mechanisms were suggested, each proceeding through two transition states in a concerted

transformation. It was proposed that the acid catalyst does not protonate acetic acid as it does in

the homogenous reaction mechanism, but rather acts through hydrogen bond activation of acetic

acid. In the present work, DFT is used to investigate the esterification reaction of acetic acid and

methanol by silica functionalized with propylsulfonic acid. Two reaction mechanisms are

proposed, one each of the LH and ER type. In order to determine the importance of bulk effects

when modeling adsorption on the acid-functionalized MSN surface, adsorption energies and

 130

substrate orientations are compared between functionalized minimal silica models and extended

MSN pore surface models. Additionally, reactant adsorption on single isolated catalyst sites is

compared to adsorption across adjacent catalyst pairs.

Computational Details

Model Systems

 The local catalytic surface of MSN is represented with both minimal model (mm) and

embedded model (em) schemes. The minimal silica cluster models are shown in Figure 1. For a

single catalytic site, the minimal model consists of a central silicon atom bonded to a

propylsulfonic acid catalyst and three oxygen atoms, each terminated with SiH3 groups. The

dual-site minimal model was formed as follows. First, two single-site models were constructed

from the optimized minimal model coordinates. The duplicated sites were oriented to fix the

distance between the central catalyst-bonded Si atoms to 5.07Å. This distance is based on the Si-

Si distance found in x-ray studies of the β-cristobalite crystal structure29, which resembles the

structure of amorphous silica. This structure has been used to model MSN materials in previous

computational works21,30. Finally, the duplicated sites were joined by replacing a pair of adjacent

terminal hydrogen atoms (one from each single-catalyst model) with an oxygen atom. For all

dual-site minimal model geometry optimizations, the positions of both SiO3 groups at the

catalyst site centers were frozen. This strategy was employed to maintain the relative orientations

of the propylsulfonic acid groups, thereby mimicking the surface stability of the bulk MSN

surface. The structures obtained from constrained optimizations are only referenced in

 131

discussions of reactant adsorption behavior. Geometry constraints were not used with any of the

other surface models in this study.

For the second modeling scheme, the single and dual-site minimal models were

embedded in a large MSN MCM-41 pore model via the surface integrated molecular orbital /

molecular mechanics method (SIMOMM)31,32 (Figure 2). The MCM-41 pore was previously

constructed and optimized30 with the MM3 molecular mechanics force field33-34 and used to

study benzene diffusion barriers computed with the fragment molecular orbital (FMO)35 method.

In the present study, the minimal model region is treated with quantum mechanical (QM)

methods and the remaining MSN pore region is treated with molecular mechanics (MM) using

the MM3 force field implemented in Tinker36,37. The terminal silica atoms in the QM region

were capped with hydrogen atoms.

Computational Methods

All QM structures were optimized at the DFT level of theory with the M06-2X

functional38 and the 6-31G++(d,p) basis set39,40. All minima and transition states for fully-

optimized QM structures were confirmed by calculation and diagonalization of the energy

second derivatives (Hessian calculations). All references to energy values in this text are for the

MP2 results, unless explicitly stated otherwise. Reactant adsorption energies (Eads) were

computed by the following equation:

 Eads = Esurface/reactant (s) − (Esurface + Ereactant (s)) (1)

 132

In order to focus on the atoms relevant to adsorption and esterification activities, the MSN

surface and hydrogen atoms bonded to carbon are hidden in most figures which show chemical

structures. All computations were performed with the GAMESS software package41,42, and

Chemcraft43 was used for structure visualization.

Structure Notation

 A simple notation is used throughout this work to refer to the various molecular

structures. First, structures are prefixed with {mm,em}, where mm, em refer to minimal and

embedded models. The initials p, a, m, and s are used for propylsulfonic acid, acetic acid,

methanol, and silanol, respectively. The letters following p denote the reactants adsorbed on the

propylsulfonic acid catalyst site. A numerical subscript is added to the end of the structure name

if multiple structures are located with the same adsorption scheme. The structures are numbered

in ascending order, from highest to lowest adsorption energy computed by MP2. As an example,

consider a minimal model structure with a single acid catalyst site with methanol and acetic acid

adsorbed on the surface, mm-pam. Four structures were located with this adsorption scheme, so

the structure with the highest adsorption energy is denoted mm-pam4. For dual-site structures,

hydrogen bonding interactions are present between the catalyst sites. The hydrogen-donor

catalyst is referred to by pd, and the hydrogen acceptor site is referred to as pa. The pd site is

listed first in the structure name. As an example, consider a minimal model dual catalyst

structure located with acetic acid adsorbed on pd, and methanol adsorbed on pa. This structure is

denoted mm-papm. An additional naming scheme is used to refer to propylsulfonic acid oxygen

atoms. The sulfonyl hydroxy oxygen is labeled O1. From a top-down view of the sulfonyl group,

 133

the oxygen clockwise from O1 is O2, and the remaining oxygen is O3. The catalyst

nomenclature scheme is illustrated in Figure 3.

Results and Discussion

Adsorption

Minimal Model Catalytic Surface

 The adsorption energies of acetic acid and methanol were computed for single and dual-

site catalyst minimal models. Optimized mm-pa structures are shown in Figure 4. Both

structures demonstrate hydrogen bonding between the acetic acid carbonyl oxygen atom and

sulfonyl hydroxide group, and between the acetic acid hydroxy hydrogen and a sulfonyl oxygen.

The structures differ by which of the two sulfonyl oxygens is hydrogen bonded to acetic acid,

with an MP2 difference in computed adsorption energy of 2.3 kcal mol-1.

Optimized geometries for the mm-pm structures are shown in Figure 5. While the

methanol hydroxy hydrogen may form a hydrogen bond with a sulfonyl oxygen atom (mm-pm1),

the methanol molecule is adsorbed more strongly if a hydrogen bond is formed between the

methanol hydrogen and the sulfonyl hydroxy groups (e..g., (mm-pm2)). Two structures [(mm-

pm2) and (mm-pm3)] were located that exhibit methanol-sulfonyl hydroxyl hydrogen bonding,

differing primarily by the orientation of the methanol hydroxyl hydrogen atom. For mm-pm2, no

interaction between the methanol hydroxyl hydrogen atom and the catalyst site is noted. For the

mm-pm3 structure, the analogous hydrogen atom is oriented toward O2 with a hydrogen bond

 134

distance of 2.04Å. The sulfur atom and all oxygen and hydrogen atoms involved in hydrogen

bonding interactions for mm-pm3 form a planar ring structure.

In a previous study10, minimal model structures resembling mm-pa1 and mm-pm1 were

optimized with DFT/B3LYP. The adsorption energies reported are 34 kcal mol-1 for acetic acid

and 14 kcal mol-1 for methanol, indicating that acetic acid is adsorbed much more strongly. The

difference in adsorption strengths is in agreement with the adsorption energies for the analogous

structures located in the present study (19.3 kcal mol-1 and 5.2 kcal mol-1, respectively for DFT

and 20.8 vs. 5.6 kcal mol-1 for MP2). However, as noted above, mm-pm3 has a much stronger

MP2 binding energy of 15.2 kcal mol-1. Therefore, when comparing the acetic acid complex to

the most strongly bound methanol complex, the difference in adsorption energy may be as small

as 3.6 kcal mol-1. Given the similarity of the adsorption energies for acetic acid and methanol,

reactant adsorption on free catalyst sites is expected to be competitive energetically.

Adsorption properties of functionalized mesoporous silica surfaces are affected by the

presence and density of surface silanol groups44. Since acetic acid and methanol adsorption

occurs through hydrogen bonding interactions, hydrophilic surface silanol groups may quench

the adsorbates and lower the overall reaction yield. Optimized structures presented in Figure 6

show minimal model single-site silanol structures with acetic acid and methanol hydrogen

bonding interactions. The computed MP2 adsorption energies for acetic acid and methanol on

silanol are nearly equal, with methanol adsorption only 1.0-1.7 kcal mol-1 weaker than acetic acid

adsorption. One interesting observation is the presence of two hydrogen bonds between the

single hydroxyl (silanol) group and acetic acid carboxyl group.

 135

The methanol-silanol interaction in mm-sm1 resembles the hydrogen bond in mm-pm1,

and mm-sm2 resembles mm-pm2. For the mm-pm structures, both MP2 and DFT predict that the

hydrogen bond involving the methanol hydroxy hydrogen (mm-pm2) is stronger (by

approximately 7 kcal mol-1) than the hydrogen bond that is formed with the methanol oxygen

(mm-pm1). For the analogous mm-sm structures, the adsorption energies computed with both

MP2 and DFT are nearly identical. Acetic acid adsorbs significantly more strongly on the mm-p

acid catalyst site than silanol (ΔEads=9.5 kcal mol-1). For methanol, the adsorption energies for

both mm-sm structures are larger than the mm-pm1 adsorption energy, and smaller than the mm-

pm2 adsorption energy by less than 3 kcal mol-1. Therefore, methanol adsorption in the vicinity

of catalyst and silanol surface groups is expected to be more competitive than acetic acid (which

clearly adsorbs more strongly on the catalyst). Retention of either methanol or acetic acid by

silanol lowers the amount of reactant available for interaction with the acid catalyst. Ongoing

experimental efforts to tune the hydrophilicity of mesoporous silica surfaces are promising routes

for improving the efficiency of esterification when catalyzed by functionalized MSN.45-47

Optimized dual-catalyst minimal model structures and adsorption energies are shown in

Figure 7. One mm-ppa structure was located, for which the acetic acid carbonyl oxygen is

hydrogen bonded to the pd hydroxy hydrogen, and the acetic acid hydroxy group is hydrogen

bonded to O2. The adsorption energy for mm-ppa is a negligible 0.7 kcal mol-1 higher than that

for the corresponding single-site structure mm-pa1. A mm-pap structure in which acetic acid

forms a hydrogen bond with O3 (the more strongly bound conformation with the mm-p scheme)

was not located. Hydrogen bonding between the catalysts in the dual-site models reduces free

 136

rotation of the sulfonyl groups during optimization, so locating the O2-bound conformation is

likely a result of the relative propylsulfonic acid orientation chosen for the initial optimization

geometry.

One mm-ppm structure was located. The structure is similar to mm-pm3, exhibiting a

primary hydrogen bond between the alcohol oxygen and sulfonyl hydroxy hydrogen, and a

secondary hydrogen bond between the methanol hydroxyl hydrogen and O2. The dual-catalyst

structure also exhibits the planar orientation of the catalyst sulfur atom and hydroxy groups

involved in the hydrogen bonding interactions. While the primary hydrogen bond lengths are

nearly equal in the two structures, the secondary hydrogen bond length is 2.21Å for mm-ppm

compared to 2.04Å for the single-catalyst structure. When comparing the single and dual-site

minimal models, the adsorption energies for a single reactant are virtually equivalent with

differences on the order of just 1 kcal mol-1.

In order to describe the addition of acetic acid by methanol during the reaction of interest,

it is important to know the relative orientations of the reactants when both are simultaneously

adsorbed on the single (Figure 8) and dual-site (Figure 9) models. An effective reactant co-

adsorption energy is computed in the same manner as the single-reactant adsorption energies,

according to Equation 1.

The adsorption energy for mm-pam4 is more than 7.7 kcal mol-1 higher than any of the

other three mm-pam structures. The mm-pam4 structure exhibits a hydrogen bonded ring structure

between the catalyst site and both reactants. The plane of the ring is roughly perpendicular to the

 137

plane of the silica support structure, which might be sterically hindered by an extended MSN

surface. The co-adsorption energies of the remaining three mm-pam structures are similar, falling

within a range of 1.6 kcal mol-1. Structure mm-pam3 is the only mm-pam structure located that

shares the dual hydrogen-bonded acetic acid conformation found for all previously discussed

mm-p/mm-pp structures. The positions of both reactants strongly resemble those found for

structure mm-ppam. Structures mm-pam1 and mm-pam3 are comparable, differing by the

presence of a second hydrogen bond between the acetic acid hydroxy group hydrogen and O3 for

mm-pam3, and by rotation of the methanoxy moiety about the methanol hydroxy bond. No

optimized structure with hydrogen bonding between the O1 oxygen and methanol was found.

Three dual-adsorbate mm-pp structures were located. For the mm-ppam system, both

reactants are adsorbed onto a single catalyst site. There is no change in the inter-catalyst

hydrogen bond length compared to the mm-pp structure without adsorbates present. The mm-

ppam adsorbate orientations closely resemble mm-pam3. In fact, the lengths of hydrogen bonds

between the catalyst and adsorbates differ by less than 3% compared to mm-pam3, and the co-

adsorption energy is just 1.1 kcal mol-1 larger for mm-ppam. This mm-ppam structure

demonstrates that in the presence of two catalyst sites, one catalyst may remain essentially

dormant during the co-adsorption event. For the remaining two structures in Figure 9, reactants

are adsorbed on both catalysts. The adsorption scheme for both adsorbates in mm-papm resemble

the corresponding single-adsorbate mm-ppa and mm-ppm structures. Since the mm-papm pd

hydroxy hydrogen is engaged in hydrogen bonding interactions with both acetic acid (1.95Å) and

pa (2.06Å), both hydrogen bond distances are significantly longer than mm-ppa (1.48Å, 1.78Å,

respectively).

 138

The co-adsorption energy for the mm-pmpa complex is 10.9 kcal mol-1 greater than for

mm-papm, and 13.8 kcal mol-1 greater than mm-ppam. In a feature unique to this structure,

methanol bridges the catalysts via two hydrogen bonding interactions. The hydrogen bond

distance between the methanol hydroxy hydrogen and pa is 1.80Å, in agreement with the pd-pa

hydrogen bond lengths found for other mm-pp structures. The methanol-pd hydrogen bond

distance is shorter (1.46Å) than the methanol-pa hydrogen bond, while the catalyst S-S distance is

elongated by 0.15Å compared to the average of all other mm-pp structures. Acetic acid

adsorption on catalyst sites which participate in the pd-pa hydrogen bond weaken the inter-

catalyst interaction, which presumably reduces the subsequent adsorption energy of methanol in

the bridging orientation. The mm-pmpa structure is the only mm-pp complex that exhibits

explicit interaction of one adsorbate with both catalyst sites. In summary, co-adsorption of acetic

acid and methanol on separate neighboring sites is found to be energetically favorable to co-

adsorption on a single site by 3 kcal mol-1. With the exception of mm-pmpa, the mm-p models

were sufficient for modeling adsorption behavior of individual adsorbates in terms of

adsorption/co-adsorption energies and adsorbate orientations. Notably, the co-adsorption energy

of mm-pmpa is significantly larger than that of any other mm structure located, and the structure

cannot be modeled with a single-catalyst model.

Embedded Model Catalytic Surface

 Optimized em-p structures with adsorbed reactants are shown in Figure 10. The

orientation of acetic acid in the em-pa structure closely resembles that of the single-adsorbate

acetic acid minimal model structures. The adsorption energy for the em structure is 17.4 kcal

 139

mol-1, compared to 17.9 kcal mol-1 for the analogous mm-pa1 structure. Likewise, the geometry

of the adsorbed methanol structure located with the em model is very similar to mm-pm3, while

the adsorption energy is lower by 2.1 kcal mol-1 than the mm structure. Stronger hydrogen

bonding interactions in the mm structure contribute to the higher adsorption energy, as indicated

by shorter distances between the alcohol oxygen and sulfonyl hydrogen (1.56Å vs. 1.59Å), and

between the alcohol hydroxy hydrogen and sulfonyl carbonyl oxygen (2.04Å vs. 2.38Å).

Structure em-pam1 resembles mm-pam1, as the co-adsorbed reactants are well-separated and just

a single hydrogen bond is exhibited between acetic acid and the catalyst sulfonyl group. The

adsorbate orientations for em-pam2 most closely resemble mm-pam3. The em-pam2 co-adsorption

energy of 24.6 kcal mol-1 is nearly identical to that of mm-pam3 (24.7 kcal mol-1), and the

orientation of acetic acid is nearly the same for both structures. The structures differ primarily by

the orientation of the methanol molecule. For the mm structure, the methanol hydroxy hydrogen

forms a hydrogen bond with O2 (2.05Å), and the methanol methyl group is oriented toward the

acetic acid molecule. For the em structure, the methanol hydroxy hydrogen forms a weaker

hydrogen bond (2.45Å) with O3, which is also engaged in a hydrogen bonding interaction with

acetic acid. In the context of the prototypical Fischer esterification mechanism, this difference in

methanol orientation is critical. The first step in the Fischer esterification mechanism is the

formation of a covalent bond between the alcohol oxygen and acid carboxyl carbon atoms48. For

the em-pam2 structure, the atoms are unobstructed at a distance of 2.76Å. For the mm-pam3

structure, the atoms are 4.9Å apart and oriented away from each other (the carboxyl carbon faces

the methanol methyl group). Therefore, the structure predicted with the em surface is more

accessible for general Fischer-type esterification compared to the most similar mm structure.

 140

 While the mm-pp structures are obtained by optimization with the catalyst center SiO3

coordinates frozen, no coordinates are frozen during optimization of em-pp structures. Instead,

the em-pp structures are embedded in a bulk MSN surface which is simulated with a molecular

mechanics force field. The optimizations of em-pp structures are geometrically constrained by

interaction with the external forces of the bulk MSN surface. While the distance between the

catalyst-anchoring silica atoms was fixed at 5.07Å for the mm-pp structures, the same Si-Si

distance varies from 5.84-5.87Å among the optimized em-pp structures. The spatial flexibility of

the propylsulfonic acid chain enables inter-catalyst hydrogen bonding interactions for a range of

catalyst-anchoring Si-Si distances. Optimized without reactants present (Figure 11), the

hydrogen bond distance between the catalyst sulfonyl groups is the same as for mm-pp (1.82Å).

Although the catalyst-anchoring Si-Si distances are larger for the em-pp structure than for mm-

pp, the propylsulfonic acid S-S distances are significantly shorter (4.21Å vs 4.87Å). The

amorphous MSN surface is realistically represented with the em model, as the two SiO3 groups

anchoring the acid catalyst are oriented at different relative angles and surface depths. While the

mm-pp and em-pp structures do exhibit some qualitative similarities, the reactant adsorption

behavior differs significantly.

With the exception of the mm-pmpa structure, adsorbates on the mm-pp surface are

generally localized to a single catalyst site in orientations similar to complexes found with the

mm-p model. The steric accessibility of both mm-pp catalyst sites is nearly identical, and

anchored at the same depth and orientation on the silica surface. Conversely, the inequality in

steric accessibility of the two em-pp catalyst sulfonyl groups leads to delocalized adsorption

across both catalysts.

 141

 Because of the relative orientations of the catalyst-anchoring SiO3 groups, the catalyst

sulfonyl groups are roughly perpendicular to one another for the em-pp structures. The relatively

short distance between the MSN surface and the sulfonyl group perpendicular to the silica

surface (pra) hinders the accessibility of the pra O2 and O3 atoms. The orientation of this

sulfonyl group also exposes the adjacent alkane hydrogen atoms to the MSN pore. In

comparison, the prd catalyst more closely resembles the mm catalyst sites. Hydrogen bonding

between the catalyst sites and the reactants has been demonstrated to be the primary means of

interaction during adsorption events. Clearly, variations in the number and morphology of

potential hydrogen bonding sites as a result of the local MSN surface will significantly impact

adsorption and reaction energetics.

Optimized em-pp structures with single adsorbates are shown in Figure 12. A hydrogen

bond is formed between acetic acid and the prd O1 in the em-pap structure. The acetic acid

carbonyl group is rotated between both catalyst sulfonyl groups at a distance of 2.25Å from a pra

alkane hydrogen atom and 2.40Å from the prd O1 hydrogen. The acetic acid adsorption energy

of 11.0 kcal mol-1 is less than the adsorption energy computed for the mm-ppa (18.7 kcal mol-1)

and em-pa (17.4 kcal mol-1) structures. This may be attributed to the presence of only one

hydrogen bond between the catalyst and acetic acid for the em-pap structure. Based on the O-H

distance of the lone hydrogen bond, the interaction is also the weakest among those structures.

The hydrogen bond length is 1.92Å, while the analogous hydrogen bond distances for the other

structures range from 1.52-1.69Å. A hydrogen bond between a sulfonyl carbonyl oxygen and the

methanol hydroxy hydrogen is exhibited in the em-pmp structure. The methanol orientation

 142

resembles that of mm-pm1, with methanol acting as the hydrogen donor in the hydrogen bond

with the catalyst. The methanol adsorption energy for the em-pmp structure is 7.1 kcal mol-1 with

a 2.03Å hydrogen bond length. This adsorption energy is comparable to the 5.2 kcal mol-1 value

observed for the mm-pm1 structure (2.02Å hydrogen bond length). While the methanol methyl

group of the em-pmp structure is rotated toward the neighboring catalyst site, the methanol

adsorption observed is relatively localized to pd.

 Two em-pp structures with both reactants adsorbed were located (Figure 13). In the study

of dual reactant adsorption with the mm-pp surface, structures were found for reactants adsorbed

on separate catalyst sites, and on the same catalyst site. A search for analogous structures with

the em-pp surface was unsuccessful. In both cases, acetic acid adsorption orientation is

delocalized across both catalyst sites (denoted in the structure names by (a)). A hydrogen bond is

present between the acetic acid hydroxy group and prd O1 in both structures. Based on the metric

of the hydrogen bond distance, this hydrogen bond involving the acetic acid carbonyl group is

weaker for the two-reactant structures (em-ppm(a)=2.17Å, em-pmp(a)=2.22Å) than the em-pap

structure. The most significant difference between the dual-adsorbate em-pp structures is the

position of methanol, which is adsorbed on prd in one structure, and on pra in the second

structure. For the em-ppm(a) structure, methanol interacts more strongly with acetic acid than

with the catalyst site. The methanol hydroxy hydrogen is oriented toward the acetic acid

carbonyl oxygen at a bond length of 2.00Å. In comparison, the methanol hydroxy hydrogen is

2.32Å away from the closest sulfonyl oxygen atom. The em-pmp(a) structure exhibits a

hydrogen bonding interaction between methanol and prd O2, just as seen for the em-pmp

structure. The em-pmp(a) hydrogen bond is slightly weaker (2.12Å vs 2.03Å). The methanol

 143

methyl group is also rotated about the methanol O-H bond axis compared to em-pmp, oriented

away from the acetic acid molecule. The methanol hydroxy oxygen may interact weakly through

a hydrogen bond with an acetic acid methyl hydrogen with a distance of 2.34Å. The adsorption

energies for both two-adsorbate em-pp structures are similar: 21.3 kcal mol-1 for em-pmp(a) and

20.6 kcal mol-1 for em-ppm(a). The co-adsorption energy is notably weaker than was computed

for the mm-pp dual-adsorbate structures (25.7-39.6 kcal mol-1) and equivalent em-pp structures

(23.6, 24.6 kcal mol-1).

Analysis of Adsorption Results

For the reactants of interest, the single-catalyst molecular geometries and adsorption

energies predicted by the minimal and embedded models are in agreement. The catalyst

adsorption site is spatially separated from the MSN surface by the propyl chain, and the bulk

effects of the local MSN surface do not seem to be particularly important. For the dual-site mm,

both catalysts are nearly equivalent in terms of steric accessibility as the anchoring SiO3 groups

are at equal angle and depth relative to the plane of the silica surface. The adsorption energies of

mm-pp single-adsorbate structures are in agreement with the analogous mm-p and em-p results.

With the exception of the mm-pmpa catalyst-bridging methanol molecule, reactant adsorption on

the mm-pp surface mimics that of the isolated single-catalyst systems. The mm-pp catalysts are

both spatially accessible for adsorption, and are essentially equivalent to two isolated single-

catalyst complexes with the exception of the inter-catalyst hydrogen bond. The em-pp structures

represent the amorphous surface of an actual MSN system. The two catalyst sites are not equally

accessible for surface adsorption, and neither site resembles an isolated single-catalyst site.

Acetic acid adsorption is universally weaker for the em-pp structures compared to the other

surface models, and is not strongly isolated to a single catalyst site. For the two instances of

 144

methanol hydrogen bonding on em-pp catalyst sites, methanol acts as the hydrogen donor with

adsorption energy similar to the analogous mm structures. The em-pp dual-adsorbate adsorption

energies are lower than any of the dual-adsorbate adsorption energies computed for the other

surface models.

Esterification Reaction Mechanisms

While the adsorption energies are sensitive to the catalytic surface, other important

factors for initiation of the esterification reaction include the relative location and orientations of

the adsorbed species. The initial step of the general Fischer esterification reaction is protonation

of the carboxylic acid reactant by the acid catalyst. Therefore, acetic acid must be oriented such

that the carbonyl oxygen can be protonated or activated by hydrogen bonding with

propylsulfonic acid. Based on the em-pp results, the relative orientations of catalyst sites are

shown to have a significant effect on adsorption energies and adsorbate orientations. In order to

separate this work from the discussion of the relative orientation of catalyst species, a single-

catalyst surface is used to investigate the reaction mechanism. For other studies in which dual-

catalyst mechanisms are proposed for the reaction of interest, the catalyst site with adsorbed

methanol serves primarily to mediate methanol diffusion to an adjacent catalyst site with pre-

adsorbed acetic acid10. The esterification reaction then proceeds at a single catalyst site, which is

the main focus in this work. Two potential reaction mechanisms are presented. In Scheme 1, a

methanol molecule interacts directly with a pre-adsorbed acetic acid (ER-type) molecule. In

Scheme 2, both reactants are initially co-adsorbed and non-interacting (LH-type). All reaction

mechanism structures were located with the single-catalyst em surface.

 145

The optimized structures for the Scheme 1 pathway are shown in Figure 14. The initial

structure A is em-pam2, in which methanol is positioned above acetic acid without strong

interactions with the catalyst surface. Proceeding through TS1, the acetic acid molecule is rotated

about the hydrogen bond with O1, disrupting the hydrogen bond with O3. A covalent bond is

formed between the methanol oxygen and carboxyl carbon, and the methanol hydroxy hydrogen

is transferred directly to the acetic acid carbonyl oxygen. Following TS1, it is proposed that the

reaction proceeds through structure B. Notably, a transition state (with a barrier of 8.8 kcal mol-

1) connected to B was located in which the reactant hydroxy group hydrogen bonded to the

catalyst protonates O2 while the catalyst protonates the same oxygen site. A structure (B1)

resembling the B intermediate was also located with the em-pp surface. B1 is higher in energy

than the dual-adsorbate em-pp structures by an amount that is in sub-kcal mol-1 agreement with

the difference between A and B. Structure B rotates about the carboxyl-hydroxy bond that is

hydrogen bonded to the catalyst to reach C. Structure C is 3.4 kcal mol-1 lower in energy than B,

and exhibits an additional hydrogen bond with the catalyst O3 site which is present in the

subsequent structures. The forward reaction proceeds through TS2 with a barrier of 11.0 kcal

mol-1. In TS2 the hydroxy group formed through TS1 bonds to the sulfonyl O1 hydrogen while

the ester intermediate protonates the catalyst sulfonyl group. The final product structure D is 2.9

kcal mol-1 lower in energy than A. The highest energy barrier for the forward reaction in Scheme

1 (40.6 kcal mol-1) is greater than the highest energy barrier for the reverse ester hydrolysis

reaction (32.1 kcal mol-1).

 146

The optimized structures for the Scheme 2 pathway are shown in Figure 15. Unlike

Scheme 1, all structures in Scheme 2 exhibit two hydrogen bonds between the reactants and

catalyst surface. Initial structure A’ is em-pam1, which represents stepwise co-adsorption of the

adsorbates. Through the first transition state TS1’, the methanol oxygen and carboxyl carbon

atoms form a covalent bond. The O2 oxygen with respect to structure A’ is protonated by

methanol, while the acetic acid carbonyl oxygen is simultaneously protonated by the O1

hydrogen. This proton exchange pathway is significantly different from Scheme 1, in which the

acetic acid carbonyl oxygen is directly protonated by methanol. The A’→TS1’ energy barrier of

12.9 kcal mol-1 is decidedly smaller than the direct methanol protonation barrier as well.

Structure B’ is just 4.3 kcal/mol-1 higher in energy than A’. Considering the relatively low

energy barrier though TS1’, interconversion between A’ and B’ is highly reversible. The

hydrogen bond between the oxygen from the methanol oxygen and the catalyst is shifted to O3 in

the structures located for TS2’ and C’, compared to O2 for the first three structures. A relatively

large barrier height of 40.6 kcal mol-1 is associated with the B’→TS2’ transition. The high

energy of TS2’ is due to the formation of a strained four-member ring structure. A similar

structure was proposed in a previous work investigating the esterification mechanism between

acetic acid and ethanol26, but the transition state is stabilized by only one hydrogen bond in that

study. The product structure C is 1.2 kcal mol-1 lower in energy than A. The forward reaction is

energetically favorable relative to the reverse reaction, with a barrier height of 40.6 kcal mol-1

compared to 46.0 kcal mol-1 for ester hydrolysis. MP2 predicts larger reaction barriers than DFT

in this work. Many functionals are well known to underestimate the heights of reaction barriers.

 147

Conclusions

 The esterification of acetic acid with methanol by propylsulfonic acid-functionalized

silica was investigated in this work. The adsorption behavior of acetic acid and methanol across

single and dual catalyst sites was investigated on both simple silica surfaces, and on an extended

MSN surface. It was determined that the single-catalyst adsorbate orientation and adsorption

energies on the mm-type surface are in agreement with the more realistic and more

computationally expensive em-type surface. The same results for single-adsorbate dual-catalyst

structures are in agreement as well. The differences between the dual-adsorbate dual-catalyst

computations are attributed not to the differences in the silica support structure, but rather the

relative orientation of the catalyst pairs. The amorphous surface of silica captured by the em

model offers the potential to sample many catalyst pair orientations. These orientations have a

measured effect on adsorption activity, and thus the subsequent esterification reaction.

 Two stepwise reaction mechanisms were proposed with the em single-catalyst model.

Both reactions begin with protonation of acetic acid. In the first scheme, pre-adsorbed acetic acid

is protonated directly by methanol. The transition state corresponding to the initial protonation

step is the highest energy structure, and the highest energy barrier for the forward is 40.6 kcal

mol-1, compared to 32.1 kcal mol-1 for the reverse reaction. In the second scheme, acetic acid and

methanol are co-adsorbed on adjacent sites of the catalyst. Acetic acid protonation by the catalyst

is coupled with protonation of the catalyst by methanol. The highest energy reaction barrier for

the forward reaction is the same as in the first scheme (40.6 kcal mol-1), and is favored over ester

hydrolysis by 5.5 kcal mol-1. Both schemes are reversible and energetically similar, so the chosen

 148

reaction pathway is proposed to depend primarily on the whether or not both reactants are

initially co-adsorbed. For both pathways, the highest energy transition state structures exhibit

strained 4-member rings. In a separate study49, a reaction pathway involving a 4-member ring

transition state was converted to a lower energy pathway with a 6-member transition state

following the addition of a water molecule. Although the presence of water is detrimental to the

esterification reaction yield because of ester hydrolysis, the addition of explicit aqueous solvent

effects may reveal a similar transition state stabilization effect.

While the initial interaction of reactants may be mediated by diffusion following reactant

adsorption on adjacent catalyst sites, adsorption on dual-catalyst sites is highly sensitive to the

variability in relative catalyst orientations on the amorphous MSN surface. Further investigation

of the relationship between relative catalyst orientations and adsorption behavior on the MSN

surface with the em-pp surface is a current research effort.

Acknowledgments

 This work was supported in part by a Basic Research Initiative grant from the Air Force

Office of Scientific Research (Award Number FA9550- 12-1-0476)

 149

References

1. Gui, M.; Lee, K.; Bhatia, S. Energy 2008, 33(11), 1646.

2. Carmo, A. C. A. D. C.; Souza, L. K. D.; Costa, C. E. D.; Longo, E.; Zamian, J. R.; Filho,

G. N. D. R. Fuel 2009, 88(3), 461.

3. Mbaraka, I.; Shanks, B. J. Catal. 2005, 22 (2), 365.

4. Mbaraka, I.; Radu, R. R.; Lin, V.; Shanks, B. J. Catal. 2003, 219 (2), 329.

5. Mbaraka, I. K.; Mcguire, K. J.; Shanks, B. H. Ind. Eng. Chem. Res. 2006, 45(9), 3022.

6. Gu, G.; Ong, P.; Chu, C. J. Phys. Chem. Solids 1999, 60(7), 943.

7. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.;

Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker,

J. L. J. Am. Chem. Soc. 1992, 114(27), 10834.

8. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.; Stucky, G. J. Am. Chem. Soc. 1998, 120(24),

6024.

9. Teo, H.; Saha, B. J. Catal. 2004, 228(1), 174.

10. Miao, S.; Shanks, B. H. J. Catal. 2011, 279(1), 136.

11. Liu, Y.; Lotero, E.; Goodwinjr, J. J. Catal. 2006, 242(2), 278.

12. Koster, R.; Linden, B. V. D.; Poels, E.; Bliek, A. J. Catal. 2001, 204(2), 333.

13. Jermy, B. R.; Pandurangan, A. Appl. Catal. A Gen. 2005, 288(1-2), 25.

14. Langmuir, I. J. Am. Chem. Soc. 1918, 40(9), 1361.

15. Hinshelwood, C. Nature 1930, 125(3158), 703.

16. Eley, D. D.; Rideal, E. K. Proc. R. Soc. Lond. A Math Phys. Sci. 1941, 178(975), 429.

17. Eley, D. D.; Rideal, E. K. Nature 1940, 146, 401.

 150

18. Suwannakarn, K.; Lotero, E.; Ngaosuwan, K.; Goodwin, J. G. Ind. Eng. Chem. Res.

2009, 48(6), 2810.

19. Nijhuis, T.; Beers, A.; Kapteijn, F.; Moulijn, J. Chem. Eng. Sci. 2002, 57 (9), 1627.

20. Chu, W.; Yang, X.; Ye, X.; Wu, Y. Appl. Catal. A Gen. 1996, 145(1-2), 125.

21. Batista, A. P. D. L.; Zahariev, F.; Slowing, I. I.; Braga, A. A. C.; Ornellas, F. R.; Gordon,

M. S. J. Phys. Chem. B 2016, 120(8), 1660.

22. Folliet, N.; Gervais, C.; Costa, D.; Laurent, G.; Babonneau, F.; Stievano, L.; Lambert, J.-

F.; Tielens, F. J. Phys. Chem. C 2013, 117(8), 4104.

23. Tielens, F.; Folliet, N.; Bondaz, L.; Etemovic, S.; Babonneau, F.; Gervais, C.; Azaïs, T. J.

Phys. Chem. C 2017, 121(32), 17339.

24. Ravikovitch, P. I.; Neimark, A. V. Langmuir 2006, 22(26), 11171.

25. Fujiki, J.; Furuya, E. Fuel 2016, 164, 180.

26. Vafaeezadeh, M.; Fattahi, A. Comp. Theor. Chem. 2015, 1071, 27.

27. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37(2), 785.

28. Becke, A. D. J. Chem. Phys. 1993, 98(7), 5648.

29. Frondel, C. Am. Mineral. 1979, 64, 799.

30. Roskop, L.; Fedorov, D. G.; Gordon, M. S. Mol. Phys. 2013, 111(9-11), 1622.

31. Maseras, F.; Morokuma, K. C. Comput. Chem. 1995, 16(9), 1170.

32. Shoemaker, J. R.; Gordon, M. S. J. Phys. Chem. A 1999, 103(17), 3245.

33. Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111(23), 8551.

34. Lii, J. H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 111(23), 8576.

35. Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Chem. Phys. Lett. 1999,

313(3-4), 701.

 151

36. Ponder, J. W.; Richards, F. M. J. Comput. Chem. 1987, 8(7), 1016.

37. Kundrot, C. E.; Ponder, J. W.; Richards, F. M. J. Comput. Chem. 1991, 12(3), 402.

38. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120(1-3), 215.

39. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56(5), 2257.

40. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.;

Pople, J. A. J. Chem. Phys. 1982, 77(7), 3654.

41. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J.

H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.;

Montgomery, J. A. J. Comput. Chem. 1993, 14(11), 1347.

42. Gordon, M. S.; Schmidt, M. W. In theory and applications of computational chemistry:

The first forty years; Elsevier: Amsterdam, The Netherlands, 2005.

43. Chemcraft. https://chemcraftprog.com. (accessed November, 2016)

44. Zhuravlev, L. T. Langmuir 1987, 3(3), 316.

45. Batonneau-Gener, I.; Yonli, A.; Trouvé, A.; Mignard, S.; Guidotti, M.; Sgobba, M. Sep.

Sci. Technol. 2010, 45(6), 768.

46. Musso, G. E.; Bottinelli, E.; Celi, L.; Magnacca, G.; Berlier, G. Phys. Chem. Chem. Phys.

2015, 17(21), 13882.

47. Yang, D.; Xu, Y.; Wu, D.; Sun, Y.; Zhu, H.; Deng, F. J. Phys. Chem. C 2007, 111(2),

999.

48. Fischer, E.; Speier, A. Untersuchungen aus Verschiedenen Gebieten 1924, 285.

49. Sok, S.; Gordon, M.S. Comp. Theor. Chem. 2012, 987, 2.

 152

Figure 1. Minimal model silica structures for (clockwise from top-left) acid-functionalized

single-site, acid-functionalized dual-site, and the isolated silica structures which support the dual

site, and single-site models. H atoms are white, C atoms are black, Si atoms are blue, O atoms

are red, and S atoms are yellow.

5.07Å

5.07Å

 153

Figure 2. (A) Mesoporous silica pore system, and (B) embedded acid-functionalized dual-

catalyst system. Atoms in (B) treated with MM methods are grey, and atoms treated with QM

methods are displayed in color. The color scheme is the same as that in Figure 1.

Figure 3. Diagram of atom nomenclature for catalyst sulfonyl atoms.

(A) (B)

 O3
 O3 O1

 pd O1 pa

 O2

 O2

 154

Figure 4. Optimized structures for acetic acid adsorption on the single-catalyst minimal model

surface. The adsorption energies shown were computed with MP2 (DFT). The color scheme is

the same as that in Figure 1.

Figure 5. Optimized structures for methanol adsorption on the single-catalyst minimal model

surface. The methyl hydrogens are not shown. The adsorption energies shown were computed

with MP2 (DFT). The color scheme is the same as that in Figure 1.

mm-pa2
Eads = 20.2 (20.8) kcal mol-1

mm-pa1
Eads = 17.9 (19.3) kcal mol-1

mm-pm3
Eads = 14.3 (15.2) kcal mol-1

mm-pm2
Eads = 12.6 (12.3) kcal mol-1

mm-pm1
Eads = 5.6 (5.2) kcal mol-1

 155

Figure 6. Optimized structures for acetic acid and methanol adsorption on the silanol minimal

model surface. The methyl hydrogens are not shown. The adsorption energies shown were

computed with MP2 (DFT). The color scheme is the same as that in Figure 1.

Figure 7. Optimized structures for acetic acid (left) and methanol (right) adsorption on the dual-

catalyst minimal model surface. The methyl hydrogens are not shown. The adsorption energies

shown were computed with MP2 (DFT). The color scheme is the same as that in Figure 1.

mm-ppa
Eads = 18.7 (19.9) kcal mol-1

mm-ppm
Eads = 15.4 (16.4) kcal mol-1

mm-sa
Eads = 10.7 (11.5) kcal mol-1

mm-sm2
Eads = 9.9 (11.6) kcal mol-1

mm-sm1
Eads = 9.7 (10.4) kcal mol-1

 156

Figure 8. Optimized structures for acetic acid and methanol co-adsorption on the single-catalyst

minimal model surface. The adsorption energies shown were computed with MP2 (DFT). The

color scheme is the same as that in Figure 1.

Figure 9. Optimized structures for acetic acid and methanol co-adsorption on the dual-catalyst

minimal model surface. The methyl hydrogens are not shown. The adsorption energies shown

were computed with MP2 (DFT). The color scheme is the same as that in Figure 1.

mm-pam1
Eads = 23.1 (25.4) kcal mol-1

 mm-pam2
Eads = 24.1 (25.0) kcal mol-1

mm-pam3
Eads = 24.7 (26.8) kcal mol-1

 mm-pam4
Eads = 32.4 (34.9) kcal mol-1

mm-pmpa
Eads = 39.6 (38.4) kcal

mol-1

mm-ppam
Eads = 25.7 (26.8) kcal

mol-1

mm-papm
Eads = 28.7 (29.2) kcal

mol-1

 157

Figure 10. Optimized structures for acetic acid and methanol adsorption and co-adsorption on

the single-catalyst embedded model surface. The methyl hydrogens are not shown. The

adsorption energies shown were computed with MP2 (DFT). The color scheme is the same as

that in Figure 1.

Figure 11. Optimized structure of dual-catalyst embedded model surface. The color scheme is

the same as that in Figure 1.

em-pa
Eads = 17.4 (18.7) kcal mol-1

 em-pm
Eads = 12.2 (13.0) kcal mol-1

em-pam2
Eads = 24.6 (26.8) kcal mol-1

em-pam1
Eads = 23.6 (24.8) kcal mol-1

 158

Figure 12. Optimized structures for acetic acid and methanol adsorption on the dual-catalyst

embedded model surface. The methyl hydrogens are not shown. The adsorption energies shown

were computed with MP2 (DFT). The color scheme is the same as that in Figure 1.

Figure 13. Optimized structures for acetic acid and methanol co-adsorption on the dual-catalyst

embedded model surface. The methyl hydrogens are not shown. The adsorption energies shown

were computed with MP2 (DFT). The color scheme is the same as that in Figure 1.

em-pap
Eads = 11.0 (9.9) kcal mol-1

em-pmp
Eads = 7.1 (6.7) kcal mol-1

em-ppm(a)
Eads = 20.6 (20.7) kcal mol-1

em-pmp(a)
Eads = 21.3 (19.3) kcal mol-1

 159

Figure 14. Proposed esterification reaction mechanism for single-catalyst surface, Scheme 1. The

methyl hydrogens are not shown. ΔE is relative to the MP2 (DFT) energy of structure A. The

color scheme is the same as that in Figure 1.

A
ΔE = 0.0 (0.0) kcal mol-1

TS1
ΔE = 40.6 (36.8) kcal mol-1

B
ΔE = 8.6 (5.5) kcal mol-1

D
ΔE = -3.5 (-2.8) kcal mol-1

TS2
ΔE = 16.2 (13.9) kcal mol-1

C
ΔE = 5.2 (2.5) kcal mol-1

 160

Figure 15. Proposed esterification reaction mechanism for single-catalyst surface, Scheme 2. The

methyl hydrogens are not shown. ΔE is relative to the MP2 (DFT) energy of structure A’. The

color scheme is the same as that in Figure 1.

TS1’
ΔE = 12.9 (9.4) kcal mol-1

TS2’
ΔE = 44.9 (43.0) kcal mol-1

C’
ΔE = -1.2 (-1.8) kcal mol-1

B’
ΔE = 4.3 (0.9) kcal mol-1

A’
ΔE = 0.0 (0.0) kcal mol-1

 161

CHAPTER 7: DYNAMICS SIMULATIONS WITH SPIN-FLIP TIME-DEPENDENT

DENSITY FUNCTIONAL THEORY: PHOTOISOMERIZATION AND

PHOTOCYCLIZATION MECHANISMS OF cis-STILBENE IN ππ* STATES

A paper published in the Journal of Physical Chemistry A

Yu Harabuchi, Kristopher Keipert, Federico Zahariev, Tetsuya Taketsugu, and Mark S. Gordon

Abstract

 On-the-fly dynamics simulations were carried out using spin-flip time dependent density

functional theory (SF-TDDFT) to examine the photoisomerization and photocyclization

mechanisms of cis-stilbene following excitation to the ππ* state. A state tracking method was

devised to follow the target state among nearly degenerate electronic states during the dynamics

simulations. The steepest descent path from the Franck-Condon structure of cis-stilbene in the

ππ* state is shown to reach the S1-minimum of 4,4-dihydrophenanthrene (DHP) via a cis-

stilbene-like structure (referred to as (S1)cis-min) on a very flat region of the S1-potential energy

surface. From the dynamics simulations, the branching ratio of the photoisomerization is

calculated as trans: DHP = 35: 13, in very good agreement with the experimental data, trans:

DHP = 35: 10. The discrepancy between the steepest descent pathway and the significant trans-

stilbene presence in the branching ratio observed experimentally and herein computationally is

clarified from an analysis of geometrical features along the reaction pathway, as well as the low

barrier of 0.1 eV for the pathway from (S1)cis-min to the twisted pyramidal structure on the S1-

 162

potential energy surface. It is concluded that ππ*-excited cis-stilbene propagates primarily

toward the twisted structural region due to dynamic effects, with partial branching to the DHP

structural region via the flat-surface region around (S1)cis-min.

Introduction

 1,2-diphenylethylene (stilbene) and its derivatives play many roles in both science and

everyday life. The combination of tunable photophysical properties and high thermal and

chemical stability have led to a wide variety of research and practical applications of stilbenoids.

Stilbene and its derivatives are commonly used as optical brightening agents, molecular probes,

and gain mediums in blue dye lasers for both spectroscopic and laser medicine purposes.

Stilbenoids absorb light in the UV (usually 340-370 nm) region, and re-emit light in the blue

region (typically 420-470 nm). These tunable photophysical properties have been utilized to

make stilbenoid whitening agents, which enhance the appearance of fabric and paper by causing

a "whitening" effect. These additives make materials look less yellow by increasing the relative

amount of blue light reflected. Stilbenoids are naturally present in some plants, such as the

presence of the phytoalexin agent 3,5,4’-trihydroxystilbene (reservatrol) in groundnuts,

raspberries and blackberries. Humans have taken advantage of stilbenoid biological properties to

produce medicine, such as the traditional “Puag-Haad” natural extract, which contains an

abundance of oxyresveratrol, used to treat tapeworm infections in Southeast Asia.

 Stilbene is a widely studied molecule that undergoes photoisomerization.1-3 There are two

isomers in the ground state of stilbene, i.e. cis and trans-forms, cis-stilbene can undergo

 163

photocyclization to produce 4,4-dihydrophenanthrene (DHP). Due to interest in the reaction

mechanism of photo-excited molecules, the photoisomerization mechanism of cis-stilbene has

been examined extensively both experimentally4-36 and theoretically.31,36-50 It is known5,7,13,15,17

that photo-excited cis-stilbene can lead to all three of the structures as shown in Figure 1. In

early experimental research, the quantum yield for the photoreaction of the ππ* excitation of cis-

stilbene is reported to be 0.10 for DHP, 0.35 for trans-stilbene, and 0.55 for the cis-stilbene.5,7,13

The observation of three photoreaction products indicates that reaction channels for both trans-

stilbene and DHP are open in the ππ* state of cis-stilbene. Experimental time-resolved studies

report that the lifetime of cis-stilbene after excitation to the ππ* state is very short,8,10,12,14,18-21,24-

26,28,29,32,33,35 and that the photoreaction process proceeds rapidly following photoexcitation. The

ring formation mechanism of cis-stilbene, i.e., cyclization to DHP, is important when

considering diarylethene derivatives for photo-switching molecule applications.51-53 Several

experimental studies have examined the cis-DHP cyclization of stilbene.4,5,7,13,15,23

 Two important optical experiments were performed very recently by Tahara and co-

workers in which both time resolved Raman spectra31 and femtosecond time-resolved

fluorescence spectra were performed.35 From the Raman spectra, it is shown that stilbene

exhibits a vibrational mode frequency downshift from 239 cm-1 (0.3 ps) to 224 cm-1 (1.2 ps) to

215 cm-1 (2.0 ps) after an initial upshift from 231 cm-1 (0.0 ps) to 239 cm-1 (0.3 ps). The authors

assign the vibrational mode to twisting about the C=C bond based on both the steepest descent

path in the excited state and vibrational analyses along the path. They conclude that the gradual

downshift of the experimental frequency corresponds to gradual twisting of the central C=C

bond which accompanies the pyramidalization of carbon atoms in the central C=C bond. Based

 164

on the fluorescence spectra,35 it is shown that the decay of cis-stilbene is bi-exponential,

corresponding to a 0.23 ps fast process and a 1.2 ps slow process with oscillator strengths of 0.32

and 0.21 respectively. The fast fluorescence component (0.23 ps) is attributed by the authors to

the cis*A state which is reached just prior to the twisting of the C=C bond, but after the initial

elongation of the central C=C bond. The slow fluorescence component (1.2 ps) is attributed to

the cis*B state in which the central C=C bond has twisted substantially around a shallow S1

potential energy minimum. In addition, it was concluded that the observed oscillator strengths

indicate that the population branching selection to either trans-stilbene or DHP occurs in a very

early stage of the photoreaction process of cis-stilbene.

 The cis-trans photoisomerization process has been widely examined in many theoretical

studies.31,37-50 A major focus has been to clarify both geometric and electronic structures along

the relaxation paths including the conical intersection (CI) region corresponding to the decay

channel from the excited state to the ground state (S1/S0).38,40,45,47,49,50 It is generally accepted that

the relaxation of cis-stilbene in the ππ* state involves a twisting motion about the central C=C

bond,37,38,40,45,47,49,50 and that the S1/S0-CI region exists near the twisted minimum of the ππ*

state.38,40,45,47,49,50 The molecular motion of the cis-trans photoisomerization has been predicted

to be a “hula-twist” motion, in which the central C=C bond rotates out of plane; the C-H bonds

remain out of the plane, while the other atoms reorient to remain coplanar.27 With regard to the

cyclization process from cis-stilbene to DHP (denoted cis-DHP), Bearpark was the first to report

the location of the conical intersection corresponding to DHP formation with a hybrid molecular

mechanics-valence bond method (MMVB).38 Very recently, the detailed potential energy

surfaces (PES) for both photoreactions of cis-stilbene were examined using spin-flip (SF) time-

 165

dependent density functional theory (TDDFT)47 and extended multiconfiguration quasi-

degenerate second order perturbation theory (XMCQDPT2).50 It was reported that the twisting

motion about the central C=C bond, i.e. cis-trans isomerization, appears to be preferred in a ππ*

state of cis-stilbene, rather than the ring closing motion, i.e. cis-DHP cyclization. One MMVB

study38 draws the opposite conclusion.

 There have been two reports of dynamics simulations of the photoreaction in cis-stilbene.

Berweger employed singly excited configuration interaction (CIS) with the 6-31G basis set to

study dynamics simulations on a three-dimensional constrained PES which was obtained by an

interpolation scheme.39 The authors were unable to consider the S1/S0-crossing regions due to

their limited dimensional PES. However, they reported that the dihedral angle of the central C=C

torsion changes from 0° to 180° along the trajectories in the stilbene excited state, corresponding

to the cis-trans isomerization. Dou et al.43,44,46 performed a semi-classical electron-radiation-ion

dynamics (SERID) simulation on the excited state of cis-stilbene. They reported three different

trajectories in three papers, cis-trans isomerization,44 cis-cis (no isomerization),43 and cis-DHP

cyclization.46 Based on the cis-trans isomerization trajectory,44 they reported that the excitation

from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital

(LUMO) of cis-stilbene rapidly leads to the formation of DHP at 0.2 ps, and that a subsequent

cis-trans photoisomerization occurs via a twisted pyramidal CI which has an intermediate

dihedral angle (90°) about the central C=C bond. For the cis-cis trajectory,43 they reported that

stilbene passes through twisted pyramidal CI regions which are similar to those in the cis-trans

photoisomerization. For the cis-DHP trajectory,46 they proposed that a new chemical bond is

formed between two phenyl rings at 0.6 ps via the trans-isomer (dihedral angle = 180° about the

 166

central C=C bond). These reports by Dou et al. indicate very interesting stilbene phenomena,

since DHP-trans and trans-DHP reactions in the excited state were observed in the trajectories of

the cis-trans and cis-DHP reactions, respectively. To date there has been no report of ab initio

dynamics simulations dealing with full dimensional motions for cis-stilbene, possibly due to both

the prohibitive computational cost and the difficulties of accurately describing the CI region

discussed below. There has also been no report about the photoreaction branching mechanism,

i.e. the comparison of trajectories, between cis-trans and cis-DHP in the ππ* state.

The main focus of the present study is to clarify the photoreaction branching mechanism of

stilbene from cis-stilbene to both trans-stilbene and DHP by utilizing on-the-fly dynamics

simulations. Also, the time scale of the photoreaction is examined based on comparisons with

experimental results, and the origin of the experimental spectra is discussed by considering the

predicted molecular motions.

 Dynamics simulations have become a powerful tool for examining the mechanisms of

chemical reactions. Computational advances now allow for practical on-the-fly dynamics

simulations for photochemical reactions that occur in the sub-picosecond timeframe. Such

simulations can provide insights that cannot currently be obtained experimentally. These

dynamics simulations generally use classical trajectories in combination with some level of

electronic structure theory. Many chemical reaction mechanisms have been clarified using on-

the-fly dynamics simulations.54-56

 When studying photochemical reactions with dynamics simulations, there are several

issues that occur in the study of non-adiabatic transitions through CI regions.57-64 One issue is

 167

how to deal with intersystem crossing in non-adiabatic regions. Since non-adiabatic transitions

cannot be considered within the Born-Oppenheimer approximation, wavepacket methods or

semi-classical approximations must be employed to treat non-adiabatic transitions. The other

difficulty is that multi-configurational effects and dynamic correlation are usually necessary to

correctly and quantitatively describe excited state PESs in CI regions. Thus, the computational

methods employed must be chosen carefully to accurately describe the excited state dynamics.

 For dynamics simulations in excited states, multi-configurational methods such as the

complete active space self-consistent field (CASSCF) method are commonly used to describe CI

regions. To include dynamic correlation, one must build upon the CASSCF wavefunction in the

form of multi-reference perturbation theory (MRPT),65-67 or multi-reference configuration

interaction (MRCI).68,69 This requirement can be a significant obstacle when performing excited

state dynamics, because application of multi-reference methods can have prohibitively high

computational cost, and because of the possibility that the most appropriate active space may

change along a PES. Analytic gradients are not universally available for post-CASSCF methods,

which further contributes to the high computational cost of including dynamic correlation.

 In the present study, time dependent density functional theory (TDDFT) is used for the

excited-state dynamics simulations. TDDFT often provides reasonable results for excited

electronic states, at a relatively low cost. TDDFT has been employed extensively to describe

PESs of excited states, and most functionals incorporate dynamic correlation. The computational

cost of TDDFT is much lower than that of multi-reference methods, such as MRPT and MRCI,

especially for large molecules.70-72 TDDFT also avoids the active space decisions that are

 168

frequently necessary for multi-reference methods. However, the usual linear response TDDFT

(LR-TDDFT) calculations have some disadvantages for the study of excited-state mechanisms.73

The most serious problem is that TDDFT provides a discontinuous PES at the crossing point

between the reference ground state and the first excited state (S1), as the reference state becomes

the excited state following an intersystem crossing. In dynamics simulations of ultrafast photo-

decay processes in which CI regions are very important, LR-TDDFT is not a good choice.

Furthermore, LR-TDDFT within the adiabatic approximation cannot describe configurations

corresponding to doubly excited states. This limitation can be important for rotations about

double bonds, because the ground state and the doubly excited state can cross during such

rotations.

 To overcome the aforementioned drawbacks to LR-TDDFT, spin-flip (SF) TDDFT was

developed.47,71,74-82 In SF-TDDFT, the lowest energy high spin triplet state is used as the

reference state, and both the ground state (S0) and S1 are treated as response states following a

single electron spin flip. Therefore, the reference state does not change at S0/S1 crossing points,

and the PES is continuous in the crossing region. Also, the HOMO-LUMO doubly excited state

can be described by SF-TDDFT as discussed below. Shao et al. developed the SF-TDDFT

analytic gradient.74 Minezawa and Gordon implemented the SF-TDDFT analytic gradient in the

GAMESS program package76 so it is possible to optimize the minimum energy S0/S1-CI SF-

TDDFT geometries.47,76 Also, analytic derivative couplings at the SF-TDDFT level have been

developed.83 Very recently, an automated search for minimum energy SF-TDDFT S0/S1-CI

geometries has been reported.81

 169

 In the present study, the interface of the SF-TDDFT method with excited state dynamics

simulations is described. Several problems must be addressed. The primary issue is the

description of states by the SF-TDDFT method. Since the SF-TDDFT solutions are not spin

eigenstates, multiple undesired states appear in the solutions with significant spin contamination.

Additionally, identification of the target state during dynamics simulations is complex since state

ordering and orbital switching can both occur. To date, no method has been reported that

successfully tracks the target state during SF-TDDFT dynamics simulations. In this work, these

issues are discussed, and the crossing regions among the SF-TDDFT states are also carefully

examined.

Methodology

 The SF-TDDFT method can describe all of the excited states that are expressed as linear

combinations of Slater determinants obtained by one-electron transitions from the reference

state. The spin-flip methodology also successfully exploited in wave-function methods.85-88 As

shown in Figure 2(a), the reference SF-TDDFT state is the high spin triplet state. Response

states are generated by the spin-flip of an electron from α to β. Thus, SF-TDDFT can only treat

four states correctly; i.e. the ground state, the HOMO-LUMO doubly excited state, and the open

shell singlet and triplet states of the singly-occupied molecular orbitals (SOMOs), as shown in

Figures 2(b), 2(c) and 2(d), respectively. The other states cannot be described correctly in the

SF-TDDFT framework, because several of the required determinants cannot be generated by a

single spin flip. The missing determinants are indicated by gray crosses in Figure 2(e). These

unphysical states appear as mixed states of singlet, triplet and quintet spins.

 170

 To accomplish SF-TDDFT dynamics simulations, a method is needed that can follow a

target state throughout a wide swath of the PES. A trajectory might pass through a crossing

region between the target state and some undesired state, such as a mixed state (Figure 2(e))or a

triplet state. These undesired states should be ignored in crossing regions, but unequivocal

identification of the target state at each dynamics step is not straightforward. It was reported that

<S2> values for singlet states are commonly 0.0 - 0.2 at local minima or minimum energy CI

coordinates,79 while <S2> for the triplet state and the mixed states is normally ~2.0 and ~1.0,

respectively. However, due to the SF-TDDFT spin contamination problem noted above, <S2>

can deviate considerably from the exact values and can vary significantly during a simulation.

Therefore, it is not feasible to identify the target states by monitoring only <S2> values. Although

the use of approximate spin projection formulas may be useful for this problem,89-92 they cannot

easily be applied, because of the possible existence of many undesired states. Previous authors

have discussed this issue in some detail.79,81 Various spin adaptation techniques have been

considered as a solution to the spin-contamination issues of SF-TDDFT.78,87,88,93 For the purpose

of the present study, a method to distinguish the target state automatically based on properties

other than <S2> values is considered.

 Figure 3a schematically illustrates the state tracking method that follows the target state

during the SF-TDDFT dynamics simulations. In Figure 3, black circles indicate the target state,

and the black triangles indicate the SF-TDDFT undesired states. The present method monitors

several types of data at every point along trajectories: the energies of the states, the eigenvectors

of the states (the CI coefficients), the ordering of the MOs, and the <S2> values of the states. The

first criterion of the state tracking method is that the target state is selected as long as each value

 171

is continuous between the previous step and the present step. However, the monitored values

sometimes do not provide meaningful information especially in the crossing region as discussed

below, and the state tracking sometimes fails.

 The ordering of the MOs is maintained at each step by using a built-in GAMESS option.

By fixing the ordering of the MOs, the ordering of the eigenvectors is also maintained, and the

comparison from step to step becomes much easier. One possible approach is to calculate the dot

product of the eigenvectors of the states. However, this strategy sometimes does not work well,

because the signs of the elements in the eigenvectors of the states frequently change. Thus, such

a method can misread the target state. This sign change is caused by the solution of the LR SF-

TDDFT equations and is difficult to control. Thus, two additional eigenvector properties are

monitored, as shown in Eqs (1) and (2) below. The CI coefficients of two successive

eigenvectors, n and n+1, are represented by the terms labeled ci.

		
Va = ci

nci
n+1

i
∑ (1)

		
Vd = ci

n − ci
n+1

i
∑ (2)

The target state is chosen as the state that has the largest Va and smallest Vd values in the present

method. By using Va and Vd, the method can almost always identify the target state correctly.

 Figure 3(b) shows a typical SF-TDDFT crossing region of the PES. The nature of the two

crossing states always changes in the crossing region (indicated by the white squares in Figure

3(b)), and the crossing PESs resemble an avoided crossing. Consequently, it is very difficult in

 172

the crossing region to distinguish the target state based only on the eigenvectors and the <S2>

value. Likewise, it is difficult to distinguish the target state based on the energies and the

gradient vector due to the nature of the avoided crossing. In the present scheme, when the target

state is well isolated from the adjacent states in energy, the eigenvectors of the previous step are

compared with those of the present step. In mixing regions, the last step of the previous stable

region (k in Figure 3(b)) and the present step are compared. After the trajectory passes through

the mixing region, the method updates the reference eigenvectors. This strategy works well in

most SF-TDDFT dynamics simulations.

 In the present study, non-adiabatic transitions are not considered, because the calculation

of non-adiabatic coupling matrix elements (NACME) within the SF-TDDFT formalism is not yet

available in GAMESS. The energy difference threshold between S1 and S0 for the termination of

the trajectories is defined as 0.1eV or less. Due to the current lack of non-adiabatic transition

probabilities, the lifetime of the excited state and the quantum yield of the photoisomerization

cannot be discussed quantitatively. However, the qualitative time relationship between the

experimental decay time and the statistical time in which the trajectories reach the crossing

region from the Franck-Condon (FC) region are summarized, and the mechanism of the

photoreaction branching in the excited state is discussed.

 The present method does not work well in two situations. First, consider a case in which

the trajectory remains in a mixing region for more than ~10 fs. Then, the comparison of the

eigenvectors becomes meaningless, since the molecular coordinates are very different from those

of the last step in the stable region. Although the trajectories pass through the crossing region in

 173

less than 1 fs in most cases in the present study, the occurrence of trajectories lingering in the

crossing region is not negligible due to the large number of crossings along dynamics

simulations. Second, difficulties occur when the absolute values of the molecular orbital

coefficients for the open shell triplet and the open shell singlet SOMOs are too similar. Since the

elements of Va and Vd are likely to be very similar in this situation, it is difficult to distinguish

these states. To improve the treatment for the latter situation, the two values are scaled by the

energy difference between the calculated state and the target state, and only states within ±1 eV

from the target state are considered in the present state tracking method.

 The main purpose of the present study is to clarify the photoreaction branching

mechanism of cis-stilbene using the SF-TDDFT dynamics simulation method. An advantage of

the proposed dynamics method is that relatively accurate and low-cost excited state dynamics

simulations become possible with SF-TDDFT, while also avoiding the need to choose active

spaces.

Computational Details

 The dependence of SF-TDDFT predictions on the chosen functional and basis set was

analyzed by performing single point energy calculations at several previously reported stilbene

geometries.47 Based on benchmarking of a variety of density functionals on stilbene and basis

sets, the BHHLYP functional with the 6-31G(d) basis set was chosen for all of the stilbene

excited state dynamics simulations and reaction path calculations. The SF-TDDFT cis-stilbene

vertical excitation energies are compared with both experiment and ab initio theoretical

 174

predictions reported in previous studies.37,45,47,50 The vertical excitation energy was also

calculated with CASPT2(2,2)/cc-pVDZ in order to isolate the effect of dynamic correlation. The

(2,2) active space includes the HOMO(π) and the LUMO(π*). The ground state calculations,

including equilibration, were performed at the DFT(BHHLYP)/6-31G(d) level.

 To understand the dominant decay pathway after the vertical excitation of cis-stilbene, a

SF-TDDFT(BHHLYP)/6-31G(d) steepest descent path calculation in the ππ* state was

performed, starting from the Franck-Condon (FC) structure of cis-stilbene. A minimum energy

conical intersection (MECI) was located by using the penalty function method76 with SF-

TDDFT(BHHLYP)/6-31G(d). The description of conical intersections by several electronic

structure methods has been discussed extensively, and the SF-TDDFT method was shown to give

the correct shapes of conical intersections.84 Also, a transition state (TS) and corresponding

intrinsic reaction coordinate (IRC) path in the ππ* state have been determined with SF-

TDDFT(BHHLYP)/6-31G(d).

 In order to sample initial conditions for the excited state dynamics simulations, an

equilibration dynamics simulation in the ground state of cis-stilbene was performed for 5 ps,

followed by a 20 ps production run. In the equilibration dynamics simulation, the bath

temperature was set to 300 K by a Nose-Hoover thermostat.94 The initial coordinates and

velocities for the excited state dynamics were taken once every 400 fs from the equilibration

dynamics simulation in the ground state; i.e. 50 trajectories were calculated. The excited state

dynamics simulations were started upon excitation to the lowest ππ* singlet state. Each trajectory

in the excited state was terminated if the trajectory reached the S1/S0-crossing region, or if the

 175

simulation time reached 1.5 ps (with respect to a 1.2 ps experimental lifetime) in order to manage

the computational cost. Recall that the statistical treatment of non-adiabatic transitions is beyond

the scope of this work. All of the DFT and MP2 calculations were performed with the GAMESS

program package,95,96 while the CASPT2 calculations were performed with the MOLPRO2010

program package.97

Results and Discussion

 In Table 1, the lowest vertical excitation energies of cis-stilbene obtained by both

experimental and theoretical studies are summarized. The experimental vertical excitation energy

varies from 4.0 eV to 4.7 eV,8,16,18,20,23,29,30,33-35 but based on the most recent

experiments,23,29,30,33-35 the vertical excitation energy of cis-stilbene is ~4.6 eV. CASSCF

generally predicts excitation energies that are more than 1 eV higher than experimental results.

The addition of dynamic correlation via CASPT2 provides reasonable agreement with

experiment for the relatively small active spaces. The same is true for SF-TDDFT, as long as a

hybrid functional is used. If one uses GGA functionals, the agreement is much worse as shown in

Table 1. The failure of GGA functionals for excited states has been noted in a recent

benchmarking survey.98 It is concluded that dynamic correlation is important to accurately

describe the ππ* state of stilbene.

 To examine the SF-TDDFT basis set dependence, single point energies at several stilbene

geometries were calculated with the BHHLYP functional and a variety of basis sets. In Table 2,

all of the (S0)trans-min reported geometries were optimized using the indicated basis set; the

 176

remaining single point energies in the table were calculated at the geometries reported by

Minezawa et al.47 As shown in Table 2, the SF-TDDFT basis set dependence is very small. This

small basis set dependence is an advantage of SF-TDDFT, because the computational cost can be

lowered by choosing a relatively small basis set without a significant loss of accuracy.

 In Figure 4, the definitions of the structural parameters used in the present study are

summarized. Five structural parameters are defined to describe the photoisomerization

mechanism of cis-stilbene, i.e. rC1C2, rC1C3, rC13C14, aC1C2C4 and dC3C1C2C4. rij indicates the distance

between two atoms, aijk indicates the angle that connects three atoms ijk, and dijkl indicates the

dihedral angle between the two planes formed by atoms ijk and jkl. Each structural parameter of

the optimized geometries for (S0)cis-min is summarized in Table 3. The experimental values

measured by X-ray analysis are also shown. The optimized geometries obtained with each

method in Table 3 show good agreement with the experimental values.99 This led to the

consistent choice of DFT(BHHLYP)/6-31G(d) for the equilibration dynamics simulation in the

ground state of cis-stilbene.

 In the present study, two different S1/S0-crossing regions were found during the dynamics

simulations. Two twisted-pyramidalized MECI structures, (S1/S0)twist-I and (S1/S0)twist-II, were

located. As shown in Figure 5, (S1/S0)twist-II has a larger dC3C1C2C4 dihedral angle than (S1/S0)twist-I.

(S1/S0)twist-I and (S1/S0)twist-II correspond to the MECI structures previously reported in refs 47,50

and refs 45,49, respectively. Figure 6(a) shows the variations of structural parameters along the

SF-TDDFT(BHHLYP)/6-31G(d) steepest descent paths from the FC structure of cis-stilbene in

the ππ* state (denoted (S1)FC). (S1)FC and (S0)cis-min indicate the same geometries, but different

 177

electronic states. rC13C14 and dC3C1C2C4 were plotted to develop an understanding of the

photoreaction mechanism of cis-stilbene in the ππ* state. The minima in the ground state are

indicated as black circles. DHP in the ground state (S0)DHP-min has a short rC13C14 distance and a

small dC3C1C2C4 angle, while trans-stilbene in the ground state (S0)trans-min has a long rC13C14 and a

large dC3C1C2C4 angle. Therefore, these two parameters that correspond to the axes in Figure 6(a)

can efficiently differentiate the photoreaction branching mechanisms from cis-stilbene to both

trans-stilbene and DHP. The same plots are used to discuss the trajectories of the dynamics

simulations in Figures 7(a)-7(d).

 As shown in Figure 6(a), the steepest descent path from (S1)FC leads to a cis-stilbene-like

structure (referred to as (S1)cis-min) in the first stage, where movements of two hydrogen atoms are

dominant, resulting in a geometry consisting of two near-planar structures of H-C-C6H5.31 This

cis-stilbene-like structure is reported to be a true minimum on the S1-PES in several studies,31,37-

39,45,50 although some studies indicate otherwise.36,47,50 At the present SF-TDDFT(BHHLYP)/6-

31G(d) level of theory, the steepest descent path goes through a very-flat region of the PES in the

range s = 4.0 ~ 5.0 bohr amu1/2 around (S1)cis-min, with a large reaction-path curvature as shown in

Figure 6(b), and eventually reaches (S1)DHP-min. This result is interesting because previous studies

predict that the reaction pathway leading from the FC region of cis-stilbene to the twisted

structures is preferred.5,7,13 It is suggested that branching for the twisted structure and the DHP

structure occurs in this sharply curved region, and that dynamic effects may be important in

determining the branching ratio of the products. It is also noted that the molecule should stay at

this very-flat region around (S1)cis-min for some length of time. Although (S1)cis-min does not

correspond to a true minimum, it sits is a very flat region of the PES.

 178

 To clarify the photoreaction dynamics of cis-stilbene in the ππ* state, 50 trajectories were

calculated using SF-TDDFT(BHHLYP)/6-31G(d). Trajectories going toward both the DHP and

twist directions are sampled by the dynamics simulations. 64% of the trajectories reach the S1/S0-

crossing region near (S1/S0)DHP, (S1/S0)twist-I or (S1/S0)twist-II within t = 1.5 ps, while the remaining

trajectories linger on the S1-PES. Based on the rC13C14 and dC3C1C2C4 values at the terminal points

of the respective trajectories, the 50 trajectories are divided into three groups: 13 trajectories

(26%) lead to the formation of DHP, 35 trajectories (70%) undergo rotation via the torsion of the

C1=C2 bond, and two trajectories (4%) first began torsional rotation, and then change to DHP.

As mentioned previously, quantum yields of the photoreaction cannot be discussed from the

present dynamics simulations in a rigorous way, because the trajectories branch into three

structures, i.e. DHP, cis-stilbene and trans-stilbene, after relaxing to the ground state. However,

the calculated branching ratio (trans-stilbene : DHP = 35 : 13) is in good agreement with

experimental data (trans-stilbene : DHP = 35 : 10), and indicates that the dynamics simulations

qualitatively reproduce the experimental quantum yield.

 Figures 7(a), 7(b), and 7(c) show examples of typical trajectories which pass through

each of three S1/S0-crossing regions. The structural parameters along each trajectory and the

S1/S0-crossing geometries that the trajectories pass through are also shown. The blue squares

indicate the terminal points where the energy differences between S1 and S0 becomes 0.1 eV or

less. It should be noted that the terminal points of the respective trajectories are not exactly the

same as the S1/S0-MECI points; the S1/S0-crossing regions are distributed around the S1/S0-MECI

points in configuration space. All of the trajectories from the FC region of cis-stilbene move in

the direction of (S1)cis-min in the early stage of the photo-decay process, and all but two of the

 179

trajectories remain on a single path toward either DHP or one of the two twisted MECIs. Thus, it

is expected that DHP and the twisted region in the ππ* state are separated by a barrier between

(S1)cis-min and (S1)twist-min. Although the trajectories were not terminated by following the

termination criteria described above, the S1/S0 energy differences of the two trajectories

decreased to < 0.15 eV one time.

 The barrier height on the SF-TDDFT(BHHLYP)/6-31G(d) IRC path from (S1)DHP-min to

(S1)twist-min via (S1)TS was calculated to be only 0.1 eV, as shown in Figure 6(a). This TS was also

reported in a previous study.47,50 As indicated in Figure 6(c), the energy variation along the IRC

path is very flat around the region s = -12 ~ -2 bohr amu1/2, which should include the (S1)cis-min

structure. Thus, it is expected that the photoreaction branching in the ππ* state of cis-stilbene

occurs in (S1)cis-min where the steepest descent path from (S1)FC curves dramatically and the PES

is very flat.

 The calculated population decay of cis-stilbene in the ππ* state is shown as a black line in

Figure 8. To calculate the population of the ππ* state, the trajectories terminated by reaching

S1/S0-crossing regions are regarded as the trajectories decaying from S1 to S0. 28 trajectories

reached the S1/S0-crossing region before 1.0 ps. As a consequence, as shown in Figure 8, the

population of the ππ* state at t = 0 is 1.0, i.e. all the trajectories are in the ππ* state, and the

population decreases to 0.44 at 1.0 ps. As mentioned before, the lifetimes cannot be discussed

rigorously, because non-adiabatic coupling calculations were not performed. However, the time

scale of the calculated population decay for the ππ* state is in good agreement with the

experimental decay of 1.2 ps.35 The calculated population decay of the ππ* state is also plotted

 180

for the trajectories leading to the twist-side (35 trajectories) and for the trajectories leading to

DHP-side (13 trajectories), separately, in Figure 8. It is clearly shown that the lifetime for the

DHP-side is relatively longer than that for the twist-side. This difference can be understood by

considering the initial atomic motions for ππ* excited cis-stilbene. Since the steepest descent

path starting at (S1)FC denotes a direction with increasing torsional angle, dC3C1C2C4, the torsional

motion will receive kinetic energy in the early stage. The direction is related to a structural

transformation toward the twist side, while it is almost perpendicular in the direction leading to

the DHP-side, indicating that the molecule should reach the (S1/S0)twist region faster than the

(S1/S0)DHP region. As shown in Figure 7(c), the trajectory exhibits strong fluctuations and stays

around (S1)cis-min for a relatively long time before reaching the (S1/S0)DHP region, while the

trajectories in Figure 7(a) and 7(b) reach the (S1/S0)twist region more smoothly.

 As mentioned previously, evidence from femotosecond time-resolved fluorescence

spectra led to the proposal that the photoreaction process of cis-stilbene is a two-step

mechanism.35 Experimental results include measurements of the oscillator strengths for the initial

0.23 ps fast step (0.32), and that of the 1.2 ps second step that follows (0.21).35 Based on the

energy variations of the S0 and S1 states along the IRC in Figure 6(c), fluorescence can only be

observed when the molecule stays around the (S1)cis-min region. This is because the observed

fluorescence wavelength, 420 nm,35 nearly coincides with the energy difference between the S0

and S1 states, 3.1 eV, for (S1)cis-min in Figure 6(c), while the energy difference between the S0 and

S1 states in other regions along the IRC is too small to be observed. Thus, it is suggested that

both the fast step and the second fluorescence decay in the experiment35 indicate an escape of the

molecule from the (S1)cis-min region. Therefore, the fast decay may correspond to an escape of the

 181

molecules going to the twist-side, while the second decay may correspond to an escape of the

molecules headed to the DHP-side. This attribution is consistent with the decay times of the twist

and DHP sides shown in Figure 8. It is also interesting that the larger oscillator strength of the

fast decay mode corresponds to the major product, i.e. twist-side, while the second decay with

smaller oscillator strength corresponds to the DHP-side.

 Finally, consider the photoreaction branching mechanism of cis-stilbene in the ππ* state.

As mentioned above, there are three types of related results: the experimental quantum yields of

the photoreaction,5,7,13 the steepest descent path, and the trajectories of the dynamics simulation.

From the experimental results, the cis-trans isomerization is preferred to the cis-DHP cyclization

in the ππ* state, although the steepest descent path connects (S1)FC and (S1)DHP-min directly. Also,

since the cis-trans photoisomerization proceeds more favorably than the cis-DHP

photocyclization in dynamics simulations, dynamic effects are important as mentioned above.

 The branching mechanism in the ππ* state can be explained based on the nature of the

PES around (S1)cis-min-(S1)TS-(S1)twist-min and around (S1)FC. As mentioned above, since the energy

barrier between (S1)cis-min and (S1)TS is only 0.1 eV even though the path-length is relatively long,

the PES is very flat in the region of (S1)cis-min-(S1)TS-(S1)twist-min. Thus, it is easy to pass through

the barrier between DHP- and the twist-side. In the FC region of cis-stilbene, the steepest descent

direction promotes a slight increase of the torsional angle, dC3C1C2C4. The torsional motion

receives kinetic energy in the early stage of the photo-decay process of cis-stilbene. If the kinetic

energy corresponding to the torsional motion is not sufficient to overcome the barrier between

(S1)cis-min and (S1)twist-min, the trajectory will follow the steepest descent path and may lead to

 182

(S1/S0)DHP. On the other hand, if the molecule can overcome the barrier between (S1)cis-min and

(S1)twist-min, then it should reach (S1/S0)twist-I or (S1/S0)twist-II. This means that the molecular motion

in the early stages following photoexcitation determine the photoreaction branching of cis-

stilbene. Also, it is clear that the low barrier between (S1)cis-min and (S1)twist-min plays an important

role in the branching ratio of the photoreaction of cis-stilbene. This is the first report that

discusses the full photoreaction mechanism for cis-stilbene, involving both cis-DHP cyclization

and cis-trans isomerization based on on-the-fly excited state dynamics simulations.

Conclusions

 This is the first attempt to examine the photoreaction process of cis-stilbene by full-

dimensional on-the-fly dynamics simulations, in order to examine the photoreaction branching

mechanism of cis-stilbene in the ππ* state. In SF-TDDFT calculations, the characters of nearly

degenerate electronic states mix with each other, which makes it difficult to follow a target state

along a trajectory in a simple way. To solve this problem, a state tracking method is newly

proposed to follow the target state along trajectories, in which reference eigenvectors are used to

distinguish states from one another. In the cis-stilbene ππ* state the steepest descent path is

shown to lead to (S1)DHP directly from (S1)FC, although the cis-trans isomerization is preferred to

the cis-DHP cyclization in experiments. Although non-adiabatic coupling calculations were not

performed, the branching ratio calculated from dynamics simulations (trans : DHP = 35 : 13)

qualitatively reproduces the experimental quantum yield very well. This result indicates that

dynamic effects play a significant role in the photoreaction branching mechanism of cis-stilbene.

The hopping time from the ππ* state to the ground state in dynamics simulations is in good

 183

agreement with the decay time of the femotosecond time-resolved fluorescence spectra (~1.2

ps).35

 The branching mechanism for ππ*-excited cis-stilbene is analyzed in a two-dimensional

coordinate space of rC13C14 (related to cis-DHP cyclization) and dC4C2C1C3 (related to cis-trans

isomerization). Three relevant MECIs have been located between the ground and ππ* states of

cis-stilbene including a new MECI (S1/S0)twist-II. Directly following photoexcitation, trajectories

starting from the FC region of cis-stilbene go downhill in the direction of (S1)cis-min, and then

bifurcate toward DHP or twisted geometries. It is shown that 64% of the trajectories reach the

S1/S0-crossing region near (S1/S0)DHP, (S1/S0)twist-I or (S1/S0)twist-II within t = 1.5 ps, while the

remaining trajectories linger on the S1-PES. The exploration of the S1-PES clarifies that there is a

very-low barrier from (S1)cis-min to (S1)twist-min (~ 0.1 eV), and the PES is very flat around the

(S1)cis-min region where the branching should occur. The downhill direction at (S1)FC corresponds

to a rotational motion about the central C=C bond, and the barrier height for the path from (S1)cis-

min to (S1)twist-min is very low compared with the kinetic energy of the torsional motion. As a

consequence, the cis-trans photoisomerization is preferred to cis-DHP photocyclization in the

ππ* state of cis-stilbene, and dynamic effects decide the branching rate.

 Finally, it should be mentioned that an additional improvement in the state tracking

method is required in order to apply SF-TDDFT dynamics simulations to general photoreactions.

However, SF-TDDFT is clearly a feasible method for performing excited-state dynamics

simulations with a qualitative accuracy and low-cost, and applications of the method to large

chemical systems would be of interest.

 184

Acknowledgements

 Y. H. acknowledges support from the Japan Society for the Promotion of Science for

Research Fellowships for Young Scientists. K. K. and M.S.G. have been supported by a U.S.

National Science Foundation Software Infrastructure (SI2) grant, ACI - 1047772. We are

sincerely grateful to Prof. Tahei Tahara (RIKEN) and Dr. Satoshi Takeuchi (RIKEN) for

valuable discussions and for providing valuable comments on our manuscript.

References

1. Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem. Int. Ed. 2007, 46, 72.

2. Tegeder, P. J. Phys. Condens. Matter 2012, 24, 394001/1.

3. Szymański, W.; Beierle, J. M.; Kistemaker, H. A. V.; Velema, W. A.; Feringa, B. L.

Chem. Rev. 2013, 113, 6114.

4. Moore, W. M.; Morgan, D. D.; Stermitz, F. R. J. Am. Chem. Soc. 1963, 85, 829.

5. Muszkat, K. A.; Fischer, E. J. Chem. Soc. B 1967, 662.

6. Saltiel, J. J. Am. Chem. Soc. 1968, 90, 6394.

7. Wismonskiknittel, T.; Fischer, G.; Fischer, E. J. Chem. Soc., Perkin Trans. 1974, 1930.

8. Greene, B. I.; Farrow, R. C. J. Chem. Phys. 1983, 78, 3336.

9. Myers, A. B.; Mathies, R. A. J. Chem. Phys. 1984, 81, 1552.

10. Doany, F. E.; Hochstrasser, R. M.; Greene, B. I.; Millard, R. R. Chem. Phys. Lett. 1985,

118, 1.

11. Petek, H.; Fujiwara, Y.; Kim, D.; Yoshihara, K. J. Am. Chem. Soc. 1988, 110, 6269.

 185

12. Abrash, S.; Repinec, S.; Hochstrasser, R. M. J. Chem. Phys. 1990, 93, 1041.

13. Petek, H.; Yoshihara, K.; Fujiwara, Y.; Zhe, L.; Penn, J. H.; Frederick, J. H. J. Phys.

Chem. 1990, 94, 7539.

14. Todd, D. C.; Jean, J. M.; Rosenthal, S. J.; Ruggiero, A. J.; Yang, D.; Fleming, G. R. J.

Chem. Phys. 1990, 93, 8658.

15. Repinec, S. T.; Sension, R. J.; Szarka, A. Z.; Hochstrasser, R. M. J. Phys. Chem. 1991,

95, 10380.

16. Rodier, J. M.; Ci, X. P.; Myers, A. B. Chem. Phys. Lett. 1991, 183, 55.

17. Waldeck, D. H. Chem. Rev. 1991, 91, 415.

18. Nikowa, L.; Schwarzer, D.; Troe, J.; Schroeder, J. J. Chem. Phys. 1992, 97, 4827.

19. Pedersen, S.; Banares, L.; Zewail, A. H. J. Chem. Phys. 1992, 97, 8801.

20. Rice, J. K.; Baronavski, A. P. J. Phys. Chem. 1992, 96, 3359.

21. Sension, R. J.; Szarka, A. Z.; Hochstrasser, R. M. J. Chem. Phys. 1992, 97, 5239.

22. Todd, D. C.; Fleming, G. R.; Jean, J. M. J. Chem. Phys. 1992, 97, 8915.

23. Rodier, J. M.; Myers, A. B. J. Am. Chem. Soc. 1993, 115, 10791.

24. Sension, R. J.; Repinec, S. T.; Szarka, A. Z.; Hochstrasser, R. M. J. Chem. Phys. 1993,

98, 6291.

25. Todd, D. C.; Fleming, G. R. J. Chem. Phys. 1993, 98, 269.

26. Baumert, T.; Frohnmeyer, T.; Kiefer, B.; Niklaus, P.; Strehle, M.; Gerber, G.; Zewail, A.

H. Appl. Phys. B 2001, 72, 105.

27. Fuss, W.; Kosmidis, C.; Schmid, W. E.; Trushin, S. A. Angew. Chem. Int. Edit. 2004, 43,

4178.

28. Fuss, W.; Kosmidis, C.; Schmid, W. E.; Trushin, S. A. Chem. Phys. Lett. 2004, 385, 423.

 186

29. Ishii, K.; Takeuchi, S.; Tahara, T. A Chem. Phys. Lett. 2004, 398, 400.

30. Nakamura, T.; Takeuchi, S.; Suzuki, N.; Tahara, T. Chem. Phys. Lett. 2008, 465, 212.

31. Takeuchi, S.; Ruhman, S.; Tsuneda, T.; Chiba, M.; Taketsugu, T.; Tahara, T. Science

2008, 322, 1073.

32. Kovalenko, S. A.; Dobryakov, A. L.; Ioffe, I.; Ernsting, N. P. Chem. Phys. Lett. 2010,

493, 255.

33. Sajadi, M.; Dobryakov, A. L.; Garbin, E.; Ernsting, N. P.; Kovalenko, S. A. Chem. Phys.

Lett. 2010, 489, 44.

34. Weigel, A.; Ernsting, N. P. J. Phys. Chem. B 2010, 114, 7879.

35. Nakamura, T.; Takeuchi, S.; Taketsugu, T.; Tahara, T. Phys. Chem. Chem. Phys. 2012,

14, 6225.

36. Dobryakov, A. L.; Ioffe, I.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. J. Chem.

Phys. 2012, 137, 244505/1.

37. Improta, R.; Santoro, F. J. Phys. Chem. A 2005, 109, 10058-10067.

38. Bearpark, M. J.; Bernardi, F.; Clifford, S.; Olivucci, M.; Robb, M. A.; Vreven, T. J. Phys.

Chem. A 1997, 101, 3841.

39. Berweger, C. D.; van Gunsteren, W. F.; Muller-Plathe, F. J. Chem. Phys. 1998, 108,

8773.

40. Amatatsu, Y. Chem. Phys. Lett. 1999, 314, 364.

41. Amatatsu, Y. J. Mol. Struct. THEOCHEM 1999, 311.

42. Molina, V.; Merchan, M.; Roos, B. O. Spectrochimica Acta. Part A 1999, 55, 433.

43. Dou, Y. S.; Allen, R. E. Chem. Phys. Lett. 2003, 378, 323.

44. Dou, Y. S.; Allen, R. E. J. Chem. Phys. 2003, 119, 10658.

 187

45. Quenneville, J.; Martinez, T. J. J. Phys. Chem. A 2003, 107, 829.

46. Dou, Y. S.; Allen, R. E. J. Mod. Opt. 2004, 51, 2485.

47. Minezawa, N.; Gordon, M. S. J. Phys. Chem. A 2011, 115, 7901.

48. Liu, F.; Morokuma, K. J. Am. Chem. Soc. 2012, 134, 4864.

49. Tomasello, G.; Garavelli, M.; Orlandi, G. Phys. Chem. Chem. Phys. 2013, 15, 19763.

50. Ioffe, I. N.; Granovsky, A. A. J. Chem. Theory Comput. 2013, 9, 4973.

51. Ishibashi, Y.; Fujiwara, M.; Umesato, T.; Saito, H.; Kobatake, S.; Irie, M.; Miyasaka, H.

J. Phys. Chem. C 2011, 115, 4265.

52. Irie, M. Chem. Rev. 2000, 100, 1685.

53. Mahboobi, S.; Dechant, I.; Reindl, H.; Pongratz, H.; Popp, A.; Schollmeyer, D. J.

Heterocyclic Chem. 2000, 37, 307-329.

54. Gordon, M. S.; Chaban, G.; Taketsugu, T. J. Phys. Chem. 1996, 100, 11512.

55. Sun, L. P.; Song, K. Y.; Hase, W. L. Science 2002, 296, 875.

56. Ootani, Y.; Satoh, K.; Nakayama, A.; Noro, T.; Taketsugu, T. J. Chem. Phys. 2009, 131,

194306/1.

57. Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Soc. Rev. 1996, 25, 321.

58. Yarkony, D. R. Accounts Chem. Res. 1998, 31, 511.

59. Schroder, D.; Shaik, S.; Schwarz, H. Accounts Chem. Res. 2000, 33, 139.

60. Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C. Phys. Chem. Chem.

Phys. 2002, 4, 1093.

61. Poli, R.; Harvey, J. N. Chem. Soc. Rev. 2003, 32, 1.

62. Levine, B. G.; Martinez, T. J. Annu. Rev. Phys. Chem. 2007, 58, 613.

63. Nanbu, S.; Ishida, T.; Nakamura, H. Chem. Sci. 2010, 1, 663.

 188

64. Mori, T.; Kato, S. Chem. Phys. Lett. 2009, 476, 97.

65. Nakano, H. J. Chem. Phys. 1993, 99, 7983.

66. Nakano, H. Chem. Phys. Lett. 1993, 207, 372.

67. Nakano, H.; Hirao, K.; Gordon, M. S. J. Chem. Phys. 1998, 108, 5660.

68. Lischka, H.; Dallos, M.; Szalay, P. G.; Yarkony, D. R.; Shepard, R. J. Chem. Phys. 2004,

120, 7322.

69. Dallos, M.; Lischka, H.; Shepard, R.; Yarkony, D. R.; Szalay, P. G. J. Chem. Phys. 2004,

120, 7330.

70. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997.

71. Casida, M. E. In recent advances in density functional methods; World Scientific:

Singapore, 1995.

72. Burke, K.; Werschnik, J.; Gross, E. K. U. J. Chem. Phys. 2005, 123, 062206/1.

73. Levine, B. G.; Ko, C.; Quenneville, J.; Martinez, T. J. Mol. Phys. 2006, 104, 1039.

74. Shao, Y. H.; Head-Gordon, M.; Krylov, A. I. J. Chem. Phys. 2003, 118, 4807.

75. Wang, F.; Ziegler, T. J. Chem. Phys. 2004, 121, 12191.

76. Minezawa, N.; Gordon, M. S. J. Phys. Chem. A 2009, 113, 12749.

77. Huix-Rotllant, M.; Natarajan, B.; Ipatov, A.; Wawire, C. M.; Deutsch, T.; Casida, M. E.

Phys. Chem. Chem. Phys. 2010, 12, 12811.

78. Rinkevicius, Z.; Vahtras, O.; Agren, H. J. Chem. Phys. 2010, 133, 114104/1.

79. Bernard, Y. A.; Shao, Y.; Krylov, A. I. J. Chem. Phys. 2012, 136, 204103/1.

80. Li, Z.; Liu, W. J. Chem. Phys. 2012, 136, 024107/1.

81. Harabuchi, Y.; Maeda, S.; Taketsugu, T.; Minezawa, N.; Morokuma, K. J. Chem. Theory

Comput. 2013, 9, 4116.

 189

82. Isegawa, M.; Truhlar, D. G. J. Chem. Phys. 2013, 138, 134111/1.

83. Zhang, X.; Herbert, J. M. J. Chem. Phys. 2014, 141, 064104/1.

84. Gozem, S.; Melaccio, F.; Valentini, A.; Filatov, M.; Huix-Rotllant, M.; Ferré, N.; Frutos,

L. M.; Angeli, C.; Krylov, A. I.; Granovsky, A. A.et al. J. Chem. Theory Comput. 2014,

10, 3074.

85. Krylov, A. I. Chem. Phys. Lett. 2001, 350, 522.

86. Krylov, A. I. Chem. Phys. Lett. 2001, 338, 375.

87. Krylov, A. I.; Sherrill, C. D. J. Chem. Phys. 2002, 116, 3194.

88. Sears, J. S.; Sherrill, C. D.; Krylov, A. I. J. Chem. Phys. 2003, 118, 9084.

89. Yamaguchi, K.; Tsunekawa, T.; Toyoda, Y.; Fueno, T. Chem. Phys. Lett. 1988, 143, 371.

90. Shoji, M.; Koizumi, K.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Okumura, M.;

Yamaguchi, K. Chem. Phys. Lett. 2006, 432, 343.

91. Wittbrodt, J. M.; Schlegel, H. B. J. Chem. Phys. 1996, 105, 6574.

92. Chen, W.; Schlegel, H. B. J. Chem. Phys. 1994, 101, 5957.

93. Casanova, D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2009, 11, 9779.

94. Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 97, 2635.

95. Gordon, M. S.; Schmidt, M. W. In theory and applications of computational chemistry:

The first forty years; Elsevier: Amsterdam, The Netherlands, 2005.

96. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J.

H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.;

Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.

97. Molpro, version 2012.1, a package of ab initio programs. http://www.molpro.net

(accessed July, 2013)

 190

98. Leang, S. S.; Zahariev, F.; Gordon, M. S. J. Chem. Phys. 2012, 136, 104101/1.

99. Traetteberg, M.; Frantsen, E. B. J. Mol. Struct. 1975, 26, 69.

100. Miller, W.H.; Handy, N.C.; Adams, J.E. J. Chem. Phys. 1980, 72, 99.

 191

Figure 1. Schematic of the photoisomerization and photocyclization branching of cis-stilbene

after ππ* excitation. The quantum yields reported in the experimental study13 are shown as

percentages.

 192

Figure 2. The complete set of configurations considered in SF-TDDFT. (a) depicts the

configuration of the reference triplet state. In (b)-(e), all possible Slater determinants obtained by

the one-electron spin-flip excitation of the reference triplet state are depicted without blue

slashes, and the missing configurations are depicted with blue slashes: (b) denotes the singlet

ground state, (c) denotes the [SOMO1(s) → SOMO2(s)] doubly-excited state, (d) denotes the

open shell singlet and triplet states of [SOMO1 → SOMO2] and (e) denotes the excited states

involving excitations corresponding to the occupied orbitals (o) and the virtual orbitals (v).

 193

Figure 3. Schematic pictures of a state tracking method. In both pictures, the target states of the

dynamics simulation are indicated by black circles, while the undesired states, i.e. a triplet state

or a mixed state, are indicated by black triangles. (a) illustrates the concept of the state tracking

method. The target state is selected from all of the states, as the character of the target state is

continuous between the previous step and the present step. (b) depicts a crossing region of the

PES along a SF-TDDFT trajectory. The region in which the characters of the two states mix is

indicated by dashed lines, and the states in the crossing region in which the target state and an

undesired state mix are indicated by white squares. The state tracking method does not update

the reference eigenvectors in the mixing region. The state tracking method compares the

eigenvector of the last step before the crossing region (indicated by k) to the eigenvector in the

mixing region, and updates the information after passing through the mixing region (indicated by

l).

 194

Table 1. Vertical excitation energies of cis-stilbene from the ground state.

Level ΔE [eV]

Experiment 4.6a

CASSCF(2,2)/6-31G(d,p) 6.07b

CASPT2(2,2)/cc-pVDZ 4.23c

XMCQDPT2(14,14)/cc-pVDZ 4.43d

TDDFT(PBE0)/6-311+G(2d,2p) 4.09e

SF-TDDFT(BHHLYP)/DH(d,p) 4.78f

SF-TDDFT(B3LYP)/6-31G(d) 3.86c

SF-TDDFT(BHHLYP)/6-31G(d) 4.96c

SF-TDDFT(PBE0)/6-31G(d) 4.02c

SF-TDDFT(BLYP)/6-31G(d) 6.64c

SF-TDDFT(BOP)/6-31G(d) 6.66c

SF-TDDFT(PBE)/6-31G(d) 6.66c

aReference 35. bReference 45. cComputed values in the present study. All vertical excitation energies were calculated at the

MP2/cc-pVTZ geometry. dReference 50. eReference 37. fReference 47.

 195

Table 2. SF-TDDFT(BHHLYP)/6-31G(d) relative energies (eV) of the ground state and the first

excited ππ* states of stilbene. All trans isomers are optimized in the ground state with the

indicated basis set; the reference energies are the energies of the ground state equilibrium

structure of trans-stilbene, (S0)trans-min, for each basis set. The other single point energies were

calculated at the geometries reported by Minezawa et al.47 The names of the structures are

defined in Ref. 47. Since there is another, twisted-pyramidalized, conical intersection as (Figure

5(a)), the reported structure of (S1/S0)pyr is denoted (S1/S0)twist-I to distinguish the two MECIs.

(S1)cis-min is not a true minimum due to the constrained optimization.44

 State 6-31G 6-31G(d) 6-31+G(d) cc-pVDZ cc-pVTZ DH(d,p)

(S0)trans-min S0 0.00 0.00 0.00 0.00 0.00 0.00

 S1 4.70 4.62 4.48 4.53 4.48 4.45

(S0)cis-min S0 0.20 0.19 0.16 0.21 0.24 0.21

 S1 5.22 5.11 4.92 5.04 4.99 4.99

(S0)DHP-min S0 2.05 1.84 1.80 1.84 1.93 1.75

 S1 5.17 4.93 4.79 4.88 4.93 4.75

(S1)twist-min S0 3.18 3.11 3.06 3.09 3.15 3.07

 S1 4.27 4.12 4.00 4.05 4.10 4.05

(S1)cis-min S0 1.05 1.05 1.02 1.06 1.12 1.04

 S1 4.28 4.19 4.05 4.13 4.13 4.08

(S1)DHP-min S0 2.69 2.64 2.61 2.66 2.74 2.60

 S1 3.92 3.79 3.73 3.78 3.84 3.72

(S1/S0)twist-I S0 4.34 4.19 4.13 4.17 4.24 4.16

 S1 4.52 4.23 4.15 4.18 4.26 4.18

(S1/S0)DHP S0 4.04 3.93 3.89 3.93 4.01 3.87

 S1 4.13 3.96 3.91 3.95 4.02 3.89

 196

Figure 4. Definitions of the numbering of the atoms and definitions of the internal coordinates.

Five structural parameters were defined to discuss the mechanism of cis-stilbene, i.e. rC1C2, rC1C3,

lC13C14, aC1C2C4 and dC3C1C2C4. rC1C2, rC1C3 and rC13C14 indicate the distances between two atoms,

aC1C2C4 indicates the angle connecting three atoms, C1C2C4, and dC3C1C2C4 indicates the dihedral

angle of two planes, C3C1C2 and C1C2C4.

 197

Table 3. Optimized structural parameters in the ground state of cis-stilbene. The three distances,

rC1C2, rC1C3 and rC13C14, are shown in Å, and the angle and dihedral angle, aC1C2C4 and dC3C1C2C4,

are shown in degrees. The numbering of the atoms is defined in Figure 4. The experimental

values measured by X-ray structure analysis99 are also shown.

Method rC1C2 rC1C3 rC13C14 aC1C2C4 dC3C1C2C4

aX-ray 1.334 1.489 --- 129.5 ---

bMP2/cc-pVTZ 1.348 1.469 3.127 127.0 5.9

bSF-TDDFT(BHHLYP)/6-31G* 1.336 1.472 3.236 129.5 6.3

bDFT(BHHLYP)/6-31G* 1.335 1.473 3.249 129.6 6.4

aReference 99. bThe present study.

 198

Figure 5. The geometries of two SF-TDDFT S1/S0-MECIs. (a) (S1/S0)twist-I was optimized with

BHHLYP(SF-TDDFT)/DH(d,p).47 (b) (S1/S0)twist-II was optimized with BHHLYP(SF-TDDFT)/6-

31G(d). (S1/S0)twist-II corresponds to the MECI reported by Quenneville.45 The angle and the

dihedral angle corresponding to the twisted-pyramidalized structures, i.e. aC4C2C1 and dC3C1C2C4

defined in Figure 4 are also shown.

 199

Figure 6. SF-TDDFT(BHHLYP)/6-31G(d) steepest descent path and the IRC path in the ππ*

state of stilbene. The reference for the relative energies is the energy of the ground state

 200

equilibrium structure of cis-stilbene, (S0)cis-min. (a) describes the structural parameters in the two-

dimensional plot along the steepest descent paths from the Franck-Condon (FC) region of cis-

stilbene (denoted (S0)FC), and the IRC path via the TS between (S1)DHP-min and (S1)twist-min

(denoted (S1)TS). The structural parameters of the minima in the ground state, the minima in the

ππ* state, and the S1/S0-MECIs are shown. The x and y axes correspond to rC13C14 and dC4C2C1C3,

respectively, defined in Figure 4. The red solid line corresponds to the SF-TDDFT(BHHLYP)/6-

31G(d) steepest descent path, and the blue dot line indicates the SF-TDDFT(BHHLYP)/6-

31G(d) IRC path via (S1)TS. The black circles indicate the minima in the ground state, the red

circles indicate minima in the ππ* state, the red triangle indicates (S1)TS, and the red crosses

indicate the S1/S0-MECIs. The geometry of (S1/S0)twist-II was optimized with SF-

TDDFT(BHHLYP)/6-31G(d) in the present study, and the other MECI and S1-minimum

geometries are calculated with BHHLYP(SF-TDDFT)/DH(d,p).47 Note that the (S1)cis-min is not a

true minimum due to the constrained optimization.47 The relative energies of the indicated

geometries are shown in eV. (b) and (c) show the values of the energies along the steepest

descent path from (S1)FC and the IRC path via (S1)TS, respectively. The black solid line indicates

the energy of the ground state, and the red solid line indicates the energy of the ππ* state.

 201

Figure 7. Variations of geometric parameters along three typical types of trajectories [(a), (b), (c)] and a

rare trajectory (d), with SF-TDDFT(BHHLYP)/6-31G(d). x and y axes correspond to rC13C14 and dC4C2C1C3,

respectively, defined in Figure 4. (a)-(c) indicate the trajectories that reach S1/S0-crossing regions

corresponding to (S1/S0)twist-I, (S1/S0)twist-II, and (S1/S0)DHP, respectively. (d) represents a trajectory that first

goes to the twist-side and then crosses over to the DHP-side (this trajectory did not reach the S1/S0-

crossing until 1.5 ps). Black solid lines indicate the geometric parameters along the trajectories, and blue

squares indicate the S1/S0-crossing points at which the trajectories were terminated as discussed

previously. Black circles indicate minima in the ground state, and red circles indicate minima in the ππ*

state; the red triangle indicates (S1)TS, and red crosses indicate the S1/S0-MECIs denoted in Figure 6(a).

 202

Figure 8. Calculated population decay of the ππ* state for 50 trajectories (black), with the 35

trajectories of the twist-side in blue and the 13 trajectories of the DHP-side in red. All trajectories

started in the ππ* state at t = 0, and the population is 1.0 at t = 0.

 203

CHAPTER 8: GENERAL CONCLUSIONS

 As we move closer to the exascale era of high performance computing, computer

hardware is changing faster than ever before. Computational chemists are working diligently to

adapt current methods to next-generation hardware, encouraged by the completely new areas of

scientific innovation made possible at exascale. In light of the rapidly evolving computational

sciences landscape, the work presented in this dissertation was motivated by three primary

topics. First, the viability of novel low-power ARM CPUs for energy-efficient computational

chemistry was thoroughly evaluated to reflect the energy consumption challenges associated

with exascale computing. Second, the adoption of fundamental quantum chemistry methods to

next-generation hardware was discussed from the approaches of both algorithm redesign, and

utilization of standalone community software libraries. Third, the current capabilities of

computational chemistry were leveraged to investigate applications of heterogeneous catalysis in

biodiesel production, and to model photochemical and photoisomerization pathways of cis-

stilbene.

 In Chapter 2, the performance and energy-efficiencies of low-power 32-bit and 64-bit

ARM CPUs were compared against commodity workstation-class Intel x86 processors for

quantum chemistry workloads. All comparisons were between single-socket CPUs. The Intel

processor is the clear choice for minimizing time to solution. Depending on the quantum

chemistry method analyzed, between 2 and 4 32-bit or 64-bit ARM cores are required to process

a workload as quickly as a single Intel core. In terms of energy to solution, 32-bit ARM is

consistently the most efficient processor and 64-bit ARM is consistently the least efficient. The

 204

transition from 32-bit to 64-bit ARM requires additional energy usage, with no observable

increase in computational throughput. Furthermore, the idle power consumption of the 18-core

Intel CPU is lower than the idle power consumption of the 8-core 64-bit ARM CPU due to low-

power CPU states unique to the Intel microarchitecture. While the energy efficiency of 32-bit

ARM is promising, it appears that the workstation-class 64-bit ARM CPUs require further

development to compete with commodity processors in high performance computing.

 In Chapter 3, the performance and energy-efficiency analysis of 64-bit ARM and Intel

x86 CPUs was extended to include parallel quantum chemistry methods which utilize connected

computer clusters. For a combined metric of time and energy to solution, increasing the number

of 64-bit ARM cores used for a computation almost always improves the overall efficiency for

the methods analyzed. The only exceptions are jobs which were intentionally configured to

heavily utilize hard disk drives for storage of integral data. In general, twice as many 64-bit

ARM cores are required to match the time to solution for a given number of Intel x86 cores.

Additionally, an in-depth analysis of 64-bit ARM architectural bottlenecks was performed using

an extended benchmark set with applications outside of quantum chemistry. It was found that

fewer floating point operations are executed per instruction on the 64-bit ARM compared to Intel

x86. Furthermore, the 64-bit ARM exhibited inferior memory subsystem performance in terms of

main memory and L1 cache read bandwidth.

 Implementation details for a new hybrid MPI/OpenMP GAMESS Hartree-Fock

algorithm targeting the Intel Xeon Phi Knight’s Landing (KNL) processor were presented in

Chapter 4. The KNL processor exemplifies the current trend in supercomputing to increase CPU

 205

core counts while reducing the amount of memory per core. By sharing Fock and density matrix

data structures which were replicated among computation units in the legacy implementation, the

overall memory requirement of the code is reduced by as much as ~200x. The substantial

reduction in memory footprint enables utilization of all KNL hardware threads simultaneously,

which was demonstrated to reduce the time to solution by 2-3x on average compared to the

legacy implementation. Excellent strong scaling was demonstrated while utilizing as many as

3,000 KNL nodes (192,000 cores). This work represents the “algorithm redesign” approach to

porting legacy codes to new hardware architectures.

 In Chapter 5, challenges in quantum chemistry software interoperability were discussed.

Interoperability is useful for sharing software components among different quantum chemistry

packages, which can potentially enable new scientific workflows and/or improve computational

efficiency. A software interface was constructed to streamline integration of external two-

electron integral computation packages with GAMESS. The ERD solver was interfaced with

GAMESS, and improved integral computation times by as much as 28% for a large generally

contracted basis set, and 7-15% for more commonly used basis sets. Unfortunately, differences

in the integral data formats required by the respective codes requires an additional integral

reordering operation which essentially negates any performance benefits. A second integral

solver called SIMINT was also integrated with GAMESS. Instead of applying substantial

modifications to the GAMESS Hartree-Fock driver to enable integration with SIMINT, a new

Hartree-Fock driver was written from scratch (SIMGMS). Compared to the original GAMESS

code, serial execution of SIMGMS Fock matrix construction was demonstrated to be faster by

20-26%%. Converged Fock and density matrices computed with SIMGMS can be reordered and

 206

passed to GAMESS for post-Hartree-Fock computations if desired. While the SIMGMS code

offers GAMESS the additional flexibility of the SIMINT package, a more minimal interface

must be implemented to take advantage of GAMESS features such as the extended Hückel

orbital guess, and effective fragment potential electrostatic and polarization terms.

 In Chapter 6, the esterification of acetic acid and methanol by heterogeneous catalysis

was investigated. Mesoporous silica nanoparticles (MSN) functionalized with propylsulfonic

acid were represented with both a minimal all-quantum surface model, and an embedded

QM/MM surface model of an extended MSN pore. The adsorption of acetic and methanol was

modeled on both isolated single-site catalysts, and pairs of adjacent catalyst sites. It was

determined that the minimal models are sufficient for computing optimized structures and

adsorption energies at the DFT and MP2 levels of theory for single-catalyst structures. For dual-

catalyst structures, the computed adsorption energies and adsorbate orientations largely depend

on the relative orientations of the adjacent catalyst sites. Therefore, any proposed reaction

mechanisms that require adjacent catalyst sites should be evaluated for a range of relative

catalyst orientations. Two single-catalyst stepwise esterification reaction mechanisms were

proposed. The mechanisms differ primarily by the mechanism of acetic acid protonation, either

directly by methanol, or by the acid catalyst. Both proposed mechanisms are reversible, with

similar reaction barrier heights.

 In Chapter 7, on-the-fly ab initio molecular dynamics simulations with spin-flip time-

dependent density functional theory was used to study the photocyclization and

photoisomerization mechanisms of cis-stilbene following excitation to the ππ* state. A state

 207

tracking method was developed to distinguish the target electronic states of interest from nearly

degenerate states during subsequent dynamics time steps. The dynamics simulations were used

to compute a trans: dihydrophenanthrene branching ratio of 35:13, which qualitatively

reproduces the experimentally measured ratio of 35:10. The favorable ratio of trans-stilbene

compared to the photocyclization product was attributed to a lower energy barrier corresponding

to rotational motion about the central C=C bond from the ππ* cis-stilbene minimum energy

structure compared to the kinetic energy of the torsional motion.

 Moving forward from the progress presented in this dissertation, future work will be

focused on efficiently mapping data management in quantum chemistry software to emerging

hardware designs. While there is no consensus as to which hardware architecture will be used to

construct the first exascale system, trends such as increasing complex memory hierarchies and

manycore massive parallelism are sure to continue. Considering the fascinating science that is

already produced within today’s computational limitations, the future of computational

chemistry is very promising.

