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ABSTRACT 

Rapid characterization of physiological traits driving yield are becoming desirable 

aides to breeding programs to increase the rate of genetic gain. Each chapter in this 

dissertation investigates areas related to high-throughput phenotyping and physiological traits 

driving soybean yield. Chapter 2 seeks to understand the response of diverse soybean 

germplasm to seeding rate. An evaluation of final plot seed yield, seed protein percentage, 

seed oil percentage, seed weight, height, maturity, and plant lodging revealed a significant 

genotype x seeding rate interaction only for lodging, suggesting current soybean germplasm 

and soybean of wide genetic ancestry respond similarly to seeding rate. Our second objective 

was to identify physiological traits at multiple growth stages predicting yield response under 

contrasting levels of seeding rate. Adaptive elastic net models characterized diverging traits 

between seeding rates and determined chlorophyll traits as the leading predictors across 

seeding rates.  Chapter 3 quantifies biomass partitioning strategies and residue quality 

determined through carbon:nitrogen (C:N) ratios in the same diverse panel of SoyNAM 

genotypes in Chapter 2. Above-ground plant components were dissected at three 

reproductive stages and revealed significant differences in biomass partitioning by R4. 

Significant genetic variation in C:N residue quality was found with no apparent negative 

relationship to final grain yield. Optimal biomass partitioning strategies for yield and 

improved residue C:N ratios for whole-system nitrogen sustainability can be targeted for 

yield improvement. Lastly, Chapter 4 includes a QTL mapping study of vegetative indices 

used for yield prediction in Chapter 1 in four SoyNAM RIL populations derived from five of 

the 32 parent NAM genotypes evaluated in Chapters 1 and 2. Five QTL were detected for 

grain yield and vegetative indices NDVI, NMDI, NWIB, PSRI, and VREI2 measured at R5, 
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spanning chromosomes 1, 3, 10 and 18. These QTL can serve as aides to MAS in soybean 

breeding and inform future studies aimed at dissecting the physiology of soybean grain yield. 

The overall research provides insights on soybean biomass partitioning and evidence of the 

presence of genetic variation in residue traits; physiological traits to predict yield in diverse 

germplasm and row-density management systems; and genomic regions mapped to spectral 

wavelengths related to soybean seed yield. 
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CHAPTER 1.    GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation is organized into five chapters. Chapter one provides a brief 

literature review focused on the three individual experiments related to high-throughput 

phenotyping and physiological traits related to soybean yield. Chapters two, three and four 

describe original research and are written in manuscript format for submission to scientific 

journals. Chapter two explores agronomic trait responses to seeding rate in diverse soybean 

and identifies the underlying physiological traits driving yield under different seeding rates. 

Chapter three investigates above-ground biomass partitioning strategies for yield and residue 

quality determined through carbon:nitrogen (C:N) ratios for a whole-systems nitrogen 

sustainability approach. Chapter four includes a QTL linkage study of vegetative indices 

related to soybean yield calculated from remote sensing in a four RIL soybean nested 

association mapping population. Lastly, chapter five is a summary of general conclusions. 

The knowledge generated from characterization of diverse soybean germplasm in row 

spacing treatments enables soybean breeders to utilize the opportunities for more informed 

selection with the use of physiological drivers as additional predictor traits in early 

generation of population development and selection; residue traits as additional economic 

opportunity and selection target and spectral indices QTL for marker assisted selection.  

Brief Literature Review for each chapter 

Physiological drivers of soybean traits 

Soybean [Glycine max L. (Merr.)] is globally one of the most widely grown crops, 

with the United States as the world's leading soybean producer and the second-leading 

exporter (USDA-NASS, 2016). Expanding soybean production will continue interest in 
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management decisions such as seeding rate for optimal economic return (Fawcett et al., 

2017). In response, plant breeders are challenged to create soybean cultivars adapted to new 

environments (Chang et al., 2015; Zanon et al., 2016) and management practices (Wilson et 

al., 2014; Grassini et al., 2015). Genetic gain and adaption is driven by genetic diversity, but 

incorporating diverse germplasm into elite breeding programs presents challenges (Duvick, 

1984). How germplasm will respond to various modern management practices such as 

seeding rate will need to be addressed to facilitate future use in breeding programs. 

One stress plants must overcome in any production environment is interplant 

competition for needed resources like water, light, nutrients, and use of environmental 

resources (Weiner and Thomas, 1986). Agronomic practices, such as seeding rate, determine 

plant spatial arrangement and inter-plant stress, and soybeans respond to these conditions 

with phenotypic plasticity. The observed phenomenon of phenotypic plasticity is the ability 

of one genotype to produce more than one phenotype when exposed to different 

environments. Several studies have confirmed phenotypic plasticity in soybean, both at 

vegetative and reproductive stages (Egli, 1993; Carpenter and Board, 1997; Green-Tracewicz 

et al., 2011), and specifically to seeding rate (Elmore, 1998; Board, 2000; Vega, 2000). 

Soybean’s recorded phenotypic plasticity to altered environments has traditionally made it 

difficult to determine optimal seeding rates, as soybeans can produce relatively similar yields 

from large changes in seeding rate (Carpenter and Board, 1997; Board, 2000; Edwards et al., 

2005). To achieve a clear understanding of soybean’s yield response to seeding rate requires 

identifying the underlying causing physiological traits. 

However, several physiological traits respond to various levels of seeding rate. Under 

increased seeding rates, De Bruin and Pedersen (2009) found soybean yield has not 
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responded to increased plant density over time, but attributed genetic gain in newer cultivars 

to greater light use efficiency. Lee et al. (2008) found achieving complete plant canopy 

cover, and therefore maximizing light interception, at R1 produced maximum yield in 

standard agronomic practices of optimal planting density in their experiment. At lower plant 

populations, plant architecture is an important yield component and genetically determined. 

Plant branching capacity under stress was an important yield determinant (Frederick et al., 

2001; Ferreira et al., 2016), and branching under low seeding rates was related to increased 

yield (Suhre et al., 2014; Agudamu et al., 2016). Studies in general have addressed seeding 

rate response to elite lines and their recent modern-adapted predecessors, leaving a gap in 

knowledge for seeding rate response in diverse or un-adapted germplasm. 

Numerous physiological traits in conjunction forecast soybean yield, and high-

throughput phenotyping platforms have enabled data collection on a greater spatial and 

temporal scale (Araus and Cairns, 2014).  Remote sensing is a promising tool that rapidly 

and non-destructively collects phenotypes correlated to yield, and vegetative indices related 

to chlorophyll content, carotenoids, vegetation, water content, and dry matter content are 

used in soybean to predict yield (Ma et al., 2001; Bolton and Friedl, 2013; Johnson, 2014) 

and measure plant response to stress (Carter, 1994; Nutter Jr et al., 2002; Huang et al., 2016). 

In addition to vegetative indices, physiological traits leaf area index (LAI), mean tilt angle 

(MTA), intercepted photosynthetically active radiation (iPAR), and estimated chlorophyll 

content with a SPAD meter have been shown to correlate with soybean yield (Ma et al., 

1995; Board and Harville, 1996) and can be collected in a rapid manner that complements 

remote-sensing. Despite methods of more attainable multi-trait collection, it is unknown how 
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the contribution of these traits together, over experiments and plant development stages, 

would explain yield response under multiple seeding rates.  

Biomass partitioning and residue quality 

Decisions regarding crop choice revolve around profitability for the farmer, which is 

influenced not singularly by a single season’s crop output, but by impact on the yield of the 

succeeding crop seasons as well. It is important to include whole systems approach in 

research studies, but as a first step, individual components including genotype responses and 

traits need to be measured particularly for seed yield and other economic parts. Soybean 

output has improved with greater soybean seed yields, and seed yield and its yield potential is 

described by its harvest index, the ratio of seed yield to total biomass. The maximum harvest 

index from small grains is estimated to be 0.6, and it was found that modern US Midwestern 

soybean cultivars partitioned 60% of its biomass into seed, indicating that breeding has 

already succeeded in maximizing harvest index in soybean (Zhu et al., 2010). Pedersen and 

Lauer, (2004) found the harvest index for soybean ranged at 56.2 – 58.0% for elite soybean 

cultivars in the Midwest, additionally implicating harvest index has been maximized.  

Increased harvest index in soybean has resulted from increased seed yield with little increase 

in total aboveground biomass (Morrison et al., 2000; Jin et al., 2010), but the relationship 

between the composition of the total aboveground biomass to grain yield is unknown. 

Srinivasan et al. (2016) showed evidence that modern crop genotypes produce more leaf than 

is optimal, and removing leaves resulted in an 8% increase in yield. Identifying genotypes 

with optimal biomass partitioning strategies could further advance soybean line development 

where harvest index has been maximized and finding the reproductive growth stage when 

differences in biomass partitioning first become evident can provide insight to when 

genotypes begin to physiologically diverge. 
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Complementing increasing soybean output for greater season profitability and 

decreasing input costs through reduced fertilizer requirements of the succeeding crop can be 

achieved by improving soybean residue quality. Nitrogen (N), is essential for plant growth 

and seed production (Lawlor, 2002) and is the main component of fertilizer. Ubiquitous 

maize-soy cropping system in the US Midwest may particularly benefit, as improving the 

amount and quality of the soybean residue can contribute to the yield increase of maize in the 

succeeding season (Green and Blackmer, 1995) through increasing plant available nitrogen. 

Gentry et al. (2013) found net soil nitrogen mineralization was the strongest predictor of 

yield difference in continuous corn systems, where net mineralization of soil nitrogen is 

influenced by both quality (C:N ratio) and quantity of residue from the previous crop (Gentry 

et al., 2001). We hypothesize that soybeans may be further adapted to the maize-soy rotation 

by improving the carbon-nitrogen (C:N) ratio in soybean residue, without penalizing grain 

yield. Genotypic differences in C:N were found within multiple crop species between wild 

and domesticated crops (García-Palacios et al., 2013), and significant genotypic variations in 

stem nitrogen traits at maturity were found in modern soybean cultivars (Fritschi et al., 

2013). Dhanapal et al. (2015) further supported finding C:N ratio variation in a collection of 

373 soybean genotypes at flowering (R2). A caveat to lower C:N ratios is the concern that 

higher amounts of nitrogen in the vegetative plant organs results in less N remobilization to 

the seed during grain fill, suggesting a yield penalty, but multiple studies have shown that 

direct nitrogen uptake and accumulation during seed fill could be a more important factor for 

high seed yield instead of N remobilization (Kumudini et al., 2001; Zhao et al., 2014). 

Unknown are genotype-specific C:N ratios of  the whole composite residue and its 
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relationship with soybean yield, along with two important seed quality factors, seed protein 

and seed oil content.  

QTL mapping of vegetative indices 

Soybean grain yield is a complex quantitative trait, and maximum yield potential is 

constrained by physiological and agronomic traits such as light interception, photosynthetic 

capacity, and biomass partitioning (Monteith and Moss, 1977). Historically, the steady 

increase in soybean grain yield has been attained through empirical selection for grain yield 

over the past century. However, there is evidence that phenotyping for physiological traits, as 

a complement to agronomic traits, may help in identifying selectable features that accelerate 

breeding for yield potential (Araus and Cairns, 2014; Keep et al., 2016). Currently, the 

soybean genetic base is narrow with low diversity, due to a genetic bottleneck after 

introduction to the US (Rincker et al., 2014). Introgressing exotic germplasm into cultivars to 

increase genetic diversity within domesticated crops has been used to enhance complex traits 

such as yield (Tanksley and McCouch, 1997) and may have unknowingly introduced novel 

genetic variation for yield-related physiological traits. In soybean, Thompson and Nelson 

(1998) tested experimental lines derived from crossing North American cultivars with several 

plant introductions, and several of these lines were incorporated into the soybean nested 

association mapping (SoyNAM) parent panel, including LG90-2550 and LG94-1128 of this 

study. An experimental population of high-yielding elite lines is enriched by including lines 

of diverse ancestry because it increases morphological and genetic diversity.  

Many changes in morphological and physiological traits in soybean have 

accompanied changes in grain yield. Potential soybean yield is closely associated with plant 

photosynthesis (Slattery et al., 2017) and chlorophyll concentration affects photosynthetic 

capacity and primary production, the rate at which a crop can capture and store chemical 
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energy (Gitelson et al., 2003; Koester et al., 2016). Changes in leaf relative water content 

affect total water potential, osmotic potential, and turgor pressure, and therefore influence 

whole-plant physiology. Only when there is sufficient turgor pressure can cells expand for 

vegetative growth and stomata to open to incorporate carbon dioxide to be used in the Calvin 

cycle. (Zygielbaum et al., 2012; Gray et al., 2016). Canopy water content is indicative of 

canopy transpiration and determines radiation use efficiency and biomass accumulation in 

soybean (Saryoko et al., 2018). Biomass accumulation has long been established as important 

driver of potential yield, and is often estimated at leaf area index, or LAI (Ma et al., 1995; 

Board and Harville, 1996). Although genetic improvement of physiological traits can 

certainly lead to increased grain yield (GY), high-throughput, nondestructive measurements 

are necessary to rapidly collect many phenotypes for large mapping populations. 

Remote sensing is a promising tool that rapidly and non-destructively collects 

vegetative indices related to chlorophyll content, carotenoids, vegetation, water content, and 

dry matter content that are used in soybean to predict yield (Ma et al., 2001; Bolton and 

Friedl, 2013; Johnson, 2014) and measure plant response to stress (Carter, 1994; Nutter Jr et 

al., 2002; Huang et al., 2016). An enormous number of spectral reflectance indices have been 

created to monitor vegetation health and productivity (Heinrich et al., 2011). Some indices 

have served as the industry standard for analyzing canopy “greenness” and detection of 

vegetation, such as the normalized difference vegetation index (Rouse Jr et al., 1974). 

However, many different indices have been developed depending on the specific trait to be 

monitored, and great advances in remote and proximal sensing technologies are currently 

underway. One advance has been the development of hyperspectral reflectance instruments 

(Haboudane et al., 2004). The major advantage of hyperspectral reflectance is that it allows 
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users to calculate any number of desired spectral reflectance indices pertinent to a trait of 

interest (Heinrich et al., 2011). 

Quantitative trait loci (QTL) mapping is a key approach for understanding the genetic 

architecture of yield components and physiological traits in crops. However, pinpointing 

QTL can be hampered by relatively large QTL intervals due to the limited number of 

markers. Nested association mapping is an alternative population design that was proposed to 

increase the resolution of QTL mapping (Yu and Buckler, 2006). Nested association mapping 

populations are developed by crossing multiple diverse founders to a common parent 

followed by the development of recombinant inbred lines (RILs) or progenies in each family.  

In comparison to traditional QTL mapping, which only uses limited genetic information from 

two parents, NAM can increase genetic variation across contributing parental lines, increase 

genetic resolution, reduce linkage disequilibrium, and control population structure through 

design (Rafalski, 2010). The NAM design has been used successfully in soybean to map 

QTL controlling a number of traits such as grain yield stability (Xavier et al., 2018) and 

canopy coverage (Xavier et al., 2017). Rapid collection and identification of physiological 

predictors driving yield is desirable to breeding programs because they are used as breeding 

aides.  
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CHAPTER 2.    SEEDING RATE INFLUCENCE ON YIELD COMPONENTS OF 

DIVERSE SOYBEAN AND DETAILED PHENTOYPING TO ELUCIDATE YIELD 

RESPONSE 

A paper in preparation for submission to Field Crops Research 

 

R.H. Higgins, A.K. Singh 

 

Highlights 

• Soybean genotypes of diverse ancestry respond similarly to seeding rate in terms of yield, 

seed components, and agronomic traits. 

• Yield prediction was highest when physiological trait predictors were measured over 

multiple reproductive growth stages, enabled through high-throughput phenotyping. 

• Selected physiological traits for future genetic improvement among and within seeding 

rate treatments were identified through adaptive elastic net feature selection and ranking. 

 

Keywords 

Soybean; Seeding rate; Seed yield; High-throughput phenotyping; Remote sensing; Adaptive 

elastic net 

 

Abstract 

 

Seeding rate impact on soybean [Glycine max L. (Merr.)] yield has steadfastly 

remained a subject of agronomic research for decades. Expanding soybean production 

sustains interest in management decisions like seeding rate, prompting incorporation of 

soybean diversity for future adaptation and genetic gain. However, there is limited 

information on the response of diverse soybean germplasm to seeding rate. The first 
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objective of this study was to investigate how final plot seed yield, seed protein percentage, 

seed oil percentage, seed weight, height, maturity, and plant lodging responds to seeding rate 

in germplasm of diverse ancestries. Our second objective was to identify physiological traits 

and the corresponding growth stage window predicting yield response under multiple levels 

of seeding rate. A subset of the diverse SoyNAM parent panel consisting of 32 genotypes 

was evaluated under three levels of seeding rate in standard yield plots. Replicated RCBD 

experiments were grown in five environments in Central Iowa in 2014-2015. Physiological 

traits of remote sensing vegetative indices, leaf area index (LAI), mean tilt angle (MTA), 

intercepted photosynthetically active radiation (iPAR), and SPAD were measured in three 

environments in 2015 over three reproductive growth stages of flowering (R1-2), pod 

development (R3-4), and seed development (R5-6). Here we report a significant genotype x 

seeding rate interaction was only detected for lodging, and not for yield, seed weight, seed oil 

percentage, seed protein percentage, height, or maturity. These results suggest that current 

soybean germplasm and soybean of wide genetic ancestry respond similarly to seeding rate 

and implies introgression of diverse material may not detrimentally affect yield in response 

to seeding rate variations. In addition, physiological traits predicting the yield response 

among and within seeding rates were selected and ranked by adaptive elastic net, with 

chlorophyll traits determined as the leading predictors across seeding rates. The 

characterization of diverging traits between the seeding rate yield models provides targets for 

soybean improvement for varied seeding rate practices.   

1. Introduction  

Soybean [Glycine max L. (Merr.)] is globally one of the most widely grown crops, 

with the United States as the world's leading soybean producer and the second-leading 

exporter (USDA-NASS, 2016). Expanding soybean production will continue interest in 
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management decisions such as seeding rate for optimal economic return (Fawcett et al., 

2017). In response, plant breeders are challenged to create soybean cultivars adapted to new 

environments (Chang et al., 2015; Zanon et al., 2016) and management practices (Grassini et 

al., 2015; Wilson et al., 2014). Genetic gain and adaption is driven by genetic diversity, but 

incorporating diverse germplasm into elite breeding programs presents challenges (Duvick, 

1984). How germplasm will respond to various modern management practices such as 

seeding rate will need to be addressed to facilitate future use in breeding programs. 

Interplant competition introduces stress environments for plants due to competition 

for resources: water, light, nutrients, and environmental resources (Weiner and Thomas, 

1986). Agronomic practices, such as seeding rate, determine plant spatial arrangement and 

inter-plant stress, and soybeans respond to these conditions with phenotypic plasticity, the 

ability of one genotype to produce more than one phenotype when exposed to different 

environments. Several studies have confirmed phenotypic plasticity in soybean, both at 

vegetative and reproductive stages (Carpenter and Board, 1997; Egli, 1993; Green-Tracewicz 

et al., 2011), and specifically to seeding rate (Board, 2000; Elmore, 1998; Vega, 2000). 

Soybean’s recorded phenotypic plasticity to altered environments has traditionally made it 

difficult to determine optimal seeding rates, as soybeans can produce relatively similar yields 

from large changes in seeding rate (Board, 2000; Carpenter and Board, 1997; Edwards et al., 

2005). To achieve a clear understanding of soybean’s yield response to seeding rate requires 

identifying the underlying causing physiological traits. 

However, several physiological traits respond to various levels of seeding rate. Under 

increased seeding rates, De Bruin and Pedersen (2009) found soybean yield has not 

responded to increased plant density over time, but attributed genetic gain in newer cultivars 
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to greater light use efficiency. Lee et al. (2008) found achieving complete plant canopy 

cover, and therefore maximizing light interception, at R1 produced maximum yield. At lower 

plant populations, plant architecture is an important yield component and genetically 

determined. Plant branching capacity under stress was an important yield determinant 

(Ferreira et al., 2016; Frederick et al., 2001), and branching under low seeding rates was 

related to increased yield (Agudamu et al., 2016; Suhre et al., 2014). Studies in general have 

addressed seeding rate response to elite lines and their recent modern-adapted predecessors, 

leaving a gap in knowledge for seeding rate response in diverse or un-adapted germplasm. 

Numerous physiological traits in conjunction forecast soybean yield, and high-

throughput phenotyping platforms have enabled data collection on a greater spatial and 

temporal scale (Araus and Cairns, 2014).  Remote sensing is a promising tool that rapidly 

and non-destructively collects phenotypes correlated to yield, and vegetative indices related 

to chlorophyll content, carotenoids, vegetation, water content, and dry matter content are 

used in soybean to predict yield (Bolton and Friedl, 2013; Johnson, 2014; Ma et al., 2001) 

and measure plant response to stress (Carter, 1994; Huang et al., 2016; Nutter Jr et al., 2002). 

In addition to vegetative indices, physiological traits leaf area index (LAI), mean tilt angle 

(MTA), intercepted photosynthetically active radiation (iPAR), and estimated chlorophyll 

content with a SPAD meter have been shown to correlate with soybean yield (Board and 

Harville, 1996; Ma et al., 1995) and can be collected in a rapid manner that complements 

remote-sensing. Despite methods of more attainable multi-trait collection, it is unknown how 

the contribution of these traits together, over experiments and plant development stages, 

would explain yield response under multiple seeding rates.  
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The objective of this investigation was to determine how germplasm of diverse 

ancestries responds to seeding rate, by collecting final plot seed yield, seed protein 

percentage, seed oil percentage, seed weight, height, maturity, and plant lodging. Our second 

objective was to identify the physiological traits and corresponding growth stage window 

predicting yield response under multiple levels of seeding rate. Here we report the results of 

an ANOVA analysis on a subset of diverse genotypes from the SoyNAM parent population 

under three seeding rates ranging from low to high. We further report which physiological 

traits of remote sensing vegetative indices, LAI, MTA, iPAR, and SPAD were identified as 

predictors of yield under three levels of seeding rate and three reproductive growth stages. 

We aim to further understanding of soybean response to management practices to provide the 

breeding and research community tools for yield improvement. 

2. Materials and methods 

2.1. Plant Materials 

For this study, 32 of 41 parent genotypes of the soyNAM panel were selected to be 

maturity groups II-III adapted to Central Iowa (Table 2.1). This panel was originally 

designed to include a diverse range of germplasm (Stupar and Specht, 2013). Specifically, 

genetic ancestry was elite public lines, high-yielding lines of diverse ancestry, or direct plant 

introductions. As RIL populations are already developed, further characterization of the 

parent panel provides a valuable resource, as the genomic and multi-environmental data for 

the soybean nested association mapping dataset is public (Xavier et al., 2015).   

Experiments were grown in Central Iowa at a total of five environments at Iowa State 

University’s experiment stations farm network sites. Planting dates in 2014 were 29 May and 

13 May at Worle (41.99, -93.69) and Milo (41.35, -93.40), respectively; while in 2015, 

experiments were established on 13 May at Milo (41.34, -93.40), 21 May at Lippert (42.04, -
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93.73), and 25 May at Bruner (42.01, -93.73). Plots were four rows with 0.76 m row width 

and 4.6 m long rows. Three fixed treatments of seeding rate, low= 20k plants ha-1, 

medium=57k plants ha-1 near commercial seeding rate, and high=93k plants ha-1 were 

planted in a randomized complete block design with three replications at each location. Seeds 

were treated with ApronMaxx® RTA® fungicide treatment to protect the seed during 

germination, and plant emergence was measured for the two middle 0.91 m sections of each 

yield plot.  

2.2. Plant Measurements 

Soybean seed yield and seed components protein percentage, oil percentage, and seed 

weight were recorded for each location in 2014 and 2015.  Approximately three hundred 

grams of whole soybean seed was used to quantify seed protein and oil contents using near-

infrared reflectance (NIR) spectroscopy (Infratec™ 1241 Grain Analyzer, FOSS) and seed 

weights were averaged over a hundred-seed count weight. Before harvest at R8, agronomic 

traits of plant height, lodging (score 1-5) and final plant maturity (days after planting, DAP) 

were collected in all environments, except for two environments missing maturity and one 

environment missing seed weight. Lodging was recorded on a scale from 1-5, with 1 as 

upright and 5 as prostrate. Height was the average of two plants representative of the entire 

plot from the middle two rows. Grain yield (GY) was harvested at each location for the 

middle two rows of each plot with a two-row ALMACO plot combine. GY was determined 

as weight of grain harvested per unit area (kg/ha). 

High-throughput phenotyping trait physiological data were collected as non-

destructive repeated measures for three environments in 2015. The middle two rows of each 

plot were phenotyped at three soybean reproductive growth stages: flowering (R1-2), pod set 

(R3-4), and seed fill (R5-6) per Fehr et al., (1971). Remote-sensing data at R1-2 was not 
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recorded for one environment (Milo 2015), therefore this timepoint was excluded from 

further analysis. All light measurements were performed at 1000 h to 1400 on clear days. 

Leaf chlorophyll content was estimated using a Minolta SPAD-502 Plus chlorophyll meter 

with data logger and sampled non-destructively on ten fully-expanded trifoliates in the upper 

canopy. Intercepted photosynthetically active radiation (iPAR) was measured with a LI-191R 

line quantum sensor (Li-Cor, Inc., Lincoln, NE) with below-canopy measurements 

transecting the alley between the middle rows. iPAR was calculated as:  

𝐹 = (1 −  
𝐼0

𝐼𝑡
) × 100% 

where F is the fractional amount of radiation interception, Io is the measured incident PAR on 

the surface of the ground, and It is the radiant flux density on top of the canopy. LAI and 

MTA were collected with a LAI-2200C plant canopy analyzer (Li-Cor, Inc., Lincoln, NE), 

that simultaneously logged iPAR. A single above-canopy measurement with four to six 

below-canopy measurements were made along spatially partitioned diagonal transects 

between the middle two rows. A canopy gap test was performed as directed in the LAI-

2200C Instruction Manual and a minimum apparent clumping factor of 0.95 determined the 

view cap size and number of below-canopy readings. Absolute reflectance remote sensing 

data were measured using with a FieldSpec® 4 Hi-Res (ASD Inc., Boulder, CO), which 

ranges from 350 to 2500 nm with a single nanometer resolution. A white reference panel 

(Specralon® Labsphere Inc., North Dutton, NH) reading for remote-sensing and k-records 

for LAI were collected at the beginning of each replication within all sites served as controls.  

2.3. Data and Analysis 

Plant emergence counts were standardized across seeding rates before use as a 

covariate. Outlier analysis was determined on yield, seed components, and agronomic traits 
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with studentized residuals and Cook’s distance performed in JMP v. 13 (SAS Institute, Cary, 

NC). Broad sense heritability for yield, seed components, agronomic traits, and physiological 

traits were calculated as:  

𝐻2 =  
σ𝐺

2

σ𝐺
2 +

σ𝐺𝑆𝑟
2

𝑗 +
σ𝐺𝐸 

2

𝑘
+ σ𝐺𝑆𝑟𝐸

2

𝑗𝑘
+

σ𝑒
2

𝑗𝑘𝑟

 

where σ2
G is the genotypic variance, σ2

GSr is the genotype x seeding variance, σ2
GE is the 

genotype x environment variance, σ2
GSrE is the genotype x seeding rate x environment 

variance, σ2
e is the error variance, j is the number of seeding rates, k is the number of 

environments, and r is the number of replications. The estimation of REML variance 

components was performed in JMP with all effects as random. A mixed ANOVA with a 

covariate term was conducted to assess the impact of the fixed effects genotype, seeding rate, 

and the genotype x seeding rate interaction on yield, seed components, and agronomic traits. 

Random effect terms included environment, genotype x environment, seeding rate x 

environment, genotype x seeding rate x environment, and spatial nested terms range 

(environment) and pass (environment).   

SPAD values were filtered using R-package library (MIPHENO) (Bell et al., 2012) 

and averaged for single value per plot, which is a median-based normalization method for 

use in datasets where there are no explicit controls. LAI and MTA were estimated with 

FV2200 software. ASD Spectra were processed using ViewSpec pro software, and single and 

multiple wavebands of absolute reflectance were extracted with R software to calculate the 

following vegetative indices (Table 2.2).  The multivariate normal imputation utility in JMP 

imputed missing physiological trait values. This algorithm uses least squares imputation. 

Pairwise correlations of physiological traits by growth stage and yield, seed components, and 
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agronomic traits were determined using the multivariate procedure of JMP. Yield prediction 

and feature extraction was performed with the regularized regression technique adaptive 

Elastic Net in JMP v. 13. Elastic Net alpha was set to 0.09, number of grid points = 150, and 

minimum penalty fraction = 0. Yield prediction models were assembled with physiological 

traits from growth stages R1-2, R3-4, R5-6, and combinations of R3-6 and R1-6. Models 

including growth stage R1-2 consisted of two environments instead of three. Five-fold cross-

validation was performed to avoid inflated estimates of predictive ability, and cross-

validation was repeated 10 times to assess feature selection stability. 

3. Results 

Mean seed yield pooled across five locations was 3051.22 kg ha-1, and the averages 

of seed protein and oil concentration were 35.3% and 18.7%, respectively ( 

 

Table 2.3). Broad sense heritabilities calculated for yield, seed components, and 

agronomic traits were high with a range from 0.89-0.99 ( 

 

Table 2.3). Environments ranked by seed yield from highest to lowest were 2015 

Bruner, 2014 Worle, 2015 Milo, 2015 Lippert, and 2014 Milo (Figure 2.1A). There was no 

noticeably better yielding year, but there was a strong individual environment effect 

considering all locations were in Central Iowa. Although the range of values is large for all 

traits, as expected from the diverse panel selected, the values follow a normal distribution, 

excluding lodging score, which was skewed to the left (Figure 2.1A-C). The relationship 

between seed yield and seed oil was positive, and both were negative with seed protein 

(Figure 2.6), and these relationships are generally observed (Wilcox and Shibles, 2001). Plant 

emergence followed a normal distribution at each seeding rate across environments and 
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consistently varied more at higher seeding rates than lower. Almost entirely distinct clusters 

reaffirmed seeding rate effects (Figure 2.5).  

3.1. Genotype, Seeding rate, and Genotype x SR effects 

A mixed ANOVA with a covariate of plant emergence was used to determine the 

fixed treatment effects of yield, seed components, and agronomic traits of the pooled five 

location dataset. Genotype was significant for all traits, and seeding rate was significant at 

various levels of alpha for all traits excluding seed weight and maturity. The genotype x 

seeding rate interaction was not significant for any trait but lodging (Table 2.4). 

. Plant emergence appeared to influence seed composition traits protein and oil, but 

no others (Table 2.4). 

When determining which levels of seeding rate were significantly different from each 

other, yield, seed protein, and protein percentage, and plant height revealed a similar pattern. 

We found that the low seeding rate treatment was significantly different from optimal and 

high treatment, but the optimal and high seeding rate treatment were no different from each 

other. Yield, seed oil percentage, and height were greater in optimal and high seeding rates, 

and lower in the low seeding rate. The inverse observation was true for seed protein 

percentage, i.e., lower in optimal and high seeding rates, and higher in the low seeding rate. 

Lodging was significantly different for each level of seeding rate and increased from low to 

high seeding rate.  

Lodging was the only trait to reveal a significant genotype x seeding rate interaction 

effect. Genotypes were clustered by ancestry to show lodging was lowest in elite lines, 

followed by diverse, and highest for plant introductions. An ANOVA substituting genotype 

with ancestry revealed the ancestry x seeding rate interaction was signification at alpha = 
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0.05 for lodging (Table 2.5). Yield was significantly different by ancestry, by seed traits oil 

percentage, protein percentage, and seed weight were not (Table 2.5). Our results suggest 

elite genotypes to be more resilient to lodging at a higher seeding rate (Figure 2.7). 

3.2. Physiological drivers of soybean yield under contrasting seeding rates 

 Pearson correlations between traits confirmed high correlations of related vegetative 

indices (Figure 2.2). Vegetative indices at R1-2 and R3-4 were more strongly correlated than 

R3-4 and R5-6, and R1-2 and R5-6 did not display high correlation.  Of the non-remote 

sensing traits, iPAR and LAI were more strongly correlated with the vegetative indices 

across all growth stages in contrast to SPAD or MTA. Yield appeared to be equally 

correlated with physiological traits across growth stages (Figure 2.2). 

Broad sense heritability, or repeatability, was generally found to increase over the 

reproductive growth stages for most physiological traits, and the highest heritabilities were 

found in chlorophyll-related traits, followed by foliage and water content traits (Table 2.6). 

Regularized regression by the adaptive elastic net method was implemented for yield 

prediction models for each seeding rate and repeated over reproductive growth stages and 

combinations thereof. Overall, R2 values ranged from 0.44-0.55 for R1-2, 0.55-0.59 for R3-

4, and 0.52-0.64 for R5-6, increasing with later reproductive stages for all seeding rates. R2 

values were greatest in the combination of all reproductive growth stages together, R1-6, 

ranging from 0.77-0.82, followed by the combination of the latter two stages, R3-6, ranging 

from 0.67-0.74. Yield prediction was similar between seeding rates at each growth stage, but 

low seeding rate models were observed to be more predictive in most cases, apart from R3-4 

(Figure 2.3). Physiological traits selected in the adaptive elastic net models were summarized 

by growth stage and seeding rates and ranked by standard least squares (  
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Table 2.7). Traits were reported if they were selected by a simple majority (greater than five) 

of the ten-repeated five-fold cross-validations. Solution stability, the reoccurrence of terms 

either selected or discarded by the model, was relatively high, with most traits entirely 

excluded or retained (Figure 2.8). Models by seeding rate and growth stage were further 

compared and summarized for feature overlap. Traits that were specific to one seeding rate 

were found at each growth stage, excluding optimal R3-4 and high R5-6 (Figure 2.4A). The 

likelihood that any given trait would be predictive across seeding rates increased at later 

growth stages, as more traits were shared in predictive models (Figure 2.4A). In contrast, 

when combining growth stages, the likelihood was equal for unique or shared for R3-6 and 

greater for unique than shared for R1-6, the most predictive model. If any trait was shared in 

the R1-6 model, it was most likely between all seeding rates, followed by high-optimal, 

optimal-low, and lastly high-low (Figure 2.4B). SPAD collected during seed development 

was the most predictive trait across seeding rates for the R5-6 and combined growth stages 

(Table 2.7) SPAD was selected in R1-2 only for high seeding rate and for all seeding rates in 

R3-4. In the R1-6 combined model, iPAR at flowering was the second most predictive trait 

for low and optimal seeding rates, but less predictive for high. Of the highest ranked traits 

selected for the three seeding rates in the R1-6 model, low seeding rate listed several 

chlorophyll related remote sensing indices. The optimal seeding rate model was distinguished 

with consecutive iPAR traits, and high included MTA at pod development (Table 2.7). 

Overall, the highest ranked traits were shared among seeding rate models, and traits 

descending in rank diverged between models. 
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4. Discussion 

4.1. Genotype, Seeding rate, and Genotype x SR effects 

In the following, we discuss the results from our mixed ANOVA analysis for the first 

objective of this study. The large genotype effect and high trait heritabilities supported our 

observation that the population subset from the SoyNAM parent panel was effectively 

diverse. Efforts to include diverse genotypes outside the narrow genetic pool of elite cultivars 

allows researchers to expand our understanding to a broader soybean base. The second 

treatment of seeding rate followed genotype in magnitude of influence. It was purposefully 

selected to represent the extremes of low and high to overcome soybean’s known variable 

response to seeding rate. Our overall observations of similar seeding rate response and no 

significant genotype x seeding rate interaction for nearly all traits in this study supports the 

claim that soybean, as of present, responds equally to seeding rate, regardless of ancestry. 

Implications of seeding rate on yield and yield related traits is discussed below. 

The response variable of highest importance in this study was seed yield. A yield 

plateau was expected and observed at optimal seeding rate in this study because it is a 

general observation in elite germplasm. Our results suggest an anticipated yield plateau at 

optimal seeding rate can be further extended to germplasm of diverse and plant introduction 

ancestry. Importantly, inclusion of diverse germplasm in breeding programs may not 

negatively impact yield potential at higher seeding rates.  A lack of genotype x seeding rate 

interaction in our study conflicts with significant interactions previously reported (Gan et al., 

2002; Suhre et al., 2014). Ablett et al. (1991) and Beuerlein (1988) found that determinant 

types had a greater yield response to increased seeding rates than indeterminate or semi-

determinate types, but no determinant types were included in our panel. Therefore, this may 

account for our lack of observed genotype x seeding rate interaction. However, Suhre et al. 
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(2014) found a genotype x seeding rate interaction at lower seeding rates between soybean 

lines of indeterminate growth and contributed this to compensatory yield on plant branches. 

Either branching ability and compensatory pod set were equal among our genotypes, or more 

likely, other mechanisms of yield potential left uncharacterized compensated for yield under 

low seeding rates. Moreover, a lack of significant genotype x seeding rate interaction for 

yield suggests when germplasm enhancement programs use diverse collections to obtain 

parental materials, they will witness a yield response to seeding rate no different from elite 

materials. 

Our data revealed seeding rate does not affect seed traits equally, in view that seed 

weight was not influenced by seeding rate while seed oil and protein were impacted. 

Environment has some bearing on seed size (Borrás et al., 2004), but it can also be relatively 

stable, considering stable seed size QTL were identified across environments (Kato et al., 

2014) and nutrient treatments (Hacisalihoglu et al., 2017). In contrast to seed weight, seed 

traits protein and oil concentration were significantly influenced by seeding rate and the only 

traits affected by plant emergence. Bellaloui et al. (2014) and Cober et al. (2005) found that 

protein concentration increased and oil concentration decreased with increasing seeding rate, 

supporting our results that seed composition traits are highly responsive to plant spacing. 

Because oil and protein response to seeding rate was similar for all genotypes in this study, 

farmers and producers may better estimate protein potential in consideration of seeding rate, 

since some regions have been shown to produce near insufficient protein percentage 

(Rotundo et al., 2016). We suggest that future cultivars may need to be evaluated at lower 

seeding rates to ensure the minimum protein percentage is attained. 
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Lodging potential determines yield potential by affecting photosynthetic ability, 

mechanical harvest losses, and disease pressure (Ustun et al., 2001) and positively correlates 

with plant height. In the current study, plant height increased with seeding rate and plateaued 

at optimal, but interestingly, lodging continued to increase past optimal seeding rate with no 

increase in height. Traits, e.g. stem thickness, not measured in this study, may have 

contributed to lodging, as thinner stems have been observed in high seeding rates (Lueschen 

and Hicks, 1977). Our observation that elite lines maintain low lodging compared to soybean 

lines of diverse or plant introduction ancestry supports previous observations that recent 

cultivars withstand lodging at higher plant densities (Rincker et al., 2014).  A caveat for 

incorporation of diverse material into elite breeding programs includes increased lodging, 

most noticeable at higher seeding rates.  

Noting environmental or genetic factors influencing maturity is essential, because 

extended maturity increases soybean yield potential. Soybean maturity is primarily 

determined by photoperiod, and neither shade stress (Egli, 1997) nor seeding rate in three 

genotypes (Gan et al., 2002) were found to have an effect on physiological maturity. These 

former studies suggest a maturity response to seeding rate is unlikely, and that is what we 

observed. However, Cober et al. (2005) found higher plant populations resulted in earlier 

plant maturity, implying while not detected in this study, maturity differences due to seeding 

rate may exist in other environments. Measuring maturity response to increased seeding rate 

will need to be further evaluated in more environments, as a shortened growing season will 

have implications for yield potential. 

4.2. Physiological drivers of soybean yield under contrasting seeding rates 

The second objective of this study was to identify physiological trait predictors of 

yield under treatments of seeding rate and determine when a given trait is most predictive of 
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yield. Infinite combinations of vegetative indices and their variations are used to forecast and 

predict crop traits (Bendig et al., 2015; Candiago et al., 2015; Kross et al., 2015), but 

vegetation indices in this study were selected to minimize the amount of pairwise correlation 

over growth stages. This minimization was important, because in the presence of strong 

correlation, traditional methods of feature selection, such as stepwise regression and 

generalized regression technique lasso, are not ideal. Feature selection is aided by 

independence between measured variables, because when a group of variables among which 

pairwise correlations are high, often one variable from the group is selected at random (Zou 

and Hastie, 2005). As our results indicated many traits were correlated, particularly among 

the remoting-sensing indices, we opted to implement adaptive elastic net, an extension of 

lasso, for our feature selection and yield prediction. This method encourages a grouping 

effect, where strongly correlated predictors tend to be in or out of the model together (Zou 

and Hastie, 2005). Therefore, our choice of method for feature selection facilitated 

identification of important physiological traits predicting yield under any given seeding rate. 

Soybean yield was predicted at individual growth stages and reached significant 

levels, noticeably at later reproductive growth stages. However, assuming yield formation 

cannot be determined from any single growth stage, combinations of growth stages would 

provide greater yield prediction accuracy, as evidenced in our study. Wang et al. (2014) 

similarly found improved yield prediction in wheat using multi-temporal remote sensing 

data. We show yield prediction from a single growth stage is possible and suggest measuring 

traits at later reproductive periods for increased prediction. At single growth stage 

collections, traits were more likely to be equally predictive for yield across seeding rates, 

implying a single model would be sufficient to predict yield in varying levels of seeding rate. 
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Only combining growth stages and increasing the coefficient of determination made obvious 

traits that predicted yield under one seeding rate and not another. A comprehensive 

utilization of multiple growth stages is therefore emphasized for future studies.  

The leading physiological traits predicting yield for the most predictive models were 

summarized in this study. SPAD is an indirect measurement of leaf chlorophyll and we found 

it to be the most predictive trait for all seeding rates at seed fill, R5-6. It is not surprising that 

chlorophyll related traits were ranked the leading yield predictors, for the reason that 

chlorophyll content has been demonstrated to linearly increase with cultivar year of release 

(Koester et al., 2016). Several of the remote sensing indices in this study are also used for 

prediction of chlorophyll content. However, these indices may still be sensitive to the 

combined response of several vegetation and environmental properties, such as canopy 

shadows and background soil reflectance (Haboudane et al., 2002). Furthermore, broad-sense 

heritabilities of the chlorophyll indices were lower than SPAD. Crain et al. (2017) observed 

an increase of trait heritability on a given day was a good indication of how well that dataset 

correlated to yield, suggesting increasing trait heritability would increase prediction. 

Progressing from SPAD to chlorophyll vegetation indices would be ideal for increased 

throughput of data collection. As our SPAD values were averaged over ten individual 

measurements and remote sensing from a single measurement, we theorize increasing our 

replications of spectral measurements would increase heritabilities. We hypothesize 

heritabilities increased at later reproductive growth stages for remote sensing traits because 

of a greater canopy to background soil ratio.  

After chlorophyll content, our selected feature light interception (iPAR) at flowering, 

R1-2, agrees with a historical observation that full canopy coverage by flowering determines 
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yield (Board and Harville, 1993). We suggest future studies could gravitate towards remote-

sensing for measurement collection, in that our leading traits can be substituted with remote 

sensing indices. However, we caution using remote sensing alone on the grounds that Glenn 

et al. (2008) argued vegetative indices should be used simply as a measurement of canopy 

light absorption rather than as a surrogate for detailed features of canopy architecture. 

Remote-sensing may be limited in predicting in high seeding rates as mean tilt angle was the 

second ranked predictor, unless future improvements in estimating MTA from remote 

sensing are achieved. Overall, our most predictive seeding rate models shared common 

leading traits, indicating improvement of these physiological traits will lead to increased 

performance across seeding rates.  

5. Conclusions 

In this study, genotype and seeding rate interactions for yield, seed components, and 

agronomic traits were evaluated, and adaptive elastic net models identified the underlying 

physiological traits predicting yield response to three levels of seeding rate. A significant 

genotype x seeding rate interaction was only detected for lodging, and not for yield, seed 

weight, seed oil percentage, seed protein percentage, height, or maturity. These results 

suggest that current soybean germplasm and soybean of wide genetic ancestry respond 

similarly to seeding rate and implies introgression of diverse material may not detrimentally 

affect yield response to seeding rate. In addition, physiological traits predicting the yield 

response within and across seeding rates were summarized, with chlorophyll traits 

determined as the leading predictors across seeding rates in this study. Our further 

characterization of diverging traits between the seeding rate yield models will provide the 

research community targets for soybean improvement for current and future seeding rate 

practices.  Moreover, further characterizing genotype x seeding rate across diverse 
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germplasm to understand the mechanisms underlying yield response to seeding rate is an 

important direction for future research and soybean improvement. 
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Tables and figures  

Table 2.1 Origin, population number, and maturity grouping of the soybean NAM parental genotype subset 

assessed in this study. 

 

  

NAM parent Origin NAM population Ancestry Growth habit Maturity (DAP)

4J105-3-4 Purdue Univ. NAM 03 Elite Indeterminate 137

5M20-2-5-2 Purdue Univ. NAM 04 Elite Indeterminate 142

CL0J095-4-6 Purdue Univ. NAM 05 Elite Indeterminate 133

CL0J173-6-8 Purdue Univ. NAM 06 Elite Indeterminate 136

HS6-3976 Ohio State NAM 08 Elite Indeterminate 137

IA3023 Iowa State Univ. Universal Parent Elite Indeterminate 139

LD01-5907 Univ. of Illinois NAM 11 Elite Indeterminate 141

LD02-4485 Univ. of Illinois NAM 12 Elite Indeterminate 130

LG00-3372 USDA-ARS NAM 38 Diverse Indeterminate 135

LG03-2979 USDA-ARS NAM 24 Diverse Indeterminate 135

LG04-4717 USDA-ARS NAM 26 Diverse Indeterminate 136

LG05-4464 USDA-ARS NAM 29 Diverse Indeterminate 141

LG05-4832 USDA-ARS NAM 30 Diverse Indeterminate 138

LG90-2550 USDA-ARS NAM 31 Diverse Semi-determinate 133

LG92-1255 USDA-ARS NAM 32 Diverse Indeterminate 127

LG94-1128 USDA-ARS NAM 33 Diverse Indeterminate 128

LG94-1906 USDA-ARS NAM 34 Diverse Indeterminate 132

LG97-7012 USDA-ARS NAM 36 Diverse Indeterminate 134

LG98-1605 USDA-ARS NAM 37 Diverse Indeterminate 123

Maverick Univ. of Missouri NAM 15 Elite Indeterminate 138

NE3001 Univ. of Nebraska NAM 18 Elite Semi-determinate 133

PI 398.881 South Korea NAM 40 Plant introduction Indeterminate 131

PI 404.188A China NAM 54 Plant introduction Indeterminate 131

PI 427.136 South Korea NAM 41 Plant introduction Indeterminate 134

PI 437.169B Russia NAM 42 Plant introduction Indeterminate 129

PI 507.681B - NAM 46 Plant introduction Indeterminate 131

PI 518.751 Serbia NAM 48 Plant introduction Indeterminate 131

PI 561.370 China NAM 50 Plant introduction Indeterminate 136

PI 574.486 China NAM 64 Plant introduction Indeterminate 141

Prohio Ohio State Univ. NAM 09 Elite Indeterminate 141

Skylla Mich. State Univ. NAM 22 Elite Indeterminate 124

U03-100612 Univ. of Nebraska NAM 23 Elite Indeterminate 120
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Table 2.2 Summary of vegetation indices with abbreviation, general class type, and source. 

 

 

 

Table 2.3 Yield, seed components, and agronomic trait summaries with count, mean, standard deviation, 

range, and Broad-sense heritabilities. 

 

 

  

Vegetation index description Abbreviation Type Source

Photochemical reflectance index PRI Carotenoids Peñuelas et al., 1995

Plant senescence reflectance index PSRI Carotenoids  Merzlyak et al., 1999

Pigment specific simple ratio chlorophyll A PSSRa Chlorophyll Blackburn, 1998

Ratio analysis of reflectance spectra chlorophyll A RARSa Chlorophyll Chappelle et al., 1992

Ratio analysis of reflectance spectra chlorophyll B RARSb Chlorophyll Chappelle et al., 1992

Vogelmann red edge index 2 VREI2 Chlorophyll Vogelmann et al., 1993

Dry matter content index DMCI Dry matter Romero et al., 2012

Green average (505 to 595) Green Vegetation Gitelson et al., 1996

Leaf area index (vegetation index) LAI (VI) Vegetation  Boegh et al., 2002

Normalized difference vegetation index NDVI Vegetation Rouse Jr et al., 1974

Normalized difference moisture index NDMI Water content Hardisky et al., 1983

Normalized multi-band drought index NMDI Water content Wang and Qu, 2007

Normalized water index 1 NWIA Water content Peñuelas et al., 1993

Trait n Mean Std Dev Range H
2†

Yield (kg/ha) 1393 3051.2 992.8 458-5461 0.90

Seed protein % 1363 35.3 1.6 30-40 0.92

Seed oil % 1363 18.7 0.9 16-22 0.89

100 seed weight (g)
‡

1092 14.7 2.2 9-23 0.95

Maturity (DAP)
§

844 133.7 5.6 118-144 0.99

Lodging (score 1-5) 1401 2.4 1.3 1-5 0.91

Height (cm) 1400 86.7 16.8 34-146 0.98
†H 2, broad-sense heritability, calculated on an entry mean basis

‡
4 environments

§
3 environments
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Table 2.4 ANOVA of yield, seed components, and agronomic traits of five environments and three 

replications by genotype. 

 

 

 

Table 2.5 ANOVA of yield, seed components, and agronomic traits of five environments and three 

replications by ancestry. 

 

Effect df Height Lodging Maturity

Seed 

weight Seed oil %

Seed 

protein % Yield

Genotype FE 31 45.23** 15.25** 1036.29** 23.11** 9.87** 12.48** 8.66**

Seeding rate FE 2 44.06** 45.53** <1 1.05 14.53** 8.55* 31.71**

G x SR FE 62 1.03 1.81** <1 1.26 1.19 1.2 1.09

Emergence FE 1 2.12 <1 <1 <1 11.76** 5.41* 1.06

* Significant at the 0.05 level

** Significant at the 0.01 level

F value and significance level of fixed effects

Source of 

variation

Effect df Height Lodging Maturity

Seed 

weight Seed oil %

Seed 

protein % Yield

Ancestry FE 2 <1 12.88*** <1 1.01 2.03 2.04 17.5***

Seeding rate FE 2 41.28*** 46.25*** <1 <1 14.49*** 8** 38.44***

Anc x SR FE 4 <1 2.51* 1.41 2.13 <1 1.3 1.02

Emergence FE 1 <1 <1 <1 <1 16.55*** 8.25*** <1

* Significant at the 0.05 level

** Significant at the 0.01 level

Source of 

variation

F value and significance level of fixed effects
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Figure 2.1  Boxplot distributions by environment and bar chart by seeding rate with standard error, mean, 

and letter grouping for A) yield B) seed components and C) agronomic 
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Figure 2.2  Heatmap of Pearson correlations at three reproductive growth stages between physiological 

traits, agronomic traits, seed components, and final yield. 
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Table 2.6 Summary data of physiological traits by growth stage with number of observations, percent of data imputed, mean, standard deviation, range, and 

heritability. 

 

Physiological 

trait n‡
Percent 

imputed Mean Std Dev Range H 2† n

Percent 

imputed Mean Std Dev Range H 2† n

Percent 

imputed Mean Std Dev Range H 2†

iPAR 570 0 0.66 0.21 0.95 0.18 841 1.3 0.9 0.09 0.67 0.56 841 0 0.93 0.09 0.61 0.50

LAI 570 0 2.31 0.9 5.94 0.35 841 1.3 5.02 1.14 6.89 0.18 841 35.2 5.94 0.91 7.27 0.36

MTA 570 3.2 45.33 9.37 88.00 0.02 841 1.3 44.99 4.93 35.00 0.12 841 35.2 43.47 3.69 39.00 0.38

SPAD 570 0.2 35.49 4.08 27.40 0.80 841 14.3 42.36 3.14 24.20 0.76 841 15.3 43.81 3.52 21.40 0.93

DMCI 570 0 -1.12 0.21 1.66 0.00 841 0 -1.07 0.15 1.07 0.06 841 0 -1.06 0.34 2.81 0.16

Green 570 0 0.02 0.02 0.38 0.13 841 0 0.04 0.02 0.35 0.57 841 0 0.05 0.07 0.63 0.26

LAI (VI) 570 0 0.43 0.28 1.33 0.43 841 0 0.9 0.27 1.44 0.52 841 0 0.89 0.2 1.47 0.57

NDMI 570 0 -3.18 1.49 8.05 0.03 841 0 -3.55 1.28 9.15 0.38 841 0 -3.56 1.22 8.19 0.65

NDVI 570 0 0.83 0.15 0.89 0.10 841 0 0.9 0.09 0.71 0.20 841 0 0.89 0.09 0.90 0.44

NMDI 570 0 -0.33 0.21 1.70 0.00 841 0 -0.15 0.14 1.00 0.43 841 0 -0.18 0.16 1.29 0.67

NWIA 570 0 -0.65 0.21 1.25 0.42 841 0 -0.23 0.26 1.49 0.45 841 0 -0.19 0.28 2.09 0.26

PRI 570 0 -0.93 0.06 0.92 0.48 841 0 -0.89 0.05 0.78 0.63 841 0 -0.87 0.14 1.40 0.30

PSRI 570 0 0.02 0.05 0.31 0.02 841 0 0.01 0.02 0.35 0.33 841 0 0.01 0.02 0.32 0.20

PSSRa 570 0 17.45 10.24 67.48 0.08 841 0 24.79 10.95 74.89 0.27 841 0 22.56 8.48 51.84 0.80

RARSa 570 0 0.49 0.15 0.71 0.13 841 0 0.42 0.11 0.69 0.30 841 0 0.37 0.08 0.53 0.43

RARSb 570 0 46.46 32.4 197.45 0.33 841 0 22.67 9.21 97.22 0.76 841 0 17.81 7.24 53.84 0.87

VREI2 570 0 -0.2 0.08 0.43 0.53 841 0 -0.26 0.09 0.53 0.86 841 0 -0.21 0.09 0.50 0.90

WI 570 0 0.95 0.06 0.33 0.16 841 0 0.93 0.03 0.33 0.61 841 0 0.93 0.03 0.19 0.81
†H 2, broad-sense heritability, calculated on an entry mean basis
‡2 environments

R1-2 Flowering R3-4 Pod development R5-6 Seed development
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Figure 2.3 Adaptive elastic net yield prediction for three seeding rates of low, optimal, and high across reproductive growth stages A) R1-2, B) R3-4, and C) R5-

6, and for two growth stage combinations of D) R3-6, and E) R1-6 
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Table 2.7 List of physiological traits selected by adaptive elastic net regularized regression for three soybean reproductive growth stages and two combinations 

of growth stages. Traits are ranked by standard least squares.  

 

Rank Low Optimal High Low Optimal High Low Optimal High Low Optimal High Low Optimal High

1 iPAR iPAR VREI2 NDMI Green LAI SPAD SPAD SPAD SPAD R5-6 SPAD R5-6 SPAD R5-6 SPAD R5-6 SPAD R5-6 SPAD R5-6

2 RARSb WI DMCI DMCI MTA DMCI iPAR LAI (VI) LAI VREI2 R5-6 iPAR R3-4 LAI R3-4 iPAR R1-2 iPAR R1-2 MTA R3-4

3 NDVI NWIA iPAR LAI iPAR Green VREI2 NWIA NWIA PSSRa R3-4 MTA R3-4 NWIA R5-6 PSSRa R3-4 iPAR R3-4 LAI R1-2

4 VREI2 VREI2 PSSRa VREI2 LAI NDMI RARSa LAI LAI (VI) LAI R5-6 Green R3-4 iPAR R3-4 VREI2 R5-6 DMCI R3-4 Green R1-2

5 RARSa PSRI PSRI SPAD SPAD VREI2 LAI NMDI Green iPAR R5-6 NWIA R5-6 VREI2 R3-4 RARSa R3-4 WI R1-2 NDMI R1-2

6 LAI RARSb RARSb RARSb DMCI PRI NDVI RARSb iPAR PRI R5-6 LAI (VI) R5-6 DMCI R3-4 PSRI R5-6 iPAR R5-6 PSSRa R1-2

7 DMCI NMDI NDMI PRI NWIA MTA Green DMCI NMDI WI R3-4 RARSa R5-6 LAI (VI) R5-6 SPAD R1-2 PRI R5-6 LAI R3-4

8 Green PSSRa SPAD NDVI NDMI PSSRa NWIA RARSa RARSa DMCI R3-4 RARSa R3-4 Green R5-6 NDVI R3-4 NDMI R5-6 PRI R1-2

9 LAI (VI) MTA LAI WI VREI2 iPAR - iPAR VREI2 NMDI R5-6 DMCI R5-6 MTA R3-4 PRI R5-6 SPAD R1-2 iPAR R3-4

10 - - PRI RARSa PRI SPAD - Green - SPAD R3-4 RARSb R5-6 LAI R5-6 NMDI R1-2 NMDI R1-2 NWIA R5-6

11 - - MTA PSSRa RARSa RARSa - - - RARSa R3-4 iPAR R5-6 PSSRa R3-4 PRI R3-4 NWIA R1-2 SPAD R1-2

12 - - LAI (VI) NWIA PSRI PSRI - - - NWIA R5-6 PRI R5-6 PSSRa R5-6 Green R5-6 NDMI R1-2 NMDI R1-2

13 - - - - WI LAI (VI) - - - PSRI R5-6 LAI R3-4 NMDI R5-6 NDVI R5-6 Green R5-6 LAI R5-6

14 - - - - - - - - - PRI R3-4 NWIA R3-4 RARSa R3-4 NDVI R1-2 Green R3-4 NWIA R3-4

15 - - - - - - - - - NWIA R3-4 LAI (VI) R3-4 NDVI R3-4 Green R1-2 PSRI R1-2 DMCI R3-4

16 - - - - - - - - - - - NWIA R3-4 NMDI R5-6 LAI (VI) R3-4 Green R5-6

17 - - - - - - - - - - - - NWIA R3-4 LAI (VI) R5-6 LAI (VI) R5-6

18 - - - - - - - - - - - - - NDVI R3-4 Green R3-4

19 - - - - - - - - - - - - - VREI2 R5-6 LAI (VI) R1-2

20 - - - - - - - - - - - - - RARSa R3-4 RARSa R3-4

21 - - - - - - - - - - - - - - RARSa R1-2

22 - - - - - - - - - - - - - - VREI2 R5-6

23 - - - - - - - - - - - - - - PSSRa R5-6
†2 environments

Single growth stages Combination growth stages

R5-6 Seed development R3-6 Pod-Seed† R1-6 Flowering-SeedR1-2 Flowering† R3-4 Pod development



 

 

4
2
 

 

Figure 2.4 Venn diagram of shared and unique physiological traits selected by adaptive elastic net models at three seeding rates and A) three reproductive 

growth stages R1-2, R3-4, and R5-6 and B) two combinations of growth stages, R3-6 and R1-6. 
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Figure 2.5 Frequency histogram of plant emergence for three target seeding rates of low, optimal, and high in 

five replicated environments 

 

 

 

Figure 2.6 Relationship between seed yield, seed oil percentage, and seed protein percentage for five locations. 

A positive relationship was observed between seed yield and seed oil percentage, but a negative relationship to 

seed protein percentage. 
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Figure 2.7 Mean lodging scores for three seeding rates of low, optimal, and high and three ancestry categories 

of elite, diverse, and plant introduction. Means are marked with standard error bars.  

 

 

 

 

 

Figure 2.8 Feature selection stability for 10 repeated 5 k-fold cross-validations of adaptive elastic net models. 

The bin number represents the frequency of trait predictor inclusion in the models, and the high frequency of 

zero and ten bin groupings indicates the majority of traits were either completely retained or discarded in every 

model cross-validation instance, demonstrating solution stability of the adaptive elastic net.
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CHAPTER 3.     UNCOVERING BIOMASS PARTITIONING AND RESIDUE 

QUALITY TRAITS FOR SOYBEAN IMPROVEMENT 

A paper in preparation for submission to Field Crops Research 

 

R.H. Higgins, A.K. Singh 

 

Highlights 

• Soybean genotypes of diverse ancestry partition biomass similarly at flowering (R1) and 

diverge at pod development (R4). 

• A higher percentage of petioles and lower percentage of stem at full pod (R4) correlated 

positively seed weight 

• The reported range of carbon:nitrogen (C:N) ratios in soybean were extended, with lower 

C:N genotypes identified for residue quality improvement. 

Keywords 

harvest index, soybean biomass, soybean partitioning, carbon:nitrogen (C:N) ratio 

 

Abstract  

Improving economic return is one of the most important objectives in a soybean 

breeding program. Traits such as higher harvest index improved return by greater output of 

grain yield, while soybean residue quality as carbon:nitrogen content can unintentionally 

decreased inputs of nitrogen fertilizer for succeeding crops in rotation. Harvest index is a 

simple ratio of grain weight to total biomass, but the vegetative proportions and residue 

quality of the total biomass and ultimate relationship to grain yield is unknown. The 

objectives of this study were to 1) quantify the difference in biomass partitioning strategies 

using diverse soybean genotypes of the SoyNAM parent panel, and further understand the 

temporal physiological basis of biomass partitioning through sampling at three reproductive 
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growth stages: R1, R4, and R8, and 2) characterize the genetic variation in residue quality of 

final biomass by measuring carbon:nitrogen (C:N) ratio. Results showed significant 

differences in biomass partitioning and plant component percentages of stem, pod, seed 

petiole, and leaves between soybean genotypes at three reproductive stages. Significant 

genetic variation in C:N residue quality was found for each residue component, with no 

negative relationship to final grain yield. A genotype “Prohio” was identified as having 

exceptional residue quality. These findings indicate optimal biomass partitioning strategies 

for yield and improved residue C:N ratios for whole-system nitrogen sustainability can be 

targeted for yield improvement. 

1. Introduction 

Soybeans [Glycine max (L.) Merr.] are the second most planted crop in the United 

States (USDA-NASS, 2016) and fourth globally after wheat (Triticum aestivum L.), rice 

(Oryza sativa L.), and maize (Zea mays L.).  As the world's largest source of animal protein 

feed and the second largest source of vegetable oil, various endeavors have been sought to 

enhance soybean production around the globe. 

Crop profitability is influenced by crop inputs along with realized economic part yield 

(i.e., seed yield in soybean). Farming decisions are therefore ideally made to maximize yield 

with minimal input costs and optimally using all economic parts to drive up the profitability. 

Harvest index is one important factor as it is described as the ratio of seed yield to total 

biomass and impacts crop output. It has been suggested that harvest index of 0.6 is the 

theoretical maximum, and maximum harvest index in soybean has been achieved (Zhu et al., 

2010). In a research study, researchers found the harvest index for soybean ranged from 56.2 

– 58.0% for elite soybean cultivars in the US Midwest, which is near theoretical maximum 

(Pedersen and Lauer, 2004).  Increased harvest index in soybean has resulted from increased 
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seed yield with little increase in total aboveground biomass (Jin et al., 2010; Morrison et al., 

2000), but the relationship between the composition of the total aboveground biomass to 

grain yield is unknown. (Srinivasan et al., 2016) showed evidence that modern crop 

genotypes produce more leaf than is optimal, and removing leaves resulted in an 8% increase 

in yield. Identifying genotypes with optimal biomass partitioning strategies could further 

advance soybean line development where harvest index has been maximized and finding the 

reproductive growth stage when differences in biomass partitioning first become evident can 

provide insight to when genotypes begin to physiologically diverge. 

Complementing increasing soybean output for greater season profitability and 

decreasing input costs through reduced fertilizer requirements of the succeeding crop can be 

achieved by improving soybean residue quality. Nitrogen (N), is essential for plant growth 

and seed production (Lawlor, 2002) and is the main component of fertilizer. Ubiquitous 

maize-soy cropping system in the US Midwest may particularly benefit, as improving the 

amount and quality of the soybean residue can contribute to the yield increase of maize in the 

succeeding season (Green and Blackmer, 1995) through increasing plant available nitrogen. 

Gentry et al. (2013) found net soil nitrogen mineralization was the strongest predictor of 

yield difference in continuous corn systems, where net mineralization of soil nitrogen is 

influenced by both quality (C:N ratio) and quantity of residue from the previous crop (Gentry 

et al., 2001). Cotrufo et al. (2013) developed a framework (MEMS) on the hypothesis that 

labile plant constituents, dependent on residue quality, are the dominant source of microbial 

products because they are utilized more efficiently by microbes, influencing soil 

mineralization. These beg the question if soybean value may be further enhanced in the 

maize-soy rotation by improving the carbon-nitrogen (C:N) ratio in soybean residue, without 
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penalizing grain yield. Genotypic differences in C:N were found within multiple crop species 

between wild and domesticated crops (García-Palacios et al., 2013), and significant 

genotypic variations in stem nitrogen traits at maturity were found in modern soybean 

cultivars (Fritschi et al., 2013). (Dhanapal et al., 2015) further supported finding C:N ratio 

variation in a collection of 373 soybean genotypes at flowering (R2). A caveat to lower C:N 

ratios is the concern that higher amounts of nitrogen in the vegetative plant organs results in 

less N remobilization to the seed during grain fill, suggesting a yield penalty, but multiple 

studies have shown that direct nitrogen uptake and accumulation during seed fill could be a 

more important factor for high seed yield instead of N remobilization (Kumudini et al., 2001; 

Zhao et al., 2014). Unknown are genotype-specific C:N ratios of  the whole composite 

residue and its relationship with soybean yield, along with two important seed quality factors, 

seed protein and seed oil content.  

A preliminary study suggested an inverse relationship in C:N ratio of whole 

composite residue samples for two elite soybean cultivars with different seed protein content. 

To further elucidate this relationship and capture the genetic diversity of biomass partitioning 

and residue quality through carbon/nitrogen content in soybeans, a 32 parent panel of 

genotypes in this study was selected from the soyNAM population, which represents high-

yielding lines, lines with diverse ancestry, and plant introductions (Song et al., 2017) and was 

expected to cover the diversity of soybean. The parent panel was subsetted based on maturity 

adapted to Central Iowa.  

Through these analyses, we aimed to identify the biomass partitioning strategies of 

diverse genotypes over multiple reproductive growth stages for potential future application to 

increase yield. To expand upon knowledge on estimated C:N ratio ranges and variation 
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within soybean, we further investigate the quality of the residual biomass through estimating 

C:N of each biomass component: stem, fallen residue (petioles and leaves), pod, and seed. 

Future studies may demonstrate that favorable C:N ratios may impact the succeeding crop, 

especially nitrogen responsive crops such as maize in the soy-maize rotation, ultimately 

reducing nitrogen inputs amended to the soil in the Midwest. 

2. Materials and methods 

 

2.1 Plant Materials 

A 32-genotype subset of the soyNAM panel was selected based on maturity adapted 

to Central Iowa (maturity groups II-III) (Table 3.1). This diverse sample varied in growth 

habit and genetic ancestry. Specifically, growth habits were either indeterminate or 

semideterminate; and genetic ancestry were elite lines, high-yielding lines of diverse 

ancestry, or direct plant introductions. Experiments were grown in one central Iowa location 

in 2014 (Worle -environment 1) and two central Iowa locations in 2015 (Agronomy and 

Burkey, environments 2 and 3). The soil type found at environments 2 and 3 are Nicollet 

loam series of Aquic Hapludoll whereas environment 1 is Clarion loam series of Typic 

Hapludoll (Soil Survey Staff, Natural Resources Conservation Service, United States 

Department of Agriculture, 2016).  

2.2 Experimental Design 

Experiments at three locations were designed as a randomized complete block with 

three replications where each of the 32 genotypes was fixed effect treatment. Fields were 

planted in the month of May: 13th, 21st, and 29th for environments 2, 3, and 1 respectively. 

Planting density was targeted at 31 plants m-2 in 0.76-m rows and plots were designed as four 

rows, 6 m long each. Destructive sampling measurements were taken within the two central 
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rows. Procedures were the same at each farm, except for environment 1, where samples were 

harvested from the border rows. Weeds were chemically controlled at planting and hand 

removed during crop growth. Pests were controlled as needed with standard agronomic 

practices. Disease prevalence was noted and recorded per plot basis. 

2.3 Plant Measurements 

Above ground biomass samples were collected in 0.91 m sections per row and 

randomized within six designated sections that were 0.3 m apart and at least 0.61 m from the 

beginning and end of the plot. Plants were harvested at three reproductive (R) soybean 

growth stages on a 1-8 scale: beginning bloom (R1), full pod (R4), and physiological (R8) 

per (Fehr et al., 1971). Because genotypes varied in maturity, samples were collected at 

multiple time-points during the season until the targeted growth stage was achieved. R1 and 

R4 plant samples were partitioned into stem, petiole, and leaves, and R4 with an additional 

section of pods. R8 samples were dissected into a modified category from the previous 

growth stages of stem, pods, seed, and fallen residue (leaves and petioles). Fallen residue was 

too dry and brittle to accurately partition into leaves and petioles. Samples were dried at 60 

degrees C until completely dry, and dry weight measurements were collected immediately 

after removal from the dryer ovens. R8 plant samples were finely ground using a 2-mm 

screen in a Wiley mill (Thomas Scientific) (Figure 3.1). Carbon and nitrogen content were 

then determined by submission of 0.01 g subsamples to the Iowa State University Plant and 

Soils Analysis lab for combustion analysis (TruSpec CN, LECO Corp., St. Joseph, MO). 

Approximately 300 g of whole soybean seed was used to quantify seed protein and oil 

contents using near-infrared reflectance (NIR) spectroscopy (Infratec™ 1241 Grain 

Analyzer, FOSS). 
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2.4 Data Analysis 

Outliers were detected and eliminated using interquartile range for each plant 

component, location, and growth stage independently. Biomass percentage for each 

vegetative plant component was calculated as the ratio of the individual component over total 

biomass for each sample. The residue biomass percentage was calculated similarly, but 

without the inclusion of the final seed weight in the final biomass. C:N ratios were calculated 

as the percentage carbon content divided by the percentage nitrogen content. 

𝐶: 𝑁 𝑟𝑎𝑡𝑖𝑜 =
𝑐𝑎𝑟𝑏𝑜𝑛 % 

𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 %
 

A mixed ANOVA was used to determine the fixed treatment effect of biomass weight, 

biomass percentage, and C:N ratio. Separate ANOVA were performed for each growth stage 

and vegetative component. The sole fixed effect was genotype and environment and the 

environment x genotype interaction were tested as random effects with blocks nested within 

environment. Environment was defined as the location and year combined. All other effects 

were tested against the general error term. Response variables included each plant component 

percentage by growth stage, and C:N ratio. Data were analyzed with JMP v. 12 (SAS 

Institute, Cary, NC). Harvest index (HI) was calculated using by the weight of the total seed 

mass divided by the total mass of each plot at growth stage R8. 

𝐻𝐼 =
𝑆𝑒𝑒𝑑 (𝑔)

𝑇𝑜𝑡𝑎𝑙 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔)
 

Broad-sense heritability (H2) for each plant vegetative component was estimated on an entry 

mean basis following (Nyquist and Baker, 1991): 

𝐻2 = (𝜎2
𝐺)/[𝜎2

𝐺 + (
𝜎2

𝐺𝐸

𝑒
) + (

𝜎2
𝑒

𝑟𝑒
)] 
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in which 𝜎2
𝐺 is genetic variance, 𝜎2

𝐺𝐸 is genotype x environment (location-year) variance, 

𝜎2
𝑒 is error variance, r is number of replications, and e is the number of environments. 

Nitrogen harvest index (NHI) has been summarized algebraically in formula proposed by 

(Sinclair, 1998): 

𝑁𝐻𝐼 =
[%𝑁𝑠𝑒𝑒𝑑 × 𝐻𝐼]

[𝐻𝐼 × (%𝑁𝑠𝑒𝑒𝑑 −  %𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒) + %𝑁𝑟𝑒𝑠𝑖𝑑𝑢𝑒]
 

where seed N concentration is represented as %Nseed and %N present in the residue fraction 

as %Nresidue. Correlations with plant maturity and additional agronomic traits were 

determined using the multivariate procedure of JMP. 

3. Results 

3.1 Biomass partitioning 

Biomass accumulation was not equal between growing season years 2014 and 2015 

(Figure 3.2A) but was similar between the two locations in 2015. Biomass accumulated over 

the growing period as expected over the three selected reproductive growth stages: R1, R4, 

and R8 (Figure 3.3). Total biomass dry weight (g) among genotypes per plot section and per 

plant component was significantly different between the diverse genotypes at each 

reproductive growth stages (Table 3.2).  

Dry weights of each plant section were divided by the total biomass weight to 

determine whether plant section proportions were significantly different between genotypes 

at each growth stage between, mirroring the results for biomass dry weight. (Hanway and 

Weber, 1971) reported approximately 55% leaves, 31% stems, and 14% petioles at R2 and 

29% seed, 17% stems, 11% pods, and 43% leaves and petioles at R8. Mean percentages of 

52.6% leaves, 30% stems, and 17.3% petioles at R1 found within this study (Table 3.2) were 

equivalent to the former cited percentages but not at final maturity (R8) with 37.9% seed, 
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24.4% stems, 15.2% pods, and 37.9% leaves and petioles. Analogous to significant 

differences found in all biomass weights, significant proportion differences were detected for 

each plant section at growth stages R4 and R8 (Table 3.2), except at R1. At beginning bloom 

(R1), plant proportions were not different between genotypes.  

The relationship between biomass percentages and weights were determined using 

Pearson’s correlation (Table 3.3). The relationship between seed weight and harvest index 

was positive, as expected (r=0.56). Maturity had a significant negative relationship with 

harvest index (r = -0.38) (Table 3.4). Significant correlations of biomass proportions were 

found at R4 with seed weight (Table 3.4), specifically petioles (r = 0.18) and stem (r = -

0.19). 

3.2 Residue quality 

C:N ratios differed between years and location, with a lower C:N ratio in 2014 and  

higher C:N ratios in 2015 (Figure 3.2B). C:N ratios were significantly different between and 

among all partitioned components: stem, pod, fallen residue, and seed (Table 3.5). The 

highest mean C:N ratios were found in the stem (62.3),  followed by leaves/petioles (24.5), 

pods (32.9), and seed (7.8) respectively (Table 3.5). This trend was consistently repeated 

across genotypes. High heritabilities for C:N were observed, and ranged from 0.78-0.96 and 

were ranked from highest to lowest: seed, leaf/petiole, pod, and stem.  

Total C:N ratios of the final residue biomass for each genotype were calculated with a 

weighted mean using the genotype biomass proportions discovered in the first portion of this 

experiment (Figure 3.5). The range of residue C:N ratios was 27-53 between genotypes. Two 

genotypes, Prohio and U03-100612, were noted as elite cultivars that contrasted in total C:N 

ratios for residue biomass (Figure 3.5). Genotypes Prohio and U03-100612 had significantly 

different biomass amounts (Table 3.2), mostly attributed to the later maturity of Prohio and 
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longer growing season to accumulate biomass in comparison to U03-100612.  The 

relationship with harvest index is dependent on the crop and genotypes. A curvilinear 

response was observed between NHI and HI, with NHI decreasing as higher HI was attained. 

(Figure 3.6) 

4. Discussion 

4.1 Biomass partitioning 

Biomass accumulation differed between growing season years 2014 and 2015 and are 

attributed to differences in planting date and similarities for environments within years. In 

2014, smaller total weights were observed for R1 and R4 because of a later planting date, but 

biomass size eventually exceeded 2015 weights by R8 because of a longer growing season 

that year. Total biomass was expected to be dissimilar especially evident between genotypes 

because of the design of the genetic panel. The lines of diverse ancestry and plant 

introductions were not expected to be vigorous, or as well-adapted, as the public elite 

accessions.  

No significant difference was detected in biomass proportions at beginning bloom 

(R1) and implies that proportionally, soybeans are very similar at R1, even if biomass size is 

significantly different. Removing reproductive organs pod and seed at R4 and R8 as a 

percentage revealed stem mass and leaf/petiole mass resulted in significantly different 

proportions (Table 3.2). This indicates biomass proportions can be detected at R4 with initial 

divergence of plant sections beginning at R1. Average harvest index measured as seed 

percentage at 0.38 (Table 3.2) was not expected to reach the optimal harvest index of 0.56-

0.58 (De Bruin and Pedersen, 2009) because the population panel was comprised of low-

yielding genotypes, but the upper range 0.54 (Table 3.2) was expected to overlap with 

optimal harvest index. Our biomass collection method at R8 could capture fallen residue at 
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the end of the season, which would account for lower harvest index values. However, this 

infers soybeans, particularly elite lines, may not have attained optimal harvest index if all 

above-ground biomass is accounted for. Continued improvement in soybean harvest index is 

to be expected, where Morrison et al. (1999) found after seven decades of breeding and 

selection (1934–1992) that seed yield and harvest index were increased 0.5% per year, and as 

our evidence shows, still ongoing to the present.  

Maturity was negatively correlated with harvest index, suggesting later-maturing 

genotypes are not maximizing theoretical biomass partitioning into seed, even though later-

maturing genotypes had a positive relationship with total seed weight. The correlations of 

petiole and stem proportions at R4 in combination with high heritabilities (Table 3.2) may 

implicate using biomass proportions for soybean genotype improvement. 

The relationship between seed weight and harvest index was positive, but not as 

strongly correlated as predicted, implying harvest index may not be good indicator of grain 

yield in a diverse soybean genotype panel. The association between harvest index and yield 

has been contradictory in soybean, where (Schapaugh and Wilcox, 1980) found no 

correlation between harvest index and yield, but (Frederick et al., 1991; Pedersen and Lauer, 

2004) found a relationship between increased harvest index and improved yield potential  

4.2 Residue quality  

The recorded C:N ratios of soybean stem encompassed previous reported values 

(Prior et al., 2006) and expanded the range, possibly due the inclusion of a diverse panel of 

soybean lines compared to previous literature’s focus on elite cultivars. Limited literature 

reported expected C:N ratios of leaves/petioles or pod due to difficulty in collecting fallen 

residue, in conjunction with stem.  The range of overall residue C:N ratios, 27-53, extended 
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the previous reported mean C:N ratios found within eight soybean varieties, 31.85-51.27 

(Prior et al., 2006).  

High heritabilities of C:N per component confirms C:N ratios are genetically 

controlled and wide phenotypic variation (Table 3.5) indicates C:N ratios can be targets for 

soybean cultivar quality improvement in combination with biomass partitioning percentages. 

A concern for selecting favorable C:N ratios is whether it negatively correlates with grain 

yield, as after the commencement of seed fill, Gaspar et al. (2017) demonstrated high-

yielding soybean uses both greater vegetative nitrogen remobilization and nitrogen uptake 

after R5. Yet, no relationship between grain yield and residue C:N in this study was 

observed, appearing to be independent (  Figure 3.5B).  

The curvilinear relationship observed for the NHI also indicates that more 

translocation of dry mass to the seeds is not proportional to nitrogen translocation to the 

seeds, and replicates a previous finding (Tamagno et al., 2017). Hence, it seems that 

soybeans are limited on nitrogen partitioning from residue to seeds at high HI. Selecting for 

high yield and high harvest index may indirectly increase nitrogen content of the residue, 

increasing C:N content and residue quality. Future studies with larger experimental plot sizes 

will be necessary in order to determine how soybean biomass quantity and quality affects the 

soil nitrogen mineralization, and importantly, if there is a measurable positive gain on the 

following season’s crop yield. 

5. Conclusion 

This study characterized the genetic variation in biomass partitioning strategies in a 

32-parent subset of the SoyNAM soybean panel. Three reproductive stages (R1, R4, R8) 

were destructively harvested and partitioned into stems, petioles, leaves, pod, seed, and/or 

fallen residue (petioles and leaves) component dry weights were calculated as proportions of 
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final biomass. Dry biomass weights were significantly different for genotypes at each growth 

stage, but significant differences in biomass proportions were only detected in the later 

reproductive growth stages, R4 and R8. Understandably, higher biomass percentages in 

reproductive organs at R4 and R8 correlated positively with grain yield; however, a higher 

percentage of petioles at R4 correlated positively seed weight at R8.  The strongest 

relationship with grain yield was final biomass weight, but harvest index was negatively 

correlated with final biomass weight, indicating larger canopies may not be achieving their 

theoretical maximum yield. Our study additionally demonstrated genetic variation in 

carbon:nitrogen (C:N) residue quality for each of the partitioned residue components at 

physiological maturity (R8). The lack of a negative relationship between yield and C:N ratio 

and high heritability suggests this trait can be selected in breeding programs to improve 

soybean residue quality. Lower C:N ratios in soybean residue are hypothesized to increase 

soil mineralization, and, therefore, increase nitrogen availability for the succeeding year’s 

crop. Future studies are needed to determine the genetic control of biomass partitioning 

strategies and C:N ratio in soybean in order to effectively utilize in breeding programs, likely 

through genome-wide association mapping or linkage mapping in new populations. 

Limitations in this study included subsamples instead of whole plots and limited 

environments restricted to Central Iowa. Future studies may be limited by labor-intensive 

nature of biomass partitioning and residue collection. Looking forward, economic return in 

soybeans can be improved by both increasing yield through targeting biomass partitioning 

strategies and decreasing nitrogen inputs in the following crop season through lower soybean 

residue C:N ratios.  
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Tables and figures 

 

Table 3.1 Origin, population number, and maturity grouping of the soybean NAM parental genotype subset 

assessed in this study. 

NAM parent Origin NAM population Ancestry Growth habit Maturity (DAP)

4J105-3-4 Purdue Univ. NAM 03 Elite Indeterminate 137

5M20-2-5-2 Purdue Univ. NAM 04 Elite Indeterminate 142

CL0J095-4-6 Purdue Univ. NAM 05 Elite Indeterminate 133

CL0J173-6-8 Purdue Univ. NAM 06 Elite Indeterminate 136

HS6-3976 Ohio State NAM 08 Elite Indeterminate 137

IA3023 Iowa State Univ. Universal Parent Elite Indeterminate 139

LD01-5907 Univ. of Illinois NAM 11 Elite Indeterminate 141

LD02-4485 Univ. of Illinois NAM 12 Elite Indeterminate 130

LG00-3372 USDA-ARS NAM 38 Diverse Indeterminate 135

LG03-2979 USDA-ARS NAM 24 Diverse Indeterminate 135

LG04-4717 USDA-ARS NAM 26 Diverse Indeterminate 136

LG05-4464 USDA-ARS NAM 29 Diverse Indeterminate 141

LG05-4832 USDA-ARS NAM 30 Diverse Indeterminate 138

LG90-2550 USDA-ARS NAM 31 Diverse Semi-determinate 133

LG92-1255 USDA-ARS NAM 32 Diverse Indeterminate 127

LG94-1128 USDA-ARS NAM 33 Diverse Indeterminate 128

LG94-1906 USDA-ARS NAM 34 Diverse Indeterminate 132

LG97-7012 USDA-ARS NAM 36 Diverse Indeterminate 134

LG98-1605 USDA-ARS NAM 37 Diverse Indeterminate 123

Maverick Univ. of Missouri NAM 15 Elite Indeterminate 138

NE3001 Univ. of Nebraska NAM 18 Elite Semi-determinate 133

PI 398.881 South Korea NAM 40 Plant introduction Indeterminate 131

PI 404.188A China NAM 54 Plant introduction Indeterminate 131

PI 427.136 South Korea NAM 41 Plant introduction Indeterminate 134

PI 437.169B Russia NAM 42 Plant introduction Indeterminate 129

PI 507.681B - NAM 46 Plant introduction Indeterminate 131

PI 518.751 Serbia NAM 48 Plant introduction Indeterminate 131

PI 561.370 China NAM 50 Plant introduction Indeterminate 136

PI 574.486 China NAM 64 Plant introduction Indeterminate 141

Prohio Ohio State Univ. NAM 09 Elite Indeterminate 141

Skylla Mich. State Univ. NAM 22 Elite Indeterminate 124

U03-100612 Univ. of Nebraska NAM 23 Elite Indeterminate 120
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Figure 3.1 Flow diagram of biomass sample collection and partitioning . a) 3ft sections of soybeans destructively harvested above ground. R8 samples encased 

in insect mesh bags at R7 for fallen residue collection. b) Whole plant samples partitioned into plant organ components. c) Samples dried at 60 degrees 

C and weighed. d) R8 plant samples finely ground to evaluate carbon and nitrogen content through combustion analysis. 
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Figure 3.2 Boxplots of a) biomass weight (g) by experiment year-location and growth stage and b) average C:N 

ratio by experiment year-location. Differences between experiment years were significant for biomass and C:N 

ratio.

A

B
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Table 3.2 Mean, range, standard deviation, ANOVA genotype factor significance, and heritability for biomass 

weights and percentage for three growth stages (R1, R4, R8) averaged over 32 genotypes, three locations, and 

three blocks in Central Iowa years 2014-2015.    

 
  

Growth 

stage Plant section Mean Range SD P -value H 2† Mean Range SD P -value H 2† P -valueC

R1 leaf 59.2 21.7-127.7 20.4 <.0001 0.72 52.6 32.8-66 5.2 0.8682 - -

petiole 19.7 4.9-43.2 7.1 <.0001 0.80 17.3 11.8-23.6 1.8 0.1939 - -

stem 34.1 6.3-73.1 12.1 <.0001 0.74 30.1 18.9-50.4 4.9 0.9631 - -

R4 leaf 121.7 43.8-202.9 22.9 0.0524 0.39 33.0 19.5-43.9 5.1 0.0088 0.51 <.0001

petiole 62.7 13-105.3 17.2 <.0001 0.82 16.7 6.7-23.3 2.9 <.0001 0.84 <.0001

pod 45.8 10.5-137.1 27.7 <.0001 0.81 12.0 2.9-32.7 6.3 <.0001 0.89 -

stem 143.2 65.6-240.4 32.0 <.0001 0.78 38.4 25.1-49.8 4.5 <.0001 0.84 <.0001

R8
‡

leaf/petiole 127.2 34.7-237.7 37.1 <.0001 0.75 37.9 8.6-34 4.4 0.0064 0.52 0.0205

pod 87.2 29.6-195 33.7 0.0042 0.56 15.2 7.7-27.5 4.2 <.0001 0.83 -

stem 137.0 60.8-278.8 32.7 <.0001 0.89 24.4 14.7-37 4.4 <.0001 0.86 0.0205

seed 213.1 68.9-336.5 49.5 0.0002 0.66 37.9 17.7-53.5 6.0 <.0001 0.83 -
†H 2, broad-sense heritability, calculated on an entry mean basis

‡
R8

 
plant sections  as percentage of total residue excluding seed. Harvest index as seed weight percentage of total biomass.

§
Non-reproductive organ percentage (%)

Biomass weight (g) Biomass percentage (%)
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Figure 3.3 Biomass component dry weights by reproductive growth stage and genotype. Biomass weights were 

significantly different for all components and growth stages. 

  

***

***

***

***

**

***

**
***
***
***

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 

 1 
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Figure 3.4 Biomass component percentages by reproductive growth stage and genotype. Biomass percentages 

were only significantly different after flowering (R1). 

 

*Significant at the 0.05 probability level. 
**Significant at the 0.01 probability level. 
***Significant at the 0.001 probability level. 
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Table 3.3 Pearson’s correlations and significance for biomass percentages, total biomass weights, and agronomic traits at growth stages R1, R4, and R8. 

 

leaf (%) petiole (%) stem (%) total (g) leaf (%) petiole (%) pod (%) stem (%) total (g)

leaf/ 

petiole 

(%) pod (%) stem (%)

 HI seed 

(%) total (g) leaf (%) petiole (%) stem (%) leaf (%) stem (%)

seed 

protein 

(%)

seed oil 

(%)

maturity 

(DAP) seed (g)

R1 leaf (%) -0.34 -0.94 -0.12 -0.41 0.22 0.46 -0.32 0.18 -0.12 -0.47 -0.08 0.48 -0.26 -0.24 0.4 -0.05 -0.03 0.03 0.1 0.29 -0.11 0.1

petiole (%) <.0001*** 0 0.23 -0.06 0.16 -0.18 0.23 0.11 0.13 -0.1 0.19 -0.16 0.09 -0.19 0.08 0.15 -0.02 0.02 0.05 -0.09 0.26 -0.02

stem (%) <.0001*** 0.9701 0.04 0.46 -0.29 -0.42 0.25 -0.23 0.08 0.54 0.02 -0.45 0.24 0.32 -0.45 0 0.04 -0.04 -0.12 -0.27 0.03 -0.1

total (g) 0.0521 0.0001* 0.4939 -0.06 0.1 -0.22 0.31 0.26 0 -0.12 0.36 -0.18 0.07 -0.2 0.01 0.22 -0.22 0.22 0.14 -0.17 0.26 -0.06

R4 leaf (%) <.0001*** 0.304 <.0001*** 0.3363 -0.28 -0.6 -0.11 -0.41 0.22 0.69 -0.17 -0.52 0.33 0.89 -0.52 -0.59 0.24 -0.24 -0.11 -0.38 0.06 -0.1

petiole (%) 0.0004* 0.011* <.0001*** 0.0974 <.0001*** -0.19 -0.06 0.25 0.2 -0.53 0.21 0.07 -0.01 -0.45 0.91 -0.22 0 0 0.16 0.15 0.46 0.05

pod (%) <.0001*** 0.0032* <.0001*** 0.0003* <.0001*** 0.0016* -0.6 0.23 -0.41 -0.26 -0.4 0.77 -0.27 -0.17 0.22 0.01 -0.03 0.03 -0.14 0.4 -0.56 0.3

stem (%) <.0001*** 0.0002* <.0001***<.0001*** 0.0655 0.3516 <.0001*** -0.02 0.18 -0.07 0.6 -0.53 0.02 -0.48 -0.31 0.8 -0.23 0.23 0.22 -0.23 0.42 -0.33

total (g) 0.0035* 0.066 0.0001* <.0001*** <.0001*** <.0001*** 0.0001* 0.7116 -0.06 -0.39 0.17 0.19 0.11 -0.37 0.34 0.14 -0.14 0.14 0.06 0.19 0.15 0.22

R8‡ leaf/petiole (%) 0.0452* 0.0327* 0.1787 0.9537 0.0002* 0.0011* <.0001*** 0.0025* 0.3062 -0.1 -0.13 -0.57 0.11 0.04 0.03 -0.07 0.8 -0.8 0.1 -0.17 0.36 -0.27

pod (%) <.0001*** 0.0885 <.0001*** 0.0535 <.0001*** <.0001*** <.0001*** 0.2653 <.0001*** 0.1046 -0.32 -0.39 0.27 0.68 -0.61 -0.27 0.12 -0.12 -0.26 -0.24 -0.22 -0.05

stem (%) 0.1795 0.002* 0.7496 <.0001*** 0.0059* 0.0005* <.0001***<.0001*** 0.0061* 0.032* <.0001*** -0.41 -0.21 -0.43 0.04 0.45 -0.69 0.69 0.27 -0.15 0.38 -0.44

seed (%) <.0001*** 0.0072* <.0001*** 0.0029* <.0001*** 0.2528 <.0001***<.0001*** 0.0015* <.0001***<.0001***<.0001*** -0.12 -0.19 0.38 -0.09 -0.16 0.16 -0.1 0.41 -0.38 0.56

total (g) <.0001*** 0.1459 <.0001*** 0.2252 <.0001*** 0.864 <.0001*** 0.7431 0.0848 0.0658 <.0001*** 0.0007* 0.0483* 0.24 -0.11 -0.17 0.2 -0.2 -0.13 -0.07 0.29 0.75

†R4 leaf (%) <.0001*** 0.0021* <.0001*** 0.0013* <.0001*** <.0001*** 0.0067* <.0001***<.0001*** 0.4907 <.0001***<.0001*** 0.0017* <.0001*** -0.5 -0.72 0.28 -0.28 -0.21 -0.23 -0.26 0.05

petiole (%) <.0001*** 0.2017 <.0001*** 0.9348 <.0001*** <.0001*** 0.0003* <.0001***<.0001*** 0.6079 <.0001*** 0.5571 <.0001*** 0.065 <.0001*** -0.23 0 0 0.09 0.31 0.22 0.18

stem (%) 0.4262 0.0154* 0.9651 0.0003* <.0001*** 0.0002* 0.8592 <.0001*** 0.0214* 0.2468 <.0001***<.0001*** 0.1451 0.0049* <.0001*** 0.0002* -0.31 0.31 0.17 0.01 0.11 -0.19

†R8 leaf (%) 0.5846 0.7165 0.4806 0.0003* <.0001*** 0.9465 0.6117 0.0002* 0.0255* <.0001*** 0.0549 <.0001*** 0.0088* 0.0011* <.0001*** 0.9973 <.0001*** -1 -0.11 -0.02 0.03 0.07

stem (%) 0.5846 0.7165 0.4806 0.0003* <.0001*** 0.9465 0.6117 0.0002* 0.0255* <.0001*** 0.0549 <.0001*** 0.0088* 0.0011* <.0001*** 0.9973 <.0001*** <.0001*** 0.11 0.02 -0.03 -0.07

seed protein (%) 0.1221 0.4304 0.0528 0.0189* 0.0795 0.0079* 0.0187* 0.0003* 0.3605 0.0924 <.0001***<.0001*** 0.1173 0.0414* 0.0007* 0.1666 0.0065* 0.0806 0.0806 -0.53 0.12 -0.17

seed oil (%) <.0001*** 0.1666 <.0001*** 0.0057* <.0001*** 0.0132* <.0001*** 0.0001* 0.0023* 0.0059* <.0001*** 0.0128* <.0001*** 0.2908 0.0001* <.0001*** 0.8788 0.7403 0.7403 <.0001*** -0.05 0.23

maturity (DAP) 0.0627 <.0001*** 0.6698 <.0001*** 0.3527 <.0001*** <.0001***<.0001*** 0.0164* <.0001*** 0.0002* <.0001***<.0001***<.0001*** <.0001*** 0.0002* 0.0767 0.5959 0.5959 0.0547 0.4461 0.01

seed (g) 0.1119 0.7856 0.1098 0.3248 0.1127 0.4059 <.0001***<.0001*** 0.0004* <.0001*** 0.3824 <.0001***<.0001***<.0001*** 0.4165 0.0038* 0.0015* 0.2656 0.2656 0.0062* 0.0002* 0.8961
†H 2, broad-sense heritability, calculated on an entry mean basis

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.

***Significant at the 0.001 probability level.

Agronomic traits

Agronomic 

traits

R1 R4 R8 †R4 †R8
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Table 3.4 Pearson’s correlations and significance for seed weight and harvest index with biomass percentages at 

growth stages R1, R4, and R8 and agronomic traits.  

 

 

Table 3.5 Mean, range, standard deviation, ANOVA genotype factor significance, and heritability for C:N ratios 

for three growth stages (R1, R4, R8) averaged over 32 genotypes, three locations, and three blocks in Central Iowa 

years 2014-2015.    

 

 

r P -value r P -value 

R1 leaf (%) - 0.1119 0.48 <.0001***

petiole (%) - 0.7856 -0.16 0.0072*

stem (%) - 0.1098 -0.45 <.0001***

total (g) - 0.3248 -0.18 0.0029*

R4 leaf (%) - 0.1127 -0.52 <.0001***

petiole (%) - 0.4059 - 0.2528

pod (%) 0.30 <.0001*** 0.77 <.0001***

stem (%) -0.33 <.0001*** -0.53 <.0001***

total (g) 0.22 0.0004* 0.19 0.0015*

R8 leaf/petiole (%) -0.27 <.0001*** -0.57 <.0001***

pod (%) - 0.3824 -0.39 <.0001***

stem (%) -0.44 <.0001*** -0.41 <.0001***

seed (%) 0.56 <.0001*** - -

total (g) 0.75 <.0001*** -0.12 0.0007*

†R4 leaf (%) - 0.4165 -0.19 <.0001***

petiole (%) 0.18 0.0038* 0.38 0.5571

stem (%) -0.19 0.0015* -0.09 <.0001***

†R8 leaf (%) - 0.2656 -0.16 <.0001***

stem (%) - 0.2656 0.16 <.0001***

seed protein (%) -0.17 0.0062* -0.10 <.0001***

seed oil (%) 0.23 0.0002* 0.41 0.0128*

maturity (DAP) - 0.8961 -0.38 <.0001***

seed (g) - - 0.56 <.0001***
†Non-reproductive organ percentage (%)

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.

***Significant at the 0.001 probability level.

Seed (g) Harvest index (seed %)

Agronomic 

traits

Plant 

section Mean Range SD P -value H 2†

leaf/petiole 24.5 16.5-38 4.3 <.0001 0.90

pod 32.9 15.6-64.1 7.4 <.0001 0.86

seed 7.8 6.6-9.7 0.5 <.0001 0.96

stem 62.3 21.7-116.5 15.7 0.0002 0.78
†H 2, broad-sense heritability, calculated on an entry mean basis

Biomass weight (g)
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  Figure 3.5 Plot of a) weighted C:N ratios by biomass composition for all soybean genotypes of the final 

residue biomass excluding seed and b) mean seed yield of the previously ordered genotypes by C:N ratio, 

displaying no apparent relationship between seed yield and C:N ratio of final residue biomass for this genotype 

panel. Error bars are constructed using one standard error from the mean. 

 

A

B
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Figure 3.6 Curvilinear relationship between nitrogen harvest index and harvest index. 
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CHAPTER 4.    LINKAGE MAPPING OF QTL FOR YIELD-RELATED VEGETATION 

INDICES IN A SOYBEAN NESTED ASSOCIATION MAPPING POPULATION 

Race Higgins, Asheesh K Singh 

Abstract 

Physiological traits estimated through remote sensing beneficially supplement plant 

breeding programs to accelerate yield gain. Further identification of QTL and linked molecular 

markers for yield-related vegetative indices will enhance marker-assisted selection (MAS) in 

crop breeding. In the present study, a mapping population consisting of 535 F5 derived RILs 

from the cross of universal hub parent IA3023 and four parent genotypes HS6-3976, NE3001, 

LG90-2550, and LG94-1128 of the soybean nested association mapping (SoyNAM) population 

were studied. Absolute reflectance was collected at two soybean growth stages, beginning bloom 

(R1) and beginning seed (R5), from where 14 vegetative indices representing physiological trait 

categories of carotenoids, chlorophyll, dry matter, vegetation, and water content were calculated. 

Field trials were performed in Central Iowa at Iowa State University’s farm experiment stations 

during the 2015 and 2016 cropping seasons, providing data for three environments. Analysis of 

variance (ANOVA) did not reveal significant differences (P < 0.01) among RILs for all 

vegetative indices, and Broad-sense heritabilities were low. However, maximum correlations 

were identified for vegetative indices VREI2 (r = -0.42) and PRI (r = 0.42) at R5. A linkage map 

spanning 1,750.1 cM was constructed using 561 polymorphic SNP markers, with an average 

marker density of 3.12 cM/marker. Five QTL were detected for grain yield and indices NDVI, 

NMDI, NWIB, PSRI, and VREI2 measured at R5, spanning chromosomes 1, 3, 10 and 18 and 

explaining 2.89-5.29% of the phenotypic variance. These QTL can serve as aides to MAS in 

soybean breeding and inform future studies aimed at dissecting the physiology of soybean grain 

yield. 
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Abbreviations 

CAI, cellulose absorption index; DMCI, dry matter content index; GY, grain yield; LAI, 

leaf area index; MAS, marker-assisted selection; NAM, nested association mapping; NDLI, 

normalized difference lignin index ; NDVI, normalized difference vegetation index; NMDI, 

normalized multi-band drought index; NWIB, normalized water index 2; PRI, photochemical 

reflectance index; PSRI, plant senescence reflectance index; QTL, quantitative trait locus; 

RARSa, ratio analysis of reflectance spectra chlorophyll A; RARSb, ratio analysis of reflectance 

spectra chlorophyll B; RIL, recombinant inbred line; SNP, single nucleotide polymorphism; 

VREI2, Vogelmann red edge index 2. 

1. Introduction 

Soybean [Glycine max (L.) Merrill] is a highly valued crop grown throughout much of 

the world for many purposes. The primary components are seed protein and oil, with processed 

soybeans serving as the world's largest source of animal protein feed and the second largest 

source of vegetable oil (USDA-NASS, 2016). Food security is and will continue to be a grave 

concern for the future due to growing global population, changes in available arable land, 

increased input costs, and predicted climate change impacts on crop yield. Therefore, it is very 

important to increase the yields of major commodities and all food crops to avert predicted food 

security crises (Lipper et al., 2014). 

Soybean grain yield is a complex quantitative trait, and realization of the maximum yield 

potential is influenced by physiological and agronomic traits including light interception, 

photosynthetic capacity, and biomass partitioning (Monteith and Moss, 1977). Historically, the 

steady increase in soybean grain yield has been attained through empirical selection for grain 

yield over the past century. However, there is evidence that phenotyping for physiological traits, 
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as a complement to agronomic traits, may help in identifying selectable features that accelerate 

breeding for yield potential (Araus and Cairns, 2014; Keep et al., 2016). Currently, the soybean 

genetic base is narrow with low diversity, due to a genetic bottleneck after introduction to the US 

(Rincker et al., 2014). Introgressing exotic germplasm into cultivars to increase genetic diversity 

within domesticated crops has been used to enhance complex traits such as yield (Tanksley and 

McCouch, 1997) and may have unknowingly introduced novel genetic variation for yield-related 

physiological traits. In soybean, Thompson and Nelson (1998) tested experimental lines derived 

from crossing North American cultivars with several plant introductions, and several of these 

lines were incorporated into the soybean nested association mapping (SoyNAM) parent panel, 

including LG90-2550 and LG94-1128 of this study. An experimental population of high-yielding 

elite lines is enriched by including lines of diverse ancestry because it increases morphological 

and genetic diversity.  

Many changes in morphological and physiological traits in soybean have accompanied 

changes in grain yield. Potential soybean yield is closely associated with plant photosynthesis 

(Slattery et al., 2017) and chlorophyll concentration is a robust indicator of photosynthetic 

capacity and primary production, the rate at which a crop can capture and store chemical energy 

(Gitelson et al., 2003; Koester et al., 2016). Changes in leaf relative water content affect total 

water potential, osmotic potential, and turgor pressure, and therefore influence whole-plant 

physiology. Only when there is sufficient turgor pressure can cells expand for vegetative growth 

and stomata to open to incorporate carbon dioxide to be used in the Calvin cycle. (Zygielbaum et 

al., 2012; Gray et al., 2016). Canopy water content is indicative of canopy transpiration and 

determines radiation use efficiency and biomass accumulation in soybean (Saryoko et al., 2018). 

Biomass accumulation has long been established as important driver of potential yield, and is 
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often estimated at leaf area index, or LAI (Ma et al., 1995; Board and Harville, 1996). Although 

genetic improvement of physiological traits can certainly lead to increased grain yield (GY), 

high-throughput, nondestructive measurements are necessary to rapidly collect many phenotypes 

for large mapping populations. 

Remote sensing is a promising tool that rapidly and non-destructively collects vegetative 

indices related to chlorophyll content, carotenoids, vegetation, water content, and dry matter 

content that are used in soybean to predict yield (Ma et al., 2001; Bolton and Friedl, 2013; 

Johnson, 2014) and measure plant response to stress (Carter, 1994; Nutter Jr et al., 2002; Huang 

et al., 2016). An enormous number of spectral reflectance indices have been created to monitor 

vegetation health and productivity (Heinrich et al., 2011). Some indices have served as the 

industry standard for analyzing canopy “greenness” and detection of vegetation, such as the 

normalized difference vegetation index (Rouse Jr et al., 1974). However, many different indices 

have been developed depending on the specific trait to be monitored, and great advances in 

remote and proximal sensing technologies are currently underway. One advance has been the 

development of hyperspectral reflectance instruments (Haboudane et al., 2004). The major 

advantage of hyperspectral reflectance is that it allows users to calculate any number of desired 

spectral reflectance indices pertinent to a trait of interest (Heinrich et al., 2011). 

Quantitative trait loci (QTL) mapping is a key approach for understanding the genetic 

architecture of yield components and physiological traits in crops. However, pinpointing QTL 

can be hampered by relatively large QTL intervals due to the limited number of markers. Nested 

association mapping is an alternative population design that was proposed to increase the 

resolution of QTL mapping (Yu and Buckler, 2006). Nested association mapping populations are 

developed by crossing multiple diverse founders to a common parent followed by the 
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development of recombinant inbred lines (RILs) or progenies in each family.  In comparison to 

traditional QTL mapping, which only uses limited genetic information from two parents, NAM 

can increase genetic variation across contributing parental lines, increase genetic resolution, 

reduce linkage disequilibrium, and control population structure through design (Rafalski, 2010). 

The NAM design has been used successfully in soybean to map QTL controlling a number of 

traits such as grain yield stability (Xavier et al., 2018) and canopy coverage (Xavier et al., 2017). 

The objective of this study was to identify QTL for yield-related physiological traits 

estimated through remote sensing. To accomplish this, nondestructive hyperspectral reflectance 

measurements were obtained on a set of four RIL populations derived from a subset of the 

soybean NAM population over two reproductive growth stages, beginning bloom (R1) and seed 

fill (R5). These measurements were used to calculate 14 vegetative indices that represented 

physiological traits of interest. Results from this study will provide knowledge of the relationship 

of physiological traits with grain yield and identify linked SNP markers for marker-assisted 

selection (MAS) in soybean breeding. These data will further suggest which reproductive stage 

any particular vegetative index may have higher QTL detection and inform future studies aimed 

at dissecting the physiology of soybean grain yield. 

 

2. Materials and Methods 

2.1 Plant Materials and Field Trials 

A total of 560 F5 RILs derived from the cross of universal hub parent IA 3023 and NAM 

parent genotypes HS6-3976, NE3001, LG90-2550, and LG94-1128 were phenotyped in this 

study (Table 4.1). RIL populations consisting of 140 RILs per population were previously 

developed and genomic and multi-environmental data for the soybean nested association 

mapping dataset is public (Xavier et al., 2015). Field trials were performed in Central Iowa at 
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Iowa State University’s farm experiment stations during the 2015 and 2016 cropping seasons., 

providing data for three environments. It should be noted that only two environments of data in 

2016 were collected for the flowering growth stage R1. The RILs were planted in randomized 

complete blocks, single replication, with RIL families nested within block. Parent genotypes 

served as checks within each block and family and IA3023 as a common check between blocks. 

Plots consisted of two 2.1 m rows with 76.2 cm between rows. The target seeding rate was 57k 

plants ha-1 near the commercial standard. The field trials were managed following local normal 

practice and weeds were chemically controlled with a single application of Cobra® herbicide 

before beginning bloom (R1) and hand removed during crop growth. 

2.2 Phenotyping 

Absolute reflectance remote sensing data were measured using with a FieldSpec® 4 Hi-

Res (ASD Inc., Boulder, CO), which ranges from 350 to 2500 nm with a single nanometer 

resolution. The portable spectroradiometer was mounted as a backpack. A white reference panel 

(Specralon® Labsphere Inc., North Dutton, NH) reading for remote-sensing was collected at the 

beginning of each field block to serve as a control. All light measurements were performed at 

1000 h to 1400 on clear days. Measurements were collected directly above one of the two 

canopy rows in each plot. Canopy reflectance was captured as a single timepoint at two soybean 

reproductive growth stages: beginning bloom (R1) and seed fill (R5) per (Fehr et al., 1971) when 

approximately 50% of the plots were rated as the target growth stage. Grain yield (GY) was 

collected at each location for the whole plot with a two-row ALMACO = combine. GY was 

determined as weight of grain harvested per unit area (kg/ha). 
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2.3 Phenotypic Data Analysis 

ASD Spectra were processed using ViewSpec pro software, and single and multiple 

wavebands of absolute reflectance were extracted with R software to calculate vegetative 

indices. An infinite number of indices are available with many either highly correlated or near-

identical. A subset of indices related to traits of interest were selected to reduce redundancy and 

were summarized (Table 4.2). For each vegetative index and grain yield, outliers were detected 

and eliminated using interquartile range at each location and growth stage independently. Grain 

yield was additionally spatially adjusted for environmental variation using a moving grid of six 

adjacent plots total with R package “mvngGrAd” (Technow, 2011).  

All statistical analyses were performed using R software v.3.4.0 with REML estimation 

method under R package “lme4” (Bates et al., 2014). An ANOVA was conducted to assess the 

significance of genotype, environment, genotype x environment interaction, and check x block 

interaction nested within environment on yield and vegetative indices in a fixed effects model. 

For each trait, the “Best linear unbiased predictions” (BLUPs) of the genotype effects were 

extracted from completely random effects models. Trait BLUPs were used for QTL mapping 

when significant, i.e. not estimated as a single factor for genotype. Broad-sense heritability (H2) 

for each vegetative index and grain yield was estimated on an entry mean basis following 

(Nyquist and Baker, 1991): 

𝐻2 = (𝜎2
𝐺)/[𝜎2

𝐺 + (
𝜎2

𝐺𝐸

𝑒
) + (

𝜎2
𝑒

𝑟𝑒
)] 

in which 𝜎2
𝐺 is genetic variance, 𝜎2

𝐺𝐸 is genotype x environment (location and year) variance, 

𝜎2
𝑒 is error variance, r is number of replications, and e is the number of environments when 

genotype was significant.  



78 

 

2.4 Linkage Map Construction and QTL Analysis 

The 560 RILs in this study are a subset of the larger soybean nested association mapping 

(SoyNAM) population that contains 5,555 RILs. Lines were previously genotyped in the F5 

generation with the SoyNAM6K BeadChip (Xavier et al., 2016). The chip was designed using 

SNPs discovered after complete sequencing of the DNA of all 41 parental lines to minimize bias 

by sampling issues associated with rare variants. Non-segregating SNPs, variants with a minor 

allele frequency (MAF) lower than 0.15, and redundant markers were removed in the original 

dataset (Xavier et al., 2016). Quality assured genotype information was retrieved from SoyBase 

for all SoyNAM parents and progeny using WM82.a2 coordinates (Grant et al., 2009). A small 

number of RILs from each population did not have genotype information provided (Table 4.1). 

SNP markers were anchored by chromosome and filtered using IciMapping 4.1 software (Meng 

et al., 2015). Among the initial 4,273 polymorphic SNP markers available, 561 SNPs were 

retained after filtering SNPs with large numbers of missing values (15% or more). 12 markers 

were discarded for having no chromosome position.  

QTL analysis was performed using inclusive composite interval mapping (ICIM) with 

IciMapping 4.1 software. Map distances between markers were calculated with the Kosambi 

mapping function. The walking speed chosen for all QTL was 1.0 cM, with P = 0.001 in 

stepwise regression. Each trait by timepoint was filtered by a threshold determined by 1,000 

permutations at a probability level of alpha=0.05. Maximum trait LOD scores ranged from 5.6 to 

11.0, justifying individual thresholds by trait, although most traits were similar in LOD 

threshold. Each QTL was represented by a 20 cM interval with the LOD maximum as center. 

The phenotypic variance explained (PVE) was estimated through stepwise regression. 
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3. Results 

3.1 Phenotypic Evaluation 

Vegetative indices and yield were strongly influenced by environment and vegetative 

indices by growth stage (Figure 4.1). Across traits, environments 2 and 3 from 2016 were 

slightly more similar to each other than environment 1 from 2015, although this observation was 

not consistent. Distributions of traits between environments tended to be more similar within R5 

than R1 for many traits. Overall yield was lower in 2015 than both environments in 2016 (Figure 

4.1). Standard deviations for traits on average were lower for R5 than R1 (Table 4.3). The lower 

count of vegetative indices at R1 is from a missing environment (Table 4.3).  

ANOVA were conducted and Broad-sense heritabilities calculated for each vegetative 

trait by growth stage and yield (Table 4.4). There were no significant differences among the 560 

RILs for LAI, NMDI, RARSb at R1 and DMCI and Green at R5. The RedEdge summary index 

was not significant for genotype at either growth stage. However, significant differences for 

genotype were found among most traits. Environment was significant for every trait at each 

growth stage, confirming a strong observed location effect. The interaction effects check x 

block(environment) and genotype x environment were significant for some traits with no clear 

pattern. Neither interactions were significant for grain yield. The highest heritability observed 

was for grain yield at 0.45 (Table 4.4) and may be due to the spatial adjustment yield received in 

comparison to the vegetative indices. Vegetative heritabilities were low and ranged from 0-0.30. 

Of this range, VREI2, PRI, and NDVI notably had higher heritabilities between both 

reproductive growth stages, ranging from 0.18-0.25, and heritabilities for NMDI and PSRI fit 

within this range exclusively at R5 (Table 4.4). 
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3.2 Correlations Between Traits 

Pearson's coefficients of correlation were calculated for BLUPs based on data from either 

two environments for R1 vegetative indices or three for R5 vegetative indices and yield (Table 

4.5). The maximum correlation was between VREI2 and RARSb (r = -0.72) at R5, and the 

maximum correlation at R1 between NDVI and RARSa (r = 0.65) (Table 4.5). Greater 

correlations were observed within growth stage and almost absent between growth stage (Figure 

4.2). Greater vegetative index correlations were found within R5 than R1. In relationship to 

yield, the maximum correlation was for VREI2 (r = -0.42) and PRI (r = 0.42) each at R5 (Figure 

4.3). Other vegetative indices with significant negative correlations with yield included NWIB at 

R5 (r = -0.33), PSRI at R5 (r = -0.31), and VREI2 at R1 (r = -0.15) and significant positive 

correlations NDVI at R5 (r = 0.34), RARSb at R5 (r = 0.25), NMDI at R5 (r = 0.22), LAI at R5 

(r = 0.21), NDLI at R5 (r = 0.14), and PRI at R1 (r = 0.11). 

 

3.3 Linkage Map Construction 

Twenty linkage groups corresponding to the 20 haploid soybean chromosomes were 

constructed from the 561 polymorphic SNP markers with a total length of 1750.11 cM, smaller 

than the 2291.64 cM reported for the soybean consensus map 3.0 (Grant et al., 2009) (Table 4.6), 

but very similar to the composite genetic linkage map of 1736 cM based on all of the RILs for 

the soybean NAM population.(Song et al., 2017). The number of SNP markers in each soybean 

chromosome ranged from 11 mapped on chromosome 9 to 69 on chromosome 2. The SNP 

markers were moderately well distributed throughout the genome, although chromosomes 4 and 

18 exhibited lower marker densities (Figure 4.4). The overall SNP density was 3.12 cM, with the 

highest density of 0.86 cM on chromosome 1, and the lowest density of 10.93 cM on 

chromosome 18 (Table 4.6). 
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3.4 QTL Analysis of Grain Yield and Vegetative Indices 

ICIM identified five distinct QTL for BLUPs of grain yield and the following five 

vegetative indices at seed fill (R5): NDVI, NMDI, NWIB, PSRI, and VREI2 (Table 4.7). No 

QTL were detected for vegetative indices at beginning bloom (R1). QTL were detected on four 

soybean chromosomes: 1, 3, 10, and 18 (Figure 4.4). QTL by trait are denoted as QNDVI.R5-

chr1, QNDVI.R5-chr10, QNMDI.R5-chr18, QNWIB.R5-chr1, QPSRI.R5-chr3, QVREI2.R5-chr1, 

and QGY-chr18 and together ranged from 2.89-5.29% phenotypic variance explained (PVE) 

(Table 4.7). Positive additive effects were desirable for grain yield, NDVI, and NMDI, and 

negative additive effects desirable for NWIB, PSRI, and VREI2 (Figure 4.3). All four NAM 

families contributed to QTL detection (Table 4.7). 

Two distinct QTL for NDVI were identified on chromosomes 1 and 10, with QNDVI.R5-

chr1 explaining 3.08% and QNDVI.R5-chr10 explaining 2.89% of the phenotypic variance. The 

positive alleles for QNDVI.R5-chr1 with the greatest additive effect derived from NAM 31, 

genotype LG90-2550, and QNDVI.R5-chr10 the greatest additive effect derived from NAM 33, 

genotype NE3001. One distinct QTL for PSRI was identified on chromosome 3. QPSRI.R5-chr3 

explained 5.29% of the phenotypic variance, and alleles from NAM 31 and 18 contributed 

equally with the favored negative additive effect (Table 4.7).  

Two QTL with pleiotropic effects were detected on chromosomes 1 and 18. On 

chromosome 1 at 12 cM, the single QTL for NWIB, QNWIB.R5-chr1, explained 5.37% of the 

phenotypic variance and alleles from NAM 31 and 18 contributed to the wanted negative 

additive effect. At the same position, QVREI2.R5-chr1 explained 4.74% of the phenotypic 

variance and alleles from NAM 18, 31, and 33 contributed to the negative additive effect. On 

chromosome 18 at 185 cM the single QTL for NMDI and grain yield, QNMDI.R5-chr18 and 

QGY-chr18, explained 4.73% and 5.18% of the phenotypic variance respectively. Alleles from 
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all NAM families contributed to the positive additive effect, primarily NAM 18 and 33 for both 

traits (Table 4.7). 

4. Discussion 

4.1 Correlations Between Traits and Yield 

Relatively few studies have reported an extensive list of vegetative index relationships 

with soybean yield. Of the five vegetative indices mapped in this study, the Normalized 

Difference Vegetation Index (NDVI) is the most commonly studied. NDVI is actively used at 

county-level corn and soybean yield forecasting efforts in the Corn Belt region (Johnson, 2014; 

Kross et al., 2015). However, vegetative indices displaying the greatest correlations with grain 

yield in this study were VREI2 (r = -0.42) and PRI (r = 0.42) at R5. Luetchens and Lorenz, 

(2018) determined the photochemical reflectance index (PRI) out of several indices was most 

strongly correlated to relative water content in maize. Feng et al. (2015) compared 15 indices for 

nitrogen uptake, often an indicator of chlorophyll content, in wheat where VREI2 proved to be 

both powerful and robust for monitoring above ground nitrogen uptake. In addition to utilizing 

indices more sensitive to water content, emphasis should be directed towards using indices 

sensitive to foliar chlorophyll content to provide useful information on leaf photosynthetic 

capacity and correlation to grain yield. Vegetation indices consistently exhibited greater 

correlation with yield at reproductive growth stage R5 than R1. This may be due to a missing 

environment for R1, but several studies in wheat have confirmed NDVI is more predictive of 

yield at later growth stages (Sembiring et al., 2000; Moges et al., 2005; Crain et al., 2017) and 

Moges et al.(2005).attributed this largely due to an increased percentage of soil covered by 

vegetation at later stages. Although we reduced soil exposure by collecting absolute reflectance 

directly above the canopy, minimizing soil reflectance should be taken into consideration. 
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Reflectance of a canopy is strongly influenced by the soil reflectance especially when plant 

density is low and may limit vegetative indices to growth stages at full canopy coverage. 

 

4.2 Yield and Vegetative Index QTL  

Environmental effects were large and Broad-sense heritabilities low for vegetative 

indices, however, five vegetative trait and grain yield BLUPs mapped to a total of five QTL. 

QNMDI.R5-chr18 and QGY-chr18, NMDI and grain yield respectively, mapped to an identical 

position on chromosome 18 at 185 cM. The Normalized Multi‐band Drought Index (NMDI) was 

initially proposed for monitoring soil and vegetation moisture from space and enhanced the 

sensitivity to drought severity in comparison to the Normalized Difference Water Index (NDWI), 

related to the Normalized Water Index 2 (NWIB) used in this study (Wang and Qu, 2007). The 

additive effect for both traits was greater from NAM populations 18 and 33, derived from parent 

genotypes that segregate for the semideterminate growth habit. Based on the timing of the 

termination of apical stem growth, soybean cultivars are classified between two categories of 

stem architecture, determinate and indeterminate, with a continuum in between. A previous 

linkage analysis with 20 F2 plants demonstrated that Dt2 was located at the distal end of the short 

arm of chromosome 18 (Muehlbauer et al., 1989), co-localizing in position of the detected 

NMDI and grain yield QTL. Ping et al. (2014) further fine-mapped Dt2 between markers 

SSR_18_1821 and SSR_18_1825 in a mapping population between two NAM parents included 

in this study, NE3001 and IA3023, and determined Dt2 is a gain-of-function MADS-domain 

factor gene that causes semideterminancy. Soybean stem growth habit is a key adaptation and 

agronomic trait that directly affects plant height, flowering time and duration, canopy size, 

maturity, and markedly, water use efficiency and soybean yield (Specht et al., 2001) which may 

explain the co-localization of the NMDI and grain yield QTL with Dt2. 
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The Plant Senescence Reflectance Index (PSRI) is used to estimate carotenoid content, 

the characteristic feature accompanying natural and possibly stress‐induced leaf senescence 

(Merzlyak et al., 1999). Dhanapal et al. (2015) identified 28 putative candidate SNPs for 

measured and estimated carotenoids in a soybean GWAS study, including a SNP for extractable 

carotenoid content on chromosome 3 at 47,434,930 base pairs. This SNP is approximately 

4.6MB from the right flanking marker of QPSRI.R5-chr3, potentially identifying the same 

genetic region. NDVI and the Vogelmann Red Index are both sensitive to chlorophyll content, 

and Li et al. (2010) mapped QTL on chromosomes 1 and 10 for chlorophyll content measured 

from seedling to blooming stage in the 244 F2:3 and F2:4 families in 2 environments, published on 

SoyBase as leaflet chlorophyll QTL 1-4,1-6, and 1-8 (Table 4.8). Directly comparing genetic 

positions is hampered by reduced genetic distances in our assembled linkage map, whereas 

chromosome 1 and 10 are approximately 74 and 50 cM shorter than the soybean consensus map 

(Table 4.6). QNWIB.R5-chr1 co-localized with QVREI2.R5-chr1 and Mian et al. (1996) reported 

a trait QTL related to the Normalized Water Index 2 (NWIB), water use efficiency (WUE), an 

important trait that has been associated with drought tolerance, on chromosome 1. This QTL was 

published in SoyBase as WUE QTL 1-1 (Table 4.8).   

4.3 Potential Application of QTL in Soybean Breeding 

Grain yield is highly affected by environments, and it is difficult to select high-yielding 

lines in smaller plots at the early stage of a breeding program. Trait-assisted selection can be an 

efficient strategy when correlated traits are obtained earlier or more inexpensively than a focal 

trait (Fernandes et al., 2017). Soybean yield was demonstrated to be significantly and positively 

correlated with vegetative indices at R5 and R1, and indices can be collected rapidly, non-

destructively, and inexpensively than seed harvest at final plant maturity. Identifying the genetic 

control of correlated traits further enables a program to apply marker-assisted selection for yield 



85 

 

related traits in breeding programs. QTL were mapped from BLUPs estimated over three 

environments, suggesting these QTL and could be considered for selecting for yield across 

environments.  

5. Conclusion 

A linkage map was constructed from four RIL populations of the SoyNAM panel using 

the SoyNAM6K BeadChip; it was sufficient in mapping QTL for grain yield (GY) and several 

vegetative indices, specifically NDVI, NMDI, NWIB, PSRI, and VREI2 at seed fill (R5), with 

no QTL detected at beginning bloom (R1) in this study. Two pleiotropic QTL clusters for GY 

and NMDI, propositioned to be previously identified semideterminate growth habit gene Dt2, 

and NWIB and VREI2 were detected. Three individual QTL for NDVI (2) and PSRI (1) were 

identified, with an average confidence interval of 4 cM. Therefore, these QTL could serve as a 

reference for future QTL mapping studies for fine mapping, candidate gene discovery, and MAS 

in soybean breeding. 
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Tables and figures 

 

Table 4.1 Summary of parental genotype information including name, origin, NAM number, ancestry, growth habit, and maturity grouping followed by 

Recombinant Inbred Line (RIL) population size and lines with quality assured genotypic information 

 

 

Table 4.2 Summary of selected vegetation indices with abbreviation, general class type, equation, and source.  

NAM parent Origin NAM population Ancestry Growth habit Maturity RIL genotypes

Quality assured 

RIL genotypes

HS6-3976 Ohio State NAM 08 Elite Indeterminate 3 140 138

NE3001 Univ. of Nebraska NAM 18 Elite Semi-determinate 3 140 136

LG90-2550 USDA-ARS NAM 31 Diverse Semi-determinate 3 140 127

LG94-1128 USDA-ARS NAM 33 Diverse Indeterminate 2 140 134

IA3023 Iowa State Univ. Universal Parent Elite Indeterminate 3 - -

Vegetation Index Description Abbreviation Type Equation a Source

Photochemical Reflectance Index PRI Carotenoids (ρ531 – ρ570)/(ρ531 + ρ570) Peñuelas et al., 1995

Plant Senescence Reflectance Index PSRI Carotenoids (ρ680 – ρ500)/ρ750  Merzlyak, et al., 1999

Ratio Analysis of Reflectance Spectra Chlorophyll A RARSa Chlorophyll (ρ675/ρ700) Chappelle et al., 1992

Ratio Analysis of Reflectance Spectra Chlorophyll B RARSb Chlorophyll (ρ675/(ρ650 x ρ700 ) Chappelle et al., 1992

Vogelmann Red Edge Index 2 VREI2 Chlorophyll (ρ734 – ρ747)/(ρ715 + ρ726) Vogelmann, et al. 1993

Cellulose Absorption Index CAI Dry matter 0.5 x (ρ2000 – ρ2200) - ρ2100 Nagler et al., 2003

Dry Matter Content Index DMCI Dry matter (ρ2305 – ρ1495)/(ρ2305 + ρ1495) Romero et al., 2012

Normalized Difference Lignin Index NDLI Dry matter [log(1/ρ1754) – log(1/ρ1680)]/[log(1/ρ1754) + log(1/ρ1680)] Melillo et al., 1982

Green Average Green Vegetation Avg(ρ505 to ρ595) Gitelson et al., 1996

Leaf Area Index LAI Vegetation 3.618*EVI-0.118  Boegh et al., 2002

Near Infrared RedEdge Vegetation Avg(ρ800 to ρ850) Christenson et al., 2014

Normalized Difference Vegetation Index NDVI Vegetation (ρ780 – ρ670)/(ρ780 + ρ670) Rouse Jr et al., 1973

Normalized Multi-Band Drought Index NMDI Water content (ρ860 – (ρ1640 – ρ2130))/(ρ860 + (ρ1640 + ρ2130)) Wang and Qu, 2007

Normalized Water Index 2 NWIB Water content (ρ970 – ρ850)/(ρ970 + ρ850) Peñuelas et al., 1993
a ρ is reflectance and the subscript is wavelength (nm).
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Figure 4.1 Boxplot distribution of vegetation indices and yield by environments (n=2-3) and soybean growth stages 

beginning bloom (R1), seed fill (R5), and final maturity for grain yield (R8). Strong environmental effects were 

observed for all traits 
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 Table 4.3 Summary of vegetation indices and yield including count, mean, and standard deviation by growth stage 

post quantile outlier removal. 

 

 

 

Trait N Mean Std Dev N Mean Std Dev

CAI 979 -0.0132 0.0092 1746 -0.0096 0.0029

DMCI 957 -0.1237 0.0183 1724 -0.1569 0.0193

Green 1157 0.0691 0.0213 1716 0.0408 0.0118

LAI 1170 2.7121 0.5674 1741 2.8544 0.4527

NDLI 1070 0.0595 0.0121 1744 0.0531 0.0076

NDVI 1057 0.8946 0.0226 1696 0.9266 0.0269

NMDI 1134 0.4573 0.1597 1736 0.5519 0.0285

NWIB 1096 -0.0159 0.0212 1755 -0.0149 0.0197

PRI 1156 0.0082 0.012 1741 0.0082 0.0249

PSRI 1065 -0.0026 0.0112 1663 0.0018 0.003

RARSa 1091 0.3818 0.0567 1744 0.3573 0.0369

RARSb 1169 11.552 3.8664 1704 16.7352 5.5616

RedEdge 1126 0.2545 0.0817 1731 0.2124 0.0393

VREI2 1176 -0.1735 0.0494 1737 -0.2489 0.0899

Yield (kg/ha) 1761 3218.438 735.2003 - - -

R1 R5
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Table 4.4 Analysis of Variance and broad-sense heritabilities for vegetation indices and yield by growth stage. “NS” P > 0.05; “*” P ≤ 0.05; “**” P ≤ 0.01; 

“***” P ≤ 0.001. 

 

 

  

Growth 

Stage Factor df CAI DMCI Green LAI NDLI NDVI NMDI NWIB PRI PSRI RARSa RARSb RedEdge VREI2 Yielda

R1 Env 1 *** ** *** *** *** *** *** *** * *** *** *** *** *** ***

Check*Block(Env) 7 * NS *** * NS NS NS * NS * NS ** ** * NS

Genotype 564 *** * ** NS * ** NS *** * ** * NS NS * ***

Genotype*Env 557 * NS *** NS NS NS NS * NS NS NS NS NS NS NS

Residuals 46

H
2b

0.07 0.12 0.14 - 0.07 0.23 - 0.16 0.18 0.07 0.10 - - 0.22 0.45

R5 Env 2 *** *** *** *** *** *** *** *** *** *** *** *** *** *** -

Check*Block(Env) 10 * NS NS ** * NS NS * NS NS * ** * NS -

Genotype 564 * NS NS *** * ** ** *** * ** ** *** NS *** -

Genotype*Env 1092 NS NS NS * NS NS NS ** NS NS * *** NS * -

Residuals 68 -

H 2
0.04 - - 0.17 0.13 0.21 0.23 0.30 0.21 0.25 0.06 0.05 - 0.25 -

a
 Yield measured at physiological maturity (R8).

b
H

2
, broad-sense heritability, calculated on an entry mean basis.
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Table 4.5 Pearson’s correlations and p-values of vegetation index and yield BLUPs by growth stage, bottom left and upper right respectively.  

CAI DMCI Green NDLI NDVI NWIB PRI PSRI RARSa VREI2 CAI LAI NDLI NDVI NMDI NWIB PRI PSRI RARSa RARSb VREI2 Yield

CAI - 0.00 0.59 0.81 0.52 0.81 0.00 0.00 0.67 0.59 0.36 0.28 0.08 0.17 0.63 0.77 0.75 0.97 0.02 0.72 0.32 0.27

DMCI 0.42 - 0.68 0.87 0.05 0.87 0.11 0.36 0.78 0.10 0.63 0.11 0.03 0.03 0.20 0.09 0.04 0.92 0.59 0.30 0.01 0.11

Green 0.02 0.02 - 0.37 0.18 0.12 0.00 0.00 0.33 0.00 0.14 0.67 0.14 0.13 0.06 0.00 0.07 0.47 0.11 0.04 0.00 0.25

NDLI -0.01 -0.01 0.04 - 0.91 0.97 0.48 0.73 0.94 0.15 0.47 0.85 0.41 0.35 0.70 0.89 0.78 0.13 0.29 0.35 0.65 0.95

NDVI -0.03 0.08 -0.06 0.00 - 0.91 0.00 0.02 0.00 0.00 0.15 0.64 0.68 0.16 0.87 0.53 0.46 0.17 0.09 0.18 0.04 0.46

NWIB -0.01 -0.01 -0.07 0.00 -0.01 - 0.60 0.87 0.94 0.78 0.57 0.83 0.81 0.31 0.72 0.97 0.18 0.76 0.98 0.13 0.38 0.81

PRI 0.18 0.07 -0.39 0.03 0.25 -0.02 - 0.00 0.00 0.00 0.19 0.71 0.30 0.09 0.21 0.01 0.00 0.01 0.02 0.00 0.00 0.01

PSRI 0.17 0.04 -0.22 0.02 -0.11 0.01 -0.12 - 0.20 0.00 0.26 0.49 0.16 0.57 0.29 0.37 0.33 0.23 0.02 0.59 0.90 0.82

RARSa -0.02 -0.01 -0.04 0.00 0.65 0.00 0.15 -0.06 - 0.18 0.16 0.88 0.51 0.66 0.88 0.62 0.38 0.82 0.91 0.52 0.55 0.65

VREI2 -0.02 -0.07 0.49 -0.06 -0.17 -0.01 -0.61 0.22 -0.06 - 0.25 0.40 0.30 0.01 0.10 0.05 0.00 0.03 0.00 0.00 0.00 0.00

CAI -0.04 0.02 -0.06 -0.03 0.06 0.02 0.06 -0.05 0.06 -0.05 - 0.00 0.00 0.00 0.00 0.00 0.28 0.22 0.15 0.00 0.00 0.62

LAI 0.05 0.07 -0.02 0.01 0.02 -0.01 0.02 0.03 -0.01 -0.04 -0.51 - 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NDLI 0.07 0.09 -0.06 0.04 0.02 -0.01 0.04 0.06 0.03 -0.05 -0.37 0.74 - 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NDVI 0.06 0.09 -0.07 0.04 0.06 -0.04 0.07 0.02 0.02 -0.11 0.18 0.33 0.24 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NMDI 0.02 0.06 -0.08 -0.02 -0.01 -0.02 0.05 -0.05 -0.01 -0.07 0.24 0.07 -0.06 0.28 - 0.00 0.00 0.00 0.01 0.00 0.00 0.00

NWIB 0.01 -0.07 0.14 -0.01 -0.03 0.00 -0.11 -0.04 -0.02 0.08 -0.35 -0.19 -0.15 -0.42 -0.54 - 0.00 0.00 0.00 0.00 0.00 0.00

PRI 0.01 0.09 -0.08 0.01 0.03 -0.06 0.13 -0.04 0.04 -0.14 0.05 0.43 0.23 0.64 0.23 -0.48 - 0.00 0.00 0.00 0.00 0.00

PSRI 0.00 0.00 0.03 -0.07 -0.06 0.01 -0.12 0.05 -0.01 0.09 -0.05 -0.36 -0.28 -0.56 -0.16 0.42 -0.51 - 0.00 0.00 0.00 0.00

RARSa -0.10 -0.02 -0.07 -0.05 0.07 0.00 0.10 -0.10 0.00 -0.13 0.06 -0.19 -0.13 -0.31 -0.12 0.15 -0.13 0.13 - 0.01 0.34 0.16

RARSb 0.02 0.04 -0.09 -0.04 0.06 -0.07 0.13 -0.02 0.03 -0.16 0.44 -0.19 -0.17 0.49 0.19 -0.29 0.47 -0.20 0.12 - 0.00 0.00

VREI2 -0.04 -0.12 0.15 0.02 -0.09 0.04 -0.15 -0.01 -0.03 0.22 -0.34 -0.22 -0.14 -0.68 -0.39 0.53 -0.65 0.40 -0.04 -0.72 - 0.00

Yield 0.05 0.07 -0.05 0.00 0.03 -0.01 0.11 -0.01 0.02 -0.15 0.02 0.21 0.14 0.34 0.22 -0.33 0.42 -0.31 -0.06 0.25 -0.42 -

R1 R5

R1

R5
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Figure 4.2 Heatmap of Pearson’s correlations between vegetation index and yield BLUPs by growth stage. Greater 

correlations were observed within growth stage and within R5. 
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Figure 4.3 Bar chart of Pearson’s correlations between vegetative index BLUPs and grain yield BLUPs in 

ascending order. Significant correlations are noted by “*” P ≤ 0.05; “**” P ≤ 0.01; “***” P ≤ 0.001. 
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Table 4.6 Summary of soybean chromosomes, linkage group ID, marker number, observed linkage length, 

consensus linkage map for reference, and SNP marker density. 

Chromosome 

Number Linkage Group

Marker 

Number

Linkage length 

(cM)

Soybean 

Consensus 

Map 3.0 (cM)

SNP 

density 

(cM)

1 D1a 28 24.02 98.41 0.86

2 D1b 69 80.11 140.63 1.16

3 N 37 95.18 99.51 2.57

4 C1 14 138.80 112.32 9.91

5 A1 18 73.30 86.75 4.07

6 C2 19 52.56 136.51 2.77

7 M 12 92.10 135.15 7.68

8 A2 58 112.35 146.67 1.94

9 K 11 69.55 99.60 6.32

10 O 13 80.32 132.89 6.18

11 B1 52 110.59 124.24 2.13

12 H 24 49.38 120.50 2.06

13 F 53 112.44 120.03 2.12

14 B2 12 78.68 108.18 6.56

15 E 25 87.04 99.88 3.48

16 J 29 128.99 92.27 4.45

17 D2 15 16.65 119.19 1.11

18 G 17 185.89 105.00 10.93

19 L 13 63.65 101.14 4.9

20 I 42 98.51 112.77 2.35

sum 561 1750.11 2291.64 avg = 3.12
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 Figure 4.4 Genetic linkage map of chromosomes 1, 3, 10, and 18 with QTL for vegetation indices and yield , 

including marker name, genetic distance, and LOD score. Traits, QTL position, and LOD scores are marked by 

color. 

 

NDVI R5
NMDI R5
NWIB R5
PSRI R5
VREI2 R5
Yield
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Figure 4.5 Genetic linkage map of soybean chromosomes 1-20 with marker names. The total length was 1750.11 

cM consisting of 561 markers.  
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Figure 4.5 continued 
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Figure 4.5 continued 
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Figure 4.5 continued 
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Table 4.7  Summary of QTL identified for five vegetation indices and yield by growth stage, including genetic position, confidence interval, left and right 

flanking marker, LOD score, LOD score by family, and family additive effects. A total of 5 distinct QTL were identified in a four-RIL nested association 

mapping population on chromosomes 1, 3, 10, and 18. 

 

 

Trait 

Name

Growth 

Stage

Chr. 

Number

Position 

(cM)

Left 

CI

Right 

CI Left Marker Right Marker

Cumulative 

LOD PVE (%) NAM 08 NAM 31 NAM 33 NAM 18 NAM 08 NAM 31 NAM 33 NAM 18

NDVI R5 1 21 18.5 24.0 ss1235974193 ss1235974197 5.81 3.08 1.39 3.25 0.37 0.80 -0.0003 0.0006 0.0002 0.0002

NDVI R5 10 80 78.5 80.0 ss1235980794 ss1235980839 5.24 2.89 0.99 0.31 3.45 0.49 0.0001 0.0001 0.0007 -0.0001

NMDI R5 18 185 183.5 185.0 ss1235985629 ss1235985623 4.73 5.17 0.20 3.00 0.18 1.35 0.0002 0.0008 0.0002 0.0006

NWIB R5 1 12 7.5 14.5 ss1235974097 ss1235974124 5.37 5.02 1.04 2.76 0.78 0.80 0.0003 -0.0005 0.0003 -0.0003

PSRI R5 3 93 92.5 93.5 ss1235975628 ss1235975637 5.04 5.29 0.18 2.70 0.34 1.81 0 -0.0001 0 -0.0001

VREI2 R5 1 12 7.5 16.5 ss1235974097 ss1235974124 4.74 4.78 1.25 3.01 0.01 0.47 0.0012 -0.0017 -0.0001 -0.0007

Yield R8 18 185 182.5 185.0 ss1235985629 ss1235985623 6.05 5.18 0.44 1.97 0.01 3.63 0.1800 0.4526 0.0264 0.6686

Family LOD Score Family Additive Effect
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Table 4.8  List of 41 QTL reported for traits related to vegetation indices on chromosomes 1, 3, 10, and 18 

from Soybase (www.soybase.org) with beginning and end genetic positions. 

 

 

Trait

QTL 

Number 

Linkage 

Group

Chr. 

Number

Start 

(cM)

End 

(cM)

Drought index 1-1 D1a 1 62.56 65.62

Drought tolerance 6-1 N 3 70.43 81.39

Drought tolerance 6-3 O 10 60.00 88.90

Leaflet area 1-6 O 10 7.30 9.30

Leaflet area 9-5 O 10 39.50 41.50

Leaflet area 2-3 O 10 58.43 60.43

Leaflet area 2-2 G 18 52.90 59.30

Leaflet area 1-4 G 18 78.00 80.00

Leaflet chlorophyll 1-6 D1a 1 62.36 77.48

Leaflet chlorophyll 1-4 D1a 1 104.27 108.88

Leaflet chlorophyll 1-14 N 3 74.80 76.48

Leaflet chlorophyll 1-3 N 3 84.54 102.05

Leaflet chlorophyll 2-1 O 10 9.53 129.30

Leaflet chlorophyll 1-8 O 10 56.93 59.43

Leaflet chlorophyll 1-2 G 18 4.53 12.54

Plant weight, dry 1-3 G 18 60.36 66.55

Seed yield 30-4 N 3 90.55 94.55

Seed yield 30-3 G 18 94.50 105.50

Seed yield 8-2 D1a 1 63.52 65.52

Seed yield 15-12 N 3 52.25 54.25

Seed yield 15-13 N 3 74.91 74.91

Seed yield 27-4 N 3 90.55 94.55

Seed yield 4-1 N 3 135.00 137.00

Seed yield 22-19 O 10 0.00 8.75

Seed yield 15-2 O 10 4.44 6.44

Seed yield 32-2 O 10 19.43 21.43

Seed yield 23-15 O 10 19.45 21.45

Seed yield 28-9 O 10 38.82 40.82

Seed yield 25-3 O 10 39.82 55.81

Seed yield 28-12 O 10 66.93 68.93

Seed yield 23-8 O 10 81.08 83.08

Seed yield 31-12 O 10 104.01 106.09

Seed yield 21-4 G 18 1.20 3.20

Seed yield 31-6 G 18 21.88 29.15

Seed yield 21-8 G 18 37.47 39.47

Seed yield 15-4 G 18 42.38 44.38

Seed yield 22-17 G 18 61.63 76.76

Seed yield 22-18 G 18 68.66 76.76

Seed yield 27-3 G 18 94.50 105.50

Seed yield 15-11 G 18 95.47 97.47

WUE 1-1 G 18 51.60 53.60

http://www.soybase.org/
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CHAPTER 5.    GENERAL CONCLUSIONS 

High-throughput phenotyping of physiological traits driving yield is an active area of 

investigation and application in breeding programs to increase the rate of genetic gain for 

crop production. This dissertation investigated areas related to high-throughput phenotyping 

and physiological traits driving soybean yield by expanding upon previous studies in elite 

germplasm to a panel of soybean of diverse ancestries. In Chapter 2, genotype and seeding 

rate interactions for yield, seed components, and agronomic traits were evaluated, and 

adaptive elastic net models identified the underlying physiological traits predicting yield 

response to three levels of seeding rate. A significant genotype x seeding rate interaction was 

only detected for lodging, and not for yield, seed weight, seed oil percentage, seed protein 

percentage, height, or maturity. These results suggest that current soybean germplasm and 

soybean of wide genetic ancestry respond similarly to seeding rate and implies introgression 

of diverse material may not detrimentally affect yield response to seeding rate. Physiological 

traits predicting the yield response within and across seeding rates were summarized, with 

chlorophyll traits determined as the leading predictors across seeding rates in this study. Our 

further characterization of diverging traits between the seeding rate yield models may 

provide the research community targets for soybean improvement for current and future 

seeding rate practices.  Moreover, further characterizing genotype x seeding rate across 

diverse germplasm to understand the mechanisms underlying yield response to seeding rate is 

an important direction for future research and soybean improvement. 

Chapter 3 characterized the genetic variation in biomass partitioning strategies in the 

32-parent subset of the SoyNAM soybean panel also used in Chapter 2. Three reproductive 

stages (R1, R4, R8) were destructively harvested and partitioned into stems, petioles, leaves, 
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pod, seed, and/or fallen residue (petioles and leaves) component dry weights were calculated 

as proportions of final biomass. Dry biomass weights were significantly different for 

genotypes at each growth stage, but significant differences in biomass proportions were 

mainly detected in the later reproductive growth stages, R4 and R8. Overall, higher biomass 

percentages in reproductive organs at R4 and R8 correlated positively with grain yield; 

however, a higher percentage of leaves at R1 correlated positively with pod percentage at R4 

and harvest index at R8.  The strongest relationship with grain yield was final biomass 

weight, but harvest index was negatively correlated with final biomass weight, indicating 

larger canopies may not be achieving their theoretical maximum yield. Our study 

additionally demonstrated genetic variation in carbon:nitrogen (C:N) residue quality for each 

of the partitioned residue components at physiological maturity (R8). The lack of a negative 

relationship between yield and C:N ratio and high heritability suggests this trait can be 

selected in breeding programs to improve soybean residue quality. Lower C:N ratios in 

soybean ratio are hypothesized to increase soil mineralization, and, therefore, increase 

nitrogen availability for the succeeding year’s crop. Further studies are needed to unravel the 

genetic control of biomass partitioning strategies and C:N ratio in soybean. Ultimately, 

economic return in soybeans can be improved by both increasing yield through targeting 

biomass partitioning strategies and decreasing nitrogen inputs in the following crop season 

through lower soybean residue C:N ratios.  

In Chapter 4, a linkage map was constructed from four RIL populations of the 

SoyNAM panel using the SoyNAM6K BeadChip; it was sufficient in mapping QTL for grain 

yield (GY) and several vegetative indices, specifically NDVI, NMDI, NWIB, PSRI, and 

VREI2 at seed fill (R5), with no QTL detected at beginning bloom (R1) in this study. Two 
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pleiotropic QTL clusters for GY and NMDI, propositioned to be previously identified 

semideterminate growth habit gene Dt2, and NWIB and VREI2 were detected. Three 

individual QTL for NDVI (2) and PSRI (1) were identified, with an average confidence 

interval of 4 cM. Therefore, these QTL could serve as a reference for future QTL mapping 

studies for fine mapping, candidate gene discovery, and MAS in soybean breeding. 
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