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ABSTRACT

In the last decade, there has been a wide scale adoption of Graphics Processing Units

(GPUs) as a co-processor for accelerating data-parallel general purpose applications. A primary

driver of this adoption is that GPUs offer orders of magnitude higher floating point arithmetic

throughput and memory bandwidth compared to their CPU counterparts. As GPU architectures

are designed as throughput processors, they adopt a manycore architecture with 10 to 100s

of cores, each with multiple vector processing pipelines. A significant amount of the die

area is dedicated to floating point units, at the expense of not having hardware units used

for memory latency hiding in conventional CPU architectures. The quintessential technique

used for memory latency tolerance is exploiting data-level parallelism in the workload, and

interleaving execution of multiple SIMD threads, to overlap the latency of threads waiting on

data from memory with computation from other threads.

With each architecture generation, GPU architectures are providing an increasing amount

of floating point throughput and memory bandwidth. Alongside, the architectures support

an increasing number of simultaneously active threads. We envision that to continue making

advancements in GPU computing, workload-aware scheduling techniques are required. In the

GPU computing work flow, scheduling is performed at three levels - the system or chip level,

the core level and the thread level. The work proposed in the research aims at designing novel

workload aware scheduling techniques at each of the three levels of scheduling. We show that

GPU computing workloads have significantly varying characteristics, and design techniques that

monitor the hardware state to aide at each of the three levels of scheduling. Each technique

is implemented in a cycle level GPU architecture simulator, and their effect on performance is

analyzed against state of the art scheduling techniques used in GPU architectures.
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CHAPTER 1. INTRODUCTION

In the last decade, the adoption of Graphics Processing Units (GPUs) for accelerating

general purpose applications has grown at a rapid pace [33, 35, 50]. The role of GPUs has

shifted from being a co-processor for graphics rendering, to a general purpose accelerator for

data-parallel workloads [58, 57]. Three reasons can be identified as primary drivers for this

rapid growth.

First, the last decade has seen a tremendous growth in the number of highly data-parallel

applications, which typically have high computational throughput requirements. Examples can

be found in several domains [74] ranging from computational physics [62, 19], medical sciences

[61, 70], molecular dynamics [69, 6], computational biology [65] and big data analytics [26].

Currently, a third of the systems in the top 500 supercomputer list use GPUs as accelerators

[4]. A clear indication that the growth of GPU computing in the HPC domain would continue

to increase in the near future is, the next three supercomputers funded by the U.S. Department

of Energy’s CORAL project employing GPUs [38, 56] or similar many-core architectures [36].

Moreover, with the rise of deep learning, GPU computing is expected to grow into several other

domains, like automobiles, robotics and urban development [1].

Secondly, with the end of Denard scaling [17, 11] towards the middle of the last decade,

improvements in single processor performance from frequency scaling ceased and CPU processor

architectures shifted from single-core to multi-core designs [18]. However CPU cores are

designed for low latency, and thus adopt an architecture with large caches and speculative out-

of-order cores [28]. Their computational throughput does not scale to the demands required

for the aforementioned high-throughput applications. On the contrary, as graphics rendering

workloads have high computational throughput demands and relatively lower latency requirements,

GPU architectures employ a many-core architecture and operate at lower frequencies with a
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significantly higher number of in-order cores [55]. Consequently GPUs provide a significantly

higher throughput and memory bandwidth compared to multi-core CPUs, and serve as a natural

fit for high-throughput data-parallel workloads.

Lastly, towards the middle of the last decade, GPU architectures started a shift from fixed-

function graphics rendering pipelines to programmable shaders [2]. While initial results of using

GPU programmable shaders for data-parallel workloads showed significant speedups [13, 66],

their adoption was limited due to the difficulty in programming them. With the development of

languages like CUDA [12, 34, 49] and OpenCL [47], GPU computing became more widespread,

and continues to grow in adoption. This has led to the emergence of a new parallel computing

paradigm for executing general purpose applications on GPUs, referred to as GPGPU.

1.1 Motivation

GPU architectures are designed specifically for high throughput computing. For example,

the current state of the NVIDIA GPU, the Volta V100, supports a peak double precision

floating point throughput of 7024 GFLOPs and a peak memory bandwidth of 807 GB/s [55].

As a comparison, the state of the art Intel CPU, the Xeon E7 supports a peak double precision

floating point throughput of 844 GFLOPs and a peak memory bandwidth of 102 GB/s [28].

To achieve such high computational throughputs, GPUs dedicate a large portion of their die

area to cores and arithmetic units. As a trade-off, GPU chips do not include the hardware

units which have been traditionally used for latency hiding in CPUs. For example, GPUs use a

non-speculative in-order pipeline, do not have branch predictors, and have much smaller caches

compared to CPUs. As a consequence, GPU architectures typically have an order of magnitude

larger static memory load latencies, with dynamic latencies even larger due to the fact that 10s

to 100s of cores are executing in parallel.

The primary mechanism to hide the large memory access latencies in GPUs is to perform

massive multithreading in hardware. State of the art GPUs support about two thousand scalar

active threads per core, and as high as 80 cores per chip [55]. GPGPU programming models

divide the workload into three granularities. Consequently, threads are scheduled via three

distinct hardware schedulers, each working independently at a different workload granularity.



3

Each function to be accelerated, is offloaded by the CPU as an independent program referred to

as a kernel. A system-level kernel scheduler dictates the scheduling order of the different

kernels launched by the CPU and maps each kernel to a set of GPU cores. The programming

model groups threads of a kernel into an abstraction called called Thread Blocks (TBs). Once

each kernel is assigned its respective core by the kernel-level scheduler, a core-level work

distributor issues TBs from each kernel to the cores it has been mapped to. Lastly, threads in

a thread block are grouped as SIMD units called warps [54] (or wavefronts [47]). Consequently,

on each core, a warp-level scheduler interleaves execution of warps launched on a core and

tries to overlap the latency of warps waiting on long latency operations with computation from

other warps.

Efficient scheduling of the SIMD threads in hardware has a direct impact on the performance

of GPGPU applications. However, due to the extremely high thread counts, efficient scheduling

of these threads is non trivial. Moreover, with more general purpose workloads being offloaded

to the GPU for acceleration, workload agnostic scheduling techniques that work well for a

subset of applications, might fail for others. The motivation of this research is to develop

efficient scheduling techniques by using information regarding the workload being executed,

and the architecture runtime state. It is important to note that although the overarching

goal of the three schedulers is to increase overall throughput, their individual objectives differ

considerably as each of them operates at a different workload abstraction. Consequently, this

work aims to develop workload-aware scheduling techniques at each of the three scheduling

granularities.

Thesis Statement : Thread scheduling techniques play a pivotal role in GPUs to enable

harnessing the high floating point and memory throughput that the architectures support. In this

work, we design efficient hardware scheduling techniques at each of the scheduling granularities

in the GPU architecture. We propose that scheduling techniques should be aware of the workload

characteristics, and the architecture state at runtime to maximize the benefits gained from thread

level parallelism. Information about workload characteristics is derived at compile time, and

the architectural state is monitored via hardware counters at runtime. This information is used

at all levels of scheduling to improve scheduler efficiency and maximize overall throughput.
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1.2 Thesis Contributions

GPU computing programming models divide the work offloaded to the GPU into a three

level hierarchy. Scheduling is performed by hardware units that operate independently at the

three levels. In this section, we describe the specific contributions proposed by this research at

each of the three levels of scheduling.

1.2.1 Level 1: Intra-core Thread Scheduler

The primary mechanism to hide memory access latency in GPU architectures is to exploit

data parallelism in the workload and overlap latency of memory accesses with computation.

The context of all threads launched on each core of the GPU is kept live in the respective core’s

register file. This enables the thread-level hardware scheduler on each core, called the warp

scheduler, to switch among them with low overhead. This scheduler is pivotal in being able to

achieve a throughput which is close to peak, as it largely affects how well the computation and

memory latency is overlapped. In this work, we show that the performance of existing state-

of-the-art warp schedulers is highly dependent on what we refer to as kernel phase behavior

[9]. Specifically, the instruction stream of a GPGPU kernel has blocks of compute instructions

separated by long latency operations, which we refer to as phases. We thoroughly analyze

phase behavior in GPGPU kernels and demonstrate that performance of state-of-art thread

schedulers is affected by characteristics of these phases, which vary significantly across kernels.

To this end, we design a compiler assisted warp scheduling policy that is aware of kernel phase

behavior. The instruction stream of the kernel is analyzed at compile time and information

regarding phases is inserted in program instructions. The hardware warp scheduler on the core

uses this information to make scheduling decisions. We demonstrate that the phase-aware warp

scheduling policy is more robust to kernel phase behavior compared to the existing state of the

art warp schedulers.
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1.2.2 Level 2: Inter-core Thread Block Scheduler

This scheduler operates at a granularity above the warp scheduler, and is responsible for

issuing thread blocks to the GPU cores. The primary goal of the thread block scheduler is

to keep each core as occupied as possible, by launching threads until the core resources are

exhausted. The rationale is, a higher number of threads would give the warp scheduler on

the core more opportunities to overlap memory latency and computation, thus resulting in

better performance. Consequently, with each architectural generation, as the peak compute

throughput and memory bandwidth supported by GPUs continue to increase, each generation

supports an increasing number of warps to increase thread level parallelism. For example,

the previous generation NVIDIA Pascal chip, the P100, has a peak FP32 throughput of 4.9

TFLOPs, a peak memory bandwidth of 720 GB/s, and supports concurrent execution of 3584

warps [52]. In comparison, the current generation chip, the V100, supports a peak FP32

throughput of 1.4x, a peak memory bandwidth of 1.2x and supports concurrent execution of

1.4x more warps [55].

While increasing thread level parallelism improves performance of latency-limited workloads,

the same is not true if the performance of a workload is throughput-limited. We demonstrate

that once a workload reaches its peak achievable memory or compute throughput, increasing

number of active threads does not improve performance. Consequently, these kernels can be

executed with fewer than maximum number of threads without affecting performance. We refer

to the number of warps at which performance of a GPU kernel saturates as the kernel’s optimal

thread count. Executing fewer than the maximum threads reduces the hardware resources

required by the kernel, and enables opportunities for reducing energy consumption by power-

gating the unused resources. In this work, we propose two hardware techniques to detect the

optimal thread count of GPU kernels at runtime:

1.2.2.1 Executing optimal number of warps on each core

Increasing the number of warps executing on a core decreases the time spent by a kernel

waiting on stalls due to data hazard. At the same time, increasing number of warps might
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increase the number of pipeline stalls due to hardware resource contention. In this work, we

analyze the effect of number of active warps on the breakdown of the warp scheduler activity

on each core and demonstrate the above effect [8]. We then propose a hardware mechanism,

called Perf-Sat, which monitors the scheduler activity on each core at runtime, and detects

the optimal thread count independently at each core. The optimal thread count detected by

Perf-Sat is used by the thread block scheduler to limit the number of active thread blocks on

each core. Our results show that with a performance loss of less than 1%, Perf-Sat is able to

achieve core resource savings of 18.32% on average.

1.2.2.2 Executing the kernel on optimal number of cores

An alternative technique (compared to executing optimal number of threads on each core)

is to execute the kernel on fewer than maximum core available on the chip. We demonstrate

that for memory-throughput limited kernels, executing the workload on fewer than maximum

available cores does not significantly impact performance [79]. At the same time, power gating

the unused cores results in significant energy savings. We then propose ONAC (Optimal

Number of Active Cores detector), a hardware mechanism that detects the optimal number

of active cores at runtime. ONAC uses an estimation model inspired by Roofline [76], and

estimates the effect of number of active cores on the chip’s average IPC. Our results show

that, for memory-intensive kernels, ONAC reduces energy consumption by 20% with negligible

impact on performance.

1.2.3 Level 3: System-wide Kernel Scheduler

The kernel level scheduler operates at the third and highest level of scheduling on a GPU

chip. It manages binding of kernels to cores on which they would be executed. In GPU

architectures, concurrently launched kernels are scheduled sequentially unless kernels do not

have enough threads to occupy all cores. Moreover, when kernels are scheduled concurrently,

they are executed on separate cores. As mentioned in the previous subsection, the number of

threads required by a kernel to achieve peak throughput is workload dependent, and throughput

saturating workloads can be executed with a lower thread count without affecting performance.
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Executing fewer than the maximum number of warps supported by an architecture frees

hardware resources, and opens up opportunities for multi-tasking. Sharing GPU cores among

threads from multiple kernels is a relatively new technique, with its own set of challenges [7].

Most previous works have focused primarily on resource partitioning techniques that determine

how many cores should be assigned to each kernel. In this research, we focus on the effect of

warp scheduling policies in concurrent kernel scheduling scenarios. We demonstrate that kernels

limited by complementing resources (memory bandwidth and floating point throughput) show

significant speedups when executed concurrently. Our results show that interference among

threads from kernels concurrently executing on GPU cores has a performance overhead that

effects the gains achieved from concurrent kernel execution.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: in chapter 2, we provide background on

the GPU hardware architecture and programming model. Next, we discuss in detail the three

levels of scheduling, namely the intra-core warp scheduler, the inter-core thread block scheduler,

and the system-wide kernel scheduler, in chapters 3, 4, and 5 respectively. Each of the three

chapters are organized as a. A background of current state of the art, b. A discussion of the

issues that motivate our work, c. A description of our contributions, followed by an in-depth

analysis of the experimental results, and d. A discussion of the related published works at the

respective granularity of scheduling. Chapter 7 concludes the thesis by providing a summary

of the conclusions, lessons learned and directions for future work.



8

CHAPTER 2. BACKGROUND

In this chapter we provide an overview of the programming model used for General Purpose

computing on Graphics Processing Units (GPGPU) and the GPU hardware architecture. Both,

the GPGPU programming model and the GPU compute hardware architecture have been

described extensively in published literature. Consequently, this chapter provides only a brief

introduction of the concepts, with more focus on the scheduling work flow in GPU computing.

Further details regarding the GPU hardware architecture can be found in [55, 10, 35, 48, 21,

20, 22]. Further details regarding the concepts related to the GPGPU programming model can

be found in [34, 12, 47, 54, 51, 74].

2.1 The GPGPU Programming Model

In GPGPU programming models, the GPU is used as a co-processor to the CPU. Sequential

portions of the application are executed on the CPU (referred to as the host), and parallel

portions of the application are executed on the GPU (referred to as the device). The two

most widely used GPGPU programming languages are OpenCL [47] and CUDA C [54]. To

evaluate our work, we used applications written in CUDA C. However, the concepts are directly

applicable to applications written in OpenCL as well.

The CUDA programming model provides constructs that expose thread-level parallelism

and data-level parallelism to the programmer on top of other high level languages. Several

languages are supported, like C, C++, Fortran, Python and Java. In CUDA C, the portion

of the program executing on the CPU is written in C, and the language provides interfaces

(APIs: Application Programming Interfaces) to the programmer to illustrate GPU related

functions. A few examples of the APIs provided are, interfaces to query specifications of the
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Figure 2.1: Depiction of basic structure of a GPGPU program with one kernel.

GPU (device) on the system (cudaGetDeviceProperties), to allocate/deallocate data on the

device (cudaMalloc/cudaFree), to transfer data between the CPU (host) and device memories

(cudaMemcpy), to launch a program (referred to as a kernel) on the device (refer to Fig. 2.1),

and APIs that provide synchronization between the host and the device [64, 49, 54] . The

application is compiled into a single binary; the sequential portions execute on the CPU, and

GPU related functions are executed by the GPU driver (refer to Fig. 2.3).

Fig. 2.1 depicts the basic structure of a CUDA application. As mentioned previously,

portion of the application to be executed on the GPU is written as a separate function, called

a kernel 1©. The data which would be operated on by the threads of a kernel is allocated and

copied to GPU memory before the kernel is launched. Similarly, the results are copied back

from GPU memory after the kernel finishes. The function launch syntax specifies the total

number of threads that would execute this kernel within the <<< >>> structure (Fig. 2.1 2©).

In CUDA, workload for a kernel is described using a two level hierarchy. Fig. 2.2 provides

a depiction of this hierarchy via examples of two CUDA kernel launches. The total number of

threads launched for an invocation of the kernel is referred to as a grid. Number of threads in a

grid are described within the <<< >>> structure as (Number of thread blocks, Number of threads

in each thread block). Threads within a grid are divided into groups of threads, called thread

blocks (or CTAs: Cooperative Thread Arrays). The programming model allows for threads

within a thread block to use synchronization barriers and share data using an on-chip SRAM.

Number of threads in each thread block are fixed for a given kernel launch. In Fig. 2.2, kernels
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Figure 2.2: Depiction of the thread hierarchy for workload description of a CUDA C kernel.

1 and 2 launch N CTAs of M threads, and P CTAs of Q threads respectively. Each thread

executes the kernel instructions on its respective data, resulting in a Single Program Multiple

Data (SPMD) programming model. Figure 2.1 3© depicts how the block and thread identifiers

are used within the kernel to index data specific to a thread from GPU memory. In the next

section, we describe how the three level of thread abstractions: the grid, CTAs and threads,

are scheduled on the GPU hardware. We encourage the reader to refer to [54, 47] for more

details regarding the programing model.

2.2 Overview of the Hardware Architecture and Scheduling in GPGPU

In this section, we provide an overview of the GPU hardware architecture, with a focus on

the flow of scheduling in GPGPU. Fig. 2.3 depicts a simplistic block diagram of a single GPU

system, with two GPGPU applications executing on the CPU. Applications 1 and 2 launch two

and one kernels respectively. Launching of the kernels, as well as other GPU compute APIs

(refer to Sect. 2.1) are executed via the GPU driver. Data is transfered between the CPU and

GPU using the PCI express or an equivalent bus [52].

At a high level, GPUs have a manycore architecture with several in-order SIMD cores called

SMs, or Streaming Multiprocessors (Fig. 2.3). Each SM consists of several arithmetic vector

execution units (single and double precision floating point units, integer math units, load/store

units and special function units used for operations like sine and cosine). Threads launched on a
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Figure 2.3: Block diagram depicting the flow of GPU compute work launch.

GPU core execute instructions on the vector units in Single Instruction Multiple Data (SIMD)

fashion. For example, the current HPC chip from NVIDIA, the V100, has 80 SMs, each with

four 16-wide SIMD datapaths with 512 bit wide execution units [55]. As context of a all threads

launched on the SMs is kept active, each SM has a large register file. Contrary to the CPU

architecture, GPUs have a larger register file capacity compared to data cache. For example,

the P100 and V100 GPUs have 256 KB of register file per SM, and a total of 14 MB and 20 MB

of register file capacity across the chip. In comparison, they have an L2 data cache of 4 MB and

6 MB respectively [52, 55]. Additionally, each SM has a L1 data cache and a high-bandwidth

on-chip memory that can be shared by threads from the same thread block. If a memory

request misses the L1 data cache, it is routed via the interconnection network to a one of the

memory partitions. Each memory partition has a L2 cache bank and a memory controller.

GPU architectures typically provide extremely high memory bandwidths. For example, the

Fermi and Kepler architecture configurations used in our work have a peak bandwidth of 177



12

GB/s and 250 GB/s respectively [53, 3]. The more recent P100 and V100 architectures support

peak memory bandwidths of 715 GB/s and 877 GB/s respectively [52, 55].

In the previous section, we described how the GPGPU programming model divides the

workload of a GPU kernel into three distinct granularities: the gird, thread block and threads.

Consequently, scheduling of threads is performed on the GPU hardware at three levels of

granularities as well.

2.2.1 Kernel Scheduler

Fig. 2.3 depicts two hardware units on the GPU that manage launching of work from the

kernels that are active on the chip: the kernel scheduler, and the CTA scheduler. As mentioned

in Sect. 2.1, GPU compute applications launch parts of the computation that are data-parallel

as kernels on the GPU. The kernel level scheduler maintains a list of all the kernels currently

active on the chip, and manages the assignment of cores to each kernel. It also manages the

interactions with the CPU side driver. Traditionally, context of only one kernel was kept

active on the GPU at a given time. More recently, as GPUs have become larger, there has

been a growing interest in executing multiple kernels concurrently. In these scenarios, the

kernel level scheduler also performs resource partitioning across kernels that are concurrently

active on the chip. Previous works have analyzed resource partitioning extensively, and have

proposed runtime techniques to find optimal resource partitioning across concurrently active

kernels [59, 72, 77].

2.2.2 CTA Scheduler

Once the kernel-to-core mappings have been assigned by the kernel scheduler, the CTA

scheduler manages launching of work from the active kernels onto the cores they have been

assigned (Fig. 2.4(a)). As described in Sect. 2.1, threads in a grid are divided into groups called

CTAs. As threads within a CTA can share data using the on-core SRAM, all threads in a CTA

are scheduled on the same core. Additionally, as threads in a CTA can use synchronization

primitives, all threads in a CTA have to be issued at the same time. Consequently, thread

blocks or CTAs are the smallest granularity at which work is issued to a GPU core.
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Figure 2.4: Overview of GPU architecture.

The primary goal of the CTA scheduler is to keep each core as full as possible, while

maintaining a balanced workload across all cores. The scheduling policy used by the CTA

scheduler is round-robin: CTA 1 is issued to SM 1, CTA 2 to SM 2, and so on. The CTA

scheduler launches blocks on cores one by one, until none of the cores have enough resources to

support an entire thread block. Four resources are checked: number of registers used per thread,

shared memory used per thread, number of available thread slots and number of available thread

block slots. Once each core is executing the maximum possible number of thread blocks, the

CTA scheduler stalls and waits for a core to complete a CTA. It launches the next CTA in

the kernel grid on any core that completes a CTA first. As the programming model does not

guarantee the scheduling order of threads that belong to different blocks, blocks are assigned

to cores in any order. More details on the design of the CTA scheduler can be found in

[8, 32, 40, 79].

2.2.3 Warp Scheduler

Thread blocks launched on the core are further partitioned into groups, of typically 32

threads, called warps. Warps are entities used for execution by the hardware units on the core.
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Fig. 2.4(b) shows a depiction of some of the units on a GPU core.

The fetch unit fetches instructions for each warp, from the instruction cache into the

instruction buffer. The instruction buffer has a separate entry for each warp, allowing each

warp to be at its own instruction in the kernel. Once the current instruction is decoded and

its operands are collected from the register file, the warp is placed into the Warp-Queue. The

warp scheduler selects a warp from this queue and dispatches it for execution on the vectorized

functional units. Each thread within a warp executes the same instruction on its data, in Single

Instruction Multiple Data (SIMD) fashion. Indeed, the various hardware units on the GPU

core (arithmetic units, shared memory, register file) are vectorized and indexed at the warp

abstraction level, because of this SIMD form of execution adopted by the GPU architecture.

Context for a warp is kept live in the register file until it completes the entire kernel. The

warp scheduler keeps track of all the warps active on the core, and interleaves their execution

to overlap memory latency and arithmetic computation. Initial warp schedulers used a single

queue to store all the warps that are active on the core. This is depicted as the Warp-Queue in

Fig. 2.4(b). We refer to such schedulers as single level schedulers in this thesis. As GPU cores

became bigger and could support a higher number of warps (current architectures support up

to 64), arbitrating among all the active warps every cycle became less energy efficient, and

hierarchical warp scheduling policies were proposed [48, 22]. Warps are grouped into smaller

subsets called fetch groups, and the warp scheduler arbitrates only among warps in a fetch

group until they stall on memory access; at which point the warps are put in the larger warp

queue, and warps with the next highest priority become the next fetch group. We refer to such

schedulers as two level schedulers in this thesis. Warp scheduling policies have been studied

extensively in the academic research community and several optimizations have been proposed.

For further details on the design of warp scheduling polices, please refer to [21, 20, 48, 22, 63, 9]

In the next three chapters, we look at scheduling at each of the three levels: kernel, thread

blocks, and warps, in more detail. At each level of scheduling, we describe the current state

of the art, outline the issues being addressed by this research work, propose novel techniques

to mitigate those issues and analyze the benefits and overheads of the proposed techniques

through experiments on a cycle level GPU architecture simulator [10].
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CHAPTER 3. PHASE-AWARE WARP SCHEDULER

3.1 Abstract

GPU architectures interleave execution of SIMD threads (warps) via cycle-level hardware

multithreading to hide the arithmetic pipeline, and memory access latencies. The Two-Level

Round Robin (TLRR) and Greedy Then Oldest (GTO) warp scheduling policies are widely

accepted as state of the art due to their simplicity and applicability to a wide range of workloads.

In this work, we show that the two policies do not scale with the same performance across

different applications. The disparity regarding which scheduling policy works better for a

given workload, depends on the characteristics of opcodes in different regions of the kernel

instructions (phases). We identify phases at compile time and design a warp scheduling policy

that uses information regarding them to make scheduling decisions. By mitigating the adverse

effects of application phase behavior, our policy always performs closer to the better of the two

existing policies for each application. We evaluate performance of the warp schedulers on 35

kernels from the Rodinia and CUDA SDK benchmark suites. For workloads that have a better

performance with the GTO scheduler, our warp scheduler matches the performance of GTO,

and achieves a speedup of 6.31% over TLRR. Similarly, for workloads that perform better with

the TLRR scheduler, performance of the phase-aware warp scheduler matches that of TLRR

and achieves a speedup of 6.65% over GTO.

3.2 Introduction

Graphics Processing Units (GPU) architectures are designed for high floating point throughput

and streaming memory bandwidth. Consequently, GPU dedicate a significantly larger portion

of their die area to arithmetic units compared to CPU architectures. As a trade-off, GPUs do
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not include the hardware units used for latency hiding in CPUs. For example, GPUs use a

non-speculative in-order pipeline, do not have branch predictors, and have much smaller caches

compared to CPUs.

The mechanism used in GPUs to hide the pipeline and memory access latencies is to perform

massive multithreading in hardware. Each core executes a very high number of threads in

parallel, and a hardware scheduler interleaves their execution to hide latency. Specifically,

groups of threads are executed as SIMD units called warps [54] (or wavefronts [47]), and the

scheduler overlaps the latency of warps waiting on long latency operations with computation

from other warps. The policy used by the warp scheduler is pivotal in being able to achieve a

throughput which is close to peak, as it largely affects how well the latencies and computations

are overlapped.

There is a large body of previous work on warp scheduling techniques. A majority of

the initial works focused on mitigating warp-divergence, a problem that occurs when threads

within a warp diverge in their execution flow [21, 20, 22, 48] Other works have designed

techniques that focus on a subset of applications that exhibit specific characteristics. For

example, authors in [63] focus on workloads that are sensitive to L1 data cache, authors in [45]

focus on workloads with varying levels of memory divergence, while authors in [42] focus on

applications with irregular workloads. However, the underlying policy which selects the next

warp to be dispatched for execution has received rather less attention.

Two underlying policies have been widely adopted, namely round-robin (RR) and greedy

then oldest (GTO). The RR policy rotates the priority of warps in round robin order after each

selection. The GTO policy on the other hand, always gives a higher priority to warps that are

launched earlier. Authors in [48, 22] proposed hierarchical implementations of these policies

for improving increasing energy efficiency. A smaller set of warps (typically 6 to 8), from all

the active warps (typically 48 to 64), referred to as a fetch group, is kept in a separate queue

called the ready queue (Refer to Fig. 3.1). The scheduler only selects warps from the ready

queue for execution, which makes the warp selection and scoreboarding logic simpler and more

energy efficient. A warp in the ready queue is replaced only when it arrives at a long latency

operation, such as a memory request. It has been shown that warps in a fetch group have
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Figure 3.1: Block diagram of the two level warp scheduler. An equivalent block diagram of the
single level scheduler would not have the Ready Warps queue.

enough parallelism to hide the shorter ALU latencies [48]. Moreover, prioritizing execution of

subsets of warps spaces out the requests to main memory in time, which results in a better

overlap of memory latency and computation [48]. Both the RR and GTO policies can be used

for assigning priority to the fetch groups as well as warps within the fetch group.

In this work, we show that while the GTO policy performs better for some applications,

some applications show better performance when RR is used, while others have comparable

performance with either scheduler. To understand the disparity between performance of warp

schedulers for different applications, we analyze how the warps progress through the programs

instructions. The set of warps within a fetch group proceed together through the program

instructions, at approximately the same pace, until they arrive at an instruction that depends

on a long latency operation. When selected the next time, they again proceed until the next

long latency operation, and so on. In this way, the program is essentially divided into regions

of computations, separated by instructions that depend on long latency operations. We refer

to these regions as phases.

Our results clearly indicate that the length and arrangement of phases have a direct impact

on the performance of warp scheduling policies. We show that the disparity regarding which

policy performs better for a particular application can be explained by understanding how

warps progress through the different phases of the application. With this understanding, we
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then design a warp scheduling policy that uses information regarding phases that is embedded

in the programs instructions by the compiler. Our policy results in a performance which is

always closer to the better performing policy for the respective application. Our contributions

can be summarized as follows:

1. We characterize phase behavior in GPGPU workloads, and via case studies of real-world

applications show how phase characteristics impact the performance of the RR and GTO

scheduling policies.

2. We describe how the phase information can be inserted at compile time and design a

hardware warp scheduler that uses this information to be more robust to application

phase behavior.

The remainder of this chapter is organized as follows: In the next section, we formally

define program phases and provide an illustrative example. We analyze two real-world kernels

in detail, and show how phase behavior affects the performance of warp schedulers for them.

In Sect. 3.4, we describe our phase-aware scheduling policy, and its software and hardware

implementation. In Sect. 3.5 , we provide experimental results that compare our phase-aware

scheduler to the RR and GTO warp schedulers. In Sect. 3.6 we discuss related work, and in

Sect. 3.7 we provide our conclusions from this work, and discuss possible future directions for

compiler assisted warp scheduling techniques.

3.3 Phase Behavior in GPGPU Kernels

In this section, we formally define phases in the context of GPGPU kernels. We then

illustrate the impact of phase characteristics on warp scheduling policies using examples of two

CUDA kernels.

3.3.1 Definition of Kernel Phases

Fig. 3.2 shows an example of a simple CUDA kernel that adds two vectors. Three high

level sections are shown in the code. First, the index for a thread is calculated using special
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CUDA%Kernel%

%

void%add(%int%*in1,%int%*in2,%int%*out%)%

{%
unsigned%;d,a,b,c%;%

%

//%Calculate%thread’s%index%%%%

;d%=%(blockDim.x%*%blockIdx.x)%+%

threadIdx.x;%

%

%

//%Access%input%data%%%%%%%%%%%%%

a%=%in1[;d];%

b%=%in2[;d];%

%

//%Compute%and%store%result%%%%

c%=%a%+%b;%

in2[;d]%=%c;%

}%

Corresponding%assembly%code%

%

Func;on%:%_Z3addPiS_S_%
Phase&1 % % %%%%%%%%%%%%%%Phase&Length&
MOV.U16%R0H,%g%[0x1].U16; % %18%

I2I.U32.U16%R1,%R0L; % % %17%

IMAD.U16%R0,%g%[0x6].U16,%R0H,%R1; %16%

SHL%R2,%R0,%0x2; % % % %11%

IADD32%R0,%g%[0x4],%R2; % % %10%

IADD32%R3,%g%[0x6],%R2; % % %%%6%

%

GLD.U32%R1,%global14%[R0]; % %%%2%

GLD.U32%R0,%global14%[R3]; % %%%1%

%

Phase&2%%
IADD32%R1,%R1,%R0;% % % %10%

IADD32%R0,%g%[0x8],%R2; % % %%%6%

GST.U32%global14%[R0],%R1; % %%%2%

EXIT % % % % % %%%1%

Figure 3.2: CUDA kernel for vector addition and its corresponding assembly code showing
phases and phase length.

variables that store the thread and block identifiers (threadIdx.x and blockIdx.x), and the

thread block dimension (blockDim.x). The index is then used as an offset from the base

addresses (passed as arguments to kernel call) to load data for that thread. The computation

is performed and result is stored back in the third section. The right box in the figure shows

the corresponding assembly code.

We define a phase as: A set of consecutive instructions such that, no instruction in the

set has any input operands that are produced by a long latency instruction from any other

instruction in the set.

Observe that this kernel has two phases (refer to Fig. 3.2). Phase 2 begins at instruction:

IADD32 R1,R1,R0. The input operands R0 and R1 are produced by memory load instructions

(GLD), which belongs to the set of long latency instructions1. It should be noted that in

real-world application kernels, contrary to the example shown, it is common to have multiple

instructions in a phase that depend on long latency instructions from the previous phase. A

new phase begins only if an instruction depends on a long latency instruction from the current

phase. We show a simple example here for brevity. The structure of a phase is often as follows:

multiple memory loads at the beginning of a phase (initial loads), followed by computations
1In addition to load and store, conditional and unconditional branches, and synchronization instructions are

also considered as long latency instructions.
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that depend on loads from the previous phase, and then an instruction that depends on one of

the initial loads (this would begin a new phase). For the kernels we studied for this work, the

number of phases in a kernel vary from 3 to 45.

3.3.2 Effect of Kernel Phases on Warp Schedulers

In the two level warp scheduler, a warp is moved from the Ready Warps queue to the larger

pool of all warps, when it arrives at an instruction that depends on a long latency operation.

As such instructions lie at phase boundaries, warps proceed through the kernel instructions one

phase at a time. When a warp reaches the end of a phase, it is put back in the larger warp pool

and a different fetch group gets a chance to execute. As the fetch group maintains its priority

until it reaches the end of a phase, one of the main factors that affects the performance of the

warp schedulers is phase length (refer to Fig. 3.2). Phase length is computed by summing the

instruction latencies, from the last to the first instruction of a phase. It is an approximation

of the minimum number of cycles that a warp would take to reach the end of a phase. The

lengths of phases 1 and 2 in Fig. 3.2 are 18 and 10 respectively.

Fig. 3.3 is a depiction of the effect of phase length on performance of the warp schedulers.

For simplicity, the illustration assumes that all warps in a fetch group (FG) arrive at the end of

a phase simultaneously. Fig. 3.3(a) is an example of an application where the GTO scheduler

performs better than RR. It has a medium length phase, followed by a short phase and then

phase of long length. Notice that the computation from medium length phase of FGs 2 and 3

are enough to hide the memory latency of FG 1. At this time, the RR scheduler selects FG 4 1©,

while the GTO scheduler selects FG 1 2©. Observe that, with RR scheduling all the FGs arrive

at the short length phase at the same time. As computation from three short length phases

is not enough to hide the memory latency, some of the latency is exposed 3©. In contrast, as

the GTO scheduler selects FG 1 at 2©, FG 1 arrives at the long length phase earlier 4©. This

long phase is then used to hide the latency which was exposed in the case of RR scheduling.

In general, for kernels that have shorter length phases in the middle of the kernel, the GTO

scheduler performs better than RR.

Fig. 3.3(b) is an example of an application where the RR scheduler has a better performance
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Figure 3.3: Impact of phase length on warp scheduling.

compared to GTO. Notice that the application has a medium phase, followed by a phase of

long length. Similar to the example of Fig. 3.3(a), computation from three FGs is enough to

hide the memory latency of FG 1, and the GTO scheduler switches back to FG 1 5©. As this

phase is long enough to overlap the latency of outstanding memory requests, the load on the

memory subsystem is reduced. On the contrary, the RR scheduler selects FG 4 6©. This results

in sending out more requests to memory, and thus better utilization of the memory bandwidth

while executing the long length phase. We can observe that around the time when the GTO

scheduler begins fetch group 4, the RR scheduler has already executed a significant portion of

it. In general, for kernels that have extremely long phases in the middle of the kernel, the RR

scheduler performs better than GTO.

3.3.3 Illustrative Applications

The effects of phase length on warp scheduling policies can be summarized as follows:

1. Performance of the RR policy is adversely affected in kernels that have shorter length phases,
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due to all the warps arriving at these phases at the same time.

2. Performance of the GTO policy is adversely affected in kernels that have long length phases,

as the scheduler keeps choosing warps from these phases, thereby under-utilizing the memory

bandwidth.

In this section, we explore two real-world application kernels that clearly demonstrate these

effects. The top figures in each of the subplots of Fig. 3.4 and Fig. 3.5 plot the total number

of warps in each phase at a given cycle. The bottom figure plots the total the number of ALU

instructions and memory requests that are in flight.

3.3.3.1 B+Tree

B+Tree is an example of a kernel for which the GTO scheduler achieves a better performance

compared to RR. It launches 48 warps on each core, as six thread blocks of eight warps each.

The fetch group size is six.

Observe in Fig. 3.4(a) that, when warps from the first fetch group (FG) complete the first

phase, warps in the next FG execute. Warps completing a phase can be seen in the plot when

the number of warps in a particular phase decreases. This is followed by the third FG, and so

on. Thus, due to RR scheduling warps proceed through the kernel instructions one phase at a

time. As mentioned in Sect. 3.3.2, this trait of the RR scheduler becomes an issue in kernels

which have short length phases. Observe that phase 4 is extremely short (marked oval). All the

warps finish this phase and arrive at the start of phase 5 at around the same time. Observe that

during this time, the memory load is high and ALU load becomes almost zero. This is because

all warps are waiting for the memory requests issued in phase 4. The phase problem alleviates

a little after cycle 4000 due to some warps branching back to phases 1 and 3. However, only

a small portion of the runtime is shown here. The application grid is of 65535 blocks and this

pattern keeps repeating throughout the kernel execution after every 6th block.

In contrast, observe in Fig. 3.4(b), that after three fetch groups complete, the GTO scheduler

selects FG 1. This is observed in the figure when the number of warps in phase 1 stop decreasing

and the number of warps in phase 2 start to decrease. Due to this decision, only a small set

of warps arrive at the short length phase 4, at the same time. As the other warps are in the
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Figure 3.4: B+Tree Phase Graphs

longer length phases, the scheduler can switch to them to hide the memory latency. Observe

in the lower plot of Fig. 3.4(b), the amount of time when the ALU and memory load becomes

zero has reduced as compared to the RR scheduler. Moreover, observe in the area plot that the

distribution of warps across different phases (marked oval) is much better in GTO as compared

to RR.

3.3.3.2 Computational Fluid Dynamics (CFD)

CFD is an example of a kernel for which RR scheduling achieves better performance as

compared to GTO. It launches 18 warps on each core, as three thread blocks of 6 warps each.

Observe in Fig. 3.5(b) that the first fetch group (FG) of 6 warps starts executing ahead and

reaches phase 2. Notice that the GTO scheduler selects FG 1 again (first marked oval). This

is because, as phase 1 is a long length phase, the memory requests sent near its beginning are

completed by the time warps reach phase 2. As the next two phases are long as well, the warps

in FG 1 become pending only when they reach phase 4. At this time fetch group 2 gets to
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execute. Observe that when warps from FG 2 reach phase 2 and become pending, FG 1 gets

selected again and executes until it reaches phase 6 (second marked oval).

In this manner, due to phases of long length, a group of warps keeps getting the priority.

Consequently, other warps do not get a chance to execute and issue their memory requests.

Observe in the lower plot of Fig. 3.5(b) that the memory load becomes zero in the duration

when warps from FG 1 are in the long compute phases. In comparison, the RR scheduler

switches priority to the next fetch group at phase boundaries. Due to this, warps that were in

the shorter length phases are able to execute and send the memory requests. We can observe in

Fig. 3.5(a) that the warp distribution across different phases is much better. Also, notice that

the memory load is more regular and has lesser fluctuations as compared to GTO. The average

memory load for this kernel with the two level RR scheduler was 4% higher as compared to

the two level GTO.
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3.4 Phase Aware Warp Scheduling

In this section, we first propose a dynamic scheduling policy based on phase length that can

mitigate the negative effects of phases outlined in the previous section. We then provide details

of the compiler frontend that adds the required phase information in program instructions and

hardware implementation of the warp scheduler that uses this information at runtime.

3.4.1 Scheduling Policy

In the previous section, we showed that performance of the RR scheduler is affected if the

kernel has phases of short length and all the warps arrive at such phases simultaneously. On

the other hand, performance of the GTO scheduler is adversely affected when the kernel has

long phases and the scheduler keeps selecting the set of warps that are in the long phase.

Our policy is based the following simple observation: Adverse effects of the RR and GTO

scheduling policies can be mitigated by always choosing the warp that is at the shortest next

phase.

Consider a kernel with two phases Pi and Pj , such that Pj is shorter than Pi.

Case (1): The RR policy chooses a warp in phase Pi. This implies that warps in Pj were

selected before this.

(a): Pi is before Pj in program order. This is the more common case given that warps in Pj

were selected earlier. Selecting warps in phase Pi would get all warps to the shorter phase Pj ,

leading to a possibility of non-overlapped memory latency. Hence, it would be ideal to first

select warps in Pj .

(b): Pi is after Pj in program order. This would happen if warps (currently in Pj) executed

before this and branched back to an earlier phase. Selecting warps in phase Pj would get all

warps to the longer phase Pi. Note that in this case, selecting warps from Pi would harm

performance only if they branch back to phase Pj . Nonetheless, selecting warps in Pj would

not negatively impact performance.

Case (2): The GTO policy chooses a warp in phase Pi. This implies that warps in Pi were

launched before warps in Pj .
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Figure 3.6: Block diagram of our two level warp scheduler.

(a): Pi is after Pj in program order. This is the common case as GTO gives priority to older

warps, causing them to be ahead in the program. If phase Pi is extremely long, choosing a

warp from phase Pi might under-utilize the memory bandwidth. Hence, it would be better to

first execute warps in Pj and then overlap the memory latency using warps in phase Pi.

(b): Pi is before Pj in program order. This would happen if warps with the lower index have

branched back to Pi. Again, selecting warps in phase Pj would issue memory requests which

can then be overlapped by warps from Pi. Note that in this case, selecting warps from Pi would

have the same effect, if warps in Pj also branch back to Pi. Nonetheless, selecting warps which

are in phase Pj would not negatively impact performance.

3.4.2 Implementation

3.4.2.1 Front-end

The phase length information is computed at compile time and included in the kernel

instructions. As the CUDA ISA is not open-source, we use PTX-Plus [10]. PTX is an

intermediate assembly language generated during the compilation of CUDA kernels. PTX-Plus

is a modified version of PTX which closely matches the ISA that executes on the hardware. We



27

chose to work with PTX-Plus because we observed that PTX is generated before the compiler

has performed instruction scheduling. Due to this, the memory load and store instructions are

scheduled very close to their dependent instructions, resulting in the instruction sequence being

fragmented into several phases.

A long-op register is defined as a register that is a destination operand of a long latency

instruction. To create phases, a set of long-op registers (empty at initialization) is maintained.

The PTX-Plus assembly code is parsed at compile time from top to bottom and long-op registers

are added to the set one instruction at a time. The first instruction that consumes any register

currently in the set marks the start of a new phase. At the start of each phase, the set is

cleared. This assumes that long latency instructions issued close to each other would complete

around the same time, and avoids creating several short phases. In addition, each basic block

starts a new phase.

Once the phases are created, the code is traversed backwards to calculate phase lengths.

Within each phase, instruction latencies are accumulated from the last to the first instruction

as mentioned in Sect. 3.3.1. This simultaneously calculates two pieces of information. Each

instruction is assigned a phase distance, which approximates the number of cycles a warp

executing this instruction would take to reach the end of the phase. Additionally, each phase

is assigned a phase length, which approximates the number of cycles a warp takes to execute

the phase.

3.4.2.2 Hardware Implementation

The schedulers were implemented in GPGPU-Sim v3.2 [10], a cycle-accurate GPU architecture

simulator. The phase distance mentioned in the previous subsection is used by the phase-aware

single level scheduler, while the phase length is used by the phase-aware two level scheduler.

Single Level Schedulers: As mentioned in Sect. 3.2, single level schedulers maintain a

queue of all warps that are active on a core. All the warps in the active queue are checked every

cycle and the one with the highest priority is chosen. The priority assigning policy is the key

difference between the different schedulers. The RR scheduler rotates the priority after each

selection, while the GTO scheduler always assigns the highest priority to the oldest warp. The
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phase aware scheduler compares the phase distance of the current instruction for each warp.

Warp at an instruction with the lowest distance from the next phase is chosen. For warps that

are at the same distance, the oldest warp is chosen first. This requires the distance information

to be added for each instruction. In real GPU implementations, this can be achieved via opcode

extensions. Our experiments showed that a phase distance of 512 covers more than 98% of all

kernels2. Considering instruction size of 8 bytes and L1 cache line size of 128 bytes, adding

phase distance would increase the static instruction size by 12.5%.

Two Level Schedulers: In the baseline two level scheduler (refer to Fig. 3.1), when a

warp in the ready queue arrives at a long latency operation, it is put in the active queue and

replaced by the warp from the head of the queue. This implementation works well if priority

of the warps in the active queue is rotated in a round robin order. However, notice that this

is an issue for any scheme that requires warps to be prioritized. If a single queue is used to

store the active warps, as well as the warps waiting on long latency operations, all the warps

would need to be checked when replacing a warp from the ready queue. To solve this, we use

an additional pending queue to store warps that are waiting on long latency instructions.

Fig. 3.6 shows a block diagram of our implementation of the two level scheduler. A warp

waiting on a long latency instruction is first moved to the pending queue. When all the

long latency instructions complete, it is moved to the tail of the active queue. The priority

assignment logic is triggered at this point and warps in the active queue are sorted. This design

effectively allows implementation of different scheduling policies by modifying the policy of the

priority assignment logic. The RR scheduler does not sort the warps, while the GTO scheduler

sorts the warps in launch order. The phase-aware scheduler uses the phase distance of the

next phase to sort the warps. Consequently, contrary to the single level scheduler, length

information is required only once for an entire phase. Our experiments show that adding phase

length increases the static instruction size by less than 1%. After sorting, warp at the head of

the active queue is moved to the ready queue.
2For longer phases, multiple opcode extensions can be used.
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Table 3.1: GPGPU-Sim configuration used for evaluating phase aware warp scheduler
Chip configuration

Number of cores 16
Core frequency 1300 MHz
DRAM clock frequency 1850 MHz
Peak SP / DP floating point throughput 1330 / 650 GFLOPs
Peak DRAM bandwidth 177 GB/sec

Core configuration
Maximum thread blocks per core 8
Maximum warps supported per core 48

Execution units per core
32 ALUs, 4 SFUs
16 LD/ST units

Scheduler configuration
Warp schedulers per core 2

Instruction dispatch throughput per scheduler
1 instruction
every 2 cycles

Ready warps queue size 6

3.5 Experimental Results

3.5.1 Methodology

We configured the simulator [10] to match the architecture of NVIDIA Tesla M2090 GPU

[53] (refer to Table 3.1). To perform our evaluations we chose kernels from the CUDA SDK

[51] and the Rodinia benchmark suites [14]. The SDK has 49 applications, while Rodinia has

19; with each application having multiple kernels. We pruned our workload list by omitting

the applications provided in the SDK for hardware profiling and demonstrating interoperability

with graphics APIs. We also omitted kernels that did not have a grid size large enough to fill

all the cores, and the size could not be increased without significantly changing the application

code. Our final workload list had 13 kernels from 11 applications of the SDK and 17 kernels

from 12 applications of Rodinia (refer to Table 3.2 and Table 3.3). For brevity, we discuss results

of kernels for which either the RR or the GTO scheduling policy showed a better performance.

For the remaining kernels, the GTO, RR and phase-aware scheduling policies had comparable

performance (within 1% of each other).
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Table 3.2: Workloads from the Rodinia benchmark suite [14] used for evaluating phase aware
warp scheduler

Name
Back B+Tree Heart K-means LU Decom- Speckle Reducing Comp.Fluid

Propagation Search Wall Clustering position Anisotropic Diff. Dynamics
Abbreviation BP - K1 BP - K2 B+T - K1 B+T - K2 Heart KM LUD SRAD CFD

Total Thread Blocks 65535 65535 65535 65355 56 841 16129 16384 1817
Threads / Block 256 256 256 256 256 256 256 256 192

Thread Blocks / Core 6 5 5 6 4 6 6 6 3
Total Phases 5 5 16 11 45 2 3 4 9

Longest Phase 206 99 40 32 212 48 150 218 985
Shortest Phase 26 14 5 3 41 14 7 31 86

Table 3.3: Workloads from the CUDA SDK [51]
Name

Discrete Wavelet DXT Fast Walsh
Histogram

Monte Carlo
Transform Compression Transform Option Pricing

Abbreviation DWT DXTC FWT HIST MCO
Total Thread Blocks 4096 4096 4096 256 2048

Threads / Block 512 256 512 192 256
Thread Blocks / Core 3 4 3 6 5

Total Phases 2 3 2 2 2
Longest Phase 144 1159 174 44 284
Shortest Phase 44 24 45 24 38

3.5.2 Impact on Performance

Fig. 3.7 plots the speedup of the Greedy Then Oldest (GTO) and phase-aware schedulers

normalized to the Round Robin (RR) scheduler. The single level schedulers have an advantage

of selecting from all the warps on the core. Hence, we compare the performance of the single

level and two level schedulers separately. We have grouped the kernels into two types. For

kernels grouped under Type A, the GTO scheduler achieves a better performance compared

to RR, while for kernels grouped under Type B, the RR scheduler performs better than GTO.

3.5.2.1 Type A Kernels

Kernels for which the GTO policy performs better (grouped under type A), have phases of

extremely short length. As mentioned in subsection 3.3.3.1, our simulations showed that when

the RR policy is used, warps get accumulated in these short phases at around the same time,

causing the core to become idle.

Eight kernels always perform better with the GTO policy (refer to Fig. 3.7(a)). The BP-

K2, DWT, HIST and MCO kernels have their shortest phase at the beginning of the kernel.

The SRAD kernel has two short phases in the middle of the kernel code, while the B+Tree

kernels have phases of length shorter than 20 cycles intermixed throughout the code. Notice
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Figure 3.7: Performance comparison. Type A - GTO performs better than RR. Type B -
RR performs better than GTO.

in Fig. 3.7 that the BP-K1, LUD and KM kernels have a better performance with the GTO

policy for single level implementation and with the RR policy for two level implementation.

This happens due to a phenomenon we refer to as intra-block tail effect, which we will explain

in detail in subsection 3.5.5.

For the type A kernels, the single level GTO has a speedup of 10% over single level RR on

average. The performance of the phase-aware scheduler is close to that of GTO for all these

kernels and it achieves a speedup of 9% on average over RR. A similar performance trend

was observed for the two level schedulers. However, as warps progress through the kernel in

fetch groups, all the warps do not arrive at the short phases simultaneously. This reduces

the negative effect on performance of the RR scheduler. Notice in Fig. 3.7(b) that for the

DWT, DXTC and HIST kernels RR scheduling now performs comparable to GTO and phase-
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aware. Consequently, the speedup of GTO over RR is lesser with an average of 4%. Again, the

performance of the phase-aware scheduler is close to that of GTO and it achieves a speedup of

3% on average over RR.

3.5.2.2 Type B Kernels

Kernels for which the RR policy performs better (grouped under type B) typically have

extremely long length phases. Heartwall is a very long kernel with 1523 instructions and 45

phases, with several long length phases of over 100 cycles. CFD has pairs of medium and

long length phases, with an average phase length of 290 cycles, and FWT has just two phases

of length 45 and 174. As discussed in subsection 3.3.3.2, memory operations issued at the

beginning of these long phases complete before the phase ends. Consequently, the GTO policy

keeps prioritizing a small set of warps causing it to under-utilize the memory bandwidth.

For the kernels in our benchmark suite, RR scheduling performs better than GTO only

for three kernels for the single level implementation and has an average speedup of 9.2% over

GTO. Notice in Fig. 3.7(a) that the phase-aware scheduler now performs closer to the RR policy.

Performance of the phase-aware scheduler is comparable to RR and it achieves a speedup of

9% over GTO. For the two level implementation, similar to the type A kernels, the impact of

phase behavior on performance (now on the GTO policy) reduces. The RR policy achieves a

better performance for six kernels, with an average speedup of 7% over GTO. The phase-aware

scheduler matches the performance of RR for all kernels except LUD and achieves a speedup

of 4% over GTO. The reason for the negative impact on performance of the LUD kernel is

explained in subsection 3.5.5.

3.5.2.3 Summary of Performance Impact

Observe in Fig. 3.7(a) and Fig. 3.7(b), that for kernels grouped under type A, performance

of the phase-aware scheduler is always closer to that of the GTO scheduler. On average, its

performance is within 99% of GTO for both the single level and two level implementations, and

it achieves a speedup of 9% and 3% respectively over RR. For the kernels grouped under type

B, the phase-aware scheduler now performs closer to RR. It matches the performance of RR
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Figure 3.8: Comparison of average scheduler idle time.

for the single level implementation and performs within 96% for the two level implementation.

Consequently, it achieves a speedup of 8.9% and 4% over the GTO policy. These results indicate

that application phase behavior has an impact on performance of the GTO and RR scheduling

policies. As application type is not known a priory, performance can be negatively impacted if

static policies are used. For example, if the RR policy is used, we would incur performance loss

for type-A kernels, and similarly for type-B if the policy was GTO. On the contrary, the phase-

aware policy always performs closer to the better performing policy for any kernel. Hence, by

utilizing information regarding program phases, our scheduling policy becomes applicable to a

wider range of applications.

3.5.3 Impact on Scheduler Idle Time

At any given cycle during kernel execution, the scheduler can be in either one of the four

states: 1 - no warps have a new instruction, 2 - all warps that have an instruction are not ready

(waiting for an operand from a previous instruction), 3 - all warps that have a ready instruction

cannot issue due to a pipeline stall, or 4 - at least one warp can issue an instruction. We refer

to the sum of the cycles spent in the first three states as scheduler idle time. As scheduler idle

time is the cycles when no new instructions are issued, it is a good indicator of the performance

trend.

Fig. 3.8 plots the scheduler idle time as a percentage of the total execution time. For brevity,
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Figure 3.9: Breakdown of execution time for two kernels of type A and type B.

the data is averaged across kernels of the same type and normalized to RR. For type A kernels,

the GTO and phase-aware policies had a 21.56% and 21.03% lower idle time compared to RR

for the single level scheduler, while the average idle time was comparable to RR for the two

level scheduler. As expected, for the kernels grouped under type B, the average scheduler idle

time for GTO was higher than the RR policy. It was higher by 13.66% for the single level

and by 8.73% for the two level scheduler. As the phase-aware scheduler performs closer to RR,

its idle time was lower than GTO, but higher than RR by 6.8% for the single level and 3.9%

for the two level. Notice that similar to the performance trend, the difference in the idle time

between schedulers for a given type of kernels is lower in the two level implementations. This

again shows that the impact of phase behavior is reduced with two level scheduling. Also, the

idle time for the phase-aware warp scheduler is always closer to the better performing policy

for each kernel type.

3.5.4 Impact on Functional Unit Load

The total runtime of a kernel can be broken down as ‘Idle cycles’ + ‘Total Computation

Cycles’ + ‘Total Memory Access Cycles’ − ‘Cycles of Overlap of Computation and Memory

Access’. The amount of time spent by a kernel doing only arithmetic or only memory operations

indicates whether the kernel is compute or memory intensive. To measure this, we instrumented

the simulator and monitored the ALU pipeline and the memory system. The kernel is considered

as performing computation (or memory access), if there is at least one ALU (or memory)
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Figure 3.10: Average ALU and memory load of two kernels of type A and type B.

instruction in flight at that cycle. Load on the ALU and memory pipelines is defined as the

total number of instructions that are in flight during that cycle. Fig. 3.9 shows the breakdown

of execution time of two kernels each, of type A and type B, and Fig. 3.10 plots their respective

ALU and memory loads.

BP-K1 is an example of a type A kernel that is compute intensive. A significant portion of

the execution time is spent performing only ALU operations (refer to Fig. 3.9(a)). Notice in

Fig. 3.10(a) that the single level GTO and phase-aware schedulers maintain a lower load on the

memory subsystem. However, as the average ALU load achieved is higher, they perform better

than RR. Also, notice that for the two level implementation, the RR scheduler maintains a

ALU load that is similar to the GTO and phase-aware schedulers. Consequently, the GTO and

phase-aware scheduler do not achieve a speedup over RR for the two level implementation (refer

to Fig. 3.7(b)). B+Tree-K2 is a type A kernel that is memory intensive (refer to Fig. 3.9(b).

Again, observe in Fig. 3.10(b) that although the ALU load is comparable for all the schedulers,

the GTO and phase-aware schedulers maintain a higher memory load, and consequently achieve

a better performance compared to RR.

Similarly, Figs. 3.9(c) and 3.9(d) are examples of type B kernels (RR performs better than

GTO), which are compute and memory intensive respectively. Around 20% of the execution

time of Heartwall is spend performing ALU operations by all schedulers (refer to Fig. 3.9(c)).

Notice in Fig. 3.10(c) that the average ALU load achieved by the GTO policy is lower than

that of RR and phase-aware schedulers, thereby achieving a lower performance. CFD is a type
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Figure 3.11: Intra-block tail effect of the LUD kernel.

B kernel that is memory intensive. The GTO scheduler achieves a lower average memory load

for both the single and two level implementations, and hence achieves a lower performance as

compared to RR. Notice that the single level phase-aware scheduler maintains a lower memory

load compared to RR, while the two level implementation achieves a slightly higher load. This is

reflected in the performance results (refer to Fig. 3.7), as the single level phase-aware scheduler

is 3% slower than RR, while the two level achieves a speedup.

3.5.5 Impact of Intra-Block Tail Effect on Performance

As mentioned in Sect. 3.5.2, performance of the two level GTO and phase-aware policies,

for the LUD, KM and BP-K1 kernels, is adversely affected due to intra-block tail effect. Intra-

block tail effect is a phenomenon where some warps of a thread block complete the kernel

before others. This happens when some warps from a thread block complete their long latency

instructions before others and are selected in an earlier fetch group. The LUD, KM and BP-K1

kernels have a short phase of length 7, 14 and 16 respectively at the end. The warps selected in

the earlier fetch groups run ahead and complete the last phase. However, a new thread block
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is not launched until all warps of a block complete, thus reducing the number of warps on the

core. The effect is reduced in the single level schedulers as warps are not scheduled in fetch

groups. Moreover, with single level RR, all warps arrive at the last short phase at the same

time leading to the GTO and phase-aware policies performing better (refer to Fig.3.7(a)).

Fig. 3.11 depicts the intra-block tail effect for the LUD kernel by plotting the total number

of active warps on a core. Notice in Fig. 3.11(a) that 6 warps (size of the fetch group) finish all

the three phases and the number of warps reduce to 42 (the first marked TE). However, new

warps are not launched until more warps finish phase 3. Notice that the tail effect repeats each

time warps in phase 3 complete. On the contrary, as the RR scheduler switches to a different

fetch group after each phase (refer to Fig. 3.11(b)), all warps reach phase 3 at around the

same time. Notice that the length of the tail for RR is around 2000 cycles for all the 6 blocks,

as compared to 5000 cycles for GTO (sum of all TEs in Fig. 3.11(a)). Performance of the

phase-aware scheduler is also affected as it chooses the shortest length phase which is the last

phase for these kernels. To mitigate this problem, we are currently evaluating implementations

for adding thread-block affinity to our two level scheduler. Note that this would increase the

complexity of the scheduler considerably and its overhead for the hardware implementation

should be carefully considered.

3.6 Related Work

3.6.1 General Warp Scheduling Techniques

Lakshminarayana and Kim [37] analyzed the performance of GPU kernels under various

instruction fetch and memory scheduling policies. They showed that applications in which

warps have a uniform execution latency, a fairness based warp and DRAM access scheduling

approach results in the best performance. The goal of their work was to explore the effects of

the scheduling policies on the performance of various applications. In contrast, we try to use

information about the application to make scheduling decisions at runtime and perform closer

to the better performing policy for each application.

Gebhart et al. [22] and Narasiman et al. [48] proposed the hierarchical warp scheduler that
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we used as a baseline for our work. The focus of authors in [22] was making the warp scheduling

logic simpler and more energy efficient. Choosing from a smaller set of warps every cycle saves

energy spent on scheduling. Their results show that using an active queue size of 6 results in

less than 1% performance loss compared to the single level scheduler. The focus of authors in

[48] was to use the two level policy to improve latency hiding. As the two level policy makes the

warps progress through the kernel instructions at different speeds, it results in a better overlap

of memory latency and computation. We showed that although the two level schedulers perform

well, the policy to select the fetch group has an effect on their performance. We build upon the

schedulers proposed in their works, and make them more robust to application phase behavior.

Our work is closest to the work published by Chen et al. in [15]. They identify the adverse

effects of short phases on the two level RR scheduler and propose a scheduler that shifts to

the next fetch group only at priority shift instructions. Short phases are identified by the

compiler and merged with the previous phase by adding a priority shift instruction after the

short phases. This effectively makes the priority selection policy as greedy until all the short

phases are completed by a fetch group. Our policy to select the phase with the shortest length

has the same result. The problem they identify with the RR scheduler can be mitigated if the

GTO policy is always used. Instead, our work identifies the scenarios when the GTO policy

has a lower performance as well, and proposes a more robust scheduling policy that would be

applicable to a wider range of application types.

3.6.2 Scheduling Techniques to Mitigate Warp Divergence

In addition to the generic techniques mentioned in the previous subsection, there is a

significant amount of published work that has focused on techniques to mitigate warp divergence.

Warp divergence occurs when threads within a warp execute different program paths due to

branches. Traditional GPUs execute each path sequentially with lesser number of threads,

thereby under-utilizing the GPU core’s computational throughput. Fung et al. [21] proposed

Dynamic Warp Formation (DWF) which creates new warps from threads that fall on the same

program path after the divergence point. Their technique suspends a warp when it reaches an

instruction that causes threads in a warp to diverge. When other warps arrive at the same
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instruction, new warps are created and all warps proceed from that point. To reduce the

synchronization overhead due to warps from different thread blocks forming a warp, Fung et

al. [20] later proposed Thread Block Compaction (TBC), which adds thread block affinity to

DWF. TBC creates new warps from diverged warps of the same thread block, similar to the

Large Warps technique proposed in [48].

Meng et al. [46] proposed Dynamic Warp Subdivision (DWS) which divides a warp into

warp splits on branch divergence. The focus of DWS is to improve latency hiding in scenarios

when one warp split encounters a cache miss. The latency of memory access can be overlapped

by executing the other warp split. Their technique creates warp splits to improve latency hiding

upon memory divergence as well. Memory divergence occurs when some threads of a warp hit

in the cache and others miss. The DWS technique creates a warp split with threads that

hit and lets them continue. This allows those threads to reach the next memory request and

possibly prefetch for the warp split that missed the first memory request. A similar technique

of dividing warps into separate scheduling entities was proposed by Steffen and Zambreno [68].

They divide the kernel instructions, which are potential program paths after divergence, into

smaller instruction blocks called µ-kernels. On warp divergence, threads wait in a partial warp

pool. When there are enough threads to make a complete warp, the new warp is allowed to

execute the µ-kernel.

Our phase scheduler can be used along with the warp divergence techniques mentioned

above. Our technique marks each basic block as a new phase. Thus on warp divergence warps

would be first put into the pending pool. Each of the techniques mentioned above creates new

scheduling entities at this point. The new entities can then be scheduled by our phase scheduler

using the phase length information.

3.6.3 Thread Throttling

There is a body of work that focuses on throttling the amount of thread level parallelism

available on the core. Although all of these are not at the warp level, changing the number of

active warps on a core has an effect on warp scheduler performance. Guz et al. [25] designed

an analytical model to study the impact of amount of TLP on performance of highly multi-
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threaded architectures. They showed that performance increases initially due to increase in

TLP, and then starts to reduce once the total working set of the threads does not fit in the

cache. Performance continues to decrease if more threads are launched until the TLP is high

enough to hide the increased memory latency. The region of performance dip is referred to as

the “performance valley”. The authors in [63, 40, 32, 8] effectively detect at runtime when the

number of active threads causes the GPU to get into the performance valley.

Rogers et al. [63] detect scenarios when the L1 data cache is trashed. They monitor the

cache lines to detect warps that have lost intra-warp locality because of other warps evicting

data that would have been used by them. A scoring system increases the score of such warps.

Warps below a certain score are not selected by the scheduler, thereby reducing the number of

active warps. Kayiran et al. [32] monitor the amount of time spent waiting for memory. The

number of threads is reduced if the time is more than an empirically found threshold. Lee et

al. [40] find the optimal amount of TLP by launching the maximum number of warps initially

and then using a greedy scheduling policy. After the first thread block completes, the optimal

number of blocks is estimated using the number of instructions that have been completed until

then. Awatramani et al. [8] detect the optimal thread block count by comparing the pipeline

stalls at different block counts. They launch half the maximum number of warps and then use

history information of the previous block counts to guide the scheduler. Lee et al. [41] identify

a problem similar to the tail effect mentioned in Sect. 3.5.5 for workloads that have varying

warps execution times. They throttle warp execution by assigning a time slice to each warp,

proportional to its the execution time with the RR scheduler. The tail effect is reduced by

giving a larger time slice to longer running warps.

Each of the above techniques reduces the number of warps on a core to a smaller set.

However, the underlying policy to select warps from this reduced set to dispatch to the execution

units is either RR or GTO. Hence, our phase-aware warp scheduler can be easily used in

conjunction with the above-mentioned techniques.
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3.7 Conclusion

In this work we analyze phases in GPGPU kernels and show that the performance of warp

schedulers depends on characteristics of these phases. Using real-world application examples,

we show that an efficient warp scheduling policy can be designed by understanding how warps

progress through these kernel phases. Based on these observations, we propose a novel phase-

aware warp scheduling policy that uses information provided by the compiler to make scheduling

decisions. We implement this scheduler in a GPU simulator and demonstrate that it is more

robust to phase behavior as compared to the static policies like round-robin and GTO. As more

and more applications are being ported to the GPU for acceleration, we believe that to cater

to the wide array of workloads, application-aware warp scheduling policies will become more

relevant in the near future.
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CHAPTER 4. WORKLOAD AWARE THREAD BLOCK SCHEDULING

4.1 Abstract

Exploiting thread level parallelism is the primary technique used in Graphics Processing

Units (GPUs) to achieve latency tolerance. Each core interleaves execution of several SIMD

threads to overlap long latency operations with floating point computations. With each

technology node, as the floating point throughput supported by GPUs has continued to increase,

GPU architectures have supported execution of an increasing number of concurrently active

threads. The thread block (or CTA) scheduler tries to maximize the number of active threads on

each core by launching CTAs until core resources are exhausted. The rationale is, more threads

would give the warp scheduler on the core more opportunities to hide memory latency and thus

result in better performance. In this work, we show that executing the maximum number

of threads is not always required to achieve peak performance. GPGPU workloads have an

optimal value for number of active threads at which the performance saturates. Increasing the

number of threads beyond this value results in no better, and sometimes worse performance.

To this end, we design two techniques.

First, we develop Perf-Sat: a mechanism to detect the optimal number of threads to be

executed on each core to achieve peak performance. Perf-Sat is integrated into the CTA

scheduler and guides it at runtime, to either increase or decrease the number of active threads.

We evaluate the performance impact of Perf-Sat on two GPU architecture generations and

show that it scales well to different applications as well as architectures. With performance

loss of less than 1%, Perf-Sat is able to achieve core resource savings of 18.32% on average.

An alternate approach is to execute the workload with maximum number of threads, but

on fewer than all cores on the chip. We refer to the number of cores at which performance of
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a workload saturates as the optimal number of active cores (Nopt). We propose executing the

workload on Nopt cores, and power gating the unused cores to reduce static power consumption.

We design ONAC (Optimal Number of Active Cores detector), a hardware unit that detects

Nopt at kernel runtime using a novel estimation model. For memory-intensive workloads,

ONAC reduces the detection time compared to sequential detection by 45%, and reduces

average energy consumption by 20%, with less than 2% performance overhead.

4.2 Introduction

GPGPU programming models use the thread block (CTA) abstraction to enable kernels

written for a previous generation GPU architectures to scale to the increased computation

resources provided by future generation architectures. The number of CTAs that can be

active simultaneously on a GPU core depends on the core’s resources, like the register file

and shared memory capacity, and number of warp and CTA slots. The peak floating point

throughput and memory bandwidth of GPU architectures has been increasing at a steady

pace. Consequently, newer generation GPUs provide more resources, thereby supporting a

higher number of concurrently active CTAs.

In this work, we show that performance of all GPGPU workloads does not scale uniformly

with number of active CTAs. While higher number of concurrently active CTAs benefit if

performance of the workload is latency limited, performance of throughput limited workloads

either saturates, or can degrade with higher number of active CTAs. Each workload has an

optimal active thread count, beyond which increasing the number of threads does not result in

further improvement in performance. We design two orthogonal hardware techniques to detect

the optimal active thread count of a workload at runtime: executing optimal number of CTAs

per core, and executing the workload with an optimal number of active cores. In the next two

sections, we describe each of the two techniques in detail.
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(a) M2090 (Fermi)
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(b) K20X (Kepler)

Figure 4.1: Impact of thread count on performance when simulated on configurations matching
the NVIDIA Tesla M2090 (a) and K20X (b) GPUs.

4.3 Perf-Sat: Runtime Detection of Performance Saturation for GPGPU

Workloads

To observe the effect of number of threads on performance, we simulated various GPGPU

kernels with an increasing number of CTAs on GPGPU-Sim, a cycle-accurate GPU architecture

simulator [10]. The configurations were chosen to match the NVIDIA Tesla M2090 (Fermi) and

K20X (Kepler) GPUs, as they are designed specifically for high performance general purpose

computing. Fig. 4.1 depicts the results for six out of the 16 kernels that we used for this

work. Three types of workloads are shown in Fig. 4.1(a). One type of workload (SRAD-6 and

B+Tree) exhibits continuous improvement in performance as the number of CTAs are increased.

For the second type (SRAD-5 and BP-2) performance improves initially and then saturates.

Behavior of the third type (CFD and Gaussian) is similar through the saturation point, except

the performance drops off as the number of CTAs is increased further. Interestingly, the kernels

for which performance saturated on the M2090 (SRAD and BP-2) behave like the third type

of workload on the K20X (Fig. 4.1(b)) as now they execute a higher number of thread blocks.

Prior studies have made similar observations [63, 32, 40]. Cache Conscious Wavefront

Scheduling [63] proposes a warp scheduling policy that reduces the number of active warps,
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when threads from different warps contend for the same L1 data cache set and increase evictions

of possibly useful cache lines. DYNCTA [32] tries to find the optimal number of thread blocks

by monitoring the core idle and memory wait cycles. However, both techniques use thresholds

that are determined heuristically and hence require re-executing the kernels to re-tune their

parameter for a different GPU architecture.

Even for the same GPU architecture, our experiments show that it is not possible to use the

same threshold across different workloads. Thus, we propose Perf-Sat: a hardware mechanism

that detects the optimal thread block count at runtime without relying on empirically determined

thresholds. Per-Sat uses information about core activity and makes decisions based on relative

performance at different CTA counts. The thread block count detected by Perf-Sat is used

by the thread block scheduler to limit the number of active blocks on each core. The unused

core resources opens up opportunities to execute threads from a concurrently active kernel on

the same core [7], thereby increasing overall system throughput without having a significant

overhead on performance of the first kernel.

4.3.1 Motivation

4.3.1.1 The Need for Thread Level Parallelism

Graphics processing units are designed for high throughput rather than low latency. Hence,

they trade-off the optimizations used in CPUs for reducing latency, such as large caches, out

of order execution and branch prediction, to provide more die area to computational units. To

account for the overhead of increased latency of memory accesses, GPU cores use a technique

called Single Instruction Multiple Threads (SIMT) execution [53]. SIMT interleaves execution

of multiple SIMD groups, each of which can be at a different instruction.

As mentioned in chapter 2, a SIMD group of threads is called a warp. Warps within one

thread block are executed in round-robin order, until all of them stall due to memory access.

At this point, warps from the oldest thread block that was scheduled are selected for execution

and so on. In this manner, the warp scheduler tries overlap memory access latency of the

stalled threads with computation of the active threads. This scheduling technique is known as
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Figure 4.2: Depiction of memory latency tolerance for different kernel categories.

Greedy Then Oldest. Many other warp scheduling policies exist such as Round Robin, Two-

level, etc. We do not describe them in detail here as the work reported in this chapter is neutral

with respect to the warp scheduling policy. Further details regarding different warp scheduling

policies can be found in chapter 3.

4.3.1.2 Optimal Thread Block Count

The thread block scheduler launches CTAs on a core until this maximum count is reached

(Nmax). The rationale is, more threads would provide the warp scheduler with more opportunities

to overlap memory access latency with computation. However, as shown in Fig. 4.1, launching

the maximum number of CTAs (and hence threads) does not result in the best performance for

all workloads. For some workloads, increasing the number of threads beyond a point does not

result in further performance improvement, and for others it might even reduce performance.

We call this point, the optimal thread block count.

In our experiments, we observe three categories of workloads. The effect of thread block

count on each category is illustrated in Fig. 4.2. The workloads depicted in the figure have

a Nmax values of four. In Fig. 4.2(a), memory requests of warps from the first block are not
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completed even after all the other blocks have completed their computations. The performance

of this category of workloads would scale if additional CTAs could be issued. They are referred

to as C-strong. The workloads typically have un-overlapped memory latency even when

executing the maximum number of CTAs. Consequently, the optimal CTA count for these

workloads is Nmax. Fig. 4.2(b), depicts the execution of the second type of workload: C-

weak. Notice that three blocks are sufficient to overlap all the memory latency. Launching

the fourth thread block would not result in a better performance and hence the optimal count

is three. Such workloads typically become compute throughput or memory bandwidth limited

once the optimal block count is reached. For the third category of workloads (refer Fig. 4.2(c)

and 4.2(d)), performance starts to decrease if the number of active blocks is more than the

optimal count. In the figures, we can observe that the memory system can support requests

from only two blocks. Issuing more blocks, starts increasing pipeline stalls. The optimal

count is the number of blocks that can issue memory requests simultaneously, plus one. In this

example, it would be three. Such applications are categorized as MEM. In the next section, we

demonstrate that this behavior of the three types of workloads can be understood by analyzing

the breakdown of core activity.

4.3.1.3 Effect of Workload Characteristics on Optimal Thread Block Count

To understand the effect of number of thread blocks on performance, we simulated kernels

form a wide range of applications from the Rodinia benchmark suite [14] on a cycle accurate

GPU microarchitecture simulator [10]. The thread block scheduler was modified to limit the

number of blocks it launches on each core. Kernels were executed from one to Nmax active

blocks and the following architectural parameters were monitored on each core:

Scoreboarding stalls: Cycles when all the warps are stalled due to dependency from a

previous instruction. A stall is categorized as either ALU or memory depending on whether

the previous instruction is an arithmetic or a memory operation.

Pipeline stalls: Cycles when all the warps are stalled because of insufficient hardware

resources. Again, a stall is categorized as ALU if the resource is a computational unit and
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(d) B+Tree (C-strong)
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Figure 4.3: Breakdown of core activity for three types of workloads on the NVIDIA Fermi
(above) and Kepler (below) architectures.

memory if the resource is required for a memory operation (e.g. MSHR entry, memory access

queue, etc.).

Idle stalls: Cycles when the warp scheduler does not have any warps to issue.

Active: Cycles when the core is performing computations.

Fig. 4.3 illustrates the breakdown of runtime for a workload from each of the three categories

at different active CTA counts. Data plotted for scoreboarding and pipeline stalls are attributed

to both ALU and memory. For simplicity, we do not distinguish between these in the figure.

C-strong: We can observe in Fig. 4.3(a) that the number of scoreboarding stalls is very

high with one block. This is because there are not enough threads to overlap the memory

access and ALU latencies. As the number of thread blocks increases, the scoreboarding stalls

decrease while the pipeline stalls increase. Notice that the decrease in scoreboarding stalls is

always greater than the increase in pipeline stalls, which results in an overall increase in the

number of active cycles. This trend continues until the thread block limit is reached. Hence,

the optimal count is the same as Nmax for these workloads. Similar behavior is observed on

the Kepler architecture (Fig. 4.3(d)). It should be noted that, while the kernels had a lesser
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execution time on the Kepler architecture, the ratio for which the core was active also reduced.

C-weak: Fig. 4.3(b) shows that the performance of SRAD scales initially, but starts to

plateau at five blocks. Observe that after five blocks, the decrease in scoreboarding stalls is

comparable to the increase in pipeline stalls. This is because, as the number of active threads

increases, the warp scheduler has a higher number of ready threads to choose from, which

decreases the number of scoreboarding stalls. However, this also increases the contention for

hardware resources, which results in an increase in the number of pipeline stalls. Due to this

opposing effect, the number of active cycles does not increase, and the performance saturates

after the optimal count value.

MEM: Similar to the C-weak category of workloads, the performance of workloads in this

category also saturates when the decrease in scoreboarding stalls becomes comparable to the

increase in pipeline stalls. However, beyond this point the performance starts to degrade.

Observe in Fig. 4.3(c) that performance of LUD drops off when the number of blocks is

increased beyond five. We observed that this is due to an increase in L1 data cache contention

among warps, which causes an increase in the L1 data cache miss rates. The effect is more

prominent on the Kepler configuration, as the L1 cache size is the same and the number of warps

executing simultaneously increases. This causes SRAD, which is a C-weak type of workload on

Fermi, to becomes a MEM workload on the Kepler configuration (Fig. 4.3(e)).

Our work is motivated by these observations. Detecting the optimal thread block count

for C-weak and MEM workloads can reduce the amount of core resources required by a kernel,

without sacrificing performance. These resources can either be power-gated or utilized for

issuing threads from other workloads in concurrent kernel execution scenarios. In the next

section, we explain how Perf-Sat utilizes the information regarding core stalls to detect the

optimal thread block count.



50

4.3.2 Perf-Sat - Underlying Principles and Design Details

4.3.2.1 Hypothesis

The design of Perf-Sat is based on the behavior presented in the previous section. The key

observation is that, performance improves until the increase in the number of pipeline stalls is

lesser than the decrease in the number of scoreboard related stalls. Lets consider a workload

that is executing with N active blocks. Using N+1 active blocks would be better if,

PipelineN+1 − PipelineN < ScoreboardN − ScoreboardN+1

Thus, N+1 active blocks are a better choice, if the sum of the pipeline and scoreboarding

stalls is lower than at N active blocks. We refer to this sum as the stalled cycle count in the rest

of this section. Our thread block scheduler issues dNmax/2e CTAs on each core at initialization.

At each sample, the number of active CTAs is adjusted until the stalled cycle count is greater

than at the previous CTA count.

4.3.2.2 Detection Algorithm

The detection algorithm has three phases:

1. Sample rate detection: As our scheduler makes decisions based on samples of the

core activity at runtime, its accuracy is sensitive to the sampling rate. For example, a sample

of the core activity when the workload was very compute intensive should not be compared

against one that had many memory access instructions. As discussed in chapter 3, GPGPU

kernels typically exhibit such phase behavior within warps. The effect of workload phases gets

averaged across multiple thread blocks. Thus, we set the sampling period to approximately

the number of cycles it would take for Nmax thread blocks to complete. When work from a

new kernel is started on a core, the number of cycles that elapsed until the first thread block

completes (One TBcycles) are recorded. The sampling period is then set as One TBcycles∗Nmax.

Decisions in the next two phases are made according to the state machine shown in Fig. 4.4.

The state machine has four states: weak-increase, strong-increase, weak-decrease and strong-

decrease. The stalled cycle count for the previous block count is stored (previous sample). At

the end of a sample period, Perf-Sat compares the stalled cycle count for the current thread
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Figure 4.4: State machine used by Perf-Sat

block count (current sample) with the previous sample. A direction bit is used to indicate

whether a particular direction of throttle has been decided. A history bit is used to distinguish

between the weak and strong states.

2. Direction of throttle: The optimal thread block count can be either higher or lower

than the initial value of dNmax/2e. Hence, the direction in which we should change the number

of active blocks is decided in the second phase. At initialization, the direction bit is set to 0.

At the end of the first sample period, the stalled cycle count for dNmax/2e is stored as the

previous sample and the number of blocks is increased to dNmax/2e + 1. The Perf-Sat state

machine goes into the weak-increase state.

At the end of the second sample period, if the stalled cycle count is lesser than the previous

sample, it is considered that the decision to increase was correct. Perf-Sat remains in the weak-

increase state and the history bit is set to 1. The thread block count remains as dNmax/2e+ 1.

On the other hand, if the stalled cycle count is greater than the first sample, Perf-Sat goes into
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the weak-decrease state. The sample corresponding to dNmax/2 + 1e is stored and number of

active blocks is reduced to dNmax/2e.

At the next sample, if the number of stalled cycles is coherent with the decision taken,

Perf-Stat goes into the strong-increase (or strong-decrease) state and the direction bit is set. If

not, the history bit is reset again. Thus, the history bit ensures that a direction of throttle is

decided only if two consecutive decisions favor the same direction. If the optimal thread count

value is close to dNmax/2e, Perf-Sat can toggle several times between the weak-increase and

weak-decrease states. The optimal count is conservatively set as dNmax/2 + 1e, if the state

machine toggles more than three times.

3: Detection of optimal value

Once the state machine is in the strong-increase (or strong-decrease) state, Perf-Sat keeps

increasing (or decreasing) the number of active blocks at the end of each sample period. The

stored sample is now updated at each sample point. This continues until the stalled cycle count

of the current sample is more than the previous sample. For example, lets say an application

has Nmax = 15 and Noptimal = 12. Perf-Sat starts with N = 8. It takes two samples at N =

9 to set the direction bit and goes into the strong-increase state. After N = 9, the number of

active blocks is increased at every sample point until 12.

The number of stalled cycles at N = 13 would be more than at N = 12. At this point;

the N13 sample is discarded, Perf-Sat goes into the weak-increase state and number of active

blocks are kept as 13. The history bit is set to 0. At the next sample, if the stalled cycle count

is again more than the N12 sample, the optimal block count is detected as 12. Similar to the

problem mentioned in the previous section, just before converging at Noptimal = 12, Perf-Sat

can toggle several times between the weak-increase and strong-increase states. The optimal

block count is optimistically set as the previous value (12 in this example) if the state machine

toggles more than 3 times.
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Table 4.1: Details of GPU configurations used for evaluating Perf-Sat
Resource M2090(Fermi) K20X (Kepler)

Register file capacity per SM 128 KB 256 KB

Maximum threads supported per SM 1536 2048

Maximum thread blocks supported per SM 8 16

SP floating point units per SM (total) 32(512) 192(2688)

DP floating point units per SM (total) 16(256) 64(896)

SP floating point performance (peak) 1330 GFLOPS 3935 GFLOPS

DP floating point performance (peak) 665 GFLOPS 1311 GFLOPS

DRAM clock frequency (MHz) 1850 2600

DRAM peak bandwidth (GB/s) 177 250

Table 4.2: Details of CUDA kernels used for evaluating Perf-Sat

Kernel
Resource per block M2090(Fermi) K20X (Kepler)

Reg (Bytes) Threads Max Opt Type Max Opt Type

Backprop - 1 (BP-1) 12228 256 6 6 C-strong 8 8 C-strong

Backprop - 2 (BP-2) 24576 256 5 5 C-weak 8 5 MEM

B+Tree - 1 (B+-1 ) 24576 256 5 5 C-strong 8 8 C-strong

B+Tree - 2 (B+-2) 20480 256 6 6 C-strong 8 8 C-strong

Comp. Fluid Dyn. (CFD) 39936 192 3 3 MEM 6 5 MEM

Gaussian (Gaus) 1536 16 8 6 MEM 16 6 MEM

LU Decomposition (LUD) 16384 256 6 5 MEM 8 5 MEM

Hotspot (Hot) 36864 256 3 3 C-strong 6 6 C-strong

Pathfinder (Path) 16384 256 6 5 C-weak 8 5 C-weak

Nearest neighbor (NN) 16384 256 6 5 C-weak 8 7 C-weak

SRAD - 1 12288 256 6 6 C-strong 8 6 MEM

SRAD - 2 12288 256 6 5 C-weak 8 5 MEM

SRAD - 3 16384 256 6 6 C-strong 8 3 MEM

SRAD - 4 20480 256 6 6 C-strong 8 7 C-weak

SRAD - 5 20480 256 6 5 C-weak 8 4 MEM

SRAD - 6 12288 256 6 6 C-strong 8 7 MEM

4.3.3 Experimental Results

4.3.3.1 Experimental Setup

Our experiments were performed on GPGPU-Sim v3.1 [10], a cycle accurate GPU microarchitecture

simulator. The simulator configurations were chosen to closely match the NVIDIA Tesla M2090,

which is based on the Fermi architecture, and the Tesla K20X, which is based on the Kepler

architecture. Details of both the configurations are provided in Table 4.1.

We simulated a wide range of CUDA kernels from the Rodinia benchmark suite [14]. We

show results for 16 kernels that represents a good mix of the three types of workloads: C-

strong, C-weak and MEM. Table 4.2 provides more details about the workloads executed by

the kernels. Numbered kernels are from applications that launch more than one kernel.
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Figure 4.5: Comparison of active thread blocks detected by Perf-Sat, with baseline and
empirically found optimal count.

4.3.3.2 Detection Accuracy

To find the optimal thread block count, kernels were executed separately at each count by

modifying the thread block limit per core in the simulator. The count after which increasing the

number of blocks resulted in less than 2% performance improvement was decided as optimal.

Fig. 4.5 compares this empirically determined optimal count with the count detected by Perf-

Sat. The baseline thread block scheduler issues the maximum number of blocks supported.

As our mechanism operates separately for each core, the number reported in the figure is the

average across all cores. Perf-Sat finds the optimal count with an accuracy of 94.25% on the

Fermi configuration, and with 85.12% on the Kepler configuration. There are two reasons for

the difference between the detected and the empirically found optimal values. Kernels for which

the optimal count is close to the maximum, Perf-Sat detects the optimal count as maximum

on some cores and lower than the empirically found optimal on other cores. Secondly, for the

cores where the optimal count is close to Nmax/2, Perf-Sat conservatively chooses the higher

block count value.

4.3.3.3 Performance Impact

Fig. 4.6 compares the performance of Perf-Sat with baseline. The difference between

Perf-Sat and the baseline scheduling policy is that Perf-Sat throttles the number of active

blocks in the beginning to detect the optimal count, while the baseline scheduler always issues
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Figure 4.6: Performance comparison between baseline, optimal and Perf-Sat.

the maximum number of blocks possible. The speedup reported under Optimal is using

the execution time when the kernel is executed with the empirically found Nopt CTAs. As

expected, we incur some loss in performance for the C-strong and C-weak category of kernels.

This is because, their optimal block count is close to the maximum. Perf-Sat starts with

Nmax/2 number of blocks and takes a few iterations to reach the optimal count. However,

the performance loss is only 0.51% on the Fermi configuration and 0.88% on the Kepler

configuration. The performance of the MEM category of workloads increases because the

optimum count is much less than the maximum. There is a 4.95% performance improvement

on average for these workloads across the two configurations.

4.3.3.4 Resource Utilization

Fig. 4.7 shows the percentage of resources utilized by each kernel with the baseline and

Perf-Sat scheduling policies. As the maximum block count for all of our kernels was constrained

due to either thread slots or registers, results are shown for only these two resources. For the

C-strong category kernels, Perf-Sat utilizes only 0.97% lesser resources on average compared to

the baseline scheduler. This is expected as the optimal count value is the same as maximum

for these workloads. The resource savings are more significant for the other two categories of

workloads. Perf-Sat utilizes 14.32% and 35.35% less resources compared to the baseline for the

C-weak workloads on the M2090 and K20X configurations respectively. For the MEM category,
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Figure 4.7: Comparison of resource utilization per core.

the reduction in resource usage is 25.31% on the M2090 and 31.48% on the K20X configuration.

Across all kernels, the savings are 10.45% on the M2090 and 25.51% on the K20X. Average

resource savings across the configurations is 18.32%.

4.3.4 Related Work

This section gives on overview of related work in GPGPU scheduling techniques and

workload throttling.

4.3.4.1 Scheduling in GPGPU

There have been several prior works that have proposed scheduling techniques at the warp

level. To increase the overlap of memory latency with computation, Narasiman et al. [48]

proposed the two-level warp scheduling scheme. They group a fixed number of warps into fetch

groups. Warps are scheduled in round-robin order from one fetch unit until all the warps stall

on a memory request, and then the next fetch group is brought into the scheduler. Fetch groups

are selected in round robin order as well. Gebhart et al. [22] proposed a similar hierarchical

scheduling policy, along with a register file cache. The objective of their work was to improve

the energy efficiency of the warp scheduler and instruction dispatch. Rogers et al. [63] suggested

that using a greedy then oldest (GTO) policy for selecting fetch groups, as well as for selecting

warps within a fetch group, performs better than round-robin. Jog et al. [30] used the two

level scheduler to improve the efficiency of prefetching for GPUs. They group non-consecutive
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warps into one fetch group, which then prefetch for the next group. As warps for which data

is being prefetched are scheduled in the next group, the amount of time warps are blocked due

to memory access is reduced.

4.3.4.2 Workload Throttling

It has been suggested in a few prior works that increasing number of threads beyond a

point can degrade performance for some workloads. Bakhoda et al. [10] varied the amount of

core resources from 25% to 200% and observed that two of the workloads they used showed

a decrease in performance. In their work on cache conscious warp scheduling [63], Rogers et

al. showed that high thread count can degrade performance for cache sensitive workloads.

They track L1 data cache lines to detect warps that have lost intra-warp data locality, possibly

because of other warps evicting data lines that would have been used by them. A scoring system

increases the priority of such warps. Warps that have a score below a certain threshold are

not scheduled, thereby reducing the number of active threads. For cache-sensitive workloads,

their warp scheduler effectively reduces the active thread count close to the optimal count. We

attempt to find this count at the CTA scheduler.

Our work is closest to [32] and [40]. Kayiran et al. [32], monitor the core idle cycles (Cidle)

and cycles when all threads are waiting for memory access (Cmem). They start by issuing

dNmaxe thread blocks. They increase the number of blocks if Cidle is higher than a threshold.

Once, Cidle is less than the threshold, they further increase (or decrease) the block count if

Cmem is lower (or higher) than another threshold. Values for both the thresholds, as well as

the sampling period are found empirically.

In [40] Lee et al. make similar observations as ours. Their technique launches Nmax blocks at

initialization and use a greedy warp scheduling policy to issue work. The number of instructions

executed until the first thread block completes are counted. Noptimal is estimated as bN max ∗

(instr. in 1 block)/instr. executedc. The idea is the amount of computation done to overlap

latency of the first block should be enough as now a new block can be issued in its slot. Thus,

the number of thread blocks required to execute those computations (calculated by the earlier

equation) is detected as the optimal active thread block count.
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4.4 ONAC: Optimal Number of Active Cores Detector for Energy Efficient

GPU Computing

Our experiments show that several GPGPU workloads can achieve their peak performance

without utilizing all the cores on the chip. Prior works have shown that, memory-intensive

workloads can be executed with fewer than maximum supported threads per core without

sacrificing performance [8, 40, 32]. Consequently, they proposed techniques that detect the

minimum number of threads required on each core to achieve peak performance. Executing

fewer than the maximum threads reduces hardware resource utilization, which enables opportunities

for reducing energy consumption through power-gating.
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Figure 4.8: The effect of number of cores on performance.

An orthogonal technique to reduce energy consumption is to execute the workload on fewer

cores. To observe the effect of number of cores on performance, we executed workloads from

the Rodinia benchmark suite [14] and the CUDA SDK [51] with an increasing number of active

cores, on a 32-core GPU simulated in GPGPU-Sim [10]. Fig. 4.8 plots the average IPC at each

core count for 4 kernels. Two clear performance trends can be observed. The performance of

Hotspot and Pathfinder scales linearly with number of cores. Contrary to this, performance

of Backprop and FWT scales linearly only for lower core counts. Beyond a certain number

of cores, scaling starts to plateau and performance eventually saturates. This shows that for

Backprop-K2 and FWT, some of the cores on this chip can be power-gated without adversely
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affecting performance.

We refer to the number of active cores at which performance of an application saturates as

its optimal active core count. The authors in [67] propose a mechanism to detect the optimal

active core count at runtime. Memory-intensive workloads typically have high average memory

latency due to DRAM queuing effects. Their technique marks a core as memory-sensitive if

the average memory latency (sampled at runtime) is larger than an empirical threshold. The

number of active cores are reduced sequentially (one per sample), until more than half the

active cores are not memory-sensitive. Our experiments show that there are two drawbacks of

this approach:

1. Reducing the number of active cores one at a time leads to a long detection time for

workloads that have a low optimal active core count. As all cores consume static power

during the detection period, a long detection time leads to lost opportunity for reducing energy

consumption.

2. Memory latency is not a direct indicator of performance. Instead, the amount of latency

overlapped by compute instructions is a better indicator. Moreover, the capability to hide

memory latency varies across workloads, and consequently a single threshold does not scale

across a variety of workloads. We implement the technique in [67] by directly using IPC as an

indicator of performance, and comparing samples across cores instead of using a threshold. We

refer to our implementation as sequential detection or Seq-Det.

To address these problems, we design ONAC: Optimal Number of Active Cores detector.

ONAC uses an estimation model inspired by Roofline [76], and estimates the IPC versus core

count curve described in Fig. 4.8. As the optimal active core count is estimated instead of

searched by reducing active cores one at a time, ONAC significantly reduces detection time

and increases energy saving compared to Seq-Det. The specific contributions of our work are:

• We thoroughly analyze the impact of number of cores on performance via case studies

on kernels from two real-world applications. We show that performance saturation at a

certain core count can be explained by measuring the amount of memory latency that is

overlapped by computation.
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Figure 4.9: Average Memory Access Time (AMAT) and the amount of AMAT overlapped by
computation.

• We propose a novel model to estimate the optimal number of active cores at runtime.

• We implement ONAC and Seq-Det in GPGPU-Sim [10], and analyze their effect on

performance, power and energy consumption. Our evaluation shows that for memory-

intensive workloads, Seq-Det and ONAC reduce energy consumption by 10% and 20%

respectively, with negligible impact on performance.

4.4.1 Effect of Number of Cores on Performance

In this section we analyze the effect of the number of active cores (Nactive) on performance for

kernels from two applications: Pathfinder and Backprop. The Pathfinder kernel is compute-

intensive, and reaches peak performance when all cores on the GPU are utilized. On the

contrary, the Backprop kernel is memory-intensive, and its performance saturates after a specific

number of active cores.

4.4.1.1 Effect on Memory Latency and Performance

The fundamental effect of Nactive on performance can be deduced by analyzing its effect on

non-overlapped memory latency (Fig. 4.9). Average memory access time (AMAT) is typically

defined as the average memory latency observed by a memory instruction, irrespective of

whether it hits in the L1 or L2 data caches. Fig. 4.9 plots the AMAT observed for the Backprop

and Pathfinder kernels, at different core counts, normalized to the run on a configuration with

just one core. As expected, as Nactive increases, the bandwidth available to each core reduces,
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Figure 4.10: The effect of Nactive on power and energy.

and consequently AMAT increases. Notice in the figure that AMAT increases for both kernels.

Thus, by itself, AMAT is not an indicator of performance.

Fig. 4.9 also plots the amount of AMAT that is overlapped by computation (AMAToverlapped).

AMAToverlapped is the average number of cycles, for each memory request, when there is at

least one arithmetic instruction in flight on its requesting core. Observe in Fig. 4.9(a) that for

Pathfinder, AMAToverlapped increases with AMAT. Consequently, performance of Pathfinder

keeps scaling until Nactive equals 32. On the contrary, for the Backprop kernel, the difference

between AMAT and AMAToverlapped starts to increase after Nactive is higher than 9 (Fig. 4.9(b)).

This indicates that an increasing amount of memory latency is exposed and contributes to the

execution time. Thus, the performance of Backprop starts to plateau around this point and

eventually saturates when Nactive reaches 12 (refer to Fig. 4.8). The threshold used to categorize

a kernel’s performance as saturated is when it is within 2% of the performance when Nactive

equals 32.

4.4.1.2 Effect on Power and Energy

Fig. 4.10 plots the static and dynamic power consumed by the two kernels with a varying

number of active cores. While static power increases linearly with Nactive, dynamic power

consumption scales proportionally to IPC. As discussed in the previous subsection, Pathfinder’s

IPC continues to scale up until 32 cores. Consequently, dynamic power continues to increase as

well. On the contrary, Backprop spends an increasing percentage of the total execution time on
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non-overlapped memory latency as Nactive increases beyond 9 cores. As cores stay idle waiting

for data for a larger portion of their execution time, the average dynamic power consumed per

core reduces, and becomes almost constant after Nactive is higher than 12 cores (Fig. 4.10(b)).

The energy consumed by a kernel is directly proportional to average power consumption and

inversely proportional to IPC. Hence as Nactive increases, if the increase in IPC is larger than

the increase in power consumption, total energy consumption reduces. Notice in Fig. 4.10(a)

that although the average power consumption of the Pathfinder kernel continues to increase

until Nactive = 32, energy consumption continues to decrease. This is due to a steady increase in

IPC. On the contrary for Backprop (Fig. 4.10(b)), as the average power consumption continues

to increase (due to increase in static power), and IPC saturates after Nactive = 12, the total

energy increases.

4.4.2 ONAC: Estimation Model and Hardware Implementation

In the previous section, we showed that some GPU kernels can achieve peak performance

without using all cores on the chip. The unused cores can be power gated to reduce static power

consumption, and thereby energy. In this section we describe ONAC, our hardware technique

that detects the optimal core count at runtime. At its crux is our novel estimation model that

significantly reduces the detection overhead.

4.4.2.1 Performance Estimation Model

Our estimation model leverages the following observations from the IPC trends described

in the previous sections:

Observation 1: IPC achieved when all cores are used (IPCall), is the maximum IPC of the

kernel on the current configuration.

Observation 2: Let IPC1 be the IPC achieved on the 1 core configuration. The IPC at a

given core count N, is lower than or equal to N * IPC1.

Observation 3: As the number of cores increase, IPC per core remains the same or decreases.

For a configuration with x cores, let the average IPC per core be IPCslope x. For any i > j,

IPCslope i ≤ IPCslope j .
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Figure 4.11: Example of optimal active core count detection using our model for the Pathfinder
kernel.

In the next subsection, we describe how our model uses these observations and illustrate

the steps it takes to estimate the optimal active core count.

4.4.2.2 Optimal Core Detection Examples

At the beginning of a kernel’s execution, a sample of IPC with all the cores active is taken

(IPCall). Following observation 1, our model assumes IPCall to be the maximum achievable

IPC for this kernel. Its objective is to find the minimum number of cores required to achieve

an average IPC within a certain threshold of IPCall. We refer to this as IPCthreshold, and is

depicted by a solid line in Fig. 4.11 1©.

Next, all but 1 cores are put in a paused state and a sample of the IPC is taken with just

1 core active. The details of pausing cores and sampling are described in the next section.

Following observation 2, the maximum performance at each core count can be projected by a

line through the origin with a slope of IPC1 2©. The intersection of this line with the constant

line through IPCthreshold is the least number of cores required to achieve peak IPC. This gives
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Figure 4.12: Example of optimal active core count detection using our model for the Backprop
kernel.

the model a first estimate of the optimal number of active cores. The first estimate calculated

for the Pathfinder and Backprop kernels is 31 and 9 cores respectively (refer to Fig. 4.11 and

Fig. 4.12 3©).

An estimate of the optimal active core count is referred to as Nest. At this point, a sample

of the average IPC is taken with Nest cores active (IPCest). If the IPCest is greater than or

equal to IPCthreshold, the model concludes that the optimal number of cores has been detected.

As expected, the first estimate is very optimistic. The IPC of Backprop with 9 cores and

Pathfinder with 31 cores do not meet the required performance threshold.

All the remaining estimates are calculated using observation 3. The model stores two

values: a sample of the IPC at the current (IPCcur) and previous (IPCprev) estimates. The

next estimate is calculated as the point at which a line passing through IPCprev and IPCcur

intersects with IPCthreshold. For Backprop, a line through IPC1 and IPC9 intersects IPCthreshold

at 10 cores. The IPC sampled at 10 cores is still lower than IPCthreshold, and a new estimate is

calculated using IPC9 and IPC10. In this way, the model keeps updating IPCcur and IPCprev



65

Estimation Records
pre-est core count IPC

Init Est Opt Det

core id active IPCpause

Core Status Table (CST)

…

ONAC Fields
CTA Assigned

Basic Fields
. . .

CTA 
Scheduling

Logiccur-est core count IPC
max core count IPC

ONAC Control Logic

core id active IPCpause CTA Assigned . . .

SM Work Manager(SWM)

To Cores

Figure 4.13: Block diagram of ONAC’s hardware implementation.

until the IPC at the current estimate satisfies IPCthreshold. Our model converges at the fourth

estimate for Backprop, and correctly detects the optimal core count as 12 cores. For Pathfinder,

the optimal active core count is correctly detected as 32 cores at the second estimate.

4.4.2.3 Hardware Implementation

We implemented ONAC inside the kernel scheduler described in chapter 2. We refer to the

kernel scheduler unit as the SM Work Manager (SWM) in this section. Fig. 4.13 illustrates a

simplified block diagram. The unit inside the SWM which detects the optimal core count is

shown as the ONAC control logic.

Core Status Table The baseline SWM stores information required for scheduling in a

structure referred to as the Core Status Table (CST). We add three new fields per core to this

structure: active bit, paused bit and a field to record the IPCs sampled at runtime. CTAs are

issued only to cores which have the active bit set and paused bit unset.

ONAC Control Logic The control logic in Fig. 4.13 illustrates a state machine representation

of the detection algorithm. The Estimation Records (ER) table has two entries each at the
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previous estimate, current estimate and all cores active, to store the core count and average

IPC. The state machine has three states: Init, Estimate (Est) and Optimal core count detection

(Opt Det).

1. Init: At the beginning of a kernel, all cores are active and un-paused. Each core takes

a sample of its IPC and stores it in the CST (refer to Sect. 4.4.2.4). When all the cores

have taken their samples, the IPC is summed and stored in the ER. Next, the pause flag

is set for 31 cores (refer to Sect. 4.4.2.5). Once all cores are paused, a sample of IPC with

one core is taken and Init invokes the Est logic to calculate the first estimate.

2. Est and Opt Det: The detection state machine stays in either Est or the Opt Det states

for the remaining portion of the kernel. Est calculates the first estimate (Nest) using the

samples of the IPC at max and 1, and stores it in the cur-est field of the ER. To get a

sample of the IPC, Nest - 1 cores are un-paused by resetting their pause bits. Once the

sample with Nest active cores is collected, Opt Det compares it with IPC for max and

checks if the performance threshold is satisfied. If true, Nest is set as the optimal number

of active cores and the detection process is terminated. If false, pre-est and cur-est entries

are updated and Est calculates a new estimate.

4.4.2.4 Sampling

At the start of a sample, the SWM sends a request to all cores that are active but not

paused. The requested cores wait for the instructions in-flight to complete, and then take

a sample of the IPC over the next sampling period. Our experiments show that sampling

period is a significant factor that affects the accuracy of the IPC samples, and consequently

the accuracy of detection.

Sampling period: The total number of CTAs concurrently active on the GPU is referred

to as a CTA wave. GPU compute kernels typically execute a similar set of instructions on a

grid of input data, organized into CTAs. Consequently, workload of a GPGPU kernel can be

approximated using a sequence of CTA waves. However, as all CTAs in a wave do not start and

finish at the same time, the IPC fluctuates over the execution of a CTA wave. Our experiments
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show that the average over a set of four CTA waves is a good sampling period and results in a

stable IPC value that is close to the kernel’s average IPC.

4.4.2.5 Core Pausing

During the detection period, the cores that are inactive are put in a paused state. To

pause a core, the SWM sends a pause request, and the warp scheduler on the core stops

issuing instructions. Once the instructions that are in-flight are completed, the core sends an

acknowledgment to the SWM. Once all the required cores have paused, the SWM notifies the

active cores to begin the next sample. We pause cores at the beginning to take a sample with

1 core. For the remaining portion, cores are un-paused and put back into the active state as

the estimate of optimal core count increases. Pausing the cores instead of draining them, helps

reduce the time required to wait before beginning the next sampling period. After the optimal

core count is detected, the cores that are paused, are drained and power-gated.

4.4.3 Experimental Results

Two metrics are important in the design of a runtime technique for detecting optimal active

core count (Nopt):

1: Accuracy: The accuracy of detection is important as overestimating Nopt reduces the

amount of energy saved, while underestimating it negatively impacts performance.

2: Detection Time: A short detection time is important as it increases the amount of energy

saved for memory-intensive kernels. Moreover, a long detection time can negatively impact

performance, particularly for compute-intensive kernels.

In this section, we evaluate ONAC and the sequential detection technique (Seq-Det) on the

basis of accuracy, detection time and their impact on performance, power and energy.

4.4.3.1 Methodology

We implemented ONAC and Seq-Det in GPGPU-Sim, a cycle level GPU architecture

simulator [10]. Table 4.3 provides details of the simulated GPU configuration.
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Table 4.3: The GPU configuration used for evaluating ONAC
Number of Cores 32
Warp Size 32
Warp schedulers per core 2, GTO scheduling policy
Execution units per core 32 ALUs, 4 SFUs,16 LD/ST units
Resources/Core Max. 48 warps, Max. 8 thread blocks, 32768 Registers, 48KB Shared Memory
Core/ICNT/Memory Clock 1300MHz/1300MHz/1848MHz
Number of Mem. Partitions 12
DRAM Chip Model 32bits bus width/Memory Partition, 6 Banks/Memory Partition, GDDR5 timing
Processing Power Single precision: Max. 2662.4 GFLOPs
Memory Bandwidth Max. 177.4 GB/s

The applications used for our evaluation were chosen from Rodinia [14], an open source

benchmark suite for heterogeneous computing and the CUDA SDK [51]. The set of kernels

used for our analysis are listed in Table 2 . We broadly group kernels into two categories.

Kernels grouped under type A have Nopt less than 32, and consequently are good candidates

for saving energy, while Type B kernels have Nopt equal to 32.

Table 4.4: GPGPU kernels used for evaluating ONAC
Kernel Name Abbr. Suite Type CTAs
LU Decomposition LUD Rodinia A 65025
K-Nearest Neighbor NN Rodinia A 50115
K-Means KM Rodinia A 25600
B+tree Kernel 2 BT-K2 Rodinia A 65535
Back Propagation kernel 2 BP-K2 Rodinia A 65535
Speckle Reducing Anisotropic Diffusion SRAD Rodinia A 32768
Discrete Cosine Transform kernel 1 DCT-K1 CUDA SDK A 32768
Discrete Cosine Transform kernel 2 DCT-K2 CUDA SDK A 32768
Transpose No Bank Conflicts TP-K1 CUDA SDK A 65536
Transpose Coarse Grained TP-K2 CUDA SDK A 65536
Fast Walsh Transform FWT CUDA SDK A 32768
Convolution Separable CVSEP CUDA SDK A 16384
Merge Sort MS CUDA SDK A 24567
Pathfinder PATH Rodinia B 46297
B+tree Kernel 1 BT-K1 Rodinia B 65535
Hotspot HS Rodinia B 29241
Back Propagation kernel 1 BP-K1 Rodinia B 65535
Convolution Texture Kernel 1 CVT-K1 CUDA SDK B 98304
Convolution Texture Kernel 2 CVT-K2 CUDA SDK B 98304
DXT Compression DXTC CUDA SDK B 16384
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(b) IPC performance

Figure 4.14: Optimal number of active cores (Nopt) detected by ONAC and Seq-Det, and the
corresponding IPC achieved by the kernels. IPC results are normalized to the IPC achieved
when the kernels are executed with all the cores active.

4.4.3.2 Accuracy of Detection and Performance

We detected the optimal number of cores for each kernel by executing them separately at

each core count. We refer to this as Noracle. Fig. 4.14(a) compares the Nopt detected by ONAC

and Seq-Det to Noracle. As expected, the Nopt detected at runtime has an impact on the kernel’s

performance. Consequently in Fig. 4.14(b), we compare the performance achieved by kernels

when executed with ONAC and Seq-Det, to when executed on Noracle cores. The results are

normalized to the performance achieved on the baseline configuration (referred to as Nmax).
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4.4.3.3 Type A Kernels

13 of the 20 kernels analyzed in our experiments were type A kernels. Observe in Fig. 4.14(a)

that the Nopt detected by Seq-Det is always higher than or equal to Noracle for all of them,

except BT-K2, where Nopt is detected inaccurately due to a sampling variation. The sampled

IPC taken with 30 cores active, is higher than the average IPC achieved when the kernel is

executed on 30 cores, which leads to Seq-Det underestimating Nopt. Consequently, notice in

Fig. 4.14(b) that the IPC achieved by Seq-Det is always higher than the performance threshold

of 2% for all kernels except BT-K2.

For ONAC, the Nopt value detected is higher than or equal to Noracle for all type A kernels

except MS. This detection inaccuracy is caused by a similar sampling variation problem.

Consequently, the IPC achieved by ONAC is 95% ofNmax for MS, and is close to the performance

threshold for others (refer to Fig. 4.14(b)). On average Seq-Det and ONAC achieve 99% and

98% of the performance achieved with Nmax cores. On the other hand, we show in Sect. 4.4.4

that they reduce the average energy consumption across kernels by 10% and 20% respectively.

4.4.3.4 Type B Kernels

In addition to detection accuracy, detection time also has an effect on performance. Notice

in Fig. 4.14(a) that both techniques, Seq-Det and ONAC, detect Nopt with 100% accuracy for

all type B kernels. However, observe in Fig. 4.14(b) that the IPC achieved by them varies across

kernels. As Seq-Det reduces the number of active cores one at a time, it takes one sample at 31

active cores, and switches back to 32. Consequently, the IPC achieved by Seq-Det for all type

B kernels is close to that achieved by the baseline. On the other hand, ONAC has to take a

sample with one active core, which causes the small impact on performance seen in the figure.

Although ONAC has this overhead for type B kernels, the effect on performance is less

than 2% on average. On the other hand, ONAC saves significantly more energy compared to

Seq-Det for type A kernels. We analyze the correlation between detection time and energy in

detail in the next section. Notice in Fig. 4.14(b) that the effect of detection time on IPC is

also observed in a few type A kernels. Although ONAC detects Nopt accurately for the BP-K2,
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Figure 4.15: The percentage of kernel’s total execution time spent on detection by ONAC and
Seq-Det.

KM, SRAD and BT-K2 kernels, the IPC achieved is a little below the 2% threshold.

4.4.4 Detection Time and its Effect on Power and Energy

In this section, we analyze the effect of ONAC and Seq-Det’s detection time on average

power and energy consumption. Fig. 4.15 plots the ratio of detection time to the total execution

time, while Fig. 4.16(a) and Fig. 4.16(b) plot the average power and total energy consumed

by the kernels. In summary, ONAC and Seq-Det reduce the energy consumption of type A

kernels by 20% and 10% respectively, as compared to using all the cores on the chip, with

very insignificant overhead on performance. The higher energy saving for ONAC, compared to

the sequential detection technique, comes from reducing the detection time by 45% on average

across the type A kernels.

4.4.4.1 Type A kernels

The kernels in Fig. 4.15 and Fig. 4.16 are sorted in ascending order of the optimal number

of active cores. The optimal core count of type A kernels ranges from 8 (transpose kernels)

to 31 (B+Tree K2). Observe in Fig. 4.15 that as Nopt increases, the ratio of execution time

spent on detection by Seq-Det decreases. The spikes in this trend for the DCT and MS kernels
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(a) Average power consumption
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(b) Total energy consumption

Figure 4.16: Average power and total energy consumption of the kernels when executed with
oracle number of cores, Seq-Det and ONAC. The results are normalized to the power and
energy consumption when executed with all the cores active.

are because the total execution time of the kernels is relatively short. Hence, although the

detection time of Seq-Det for the DCT kernels is lesser than the KM, FWT, BP-K2 and TP

kernels, the ratio is higher. For ONAC, notice that the detection overhead increases as Nopt

increases. This is because ONAC starts the estimation with 1 core, and increases the number

of active cores as it converges to Nopt.

For all type A kernels, except MS, NN and BT-K2, Seq-Det takes longer to detect the

optimal core count compared to ONAC. Its effect on the average power consumption can

be clearly observed in Fig. 4.16(a). For all kernels to the left BT-K2, the average power

consumption with Seq-Det is higher compared to ONAC. The difference is larger for lower core
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counts. As Nopt increases, the detection time of Seq-Det decreases and the difference reduces,

until they become comparable for the SRAD, CVS and LUD kernels.

With lower power consumption and comparable performance, the energy consumption with

ONAC is lower than Seq-Det when Nopt is low. Similar to power, the difference reduces as the

optimal core count increases. ONAC consumes a bit more energy compared to Seq-Det for the

MS and BT-K2 kernels. Notice that for the MS kernel ONAC consumes lesser power compared

to Seq-Det. The loss in IPC is more than the reduction in power consumption, causing the

energy consumption to be higher.

4.4.4.2 Type B kernels

As kernels in the type B category have the optimal number of active cores as 32, the

detection times for both ONAC and Seq-Det are modest (less than 4% of the execution time).

Consequently, the power consumption of both ONAC and Seq-Det is similar to that of Nmax.

As ONAC takes a sample with 1 active core, it has a small impact on the IPC (refer to

Fig. 4.14(b)). Consequently, ONAC increases the energy consumption of type A kernels by 2%

on average.

4.4.5 Related Work

4.4.5.1 Optimizing thread level parallelism

Kayiran et al. [32] observe that executing the maximal number of CTAs on GPU cores

doesn’t always achieve the best performance. They propose a mechanism to detect the optimal

number of CTAs based on sampling the scheduler state. When the sampled idle time is lower

than a threshold and the sampled memory stall time falls within an empirical range, the optimal

number of CTAs is captured. The scheme developed by Lee et al. [40] leverages the behavior

of greedy warp scheduler. Their scheme measures the number of instructions issued until the

first CTA completes, and sets the optimal CTA count as the ratio of number of instructions

issued by all CTAs to the number of instructions issued by the first CTA.

In addition to modulating the number of CTAs launched per core, other works focus on
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optimizing thread level parallelism at the warp-level. Narasiman et al. [48] and Gebhart et

al. [22] propose a warp scheduler that divides the warps executing on a core into two levels,

and only issue instructions from the smaller set of warps. Their evaluation demonstrates that

energy saving can be achieved by power-gating unused core resources. Rogers et al. [63] design

a cache-aware warp scheduling policy that throttles the number of active warps depending

on L1 data cache evictions. They demonstrate that workloads that thrash the L1 data cache

improve in performance when executed with a lower active thread count.

4.4.5.2 Energy-efficient computing on GPU

Although several works [31, 43] have explored thread-level and core-level optimizations for

energy savings in the context of chip multiprocessors (CMP), the techniques cannot be applied

directly to GPUs due to two primary differences between CMP and GPU platforms:

• Context switch overhead is much higher on GPUs compared to that of a CMP platform.

• GPU energy efficient techniques cannot rely on complex algorithmic techniques due to

lack of OS support.

In [29], Jiao et al. characterize the performance and power consumption of various GPU

compute kernels at different GPU core and DRAM frequencies, and show their effect on

performance and power consumption. In [39], Lee et al. adjust the number of cores and

modulate the core’s voltage and frequency to improve throughput under power constraints.

While their objective is optimizing performance under given power constraints, we focus on

optimizing power consumption under given performance constraints. In [44], Lin et al. utilize

software prefetching and dynamic voltage scaling to achieve two objectives: energy optimization

under performance constraints and performance optimization under power constraints.

In [27] Hong et al. propose an analytical model to predict power, performance and the

optimal number of cores based on kernel’s static information. They optimize for performance

per watt, which has a side effect of losing performance. Our work is closest to that of Song et

al. in [67]. The propose to sample memory latency to each core, and reduce the number of active

cores one at a time, until the average latency is lower than an empirically found threshold. Our
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implementation of their technique is referred to as sequential detection or Seq-Det, and we

thoroughly compare the accuracy, detection time, and impact on power and energy of Seq-Det

with ONAC on variety of GPGPU workloads.

4.5 Conclusion

As GPU architectures continue to support higher number of threads with each generation,

GPGPU workloads are increasingly becoming throughput limited. In this work, we show that

launching maximum number of threads is not always optimal for all GPGPU workloads. We

design two techniques that detect the optimal number of threads for a given workload at

runtime. First, we present Perf-Sat, a hardware mechanism that detects the optimal thread

count on each core at runtime. We identify three categories of workloads, and thoroughly

evaluate the effect of number of active threads on their performance. We evaluate the performance

of Perf-Sat against the baseline scheduler, and runs with empirically found optimal number of

active threads.

Secondly, we show that memory bandwidth limited GPGPU workloads can achieve peak

performance without utilizing all cores on the chip. For these workloads, detecting the optimal

number of active cores can enable energy savings by power-gating the unused cores. Using

detailed analysis of two GPGPU kernels, we demonstrate the effect of number of active cores

on performance, power and energy consumption. We then present ONAC, a mechanism to

detect the optimal core count at runtime with high accuracy and low detection overhead.

We implement ONAC in a cycle level GPU simulator and analyze its efficiency against to a

sequential detection technique. Our results show that ONAC reduces the detection time as

much as 45% compared to the sequential technique. It reduces energy consumption by 20% on

average compared to the baseline (as opposed to 10% with the sequential technique), with less

than 2% impact on performance.
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CHAPTER 5. WORKLOAD AWARE KERNEL SCHEDULING

5.1 Abstract

The number of active threads required to achieve peak performance for a GPGPU workload

depends largely on the ratio of time spent on computation, to the time spent accessing data

from memory. While latency limited workloads might require to execute the maximum number

of threads supported by the architecture, throughput limited workloads can achieve peak

performance with lower than maximum number of threads active. Executing fewer than the

maximum threads supported by the architecture frees up hardware resources and enables

opportunities for multitasking. In this work, we study the effects of scheduling work from

multiple GPGPU workloads on the same GPU core. We show that interleaving workload

from different application kernels on the same GPU core can improve the overall utilization,

and thus average performance. We analyze two benchmarks that stress different parts of the

GPU architecture, and workloads from the Rodinia benchmark suite. Our results show that

interleaving workloads that stress complementary parts of the architecture results in extremely

promising performance gains. At the same time, workloads that bottleneck on the shared

resources do not achieve as high speedups due to interference among threads from concurrently

executing kernels.

5.2 Introduction

As discussed in previous chapters, a primary driver for the increasing adoption of GPUs

for high throughput computing is the ability to achieve a significantly high floating point

throughput and memory bandwidth. For example, the current state of the Nvidia GPU, the

Volta V100, supports a peak double precision floating point throughput of 7024 GFLOPs
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Figure 5.1: The effect of number of CTAs (groups of warps) active per core on performance.

and a peak memory bandwidth of 807 GB/s [55]. To achieve such high throughputs, GPUs

use a Single Instruction Multiple Thread (SIMT) programming model. Execution of several

SIMD threads (warps) is interleaved to improve the overlap of memory access latency and

computation. Consequently, with each new architectural generation, as the compute throughput

and memory bandwidths have increased, GPUs have supported an increasing number of warps

to increase thread level parallelism. For example, the previous generation NVIDIA Pascal chip,

the P100, has a peak FP32 throughput of 4.9 TFLOPs, a peak memory bandwidth of 720 GB/s,

and supports concurrent execution of 3584 warps [52]. In comparison, the current generation

Volta chip, the V100, supports a peak FP32 throughput of 1.4x, a peak memory bandwidth of

1.2x and supports concurrent execution of 1.4x more warps [55].

While increasing thread level parallelism improves performance of latency-limited workloads,

the same is not true if the performance of a workload is throughput-limited. Fig. 5.1 shows the

effect of number of active warps on performance of kernels from the Rodinia benchmark suite

[14]. It can be observed in Fig. 5.1 that executing the maximum number of warps supported by

the chip is not always required to achieve peak performance. Two clear trends can be observed.

For some workloads (Backprop, CFD, Gaussian, Pathfinder, and LUD), performance saturates

after a certain number of active warps. This happens if either the memory bandwidth, or the
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compute throughput is saturated. For the other type of workloads, like the B+Tree kernels,

performance continues to improve until the maximum number of threads supported by the

architecture has reached. This indicates that there is still some memory latency that is not-

overlapped, and the workload might benefit from more threads in flight. This phenomenon has

been studied extensively in the academic research community. Authors in [8, 32, 40, 63] have

designed runtime techniques that detect the optimal number of warps required to achieve peak

performance.

In this work, we focus on the first type of workloads, i.e. workloads for which the performance

saturates at lower than the maximum supported thread count. Executing fewer than the

maximum number of warps supported by the architecture frees hardware resources, and opens

up opportunities for multi-tasking. Concurrent execution of independent kernels has been

explored previously in the academic research community. The approaches can be broadly

classified into inter-core multi-tasking [5], where threads from concurrent kernels are executed

on separate cores, and intra-core multi-tasking [60, 73, 78, 7], where threads from multiple

kernels share cores. While inter-core multitasking has shown to be beneficial over sequential

execution, these works have shown that intra-core multi-tasking is more beneficial in several

cases. This is expected as intra-core multi-tasking has a higher theoretical speedup, as computational

units from all cores can be utilized by all kernels executing on the chip. Hence, in this work

we solely focus on the intra-core multi-tasking approach.

Sharing GPU core among threads from multiple kernels is a relatively new technique, with

its own set of challenges. Previous work have focused mostly on resource partitioning techniques

among threads from multiple kernels [60, 73, 78]. In this work, we focus on warp scheduling

in the context of intra-core spatial multi-tasking. Authors in [73, 60] introduce two warp

scheduling policies based on fairness and issue-rate. However, they touch on them very briefly.

In this work, we analyze in more depth, the state of the art warp scheduling policies, namely

Two Level Round-robin (TLRR) and Two Level Greedy-then-oldest (TLGTO) with intra-core

spatial multi-tasking. We show that interference among threads from different kernels can affect

performance of the kernel pair. The specific contributions of this work can be summarized as

follows:
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1. We implement concurrent kernel scheduling on the same SM in GPGPU-Sim, a cycle

level GPU architecture simulator

2. We analyze the runtime characteristics of two GPGPU kernels with concurrent kernel

execution, and demonstrate the benefits of intra-core spatial multitasking.

3. We analyze the impact of concurrent kernel execution on performance via two micro-

benchmarks, and kernels from the Rodinia benchmark suite.

5.3 Motivation for Concurrent Kernel Execution

To study the benefits of concurrent kernel execution, we analyze the execution of two

kernels: stream x words and add x loops on GPGPU-Sim [10], a cycle level GPU architecture

simulator. Details of the configuration used in our experiments are provided in Table 1.

GPGPU-Sim was instrumented to profile the state of warps through a kernel’s execution. At

a given cycle a warp can be in one of 8 states:

1. Instruction buffer empty: Typically during start of a new warp, as it waits for instruction

(inst.) fetch.

2. ALU scoreboard: The warp is at an inst. for which at least one of the operands is waiting

on a previous ALU inst.

3. MEM scoreboard: The warp is at an inst. for which at least one of the operands is waiting

on a MEM inst.

4. ALU stall: The warp is ready to issue an ALU inst., but the execution unit is busy.

5. MEM stall: The warp is ready to issue a MEM inst., but the load / store unit is stalled.

This stall can be due a bottleneck anywhere downstream in the memory sub-system.

6. Can issue ALU inst.: The warp can be selected for issue this cycle. It is currently at an

ALU inst.

7. Can issue MEM inst.: The warp can be selected for issue this cycle. It is currently at a

MEM inst.
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Figure 5.2: Depiction of the add benchmark used to analyze the benefit of intra-core concurrent
kernel execution.

8. Warp completed: The warp has completed execution, and is waiting for other warps in

its CTA to complete.

We also profile the number of ALU and memory instructions in flight (ALU and MEM

load). In the next subsections, we use these metrics to analyze the workload behavior of two

kernels and demonstrate the benefits of concurrent kernel execution.

5.3.1 Compute Benchmark: Add Kernel

Add x loops is a compute-intensive benchmark. Each thread reads two elements, multiplies

each element with a floating point number in a loop, and stores back the sum. It has a short

compute phase in the beginning for calculating load addresses, followed by a short memory

phase to read the elements (refer to Fig. 5.2). Next, there is a long compute phase where

the elements are multiplied in a loop, and a memory phase at the end to store the sum. The

x parameter controls the number of iterations of the loop, and hence length of the compute

phase.

Fig. 5.3 plots a summary of the warp states over time, for a run of the add 20 loops and

stream 3 words kernels. The kernels were executed using the left-over policy [60], in which

kernels are executed sequentially, and the next kernel does not begin until all CTAs of the

current kernel have been launched. Each kernel executes a total of 640 CTAs1, with each core
1A grid of 640 CTAs results in 5 CTA waves: 8 CTAs per core on a 16 core GPU configuration.
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Figure 5.3: A summary of the warp states over time on one core when executing the
add 20 loops and stream 3 words kernels sequentially.

concurrently executing a maximum of 64 warps (8 CTAs of 8 warps each). Fig. 5.3 plots the

total number of warps in each state on one core. The workload characteristics were identical

on the other 15 cores as well. The dashed lines in Fig. 5.3 are cycles when a CTA completes,

and new CTA is launched.

We observe that at the beginning of add 20 loops kernel’s execution, most warps are waiting

for instructions to be fetched 1©. This is also observed when new CTAs are launched 2©. The

figure clearly demonstrates the compute-intensive behavior of the kernel. Most warps are either

ready to issue an ALU instruction 3©, or hit an ALU stall due to the execution units being

busy 4©. A small portion of the warps are in the initial memory phase waiting for the elements

to be fetched from memory 5©, 6©.

Fig. 5.4 plots the measured ALU and memory load over time for the add 20 loops kernel

for the execution run shown in Fig. 5.3. The plot clearly demonstrates the workload behavior
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Figure 5.4: ALU and memory utilization over time on one core for the add 20 loops kernel
execution in Fig. 5.3.

depicted in Fig. 5.2. We observe in Fig. 5.4 that the add kernel has a high memory utilization

only at the beginning of the kernel, and when new CTAs are launched 1©, 2©, and the workload

is highly compute-intensive in the remaining portion of the kernel 3©, 4©. Moreover, we observe

that the memory subsystem has very low utilization during the compute-intensive phases 5©,

6©, which opens up opportunity to concurrently schedule threads from a memory-intensive

workload.

5.3.2 Memory Benchmark: Stream kernel

Stream x words is a memory-intensive benchmark, where the x parameter controls the

number of elements read by each thread. Fig. 5.2(b) depicts a sketch of the workload of one

thread. The kernel has two phases: a compute phase (C) for calculating the thread index, and

load and store addresses, followed by a memory phase (M) where each thread loads x elements,

and stores them back. The length of the memory phase depends on dynamic memory load

latency, and thus increases with x. Our experiments show that loading 3 or more elements per

thread saturates the memory bandwidth. Thus, we use stream 3 words as the memory-intensive

benchmark for the remainder of this section.

For brevity, we reuse Fig. 5.3 to show the summary of warp states during an execution of

the stream 3 words kernel. As mentioned previously, the add and stream kernels were executed
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Figure 5.5: ALU and memory utilization over time on one core for the stream 3 words kernel
execution in Fig. 5.3.

sequentially using the left-over policy. Similar to the add kernel, the stream kernel executes

5 CTA waves. Fig. 5.3 shows the total warps in each state on one core. We observe that

the workload behavior of the stream kernel is complementary to the add kernel, and is very

memory-intensive. Most warps are either waiting to issue a memory instruction 8© or are stalled

as the load / store unit is busy 9©. Several warps that have issued memory loads are waiting

for data from memory 7©. We also observe a small portion of warps in the short compute phase

for calculating thread indexes and memory addresses 10©.

Fig. 5.5 plots the measured ALU and memory load over the execution of the stream 3 words

kernel for the execution run from Fig. 5.3. We observe that, contrary to the add kernel, the

workload characteristics of the stream kernel is very memory-intensive. The memory load is

high throughout the execution of the kernel 2©, while the ALU load is high only in the beginning

portion of the kernel 3©, and when new CTAs are launched 4©. Fig. 5.5 clearly shows that there

is sufficient opportunity for utilizing the compute units during the memory-intensive phase of

the kernel 5©, 6©.

5.4 Intra-core Concurrent Kernel Execution

The thread block scheduler performs two primary tasks: calculating the kernel-to-core

mappings, and scheduling thread blocks from active kernels on the mapped cores. In this
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Figure 5.6: The kernel status block: Kernel 9 was launched first. 7 cores have started executing
kernel 10. Core 16 is still executing kernel 9 (Refer Fig. 5.7).

section, we describe how the baseline scheduler and the intra-core concurrent kernel (interleaved)

scheduler perform these tasks.

5.4.1 Kernel to Core Mapping

Kernel to core mapping is calculated each time a new kernel is launched or a kernel completes

execution. When a new kernel is launched, its information is added in the kernel status block

(Fig. 5.6) at a location that has the valid bit reset. If all the entries have their valid bit set,

the GPU is executing the maximum number of kernels supported and the kernel launch fails.

The baseline scheduler maps kernels to cores in a round robin order. The index of the

mapped kernel is stored in the assigned kernel field of the core in the core status block

(Fig. 5.7). Launch of new thread blocks is stalled on cores for which the active kernel is

different than the assigned kernel. When threads of the active kernel complete, the assigned

kernel is made active and launching of thread blocks is resumed.

The interleaved scheduler maps each kernel to all the cores. The assigned kernel field is

replaced by a queue with an entry for each active kernel. When the mapping changes, the

maximum thread block limit of each kernel in the queue is adjusted. Interleaved scheduling

changes the number of thread blocks active per core. Hence, the register and shared memory

requirements of each kernel are stored to calculate the occupancy for each kernel.
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Figure 5.7: Core status block: Cores 1 and 2 are executing kernels 9 and 10 respectively. 16 is
mapped to kernel 10, but is finishing threads of kernel 9.

5.4.2 Thread Block Scheduling

The baseline scheduler performs two checks before launching a thread block. The active

and assigned kernel fields are compared to verify that mapping has not changed. Secondly, the

number of active blocks and maximum blocks of the kernel are compared to verify that core

has sufficient resources (Fig. 5.7). If the two checks pass, the thread block is launched and the

active blocks field is incremented.

The interleaved scheduler updates the kernel to core mapping each time a new kernel is

launched or a kernel exits. Depending on the outcome, the maximum blocks field of all kernels

within each core is updated. Only kernels having fewer active thread blocks than the maximum

are scheduled. This technique ensures that even if kernel-to-core mappings are updated, the

CTA scheduler has a finer control on how many CTAs are issued for each kernel. It also handles

cases where the mapping changes at runtime from spatial to interleaved or vice versa.

5.4.3 Handling Kernel Exits

In both schedulers, when a new thread block is launched, next block field for that kernel is

incremented in the Kernel Status Block. If the next block value exceeds the grid dimensions,

the active bit is set to 0 and the active cores field is decremented. When active cores field

becomes zero, the valid bit for that kernel is reset. An interrupt is sent to the host interface

and the kernel to core mapping is recalculated as well.
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Table 5.1: GPU configuration used for evaluating concurrent kernel execution
Chip configuration

Number of cores 16
Core frequency 1300 MHz
DRAM clock frequency 1850 MHz
Peak SP / DP floating point throughput 1330 / 650 GFLOPs
Peak DRAM bandwidth 177 GB/sec

Core configuration
Maximum thread blocks per core 8
Maximum warps supported per core 48

Execution units per core
32 ALUs, 4 SFUs
16 LD/ST units

Scheduler configuration
Warp schedulers per core 2

Instruction dispatch throughput per scheduler
1 instruction
every 2 cycles

Ready warps queue size 6

5.5 Experimental Results

In this section, we demonstrate the benefit of concurrent kernel scheduling via concurrent

execution runs of the two benchmarks discussed in the previous section, add x loops and

stream x words. We then present initial results of concurrent execution of kernels from

applications from the Rodinia benchmark suite [14] presented in Fig. 5.1. All experiments

for this work were conducted on GPGPU-Sim, a cycle level GPU architecture simulator [10].

We configured GPGPU-Sim to match the architecture of Nvidia Tesla M2090 GPU [53] (refer

to Table 5.1).

5.5.1 Case Study: Concurrent Execution of Add and Stream

In this section, we continue our investigation of the add and stream kernels discussed in

the Sect. 5.3, and analyze the workload behavior when executed with intra-core concurrent

kernel execution. In our design of the kernel scheduler, resources within each core are first

partitioned to execute both the kernels. Once, all the CTAs of the shorter kernel have been

issued, the kernel scheduler starts to change the core partitioning such that more resources are

assigned to the longer executing kernel. Consequently, the maximum speedup we can achieve

from concurrent kernel execution depends on the relative duration of the two kernels.
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Table 5.2: Experimental results of executing the add and stream benchmarks with different
workload sizes

Kernel 1 Kernel 2
Kernel 1 Kernel 2 Sequential Interleaved Max Achieved Interleaved
runtime runtime execution (cycles) execution (cycles) speedup speedup efficiency

Add 10 loops Stream 1 word 133529 28104 161633 141230 1.21 1.14 0.94
Add 10 loops Stream 2 word 133201 55210 188411 154321 1.41 1.22 0.86
Add 10 loops Stream 3 word 134321 95109 229430 154291 1.71 1.49 0.87
Add 10 loops Stream 4 word 133412 126053 259465 165207 1.94 1.57 0.80
Add 20 loops Stream 1 word 265107 26132 291239 273053 1.10 1.07 0.97
Add 20 loops Stream 2 word 265148 53718 318866 285118 1.20 1.12 0.92
Add 20 loops Stream 3 word 265103 95162 360265 287276 1.36 1.25 0.92
Add 20 loops Stream 4 word 265853 122034 387887 300281 1.46 1.29 0.88

The stream kernel simply reads a data from one location in memory into a register, and

stores it to another location in memory. It is designed to specifically stress the streaming

memory bandwidth of the chip. The efficiency achieved by the workload depends on the total

I/O size, and the number of bytes read per thread. Our experiments show that the kernel

achieves good memory utilization if the total I/O size is larger than 100KB, and when each

thread streams 3 or more words. The add kernel reads two FP32 values from memory, and

performs computation on them in a loop. The time spent in the loop is when it has low

memory bandwidth utilization. Consequently, as we increase the loop count, there is a greater

opportunity to benefit from concurrently executing a memory limited workload.

In Table 5.2, we list the results of executing different workloads with the add and stream

kernel. As we increase the number of elements read per thread for the stream kernel, its stress

on the memory bandwidth increases. We scale the total I/O size proportionally. We show

results with 1 to 4 elements read per thread. For the add kernel, we show results for workload

with 10 and 20 loops.

Observe in Table 5.2, that as we increase the number of loops for the add kernel, the runtime

scales proportionally. This indicates that the performance of the add kernel is limited on the

execution of the compute intensive loop. Similarly, runtime of the stream kernel scales with the

number of elements read per thread. Notice that the runtime does not scale linearly with the

number of elements. This is because increasing the number of elements per thread improves

the memory controller efficiency.

The sequential execution column lists the runtime from runs on the baseline scheduler with

the left-over policy, where CTAs of the second kernel are not issued until all CTAs of the first
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kernel have been issued. Consequently, runtime with sequential execution is simply the sum

of the execution times of the two kernels. The table also lists the maximum possible speedup

with concurrent kernel execution, which is ratio of runtime of the longer kernel to that of

the runtime with sequential execution. In this ideal scenario, the shorter kernel’s execution is

completely overlapped by that of the longer kernel, without any performance overhead on the

longer executing kernel. The table lists interleaved execution efficiency as ratio of the observed

speedup with concurrent kernel execution to the maximum possible speedup.

There are three key observations that can be made about expected speedups from concurrent

kernel execution from the data presented in Table 5.2. First, the maximum possible speedup,

or the opportunity with concurrent kernel execution depends on the relative runtime of the two

kernels. As the runtime of the stream kernel increases, there is a larger opportunity to overlap

its use of the memory bandwidth with the compute intensive loop of the add kernel. Second,

as the average load on the memory system increases, the effect of concurrent kernel execution

on the performance of the add kernel increases. We can observe that as the number of elements

read and written per thread is increased, the interleaved execution efficiency decreases. Lastly,

the effect on performance degradation of the longer kernel, depends on the ratio of its total

execution time spent in interleaved execution mode. We can observe that interleaved execution

efficiency of the add 20 loops kernel is higher than that of the add 10 loops kernel when executed

with respective stream kernels. This is because the add 10 loops kernel spends larger portion

of its execution time sharing the memory bandwidth with the stream kernel compared to the

add 20 loops kernel, thereby reducing the interference of the stream kernel.

5.5.2 Analysis of Runtime Workload Characteristics with Concurrent Kernel Execution

In this section, we present the effect on performance with concurrent kernel execution in

greater detail by analyzing the runtime workload characteristics of an interleaved execution

run of the add 20 loops and stream 3 words kernel. Fig. 5.8 describes a summary of the warp

states over time, by plotting the state of each warp on one SM. The workload characteristics

were identical on the other 15 cores as well. Dashed lines in the figure are cycles when a CTA

completes, and new CTA is launched. Each kernel executes 4 CTAs of 8 warps each. Fig .5.9(b)
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Figure 5.8: A summary of the warp states over time on one core when executing the
add 20 loops and stream 3 words kernels with intra-core concurrent kernel execution.

plots the measured ALU and memory load over time during the interleaved execution run.

We observe that similar to sequential execution (refer to Fig. 5.3) most warps are waiting

for instructions to be fetched at the beginning of the run 1©. Some of this effect is also observed

when new CTAs are launched. Three key observations can be made by comparing the plots in

the Fig. 5.8 and Fig. 5.9.

1: Average ALU and MEM load is higher in concurrent execution: In the baseline execution

run of the add x loops kernel (and the stream x words kernel), most warps were either ready

to issue an ALU (memory) instruction, or hit a ALU (memory) stall (refer to Sect. 5.3). The

number of warps ready to issue memory (ALU) instructions is relatively low. In comparison,

during the interleaved execution (Fig. 5.8), there are enough warps ready to issue both ALU

2© and memory instructions 4©. We observe that this leads to increased ALU and MEM

load throughout the interleaved execution run (Fig. 5.9(b)). In comparison, in the sequential

execution run (Fig. 5.9(a)), ALU load is high and MEM load is low during execution of the

add kernel, and vice versa during execution of the stream kernel.
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Figure 5.9: ALU and memory utilization of the stream and add kernel profiled on GPGPU-Sim
[10].

2: Stalls reduce in concurrent execution: When we compare the warp states in Fig. 5.3

and Fig. 5.8, we notice that the number of stalls decrease in the concurrent execution run. As

discussed in chapter 4, the number of stalls increase after a kernel achieves optimal thread count.

It is interesting to observe that number of warp hitting memory stalls reduce significantly in

the interleaved run, which indicates that 4 CTAs, or 32 warps is the optimal warp count for the

stream 3 kernel on this architecture configuration. We observe that the interleaved execution

run does encounter ALU stalls 3© (although lower than the baseline case). We would like to

note that this does not indicate the optimal warp count of the add kernel is lower than 4 CTAs.

3: Benefit on concurrent kernel execution ceases after the short kernel exits: Although this

is an expected result, we can observe this effect in the plots in the Fig. 5.8 and Fig. 5.9(b).

Once the stream kernel completes its execution (Fig. 5.8 5©), the number of warps ready to

issue memory instructions reduce significantly, and most warps are now waiting to issue ALU

instructions 6©. The MEM loads reduces around cycle 55K. The drop in ALU load towards the

end of the execution is due to the warps of the add kernel completing, which can be observed

in baseline run as well. The burst of MEM load towards the end of kernel execution is due to

the stores from the stream kernel that are in pipeline being flushed to memory.
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Figure 5.10: Performance comparison of kernel pairs executed with concurrent kernel execution,
against execution with the baseline left over policy and the maximum possible theoretical
speedup.

5.5.3 Performance Impact with Concurrent Kernel Execution

In this section we present an analysis of the impact of concurrent kernel execution on

performance. We further analyze the impact on performance of the add and stream workload

pairs presented in 5.2. We also present results of concurrent kernel execution of kernel pairs

from the Rodinia benchmark suite presented in Fig. 5.1. As shown in Fig. 5.1, we executed

each kernel by varying the number of active CTAs from 1 to the hardware limit, and found

their optimal active CTA count. We then execute kernel pairs with optimal number of CTA of

each kernel. We omit concurrent kernel execution of the B+Tree kernels as their performance

does not saturate even with the maximum number of active threads.

Fig. 5.10 plots the performance of kernel pairs executed with concurrent kernel execution

normalized to the baseline left over policy. It also plots the theoretical maximum performance

gain possible, which is the runtime of the longer of the two kernels normalized to the runtime

with the baseline policy. As discussed in Sect. 5.5.1, the speedup with concurrent kernel
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execution increases with increase in the overlap of the kernel pair. We can observe that, as

we increase the number of elements streamed per thread, the speedup of concurrent execution

with the add kernels increase. The maximum possible speedup increases as well. Notice that

concurrent kernel execution achieves closer to the maximum possible speedup for the kernel

pairs with the add 20 loops kernel compared to the add 10 loops kernel. This indicates that

interference from the stream kernel with the add kernel reduces in the add 20 loops case.

For kernels from the Rodinia benchmark suite, we executed the CFD and Gaussian kernels

with Backprop, LUD and Pathfinder. We chose the CFD and Gaussian kernels due to their

low IPC (refer to Fig. 5.11). The pairs of the CFD kernel with Pathfinder and LUD achieve

performance close to the maximum possible. However, we observe that when CFD is executed

with the Backprop kernel, the achieved speedup is not as high. We suspect this is due to the

interference across kernels mentioned previously. The kernel pairs with Gaussian are presented

as they show a unique behavior. We discuss this in more detail in the next subsections. It is

also interesting that we observe speedup with executing the Pathfinder and LUD pair, as they

both are compute intensive. We suspect the kernels have high compute and memory intensive

phases that overlap nicely with concurrent kernel execution.

5.5.4 Impact on ALU and Memory Utilization

Fig. 5.11 and Fig. 5.12 plot the ratio of the peak floating point throughput and memory

bandwidth achieved with concurrent kernel execution, and when each kernel is executed by

itself on the GPU with the optimal number by of active threads. As expected, we observe

that the IPC achieved by the add 20 loops kernel is higher than, and memory bandwidth

achieved is lower than, the add 10 loops kernel. Both kernels achieve close to peak floating

point throughput, and low memory bandwidth utilization. Contrary to add, the stream kernels

achieve high memory bandwidth, and low floating point throughput utilization. The bandwidth

utilization achieved increases as we increase the number of elements streamed per thread, and

maxes out around 70%.

The average IPC and memory bandwidth achieved significantly increases during concurrent

kernel execution. Notice that the average memory bandwidth utilization increases, and the
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Figure 5.11: Comparison of compute throughput utilization achieved with concurrent kernel
execution to when the kernels occupy the entire GPU.

average IPC decreases, as we increase the number of elements streamed per thread. As the

number of elements streamed per thread increases, the runtime of the stream kernel increases,

which increases the time spent in overlap. During the overlap, the IPC of the pair is lower than

that of the add kernel executing alone, which cause the average IPC to decrease. Notice that

the decrease in IPC is lower when executed with the add 20 loops kernels, as the ratio of time

spent in overlap mode to that of the runtime of the add kernel reduces. We would like to note

that, even with this effect on IPC, the speedup with longer running stream kernel increases

(refer to Fig. 5.10). The drop in average IPC is another way of looking at the difference

between the maximum possible and achieved speedups. This again points to the interference

issue mentioned in the previous subsection.

For kernels from the Rodinia benchmark, we observe that none of the kernels were able

to achieve good memory bandwidth utilization (refer to Fig. 5.12). Consequently, we ran

experiments with the CFD and Gaussian kernels as they have low IPC - kernel pairs where

both kernels have high IPC do not result in performance speedup from concurrent kernel
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Figure 5.12: Comparison of memory bandwidth utilization achieved with concurrent kernel
execution to when the kernels occupy the entire GPU.

execution due to the floating point throughput limit.

As discussed in the previous subsection, concurrent execution of the CFD kernel with

Pathfinder and LUD kernels shows speedup over the baseline. This is interesting as memory

utilization of both the Pathfinder and LUD kernels is close to that of CFD. Another interesting

behavior observed is that the Gaussian kernel, when executed with both CFD and Backprop,

increases the average IPC and bandwidth utilization. This is counter-intuitive, as it indicates

that executing with the Gaussian kernel is increasing the utilization of the other kernel in

the pair. A third interesting behavior observed is that performance of concurrent execution

of Backprop and LUD achieves a speedup. Both kernels achieve quite high floating point

performance, as well as memory bandwidth when executed by themselves. This indicates

that with concurrent kernel execution, their compute and memory intensive phases execute in

complementary schedule.
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5.6 Related Work

There has been an interest in issuing concurrent work from multiple kernels on the GPU

hardware for several years. As initial GPGPU hardware did not support execution of concurrent

kernels, most initial works focused on enabling and optimizing launching of GPU compute work

from multiple processes. The benefits of concurrent kernel execution were first demonstrated

by Guevara et al. [24]. They made a keen observation that some workloads do not have enough

data parallelism to completely occupy all the cores on a GPU. They proposed a software

technique, called cusub, that maintains an issue queue, and manages launching of kernels to

the CUDA driver. cusub intercepts memory copy and kernel launch APIs from applications

compiled with it, and merges the kernels that don’t have enough thread blocks to occupy 1

CTA wave of work.

To enable task parallelism for irregular applications on GPUs Chen et al. [16] introduce

the persistent kernel approach. In this technique, a kernel with size equal to the maximum

number of thread blocks supported by the GPU is launched, and serves as an application that

manages launching of user kernels. The persistent kernel executes for the entire lifetime of the

application and communicates with the host application via a queue stored in the GPU memory.

They use a producer-consumer model, wherein the host (producer) enqueues new work in the

queue. Thread blocks of the persistent kernel (consumer) poll the queue and deques new work

when found. The goal of these works was to implement support for concurrent kernel execution

on GPUs. Starting from CUDA version 4.0 and higher these functionalities are provided via

CUDA streams and CUDA MPS.

Another body of work focuses on efficient sharing of the GPU among multiple host processes.

Wang et al. [71] introduce the context funneling approach, where different host threads funnel

their work into an application, which then sends it to the GPU queue. They compare their

manual funneling approach with the one provided by CUDA and then do a comparison of

context funneling with context switching. Wende et al. [75] show that dependencies between

kernels can break concurrency. They develop a software layer which intercepts kernel launch

functions from multiple host application threads and reorders the kernels to maximize concurrency.
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The motivation of work done by Gregg et al. in [23] is the closest to that of ours. Their

goal was also to improve average system throughput by concurrently executing compute and

memory bound kernels. They use the persistent kernel approach used in [16] and develop a

software runtime layer to launch thread blocks from concurrent applications into thread blocks

of the persistent kernel. However, they do not discuss how the GPU hardware schedules the

thread blocks on the cores.

More recent works have focused on resource partitioning of the GPU across concurrently

executing kernels. The approaches can be broadly classified into inter-core multi-tasking [5] and

intra-core multi-tasking [60, 73, 78, 7]. In inter-core multi-tasking, thread blocks from different

kernels are launched on different SMs. In other words, the GPU resources are divided among

concurrent kernels at core granularity. On the other hand, in intra-core multi-tasking, threads

from multiple kernels are executed on the same core, thereby sharing the resources on GPU

cores. In [5], the authors introduce the term spatial multi-tasking, which is now commonly

used to refer to the technique of launching CTAs from concurrent kernels on separate GPU

cores. Their focus is on resource partitioning the SMs across multiple kernels that would not

otherwise occupy the entire GPU. They implement fairness and round robin based schemes,

and show performance improvement of concurrent kernel execution over sequential execution.

Our work is closest to the recent works published in [73, 60, 78]. In [73], authors identify

that GPGPU kernels are often limited on different SM resources. We make a similar observation

in [7]. They implement a fairness based algorithm in the CTA scheduler that tries to maximize

resource usage of each kernel using a heuristic that keeps track of the limiting resource of

each kernel. The kernel scheduler used in our implementation achieves a similar goal by

statically partitioning the resources among concurrent kernel execution pairs. Authors in [73]

also recognize that baseline warp scheduling policies are not sufficient for concurrent kernel

execution scenarios. However, they analyze it briefly, and propose a simple scheme that tries to

allocate scheduling slots proportional to the number of thread blocks executed by the kernel.

Similar to the work of authors in [73], Park et al. in [60] focus on resource partitioning

among thread blocks from concurrently executing kernels. The authors introduce GPUMaestro,

which tries to find the optimal resource partitioning among thread block from concurrently
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executing kernels by using both inter-core, and intra-core resource partitioning. They divide

the cores into dedicated cores, follower cores and reserve two cores as trial cores for collecting

performance metrics. The dedicated cores execute CTAs from only one kernel, the follower

cores execute equal number of CTAs from both kernels, while the trial cores execute one more

and one less CTA compared to the follower cores. After every epoch of 50K instructions, the

resource partitioning with better performance of the two trial cores is chosen for the follower

cores, and new resource partitioning is tried on the trial cores. They acknowledge that using the

baseline GTO and RR warp scheduling policies can cause an issue with fairness among threads

of concurrently executing kernels. Consequently, they implement a quota based scheme similar

to [73]. However, their results show that for the workloads they tested, the round robin scheme

outperformed the quota based scheme.

Authors in [78] also design an algorithm to achieve resource partitioning across CTAs from

multiple kernels. They make similar observations as made by us in [7] and [8]. Specifically,

they point out that occupancy of different GPGPU kernels is limited by different resources

[7], and thus by concurrently executing CTAs from different kernels, there is an opportunity

to increase total number of active CTAs. They also make the observation that performance

of all GPU workloads does not scale with the number of active threads [8], and there is an

optimal thread count for each kernel. They leverage the two observations, and find a resource

partitioning which minimizes the average performance degradation across the kernel pairs.

To find the optimal performing resource partitioning statically, they execute each kernel with

different CTA counts offline, and use analytical equations to scale the performance metrics to

a concurrent kernel execution run.
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CHAPTER 6. CONCLUSION

In the last decade, there has been a wide scale adoption of Graphics Processing Units

(GPUs) as accelerators for high throughput general purpose computing. This trend is expected

to continue as throughput demands of applications continue to increase, both in the high

performance scientific computing domain, and commercial data centers due to the rise of

machine learning applications. We envision that as the number of applications being ported

to GPUs continue to rise, workload aware scheduling techniques will be required to achieve a

high throughput utilization across a wide array of applications.

We present novel techniques at each of the three levels of scheduling in GPU hardware.

First, at the warp scheduling level, we demonstrate that the workload agnostic Greedy Then

Oldest (GTO) and Round Robin (RR) policies do not work uniformly for different workloads.

We analyze the runtime workload behavior of GPGPU kernels, and show that kernels typically

have phase behavior that can cause performance bottlenecks when executed with the baseline

policies. We then present a warp scheduling policy that uses information inserted into the

kernel instructions by the compiler to make scheduling decisions, and reduces the performance

impact of imbalanced workload phase behavior.

At the thread block scheduling level, we make two observations regarding the effect of

number of thread blocks on performance. First, we recognize that as GPU architectures are

becoming larger and supporting more threads, the amount of floating point throughput and

memory bandwidth available per thread is reducing. We show that performance of all kernels

does not scale with increase in the number of active threads, and there is an optimal thread

count for each kernel. We demonstrate the effect of number of active threads on the states of the

warp issue stage, and use this observation to design a simple scheme that detects the optimal

active thread count at runtime. Secondly, we recognize that if performance of a kernel is limited
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by memory bandwidth, it does not need all cores on the chip to achieve peak performance.

We design a hardware technique that detects the optimal number of active cores required at

runtime. Our technique uses linear estimation model to project the optimal active core count,

and thus converges much faster than a sequential detection technique. Once the number of

optimal cores are detected, we power gate the unused cores to reduce static power consumption.

Our technique reduces energy consumption by an average of 20% with less than 2% impact of

performance.

At the highest level of scheduling, we implement a concurrent kernel scheduler than interleaves

work from multiple kernels on the same GPU core. Continuing on our work from the thread

block scheduler level, for pairs of kernels for which the optimal thread count is lower than the

maximum number of threads supported by the architecture, we demonstrate that interleaving

execution of threads from multiple kernels results in significant speedups. The amount of

speedup achieved with concurrent execution of a kernel pair depends on the workload characteristics

of the two kernels. Consequently, we thoroughly analyze the effect of runtime workload

characteristics on the efficiency of concurrent kernel execution via analysis of the warp states

over time, and the stress they put on different parts of the architecture. We demonstrate that

interference from threads of concurrently executing kernels has a performance overhead, and

leads to lower than the ideal speedup that could be achieved from concurrent kernel execution.
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