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ABSTRACT 

Pavement management systems (PMS) play a significant role in cost-effective 

management of highway networks to optimize pavement performance over predicted service life 

of the pavements. Successful PMS implementation requires accurate performance prediction 

modeling to plan future maintenance and rehabilitation strategies. 

The Iowa DOT manages three primary highway systems (i.e., Interstate, US, and Iowa 

highways) that represent 8% (approximately 9,000 miles) of the total roadway system in the state 

(114,000 miles), but these systems carry around 62% of the total vehicle miles traveled (VMT) 

and 92% of the total large truck VMT (ASCE, 2015). These highways play a major role in 

Iowa’s economy because highways are important to several sectors (e.g., agriculture, 

manufacturing, and industry). According to the Bureau of Transportation Statistics, in 2012 

around 263.36 billion tons of goods valued at $195.99 billion were transported on Iowa 

highways (BTS, 2012). PMSs that use robust pavement prediction models are needed to ensure 

continued optimum performance of Iowa highways. In the past, these models were developed 

from historical information about pavement condition data. 

In this research, historical climate data was acquired from the Iowa Environmental 

Mesonet and integrated with pavement condition data to include all related variables in 

prediction modeling. An artificial neural network (ANN) model was used to predict the 

performance of ride, cracking, rutting, and faulting indices on different pavement types. The 

goodness of fit of the ANN prediction models was compared with multiple linear regression 

(MLR) models. The results show that ANN models were more accurate in predicting future 

conditions than MLR models. The contribution of input variables in prediction models were also 

determined and discussed. 
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The results indicated that weather factors directly influence highway pavement 

conditions, and that ANN model results can be used by decision makers and maintenance 

engineers to determine proper treatment actions and pavement designs to withstand harsh 

weather over the years. An ANN model that was used to estimate the correlation between the 

rutting depth and structural capacity of asphalt pavements suggests that rutting depth can be an 

indicator of structural capacity. As such, an ANN approach might be feasible for small 

transportation agencies (e.g., cities and counties) that cannot afford to collect structural 

information. 
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CHAPTER 1: INTRODUCTION 

State highway agencies spend millions of dollars each year on maintenance and 

rehabilitation to meet legislative, agency, and public requirements. Effective pavement 

management requires a systematic approach that includes project planning, design, construction, 

maintenance, and rehabilitation. Pavement management systems (PMS) play a significant role in 

managing the condition of highway networks efficiently based on cost-effective strategies to be 

applied at a given time for maintaining that pavement condition at an acceptable level so the 

pavement can satisfy the demands of traffic and environment over its service life. In general, 

pavement conditions are characterized by cracking, surface deformation, roughness, surface 

friction (skid resistance), or faulting. 

Individual PMSs operate on two administrative levels, the network and project 

management levels. At the network management level, a PMS predicts the overall pavement 

performance for determining budget allocation and treatment strategies. At the project 

management level, more detailed information and specific treatment options are required to 

determine when a particular pavement section may need maintenance or rehabilitation action. 

Traffic loading and environmental factors result in pavement distress. The ability to trace 

that distress over time allows researchers and agency decision makers to develop performance 

prediction models. Predicting pavement performance requires historical data about pavement 

conditions, traffic loading, structural characteristics, and climate data. These data can be acquired 

from a single test road or from in-service pavements to obtain data for more practical prediction 

models. However, constructing and monitoring single test roads is expensive and unrealistic for 

small and local agencies. Developing accurate prediction models for pavements allows 
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transportation agencies to effectively manage their highways in terms of budget allocation and 

scheduling maintenance and rehabilitation activities. 

In this research, historical traffic loading and pavement condition data was obtained from 

the Iowa Department of Transportation (DOT), and climate data was acquired from the Iowa 

Environmental Mesonet (IEM) in order to include all related variables in the prediction models. 

The results of this research will improve pavement management strategies by predicting an 

accurate pavement distress, and evaluate the impact of Iowa weather conditions on predicting 

pavement performance. 

Problem Statement 

The Iowa DOT manages three primary highway systems (i.e., Interstate, US, and Iowa 

highways) that represent 8% (approximately 9,000 miles) of the total roadway system in the state 

(114,000 miles), but these systems carry around 62% of the total vehicle miles traveled (VMT) 

and 92% of the total large truck VMT (ASCE, 2015). These highways play a major role in 

Iowa’s economy by connecting customers and supplies across the United States, and the roads 

are important to economic development in several sectors such as agriculture, manufacturing, 

and industry. According to the Bureau of Transportation Statistics, in 2012 around 263.36 billion 

tons of goods valued at $195.99 billion were transported on Iowa highways to other states (BTS, 

2012). 

Iowa faces critical challenges in providing a safe, efficient highway system, particularly 

in terms of balancing optimum highway conditions and available local, state, and federal funds. 

According to the American Society of Civil Engineers, 45% of major roads in Iowa were in fair 

condition, and large truck VMT, which directly affects pavement deterioration, will increase by 

66% between 2015 and 2040 (2105). The Iowa DOT has allocated about $2.7 billion for 
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highway construction and $1.2 billion for improving highway safety during fiscal years 2015 to 

2019 (ASCE, 2015). Despite these allocations, Iowa DOT administration, maintenance and 

construction costs result in an estimated annual funding shortfall of over $215 million (Iowa 

DOT, 2016). 

Current PMS models used by the Iowa DOT do not consider climate factors and as such, 

may not be accurate. Therefore, the Iowa DOT could benefit from better prediction of the future 

needs of pavements to ensure they serve as effectively as possible. Therefore, efforts have been 

made to acquire historical climate data from Iowa Environmental Mesonet (IEM) and integrate it 

with pavement condition data from Iowa DOT. Then pavement performance models could be 

developed for asphalt, concrete, and composite pavements. 

In addition to pavement performance modeling, some transportation agencies (e.g., cities 

and counties) do not have the capability for conducting deflection tests on their roadways for 

structural evaluation because these tests generally require specialized equipment, experience, and 

knowledge. As a result, these agencies may rely primarily on functional condition data to assess 

the strength of their roadways. However artificial neural network (ANN) pavement prediction 

models have been developed that can account for both pavement conditions and climate data and 

can estimate the relationship between structural capacity and rutting depth in asphalt pavement at 

the network level. 

Research Objectives 

The goal of this research is to explore pavement performance prediction models that can 

help decision makers take appropriate actions by meeting the following objectives: 
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1. Developing and comparing traditional regression and artificial neural network models in 

predicting future pavement conditions for asphalt, concrete, and composite pavements 

and support pavement management decisions. 

2. Determining the impact of various input variables on the deterioration of pavement 

conditions. 

3. Utilizing an ANN model to estimate the correlation between structural capacity and 

rutting depth on asphalt pavements that will allow agencies to consider structural capacity 

in making investment decisions. 

Dissertation Organization 

Four chapters make up the rest of this dissertation. Chapter two presents information 

about pavement management systems and pavement condition evaluation and summarizes 

previous studies that have been done in modeling pavement performance. Chapter three 

describes the data and methodology used to predict pavement performance. Chapter four 

presents the results of developing prediction models, determining the relative importance of 

input variables, and estimating the correlation between rutting depth and structural capacity. 

Chapter five summarizes the research contributions with recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter summarizes the literature about pavement management systems, assessment 

categories in evaluating pavements, pavement condition ratings, and pavement performance 

modeling. 

Pavement Management Systems (PMS) 

Management of large transportation assets requires tools for coordinating activities in an 

optimal manner, and a pavement management system (PMS) is an element of transportation 

infrastructure asset management that includes all transportation activities. A PMS is defined by 

the American Association of State Highway and Transportation Officials (AASHTO) as “a set of 

tools or methods that assist decision makers in finding optimum strategies for providing, 

evaluating, and maintaining pavements in a serviceable condition over a period of time” 

(AASHTO, 1993, p. I-31). The PMS concept began in the mid-1960s as support tools to help 

decision makers provide required rehabilitation and maintenance for highways with limited 

available funds (Kirbas, 2010). 

In general, PMS activities include investment planning, design, construction, 

maintenance, and routine pavement evaluation (Falls et al., 2001). A PMS can improve the 

efficiency of decisions by reviewing the consequences of decisions made at different 

management levels (George, 2000). Moreover, by applying a PMS, the potential impact of 

limited funding can be reduced by optimizing budget allocation, prioritizing projects in a data-

driven process, and using effective maintenance strategies (TAC, 1999). 

A PMS provides highway agencies with the following capabilities (AASHTO, 2012): 

 Evaluating current and future pavement conditions. 
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 Estimating the funds required for improving pavement condition up to a particular 

condition level. 

 Identifying pavement treatments and preservation options based on available funds. 

 Evaluating the long-term impact of changes in material properties, construction practices, 

or design procedures on pavement performance. 

To develop a PMS, it is necessary to understand the PMS levels, PMS components, and 

available prediction models. 

Pavement Management Levels 

There are two administrative levels, the network and project management levels, in any 

pavement management and decision-making system (Mbwana, 2001). At the network level, 

decisions to achieve the agency’s goals are identified and, at this level, prioritized reconstruction 

and rehabilitation activities and a schedule for maintenance activities are developed. Collecting 

specific data about an entire pavement network requires a significant investment, so agencies 

attempt to achieve a balance between the level of detail in data and available resources 

(AASHTO, 2012). The network level is typically used by directors of state-level transportation 

agencies or budget directors since they want to know the overall indices of pavement conditions, 

riding quality, or safety (Mbwana, 2001). 

The project level, on the other hand, represents decisions that concentrate on individual 

portions of the network, and more detailed data collection methods, such as material testing to 

evaluate pavement conditions, are required at this level. Traffic loading, environmental factors, 

material properties, construction and maintenance work, and available funding are considered to 

be the inputs for project-level analysis (Dillon, 2003). These detailed data are utilized to predict 
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pavement performance and establish optimal maintenance strategies. A comparison of the 

different criteria between project and network levels is shown in Table 1. 

Table 1.  Differences between PMS network and project levels (AASHTO, 2012) 

Decision 

Level 
Decision Makers Type of Decisions 

Range of Assets 

Considered 

Level of 

Detail 

Breadth of 

Decisions 

Network 

Asset manager 

Pavement 

management 

engineer 

District engineer 

Treatment recommendations 

for a multi-year plan 

Funding needed to achieve 

performance targets 

Consequences of different 

investment strategies 

Range of assets in a 

geographic area 
Moderate Moderate 

Project 

Design engineer 

Construction 

engineer 

Materials engineer 

Operations engineer 

Maintenance activities for 

current funding year 

Pavement rehabilitation 

thickness design 

Material type selection 

Life cycle costing 

Specific assets in a 

particular area 
High Focused 

 

PMS Components 

The components of PMSs vary based on available information and resources. AASHTO 

(2012) has determined the activities of pavement management systems to be the following: 

 Inventorying pavement assets, including all information related to network pavements. 

 Using models to analyze existing data to predict future pavement performance that 

supports appropriate decisions. 

  Filing all related information about pavement networks to be used as feedback in 

generating standards or reports that can be used by other agencies to improve their PMS. 

A PMS must at least contain inventories of physical pavement features, pavement 

conditions, traffic information, pavement performance analysis, and investment strategies for 

prioritizing projects for maintenance or rehabilitation activities for state highways and the 

national highway system (Cottrel et al., 1996). Modern PMSs should collect pavement condition 

data, analyze the data to determine maintenance and rehabilitation plans, and provide 

visualization of the analysis output to decision makers (Vines-Cavanaugh et al., 2016).  
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Assessment Categories in Evaluating Pavement Conditions 

Evaluating pavement conditions is a fundamental component of the decision making 

process that is carried out to determine the current condition of pavement in terms of functional 

and structural adequacy. Accurate evaluation of pavement conditions requires good quality 

pavement distress data (e.g., accurately collected, collected often enough, and sufficient data for 

analysis). Haas et al. (1994) reported that pavement conditions can be determined by measuring 

roughness (as related to ride quality); surface distress, deflection (as related to structural 

adequacy); and surface friction (as related to safety). The following sections describe each 

assessment category. 

Pavement Roughness 

Pavement roughness is defined as pavement surface irregularities that can affect driver 

safety, vehicle operating costs, and ride quality (Islam and Buttlar, 2012). Pavement roughness is 

thus considered the most important pavement performance indicator because it is the primary 

characteristic that affects road users. Several factors have been found to affect pavement 

roughness, including traffic loading, climate factors, pavement type, drainage type, subgrade 

properties, and construction quality (Kargah-Ostadi et al., 2010). The International Roughness 

Index (IRI) is widely used by highway agencies to characterize pavement roughness as a ride 

quality indicator (Papagiannakis and Raveendran, 1998). 

Pavement Surface Distress 

The quantification of type, severity, and extent of surface distress is an effective approach 

to evaluate pavement conditions. There are different types of pavement materials (e.g., asphalt, 

concrete, and composite such as a concrete layer overlaid by an asphalt layer pavements), and for 

each pavement type, there are different types of distress that could impact pavement 
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performance. In a 2003 AASHTO report, Miller and Bellinger identified fifteen distress types for 

asphalt pavements, sixteen for jointed concrete pavements, and fifteen for continuously 

reinforced concrete pavements. While distress types of composite and asphalt pavements are 

typically similar, composite pavements are exposed to reflection cracking, reflecting an asphalt 

layer joint or cracking deficiency (Huang, 1993). The causes and description of the major 

distresses are reported as follows. 

Alligator cracking, also known as fatigue or map cracking, is one of the major distress 

types observed in asphalt pavements. Alligator cracking is defined as a series of interconnecting 

cracks that initiate from the bottom of the surface layer where the tensile stress is high (Castell, 

2000). It is a load-related cracking caused by repeated traffic loading, and the severity of 

cracking depends on the stiffness modulus of the pavement material (El-Basyouny, 2005). Low 

strength of a pavement structure and improper drainage can also cause fatigue cracking (Dillon, 

2003). 

Longitudinal cracking occurs parallel to the pavement centerline. Chen and Won (2007) 

attribute the causes of longitudinal cracking in concrete pavement to delayed or shallow cutting 

of longitudinal joints and weak support under the concrete slab. In asphalt pavements, 

longitudinal cracking is caused by poor construction of joints between lanes or pavement 

shrinkage as a result of freeze-thaw cycles or low temperature, while in concrete pavement, the 

main causes of longitudinal cracking are repeated traffic loading and thermal gradient curling 

(Colorado DOT, 2004). 

Transverse cracking occurs perpendicular to the pavement centerline and includes 

shrinkage cracking and reflective cracking, with the severity of transverse cracking dependent on 

pavement thickness and properties of base materials (Zhou, 2010). The differential movement of 
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layers beneath the pavement surface and freeze-thaw cycles are the usual reasons for transverse 

cracking (Texas DOT, 2015). 

Rutting is defined as a longitudinal deformation in the wheel-path of asphalt pavements, 

and rutting severity is affected by traffic loading or temperature variations that affect subgrade 

strength (Archilla and Madanat, 2000). Wang, Zhang, and Tan (2009) report that high 

temperature also has a significant effect on rutting propagation and that more attention should be 

paid to pavement design, material selection, and construction methods to mitigate the extent of 

rutting. 

Faulting, a common type of distress in concrete pavements, results from vertical 

displacement between subsequent slabs across a joint or crack. Faulting is a concern because it 

can negatively affect ride quality (Bektas et. al., 2015). Faulting occurs at transverse joints as a 

result of inadequate load transfer, pumping action, and lack of base support (Jung et. al., 2008). 

According to the Ohio DOT, curling or warping of slabs due to temperature variation, settlement 

in subgrade soil, and pumping action of underlying fine soils are the main causes of faulting in 

concrete pavements (2006). 

Structural Adequacy 

Structural adequacy is described as the ability of pavement structures to carry expected 

traffic loads with acceptable levels of service. So evaluating structural capacity is an important 

consideration in pavement highway systems for optimizing network maintenance and agency 

fund allocation. 

At least 14 state transportation agencies are beginning to incorporate structural evaluation 

by conducting deflection testing as a part of the routine evaluation of their highways (Rada et. 

al., 2016). Generally, structural assessment is conducted for a specific pavement section at the 
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pavement management project level due to the detailed data, such as deflection, layer thickness, 

and laboratory results of material properties that are required to evaluate the structural strength of 

pavements (Haas et. al., 1994). Falling weight deflectometers (FWD), which have been 

commonly used in the United State since the 1980s, measure the deflection caused by an impact 

load at different distances from the load source as shown in Figure 1 (Rada et. al., 2016). 

 

Figure 1.  Schematic of FWD (Smith et al., 2017) 

Rolling wheel deflectometers (RWD) have been developed to measure deflections at 

traffic speeds on in-service pavements for use in network-level pavement management and 

evaluation. An RWD impacts a vertical load to the pavement surface and measures the 

deflections by four spot laser mounted on a beam beneath the trailer (Smith et. al., 2017). RWDs 

provide several advantages over FWD testing because RWD testing does not disturb traffic flow 

or affect safety on the highway, and also it can be used at the network level management (Abdel-

Khalek et. al., 2012). Iowa DOT compared the results of deflection values from FWD and RWD, 

and reported that FWD and RWD results were well correlated (Iowa DOT, 2006). 

Surface Friction 

Safety is an integral component of any PMS, and maintaining proper surface friction or 

skid resistance is an important parameter related to safety, especially in wet weather. Increasing 

the depth of the pavement surface texture from 0.3 mm to 1.5 mm can improve the surface 
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friction that can decrease the crash rate by 50% (AASHTO, 2012). The equipment for measuring 

skid resistance has developed over the years, and all are mainly based on principles of friction 

between tires and the road surface (Flintsch et. al., 2012). 

Pavement Condition Ratings 

In the 1950s the American Association of State Highway Officials (AASHO) developed a 

pavement condition rating (PCR), also known as the present serviceability rating (PSR), that was 

based on subjective ratings of ride quality and rater experience (Attoh-Okine and Adarkwa, 

2013). While the PSR is simple and convenient to use, it does not accurately evaluate pavement 

conditions because the factors are subjective (e.g., interaction of riding quality, rater’s 

perception, and vehicle characteristics). The subjectivity of PSR led to the development of the 

pavement serviceability index (PSI), a more objective rating system. The PSI was developed in 

1960 by Carey and Irick and was based mainly on panel ratings and measurements of roughness, 

rut depth, and cracking (Sun, 2001). 

The main difference between the PSI and PSR is that PSI is derived by a formula for 

estimating the physical features of the pavement, and the PSR is mainly based on individual 

observations (Pierce et. al., 2013). Both the PSR and PSI have been widely used by highway 

agencies, but in the 1970s, the U.S. Army Corps of Engineers developed the Pavement Condition 

Index (PCI) based on types and severity of distress (Shahnazari et al., 2012). The PCI has been 

used since then by state DOTs for pavement evaluation.  

In general, PCI ratings are single values that reflect the overall pavement condition based 

on the measurements of pavement roughness, surface distress, deflection, and surface friction. 

PCI values are on a numerical scale that can be used as a communication tool to provide a brief 

information about the pavement condition to senior administrators, elected officials, and the 
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public (Haas et. al., 1994). Most importantly, the PCI values can be utilized by decision makers 

to assess the health of a pavement network, predict the time required for maintenance and 

rehabilitation actions, and estimate future funding needs (McNeil et. al., 1992). 

Pavement Performance Modeling 

Successful implementation of a pavement management system (PMS) requires an 

accurate performance prediction model for optimizing maintenance and rehabilitation strategies 

throughout the pavement service time. The pavement performance prediction model, described 

as an engine in a pavement management system, is defined as “a mathematical description of the 

expected values that a pavement attribute will take during a specified analysis period” (Hudson 

et. al., 1979, p. 8). Pavement performance is also defined in terms of how pavement changes its 

condition over time (Lytton, 1987). Prediction models help agency engineers to know when, 

where, and what maintenance actions should be taken (George, 2000). Figure 2 illustrates how 

an existing pavement section would behave in predicting its future performance. 

 

Figure 2.  Illustration of pavement performance over time (Haas et al., 1994) 
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A prediction model can be employed at both the network and project management levels 

to determine maintenance and rehabilitation strategies. At the network level, the prediction 

model can predict the future condition of a pavement, the required budget, and project 

prioritization. The roles of pavement performance prediction models at the project level are to 

prioritize projects, to determine life cycle costs, and to determine maintenance and rehabilitation 

alternatives for each candidate project. Pavement performance is predicted based on structural 

properties, environmental factors, and traffic loading, enabling highway agencies to allocate 

budget and prioritize their projects (Hong and Prozzi,  2006). 

Performance prediction models play a significant role in pavement management system 

with respect to the following activities: 

 estimating future pavement conditions; 

 identifying appropriate timing for pavement maintenance and rehabilitation actions; 

 determining the most cost-effective treatment strategy in a pavement network; 

 estimating funds required to meet agency objectives; and  

 determining the impact of different pavement investment strategies (AASHTO, 2012). 

Modeling pavement performance is also required to satisfy the requirements of the 

federal legislation called Moving Ahead for Progress in the 21st Century Act (MAP-21), which 

was introduced on July, 2012. MAP-21 requires each state to have a risk-based asset 

management plan and performance targets with respect to safety, improving infrastructure 

conditions, reducing congestion, system reliability, facilitate good movement and economic 

vitality, environmental sustainability, and project delivery (Corley-Lay, 2014). Evaluating 

pavement condition of highways is required by MAP-21 through its infrastructure conditions 

criteria. 
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The typical form of a performance model is to relate a pavement performance indicator to 

explanatory variables to establish a causal relationship between them and determine factors that 

influence pavement performance. The four requirements of a reliable performance prediction 

model are long term historical data of in-service pavements, including all variables that have a 

significant effect on response variables, an adequate model form that considers interaction and 

nonlinearity, and criteria to evaluate the accuracy of the model (Darter, 1980). 

Various pavement performance models used in pavement management include: 

deterministic, probabilistic, expert or knowledge-based, and artificial neural network (ANN) 

models (Wolters and Zimmerman, 2010). 

Deterministic Models 

Deterministic models predict a single dependent value (e.g., PCI) from one or more 

independent variables (e.g., pavement age, traffic loading, environment, and structural 

parameters). Deterministic models, based mostly on regression analysis, can be broken down 

into three subcategories: empirical, mechanistic, and empirical-mechanistic models (Li, Xie and 

Haas, 1996). 

Empirical models, widely used in pavement performance studies, require massive data 

for modeling. They estimate pavement response to variations in some input variables. Empirical 

models include S-shaped curves, polynomials, and logistic growth patterns. Several advantages 

and disadvantages of using empirical models have been reported by Silva et al. (2000): 

 Advantages of using empirical models: 

 A simple mathematical method can be used to predict the pavement performance. 

 The relationships between actual and predicted coefficients can be easily described. 

 Empirical models can be updated using future analysis results. 
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 Disadvantages of using empirical models: 

 Accurate data is required to get a good regression model, and outliers may affect 

accuracy. 

 Maintenance or rehabilitation activity data may affect accuracy of model 

performance. 

 All significant variables must be to be included in the performance model. 

Mechanistic models determine interaction between traffic loading and dynamic pavement 

responses (i.e., stress, strain, and deflection). Mechanistic models require extensive laboratory 

testing data or precise measurements as primary input factors that influence pavement 

performance (Mills et. al., 2012). In general, pavement engineers usually do not use primary 

response parameters because they deal mostly with more readily available distress data and 

pavement properties to predict pavement performance (Haas et al., 1994). As a result, they have 

not been able to accurately predict pavement performance. Further, pure mechanistic models are 

not considered to be prediction models (Shahin, 2005). 

Mechanistic-empirical (ME) models, however, can be used for performance predictions 

because they address the complexity of interaction between stress, strain, and deflection with 

traffic loadings. ME models combine mechanistic and empirical models by using regression 

techniques. Also, they are more representative of pavement performance because they include 

new parameters such as material properties, traffic loading, and climate factors. However, 

according to Ayed (2016) there is a need to investigate the suitability of ME models at the 

network level. 
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Probabilistic Models 

Probabilistic models are used to predict a range of values for dependent variables, such as 

probability of pavement condition changes from a given pavement condition to another 

condition. These models are used to capture the uncertainty in material properties, environmental 

conditions, and traffic loadings that can produce less accurate models. According to Golroo and 

Tighe (2012), the common types of probabilistic models are Markov models, Bayesian 

regression, survivor curves, and semi-Markov models. The primary Markov chain model 

involves an initial probability and a transition probability matrix, as shown in Equation 1, and the 

probability matrix shown in Figure 3 (Li et. al., 1996). 

𝑃𝑖 = 𝑃𝑜(𝑃)𝑖  (1) 

where: 

P0 = the vector of initial probability; 

P =probability transition matrix; 

Pi = probability condition of ith duty cycle; and 

i = duty cycle.  

 

P = 
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Figure 3.  Markov Matrix 

The major benefit of using probabilistic models is that the amount of data required for 

model development is less than the data needed for deterministic models (Jack and Chou, 2001). 
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According to Golroo and Tighe (2012), the benefits of utilizing probabilistic models for 

predicting pavement performance are as follows: 

 probabilistic models, in conjunction with other tools, can capture uncertainty in a 

pavement performance-prediction model; 

 the probabilistic approach is more realistic than the deterministic approach because it 

combines field observations and expert opinion; and  

 expert knowledge can be incorporated in cases where the database is incomplete, of low 

quality, or imprecise. 

Expert Models 

Expert models are based on the collective experience and knowledge of agency engineers 

who are familiar with pavement deterioration patterns, and expert models can be used when there 

are no historical data available, there are missing data, or if a new design is produced (Wolters 

and Zimmerman, 2010). Hicks and Groeger (2011) summarized some states’ practices in 

predicting pavement performance and reported that many agencies have used expert opinions. 

For example, the Connecticut DOT developed their performance curve based on expert panels, 

the Massachusetts DOT uses expert knowledge in predicting cracking, raveling, ride, and rutting 

performance, and the New Hampshire DOT predicts ride, cracking, and rutting indices based on 

expert knowledge. 

Artificial Neural Network (ANN) Models 

While various studies including factors that affect pavement performance have been 

conducted on pavement performance modeling, most of the models have faced challenges such 

as dealing with a large number of input variables, lack of availability of some variables, and 

correlation between the variables (Kargah-Ostadi and Stoffels, 2015). Recently, ANN models 
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have been widely used to simulate the biological nervous systems in human brain. The biological 

nervous system contains billions of neuron cells, and each neuron receives inputs from other 

neurons, processes them by transfer function, and sends its own output to the next layer (Mehta 

et al., 2008). 

ANN models use data to build prediction models and compute the relative importance of 

variables instead of the natural relationships among variables. An ANN can be defined as, “A 

computational mechanism with an ability to acquire, represent, and compute mapping from one 

multivariate space of information to another, given a set of data representing that mapping” 

(Rafiq et. al., 2001, p. 1542). ANN techniques can solve complex problems because of the 

capability of interconnecting neurons between layers to achieve computation of large data 

volumes (Basheer and Hajmeer, 2000). 

Engineers often are faced with incomplete or noisy data, so ANN models may be the 

most appropriate models for recognizing meaningful relationships from data patterns to solve a 

particular problem (Rafiq et al. 2001). Zhang et al. (1998) reported that ANN models can predict 

nonlinear relationships between variables as well traditional models that are usually used to 

predict these relationships. 

ANN models have been widely used in different civil engineering areas with good results 

because they are accurate and convenient (Karlaftis and Vlahogianni, 2011). Adeli (2001) 

conducted a review of the neural network model literature from 1989 to 2000, with a focus on 

structural engineering, construction engineering, and management, and reported that ANN 

models are suitable for modeling complex problems. 

Other, more recent studies have shown the robustness of ANN models compared to 

regression models. For example, the comparison between ANN and autoregressive time series 



20 

models for forecasting freeway speeds showed that neural networks provide more accurate 

predictions than classical statistical approaches (Vlahogianni and Karlaftis, 2013). Golshani et al. 

(2017) compared the prediction capabilities of traditional statistical models and neural network 

models for modeling two critical trip-related decisions related to travel mode and departure time. 

Their results show that the neural network models offered better performance with an easier and 

faster implementation process. ANN and multivariable regression models were also used to 

predict stress intensity factors in pavement cracking with results showing the advantage of 

utilizing ANN over multivariable regression models with respect to prediction accuracy (Wu et. 

al., 2014). In a 2004 study, Felker, Najjar, and Hossain reported that the ANN models provided a 

reasonably high R2 in predicting roughness for jointed portland cement concrete pavements with 

R2 = 0.90, while the statistical analysis approach yielded R2 = 0.73 (2004). In a study by Kargah-

Ostad, Stoffels, and Tabatabaee (2010), the ANN model also performed successfully in 

predicting IRI values using complex input variables. ANN models also have been used to predict 

cracking index for Florida’s highways and were found to be more accurate than an 

autoregressive model (Lou et. al., 2001). Gencel, Kocabas, Gok, and Koksal developed ANN and 

linear regression models to determine the correlation between cement content, metal content, and 

traffic loading on rough wear of concrete, and the ANN models were superior to linear 

regression models in predicting the abrasive wear of concrete (2011). 

Basheer and Hajmeer (2000) reported that ANN models have several capabilities to solve 

various problems from several categories such as: 

 Pattern classification: ANN models can use supervised learning to deal with unknown 

input pattern and, unlike traditional statistics models, require no linearity assumption. 

 Clustering: ANN models can use unsupervised learning to assign similar patterns to the 
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same cluster by finding similarities and differences between inputs. 

 Modeling: training input and output data to find the relationship between them using 

multilinear ANN model. 

 Optimization: ANN models were more efficient in solving optimization problems by 

maximizing or minimizing an objective function subject to a set of constraints.  

Further, Attoh-Okine (1994) reported two benefits of using ANN over more traditional 

statistical prediction models: ANN models can handle unseen data and generalize results and 

they can solve complex problems because of their massive parallelism and strong 

interconnectivity. 

Summary of Pavement Performance Models 

The literature indicates that researchers have used ANN models to predict pavement 

performance since at least the 1990s and that ANN pavement performance models are powerful 

modeling tools. However, most of the existing studies in predicting pavement performance have 

focused on a specific pavement type at the project management level. Further, many models have 

not included all the parameters that might impact pavement performance because of lack of data, 

and many previous studies do not quantify the impact of input variables such as weather 

conditions on the ANN model predictions. 
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CHAPTER 3: METHODS 

Decision makers rely on robust models to evaluate pavement performance and improve 

pavement asset management. Predicting pavement performance is often considered to be a 

difficult task because many factors must be considered. Consequently, accurate pavement 

performance models that include more pavement data are needed as the basis for pavement 

maintenance and rehabilitation strategies. There are many causes of pavement deterioration that 

potentially vary from one road section to the next, which makes the modeling of pavement 

performance a complex process. Therefore, developing pavement performance prediction models 

requires both obtaining relevant data (e.g., pavement conditions and climate data) and identifying 

robust performance prediction approaches. In this research, multiple linear regression (MLR) and 

artificial neural network (ANN) models were used to predict pavement performance and the 

results were compared. Also, this research analyzed the results of ANN models to determine the 

relative contribution of each variable on several distress indices. An ANN model was used to 

model a reliable relationship between structural strength numbers (SN) calculated from 

measuring deflections on roadways after impact and rutting depth at the network level for ACC 

pavements. The flowchart in Figure 4 describes the research steps. 

Data are the main building blocks in performance modeling, so obtaining good quality 

data is essential to getting accurate results. In this study, two kinds of data were obtained. 

Pavement distress data was obtained from the Iowa DOT Pavement Management Information 

System (PMIS) and climate data was obtained from the Iowa Environmental Mesonet (IEM). 

Data used in this study are described in the following sections, followed by sections that discuss 

data integration, developing ANN and MLR pavement performance models, and developing an 

ANN model to correlate structural capacity and rutting. 



23 

 

Figure 4.  Research flowchart  

Pavement Distress Data 

The Iowa DOT PMIS database includes information about the highway system, including 

section identification, construction history, pavement type, maintenance history, traffic loading, 
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structure parameters, and pavement distress. The Iowa DOT collects data about pavement 

surface distresses such as longitudinal cracking, transverse cracking, wheel-path cracking, 

alligator cracking, durability cracking, joint spalling, patching, and surface friction (skid 

resistance). These pavement distresses are assigned three severity levels: low, medium and high. 

The Iowa DOT also collects rutting depths for asphalt pavements and faulting for concrete 

pavements and measures pavement roughness, since it is used as one of the performance 

indicators (Bektas et. al., 2014). 

The pavement condition data used in this study were collected on a two-year cycle. 

Pavement condition data for northwest Iowa were collected in even years (e.g., 2010, 2012, and 

2014), while pavement condition data in southeast Iowa are collected in odd years (e.g., 2011, 

2013, and 2015) as shown in Figure 5. The data collection process costs Iowa DOT around $1 

million annually on contracts for collecting pavement condition data (Bektas, 2015). 

 

Figure 5.  Data collection Practice (Jeong, Smadi and Abdelaty, 2016) 
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The collected pavement condition data are aggregated into the PMIS database by 

averaging the rutting and IRI values to represent the roughness and rutting of large pavement 

sections and by counting the lengths of cracks to represent the length of cracks per unit length. 

Each pavement section in the database includes IRI values, rutting depth, faulting values, and 

surface distresses. Each section in the PMIS is defined by the route number, the county, the 

highway system (Interstate, US, or Iowa highways), the direction, the district, and the beginning 

and ending mileposts, as shown in Figure 6. The PMIS also contains traffic, material, layer 

thicknesses, and pavement history information for each section. (Jeong et. al., 2016). 

 

Figure 6.  Screenshot from the PMIS database 

Table 2 presents the total of directional miles for each of the seven pavement types in the 

PMIS database in 2015.  

In this research, only asphalt concrete cement (ACC), portland concrete cement (PCC), 

and composite (COM) pavements were selected for developing performance prediction models 

because there were insufficient miles for the other pavement types. ACC and PCC pavements are 

described as flexible and rigid pavements, respectively. 

Pavement condition data from 1998 through the end of 2015 was used in this research. 

Each pavement section in the study had the same features (i.e., pavement type, maintenance 

history, traffic loading, subgrade stiffness, layer thicknesses, and pavement distresses). Rutting, 
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roughness, faulting, longitudinal cracking, longitudinal wheel-path cracking, transverse cracking, 

durability cracking, patching, and joint spalling were pavement distress features of the pavement 

sections. 

Table 2.  Pavement types in Iowa highways 

Pavement Types 
Directional 

Miles 
% of Miles 

ACC Asphalt concrete cement  1798.21 16.17% 

PCC Portland concrete cement  3487.30 31.36% 

COM Composite with asphalt surface 5156.81 46.38% 

CRC w/ATB Continuous reinforcement concrete with 

asphalt treated base 

4.83 0.04% 

CRC w/GSB or CTB Continuous reinforcement concrete with 

granular or cement treated base 

0.97 0.01% 

Composite  

w/JT PCC 

Composite built on jointed concrete 262.23 2.36% 

Composite w/CRC Composite built on continuous reinforcement 

concrete 

409.45 3.68% 

Total 11119.80 100.00% 

Iowa highways are classified into three systems: Interstate highways, US highways, and 

Iowa highways. The most recent PMIS data from 2015 shows totals of approximately 460 miles 

of interstate highway, 3544 miles of US highway, and 4567 miles of Iowa highway. The number 

of miles of ACC, PCC, and COM pavements in interstate, US, and Iowa highways are given in 

Table 3. The lengths and number of pavement segments at each pavement type based on 2015 

data are given in Table 4.   

Table 3.  Center mile length of each pavement type (miles) 

 Pavement Type 

  ACC PCC COM Total 

Interstate 57 364 39 460 

Iowa 1366 752 2449 4567 

US 221 1098 2225 3544 

Total 1644 2214 4713 8571 
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Table 4. Descriptive statistics of pavement segments 

 Number of 

Segments 

Average Segment 

Length (miles) 

Minimum Segment 

Length (miles) 

Maximum Segment 

Length (miles) 

ACC 
464 3.88 0.16 18.61 

PCC 
1200 2.70 0.05 18.91 

COM 
1920 2.69 0.05 18.14 

 

Pavement Condition Indices 

Four indices have been developed to evaluate the pavement conditions of Iowa highways. 

These indices are on a 100-point scale to be consistent with the PCI scale that ranges from 0 to 

100. Cracking and riding indices were developed for ACC, PCC, and COM pavements, rutting 

indices were developed for ACC and COM pavements, and a faulting index was developed for 

PCC pavements. 

Cracking Index 

Four types of cracking are evaluated by Iowa DOT for ACC pavements: transverse 

cracking (count/mile), longitudinal cracking (ft/mile), longitudinal-wheel-path cracking (ft/mile), 

and alligator cracking (ft2/mile). For PCC pavements, transverse cracking (count/mile), 

longitudinal cracking (ft/mile), and longitudinal-wheel-path cracking (ft/mile) are evaluated. 

The cracking index was developed based on a 100-point scale, with 0 indicating the worst 

condition and 100 indicating the best condition. The cracking index includes sub-indices for each 

type of crack. For instance, for ACC pavements, four sub-indices were developed for transverse, 

longitudinal, longitudinal-wheel-path, and alligator cracking. For PCC pavements, two sub-

indices were developed for transverse and longitudinal cracking. Iowa DOT combines 
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longitudinal and longitudinal-wheel-path into one index since these show similar behavior in 

PCC pavements.  

These sub-indices are calculated based on deduction from 100 as shown in Equation 2,  

𝐶𝑟𝑎𝑐𝑘 𝑆𝑢𝑏_𝑖𝑛𝑑𝑒𝑥 = 100 − (
100 ×𝑐𝑟𝑎𝑐𝑘 𝑣𝑎𝑙𝑢𝑒

𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒
) (2) 

Iowa DOT has determined threshold values for calculating sub-indices for each pavement 

type in Iowa highways as shown in Table 5 (Mark Murphy, personal communication, December, 

2017). 

Table 5.  Threshold for cracking indices 

 Pavement Type 

Cracking Type ACC PCC COM 

Transverse (count/mile) 483 241 805 

Longitudinal (ft/mile) 2640 1320 2640 

Longitudinal-wheel-path (ft/mile) 2640 — 2640 

Alligator (ft2/mile) 6236 — 6236 

A cracking index for each pavement type was calculated by summing the weighted 

coefficient values for ACC and COM and for PCC as shown in Equation 3 (for ACC and COM) 

and 4 (for PCC). The coefficient values of each sub-index were determined by Iowa DOT using 

equations 3 and 4. 

𝐶𝑟𝑎𝑐𝑘 𝐼𝑛𝑑𝑒𝑥 (𝐴𝐶𝐶)  =  (0.2 × 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒)  + (0.1 × 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙)  + (0.3 × 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙𝑊𝑃) +  (0.4 × 𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟)

 (3) 

𝐶𝑟𝑎𝑐𝑘 𝐼𝑛𝑑𝑒𝑥 (𝑃𝐶𝐶)  =  (0.6 × 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒)  +  (0.4 × 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙) (4) 

Riding Index 

The Iowa DOT calculates the riding index by converting the IRI values using Equation 5: 

𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 = (
𝐼𝑅𝐼 𝑣𝑎𝑙𝑢𝑒𝑠 −253 

32−253
) × 100 (5) 
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The riding index is a 100 scale, with 0 being the worst and 100 being perfect. On the Iowa DOT 

ride index scale, all IRI values below 32 (in./mile) are considered to be 100, and all values above 

253 (in./mile) are considered to be 0. 

Rutting Index 

Rutting depth is collected by Iowa DOT for ACC and COM pavements. Iowa DOT 

converts the rutting depth values into a 100-point scale rutting index ranging from 0 (worst) to 

100 (perfect) using Equation 6.  

𝑅𝑢𝑡𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 = 100 − ((
𝑅𝑢𝑡𝑡𝑖𝑛𝑔 𝑑𝑒𝑝𝑡ℎ  

0.47
) × 100) (6) 

Faulting Index 

The faulting index is only calculated for PCC pavements (FIPCC) based on the fault 

measurements from the PMIS database. The fault index also is a 100 scale where 100 indicates 

the perfect condition (no faulting) and 0 the worst. The fault threshold value is 0.47 in. so values 

equal to or greater than so 0.47 are rated as 0 on the faulting index. The Iowa DOT converts the 

fault values into an index by using Equation 7.  

𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 = 100 − ((
𝐹𝑎𝑢𝑙𝑡  

0.47
) × 100) (7) 

Overall Pavement Condition Index 

After calculating the individual indices, the overall pavement condition index (PCI) was 

calculated by combining the weighted individual indices. The weighing factors were determined 

by Iowa DOT. For PCC pavements, the PCI combines the cracking index, riding index, and 

faulting index by weighting factors based on Equation 8. For ACC and COM pavements, the PCI 

combines the cracking index, rutting index, and riding index as shown in Equation 9. 

𝑃𝐶𝐼𝑃𝐶𝐶  = (0.4 × 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + (0.4 × 𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + (0.2 × 𝐹𝑎𝑢𝑙𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) (8) 

𝑃𝐶𝐼𝐶𝑂𝑀 & 𝐴𝐶𝐶  = (0.4 × 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + (0.4 × 𝑅𝑖𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) + (0.2 × 𝑅𝑢𝑡𝑡𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥) (9) 



30 

Pavement Age 

Pavement age, calculated as the difference between the PMIS year (input date) and either 

the most recent resurfacing or construction year, affects pavement condition. In 2015, more than 

60% of miles of Iowa highways were 40 years old or older, while more than 50% of interstate 

and US highway miles were less than 30 years (Figure 7). 

 

Figure 7.  Distribution of pavement age of Iowa highway systems (2015) 

Traffic Loading 

Iowa highways carry heavy trucks, so traffic loading is a significant factor that might 

cause pavement deterioration. The traffic loading data in the PMIS database contains the average 

daily traffic (ADT); average daily truck traffic (Truck); and average equivalent single axle loads 

(ESAL) (18,000 lb). The ESAL converts all traffic loading with different magnitude and axle 

configuration into an equivalent number of 18,000 lb ESAL. Figure 8 shows the ESAL values 

for the Interstate, US, and Iowa systems in 2015 in Iowa. and Figure 9 shows changes in traffic 

loading over time. 



31 

 

Figure 8.  Traffic loading distribution of Iowa highways (2015) 

 

Figure 9.  Changes in traffic loading on highways in Iowa  

Climate Data 

Weather conditions, such as temperature variation and moisture change, affect the 

material properties of both pavement surfaces and sublayers (Žiliūtė et. al., 2016). Further, when 

saturated pavement material is subjected to frost heave during freeze-thaw cycles freezing causes 
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tensile stresses that increase deterioration process (Smith et. al., 2006). Later thawing leaves 

voids that can also contribute to pavement deterioration (Adkins et. al., 1989). The state of Iowa 

is located in a wet-freeze climate zone and is exposed to severe weather, especially in the winter, 

so it is important to investigate the effects of environmental factors on pavement condition, 

particularly since weather factors have not previously been considered in pavement performance 

modeling at the network level. 

The climate data for this study was obtained from the Iowa Environmental Mesonet 

(IEM). The IEM is a data collection project developed by the Department of Agronomy at Iowa 

State University (ISU). The climate data in the IEM is based on observational data collected 

from the National Weather Service (NWS) by manual and automated sensors in each county 

across the state (Breakah et. al., 2010). The NWS is an agency in the United States that collects 

all related information about weather conditions. In Iowa, there are 111 weather stations as of 

2015 (Figure 10).  

 

Figure 10.  NWS climate stations in Iowa 
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The weather data that were used in the analysis were average annual temperature, average 

annual rainfall, average annual snowfall, and the number of freeze-thaw cycles. Figure 11 shows 

the format of the weather database that was obtained from the IEM at Iowa State University that 

contains weather data from 1951 to the present. 

 

Figure 11.  Screenshot of the IEM weather database 

Freeze-thaw cycles were defined by counting the number of times the temperature 

changes from freezing to thawed states. In this research, the freeze-thaw cycle was considered 

when the temperature fell below a freeze point (to be more conservative, 30°F was considered 

the freeze point), and followed by the temperature rising above 32°F. 

In some areas in Iowa, the number of freeze-thaw cycles was low because the 

temperature stayed below 30°F all winter. For example, Figure 12 shows that the area in northern 

Iowa had the fewest freeze-thaw cycles in 2014. Most freeze-thaw cycles happen during spring 

and fall months when temperatures can be expected to change during a day. 
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Figure 12.  Average annual freeze-thaw cycles for 2014 

Data Integration 

Geographic information system (GIS) software was used to integrate the PMIS road 

condition data and the IEM climate data according to locations. The GIS spatial integration 

process provided accurate overlays of the weather stations over Iowa highways. The GIS also 

was used to display weather conditions as colored maps. To ensure that the climate data and 

locations of each pavement section were associated, each pavement section was assigned to the 

closest weather station. For example, Figure 13 shows the 32 pavement sections that were closest 

to weather station IA0133. 



35 

 

Figure 13.  Pavement sections associated with the closest weather station 

The distances between the weather stations and their related pavement sections ranged 

from 0 to 24 miles with an average distance of around 7 miles, while most pavement sections are 

located between 0 and 5 miles from the weather station. Figure 14 shows the distribution of the 

distances between pavement sections and their weather stations. 

GIS software integrated the PMIS attribute table and weather station attribute table based 

on their spatial locations to create the final dataset (Figure 15). In that dataset, that each 

pavement section record contains the section location, pavement distresses, traffic loading, and 

structural characteristics. Each pavement record also includes the average annual temperature, 

snowfall and rainfall amount, the number of freeze-thaw cycles for the nearest weather station, 

and the distance between each pavement segment and its closest weather station. 
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Figure 14.  Distribution of the distances from pavement sections to the closest weather 

station 

 

Figure 15.  Final dataset format after integration of PMIS and IEM data 

After integrating the data for years from 1998 through 2015, the climate data (i.e., 

temperature, snowfall, rainfall, and freeze-thaw cycles) were represented by GIS maps to 
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illustrate which pavement segments had experienced more extreme conditions. Figure16 shows 

the average annual temperature for the entire highway network in 2015, when the lowest average 

was recorded in Worth County in northern Iowa. The highest average temperature in 2015 was 

recorded in Polk County in the middle of the state around Des Moines.  

 

Figure 16.  Iowa average temperatures (2015) 

The statewide average annual rainfall was higher in the southern part of the state (Figure 

17) in 2015 when he largest amount of rain fell on Taylor County in southern Iowa. The 

statewide average annual snowfall in 2015 was highest in northern Iowa.  



38 

 

Figure 17.  Average rainfall amount (in.) on Iowa highways (2015) 

Figure 18 shows the higher amount of snow was in Clayton County in the northwest part 

of the state. Figure 19 illustrates the number of freeze-thaw cycles over the state when 

temperatures fluctuated above and below freezing. In 2015, the most freeze-thaw cycles occurred 

in the southern and western parts of the state. 
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Figure 18.  Average snowfall amount (in.) on Iowa highways (2015) 

 

Figure 19.  Number of freeze-thaw cycles of Iowa highways (2015) 
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Performance Indicators 

The Iowa DOT uses two pavement performance indicators to assess pavement conditions, 

the Pavement Condition Index (PCI) and the International Roughness Index (IRI). The PCI uses 

an objective scale ranging from 0 to 100 to quantify pavement conditions. PCI ratings fall into 

five categories very poor (0-20); poor (21-40); fair (41-60); good (61-80); and excellent (81-

100). In 2015, more than 41.56% of miles in Iowa were in an excellent condition, 35.12% were 

in good condition, 18.83% were in fair condition, and the remaining were in poor or very poor 

condition (Figure 20). Figure 21 shows a GIS map of Iowa with the PCI for all Iowa highways. 

 

Figure 20.  PCI rating distribution of Iowa highways (2015) 
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Figure 21.  PCI map of Iowa highways (2015) 

The International Roughness Index (IRI) is obtained by measuring the longitudinal profile of a 

pavement. Pavements are classified as good (95 in./mile); fair (95–170 in./mile); or poor (>170 

in./mile) condition. In 2015 in Iowa, 52.66% of highway miles were in good condition, 39% 

were in fair condition, and 8.31 % were in poor condition (Figure 22). Figure 23 is a map of the 

IRI measurements of Iowa highways in 2015.  
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Figure 22.  Pavement roughness distribution of Iowa highways (2015) 

 

Figure 23.  IRI map of Iowa highways (2015) 
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Developing Pavement Performance Models 

Two kinds of pavement performance models, traditional multiple linear regression 

(MLR) and artificial neural network (ANN) models were developed to study three pavement 

types with different pavement properties and different material properties. Goodness of fit is a 

common measure for evaluating model performance. Therefore, the coefficient of determination 

(R2) and root mean square error (RMSE) were utilized to measure and compare the performance 

of the models. Good prediction models should have a high R2 and a low RMSE. R2 values 

represent the correlation between the actual and predicted values to determine the accuracy of the 

model (Rahman and Tardfer, 2017). R2 values range between 0 and 1 where 1 indicates that the 

actual and predicted values are in agreement and 0 indicates there is no relationship between 

them. RMSE values represent used measure the differences between predicted and actual values. 

R2 and RMSE values were determined using Equation 10 and Equation 11 respectively  
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where 

𝑦𝑖 = actual value observation i; 

�̂� = predicted value of observation i; 

�̅� = average value of observation i; and 

n = number of observations. 

Historical data was used on in both ANN and MLR models to predict individual 

distresses for three pavement types, ACC, PCC, and COM pavements. These individual 
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distresses were predicted based on weather factors (i.e., temperature, precipitation, and freeze-

thaw cycles), traffic loading, pavement age, SN, layer thicknesses, and subgrade stiffness. By 

predicting individual distresses, decision makers can evaluate the individual distress for each 

pavement section, and determine which distress has more effect on the overall pavement 

condition. 

These models were used to predict the individual distresses in ACC, PCC, and COM 

pavements. For ACC and COM pavements, three models were developed for predicting 

roughness, cracking, and rutting, and for PCC pavements, three models were developed for 

predicting roughness, cracking, and faulting. These predicted distresses were combined to 

calculate the PCI values based on Equations 8 and 9 in order to represent the overall PCI over the 

years. The flowchart in Figure 24 illustrates the modeling process. To determine the reliability of 

ANN models, the results obtained from the ANN models were compared with the results from 

MLR models. 

 

Figure 24.  Flowchart of predicting PCI for ACC pavements 

Stepwise analysis was used to determine factors that affect pavement conditions to 

remove any correlation between input variables by using JMP software. Stepwise analysis is the 
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best approach for selecting candidate variables and removing insignificant variables (Nunez, et. 

al., 1986). In general, the factors that affect pavement conditions are climate factors (i.e., 

temperature, rainfall, snowfall, and freeze-thaw cycles), traffic loading, pavement thickness, 

structure number, and initial measurement values of pavement conditions. 

The initial values of pavement conditions have been used by researchers as input factors 

to predict pavement conditions. Wang and Li (2011) predicted pavement roughness based on the 

initial roughness values, and Evangelista et. al., (2012) reported that initial crack size and 

pavement thickness have a significant impact on increasing the crack growth rate in concrete 

pavements. Smith et. al. (2002) reported that predicting the riding index will be improved 

significantly when initial roughness is considered. However, for this study, at the network level, 

the initial conditions of pavement sections were not available in the PMIS database. Iowa DOT 

collects pavement condition data in two year cycles, and the most recent measurement values are 

used as initial values in this study. This approach of using previous pavement condition values 

has been used by Kargah-Ostadi et. al. (2014) who considered the most recent IRI value instead 

of the initial, constructed IRI value to predict pavement roughness. Also, Meegoda and Gao 

(2014) reported that IRI data from previous years can be used as an initial IRI value when initial, 

constructed roughness data is not available. The input variables used in this study to predict the 

riding, cracking, and rutting indices for ACC, COM, PCC pavements are listed in Tables 6, 7, 

and 8, respectively. 
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Table 6.  Input variables for modeling ACC pavements 

Riding Index (RI) Cracking Index (CI) Rutting Index (RuI) 

Pavement age 

Previous RI value 

Pavement thickness 

Subgrade stiffness 

Average rainfall 

Average temperature  

Pavement age 

Previous CI value 

Average temperature 

Structure number  

Pavement age 

Previous RuI value 

Pavement thickness 

Average temperature  

 

Table 7.  Input variables for modeling COM pavements 

Riding Index (RI) Cracking Index (CI) Rutting Index (RuI) 

Pavement age 

Previous RI value 

PCC thickness 

Pavement thickness 

Subgrade stiffness 

AADT 

Average temperature 

Average rainfall 

Freeze-thaw cycles 

Pavement age 

Previous CI value 

ACC thickness 

PCC thickness 

Subgrade stiffness 

Trucks 

Average temperature 

Pavement age 

Previous RI value 

PCC thickness 

Pavement thickness 

Subgrade stiffness 

AADT 

Structure Number 

Average temperature 

Average snowfall 

Average rainfall 

Freeze-thaw cycles 

 

Table 8.  Input variables for modeling PCC pavements 

Riding Index (RI) Cracking Index (CI) Faulting Index (FI) 

Pavement age 

Previous RI value 

Average rainfall 

Freeze-thaw cycles 

Pavement age 

Previous CI value 

Trucks 

Pavement thickness 

Pavement age 

Previous FI value 

AADT 

Average rainfall 

Freeze-thaw cycles 

Before analyzing the data, JMP software was used to randomly divide the dataset into a 

training dataset (70%) and a validation dataset (30%) to explain how well the model performed. 

The performance of the prediction models was evaluated using two approaches: root mean 

square error (RMSE) and coefficient of determination (R2). 
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Developing Artificial Neural Network (ANN) Models 

Three main components are used to develop ANN models: the structure of connection 

between input and output layers (architecture); the method of adjusting the connection weight 

(learning method); and the neuron activation function. 

ANN architecture plays a major role in developing an optimum ANN model, and efforts 

are required to determine the optimum architecture. The ANN model architecture used in this 

study consists of three layers: input layer, hidden layer, and output layer as shown in Figure 25. 

At the input layer, the independent variables that relate to the output layer are entered, 

and each independent variable is assigned to an individual neuron. The challenge is to decide 

how many neurons should be in the hidden layer because that choice impacts model 

performance. For example, using too many neurons in a hidden layer might make the model 

more complex (Rafiq et. al., 2001). 

 

Figure 25.  Neural network architecture (Yang, Lu, and Gunaratne, 2003) 
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There is no standard method for selecting the appropriate number of neurons, so training 

the ANN model with sequential number of hidden neurons and then selecting the number of 

neurons that achieve minimum RMSE was employed. Figure 26 shows the performance of an 

ANN model for determining the number of neurons in the hidden layer for predicting cracking 

index in composite pavement where the lowest RMSE value was achieved at 12 hidden neurons. 

The final layer in the structure of ANN model is the output layer that produces the result from 

processing provided by the hidden layer. 

 

Figure 26.  RMSE values to determine the number of neurons for training a COM 

pavement model 

ANN learning process 

After determining the architecture of an ANN model, software (e.g., JMP) is used to 

randomly divide the database is into training (70%) and validation (30%) datasets to train the 

neural networks. The training data set is used to develop the model, while the validation data is 

used to assess the accuracy of the ANN model and avoid overfitting in the model (Ling et. al., 
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2017). The results of the training process produce the weight matrices that are stored in links 

between layers and that can also be used to extract information about the contribution of each 

input in the model output. In the training process, the connection weights between the layers is 

adjusted, thereby, minimize the overall mean error by using back-propagation algorithm. 

In general, the ANN learning process is usually classified into supervised and 

unsupervised processes (Shahin et. al., 2008). The supervised learning process utilizes historical 

data both for network inputs and desired outputs. The predicted output is compared to measured 

values to calculate an error that can then be used to adjust the connection weights between the 

model inputs and outputs. In the unsupervised learning process, the connection weight is 

adjusted based on stimuli inputs with no desired output provided in order to cluster the input 

values to similar features. 

The back-propagation algorithm is considered as a supervised learning process, and it has 

been adopted by most researchers (Zhang et. al., 1998). In back-propagation algorithm, the input 

data propagated to the neurons in the hidden layer for processing, after which, the resulting data 

are propagated to the output layer. The results from the output layer are compared to the actual 

data for calculating the resulted error, following which the weights are adjusted after the 

calculated error is propagated back, with the process repeated until the model produces a lower 

error value. 

Neuron activation function 

The basic unit of an ANN model is a neuron that combines inputs and produces an output 

as shown in Figure 27. The neurons are not individually powerful in terms of computational 

power, but their interconnection with neurons in different layers produces the desired 

relationship among variables and demonstrates the processing capabilities of the neurons (Attoh-

Okine, 1994). 
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Figure 27.  Diagram of an artificial neuron (Liu, 2013) 

Each neuron in the hidden layer has its own summation and transfer functions with 

respect to the input and output values. The activation function determines the relationship 

between inputs and output layers. The output of the summation function is given by Equation 11, 
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where: 

Oj = output of hidden neuron jth; 

f = transfer function 

xi = ith input; and 

wi: connection weight between input ith and output jth. 

Five transfer functions: linear, linear threshold, step, sigmoid and Gaussian functions 

have been used in a number of studies depending on the characteristics of the problem under 

investigation (Liu, 2013). The sigmoid function has been used in this research as the neuron 

activation function because of its support of nonlinearity and capability for avoiding excessively 

large values. The sigmoid transfer function is presented in Equation 12, 
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where 

y = input to the transfer function; and 

a = coefficient of sigmoid function. 

Relative contribution of input variables 

Despite the vast capability of ANN in prediction modeling, such models are often 

criticized as “black box” models, because of the difficulty in interpreting the contribution of each 

variable to the response variable making it hard to gain an understanding of the relationships 

among variables, which is considered a weakness when compared to traditional statistical models 

(Olden and Jackson, 2002). 

In ANN models, the values of weights links between input, hidden, and output layers 

play a significant role in determining the relative contribution of independent variables. 

Shekharan (1999) reported that a number of researchers have attempted to extract the knowledge 

of an ANN model by utilizing the connection weights to estimate the relative importance of each 

variable from information stored in the weights. The common approach for estimating the 

relative importance of different input variables in pavement performance prediction models is 

called Garson’s algorithm. Garson’s algorithm has been found to produce more reliable results in 

the case of nonlinear relations (Fischer, 2015). In Garson’s algorithm, the output layer 

connection weight is partitioned into each input neuron using the absolute value of connection 

weights (Olden and Jackson 2002). Shekharan (1999) presented the equation that has been 

utilized to calculate the relative contribution of each independent variable in ANN models 

(Equation 13), 
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where: 

h = number of hidden neurons 

v = number of input variables 

jO  = connection weight between (j) hidden neurons and the output neuron 

𝑤𝑖𝑗 = connection weight values between inputs (i) and (j) hidden neurons 

Garson’s algorithm was utilized to calculate the relative contribution (RC) of independent 

variables. RC values range between 0 and 100 percent, where the larger RC of a specific factor 

indicates that it has a greater effect on the pavement condition. RC values were calculated for the 

effects of variables on riding, cracking, rutting, and faulting for ACC, PCC, and COM 

pavements. 

Developing Multiple Linear Regression (MLR) Models 

Regression analysis is a powerful method that requires historical data to predict a 

dependent variable based on one or more independent variables. In this research, multiple linear 

regression (MLR) models were used to predict values of pavement conditions (ride, cracking, 

rutting, and faulting) and those results were compared with prediction results from ANN 

modeling. MLR modeling has been widely used by highway agencies to predict pavement 

performance because of its simplicity and ease of implementation. MLR has also been used by 

researchers in predicting pavement deterioration rates (Xu et. al., 2015). Knapp et. al. (2000) 

developed an MLR model to investigate the effect of winter weather on traffic volume and safety 

in roads.  

Some regression assumptions must be considered in developing regression models. For 

example, Sousa et. al. (2007) reported that error values are assumed to be independent across 
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observations because collinearity between variables can lead to incorrect predictions. Smith et. 

al., (1999) reported that the distribution of the error term is a normal distribution 𝑁(0, 𝜎2) and 

that the relationship between response variable (yi) and the explanatory variables is linear 

(Equation 14), 

𝑌 = 𝛽0 +  𝛽𝑋 + 𝑒 (14) 

where 

Y = dependent (response) variable; 

𝛽𝑜 = constant term; 

𝛽 = regression coefficient; 

𝑋 = independent variable; and 

𝑒 = error term. 

An ANN Model for Correlating Structural Capacity and Rutting 

Several factors such as climate factors, thickness, and traffic loading cause rutting in 

ACC pavements (Mirzapour Mounes et. al., 2014). An ANN model was developed for this study 

to estimate the correlation between structural capacity and rutting. Traffic loading, pavement 

age, subgrade stiffness, layer thickness, average annual number of snowfall, average annual of 

rainfall, average annual temperature, freeze-thaw cycles, and rutting were utilized as independent 

variables to predict the structure number (SN). SN represents the pavement structural capacity 

and was used as the dependent variable. 

The analysis process focused on ACC pavements on Iowa highways. The other pavement 

types were not included in this analysis because there was insufficient structural data for those 

cases. Also, the analysis focused on ACC pavement sections that have not been exposed to any 

maintenance or rehabilitation activities. So the obtained data includes all section data until the 

year of applying any maintenance or rehabilitation operations. 

A total of 1144 data points from Iowa highways for years from 1998 to 2015 were trained 

by using the back-propagation algorithm ANN model. Before training the ANN model, JMP 
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software divided the dataset randomly into 70% for training process and 30% for the validation 

process. The performance of the ANN model was evaluated by coefficient of determination (R2) 

and root mean square error (RMSE). 
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CHAPTER 4: RESULTS AND DISCUSSION 

Understanding pavement performance during its service life has an impact on managing 

the roads in an effective manner and optimizing maintenance and rehabilitation strategies. This 

chapter presents the results of utilizing ANN and MLR models with both pavement condition 

and weather variables to predict pavement performance conditions. Future pavement conditions 

of Iowa highways were predicted more accurately by ANN models than MLR models. The ANN 

model demonstrated the capability for predicting pavement conditions based on several variables 

and for estimating the relationship between SN and rutting in asphalt pavements at the network 

management level. 

Comparison of ANN and MLR Models 

The performance of the ANN models was compared with the performance of the MLR 

models to assess the accuracy of the models in predicting pavement performance as calculated by 

riding, rutting, cracking, and faulting indices. R2 and RMSE values were used to measure and 

compare the performance of the models. Good prediction models should have a high R2 and a 

low RMSE. 

Historical data was used on both ANN and MLR models to predict individual distresses 

for three pavement types, ACC, PCC, and COM pavements. These individual distresses were 

predicted based on weather factors (i.e., temperature, precipitation, and freeze-thaw cycles), 

traffic loading, pavement age, SN, layer thicknesses, and subgrade stiffness. By predicting 

individual distresses, decision makers can evaluate the individual distress for each pavement 

section, and determine which distress has more effect on the overall pavement condition. 

After determining the architecture of each ANN model, the database for the period from 

1998 to 2015 was randomly divided by JMP software into training (70%) and validation (30%) 
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datasets. JMP software was also used for training the neural networks. The training data set was 

used to develop the model whereas the validation data was used to assess the accuracy of the 

ANN model and avoid overfitting in the model (Ling et. al., 2017). The results of the training 

process produced the weight matrices that are stored in links between layers and that can also be 

used to extract information about the contribution of each input in the model output. The analysis 

showed that the ANN models yield reasonably accurate models compared to the results of MLR 

models as shown in Tables 9, 10, and11. 

For ACC pavements, the ANN models yielded more accurate predictions than the MLR 

models in riding, cracking, and rutting indices as shown in Table 9. The R2 values indicate there 

are good correlations between actual and predicted indices for each index. The R2 values from 

the ANN models are higher than the R2 values of the MLR models by 61.40%, 48.15%, and 

48.15% for riding, cracking, and rutting index, respectively. 

Table 9.  Comparison of MLR and ANN for ACC pavements 

Pavement Index 
MLR ANN % of R2 Improvement 

R2 RMSE R2 RMSE 

Riding Index 0.57 12.97 0.92 8.42 61.40% 

Cracking Index 0.54 16.62 0.80 14.31 48.15% 

Rutting Index 0.41 12.10 0.72 9.16 75.61% 

For PCC pavements, as can be seen in Table 10, the ANN models achieve better accuracy 

models with improvement in R2 by 23.00%, 26.93%, and 80.00% than MLR models in 

predicting riding, crack, and fault indices, respectively, compared with MLR models.  
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Table 10.  Comparison of MLR and ANN for PCC pavements  

Pavement Index 
MLR ANN % of R2 Improvement 

R2 RMSE R2 RMSE  

Riding Index 0.74 11.84 0.91 10.60 23.00% 

Cracking Index 0.54 18.61 0.68 15.23 26.93% 

Faulting Index 0.35 15.00 0.63 12.96 80.00% 

For COM pavements, the comparison of the results produced by ANN and MLR models 

showed that the ANN model performed better accurate models than MLR models as shown in 

Table 11. The R2 values from the ANN models indicate that the ANN models are more accurate 

than MLR models. 

Table 11.  Comparison of MLR and ANN for composite pavements  

Pavement Index 
MLR ANN % of R2 Improvement 

R2 RMSE R2 RMSE  

Riding Index 0.54 15.68 0.88 11.72 62.96% 

Cracking Index 0.65 14.00 0.88 13.50 35.38% 

Faulting Index 0.44 12.57 0.75 9.78 70.45% 

These analyses show that the ANN model is more accurate than the MLR model. This 

conclusion is consistent with conclusions reported in previous studies. For example, Chandra, et. 

al. (2012) compared between the performance of ANN and MLR models in predicting pavement 

roughness from different kinds of distress and reported that the ANN model has significantly 

better accuracy than MLR model with mean square error 18% less than that for the MLR. These 

findings are consistent with Thube (2012) who developed ANN models to predict cracking, 

raveling, rutting and roughness and reported good R2 values. Saghafi et. al. (2009) also reported 

that the ANN models predicted faulting in concrete pavement with higher accuracy than an MLR 

model. In this research, both the ANN and MLR models included the weather factors that 

influence pavement conditions. 
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Validation of Prediction Models 

For the ANN models, the process of developing the neural network of a validation dataset 

is similar to the training process, except no weight matrices are produced from the validation 

process. If the accuracy of models from the validation process is higher that indicates the 

prediction model perform well (Ling et. al., 2017). Otherwise, the model needs to be run with 

different architecture until it gets similar error values for training and validation datasets. In this 

study, the R2 values from the validation process of the ANN models ranged from 0.60 to 0.91, 

while RMSE values ranged from 19.22 to 8.69 (Table 12). 

Table 12.  Goodness of fit of ANN models of validation dataset 

Pavement Type Pavement Index R2 RMSE 

ACC 

Riding Index 0.91 8.69 

Cracking Index 0.78 14.68 

Rutting Index 0.70 9.67 

PCC 

Riding Index 0.90 11.73 

Cracking Index 0.67 19.22 

Faulting Index 0.60 13.53 

COM 

Riding Index 0.87 12.06 

Cracking Index 0.81 14.00 

Rutting Index 0.74 9.97 

For the MLR models, residual plots were used to assess the performance of the MLR 

model. The residual is the difference between predicted and measured values and is calculated by 

Equation 15.  

ei = actual i – predicted i (15) 

The analysis of residual distribution plots is the most common technique used to verify 

that regression assumptions were met (Rajagopal, 2006). The residual plots for the MLR models 

were approximately randomly distributed around the centerline at 0 with no certain pattern. This 

indicates that the MLR models successfully predicted the dependent variables and that the 

constant variance assumption was verified. Figures 28, 29 and 30 show the residual plots of the 
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performance prediction models of cracking, riding, and rutting indices in ACC pavements, 

respectively. 

 
Figure 28.  Residual plot for the cracking model in ACC pavements 

 
Figure 29.  Residual plot for the riding model in ACC pavements 

 
Figure 30.  Residual plot for the rutting model in ACC pavements 
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ANN Predictions of Future Pavement Performance 

After predicting the pavement condition indices, the weights and biases matrices from 

ANN layers were used to predict the future performance of riding, cracking, rutting, and faulting 

indices assuming no future treatment will be applied. The adjusted weights were developed by a 

back-propagation algorithm during the training process in order to make the predicted values 

close to the actual values. The weights and biases matrices were stored by JMP software. 

Predicting the future pavement conditions was predicted incrementally; for instance, the first 

predicted value for pavement condition in age (t+1) was used to predict the second year 

pavement condition (t+2) as the input of the previous pavement condition and so on. The ANN 

models were based on the average of weather factors and traffic loading, structure parameters, 

and initial pavement condition. Thereafter, these values from each distress index were combined 

together to present PCI values calculated using Equation 8 (for ACC and COM) and Equation 9 

(for PCC) pavements. These PCI values provide performance predictions for the three kinds of 

pavement. 

Performance curves were drawn between PCI and pavement age. The ultimate goal of the 

performance curves is to effectively assist decision makers in knowing when, where, and what 

maintenance action should be taken for a given pavement section based on PCI values. The PCI 

scale is divided into very poor, poor, fair, good, and excellent conditions based on threshold 

values on a scale that ranges from 0 to 100 (Table 13). 

Table 13.  Threshold values of PCI from Iowa DOT 

PCI Interstate highway 

Very Poor 0–20 

Poor 21–40 

Fair 41–60 

Good 61–80 

Excellent  81–100 
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ANN models were used to predict the pavement performance of ACC, PCC, and COM 

pavements during their design life period. For this analysis, three pavement sections, one each of 

ACC, PCC, and COM pavements, were selected to analyze their performance over the years and 

predict future performance. The curves for each pavement section begin at the year of 

construction, and it is assumed that no maintenance has been or will be done on the section. 

These curves are shown in Figures 31, 32, and 33. 

ACC pavements represent about 16% of Iowa highways. The performance curve for an 

ACC pavement section from I-35 is shown in Figure 31. The performance curve shows that the 

pavement section was in poor condition, (i.e., the PCI value is lower than 41) 11 years after 

construction.  

 

Figure 31.  Pavement performance curve for I-35 section (ACC pavement) 
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Figure 32 shows the performance curve of a pavement section of US-30 in Story County. 

The pavement type of this section is a composite pavement with PCC overlaid by ACC 

pavement. Composite pavement is widely used in Iowa, with around 46% of the total highway. 

The composite pavements typically last longer than ACC pavement because the concrete base 

layer makes it a stronger structure. The US-30 pavement section can serve in good or fair 

condition up to approximately 20 years, which is better performance than the ACC pavement 

section. 

 

Figure 32.  Pavement performance curve for US-30 section (COM pavement) 

Figure 33 shows the performance curve of a PCC pavement section of Iowa highway 1. 

This performance curve indicates that PCC pavement lasts longer than both ACC and COM 

pavements and that PCC deteriorates at a lower rate early age. The curve indicates that this 

pavement section should be in good or fair condition for almost 40 years.  
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Figure 33.  Performance curve for the Iowa-1 pavement section (PCC pavement) 

Relative Contribution of Input Variables 

An effort has been made in this study to estimate the relative importance of each input 

variable in predicting the individual distress values for each pavement type. By knowing the 

relative contribution of each variable in the ANN models, the image of ANN as black box model 

can be changed. Garson’s algorithm (Equation 13) utilizes connection weights in links between 

ANN layers to calculate the relative contributions (RC) of input variables (e.g., temperature or 

traffic loading) on output variables (e.g., rutting or cracking). The RC of each input variable is 

reported as a percentage, with the total RC equal to 100%. Because pavement types are not 

necessarily influenced by every input variable, only the variables that influence the indices 

related to each pavement type are shown. 
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Variables that Influence ACC Pavements 

Figures 34 through 36 show the relative contribution of input variables on the riding, 

cracking, and rutting indices values for ACC pavements. The pavement age was the most 

significant factor affecting the riding index. The significance of age in predicting riding indices 

in ACC, PCC, and COM pavements was expected because increasing pavement age means 

increased exposure to weather factors and traffic loads. Also, pavement age is considered the 

best predictor because it can be determined accurately. The average annual temperature has a 

large influence on riding, cracking, and rutting indices, which is consistent with previous studies. 

The cracking and rutting and indices were significantly affected by weather temperature (Figures 

34 and 35). 

These results are consistent with previous research, such as a study done in Michigan that 

reported that the performance of flexible pavements is most sensitive to temperature and 

precipitation (Yang et al., 2017). Also, Breakah et al. reported that for ACC pavement, high 

temperature affects the resilient modulus of pavements, cold weather increases pavement 

stiffness, which can cause shrinkage cracking, and precipitation possibly affects the strength of 

the subgrade by infiltration through layers (2010). Temperature variation can reduce the strength 

of asphalt surface layers and cause rutting, which means the pavement structure cannot carry the 

expected traffic loads (Johanneck and Khazanovich, 2010). 
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Figure 34.  Relative contribution of inputs on Riding Index (ACC Pavement) 

 

Figure 35.  Relative contribution of inputs on Cracking Index (ACC Pavement) 
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Figure 36.  Relative contribution of inputs on Rutting Index (ACC Pavement) 

Variables that Influence PCC Pavements 

For PCC pavement, as shown in Figure 37, the riding index is greatly affected by the 

previous roughness value, and this finding was shown in literature reviews. According to a study 

done in Wisconsin, the previous roughness value has a large impact on predicting pavement 

roughness in concrete pavements (Wen and Chen, 2007). Also, pavement age affects both riding 

and cracking indices of PCC pavements because as pavement age increases, the ability of a 

concrete slab to withstand repeated traffic loadings and weather factors decreases. 

The relative contributions of rainfall and freeze-thaw cycles were of secondary 

importance after previous values of IRI and pavement age, but collectively their contributions 

reach 20% (Figure 37). However, weather factors have a higher influence on predicting the 

faulting index. The largest effect on the faulting index comes from temperature with a relative 

contribution around 50% (Figure 38). The effect of temperature on concrete pavement has been 

found in previous research. For example, curling and warping of concrete pavement slab are 
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caused by temperature variation (Johanneck and Khazanovich, 2010). Truck loadings on PCC 

pavements also contribute nearly 60% to predicting the cracking index (Figure 39). 

 

Figure 37.  Relative contribution of inputs on Riding Index (PCC Pavement) 

 

Figure 38.  Relative contribution of inputs on Faulting Index (PCC Pavement) 
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Figure 39.  Relative contribution of inputs on Cracking Index (PCC Pavement) 

Variables that Influence Composite Pavements 

For COM pavement, Figure 40 shows the factors that have an effect on riding index 

values. Since COM pavements are constructed with a PCC base layer under an ACC, factors that 

affect riding index in ACC and PCC pavements were found to have significant influence on the 

riding index of COM pavement. The riding index was most affected by freeze-thaw cycles 

whereas the cracking index was affected by average annual temperatures as shown in Figures 40 

and 41. According to Chen et. al. (2015), freeze-thaw cycles can cause cracking, especially 

reflective cracking in the PCC layer by movements at slab joints. The average number of freeze-

thaw cycles, the average annual temperature, and the average annual snowfall amount were 

found to have a large impact on the rutting index (Figure 42). The results show that COM 

pavements were less sensitive to traffic loading because combining PCC and ACC results in 

good structural capacity. 
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Figure 40.  Relative contribution of inputs on Riding Index (COM Pavement) 

 

Figure 41.  Relative contribution of inputs on Cracking Index (COM Pavement) 
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Figure 42.  Relative contribution of inputs on Rutting Index (COM Pavement) 

The main contribution of this research is to evaluate and quantify the impact of weather 

factors on pavement conditions of ACC, PCC, and COM pavements. Considering weather 

factors is important in modeling pavement performance, because pavement deterioration rates in 

Iowa are definitely affected by freeze-thaw cycles, temperatures, and precipitation. These results 

can be used by decision makers and maintenance engineers to determine proper treatment actions 

and improve pavement design to withstand harsh weather over the years. 

ANN Models for Correlating Structural Capacity and Rutting 

Before training the ANN model to investigate the relationship between the SN and rutting 

depth, the two were plotted to determine any relationship between them. Figure 43 shows that 

there is no strong relationship between the actual rutting depth and the actual SN. 

Different combinations of neural network architecture were examined to develop the best 

ANN model for correlating SN and rutting depth in ACC pavements in Iowa. Applying an ANN 

model with pavement thickness, subgrade stiffness, traffic loading, pavement age, temperature, 
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rainfall, snowfall, and freeze-thaw cycles variables revealed a correlation between the SN and 

rutting. The ANN architecture of this ANN model included 10 hidden neurons. After training the 

model, the model estimated the correlation an R2 value of 0.90 and an RMSE of 12.6. The fitted 

line between predicted and actual SN is shown in Figure 44. 

 

Figure 43.  Scatter plots of actual SN vs actual rutting depth 

 

Figure 44.  Fitted line between actual and predicted SN for ACC pavements 
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These results demonstrate that ANN modeling can use rutting data to estimate the 

structural capacity of an ACC pavement. In general, structural evaluation tests (e.g., deflection 

testing) should be used to directly assess pavement structures. However, when there is no 

structural data available, rutting data can analyzed to provide an estimation of SN.  
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

Predicting future pavement performance is essential for allocating available funding for 

maintenance and rehabilitation activities at the network level as well as for determining the most 

cost-effective strategies at the project management level. The objectives of this study were to use 

ANN models to accurately predict pavement performance of ACC, PCC, and COM pavements in 

Iowa and to estimate the correlation between structural capacity (SN) and rutting depth on ACC 

pavements. 

The models in this study were developed to include climate data in addition to historical 

pavement condition data. This research included weather factors as inputs in both ANN and 

MLR prediction models. Results of the ANN models were more accurate than the MLR models, 

perhaps because ANN models can deal with larger, more complex data sets. It is important to 

determine the relative contribution of each factor to consider them in future design adjustments 

and selecting appropriate treatments. Also, by identifying factors affecting pavement 

performance, the idea about a neural network model as a black box model can be changed. Four 

weather factors were included: average annual temperature, average annual snowfall, average 

annual rainfall, and freeze-thaw cycles. The average annual temperature influenced the 

performance of ACC pavements. Cracking, riding, and rutting distresses in ACC pavements 

were impacted by temperature. Furthermore, the average annual temperature, freeze-thaw cycles, 

and precipitations affected distress in COM pavements. The PCC pavements were most sensitive 

to temperature, snowfall, and freeze-thaw cycles on the faulting index whereas the cracking 

index was affected by truck loadings and pavement age. The riding index in PCC pavements was 

mostly impacted by previous riding index values and pavement age. 
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ANN modeling of ACC pavements based on historical data that included structural 

characteristics, traffic, weather, and pavement age also provided clear evidence of the 

relationship between rutting and structural capacity. The model accurately estimated the 

correlation between structural performance using rutting data for ACC at the network level. 

Because conducting deflection tests to determine structural capacity is expensive and extensive 

experience and knowledge is required to deal with the resulting data, this research suggests that 

an ANN approach might be feasible for small transportation agencies (cities and counties) to 

assess the strength of asphalt pavements.  

This research developed models that accurately predicted future pavement conditions, 

predictions that can support decisions for pavement maintenance activities and resource 

allocation in pavement management systems.  

This research recommends to determine the impact of the changes in pavement 

deterioration resulting from weather data on the decision support tools used by Iowa DOT such 

as allocating available fund, and that the Iowa DOT would improve the pavement management 

system. Further, it is recommended that Iowa DOT consider adopting ANN pavement 

performance modeling that includes pavement condition and weather variables to support 

decisions at both the network and project management levels. Further research effort can also 

focused on calibrating the mechanistic empirical pavement design guide performance models 

based on the ANN results  

 

This research had some limitations related to pavement distress data and climate data. Over 40% of 

the Iowa DOT pavement are composite and the cracking data did not address reflective cracking. 

Adding reflective cracking could help further refine the accuracy of the performance models. 
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Regarding weather data, in some cases, weather stations were 24 miles and that might not have been 

reflective of the local conditions. 
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APPENDIX A. WEIGHT MATRICES 

1. Weight matrix for calculating the relative contribution of each input variable in predicting riding 

index in asphalt pavements. 

Parameter H 1 H2 H 3 H 4 H 5 H 6 H 7 H 8 H 9 H 10 

PrevIRI 0.16 0.02 1.23 -0.97 0.73 -0.56 0.70 -0.03 0.68 0.19 

Age -1.39 -1.51 0.07 -3.17 0.08 -1.56 1.71 -4.54 5.34 4.32 

PAVTHICK 0.08 -2.95 0.00 -0.08 -0.17 0.19 -0.07 1.88 -0.53 -0.22 

AVEK 0.31 0.51 0.03 -0.02 -0.01 0.21 -1.20 -0.47 -0.21 -0.30 

avg_temp 0.55 5.29 0.21 -0.02 0.23 0.13 -7.88 8.01 0.43 0.30 

tot_precip -0.13 -2.43 -0.05 -0.21 0.15 -0.06 -0.88 -1.01 0.35 0.05 

Output 11.66 -0.74 37.37 -7.46 -30.76 -20.21 -1.08 0.51 -10.59 -7.58 

 

2. Weight matrix for calculating the relative contribution of each input variable in predicting cracking 

index in asphalt pavements.  

 

 

3. Weight matrix for calculating the relative contribution of each input variable in predicting rutting 

index in asphalt pavements.  

Parameter H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 

PrevRut -1.22 0.39 -0.53 1.31 1.78 -1.01 -1.14 -0.03 1.35 -0.82 -0.20 0.14 

Age -0.14 0.09 5.80 1.27 2.06 -2.59 -0.18 -0.60 -0.91 -2.14 -1.46 -4.04 

PAVTHICK -6.44 -0.53 0.69 -1.77 -3.97 2.15 0.20 -0.85 0.64 -6.79 0.63 -0.39 

avg_temp -9.93 1.45 17.61 2.82 -11.39 -1.63 -0.75 -7.14 -5.42 7.31 -15.14 -3.54 

Output 2.71 -65.86 4.28 22.63 2.87 11.30 -82.32 -5.26 -9.90 1.89 2.18 7.95 
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4. Weight matrix for calculating the relative contribution of each input variable in predicting riding index 

in concrete pavements.  

Parameter H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

PreIRIIndex -1.71 11.15 6.18 9.37 -5.12 15.75 -3.27 -15.41 -30.17 20.82 

tot_precip 5.19 -0.49 2.19 -0.49 0.42 1.12 1.77 0.14 2.94 3.31 

cycles -0.44 0.10 2.23 -0.20 1.05 0.81 1.12 0.32 0.74 3.09 

Age -3.90 -0.94 -9.13 -2.73 -3.61 1.00 4.49 1.29 11.87 -10.44 

Output 0.10 21.86 1.54 23.57 -8.97 13.11 6.46 -6.19 3.81 -2.78 

 

5. Weight matrix for calculating the relative contribution of each input variable in predicting cracking 

index in concrete pavements.  

Parameter H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

PrevCrack 0.02 -0.06 0.08 -0.06 0.02 -0.04 -0.05 -0.03 0.04 -0.04 

Age -0.11 1.05 0.41 -0.20 -0.26 -0.29 -0.04 -0.05 0.04 -0.66 

TRUCKS 0.47 0.11 -1.45 0.63 2.20 0.97 0.71 0.44 -0.68 0.33 

PAVTHICK -0.02 0.26 0.07 -0.12 0.11 -0.08 0.50 -0.51 -0.13 0.11 

Output 47.55 -0.12 -2.06 -22.92 3.32 -6.42 -2.93 -3.10 16.31 -0.33 

 

6. Weight matrix for calculating the relative contribution of each input variable in predicting cracking 

index in concrete pavements.  

Parameter H1 H2 H3 H4 H5 H6 H7 H8 H9 

avg_temp 0.70 4.35 -1.63 -2.99 1.81 -0.44 -2.67 0.17 -1.77 

tot_precip -0.04 0.68 -0.44 -0.68 0.03 -0.09 -0.27 0.11 -0.12 

tot_snow 0.00 2.25 -1.55 -2.04 1.10 0.37 -0.47 0.30 0.95 

cycles 0.08 -1.16 0.54 1.08 -0.20 -0.08 0.58 0.02 -0.10 

PrevFault 0.01 0.00 -0.05 -0.08 0.01 0.00 -0.01 0.00 0.00 

Age 0.10 -0.32 -0.03 0.27 0.10 -0.03 0.30 0.05 -0.09 

ADT -0.06 -0.20 0.20 0.19 0.10 0.06 0.05 0.00 -0.08 

Output -12.11 -19.27 -0.20 -28.89 21.71 -47.67 -10.69 -19.44 15.55 
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7. Weight matrix for calculating the relative contribution of each input variable in predicting riding index 

in composite pavements.  

 

8. Weight matrix for calculating the relative contribution of each input variable in predicting cracking 

index in composite pavements.  

Parameter H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

PrevIndex -107.27 0.24 -3.50 -2.10 4.12 -0.77 0.50 0.47 0.83 3.28 

Age -1.08 9.05 -1.09 6.29 1.04 0.00 6.31 -0.65 5.73 -3.90 

TACCDPTH -0.05 -2.00 0.99 -3.94 0.24 0.02 -3.29 -0.91 -0.68 -0.01 

TPCCDPTH -0.20 -0.23 2.45 -4.14 0.67 -0.05 -1.94 -0.50 -0.21 -0.76 

AVEK -0.19 0.82 0.24 0.15 0.06 -0.09 -0.51 -0.38 0.70 -2.80 

TRUCKS 2.97 -2.54 0.67 1.66 -0.31 -0.05 -5.96 0.20 -1.40 0.53 

tot_precip 0.33 3.91 0.46 1.61 0.43 -0.02 0.28 -0.67 0.32 9.04 

avg_temp -7.71 -23.09 -5.44 -35.12 -0.73 -0.03 6.55 -0.69 -27.46 25.15 

Output 1.82 4.40 12.41 -1.58 7.56 -49.72 -2.99 14.16 -4.41 3.02 
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9. Weight matrix of calculating the relative contribution of each inputs in predicting rutting index in 

composite pavements.  

Parameter H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

PrevRut -1.86 0.37 -0.54 0.86 0.67 0.23 1.61 0.42 -1.12 -0.43 

Age 2.48 -0.59 -0.12 0.16 -1.67 -0.07 -0.18 -0.15 -0.19 -0.42 

TPCCDPTH 0.08 -0.15 -0.49 -0.42 0.04 -0.09 -0.07 0.11 -0.02 0.43 

PAVTHICK -1.03 -0.06 0.45 -0.29 0.62 -0.57 -0.09 0.40 -0.05 -0.31 

STRUCTNO 0.04 0.18 -0.50 0.24 -0.19 0.08 0.19 -0.03 0.01 1.21 

AVEK -2.56 0.15 -2.10 0.18 1.17 0.85 0.72 -1.20 -0.10 1.27 

ADT 0.03 -0.37 -0.09 -0.54 0.29 0.54 0.41 -0.83 0.10 0.51 

avg_temp -0.52 -0.94 -2.61 -2.84 1.31 1.40 1.42 -2.32 0.13 -1.37 

tot_precip 0.39 -0.48 -0.62 -0.48 -0.29 0.87 -0.27 0.36 0.07 -1.31 

tot_snow 0.85 0.56 2.57 1.95 0.37 -5.71 -4.35 -1.35 -0.57 22.72 

cycles 0.19 -4.04 5.83 1.49 0.39 -4.48 -1.76 12.81 -0.70 -3.57 

Output 6.47 13.78 5.88 -10.04 11.04 11.27 -15.96 5.86 -46.79 2.73 
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APPENDIX B. MODEL OUTPUTS 

Multiple linear regression model outputs of predicting pavement distress for asphalt, 

concrete, and composite pavements.  

 

1. Multiple linear regression model results for predicting riding index in asphalt pavements. 

Summary of Fit 

R Square 0.57 

R Square adj. 0.57 

RMSE 12.97 

Mean of 

Response 
65.98 

Observations 6222 

 

Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept 52.03 3.69 14.08 <0.0001* 

PrevIRI 0.56 0.01 60.29 <0.0001* 

Age -0.52 0.02 -29.33 <0.0001* 

Pave. Thick 0.02 0.00 11.68 <0.0001* 

AVEK 0.08 0.01 14.59 <0.0001* 

Ave_temp -0.54 0.07 -7.55 <0.0001* 

Tot_precip -0.09 0.02 -4.28 <0.0001* 

 

2. Multiple linear regression model results for predicting cracking index in asphalt pavements. 

Summary of Fit 

R Square 0.54 

R Square adj. 0.54 

RMSE 16.62 

Mean of 

Response 
77.85 

Observations 8295 
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Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept 7.49 4.48 1.67 0.0949 

PrevCrack 0.69 0.00 85.90 <0.0001* 

Age -0.34 0.016 -20.74 <0.0001* 

SN -0.02 0.00 -6.87 <0.0001* 

Ave_temp 0.54 0.09 6.25 <0.0001* 

Tot_precip -0.09 0.02 -3.94 <0.0001* 

Tot_snow -0.07 0.016 -4.48 <0.0001* 

 

3. Multiple linear regression model results for predicting rutting index in asphalt pavements. 

Summary of Fit 

R Square 0.41 

R Square adj. 0.41 

RMSE 12.10 

Mean of 

Response 
60.86 

Observations 5505 

 

 

Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept 69.45 3.29 21.12 <0.0001* 

PrevRut 0.49 0.01 54.94 <0.0001* 

Age -0.19 0.015 -12.68 <0.0001* 

Pave. Thick 0.01 0.00 4.72 <0.0001* 

Ave_temp  -0.92 0.07 -13.24 <0.0001* 
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4. Multiple linear regression model results for predicting riding index in concrete pavements. 

Summary of Fit 

R Square 0.74 

R Square adj. 0.74 

RMSE 10.85 

Mean of 

Response 
35.44 

Observations 835 

 

Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept -13.6 3.47 -3.92 <0.0001* 

PrevIRI 0.91 0.02 42.40 <0.0001* 

Tot_precip. 0.18 0.06 3.06 <0.0001* 

Cycles 0.09 0.03 3.13 <0.0001* 

Age  -0.02 0.03 -0.78 0.44 

 

5. Multiple linear regression model results for predicting cracking index in concrete 

pavements. 

Summary of Fit 

R Square 0.49 

R Square adj. 0.49 

RMSE 15.39 

Mean of 

Response 
82.83 

Observations 15298 
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Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept 27.46 2.99 9.18 <0.0001* 

PrevCrack 0.65 0.01 101.85 <0.0001* 

Age -0.20 0.01 -23.60 <0.0001* 

Pave. Thick. -0.005 0.00 -6.10 <0.0001* 

Trucks  0.001 0.00 9.96 <0.0001* 

Avg_Temp 0.14 0.06 2.39 <0.0001* 

Tot_snow -0.05 0.01 -4.84 <0.0001* 

 

6. Multiple linear regression model results for predicting faulting index in concrete 

pavements. 

Summary of Fit 

R Square 0.39 

R Square adj. 0.38 

RMSE 14.51 

Mean of 

Response 
67.78 

Observations 571 

 

Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept 45.67 5.58 8.18 <0.0001* 

PrevFault 0.39 0.03 13.05 <0.0001* 

Age -0.16 0.03 -4.47 <0.0001* 

Pave. Thick. 0.046 0.01 4.33 <0.0001* 

Tot_snow 0.13 0.05 2.58 <0.0001* 

Cycles -0.21 0.04 -5.20 <0.0001* 
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7. Multiple linear regression model results for predicting riding index in composite pavements. 

 

Summary of Fit 

R Square 0.54 

R Square adj. 0.54 

RMSE 15.68 

Mean of 

Response 
56.04 

Observations 12923 

 

Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept 42.16 3.20 13.17 <0.0001* 

PrevIRI 0.48 0.01 76.84 <0.0001* 

Age -0.46 0.02 -27.42 <0.0001* 

TPCCDPTH -1.22 0.15 -8.24 <0.0001* 

PaveThick 0.05 0.00 25.36 <0.0001* 

AVEK 0.21 0.01 37.40 <0.0001* 

ADT -0.01 0.00 -8.73 <0.0001* 

Avg_temp -0.73 0.06 -12.44 <0.0001* 

Tot_precip -0.07 0.02 -3.71 0.0002 

cycles 0.03 0.01 3.56 0.0004 

 

8. Multiple linear regression model results for predicting cracking index in composite 

pavements. 

Summary of Fit 

R Square 0.65 

R Square adj. 0.65 

RMSE 13.88 

Mean of 

Response 
75.98 

Observations 13951 
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Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept -48.92 2.49 -19.66 <0.0001* 

PrevCrack 0.99 0.00 140.21 <0.0001* 

Age 0.18 0.01 -14.07 <0.0001* 

TACCDPTH -0.57 0.12 -4.74 <0.0001* 

TPCCDEPTH 0.58 0.11 4.99 <0.0001* 

AVEK -0.01 0.00 -2.53 <0.0113 

Tot_Precip. 0.08 0.01 5.32 <0.0001* 

Avg_temp 0.78 0.05 15.38 <0.0001* 

 

 

9. Multiple linear regression model results for predicting rutting index in composite pavements. 

Summary of Fit 

R Square 0.44 

R Square adj. 0.44 

RMSE 12.57 

Mean of 

Response 
622.51 

Observations 19326 
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Parameters of Estimates 

Term Estimate Std Error t Ratio Prob > |t| 

Intercept 35.98 2.50 14.37 <0.0001* 

PrevRUT 0.47 0.00 85.23 <0.0001* 

Age -0.39 0.01 -36.89 <0.0001* 

TPCCDPTH 0.47 0.08 5.99 <0.0001* 

TACCDPTH -0.17 0.07 -2.25 <0.0243 

Pav.Thick -0.02 0.00 -15.06 <0.0001* 

AVEK 0.02 0.00 14.89 <0.0001* 

ADT -0.01 0.00 -7.25 <0.00022 

Avg_temp -0.36 0.04 3.75 <0.0001* 

Tot_precip. 0.09 0.01 -7.25 <0.0001* 

Tot_snow 0.12 0.01 13.65 <0.0001* 

Cycles 0.02 0.01 3.17 0.0015 

 




