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CHAPTER 1 

I ntroduction 

When a beam of photons or particles such as neutrons impinges on the 

surface of a material, transmiss ion of the beam can always be observ ed by 

changing the nature of the material o r by modifying the magnitude of the 

wavelength of the beam . The shorter the wavelength is , the more the beam 

will penetrate the material . A second phenomenon will also occur: 

scattering of the beam due to diffraction. 

Diff r ac tio n in amorphous ma t erials , liquids and gases produces in-

tensity dist ribution s f r om whic h on e may ca l culate the so-called "radial 

distributio n function " (Hosemann and Bagchi, 1962) . Fi gure l.l(i) curve 

(a) illustrates the experimental i nt ensity c urve for liquid sodium as a 

function of (sin O)/A. Curve (b) s hows the total independent scatter ing 

assuming a completely random arrangement of atoms. Curves (c) and (d) 

show the correction for incoherent radiation . Figu r e l . l(ii) curve (a) 

shows the radial distribution function for liquid sodium which is calcu-

lated f r om information in Fi gure l.l(i) . The average radial density 

2 curve 4nr p (curve b), and the distribution of neighbors in crystalline 
0 

sodium (curve c) a r e also shown in Figur e l.l(ii). From the radial dis-

tribution function it is possible t o calculate the number of neighboring 

atoms as a function of di s tance . 

Diffraction of x-rays by the lattice planes in a c rystal occurs 

when the Bragg condition is satisfied (see Figure 1.3). That is when 



(i) (a ) Corrected experimental intensity cur ve for 
sodium in elect r on units pe r atom. (b) Total independent 
per atom. (c) Independent coherent scattering per atom. 
coher e nt scatter i n g per atom 

liquid 
scatter ing 
(d) In-

(ii) (a) Radial dist r ibution c urve f o r liquid sodium . (b) Average 
density c urve . (c) Distributio n of neighbors in c r ystall ine sodium 

Figure 1.1 . Exper imental intensity curve and radial distributio n 
function fo r liquid sodium (Tarosov and Warren, 1936) 
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2dhkl sin6 hkl (1.1) 

wh e r e A i s the wa ve length, d i s the spacings be tween atomic planes , 6 

is the diffraction or Bragg angle with respect to the atomic planes and 

h , k and 1 are the Miller indicies of the atomic planes . 

Diffraction by various atomic planes for single and poly-crystal-

line samples allows one to determine crystal s tructures when the 

structure factors are known. Structur e factors, Fhkl' are determined 

from the relation (see, for instance, Arndt and Willis, 1966) 

(1. 2) 

where n = 1 for pe rf ect crystals, n = 2 for ideally mosaic crystals, A 

is the waveleng th of the incident beam, p the polarization factor which 

is n dependent, L the Lorentz factor, k the scale factor containing 

among other things the attenuation and extinction effects, I the 

intensity of a Bragg peak and h, k and 1 are the Miller indicies of the 

Bragg reflections. The accuracy of the structure factor depends upon 

the accuracy of all the parameters mentioned above . It is evident that 

proper attenuation corrections are of fundamental importance, as it 

will be shown below, in the determination of accurate structure factors. 

These structure factors may lead to the determination of electron 

charge density distributions . 

In this study , it has been found that the linear attenuation coef-

fi c ients in the regime of thick crystals or small angles is much 

different than those found for thin crystals or large angles . The latter 

are comparable t o attenuation coeffic ients previously published (see, 



Figure 1.2. Intens ity versus thickness of a transmitted x-ray beam 

Figure 1 . 3 . Processes of x-rays passing through a 
there are three processes presented : 
r ef r act i on , and transmission) 

crystal. (Note that 
diffraction, 
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for example , International Tables f or X-ray Crystallography, 1974). 

This has a profound effect on any calculations for which 

elect r on charge density distributions are done since these s tudies 

essentially r ely on data for which the scattering angle is small. In 

this r egime the attenuation coefficients may not necessarily be those 

which have been published. This means that attenuation coefficients 

should be measured before intensity deter mination takes place . 

Transmission and attenuation 

When a beam of monochr o.matic x-ray s pa s ses through a thin layer o f 

matter , the fraction of the intensity, dI/I, absorbed or attenuated by 

the mat er ial i s proportional to the thickness of the layer dx. This 

is expressed by the equation 

dI/I - µdx (1. 3) 

in which the proportionality cons tant µ is known as the linear at-

tenuation coefficient (Schwart z and Cohen , 1977). The negative sign 

indicates a decrease in the intensity of the transmitted beam. If µ is 

really a constant in the distance and also in intensity then equation 

1 .3 may be int egrat ed t o give 

I I exp(-µx) 
0 

(1. 4) 

where I is the intensity of the beam at x = o , and I the intensity of 
0 

the transmitted beam at x. Figure 1.2 illustrates the relationships 

of Lhe inLensities of Equations 1.3 and 1 .4 . 
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Jn gene r al, the average absorpt i on coeffi cient µ
0 

of n sin g l e 

crys tal i s ma<le up of three different contribu tion s (Pins kc r, 1978) : 

(l.5) 

The first contributio n which accounts for more than 90% of the t o tal 

average at t enuation coefficient is due to the photoelectric effect. 

The second contribution is due t o "Thermal Di f fus e Scatt e ring"; it is 

a coherent scattering process pr oduced by phonon s . The third contribution 

is due to incohe rent or Compton scattering. There are other contributions 

to the total attenuation coefficie nt ( Grodstein, 1 957) . The scope o f this 

work , however, is limited to the above three contribut i o n s . 

A method for measuring attenuation coeffic ient s 

Th e transmission method used in this s tudy, involves rotating a 

c r ys tal wafer in a beam of mon ochroma tic x- rays a nd measuring the 

intensity of the transmitted beam. This process is represented in 

Figure 1.4. Because the beam path length throu gh the c rys tal chan ges 

as the crystal i s rotated , Equation 1. may be used to calculate the 

a ttenuation coefficient. This transmission method has the advantage 

that only the crystal is r o tated. The detector is constantly set in the 

line of sight of the direct beam. Thus, any e rro rs due to detector mis-

al ignment are e liminated. In this study the spatial distribution of the 

beam behind the c rys tal was n o t examined, howe ver the detector collimator 

was wide open for all scans . 
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Materials studied 

The crystals used in this study are germanium , silicon and highly 

oriented pyrolytic graphi t e (HOPG). Germanium and sil i con are cubic while 

g raphite is hexagonal (Kittel, 1971). Characterization of these c rys tals 

is important because these materials have properties which are useful 

fo r other types of studies (Schwartz and Cohen, 1977). To this day, 

germanium and silicon are the most perfect crystals that can be produced . 

They are well suited as materials for x-ray or neutron interferometers 

o r as monochromator c rys tals whe r e the transmission bandwidth must be 

narrow. HOPG (Union Carbide , grade ZYA) almost behaves as a perfect 

crystal along the c-axis while the atoms in the basal planes a r e more or 

less r a ndomly distributed . Because of the randomness in the basal plane , 

HOPG cannot be considered as an ideally mosaic crystal . 

This arrangement of atomic planes makes HOPG an id ealmonochromator 

c rystal because these planes are highly r eflective under the Bragg 

condition . The intensities from these r eflections in HOPG are much 

higher than those from reflections of s ilicon o r germanium . The dis-

advantage of using HOPG is that the ban dwi dth o f a monochromator made 

from such a crystal is much larger than that of e ither s il icon or 

germanium . 

Example: Bonse-Hart Camera 

The Bonse-llart Camera is a device mad e from a single silicon crystal 

in which a rectangular g r oove or channel has been cut in a particular 

orientation with respect to a crystallographic axis . It is used like. a 

monochr omator c rystal. Through multiple r eflections within tile channel 
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it narrows the dist ribution of the direct beam . Therefore, t his device 

dramatically improves the r esolution of small angle diff raction. When 

taking into account dynamical effects, regular attenuat i on and other 

processes which may determine the final intensity profile of the dif-

fraction peak, it has been found that the cent e r of the profile fits 

theoretical calculations while the tails of the distribution are much 

higher by an order of magnitude as compared to theoretical profiles. 

As mentioned previously , the attenuation coefficients used to calculate 

intensities in this r egime of small angle scattering, which the Bonse-

Hart Camera operates in, may not necessarily be the ones which are 

published in the tables. 

Outline of the present work 

Attenuation coeff icient s for the elements have been measured for 

many of the standard wavelengths (Grodstein, 1957). Calculations for 

these have also been compiled (Grodstein, 1957; McGinnies , 1959; 

International Tables for X-ray Crystallography, 1974). In this 

study, attenuation coefficients for germanium, silicon and HOPG are 

measured for the fundamental, second and third harmonic wav elengths of 

the tungsten Ll, La1 , L81 , and Ly, excitation lines. Table 1 . 1 contains 

a list of the excitation lines and harmonic wavelengths used in this 

study. 

Presently, the relation between the atomic scattering factor and 

the photoelectric contribution t o the attenuation coefficient will be 

discussed . Also, theoretical calculations of these will be discussed 

along with theoretical calculations for the coher en t and incoherent 
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processes. Following this , the unique apparatus on which the experiment 

was performed along with some general experimental techniques which 

were used will be described. This is proceeded by the results and 

discussion of the da ta obtained for the perfect crystals and HOPG . 

Also , experimental attenuation coefficients for HOPG are presented f or 

different temperatures . Within the conclusions, the results of the 

data are s ummar ized and differences in obtaining attenuation coef-

ficients for the perfect c rystals and HOPG are discussed . In the 

final chapter , recommendations are given for fur ther s tudies t o 

determine characteristics of the change of the linear attenuation 

coefficient in the r egime of the thick c rystal or small scattering angle. 

Table 1.1 . Excitation lines of tungsten and o ther wavelength~ u~e d in 
this s tudy 

------
0 

). / 2 cA) '>.. /3(A) 
Excitation Line :\ (A) Bremsstrahlung Bremsstrahlung 

Ll 1.6782 0 . 8391 0.5594 
La1 1.47639 0 . 73819 0 . 49213 

L81 1. 28181 0 . 64091 0.42727 

Lyl 1. 09855 0. 54928 0.36618 
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CHAPTER 2 

Theory 

The theoretical trea tment of the photoelectric attenuation 

coeff i c i ent as given by James (1982) will be summarized. For a single 

a t omi c species, it is customary to write the a t omic scatt ering facto r 

as 

f f + !J.f ' + i ll f". 
0 

(2 .1) 

where the !J.f ' and 6f" are the Honl or anomalous dispersion correc tions 

and are dependent on the frequency of t he incident radiation. f is 
0 

the form facto r depending on charge dis tribut ion and i s ind ependen t of 

f r equency . I f the incident frequ ency is not too close t o an absorption 

edge , oscill ator damping may be negl ected . Then llf ' is given by 

(X) 

M ' LJ 
J 

2 w (dg/dw). 
J dw (2 . 2) 

w. 
J 

wher e the s umma tion i s over all the abso r ption edges and (dg /dw). is 
J 

the oscilla t or density of el ectron j a t frequency w, ( dg/dw) .dw the 
J 

number of v irtual osc illators having f r equencies between w and w + dw, 

wi the inc ident frequency, wj the f r equen cy of the absorption edge . 

The imaginary component, 6f", is g iven by 

{If " (dg/dw) . 
J 

(2 . 3) 

j 
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where the summation is again over all the absorption edges. 

It is possible to relate the oscillator density functions (dg/dw). 
J 

to t he photoelectric attenuat ion coeff icients. 

The ref r active index of x-rays is related to the atomic scattering 

factor by 

n = 1 - o t. 2e 2Nf 1 - ---
2mnc2 

(2 . 4) 

where n is the index of refraction, A the wavelength, e the cha rge of 

the electron , c the speed of light , N the number of atoms per unit 

volume and f is the atomic scattering factor in the forward momentum 

direction . Substituting Equation 2 . 1 into Equation 2 . 4, it is evident 

that the ref r active index is complex. The equation obtained is 

n = flf II (2 . 5) 

Suppose now that a wave is traveling in a direction x in a medium 

whose refractive index is n . Then to get a displacement at x, given 

the displacement at x = 0, we have to multiply the wave by a phase 

<ll = exp (-iknx) (2 . 6) 

whe re k = 2n/>. . Substituting Equation 2.5 int o 2.6, the phase may be 

sepa rat ed into two parts : 

where ex 

<ll = exp(-aM" kx) exp (-ikx(l- cx(f + M ' ))) 
0 

2 2 2 >. e N/2nmc . 

(2 . 7) 



14 

The second term in this product corresponds to a phase lag and is 

due to the real part of n. The first t erm causes the displacement t o 

dec rease exponentially as a func tion of x. Thus this term, due to the 

imaginar y pa rt of n, corresponds t o an attenuation. Since the ordinar y 

linear attenuation coefficient refers t o intensity and not amplitude , µ 

may be written as 

µ 2 a.kt:.£ " (2 . 8) 

Substituting for a. and using the relation w = 2 TI/').., µ is related 

to the scattering fac t o r by 

µ. (w.) 
J l. 

4Tie2 

mw.c 
l. 

t:.f • II 

J 
(2 . 9) 

where µj (wi) is the atomic attenuation coefficient for the jth atomic 

shell and µ. ( w.) = 0 if w < w .. This is related to the linear 
J l. J 

at tenuation coef ficient by µj(linear) = Nµj where N has already been 

defined. Summing over the absorption edges, Equation 2.9 becomes 

t:.f" t:.f . " 
J 

j 

where t:.f. " = 0 if w < w . • 
J J 

j 

me 
2 4Tie 

(2 . 10) 

Compa ring Equation 2 . 10 and 2 . 3 the oscillat or density may be 

written as 

.£& 
dw 

j 

me 

2 2 2 
7T e 

µ. (w) 
J 

(2 . 11) 
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The variation of µ.(w) for a particular edge is fairly well 
J 

represented by the empirical formula (see James , 1982 , p. 147) 

n 
µj (wj) for w > (w . I w) W. 

J J 
µ. (w) 

J 

0 for w < W. 
J 

where n i s usually some number of order 3. The value of n varies 

( 2 .12) 

depending on the par ticular edge involved , and is a func t ion of atomic 

number . 

If n and µ.(w.) are determined from experiment, the anomalous 
J J 

contributions t o the s tructure factor may be calculated by substituting 

Equat ion 2 . 11 and 2 . 12 into 2 . 2 a nd 2 . 3 t o ob t ain 

~ f' 
j 

~f". 
J 

me n 

2 
2 2 µj (wj) w j 

1T e 

me 
2 41Te 

J ~ 
w. 

J 

2 w dw 
2 2 n ( w . - w )w 

l 

µ. ( w .) . 
J J 

Fu r ther , the to t a l oscillator s t rength may be calcul ated by 

integr ation of Equation 2 . 11 using 2 . 12 . For the total oscillator 

streng th we get 

(2.13) 

(2 . 14) 



0 oj 
me 

2 2 2 n e 

me 

2 2 2 n e 

( dg / dw) .dw 
J 

1 6 

J °" (~w· )n µj(wj ) dw 

w. 
J 

( WJl') µ . ( w.) • \n- J J 
(2 . 15) 

From Equation 2 .11, it is evident that µ . ( w) may be calculated if 
J 

t he oscillato r s tr eng th is known . Theoretical calculations o f 

( dg / dw) . have been done (Honl, 1933). By approximating atemia wave 
J 

functions with hydrogen-like eigenfunctions Honl , obt ained 

E..s. 
dw K 

8 -4 2 e 
9 WK ( ::)4] (2 .16) 

f o r the K electrons. Here 6K = l - h wK/EK , Som where ~,Som is the 

ener gy eigenvalu e using Sommerfeld's fine structure formula. Honl 

a lso has calculated the oscillator s trengths for the L and M electrons . 

The expressions f o r these are much more complicated. The equations 

f o r the K electro ns are quite sat isfac t o r y for calculating the 

assoc iated os c i lla t o r s treng th (Grlmvall and Pers s on , 1969 . Cr ome r , 1965) . 
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However, those equation s for the L and M electrons are not as good 

(Cromer, 1965). 

Wagenfeld ( 1966 ) has calculat ed expressions for the a tomic 

photoelectric cross sections for the non-relativis tic r egion . Star ting 

from first principles , an approximation from atomic to hydrogen-like 

wavefunc tions i s made for both the bound and free electron states. 

The hydrogen-like wavefunc tions were correc t ed for inner sc r een ing . 

The retardation factors in the trans itio n probabilities are expanded in 

a Taylor series whic h corresponds to an electric multipole expansion. 

From this , Wagenfeld calcula t ed the attenuation c r oss sections for the 

dipole , quadrupole, and octupole transitions. Each was done for 

elect rons i n the K, L, a nd M shells. Refer t o Wagenfeld ' s paper 

for details of his calculations and the 20 e xpressions he derived for 

the absorption cross section s of each e lectron i n the K, L, and M shel l s . 

Theoretical calcula tio ns have also been done for the last two 

terms in Equation l.~. The contribution du e t o phonon scatt ering i s 

made of two parts ( Ghezz i et al . , 1971): 

ES PC 
µ + µ (2 . 17) 

ES 
µ is the scattering contribution calcula t ed by using a model in 

whic h the oscillations of the various atoms are independent . Hall a nd 

Hirsch (1965) have done calculations t o obtain express ions for µES . 
PC 

µ is the contribut i o n due t o pair correlat ions among the vibrating 

a toms . A fo r mula for this contribution has been d e rive d by Dede richs 

(1966). Refer to the above cited papers for deLivation s oit t hc 
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expressions mentioned . 

Theoretical expressions for the Compton contribution, µ , t o the c 

absorption coefficient have also been done. (See, for example, Sano, 

et al ., 1969; International Tables for X-ray Crystal logr aphy , 1974). 

The Compton contribu tion is essentially due to incoherent scattering 

of x- rays from the out side electrons of the atoms . 
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CHAPTER 3 

Experimental Techniques 

Instrumentation 

The experimental a r rangement i s schematically shown i n Figure 3 . 1 . 

The source is a 15 kW Elliott GX-21 rotating anode X-ray generator (60kV 

and 300mA - only up to 50 kV). The selection of the wavelength is done 

through a double- monochromator built in Ames t o work under hel ium atmo-

sphere in order to dissipate the heat of the motors and to reduce 

absorption and diffus i on . The crystals und e r study a r e mounted in a dif-

fractometer . The diffractometer is a large HUBER triple axis spec-

tromet er with an Eulerian cradle . 

The tungs t en anode , which was used in this s tudy is wat e r cooled 

a nd rotat es a t 3000 r evol utions pe r minut e . Because of high melting 

temperature of tungs t en, this a node can be fully loaded up t o 15 kV t o 

take advantage of the int en se br emss trahlung spect rum of tungsten. 

The double monochromator provides a wavelength r ange which can be 

varied by the computer from about 0 . 25 t o 6 Angstroms ; it has the 

following conf iguration : two crystal t ables rotating independent ly of 

each other with a r esol ut ion of 1600 s t eps/degr ee ; the incident crystal 

table being translated on a motoriz ed slide to satisf y the two Bragg 

conditions on the two crystals with a r esolution of 0 . 01 mm/st ep; the 

thr ee above motions a r e comput erized and, in addition , there are eight 

other motorized sett ing motions which can be activa t ed through 

individual s wit ches . 



Figure 3.1 . Schematic representation of experimental apparatus 
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The positions of the crystal and detector on the diffractometer are 

also computer controlled. The resolution for the "theta" and "two theta" 

angles as well as for the rotations controlling the position of the 

analyzer is 8000 steps/degree. The resolution of the two rotations in 

the Eulerian cradle is 400 steps/degree. In addition, a helium, closed 

cycle refrigerator having a temperature range of 6.7 to 400 K can be 

mounted on the diffractometer. 

Monochromator optimization 

For comparison purposes, this study requires the knowledge of the 

wavelength. It is, therefore, easier and more accurate to choose a wave-

length which is an excitation line like one of those listed in Table 3 .1 . 

These excitation lines show up as strong peaks in the wavelength spectrum 

of the x-ray source. Figure 3.2 shows these peaks for only part of the 

spectrum. The background is due to the Bremsstrahlung radiation. By 

using these peaks which have high intensities the wavelengths can be 

determined to a high degree of accuracy . 

Essentially, the monochromator may be tuned through the application 

of Bragg ' s Law (m A = 2d sin8) on the monochromator crystals. 

The positions of the monochromator crystals (2 rotations and 1 

translation as shown in Figure 3.1), have previously been determined by 

Staudenmann (1984) for the transmission of the Ll, La
1

, LS
1

, and Ly
1 

tungsten lines used in this study. The monochromator crystals a re 

driven to a previously determined position depending on the waveleng th 

sought. The crystal positions are then slightly "rocked" about their 

initial positions. New positions for the crystals are determined by 
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Table 3 . 1. Excitat i on lines of t ungsten with associated wavelengths and 
energies a 

Excitation Wavelengths Er r or Energy Relative 
Line (Angstrom) (Angstrom) (KEV) I ntensity 

M [,2 l;2MIVNI1 8 . 993 .005 1. 3787 . 01 

M [,l l; l~Nlll 8 . 962 . 004 1. 3835 . 01 

M4N3 MIVNII 1 8 . 573 . 008 1 . 116 . 01 

M3N1 MI II NI 7.36 .008 1 . 684 . 5 

M5o3 ~OIII 7.005 .009 1. 77 . 01 

Ma.2 a.2~NVI 6.992 .002 1. 7731 100 . 

Ma.1 a.l~NVII 6 . 983 . 001 1. 77 54 100 . 

M402 MIVOII 6.806 . 009 1. 822 . 01 

M B f3 MIVNVI 6 . 757 . 001 1. 8319 15. 

M2Nl MIINI 6 . 28 . 02 1. 973 . 01 

M3N4 MIIINIV 6 . 134 .004 2.021 . 1 

M y y MIIINV 6 . 092 . 003 2 . 035 1. 

M201 MIIOI 5 . 628 .008 2 . 203 . 01 

M2N4 MIINIV 5 . 357 .004 2 . 314 . 1 

M1N3 MINI II 5 . 172 .009 2 . 397 . 5 

Ml02 3 MIOII III 4 . 44 . 02 2 . 792 .01 
' ' 

L 1 L 1111MI 1.6782 . 0001 7.3878 3 . 

L T T 1 IIIMII 1 . 6244 .0003 7.632 .01 

L s s 1IIIMII1 1.5642 .0003 7 . 926 . 01 

L l'z 0 '2LII IMIV 1.48743 . 00002 8 . 3352 10. 

L (ll a.l 1IIIMV 1.47639 . 00002 8.3976 100. 

aSee Internat i onal Tables for X-ray CrystallograQhy (1974). 
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Table 3.1. continuetl 

Excitation Wavelength Error Energy Relative 
Line (Angstrom) (Angstrom) (KEV) Intensity 

--··- - -
L 11 11L11M1 1. 4211 .00003 8 . 7243 1. 

L 817 8 171IIMIII 1. 3387 .0002 9 . 261 . 01 

LlMl LIMI 1. 3365 .0003 9 . 277 .01 

L 84 84LIMII 1. 30162 . 00005 9 . 5252 4 . 

L 86 86LIIINI 1.28989 . 00007 9. 6117 .1 

L 81 81 LIIMIV 1. 28181 . 000009 9.67235 50 . 

L3N2 1 IIINII 1.2765 .0002 9.712 .01 

L2M5 1II~ 1.2728 . 0002 9.741 . 01 

L3N3 1 IIINIII 1.2672 . 0002 9 . 784 . 01 

L 83 831 IMIII 1. 2 6269 . 00005 9.8188 6 . 

L 815 f\SLIIIMIV 1. 24631 . 00003 9.9178 1. 

L B2 821 IIINV 1. 2116 .00003 9. 9615 20 . 

L B7 871 IIIOI 1.224 . 00004 10.1292 .1 

13°2 3 1 IIIOII , III 1. 2211 .0002 10.153 . 01 , 
L U U 1IIINVI VII 1.21868 .00005 10 .1733 .01 , 
L B5 851IIIOIV V 1. 21545 .00003 10.2004 .1 , 

L 1\o 8101IMIV 1. 21218 .00003 10.2279 . 01 

L B9 B9L1~ 1. 204 79 .00007 10 . 2907 . 01 

L Y5 y5LIINI 1.13235 . 00003 10.949 .1 

L2N2 LIINII 1.1218 .0003 11.052 .01 

L2N3 LIINIII 1.1149 .0002 11.12 .01 

L Yl ylLIINIV 1. 09855 .00003 11. 2859 10. 

Ly 8 y 8LIIOI 1. 08113 . 00004 11. 4677 .1 
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Table 3 . 1. continued 

Excitation Wavelength Er r or Energy Relative 
Line (Angstrom) (Angstrom) (kt:V) I ntensity 

L203 LIIOIII 1. 0792 .0002 11.488 . 01 

L V V LIINVI 1. 0771 . 0001 11 . 51 . 01 

L y6 y 6LIIOIV 1. 07438 .00005 11. 5387 . 01 

L y2 y2LINII 1.06806 . 00003 11. 608 1. 

L y3 y 3LINIII 1 . 062 . 00006 11.6743 2 . 

LlN4 LIN IV 1. 0468 . 0002 11. 844 . 01 

L y 11 y 11 LINV 1. 04 58 . 0001 11. 856 . 01 

LlOl LIOI 1. 0317 . 0003 12 . 017 . 01 

L y 4 I y 4 I LIO II 1. 02863 . 00003 12 . 053 . 1 
' ' 

Ly 4 y 4 LIO III 1. 02775 . 00003 12.0634 .1 

Ll04 5 LIOIV V 1. 025 . 0002 12 . 095 . 01 
' ' 

K L1 K LI . 21592 . 00004 57 . 42 . 01 

K a 2 a 2K LII . 213828 . 000002 57 . 9817 50 . 

K a l 2 a l 2K LII III .210616 . 000006 58 . 8727 150 . 
' ' , 

K a 1 alK LIII . 20901 . l E- 6 59 . 3182 100 . 

K 83 8 3 K ~1II . 185181 . 000002 66 . 9514 12. 

K 81 81K MIII .184374 . 000002 67 . 2443 26 . 

K 8 5 I I 8 5 ' I K MIV . 183264 . 000005 67.652 . 3 ' , 
K :-'. , B 5 , K Mv 

;) I > 
.183092 . 000007 67 . 715 . 3 

K e 2 II 82 'I K NII . 1796 . 00001 69 . 03 1 ) 0 . , ' 
K (32 I 82 I K NIII .179421 . 000007 69.101 10 . 

' , 
K 84 84K NIV V . 17892 . 00002 69 . 294 . 1 , 
K () ) 3 K OJI III . 178444 . 000005 69 . 479 .01 

~, ' ---



Figure 3.2 . Partial x-ray spectrum of the tungsten anode. 
a r e the relative intensities of the excitation 
Wang Lii and Dr. R. A. Jacobson) 

The number under the wavelengths 
lines . (Courtesy of Sue-Lein 
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the largest counting rate of the exit beam obtained for each motion . 

Then the crystals are driven t o these new starting positions and the 

process is repeated until changes in the new starting positions are too 

small to affect the cou n t ing r ate of the exit beam . A computer cont r ols 

the crystal positions through stepping motors . This process and the data 

collection process is controlled by a BASIC computer program called 

ROCKPB. 

The signal from the lithium-doped silicon , Si(Li), detector is 

amplified and passed to three single-channel analyzers. This signal 

contains pulses due to excitation line and harmonic wavelengths which 

are passed by the monochromator . Since the pulse height (voltage) of 

the detector is proportional to the energy of the detected photon, the 

s ingle-channel analyzers will separate the excitation line and various 

harmonic waveleng ths from the signal if the analyzer's voltage windows 

are set properly. For each scan, three transmitted beam absorption 

spectra were recor ded simultaneously: excitation line, second and t hird 

harmonic wavelengths. This method ensures that the wavelengths of t he 

harmonics are as accurate as those of the excitation line . 

Seven differen t high purity crystal wafers wer e inv estigated : 2 

HOPG, 1 germanium and 4 silicon. The thicknesses of the wafers were 

measured by an accurate micrometer. The accuracies of the measu r ement s 

were to + 0 . 0005 cm. The lengths of the crystals were measu r ed by a 

vernier caliper to an accuracy of + 0.05 cm . A s u mmary of t hese 

characteristics and crystal sources is in Table 3.2. 

Each wafer was mounted on a computer driven goniometer . The 
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c rys tal was aligned so that when the plane of the c rystal was no r mal to 

the beam , th e beam path passed through the geometrical center of the 

crystal . Car e was taken to ensure that all r o tations of the wafers were 

done about a vertical axis pe rpendicular to the beam path (s ee Figures 

3 . 1 and 1 . 3) . The angular range scanned was from~= 0° t o 180° with a 

scan s t ep size of 1.00 or 0 . 5° . For some c rystals, addit i onal scans 

were t aken near the region where the beam i s normal t o the plane of the 

c rystal (near ~ = 90°) . The angular r ange scann ed was from ~ = 85° to 

95° with a scan s tep size of 0 . 05° . 

Table 3.2. Dimensional c haracteris tics of the c rystals used in this 
s tudy 

Sample Thie k.ness (cm) 

Ge 0 . 0194 

Si 0 .294 6 

Si 0 . 0708 

Si 0.0699 

Si 0 . 0250 

HOPG 0 . 1524 

HOPG 0 . 1532 

Data analysis 

Length ( cm) 

5 . 09 

5 . 08 

5 . 07 

5 . 07 

5 . 08 

1.2 x 4 

1. 5 x 6 

Source 

Janos Optical Corp. 

On l oan f r om Dr. S .A . 
Werne r (Univ. of Missouri 
at Columbia) 

Monsanto 

Monsanto 

Janos Optical Corp . 

Un i on Carbid e- ZYA Grad e 

Un i on Car bide-ZYA Gr ade 

All of t he scans were analyzed by a FORTRAN compute r pr og ram 

ca lled NLS (Nonlinea r Least-Squares) . The algorithm used is known as 

the maximum neighborhood method (Marquardt , 1963). It is based on an 
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interpolation between the Taylor series a nd gradient methods used to 

fit nonlinear parameters in a model. Appendix A contains an outline of 

the development of this method. A subroutine in NLS called CURFIT 

performs the linearization of the parameters and calculates a new set 

of par ameters using the previo usly described method. The main routine, 

NLSFIT , controls the iterations t o CURFIT based on goodness of fit 

2 calculat i ons of ei ther x (see Equation A3) or a r-factor . The r-factor 

is g iven by (Hamilton, 1964) 

I: f.) 2 
1/2 

(y. - (1 / 0 .) 
1 1 1 

r i (3 .1) 

I 2 
(l/o.) (y i) 

.1. 

i 

where the sums are over all the data, y. is the ith dependent data point, 
1 

th fi is the predicted value of the i dependent data point and o i is the 

uncertainty in the data point yi . Copies of the major computational sub-

r outines used in NLS are contained in Appendix B. There are modified 

versions o~ s~broutines published elsewhere (Bevington, 1969). They are: 

1 . NLS7IT - the main r outlne which contro l s the iteratio n 

procedure. 

2. CURFIT - a subroutine which performs the linearization of the 

parameters . 

3. RCHISQ - a subr outine which calculat es the x2 and r-fact o r 

for weighted and unweighted schemes. 

4. DERIVA - a subroutine which non-analytically calculates 
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derivatives described by Equation AS. 

All computations in CURFIT, RCHISQ AND DERIVA are done in double 

precision where necessary. 

The model used in this study is similar to Equation 1. 4. The 

model is 

I I exp( - µt/sin (~ + c )) 
0 

(3. 2) 

where t is the crystal thickness, ~ the tilt angle of the wafer, c a 

phase factor, I the incident intensity of the beam and I is the measured 
0 

transmitted intensity (counting rate). The parameters adjusted by the 

program are I , µ and c . Variations of the model were also tried such 
0 

as 

I 2 2 1 01 exp(- µ1 (x + x )) + r 02 exp(-µ2 (x + x )) (3 . 3) 

where x = t/( s in( ~ + c)) . In most c ases, variations of the model dld not 

significantly improve the fit to the data. 

Before any type of refinements of the parameters were performed, 

initial estimates of µ , c and I had to be determined. I was determined 
0 0 

experimentally by the filter method described in Appendix C. c could 

be determined from a plot of I vs ~ for the raw data. There is a local 

minimum at ~ + £ = 0° o r 180° in these plots. £ may be determined at 

one of these minima . µ was estimated by interpolating data in the 

International Tables for X-ray Crystallography (1974), The main 

routine, NLSFIT, required an operator to adjust these estimates so that 
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the r-factor was below 0.075. Then the program t ook control and 

performed its optimization. Despite the least-squares improvement in 

the maximum neighborhood method, there are many examples where any 

least-squares program will converge to an improper minima of x2 which 

is not the pr i ncipal one. Therefore, manual interactions are necessary 

2 t o help in finding a local minimum in x which would have a physical 

sense. 

Additionally, t here were several constraints used in fitting the 

data. Before fitting the model t o the data, the data were smoothed with 

a 3-point smoothing function. Initial es tima tes f o r the parameters 

were entered into the program and all parameters were r efined . This was 

done for each wavelength in a particular scan. Since all three of the 

intensity patterns are from the same scan, the phase angles, £ , from 

each fit in the scan were averaged. This average was used in s ubsequent 

analysis o f the same data . In these cases, £ was not allowed to vary 

during the calculations of the fitting routine. 
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CHAPTER 4 

Attenuation in Silicon and Germanium 

Silicon data r esult s 

For the scans collected using the 0.025 cm thick silicon crystal 

the exit collimato r used on the monochromator box was a lead filled , 

80 mm brass tube with a round tapered hole 1.0 mm in diameter at the 

exit end . The counting time set on the counters was 5 , 10, and 10 

seconds for the fundamental , second and third harmonic wavelengths, 

respectively. The x-ray source was continuously examined by a monitor 

(see Figure 3 . 1). The monitor is a sc intillation detector . During the 

data gathering p r ocess , the monitor counting rate was not allowed t o 

fluctuate by more than 5% with respect to the o riginal monitor reference 

count number set at the beginning of each run. 

A representative sample of the scans for the silicon data is given 

in Figure 4.1. The angular range in the figure is from ~ = 0° to 

100° with a scan step size of 1 . 0° . Since the data are symmetric about 

$ = 90° (i . e. when the beam is perpendicular to the plane of the 

c rystal) , the rest of the scans for~> 100° are not shown . From 

around 75° t o 90° , there seem to be many structure effects (namely 

multiple reflection effects) , some of which may be represented by 

Bragg dips . To ignore these effects , the data were analyzed excluding 

the region 80° _2 ~ 2_ 100° . Upon comparing the values of the measured 

intensities with those of the calculated ones derived fr om a fit to the 

model, it was found that the data fit the model very well for all 



Figure 4.1. Normalized counting rates versus the tilt angle ~ for silicon crystal 
0.0250 cm thick 
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point s except those in the regions where~ < 30° and~> 150° . Figure 

4 . 2 shows why this is . 

In Figure 4.2, the natural logarithm of the measured intensities 

for a l l wavelengths used t o study the silicon crystal is plotted 

against the beam pat h length divided by the crystal thickness. If the 

model given by Equation 3 . 2 is correct , t hen the plots in Figure 4.2 

should be straight lines whose slope is proportional to the attenuation 

coefficient at that wavelength. In most of the plots, the slopes of 

the lin es are cons t ant in the region 30° ::_ ~ ::_ 90°. For~ < 30° , the 

slopes of the lines change to another constant value fo r all of the 

fundamental wavelengths. If Equation 3.2 is valid in this region then 

the attenuation coefficient has changed . This will be examined later 

for the case where the wavelength , A, is 1.28181 A. 

The data for each of the s cans were then reanalyzed with the 

following angular regions excluded from the fit: ~ < 30°, 80° ::_ ~ < 

100° and ~> 150°. The results of the fi t ting routine, done by the 

comput er program NLS , on each of the scans are given in Table 4 . 1 . The 

r-factors and initial intensities calculat ed by the program are also 

listed so that the parameters of the model may be compared . 

Examination of Equation 3.1 shows that an r-factor of zero implies 

a perfect fit. That is , the model and its parameters exactly 

descr i be the data . For most of the refinements given in Table 4.1 , 

the r -factors are less than 0.01 . The notable exceptions are when the 

wavelength is l.6782A, l.47369A, 0 . 42727A and 0 . 36618A. The high r -

factor of the two higher wavelengths mentioned may be due to the dips 



Figure 4 . 2. Log(I) versus beam path length divided by the c rystal thickness for 0 .0250 
cm thick silicon crystal. (The up arrows indicate the change of linearity 
for some of t he plots . ) 
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Table 4 .1. Attenuation coefficients for s i licon 

A(A) -1 µ(cm ) I 
0 

(counts/c- time) - 2 r-factor(xlO ) 

1.6782 139 . 2 1700000 1.04 

1.47639 194. 8 620000 2.07 

1. 28181 92 . 20 1700000 0 . 73 

1. 09855 57 . 06 780000 0.% 

0 . 83910 26 . 27 320000 0 . 55 

0 . 73820 17. 62 100000 0 . 50 

0.64091 11. 38 97000 0.87 

0 . 5594 8 . 108 27000 0 . 94 

0 . 5492 7 7 . 217 100000 0 . 98 

0 . 49213 5 . 522 4603 0 . 98 

0 . 42727 3 . 922 2400 1.1 

0 . 36618 2 . 312 1500 1. 6 

which appear i n the data near~= 75° (See Figure 4.1). A more 

important consideration is that the attenuation coeffi c ients for these 

waveleng ths change nearer t o ~ = 30° than any o the r scan as shown in 

Figure 4.2 . The up ar r ows under some of the plots of Figure 4 . 2 

indicate where the change in linearity takes place . The change in 

linearity indicates a change in the at t enuation coefficient . Since this 

change in the attenuation coefficient is not account ed for by the model 

of Equation 3.2 , a highe r than normal r - f actor is expected for any 

ana lysis whic h is performed in a r egion nea r this c hange . 

Examination of the initial intensities of Table 4.1 r eveals that 

the higher the order of the harmonic wavelength is , the lower the in-

cident intensi t y . This is expected since the harmonic wavelengths a r e 
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due to highe r order Bragg r efl ections of the monochrometer c rystals. 

The structure factor, F, in Equation 1.2 accounts f or the changes in 

the intensities of the reflec t ed beam due t o changes of the order of 

reflection. 3 Also, the intensity of the reflected beam goes as A . 

Thus the smaller the wavelength is, the smaller the reflected intensity. 

Discussion of the silicon data results 

The expe rimental attenuat ion coeff icients in Table 4.1 are plotted 

against the wave l ength cubed i n Figure 4.3. I ncluded in this plot are 

attenuation coefficients reported by other aut~ors (see Table 4.2) and 

those which have been calculated from other tabulated data (see Table 

4.3) . There is very little deviation of all the data from the dashed 

st r aight line which is drawn in Figure 4.3. The dashed line is the line 

of best fit for the attenuation coefficients which were calculated f r om 

tabulated data. 

These attenuation coefficients were calculated from the total at-

tenuation cross sections, a, by a method given by the International 

Tables for X-ray Crystallography (1974). The total attenuation cross 

sections tabulated therein include photoelectric, coherent and incoher-

ent processes. For a crystal with a unit cell volume , V , the l inear c 

at tenuation coefficient µ , may be calculated by 

µ = (l/V ) c 
i 

The summation is over all atoms in the unit cell. In silicon and 

germanium crystals, there are 8 atoms per unit cell and the lattice 
0 0 

parameters are aSi = 5.430A and aGe = 5 . 658A (Kittel, 1971). For 

(4.1) 



Figure 4.3. µversus A3 for 0.0250 cm thick silicon crystal. (I.T.C. (4) are linear 
attenuation coefficients derived from the International Tables f~r X-ray 
Crystallography (1974) 





Table 4 . 2. Tabl e of total attenuation c r oss sections , o with assoc iat ed linear attenuation coef-
ficients , µ for silicon , germanium and carbon 

Si Ge c 
Target 

0 a - 1 a -1 o(barns/a t om)a - 1 Rad i a tion >.(A) o (ba r ns/at om) µ(cm ) o(bar ns/atom) µ(cm ) µ(cm ) 

Ag KSl 0.4970 107 . 3 5 . 35 2739 121.0 6 . 005 0.6829 
Prl KSl 0 . 5205 122 .4 6 . 10 3113 137.5 6 . 363 0 . 7236 
Rh KSl 0.5456 140 . 1 6.98 354 7 156 . 7 6. 781 0 . 7711 
Ag Ka 0 . 5608 151. 8 7.57 3830 169 . 2 7 . 054 0 . 8022 
Pd Ka 0.5869 173 . 2 8 . 63 4345 191. 9 7 . 554 0 . 8591 
Rh Ka 0 . 6147 198.5 9 . 89 4943 218.3 8 . 140 0.9257 
Mo KS 0 . 6323 215.7 10.75 5335 235 . 6 8.546 0 . 9719 
Mo Ka 0 . 7107 304.7 15 . 19 7289 321. 9 10.67 1.213 
Zn KS 1. 2952 1825 90 . 97 5097 225.1 49 . 72 5.654 
Cu KS 1. 3922 2256 112 . 5 6201 273 . 9 61.67 7 .013 ~ 

Zn Ka 1 . 4364 2473 123 . 3 6750 298.1 67.78 7 . 708 ~ 
Ni KS 1. 5001 2810 140 . 1 7596 335 . 5 77 . 33 8 . 794 
Cu Ka 1. 5418 3047 151 . 9 8186 361. 5 84 . 13 9.567 
Co KS 1.6208 3519 175 . 4 9376 414 . l 98 . 02 11.15 
Ni Ka 1. 6591 3764 187 . 6 9992 441.3 105 . 3 11. 97 
Fe KS 1. 7 565 4434 221.0 11670 515.4 125 . 6 14 .28 
Co Ka 1. 7902 4684 233 . 5 12290 542 . 8 133.3 15.16 
Mn KS 1 . 9102 5646 281. 4 14670 647 . 9 163.1 18 . 55 
Fe Ka 1.9373 5878 293 . 6 15240 673 . 1 170.4 19 . 38 
Cr KS 2 . 0848 7258 362.6 18630 822 . 8 214.6 24 .40 
Mn Ka 2 . 1031 7439 371. 6 19080 842 . 7 220 . 6 26 . 09 
Cr Ka 2 . 2909 9456 472 .4 24100 1064 . 288 . 3 32. 79 
Ti KS 2 . 5138 12260 612 . 5 31070 1372 . 386 . 0 43.90 
Ti Ka 2 . 7496 15670 782.8 39680 1753 . 510.6 58 . 07 

aTabulated in Inter national Tables for X-ra~ Cr~stallograehy (1974). 
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Table 4 . 3 . Attenuation coefficient s measured by other authors fo r 
sil i con and germanium 

Tar get Radiation 0 A( A) - 1 µGe(Cm ) -1 
µS i (Cm ) 

Ag KB 0.496 122a 5.238 

5.19b 

Ag Ka 0.558 1698 7 .32a 

7.28b 
7 . 37c 

Mo Ke 0 . 631 236a 10 . 4a 
10.4b 

Mo Ka 0.7 08 320a 14 .6a 

14.4b 
14 . 6c 

Cu KB 1.389 267a 107a 

Cu Ka 1 . 538 354a 144a 
150b 

Co KB 1. 617 407a 

Fe KB 1.753 512a 208a 

Co Ka 1. 785 539a 

Fe Ka 1.932 68la 2758 

Cr KB 2.081 812a 

Cr Ka 2 . 265 1050a 

aHildebrandt e t al.• 1973. 
bPike , 1941. 
cGiardino et al. , 1973 . 
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HOPG (carbon), there are 4 atoms per unit cell and the volume of the 

o3 unit cell is 35 . 174A (Chen et al., 1977). The attenuation coef-

ficients calculated from the above procedure along with the 

attenuation cross sections are listed in Table 4.2 for silicon, 

germanium and carbon. 

The change in linearity of some of the plots in Figure 4 . 2 is of 

great interest. The up arrows under some of the plotted data 

approximately indicate where the attenuation coefficient changes. To 

the right of these arrows, the effective attenuation coefficient is 

much smaller than would otherwise be suspected for the wavelengths 

indicated. 

More scans were made with silicon crystals of different thicknesses 

to determine if this change in linearity was due to the particular 

crystal used or if this change is characteristic of the material . The 
0 

wavelength used for these scans was l.28181A. For the two thicke r 

crystals , a longer counting time was used (100 seconds). Also, the 

scan step size was decreased to 0.4°. The 0.0699 cm thick crystal 

was scanned in the same manner as the 0.0250 cm one except the scan 

step size was 0 . 3° . 

The data obtained during the scans are plotted in the form of log 

(I) versus beam path length in Figure 4.4. There are many interesting 

features in this plot. When the beam path length is less than 0 . 2 cm, 

the slopes of the plots are the same for the 0.0250, 0.0699, and 

0.1407 cm thick crystals. The 0.1407 cm thick crystal was actually 

two crystal wafers put back to back and mounted in the diffractometer. 



Figure 4.4. Log(I) versus beam path length for various silicon erystals. 
0 

plots start at~= 90°. A = l.28181A for all scans.) 
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To the right of 0 . 2 cm the linearity changes so that the slope is dif-

ferent. For all of the plots, the effective attenuation coefficient 

changes after the beam path length through the crystal is greater than 

0.2 cm. In the plot of the data for the 0.2946 cm thick crystal are 

peaks which are due to the Borrmann effect: anomalous transmission. The 

angles given for the centroids of the peaks are approximate since most of 

the peaks had only a few points. The mechanism responsible for the 

anomalously transmitted peak is explained by the dynamical theory of x-

rays. When µt > 10, a standing wave due to multiple reflections is set up 

within the crystal. At the Bragg condition, the nodes of the standing wave 

are at the atomic planes and very little of the wave is attenuated 

through photoelectric attenuation. When this occurs, much of the beam is 

transmitted. (Much has been written about the dynamical theory of x-ray 

diffraction . See, for example, Pinsker, 1978; Batterman and Cole, 1964; 

James, 1982.) In the plot of data for the 0.1407 cm thick crystal there 

are no peaks present. Since this specimen is actually two crystals and 

cannot be considered a perfect one, no anomalous transmission peaks are 

expected. 

An attempt was made to analyze the data obtained from the 0 . 1407 cm 

thick crystal. Only data in the region where the beam path length was 

greater than 0 . 25 cm were considered. The data were smoothed with a three 

point smoothing function and then analyzed with the computer program NLS 

described in Chapter 3. It was found that the attenuation coefficient in 

-1 this region is 3.1 cm . The fit of the model to the data was ext remely 

poor with an r-factor of 0.096. The poor fit is due in part to low 

counting rates. 
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Analysis of the second and third harmonics of the LS1 line ( A 
0 

l.28181A) are not given. The results of the plot of Log (I) versus beam 

path length for this data indicate that the attenuation coefficient does 

not change as a function of the crystal thickness. 

Silicon data conclusions 

Fer the thin s ilicon crystals where the effective thickness is 

less than 0 . 05 cm, it has been found that this technique for determining 

the attenuation coefficient is accurate in terms of model fitting. 

Comparison of these attenuation coefficients with those which have 

been published elsewhere , reveals that the attenuation coefficients 

have the same wavelength dependency. That is, the attenuation coef-

ficients are pro portional to the wavelength cubed (see Figure 4.3). 

When the intensity patterns for the thicker silicon crystals have 

been measured, plots of log (I) versus beam path length show that the 

linear attenuation coefficient c hanges. For the perfect thick crystal 

(t = 0 . 2946 cm) , these plots revealed the presence of anomalous 

transmission peaks ( see Figure 4 .4). These peaks can be explained by 

dynamical effects and normally appear when µt > 10. Here t i s the 

beam path length and µ is the linear at t enuation coefficient. 

Examination of Figure 4.4 shows that the change in linearity of the 

plotted data occurs when t = 0.2 cm . -1 In this case, µ = 92 . 20 cm and 

-1 µt = (92.2 cm )(0 . 2 cm) 18.4. From this, one might conclude tha t 

the changes in linearity of the plots in Figures 4.2 and 4.4 are 

entirel y due to dynamical effects. This, however, may not be true since 

the change in linea rity also occurs f or the somewhat imperfec t c rysta] 
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(t = 0.1407 cm) which was made by placing two crystal wafe rs back t o bac k. 

Ge rmanium data results 

The experimental conditions for the germanium data aquisition we r e 

the same as those for the silicon. Due to low counting rates, for some 

of the scans , the times on the pulse counters were set at 60, 60 and 

60 seconds for the fundamental, second and third harmonic wavelengths , 

respectively. Additionally, a measurement was taken using the fourth 
0 

harmonic wavelength of the tungsten Ll excitation line ( A = 0.4196A). 

The analysis of the data for all the germanium scans was done in 

the range 30° ~ ~ < 80° . Examina tion of Figure 4.5 reveals a change in 

linearity in the plots of log (I) versus beam path length. The model 

used to analyze the data (Equation 3.2) is valid only where these plots 

are linear . The angular range was chosen for conven ience in the linear 

region of the plots in Figure 4.5. The results of the analysis for all 

of the wavelengths studied are listed in Table 4.4. 

Compared to the silicon result s the r -factors in Table 4.3 are 

significantly higher in all cases. This may be attributed to structure 

effects which are not accounted for in the model. In the case of the 

longer wavelengths, there is the additional problem of x-ray fluorescence 

due to the proximity of the K-absorption edge . 

Discussion of germanium data results 

In Figure 4.6, the attenuation coefficients for germanium are 

plotted against the wavelength cubed. The attenuation coefficients 

calculated from the International Tables for X-ray Crys t allography (1974) 

are listed in Table 4.2 . Attenuation coefficients measured by Hildebrandt 

are listed in Table 4.3 . The dashed line in Figure 4.5 is the line of 



Figure 4.5. Log(I) versus beam path length for the germanium crystal . (The data have 
been normalized and all plots start at ~ = 90° when viewed from left to right) 
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Figure 4.6. 3 µ versus A for the gernamium crystal . (I.T.C . (4) are data calculated from 
the International Tables for X-ray Crystallography (1974)) 
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Table 4 .4. Attenuation coefficients for germanium 

0 

A(A) -1 µ(cm ) I (counts/c-time) 
0 

- 2 r-factor(lO ) 

1. 28181 277 . 0 4 . 4 x 109 5.3 

1. 09855 157 . 3 7 . 9 x 105 6 . 2 

0 . 64091 197 . 3 5 . 1 x 106 2.7 

0.5594 168.1 1. 7 x 105 1.2 

0 . 54927 182.15 8.7 x 105 0 . 73 

0.42727 79.54 7.3 x 105 2.5 

0.4196 72 .87 8.3 x 103 2.2 

0.36618 58.40 9 . 3 x 103 1.13 

One interesting feature of the plot in Figure 4.5 is the dis-

continuity at A3 = l.404A3 This discontinuity is due to the K absorption 

edge of german ium at A = l .12A and it is a consequence of Equation 2 . 12. 

n If µ = CA for wavelengths below the K absorption edge, then only the 

form is valid above the K absorption edge but the constants C and n are 

different. 

Another interesting feature of this plot is that the attenuation 

coefficients do not seem to follow a linear behavior as a function of 

A3 . This is not inconsistent with what has been stated previously in 

Chapter 2. The exponent does not have to be 3 but only near 3 . In 

fact, Grimvall and Persson (1969) have measured attenuation coefficients 
0 

of germanium for wavelengths greater than l.12A and have calculated an 

exponent of 2 . 85 from their data. 
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The peaks in Figure 4.6 are due to anomalous transmission of x-rays 

in the germanium. They appear in the longer wavelength plots because 

the attenuation coefficients are larger at these wavelengths. The 

condition, ~t > 10, is achieved sooner in terms of beam path length 

through the crystal and anomalous transmission peaks may be observed. 

Germanium data conclusions 

From the results plotted in Figure 4 . 6, most of the measured 

attenuation coefficients seem to lie close to the dashed line explained 

earlier . The most notable exception to this are at A3 = 2 . 1A3 

( A = l . 28181A) and A3 = l.3A3 (A = l.09855A). The reason for this 

behavior is due to the fact that these wavelengths are just above and 
0 

below the germanium K absorption wavelength ( A = l . 12A). 

The plots of log (I) versus beam path length show a c hange in 

attenuation coefficient for the longer wavelengths. This is similar to 

the results obtained for the silicon measurements. In general, the 

attenuation coefficients seem to change to a smaller value for a given 

wavelength when the effective crystal thickness increases beyond a 

certain point. 
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CHAPTER 5 

Attenuation in HOPG 

HOPG data results 

The experimental condit i ons for measuring the transmitted x-ray 

intensities through HOPG are the same as those descr i bed f or the thin 

silicon crystal ( t = 0.0250 cm) in Chapter 4. Calculations by NLS, for 

obtaining the attenuation coefficients of HOPG, were do ne for bo th 

crystals (see Table 3 . 2) as per the pr ocedure given in Chapter 3. 

Only attenuation coefficients at the temperature T = 300K were determined 

for t he 0 . 1532 cm thick crystal. Results of the fitting routine , NLS , 

for this crystal are reported in Table 5.1. The r-factors seem to be 

0 0 
high for the fits where the wavelength is 0.73820A, 0 . 64 091A, and 

0 
0 . 54927A. This is due in part to large fluctuations of the data around 

the model. 

Attenuation coefficients at the temperature T = 300, 200 , 150, 100, 

50 , 15, and 7.0K were determined for the 0.1532 cm thick crystal. This 

temperature range was achieved by using a He gas, closed 2-cycle 

refrigeration unit. The refrigerator head was mounted on the goniometer 

with the 0 . 1532 cm thick crystal mounted inside. One beryllium vacuum 

shroud (0.25 mm wall thickness) and two beryllium radiation shields 

(0.1 mm wall thickness) isolated the cryst al from the outside while 

allowing the x-ray beam to pass through. Measurements were done by first 

fixing the monochrometer wavelengths: excitation line, second and third 

harmonics. While keeping these wavelengths fixed, the temperature was 
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Table 5.1 . Attenuation coefficients for HOPG 

0 -1 I (counts/c-time) -2 >. (A) µ(cm ) 
0 

r - factor (xlO ) 

1. 6 782 12 . 51 2.2 x 105 2.32 

1.47639 7 . 990 4.6 x 105 2 . 82 

1.28181 5 . 584 6.7 x 105 0.78 

1. 09855 3 .659 1. 7 x 105 0.76 

0 . 83910 1.692 3.0 x 104 0.85 

0 . 73820 1. 4 71 5 .5 x 103 6.10 

0 . 64091 1.323 7 .2 x 103 3 . 71 

0 . 5594 0 . 8332 6 . 7 x 103 0 . 97 

0 . 54927 1. 223 3 . 9 x 104 4.00 

changed for each scan. The power of the x- ray source was kept constant 

between changes of the monochrometer wavelengths. An additional 

constraint in fitting the model t o the dat a was used based on the above. 

The phase angle was refined by using a procedure similar to the 

one described in Chapter 3. After the phase angle was determined, 

only data in the range of 100° _2 ~ < 150° were used for refining the 

remaining parameters . The incident intens i t y, I , of each wavelength 
0 

should be const ant f or all temperature since the wave lengths and 

x-ray source power were fixed . 



Figure 5 .1. No rmalized count ing r ate ver sus $ near 90° for the 0.1532 cm thick HOPG crystal 
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The procedure for performing a fit on the data for the 0 . 1532 cm 

thick c rystal is: 

1. Do a preliminary fit of all the paramet ers of the model on 

the complet e data for t h e excitation line and harmonic wavelengths 

using NLS. 

2. Do St ep 1 f o r all temperature using the same excitation line 

and harmonic wavelengths. 

3. Average t h e phase angles for all the preliminary refinements 

in Step 2. Use this average in s u bsequ ent refinements. Do not r efine 

the phase angle again . 

4 . Apply the angular con s traint , 1 00° _2 ~ _2 150°, t o the data 

used in the r ef ine ment. Use NLS to determine I o f each wavelength in 
0 

a scan. 

5 . Do Step 4 for all temp e r a tures using the same set of wave-

lengths. 

6. Average I over the tempe ratures used . Do this f o r each wave-o 

length . 

7 . Refine the last parameter, µ , for all wavel engths and all 

temperatures using the fixed value of the averaged I determined f or 
0 

each wavelength. 

The range of da t a used in the fit ting routine was determined in 

exact ly the same manner as that for the s ilicon data. Plots of no rmalized 

countin g rates versus ~ f or the wavelengths used to s tudy HOPG are 

presented in Figure 5 . 1 . These plo t s are obtained from separat e scans 

done af t e r each scan used to cal culate attenua tion coeff i cients . The 



Figure 5.2. Log(I) versus beam path length for 0.1532 cm thick HOPG crystal. (As viewed 
from left to right, all plots start at ~ = 90°) 
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scan s t ep size for these scans near~= 90° was 0.05° . These plots 

show the difficulty of measuring attenuation of x-rays near the normal 

to the crystal (~ = 90°) since there are so many dips present . 

In Figure 5 .2, log ( I ) is plotted against the beam path length 

for all of the wavelengths used to study the 0 .1532 cm thick crys t al 

at 300K. If the model (Equation 3.2) is correct then these plots must 

be s traight lines. Each plot, from left to right, starts out linear 

with a negative slope. Then each plot begins to curve so that the 

slopes of all the pl ots seem to approach the same value . From these 

plots, it was deduced that the most linear regions are those when the 

data are in the angular range of 90° .2_ ~ .2. 150°. 

The results of the att enuation coefficients fo r various x-ray 

wavelengths and temperature in HOPG are given in Tables 5.2 through 

5 .8 . As stated earl i er in Chap t er 2 , the attenuation coefficients are 

proportional to the wavelength cubed . This implies the smaller the wave-

length becomes, the smaller the attenuation coefficient . This is true 

in most r eported att enuation coefficient s in Tables 5.2 through 5.8 . 

The notable exceptions to this trend are attenuation coefficients 

calculated for the f ollowing wavelengths: 0 .73820A, 0 . 64091A, 

0 . 49213A, 0.42727A, and 0.36618A. In each case , the at t enuation coef-

ficients seem ent irely too large. 

Discussion of HOPG r esults 

In Figure 5.1 are scans of the raw data near~= 90° . These plots 

show t he difficulty of experimentally determining the attenuation coef-

ficient s . This figure contradicts s t atements made by other authors 
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Table 5 . 2. Attenuation coefficients for HOPG, T 300K 

0 
>.(A) -1 µ(cm ) I ( counts/c-time) 

0 
r-factor (xl0- 2) 

1. 6782 12.23 2 . 2 x 105 1. 2 

1.47639 8 . 706 6.3 x 105 1. 7 
1. 28181 5 . 737 9 . 6 x 105 0 . 89 
1. 09855 3 . 321 4.6 x 105 2.9 

0 . 83910 1. 720 7 . 8 x 104 0 . 40 
0.73820 5.785 1. 0 x 105 0 . 90 

0.64091 5 .171 2.4 x 105 0 . 68 
0 . 5594 1 . 033 9.6 x 103 1.8 
0 . 54927 1.270 6 . 8 x 104 0 . 49 
o. 49213 5 . 400 1. 7 x 104 6 .1 
0 . 42727 5 . 216 1. 6 x 104 0 . 87 
0.36618 2.942 5.5 x 103 2.4 

Table 5 . 3 . Attenuation coefficients fo r HOPG , T 200K 

0 

A(A) -1 µ(cm ) (xl0-2) I ( counts/c-time) r - f actor 
0 

1. 6 782 12 . 23 2 . 2 x 105 1.0 
1.47639 8.563 6 . 3 x 105 1.5 
1. 28181 5 . 712 9 . 6 x 105 0 . 82 
0 . 83910 1. 730 7.8 x 104 0 . 43 
0 . 73820 5 . 696 1.0 x 105 0 . 92 
0. 64091 5 . 150 2 . 0 x 105 0 . 60 
0.5594 1.030 9.6 x 103 2.50 
0 . 49213 5 . 410 1. 7 x 104 5 . 6 
0.42727 5 . 146 1. 6 x 105 0 . 85 
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Table 5 . 4. Attenuation coefficients for HOPG, T 150K 

0 -1 - 2 A(A) µ(cm ) I (counts/c-time) r-factor(xlO ) 
0 

1.6782 12 . 15 2.2 x 105 1.3 

1. 28181 5. 712 9.6 x 105 0 . 83 

1. 09855 3 . 462 4.6 x 105 0 . 78 

0 . 83910 1.718 7.8 x 104 0 . 59 

0. 64091 4.970 2 . 0 x 105 2.3 

0 . 5594 1.039 9.6 x 103 1. 7 

0 . 54927 1.142 6.8 x 104 0 . 37 

0 . 42727 5 .148 1. 6 x 104 0 .68 

0 . 36618 2.957 5.5 x 103 1.6 

Table 5 . 5. Attenuation coefficients for HOPG, T lOOK 

0 -1 -2 A(A) µ(cm ) I 0 (counts/c-time) r-factor(xlO ) 

1.47639 8 . 290 6.3 x 105 1.8 

1 . 28181 5.612 9 .6 x 105 0 . 90 

0 .73820 5.473 1.0 x 105 0 . 80 

0.64091 4. 960 2 . 0 x 105 1. 7 

0.49213 5 . 198 1. 7 x 104 5 . 6 

0.42727 5 . 069 1.6 x 105 0.8 
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Table 5 . 6. Attenuation coefficients for HOPG, T SOK 

0 A(A) -1 µ (cm ) I (counts/c-tirne) 
0 

-2 r-f actor(xlO ) 

1.09855 3 . 330 4 . 6 x 105 3 . 0 

0 . 54927 1.249 6 . 8 x 104 0.42 

0 . 36618 3.01 5 . 5 x 103 1. 7 

Table 5 . 7. Attenuation coefficients for HOPG, T 15 . 0K 

A(A) - 1 I (counts/c-time) -2 µ(cm ) r-factor(xlO ) 
0 

1. 6 782 11. 52 2 . 2 x 105 1.3 
1.47639 8.052 1. 5 x io6 1.3 

0 . 83910 1.408 7 . 8 x 104 0.6 
0.73820 6.052 2 . 2 x 106 1.1 
0 . 5594 0 . 4979 9 . 6 x 103 5 . 4 

0 . 49213 5 . 143 3 . 4 x 104 5 . 6 

Table 5 . 8 . Attenuation coefficients for HOPG, T 7 . 0K 

0 

A(A) -1 µ(cm ) -2 I (counts/c-time) r-factor(xlO ) 
0 

1. 28181 5 .491 9 . 5 x 105 0 . 91 
1 . 09855 3 . 420 4.6 x 105 0 . 93 
0 . 64091 4 . 911 2.4 x 105 0 . 54 
0 . 54927 1. 171 6 . 8 x 104 0 . 49 
0 . 42727 4 . 936 1. 6 x 104 0 . 82 
0 . 36618 2.994 5 . 5 x 103 1.40 



Figure 5.3. 3 
µ versus A for HOPG crystals at T = 300K. (I.T.C. (4) are data calculat ed 
from the International Tables for X-ray Crystallography (1974)) 
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(Calvert et al ., 1976) . They stat e , " ... for py rolytic graphite and Cu 
0 

Ka , radiation [ A = l.54A), a r egion of zero excitation is found t o exist 

near w = 90°. In fact, a plat eau ex tends from w = 87° t o 93°." While 

in the present study, Cu Ka1 radiation was not used, the wavelengths 
0 

near l.54A c l ear l y show a slight dip in int ensi t y near$= 90°. 

The comput ed a ttenuation coefficients in Tables 5.1 and 5.2 are 

plotted against the wavelength cubed in Figure 5 . 3. Included in this 

plot are attenuation coefficients r eported in Chapter 4 for carbon 

(see Table 4 . 2) . Fo r the lar ge r wavelengths , there is very little 

deviation of the experimental data f r om the straight line drawn in 

Figure 5.3 . The dashed line is the line of best fit derived from the 

calculated attenuation coef ficients for carbon in Table 4.2 . For the 
0 

smaller wavelengths ( <0 .73820A), the attenuation coeffic ients are con-

sistently higher. This discrepancy is most likely due t o o t her scattering 

processes 

As with the s ilicon and german ium, plots of log (I) versus beam 

path length a r e not always linear . In fact, most of the plots start 

ou t linear as viewed from left t o right . Then the slopes change 

gently so that the entire plot looks nonlinear. For the L1 , La1 , 

LS1 , and Ly1 wavelengths, this is not entir ely true . These plots start 

out linear from the left . Then t here is a dip which appears t o be 

wavelength dependent . The most interesting aspect of all these 

plo ts is that the final slopes of all the curves fo r all of the wave-

lengths appear t o be the same. 
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Conclusions 

The discrepancies in the reported attenuation coefficient s for 

the temperature dependent data f ollow a definite tre nd. Four of the 

wavelengths fo r whic h ques tionable at tenuat ion coeff icients are r e -

ported a r e the second and third harmonics of the La1 a n d L81 lines . 

This may indicate the possibility of a n elect r onics problem with the 

count e r s or the s ingle-channel analyz e r s . Human er r o r should also be 

considered. At t his time , no physical r easons are offered f o r these 

discrepancies. Clearly , the data which pertains to these questionable 

r esult s must be taken again before any conclusions a r e made . 

The chan ge in linearity of t h e plots of log (I) versus beam path 

length cannot be eas ily explained . One may a r gu e , however , that the 

c urvature of these plots is due to inc reased sca t tering of the beam 

within the basal planes of HOPG as the c r ystal is rotated . This does 

not entirely explain the unrea sonable attenuation coefficients obtained 

fo r HOPG at smal l er wavelengths . 
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CHAPTER 6 

Recommendations for Further Studies 

In this investigation, it has been demonstrated that one may obtain 

information about attenuation coefficients by using the simple method 

described above. One may conclude that most of the attenuation coef-

ficients measured in this study are reasonable since they follow the 

same functional dependence on the wavelength as those which have been 

published elsewhere (see Figures 4.3, 4.6, and 5.2 for other references). 

This is especially true for the perfect crystals in the thickness regime 

used during the data analysis. 

The importance of this work is that the attenuation coefficient 

changes for different regions of beam path lengths in the same crystal . 

This has a profound effect on any measurements or calculations which 

rely on accurate attenuation coefficients. Physically, the nature of this 

change is not yet understood. The possibility of simult aneously 

measuring both transmitted and reflected beams would increase insight 

into the physical processes involved. Intensities calculated from the 

reflected and transmitted beam could be compared so that one may deduce 

the nature of other scattering processes through conservation laws: 

namely, conservation of photon number. 

It would also be instructive to learn the nature of the attenuation 

coefficients derived from the reflected beam in the region where the 

attenuation coefficient changes as measured by the transmitted beam. 

Measurements should be made with amorphous varieties of the materials 
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used in this s tudy . This would clear up any ambiguities as t o whe ther 

or not the change in attenuation coefficient fo r the thicker c r ys t als 

is due t o dynamical eff ec t s . 

Finally, accurate measurements a re needed to determine the 

r elation between the effec tive c rys tal thic kness relative to the beam 

and the point where this change in at t enuation coeff i c ients occur as a 

function of wavelength . A study of this t ype will permit one to know 

where car e should be exercised in measuring intensities of r eflected 

o r transmitted beams for large effective crystal thickness. 
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APPENDIX A 

Data Analysis Method 

An integral part of this work was the development of a FORTRAN 

comput er prog r am fo r nonl inear least- squa r es f i t of a model to the data . 

The method used in t he pr ogram to fit the parameter s i n t he model to the 

data is the method of max imum neighborhood developed by D. W. Marquardt 

(1963) (see also , Bevington , 1969). 

The method of maximum neighborhood performs an op t imum inter polation 

between the Taylor ser ies method and the gradient method , the inter-

polation being based upon the maximum neighborhood in which the truncated 

Taylor series gives an adequate representation of the nonlinear model . 

Both the Taylo r series method and t he gradient met hod are in-

adequate by themselves f or model fit t ing . In the Taylor ser ies method, 

the model is expanded as a Taylor series and corrections to the sever al 

parameters a r e calculated at each iter ation based on the assumption of 

local linearit y. This met hod , while it converges rapidly near a local 

minimum of x2 (a goodness of fit parameter which will be defined later) , 

will diverge if the init ial model is not near a local mi nimum of x2 . 

Even if near a local minimum failure to converge is not un common . The 

gradient method usually i nvolves stepp i ng off from t he curr ent trial 

paramet er values in t he n egative grad i ent of x2 The problem with this 

method is the extremely s l ow convergence after a few iterat ions . 

In the following par ag r aphs , the method of max i mum neighborhood is 

developed. 

Let the model to be fitted to the data be 



E(y) . . . , 
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x . 
m' 

where x1 , x2 , .. . , xm are independent variables , a 1 , a 2 , ... , ak are 

the population values of k parameters, and E(y) is the expected value 

of the dependent variable y. Let the data points be denoted by 

i 1, 2, . .. , n. 

The problem is to compute those estimat es of the parameters which 

minimize 

2 x 
n 

L 
i=l 

(l/o.) 2 (Y - f ) 2 
1. i i 

(Al) 

( A2 ) 

(A3) 

where fi is the value of yi predic t ed by (Al) at the ith data point and 

cr . is the uncertainty in the data point Y . . 
1. 1. 

We can expand the fitting function f t o fi rst order in a Taylor 's 

expansion as a funct ion of the parameters aj. 

k 

I oa . 
J 

(A4) 

j=l 

The derivatives may be calculated by 

f .(a. + 6a.) - f 1 (a. - 6aj ) 
1. J J J (AS) 

26a . 
J 
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To this approxL~ation , x2 can be expressed as a linear function 

of the pa r ameter increments and therefore o~ can be found by the 

standa rd least-squares method of setting ( ax 2/ao a. ) = 0 f or all j . 
J 

Taking the appropriate derivatives a set of k simultaneous equations 

are ob t a ined 

whe r e 

1 
~l 2 

and 

ajl :: 

k 

2= 
j=l 

oa .a. l 
J J 

n 
a 2 2= ~= 
aa 1 i=l 

n 

I 2 (l /o .) 
1 

i=l 

1 1, 2 , . . . , k 

2 (l/o . ) (y i - fi) (cf/aa1) 
1 

(af/aaj) (af/aa1 ) 

(A6) 

(A7) 

(A8) 

The solution of which may be found quite easily through matrix methods . 

If Equation A4 were expanded t o second order in oa ., we would see 
J 

that Equation AS is a first order approximation t o the curvatur e 

matrix 

1 
2 

which defines the curvature of x2 in the parameter spac e . 

Up t ill now, the method s hown i s simply a Taylor series method . 

(A9) 

To combine the two methods, the diagonal t erms of the curvature matrix 
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a are increased by a factor A which controls the interpolation of the 

algorithm between the Taylor and gradient methods. The matrix 

Equation A6 becomes 

where 

I 
Ct j 1 

k 

2= oaj a 'jl 
j=l 

for j 1 

for j I- 1 

The solut i ons then for the parameter increments Oaj are simply 

oa. 
J 

(AlO) 

(All) 

(Al2) 

where the matrix e: ' is the inverse of the matrix a' whose el.ements are 

given in A.11. 

The strategy then to fit the model to the data is (Bevington, 1969): 

1. 

2. 

3. 

4. 

5. 

2 Compute X (a). 

Start with A = 0.001. 

2 Compute oa and X (~ + o~) with this A. 
2 2 If x (~ + o~) > x (~), increase A by a factor of 10 and 

repeat step 4. 

2 2 If X (~ + o~) < X (~), decrease A by a factor of 10, 

consider a' = a+ oa to be a starting point, and return to 

step 3 with a= a'. 
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There are variations to this. For instance, on occasion in 

problems where the correlations among the parameter-estimates are high 

(>0 . 99), it can happen that A will increase to unreasonably high values. 

In t his case , it has been found best to alter step 5 so that a' . 
J 

a. + 
J 

K aa. where K is some value less than one but greater than zero. 
J 
If A is very small , Equation AlO is similar t o Equation A6, 

and the solutions obtained are similar to those obtained through the 

Taylor expansion method . If A is very large, the diagonal terms of 

the curvature matrix dominate and the matrix equation degenerates 

into k separate equations 

B. 
J 

AOa.a .. 
J JJ 

(Al3) 

which will yield increments ca. in the same direction as the g radient 
J 

of 81 in Equation A7. 

One advantage of combining these two methods into one algorithm 

is that the expansion need only be valid in the immediate neighbor-

hood of the minimum x2 . Thus, only the simple first-order expansion 

is necessary and the first order approximation for the curvature 

mat rix need be used . 

As with most standard least-squares methods, it is possible for 

the model to converge to the improper local minima of x2 This is 

espec ially true of models which are based on periodic-like functions. 

Thus there is a need for human interaction during execution of any 

computer program which uses this method with periodic-like fun c tions . 

This is to ensure that the parameters obtained are physically meaningful. 



81 

APPENDIX B 

Portions of the FORTRAN program NLS used to perform the least-squares 

analysis in this work. 

c 
C PROGRAM NLSFIT 
c 
C PURPOSE 
C TO DO A GENERALIZED LEAST SQUARES 
c 
C DESCRIPTION OF PARAMETERS 
C OBS - ARRAY OF DATA POINTS (OBSERVED DEPENDENT VARIABLE) 
C XVALUE - ARRAY OF DATA POINTS (INDEPENDENT VARIABLE) 
C PARAM - ARRAY OF PARAMETERS FOR FITTING FUNCTION 
C SOME OR ALL OF WHICH CAN BE OPTIMIZED BY THIS PROGRAM 
C NXFLAG - ARRAY OF FLAGS WHICH DETERMINE WHICH PARAMETERS WILL 
C BE MODIFIED BY THIS PROGRAM 
C 1 = PARAMETER INCLUDED IN L. S. 
C 0 = PARAMETER NOT INCLUDED IN L.S. 
C NILS ARRAY OF FLAGS FOR DATA POINTS 
C NILS .LE. 0 => NOT INCL. IN L.S. 
C NILS . GT. 0 = > INCL. IN L. S . 
C IABS(NILS) .EQ. 2 => POINT HAS BEEN MODIFIED 
C NILS SETS UP REGIONS OF INTEREST IN THE WHOLE DATA 
C SIGMA ARRAY OF STANDARD DEVIATIONS OF OBS 
C NOT USED IN THIS VERSION AS DEFINED. CAN BE MODIFIED 
C BY INTRODUCING A NEW ARRAY AND REPLACING SIGMA IN THE 
C MAIN PART OF THIS ROUTINE BY THE NEW ARRAY. SEE 
C COMMENTS IN BODY OF THIS ROUTINE, SIGMA MAY THEN BE 
C USED AS INDICATED. 
C CALC ARRAY OF CALCULATED VALUES OF THE FITTING FUNCTION 
C WEIGH ARRAY OF WEIGHTS OF OBS 
C IFLAG ARRAY OF FLAGS FOR VARIOUS SUBROUTINES 
C (1) NUMBER OF PARAMETERS TO BE FITTED --SETFUN 
C (2) MAX NO. OF PARAMETERS IN FUNCTION --SETFUN 
C (3) BEGINNING INDEX OF DATA FOR NLSFIT--LSPARM 
C (4) ENDING INDEX OF DATA FOR NLSFIT --LSPARM 
C (5) CONTROL FLAG --NLSFIT 
C O= NEW JOB, l= SAME DATA, 2= MORE DATA 
C (6) PRINT FLAG FOR SUBROUTINE TITRE --****** 
C (7) FILE OPERATION OR SUBFILE --COLLCT 
C (8) COUNTER NUMBER --COLLCT 
C (9) PRINT FLAG FOR SUBROUTINE RCHISQ --****** 
C (10) PRINT FLAG FOR SUBROUTINE TITRE --****** 
C (11) SMOOTHING FLAG --LSPARM 
C O= NONE, l= 3- POINT, 2= 5-POINT 
C (12) MAX DATA INDEX READ IN --COLLCT 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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(13) NO . CYCLES OF REFINEMENT --LSPARM 
( 14) PLOTTING FLAG --LSPARi'1 

0= NONE, l = AT END, 2=EACH CYCLE 
(15) PLOTTING FLAG --LSPARM 

0= PROG CHOOSE MAX SCALE FOR PLOT 
l= NOT 

(16) PLOT SCALE INDEX IF IFLAG(lS)= 1 --LSPARM 
(17) O= CHI COMPARE, l= NOT - -LSPARM 
(18) O= PRINT MATRIX OF COEF. & INVRT --LSPARM 

l= NOT 
(19) WEIGHT FLAG - -LSPARM 

0= NO WEIGHT 
l= STATISTICAL (l/OBS) 
2= INSTRUMENTAL (1/ (SIGMA*SIGMA)) 

(20) O= TRUNCATE CALC VALUES --LSPARM 
l= NOT 

(21) NORMALIZATION OF DAT FLAG --LSPARM 
O= NO NORMALIZAT ION 
l= NORMALIZE OBS TO 10A6 
2= NORMALIZE CALC TO 10 A6 
3= NORMALIZE BOTH TO 10 A6 

(22) PRINT FLAG FOR SUBROUTINE CURFIT --LSPARM 
O= LONG OUTPUT 
l= SHORT OUTPUT 

SUBROUTINES CALLED BY NLSFIT 
COLLCT CORREL CURFIT EXIT FISTAT FIXIT 
NOTINC PAG ING PLOTV RCHISQ SETFUN SETUP 

FUNCTN LSPARM 
SMOOTH TABLE 

C TITRE WEIGHT 
c 
C COMMENTS 
C PLEASE NOTE THAT SUBROUTINE SETUP IS NOT REQUIRED TO RUN THIS 
C PROGRAM. IT WAS INITIALLY USED TO SET ALL VARIABLES AND FLAGS 
C TO SPECIFIC VALUES . IT ALSO TESTS THE SYSTEM CLOCK TO SEE IF 
C IT IS RUNNING. IF NO CLOCK IS PRESENT OR THE CLOCK IS OFF THE 
C PROGRAM WILL HANG. REMOVING THIS SUBROUTINE AND CALL STATEMENT 
C WILL NOT AFFECT THE OPERATION OF THIS PROGRAM . 
c 
C ALSO NOTE THAT THE SUBROUTINE TITRE USES THE FORTRAN SUBROUTINES 
C CALLED "TIME" AND "DATE". THESE MAY BE EDITED OUT IF THE SYSTEM 
C HAS NO CLOCK . 
c 
C THE TIME FUNCTIONS ARE OtJLY AN AID TO THE OPERATOR. 
c 

c 
c 

PROGRAM NLSFIT 
DIMENSION IFLAG(30) ,CALC(256) ,OB S(256) , SIGMA(256) ,XVALUE(256) 
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DIMENSION WEIGH(256),NXFLAG(20),PARAM(20),NILS(256) 
REAL*8 ARRAY(20,20),CHISQ(5),RLAST 
LOGICAL*l DAY(9),TITLE(80),XLABEL(20),YLABEL(20),BEL 
LOGICAL*l FILNAM(l5),NUL,CONTNT(80),NEWLA(20),IANS 
COMMON IFLAG,LINE,NPAGE 
COMMON /DAT/CALC ,OBS,NILS 
COMMON /FDAT/NXFLAG,PARAM,XVALUE 
COMMON /WAY/WEIGH 
COMMON /PIERR/SIGMA,CHISQ 
COMMON /MISC/FRAC,RLAST 
COMMON /LABELS/XLABEL ,YLABEL 
COMMON /TOP/DAY,TITLE,FILNAM,CONTNT 
COMMON /CURCOR/ARRAY 
COMMON /VARI/FLAMDA 
DATA XLABEL/20*' '/, YLABEL/20*''/, TITLE/80*' ' / 
DATA IFLAG/30*0/ ,PARAM/20* . l 
DATA NILS/256*1/ 
DATA NEWLA/ ID I , I I I ' IF I , IF I , I : I , I I ' I 0 I ' I BI , Is I ' I I , 

+ 'C','A ','L','C',' ' ,'', ' ' ,' ',' ',' ' / 
NUL= ,FALSE. 
IFLAG(5)= 0 
TYPE 100 

30210 FLAMDA= 0.001 
!CYCLE= 0 
IF (IFLAG(5) .NE . 1) GO TO 30290 
TYPE 107 
ACCEPT 530 ,IANS 
IF (IANS .NE. ' N' ) GO TO 30710 

30290 TYPE 102 
ACCEPT 505,(TITLE(I) , I= 1, 50) 
IF (IFLAG(5)-l) 30310,30430,30310 

30310 DO 80320 J= 1, 256 
80320 NILS(J)= 1 

NPAGE=l 
LINE= 4 

c 
C HERE IS THE SUBROUTINE SETUP 
C THIS MAY BE REMOVED AS INDICATED IN EARLIER COMMENTS 
c 

CALL SETUP 
c 
C END OF SETUP ROUTINE COMMENTS 
c 

CALL COLLCT 
IFLAG(ll)= 0 
NUL= .FALSE. 
DO 80340 J= 55, 71 

80340 TITLE(J)= 
TYPE 105 
ACCEPT 510,PHAZE 



80390 
DO 80390 I= 1, IFLAG(4) 

XVALUE(I)= XVALUE(I)+PHAZE 
CALL TITRE 
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+ 
CALL PLOTV(l , OBS ,OBS, XVALUE,IFLAG(3) ,IFLAG(4) , IFLAG(l5) , IFLAG(l6) , 

XLABEL , YLABEL) 
CALL TITRE 

30430 IF(IFLAG(5) . EQ . 1) TYPE 109 
TYPE 104 
ACCEPT 530,IANS 
IF (IANS . EQ. ' N' ) GO TO 30490 
CALL FIXIT 
CALL TITRE 

30490 CALL LSPARM 
IF (IFLAG(21) .NE. 1) GO TO 30590 
YMAX= - 1. OE+30 
DO 80560 I= IFLAG(3),IFLAG(4) 

80560 YMAX= A.l'1A.Xl(YMAX, OBS(I)) 
ANORM= l . OE+06/YMAX 
DO 80580 I= IFLAG(3), IFLAG(4) 

80580 OBS(I)= OBS(I)*ANORM 
30590 IF (IFLAG(ll) . EQ . 0 . OR . NUL) GO TO 3064 0 

CALL SMOOTH 
NUL= .TRUE . 
CALL TITRE 
CALL PLOTV(l,OBS,OBS,XVALUE,IFLAG(3) , IFLAG(4) ,IFLAG (l5),IFLAG(l6) , 

+ XLABEL , YLABEL) 
30640 CALL TITRE 

IF (IFLAG(5) . EQ. 1) TYPE 109 
TYPE 108 
ACCEPT 530 , IANS 
IF (IANS . EQ. ' N' ) GO TO 30710 
CALL NOTINC 
CALL TITRE 

30710 CALL SETFUN 
TYPE llO 
ACCEPT *,FRAC 
LINE= LINE+4 
DO 80750 J= IFLAG(3), IFLAG(4) 

JSUB= J 
80750 CALC(JSUB)= FUNCTN(JSUB) 

IF (IFLAG(S) .NE . 1) GO TO 30800 
TYPE 103 
ACCEPT 530,IANS 
IF (IANS .NE . ' Y' ) GO TO 30820 

30800 IFLAG(6)= 4 
CALL TABLE 

30820 IF (IFLAG(l9) .NE. O) CALL WEIGHT 
1FLAG(9)= 2 
CALL RCHISQ 
IF (SNGL(CHISQ(5)) .LT. 0.075) GO TO 30980 



CALL TITRE 
TYPE ll5 

30880 LINE= LINE+3 
CALL PAGING 
TYPE 120 
ACCEPT 520 , NUM 
IF (NUM . EQ . 0) GO TO 30980 
TYPE 125,NUM,PARAM(NUM) 
ACCEPT * , PARAM(NUM) 
IFLAG(9)= 2 
CALL RCHISQ 
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IF (SNGL(CHISQ(5)) . GE. 0 . 075) GO TO 30880 
30930 RLAST= CHISQ(5) 

ICYCLE= ICYCLE+l 
IF (ICYCLE . EQ . 1 . AND . IFLAG(22) . EQ. 1) CALL TITRE 
I F (ICYCLE . EQ . IFLAG(l3)) IFLAG(22)= 0 
IF (IFLAG(22) . EQ . 1) GO TO 31020 
CALL TITRE 
TYPE 130 ,ICYCLE,IFLAG(l3) 

31020 CALL CURFIT 
DO 31050 J= IFLAG(3), IFLAG(4) 

JSUB= J 
31050 CALC(JSUB)= FUNCTN(JSUB) 

IF (ICYCLE . NE . IFLAG(l3) .OR. IFLAG(21) .LE. 1) GO TO 31160 
YMAX= -1. OE+30 
DO 81100 I= IFLAG(3) , IFLAG(4) 
YMAX= AMAXl(YMAX , CALC(I)) 

8ll00 IF (IFLAG(21) . EQ . 3) YMAX= AMAXl(YMAX,OBS(I)) 
ANORM= l . OE+06/YMAX 
PARAM(l)= PARAM(l)*ANORM 
DO 81150 I= IFLAG(3), IFLAG(4) 
CALC(I)= CALC(I)*ANORM 

81150 OBS(I)= OBS(I)*ANORM 
31160 IF ( I FLAG(l4) .EQ . 2) CALL TITRE 

IF (IFLAG(l4) . EQ . 2) CALL PLOTV(2 , 0BS , CALC,XVALUE , IFLAG(3) , 
+ IFLAG(4), IFLAG(l5),IFLAG(l6) , XLABEL,YLABEL) 

31190 IF (ICYCLE . GE . IFLAG(l3)) GO TO 31210 
IF ((CHISQ(5)-RLAST) . LT. 0. 5E-07) GO TO 30980 

31210 RLAST= CHISQ(5) 
CALL CORREL 
IFLAG(6)= 1 
CALL TABLE 
IFLAG(6)= 0 
IF (IFLAG(l4) . NE . 1) GO TO 31310 
CALL TITRE 
CALL PLOTV(2 ,0BS, CALC , XVALUE,IFLAG(3) , 

+ IFLAG(4), IFLAG(l5) ,IFLAG(l6) , XLABEL , YLABEL) 
CALL TITRE 

31310 IF (IFLAG(l4) .EQ. 0) GO TO 30360 
c 
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C HERE IS WHERE THE SIGMA ARRAY IS USED NOT IN THE 
C MANNER OF ITS DESCRIPTION. THIS MAY BE CHANGED 
C IN ACCORDANCE TO EARLIER COMMENTS ABOVE . 
c 

DO 81330 J= IFLAG(3) , IFLAG(4) 
81330 SIGMA(J)= OBS(J)-CALC(J) 

CALL PLOTV(3,SIGMA , CALC , XVALUE,IFLAG(3) , IFLAG(4), 
+ IFLAG(l5) , IFLAG(16) , XLABEL , NEWLA) 

c 
C END OF SIGMA ARRAY COMMENTS. 
c 
30360 CALL TITRE 

CALL FISTAT 
CALL TITRE 
TYPE 135 

c 

c 

ACCEPT 530,IANS 
IF (IANS . NE. ' Y' ) CALL EXIT 
TYPE 101 
ACCEPT 500 , IFLAG(S) 
GO TO 30210 

FORMAT STATEMENTS 

100 FORMAT(lHl, ' NLSFIT V02 : 02 double pr ecision in this version', 
+ / , 3X ,' 1 overlay region with 11 segments ', 
+ /,5X, ' Latest vers i on November 9 , 1983 ' , / ,/) 

101 FORMAT(lHO,lOX , ' Enter O= New J ob, l = Same data , 2= 
+ , ' More data from same file ' , T75,$) 

102 FORMAT(lHO , lOX , ' Enter the Gen eral Title ' , 5X , $) 
103 FOR.'1AT(lH0,10X , ' Do you want an initial table? . . (Y/N) .. ', $) 
104 FORMAT( lHO,lOX , 'Do you want t o change specific points ', / , 

+ lH ,lOX , ' in the data? . .. (Y/N) ... ' , lOX , $) 
105 FORMAT(lHO,lOX, ' Enter zero (or phase) angl e ', 38X , $) 
107 FORMAT(lHO , lOX , ' Do you want to keep everything the same ', / , 

+ llX, ' and star t from and of t he last cycle? .. (Y/N) . . ' , / , 
+ lOX,$) 

108 FORMAT(lHO , lOX, 'Do you want to exclude some regi ons of data ', / , 
+ lH ,lOX , ' in the L. S. Fit? . . . (Y/N) .. . ', lOX , $) 

109 FORMAT(lHO,lOX , ' Remember tha t the old values will be ', / , 
+ llX , ' kept in the following question, ' ) 

110 FORMAT(lHO , lOX , ' Enter fraction (=DER . Step/Unknown) :' , T75 , $) 
115 FORMAT(lHO , lOX, ' OPTIMIZATION OF SOME UNKNOWNS ' , /) 
120 FORMAT(lHO , lOX , ' Enter O= continue #= No. of Param . to change ' , 

+ T75,$) 
125 FORMAT(l6X, ' Old value of parameter# ', 13 ,' = ' ,1PG17 , 10 , 

+ Ent er new value ',T75 , $) 
130 FORMAT(lX , ' CYCLE # ' , 13,' OF ' ,13 , /) 
135 FORMAT(lHO,lOX, ' Do you want to do it again? ... (Y/N) ... 

+ 5X , $) 
500 FORMAT(Il) 



505 FORMAT(50Al) 
530 FORMAT(lAl) 
510 FORMAT(F6.4) 
520 FORMAT(I2) 
525 FORMAT(Ell.4) 
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550 FORMAT(lX,F9 . l,3X,F7 . 3,3X,Fl0.5) 
END 

c 
C SUBROUTINE CURFIT 
c 
C PURPOSE 
C TO MAKE A LEAST-SQUARES FIT TO A NON-LINEAR FUNCTION 
C WITH A LINEARIZATION OF THE FITTING FUNCTION 
c 
C USAGE 
C CALL CURFIT 
c 
C DESCRIPTION OF PARAMETERS 
C PARAM - ARRAY OF PARAMETERS FOR THE FITTING FUNCTION 
C OBS - ARRAY OF DATA POINTS (OBSERVED DEPENDENT VARIABLE) 
C SIGMA - ARRAY OF STANDARD DEVIATIONS OF OBS 
C !FLAG - ARRAY OF FLAGS FOR VARIOUS SUBROUTINES 
C XVALUE - ARRAY OF DATA POINTS (INDEPENDENT VARIABLES) 
c 
C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED 
C FUNCTN(I) 
C RCHISQ 
C DERIVA(I,DERIV) 
C MATINV(ARRAY , NORDER,DET) 
C MATRIX 
C TITRE 
C PAGING 
C PT SCAN 
c 
C COMMENTS : 
C SET FLAMDA= 0.001 AT BEGINNING OF SEARCH 
C SEE DATA REDUCTION AND ERROR ANALYSIS FOR THE PHYSICAL SCIENCES 
C BY PHILIP R. BEVINGTON, MCGRAW-HILL . THIS BOOK WILL EXPLAIN 
C HOW THIS ROUTINE WORKS IN DETAIL. 
c 
c 
c 

SUBROUTINE CURFIT 
DIMENSION XVALUE(256),0BS(256),CALC(256),NILS(256) 
REAL*8 ALPHA(20,20) , BETA(20),B(20) , DERIV(20) 
DIMENSION IFLAG(30),PARAM(20) 



80320 
80330 
80340 

80370 
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DIMENSION OLD(20) ,WEIGH(256) , NXFLAG(20) , SIGMA(256) 
REAL*8 ARRAY(20,20) ,CHISQ(5),RLAST 
COMMON IFLAG,LINE,NPAGE 
COMMON /DAT/CALC , OBS , NILS 
COMMON /FDAT/NXFLAG,PARAM,XVALUE 
COMMON /PIERR/SIGMA,CHISQ 
COMMON /WAY/WEIGH 
COMMON /CURCOR/ARRAY 
COMMON /MISC/FRAC,RLAST 
COMMON /VARI/FLAMDA 
FLAMDA= 0 . 001 
NLAMDA= 0 
DATA BETA/20*0.0D+OO/ ALPHA/400*0.0D+OO/ WEIGH/256*1./ 
DATA DERIV/20*0.0D+OO/ 
IF (IFLAG(l9) . NE. 0) CALL WEIGHT 
DO 80340 I= IFLAG(3), IFLAG(4) 

IF (NILS(I) .LE. O) GO TO 80340 
ISUB= I 
CALL DERIVA(ISUB,DERIV) 
L= 0 
DO 80330 J= 1, IFLAG(2) 

IF (NXFLAG(J) .EQ . 0) GO TO 80330 
L= L+l 
BETA(L)= BETA(L)+WEIGH(I)*(OBS(I)-FUNCTN(ISUB))*DERIV(L) 
M= 0 
DO 80320 K= 1, J 

IF (NXFLAG(K) .EQ . O) GO TO 80320 
M= M+l 
ALPHA(L , M)= ALPHA(L,M)+WEIGH(I)*DERIV(L)*DERIV(M) 
CONTINUE 

CONTINUE 
CONTINUE 

DO 80370 J= 1, IFLAG(l) 
DO 30370 K= 1, J 

ALPHA(K,J)= ALPHA(J,K) 
IFLAG(9)= 0 
CALL RCHISQ 
PRECHI= SNGL(CHISQ(5)) 

30410 DO 80440 J= 1, IFLAG(l) 

80430 
80440 

80460 

DO 80430 K= 1 , IFLAG(l) 
ARRAY(J,K)= ALPHA(J,K)/DSQRT(ALPHA(J,J)*ALPHA(K,K)) 

ARRAY(J,J) = l . O+FLAMDA 
CALL MATINV(ARRAY,IFLAG(l),DET) 
DO 80460 J= 1, IFLAG(2) 

OLD(J)= PARAM(J) 
L= 0 
DO 80580 J= 1, IFLAG(2) 

IF (NXFLAG(J) .EQ . O) GO TO 80580 
L= L+l 
B(L)= PARAM(J) 
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M= 0 
DO 80570 K= 1, IFLAG(2) 

IF (NXFLAG(K) .EQ. O) GO TO 80570 
M= M+l 
B(L)= B(L)+BETA(M)*ARRAY(L,M)/DSQRT(ALPHA(L,L)*ALPHA(M,M)) 

80570 CONTINUE 
80580 CONTINUE 

L= 0 
DO 80640 J= 1, IFLAG(2) 

IF (NXFLAG(J) . EQ. 0) GO TO 30640 
L= L+l 
PARAM(J)= B(L) 

80640 CONTINUE 
IFLAG(9)= 0 
CALL RCHISO 
IF (IFLAG(l7) .GT . 0) GO TO 30740 
IF ((PRECHI-SNGL(CHISQ(5))) .GE. O) GO TO 30740 
FLAMDA= FLAMDA*lO . O 
NLAMOA= NLAMDA+l 
DO 80720 J= 1, IFLAG(2) 

80720 PARAM(J)= OLD(J) 
GO TO 30410 

30740 IF (IFLAG(22 ) . EQ . 1) GO TO 30890 
IFLAG( 6)= 5 
IFLAG(lO)= 1 
CALL TITRE 
LINE= LINE+3 
L= 0 
DO 80880 J= 1, IFLAG(2) 

IF (NXFLAG(J) .EQ. O) GO TO 80370 
L= L+l 
Cfu\NGE= PARAM(J)-OLD(J) 
STDEV= DSQRT(DABS(ARRAY(L ,L) /ALPHA(L, L))) 
WRITE(7,125) J,OLD(J),CHANGE , PARAM(J),STDEV 
GO TO 80880 

80870 WRITE(7,120) J,PARAM(J) , NXFLAB(J) 
80880 CONTINUE 
30890 WRITE(7,130) FLAMDA,NLAMDA 
30900 IF (IFLAG(l9) .EQ. 0) GO TO 30930 

WRITE( 7 ,135) CHISQ(5),RLAST 
GO TO 30940 

30930 WRITE(7,140) CHISQ(5) ,RLAST 
30940 IF (IFLAG(22) . EQ. 1) GO TO 30980 

IFLAG(9)= 3 
CALL RCHISQ 
CALL PTSCAN 
IFLAG(6)= 0 

30980 DO 81030 J= 1, IFLAG(l) 
DO 81020 K= 1, IFLAG(l) 

81020 ARRAY(J,K)= ALPHA(J,K)/DSQRT(ALPHA(J,J)*ALPHA(K,K)) 
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81030 ARRAY(J,J)= 1 . 00+00 
IF (IFLAG(l8) . NE. 0 .OR. IFLAG(22) . EQ . 1) GO TO 31110 
CALL TITRE 
WRITE(7,100) 
CALL MATRIX 
NLINE= (IFLAG(l)*2)+7 
LINE= LINE+(2*NLINE) 
I F (LINE . GT . 80) CALL TITRE 

31110 CALL MATINV(ARRAY,IFLAG(l),DET) 

c 

c 
100 
120 
125 
130 

+ 
135 

+ 
+ 

140 
+ 
+ 

145 

c 

IF (IFLAG(l8) .NE. 0 . OR. IFLAG(22) . EQ. 1) RETURN 
WRITE(7, 145) 
CALL MATRIX 
RETUR.i>..J 

FO:IBAT STATEMENTS 

FORMAT(lHO, ' MATRIX OF COEFFICIENTS ' ) 
FORMAT(lHO ,lOX,I3 , 7X ,lPG14 . 7 , 7X , Il) 
FOR..\.fAT(lHO,lOX,I3 , 7X,lPG14.7 ,6X, lPG14 . 7,6X , lPG14 . 7 , 6X , lPG12 . 5) 
FORMAT(lHO , lOX , ' FINAL FLAMDA = ', 1PG16.9,SX , ' ( CHfu~GED ', 

I4, I TIMES ) I , /) 

FORMAT(29X , ' WEIGHTED R-FACTOR = I , 1PG17 .10 , / ' 
8X , ' FOR PRECEEDING CYCLE WEIGHTED R- FACTOR = ' 

IP017.10,/) 
FORMAT (29X, ' UNWEIGHTED R-FACTOR = I ,1PG17.10 , / , 

8X , ' FOR PRECEEDING CYCLE UNWEIGHTED R-FACTOR = ' 
1PG17 .10,/) 

FORMAT(lHO , ' INVERTED MATRIX ' ) 
END 

C SUBROUTINE RCHISQ 
c 
C PURPOSE 
C EVALUATE REDUCED CHI-SQUARE FOR FIT TO DATA 
C CHISQ= SUM [ (OBS- CALC) **2/SIGMA**2 ] / NDFREE 
c 
C USAGE 
C CALL RCHISQ 
c 
C DESCRIPTION OF PARAMETERS 
C OBS - ARRAY OF DATA POINTS (OBSERVED DEPENDENT VARIABLES) 
C NPFLAG - PRINT FLAG SAME AS IFLAG(9) 
C O= COMPUTATION ONLY 
C l= COMPUTATION AND PRINT (CHISQ(I) , I= 1, 4) 
C 2= COMPUTATION AND PRINT R-FACTOR(S) ONLY 
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C 3= COMPUTATION AND PRINT CHI-SQUARE(S) ONLY 
C WEIGH - ARRAY OF WEIGHTS OF OBS 
C XVALUE - ARRAY OF DATA POINTS (INDEPENDENT VARIABLE) 
C PARAM - ARRAY OF PARAMETERS FOR FITTING FUNCTION 
C CHISQ - ARRAY RETURNED TO CALLING PROGRAM UNIT 
C (l)= UNWEIGHTED CHI-SQUARE 
C (2)= WEIGHTED CHI-SQUARE 
C (3)= UNWEIGHTED R-FACTOR 
C (4)= WEIGHTED R-FACTOR 
C (5)= CHISQ(3) IF IFLAG(l9) = 0 
C = CHISQ(4) IF 1FLAG(l9) > 0 
C IFLAG(l9) IS WEIGHTING SCHEME FLAG 
c 
C SUBROUTINE AND FUNCTION SUBPROGRAMS REQUIRED 
C FUNCTN(I) 
c 
C COMMENTS 
C NDFREE IS THE DEGREE OF FREEDOM 
C NOTE ALL COMPUTATIONS ARE DONE IN REAL*8 
c 

SUBROUTINE RCHISQ 
DIMENSION OBS(256) , WEIGH(256) , XVALUE(256),PARAM(20),PARAM(20) ,NILS(256) 
DIMENSION IFLAG(30) , CALC(256) , NXLFAG(20) , SIGMA (256) 
REAL*8 CHISQ(5),DELTSQ , UWCHI,WCHI , DELTA 
REAL*8 SDELSQ , SOBSSQ,SWDSQ , SWOBSQ 
COMMON IFLAG,LINE,NPAGE 
COMMON /WAY/WEIGH 
COMMON /FDAT/NXFLAG , PARAM , XVALUE 
COM}10N /DAT/CALC ,OBS, NILS 
COMMON /PIERR/SIGMA , CHISQ 
NPFLAG= IFLAG(9) 
DO 80140 J= 1, 5 

CHISQ(J)= 0. 
80140 CONTINUE 

!COUNT= 0 
SDELSQ= 0 . 
SOBSSQ= 0 . 
SWDSQ= 0. 
SWOBSQ= 0. 
DO 80330 J= IFLAG(3) , IFLAG(4) 

IF (NILS(J) . LE . 0) GO TO 80330 
!COUNT= ICOUNT+l 
JSUB= J 
FUN= FUNCTN(JSUB) 
IF (IFLAG (20) . EQ . O) FUN= AINT (FUN+O. 5) 
DELTA= OBS(J)-FUN 
DELTSQ= DELTA*DELTA 
SDELSQ= SDELSQ+DELTSQ 
SOBSSQ= SOBSSQ+OBS(J)*OBS(J) 
IF (IFLAG(l9) .EQ . O) GO TO 80330 
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SWDSQ= SWDSQ+WEIGH(J)*DELTSQ 
SWOBSQ= SWOBSQ+WEIGH(J)*OBS(J)*OBS(J) 

80330 CONTINUE 
NDFREE= ICOUNT-IFLAG(l)+l 
CHISQ(l)= SDELSQ/DBLE(FLOAT(NDFREE)) 
CHISQ(3)= DSQRT(SDELSQ/SOBSSQ) 
UWCHI= DSQRT(CHISQ( l)) 
IF ( I FLAG(l9) .EQ. O) GO TO 30420 
CHISQ(2)= SWDSQ/DBLE(FLOAT(NDFREE)) 
CHISQ(4) = DSQRT(SWDSQ/SWOBSQ) 
WCHI= DSQRT(CHISQ(2)) 

30420 GO TO (30540,30430,30490,30430),(NPFLAG+l) 
30430 WRITE(7 , 100) NDFREE 

WRITE(7,100 ) SDELSQ,CHISQ(l),UWCHI 
LINE= LINE+2 
IF (IFLAG(l9) . EQ . O) GO TO 30490 
WRITE(7 , 120) SWDSQ , CHISQ(2) ,WCHI 
LINE= LINE+l 

30490 IF (NPFLAG .EQ. 3) GO TO 30540 
30490 IF (NPFLAG .EQ. 3) GO TO 30540 

WRITE(7 , 130) CHISQ(3) 
LINE= LINE+2 
IF (IFLAG(l9) . EQ . O) GO TO 30540 
WRITE(7 , 140) CHISQ(4) 
LINE= LINE+l 

30540 CHISQ(5)= CHISQ(3) 
IF (IFLAG(l9) . GT . 0) CHISQ(5)= CHISQ(4) 
RETURN 

c 
FORMAT STATEMENTS 

c 

c 

100 FORMAT(lHO , '( HOBS - #PARAM) = d.f. 
110 FOR..'1AT(lH , ' SUM ( (OBS-CALC)**2 ) 

+ lH , ' UNWEIGHTED CHI- SQUARE 
+ lH , ' UNWEIGHTED CHI 

120 FORMAT(lH , ' SUM [ (OBS-CALC)**2 ) 
+ lH WEIGHTED CHI-SQUARE 
+ lH , WEIGHTED CHI 

130 FORMAT(lHO, ' UNWEIGHTED R-FACTOR 
140 FORMAT(lH WEIGHTED R-FACTOR 

END 

C SUBROUTINE DERIVA(I , DERIV) 
c 

I ' llO) 
I , 1PG17 .10,/, 
I 'lPGl 7 . 10 ) I' 
' ,1PG17.1 0) 
I ,1PG17 . 10,/' 
I ,1PG17.10,/, 

= I , lPGl 7 . 10) 
I ,1PG17 .10) 
' , lPGl 7 . 10) 
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C PURPOSE 
C TO CALCULATE DERIVATIVES OF AN ARBITRARY FUNCTION 
C FOR A LEAST SQUARES FIT. 
c 
C PARAMETERS 
C DERIV - ARRAY OF DERIVATIVES OF FUNCTION 
C I - INDEX OF DATA POINT ABOUT WHICH DERIVATIVES ARE 
C EVALUATED 
c 
C FUNCTIONS REQUIRED 
C FUN CTN 
c 
C COMMENTS 
C NOTE THAT CALCULATIONS ARE DONE IN DOUBLE PRECISION 
C ALSO NOTE THAT DELTA IS CONSTRAINED NOT TO BE EQUAL TO 
C ZERO . THIS MAY LEAD TO SOME PROBLEMS WITH SOME FUNCTIONS. 
C IF DERIVA IS ZERO TOO MANY TIMES A SINGULAR MATRIX WILL 
C BE CREATED AND CURFIT WILL CRASH. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE ABOVE WAS DONE FOR FUCTll.FOR. THIS WAS SO THAT SOME 
OF THE PARAMETERS MAY BE STARTED AT ZERO INSTEAD OF A FINITE 
BUT SMALL NUMBER . 

PLEASE NOTE THAT THE PARAMETERS ARE "SHUFFLED" ACCORDING TO 
THE FLAGS NXFLAG. 

SUBROUTINE DERIVA(I,DERIV) 
DIMENSION XVALUE(256),PARAM(20),IFLAG(30) , NXFLAG(20) 
REAL*8 RLAST , DERIV(20) 
COMMON IFLAG,LINE,NPAGE 
COMMON /FDAT/NXFLAG , PARAM,XVALUE 
COMMON /MISC/FRAC,RLAST 
IJK= 0 
DO 900 J= 1, IFLAG(2) 

IF (NXFLAG(J) .EQ. 0) GO TO 900 
IJK= IJK+l 
HOLD= PARAM (J) 

1 DELTA= PARAM(J)*FRAC 
I F (DELTA .EQ. 0 .0) DELTA= 0.01 
PARAM(J)= HOLD+DELTA 
YFIT= FUNCTN(I) 
PARAM(J)= HOLD-DELTA 
FUN= FUN CTN (I) 
DIF= YFIT-FUN 
IF (DIF . NE. 0 . ) GO TO 3 
DERIV(IJK)= O. OD+OO 
GO TO 2 

3 DERIV(IJK)= DBLE(DIF)/DBLE(2 . 0*DELTA) 
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2 PARAM(J)= HOLD 
900 CONTINUE 

RETURN 
END 
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APPENDIX C 

The Filter Method for Estimating the Incident 

Intensity of the X-ray Beam 

For initial estimates of the incident intensity, I , a simple 
0 

method was needed. The filter method was used to obtain these estimates . 

This method requires the use of at least two different materials. By 

using Equation 1.3 it is possible to determine I . 
0 

The intensity of the transmitted beam of x-rays is measured for the 

sample crystal at a particular orientation. This intensity is 

proportional to the incident intensity by 

I s I T 
0 s 

where I is the transmitted intensity due to the sample in the beam s 

and T s exp(-µ t ). Here, µsis the absorption coefficient of the s s 

sample and t is the thickness of the sample which remains constant s 

while performing this technique. 

(Cl) 

A filte r is then pu t into the beam and the transmitted intensity 

is measured. The equation which relates this intensity to the in-

cident intensity is 

I F = I exp(-µ t - µFtF) s 0 s s (C2) 

where IsF is the transmitted intensity through both the filter and the 

sample, µF is the absorption coefficient of the filter and tF is the 

thickness of the filter. Equation C2 may be rewritten as 



I T TF 0 s 
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where TF = exp(-µFtF) and Ts has already been defined. 

The sample is then lowered out of the beam and the intensity of 

(C3) 

the t r ansmitted beam through only the filter is measured. The equation 

which r elates the incident intensity to the transmitted one is : 

where IF is the intensity of the transmitted beam thr ough only the 

filter . 

If Equations C4, C3, and Cl are combined, then the incident 

intensity is related to the three transmitted intensities by 

I 
0 

The filters used in this study were nickel and zirconium foils. 

(C4) 

(CS) 

All samples and filters were between the scattering and receiving col-

limators . Since only an estimate was required, air scat tering and 

scattering due to the f i lter was not accounted for. The method 

described was used to estimate I for the fundamental as well as the 
0 

harmonic wavelengths . 

For the silicon and germanium data, both filters wer e used 

separately along with each sample crystal. The final estimate for the 

incident intensity was determined by averaging the incident intensities 

obtained by each filter . For the HOPG c r ystal which was not in the 

closed- cycle refrigerator , only a nickel filter was used since it was 
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the only one available at that time. The HOPG crystal in the refrig-

erator presented a differ ent problem. Since the sample crystal and 

refrigerator head could not be easily removed from the beam an 

adaptation of the above method was used. 

Instead of moving the refrigerator head and the HOPG crystal , 

another crystal was used as the sample crystal and the refrigerator 

head remained in the beam. The additional scattering due to air, 

crystal or refrigerator head was not accounted for in this estimate . 

Both the nickel and zirconium foils were used separately along with a 

sample silicon crystal to obtain incident intensities. The intensities 

derived from the data of each foil were averaged and this average was 

used for the estimated incident intensity. 

The nice aspect of this method is that neither the thicknesses nor 

the absorption coefficients of the sample or foils need be known . The 

only requirements are that the relative thickness of the crystal and 

filter with respect to the beam be constant. Also, the crystal or 

filter must not be a material which will fluoresce near the wavelength 

chosen to estimate I 
0 

There are, of course, other more accurate 

methods available to measure I such as multiple foils (Batterman et 
0 

al ., 1961) or reflections from Aluminum powder (Schwartz and Cohen, 

1977). For the purposes of this study, however, accurate determination 

of the incident intensity was not needed since it could be determined 

directly from the raw data through least-squares fitting . The estimates 

of I obtained in this method was sufficient for use as an initial 0 

parameter in the fitting program NLS . 


