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CHAPTER 1

Introduction

When a beam of photons or particles such as neutrons impinges on the
surface of a material, transmission of the beam can always be observed by
changing the nature of the material or by modifying the magnitude of the
wavelength of the beam. The shorter the wavelength is, the more the beam
will penetrate the material. A second phenomenon will also occur:
scattering of the beam due to diffraction.

Diffraction in amorphous materials, liquids and gases produces in-
tensity distributions from which one may calculate the so-called '"radial
distribution function" (Hosemann and Bagchi, 1962). Figure 1.1(i) curve
(a) illustrates the experimental intensity curve for liquid sodium as a
function of (sin 0)/A. Curve (b) shows the total independent scattering
assuming a completely random arrangement of atoms. Curves (c) and (d)
show the correction for incoherent radiation. Figure 1.1(ii) curve (a)
shows the radial distribution function for liquid sodium which is calcu-
lated from information in Figure 1.1(i). The average radial density
curve 4nrzpo (curve b), and the distribution of neighbors in crystalline
sodium (curve c¢) are also shown in Figure 1.1(ii). From the radial dis-
tribution function it is possible to calculate the number of neighboring
atoms as a function of distance.

Diffraction of x-rays by the lattice planes in a crystal occurs

when the Bragg condition is satisfied (see Figure 1.3). That is when



(1) (a) Corrected experimental intensity curve for liquid
sodium in electron units per atom. (b) Total independent scattering
per atom. (c) Independent coherent scattering per atom. (d) In-
coherent scattering per atom

(ii) (a) Radial distribution curve for liquid sodium. (b) Average
density curve. (c) Distribution of neighbors in crystalline sodium

Figure 1.1. Experimental intensity curve and radial distribution
function for liquid sodium (Tarosov and Warren, 1936)
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X s Zdhkl sin® hkl (1.1)

where ) is the wavelength, d is the spacings between atomic planes, 6
is the diffraction or Bragg angle with respect to the atomic planes and
h, k and 1 are the Miller indicies of the atomic planes.

Diffraction by various atomic planes for single and poly-crystal-
line samples allows one to determine crystal structures when the

structure factors are known. Structure factors, are determined

F i

from the relation (see, for instance, Arndt and Willis, 1966)

) 3 2
Thia = K2 [Fyy | (1.2)

where n = 1 for perfect crystals, n = 2 for ideally mosaic crystals, A
is the wavelength of the incident beam, p the polarization factor which
is n dependent, L the Lorentz factor, k the scale factor containing
among other things the attenuation and extinction effects, I the
intensity of a Bragg peak and h, k and 1 are the Miller indicies of the
Bragg reflections. The accuracy of the structure factor depends upon
the accuracy of all the parameters mentioned above. It is evident that
proper attenuation corrections are of fundamental importance, as it
will be shown below, in the determination of accurate structure factors.
These structure factors may lead to the determination of electron
charge density distributions.

In this study, it has been found that the linear attenuation coef-
ficients in the regime of thick crystals or small angles is much
different than those found for thin crystals or large angles. The latter

are comparable to attenuation coefficients previously published (see,



Figure 1.2. Intensity versus thickness of a transmitted x-ray beam

Figure 1.3. Processes of x-rays passing through a crystal. (Note that
there are three processes presented: diffraction,
refraction, and transmission)
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for example, International Tables for X-ray Crystallography, 1974).

This has a profound effect on any calculations for which

electron charge density distributions are done since these studies
essentially rely on data for which the scattering angle is small. In
this regime the attenuation coefficients may not necessarily be those
which have been published. This means that attenuation coefficients

should be measured before intensity determination takes place.

Transmission and attenuation

When a beam of monochromatic x-rays passes through a thin layer of
matter, the fraction of the intensity, dI/I, absorbed or attenuated by
the material is proportional to the thickness of the layer dx. This

is expressed by the equation

dI/I = -updx (1.3)

in which the proportionality constant p is known as the linear at-
tenuation coefficient (Schwartz and Cohen, 1977). The negative sign
indicates a decrease in the intensity of the transmitted beam. If p is
really a constant in the distance and also in intensity then equation

1.3 may be integrated to give

1 = IO exp (-ux) (1.4)

where IO is the intensity of the beam at x = o, and I the intensity of
the transmitted beam at x. Figure 1.2 illustrates the relationships

of the intensities of Equations 1.3 and 1.4.



In general, the average absorption coefficient My of a single

crystal is made up of three different contributions (Pinsker, 1978):

uo=yu. .+ u + (1.5)

o PE hg ¢ Pt

The first contribution which accounts for more than 90% of the total
average attenuation coefficient is due to the photoelectric effect.

The second contribution is due to "Thermal Diffuse Scattering"; it is

a coherent scattering process produced by phonons. The third contribution
is due to incoherent or Compton scattering. There are other contributions
to the total attenuation coefficient (Grodstein, 1957). The scope of this

work, however, is limited to the above three contributions.

A method for measuring attenuation coefficients

The transmission method used in this study, involves rotating a
crystal wafer in a beam of monochromatic x-rays and measuring the
intensity of the transmitted beam. This process is represented in
Figure 1.4. Because the beam path length through the crystal changes
as the crystal is rotated, Equation 1. may be used to calculate the
attenuation coefficient. This transmission method has the advantage
that only the crystal is rotated. The detector is constantly set in the
line of sight of the direct beam. Thus, any errors due to detector mis-
alignment are eliminated. In this study the spatial distribution of the
beam behind the crystal was not examined, however the detector collimator

was wide open for all scans.



Materials studied

The crystals used in this study are germanium, silicon and highly
oriented pyrolytic graphite (HOPG). Germanium and silicon are cubic while
graphite is hexagonal (Kittel, 1971). Characterization of these crystals
is important because these materials have properties which are useful
for other types of studies (Schwartz and Cohen, 1977). To this day,
germanium and silicon are the most perfect crystals that can be produced.
They are well suited as materials for x-ray or neutron interferometers
or as monochromator crystals where the transmission bandwidth must be
narrow. HOPG (Union Carbide, grade ZYA) almost behaves as a perfect
crystal along the c-axis while the atoms in the basal planes are more or
less randomly distributed. Because of the randomness in the basal plane,
HOPG cannot be considered as an ideally mosaic crystal.

This arrangement of atomic planes makes HOPG an ideal monochromator
crystal because these planes are highly reflective under the Bragg
condition. The intensities from these reflections in HOPG are much
higher than those from reflections of silicon or germanium. The dis-
advantage of using HOPG is that the bandwidth of a monochromator made
from such a crystal is much larger than that of either silicon or
germanium.

Example: Bonse-Hart Camera

The Bonse-Hart Camera is a device made from a single silicon crystal
in which a rectangular groove or channel has been cut in a particular
orientation with respect to a crystallographic axis. It is used like a

monochromator crystal. Through multiple reflections within the channel |
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it narrows the distribution of the direct beam. Therefore, this device
dramatically improves the resolution of small angle diffraction. When
taking into account dynamical effects, regular attenuation and other
processes which may determine the final intensity profile of the dif-
fraction peak, it has been found that the center of the profile fits
theoretical calculations while the tails of the distribution are much
higher by an order of magnitude as compared to theoretical profiles.

As mentioned previously, the attenuation coefficients used to calculate
intensities in this regime of small angle scattering, which the Bonse-
Hart Camera operates in, may not necessarily be the ones which are
published in the tables.

Outline of the present work

Attenuation coefficients for the elements have been measured for
many of the standard wavelengths (Grodstein, 1957). Calculations for
these have also been compiled (Grodstein, 1957; McGinnies, 1959;

International Tables for X-ray Crystallography, 1974). 1In this

study, attenuation coefficients for germanium, silicon and HOPG are
measured for the fundamental, second and third harmonic wavelengths of
the tungsten L1, Lal, LBl, and Ly, excitation lines. Table 1.1 contains
a list of the excitation lines and harmonic wavelengths used in this
study.

Presently, the relation between the atomic scattering factor and
the photoelectric contribution to the attenuation coefficient will be
discussed. Also, theoretical calculations of these will be discussed

along with theoretical calculations for the coherent and incoherent
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processes. Following this, the unique apparatus on which the experiment
was performed along with some general experimental techniques which
were used will be described. This is proceeded by the results and
discussion of the data obtained for the perfect crystals and HOPG.

Also, experimental attenuation coefficients for HOPG are presented for
different temperatures. Within the conclusions, the results of the

data are summarized and differences in obtaining attenuation coef-
ficients for the perfect crystals and HOPG are discussed. In the

final chapter, recommendations are given for further studies to
determine characteristics of the change of the linear attenuation

coefficient in the regime of the thick crystal or small scattering angle.

Table 1.1. Excitation lines of tungsten and other wavelengths used in
this study

. x/2(R) A/3(R)
Excitation Line A(A) Bremsstrahlung Bremsstrahlung
Ll 1.6782 0.8391 0.5594
Lu1 1.47639 0.73819 0.49213
LBl 1.28181 0.64091 0.42727

Lyl 1.09855 0.54928 0.36618
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CHAPTER 2

Theory

The theoretical treatment of the photoelectric attenuation
coefficient as given by James (1982) will be summarized. For a single

atomic species, it is customary to write the atomic scattering factor

as
f = fO + Af' + 1Af". (2.1)

where the Af' and Af" are the Honl or anomalous dispersion corrections
and are dependent on the frequency of the incident radiation. f0 is
the form factor depending on charge distribution and is independent of
frequency. If the incident frequency is not too close to an absorption

edge, oscillator damping may be neglected. Then Af' is given by

E wz(clg/dw)j
' - —_———— T ‘)
Af w 7 wz dw (2.2)
J w. 4
J

where the summation is over all the absorption edges and (dg/dw)j is
the oscillator density of electron j at frequency w, (dg/dw)jdm the
number of virtual oscillators having frequencies between w and w + duw,
wy the incident frequency, mj the frequency of the absorption edge.

The imaginary component, Af'", is given by

T
Af" = ; W, :{: (dg/dm)j (2:3)

3
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where the summation is again over all the absorption edges.

It 1s possible to relate the oscillator density functions (dg/du)j
to the photoelectric attenuation coefficients.

The refractive index of x-rays is related to the atomic scattering
factor by

2 2
o o Lo & & L e 22 BE (2.4)

2

2Tmc

where n is the index of refraction, A the wavelength, e the charge of
the electron, c¢ the speed of light, N the number of atoms per unit
volume and f is the atomic scattering factor in the forward momentum
direction. Substituting Equation 2.1 into Equation 2.4, it is evident
that the refractive index is complex. The equation obtained is

2 2 22

)
S2 (4 af) -1 (AT

2Tme 2nme

Af" (2.5)

Suppose now that a wave is traveling in a direction x in a medium
whose refractive index is n. Then to get a displacement at x, given

the displacement at x = 0, we have to multiply the wave by a phase
d = exp(-iknx) (2.6)

where k = 2n/X. Substituting Equation 2.5 into 2.6, the phase may be

separated into two parts:

¢ = exp(-aAf'"kx) exp(--ikx(l—a(fo + A£'))) (2.1

where a = AzezN/EHmcz.
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The second term in this product corresponds to a phase lag and is
due to the real part of n. The first term causes the displacement to
decrease exponentially as a function of x. Thus this term, due to the
imaginary part of n, corresponds to an attenuation. Since the ordinary
linear attenuation coefficient refers to intensity and not amplitude, u

may be written as
U = 2akAf" (2.8)

Substituting for o and using the relation w =2 w/X, p is related

to the scattering factor by
uj (w,) = —— Af." (2.9)

where uj (wi) is the atomic attenuation coefficient for the jth atomic
shell and pj (wi) =0 if w < wj. This is related to the linear

attenuation coefficient by u,

j(linear) = Nuj where N has already been

defined. Summing over the absorption edges, Equation 2.9 becomes

Af" = Af." = BC () (2.10)
Z J Z 41!&2 =d e
J ]

where Af," = 0 1if w < w..
3 " |

Comparing Equation 2.10 and 2.3 the oscillator density may be

written as

dg _ _mc by (W) (2.11)
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The variation of pj(w) for a particular edge is fairly well

represented by the empirical formula (see James, 1982, p. 147)

(mj/w)n b (o) for w > u,
uj(w) = (2.12)

0 for w < w,
J

where n is usually some number of order 3. The value of n varies
depending on the particular edge involved, and is a function of atomic
number.

If n and uj(wj) are determined from experiment, the anomalous
contributions to the structure factor may be calculated by substituting

Equation 2.11 and 2.12 into 2.2 and 2.3 to obtain

AEL = e . (w.) wn. o s (25 139
2 2 j j 2 2, n
217 e " (w - Jw
J
n
Af", = 2E w, ‘ii p. (w,). (2.14)
J 4ne2 & wi Jd

Further, the total oscillator strength may be calculated by
integration of Equation 2.11 using 2.12. For the total oscillator

strength we get
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gj - (dg/dm)jdm
w,
J
P mc i d
DJ anez Uj(wj) ( ) w
W,
J
w,
g, = — (1) u.(w,) .13
375,22 \a-1) Mty

From Equation 2.11, it is evident that uj(w) may be calculated if

the oscillator strength is known. Theoretical calculations of
(dg/dm)j have been done (Honl, 1933). By approximating atemie wave

functions with hydrogen-like eigenfunctions Honl, obtained

8
- v s ey (2.16)

for the K electrons. Here b =1 - th/EK,Som where EK,Som is the
energy eigenvalue using Sommerfeld's fine structure formula. Honl

also has calculated the oscillator strengths for the L and M electrons.
The expressions for these are much more complicated. The equations
for the K electrons are quite satisfactory for calculating the

associated oscillator strength (Grimvall and Persson, 1969, Cromer, 1965).
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However, those equations for the L and M electrons are not as good
(Cromer, 1965).

Wagenfeld (1966) has calculated expressions for the atomic
photoelectric cross sections for the non-relativistiec region. Starting
from first principles, an approximation from atomic to hydrogen-like
wavefunctions is made for both the bound and free electron states.

The hydrogen-like wavefunctions were corrected for inner screening.

The retardation factors in the transition probabilities are expanded in
a Taylor series which corresponds to an electric multipole expansion.
From this, Wagenfeld calculated the attenuation cross sections for the
dipole, quadrupole, and octupole transitions. Each was done for
electrons in the K, L, and M shells. Refer to Wagenfeld's paper

for details of his calculations and the 20 expressions he derived for
the absorption cross sections of each electron in the K, L, and M shells.

Theoretical calculations have also been done for the last two
terms in Equation 1.5. The contribution due to phonon scattering is

made of two parts (Ghezzi et al., 1971):
H =y ¥ (2.17)

ES )
u is the scattering contribution calculated by using a model in

which the oscillations of the various atoms are independent. Hall and

iirsch (1965) have done calculations to obtain expressions for uES-
PC

u & is the contribution due to pair correlations among the vibrating

atoms. A formula for this contribution has been derived by Dederichs

(1966). Refer to the above cited papers for devivations 6 tthc
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expressions mentioned.
Theoretical expressions for the Compton contribution, Hos to the
absorption coefficient have also been done. (See, for example, Sano,

et al., 1969; International Tables for X-ray Crystallography, 1974).

The Compton contribution is essentially due to incoherent scattering

of x-rays from the outside electrons of the atoms.
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CHAPTER 3

Experimental Techniques

Instrumentation

The experimental arrangement is schematically shown in Figure 3.1.
The source is a 15 kW Elliott GX-21 rotating anode X-ray generator (60kV
and 300mA - only up to 50 kV). The selection of the wavelength is done
through a double-monochromator built in Ames to work under helium atmo-
sphere in order to dissipate the heat of the motors and to reduce
absorption and diffusion. The crystals under study are mounted in a dif-
fractometer. The diffractometer is a large HUBER triple axis spec-
trometer with an Eulerian cradle.

The tungsten anode, which was used in this study is water cooled
and rotates at 3000 revolutions per minute. Because of high melting
temperature of tungsten, this anode can be fully loaded up to 15 kV to

take advantage of the intense bremsstrahlung spectrum of tungsten.

The double monochromator provides a wavelength range which can be
varied by the computer from about 0.25 to 6 Angstroms; it has the
following configuration: two crystal tables rotating independently of
each other with a resolution of 1600 steps/degree; the incident crystal
table being translated on a motorized slide to satisfy the two Bragg
conditions on the two crystals with a resolution of 0.01 mm/step; the
three above motions are computerized and, in addition, there are eight

other motorized setting motions which can be activated through

individual switches.



Figure 3.1. Schematic representation of experimental apparatus
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The positions of the crystal and detector on the diffractometer are
also computer controlled. The resolution for the "theta'" and "two theta"
angles as well as for the rotations controlling the position of the
analyzer is 8000 steps/degree. The resolution of the two rotations in
the Eulerian cradle is 400 steps/degree. In addition, a helium, closed
cycle refrigerator having a temperature range of 6.7 to 400 K can be
mounted on the diffractometer.

Monochromator optimization

For comparison purposes, this study requires the knowledge of the
wavelength. It is, therefore, easier and more accurate to choose a wave-
length which is an excitation line like one of those listed in Table 3.1.
These excitation lines show up as strong peaks in the wavelength spectrum
of the x-ray source. Figure 3.2 shows these peaks for only part of the
spectrum. The background is due to the Bremsstrahlung radiation. By
using these peaks which have high intensities the wavelengths can be
determined to a high degree of accuracy.

Essentially, the monochromator may be tuned through the application
of Bragg's Law (mA = 2d sinf) on the monochromator crystals.

The positions of the monochromator crystals (2 rotations and 1
translation as shown in Figure 3.1), have previously been determined by

Staudenmann (1984) for the transmission of the LI, Lal, LB and Lyl

1,
tungsten lines used in this study. The monochromator crystals are
driven to a previously determined position depending on the wavelength

sought. The crystal positions are then slightly "rocked" about their

initial positions. New positions for the crystals are determined by
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Table 3.1. Excitation lines of tungsten with associated wavelengths and
energiesa
Excitation Wavelengths Error Energy Relative
Line (Angstrom) (Angstrom) (KEV) Intensity

M Ly CZMIVNII 8,993 .005 1. 3487 .01
M 1 glMVNIII 8.962 .004 1.3835 .01
M4N3 MIVNIII 8.573 .008 L.116 Nishi
M3Nl MIIINI 7.36 .008 1.684 )
M503 MVOIII 7.005 .009 .71 .01
Muz azMVNVI 6.992 .002 Tl 133 100.
Mal QlMVNVII 6.983 .001 1.7754 100.
MZ‘O2 MIVOII 6.806 .009 1.822 .01
M B B MIVNVI 6.757 .001 1.8319 15.
MZNl MIINI 6.28 .02 1..9%3 .0l
M3N4 MIIINIV 6.134 .004 2.021 sl
My Y MIIINV 6.092 .003 2..035 1.
MZOl MIIOI 5.628 .008 2,203 sl L
M2N4 MIINIV 51357 .004 2.314 .1
M1N3 MINIII 5,172 .009 2397 o,
M102’3 MIOII,III 4.44 .02 2.792 .01
L I L LIIIMI 1.6782 .0001 7.3878 3
L T T LIIIMII 1.6244 .0003 7.632 .01
L § S LIIIMIII 1.5642 .0003 7.926 .01
L mz WZLIIIMIV 1.48743 .00002 8.3352 10.
L ooy alLIIIMV 1.47639 .00002 8.3976 100.

%See International Tables for X-ray Crystallography (1974).
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Table 3.1. continued
Excitation Wavelength Error Energy Relative
Line (Angstrom) (Angstrom) (KEV) Intensity

L N L My 1.4211 .00003 8.7243 l:—-
L 817 BlTLIIMIII 13387 .0002 9.261 .01
LlMl LIMI 1.3365 .0003 9277 .01
L 34 B4LIMII 1.30162 .00005 9.5252 4.

L 86 B6LIIINI 1.28989 .00007 9.6117 i
L Bl BlLIIMIV 1.28181 .000009 9.67235 50.
L3N2 LIIINII 1.2765 .0002 9.712 SO
LZMS LIIMV 1.2728 .0002 9.741 .01
L3N3 Lt 1.2672 .0002 9.784 .01
L 83 B3LIMIII 1.26269 .00005 9.8188 6.

L 815 BlSLIIIMIV 1.24631 .00003 9.9178 1

L 82 BZLIIINV 1.2116 .00003 9.9615 20.
L 87 B7LIIIOI 14224 .00004 10.1292 il
L302’3 LIIIOII,III 1.2211 .0002 10.153 0L
LU U LIIINVI,VII 1.21868 .00005 10.1733 .01
L 35 BSLIIIOIV,V 1.21545 .00003 10.2004 -
L 610 BlOLIMIV 1.21218 .00003 10.2279 .01
L Bg BQLIMV 1.20479 .00007 10.2907 .01
L Ys Ysl11¥; 1:.13235 .00003 10.949 .1
LZN2 LIINII 1.1218 .0003 11.052 .01
L2N3 LIINIII 1.1149 .0002 11.12 .01
L Yq YlLIINIV 1.09855 .00003 11.2859 10.
Ly g YSLIIOI 1.08113 .00004 11.4677 il
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Table 3.1. continued

Excitation Wavelength Error Energy Relative
Line (Angstrom) (Angstrom) (kEV) Intensity
T W . 1.0792 .0002 11.488 .01
LV Y LIINVI 1.0771 .0001 11.51 .01
L Yg Y6LIIOIV 1.07438 .00005 Il 3387 .01
L Yy YZLINII 1.06806 .00003 11.608 1 98
L Yy YBLINIII 1.062 .00006 11.6743 2
LlNh LINIV 1.0468 . 0002 11.844 .01
L Y1 YllLINV 1.0458 .0001 11.856 .01
L101 LIOI 1.0317 .0003 12,017 01,
L Y&,' Yd,'LIOII 1.02863 .00003 12.053 ol
L Yy YALIOIII L.02775 .00003 12.0634 =i
L104,5 LIOIV,V 1.025 .0002 12.095 .01
K Ll K LI .21592 . 00004 57.42 .01
Ka, a,KL. .213828 .000002  57.9817 50.
K ul,Z al,zK LII,III .210616 .000006 58.8727 150.
K oy alK LIII .20901 .1E-6 59.3182 100.
K 83 83 K “II .185181 .000002 66.9514 12,
K By BlK MIII .184374 . 000002 67.2443 26
K [35’,, BS,"K Miy .183264 .000005  67.652 i
K ﬁb,' BS,'K MV .183092 .000007 67715 o3
K By vy By 1K N .1796 .00001 69.031 10.
K BZ,' BZ,'K NIII 179421 .000007 69.101 10
K 84 BAK NIV,V .17892 . 00002 69.294 o i
Ko, , KO . 178444 .000005 69.479 .01




Figure 3.2. Partial x-ray spectrum of the tungsten anode. The number under the wavelengths
are the relative intensities of the excitation lines. (Courtesy of Sue-Lein
Wang Lii and Dr. R. A. Jacobson)
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the largest counting rate of the exit beam obtained for each motion.

Then the crystals are driven to these new starting positions and the
process is repeated until changes in the new starting positions are too
small to affect the counting rate of the exit beam. A computer controls
the crystal positions through stepping motors. This process and the data
collection process is controlled by a BASIC computer program called
ROCKPB.

The signal from the lithium-doped silicon, Si(Li), detector is
amplified and passed to three single-channel analyzers. This signal
contains pulses due to excitation line and harmonic wavelengths which
are passed by the monochromator. Since the pulse height (voltage) of
the detector is proportional to the energy of the detected photon, the
single-channel analyzers will separate the excitation line and various
harmonic wavelengths from the signal if the analyzer's voltage windows
are set properly. For each scan, three transmitted beam absorption
spectra were recorded simultaneously: excitation line, second and third
harmonic wavelengths. This method ensures that the wavelengths of the
harmonics are as accurate as those of the excitation line.

Seven different high purity crystal wafers were investigated: 2
HOPG, 1 germanium and 4 silicon. The thicknesses of the wafers were
measured by an accurate micrometer. The accuracies of the measurements
were to + 0.0005 cm. The lengths of the crystals were measured by a
vernier caliper to an accuracy of + 0.05 cm. A summary of these
characteristics and crystal sources is in Table 3.2.

Each wafer was mounted on a computer driven goniometer. The
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crystal was aligned so that when the plane of the crystal was normal to
the beam, the beam path passed through the geometrical center of the
crystal. Care was taken to ensure that all rotations of the wafers were
done about a vertical axis perpendicular to the beam path (see Figures
3.1 and 1.3). The angular range scanned was from ¢ = 0° to 180° with a
scan step size of 1.0° or 0.5°. For some crystals, additional scans
were taken near the region where the beam is normal to the plane of the
crystal (near ¢ = 90°). The angular range scanned was from ¢ = 85° to

95° with a scan step size of 0.05°,

Table 3.2. Dimensional characteristics of the crystals used in this

study
Sample Thickness (cm) Length (cm) Source

Ge 0.0194 5.09 Janos Optical Corp.

Si 0.2946 5.08 On loan from Dr. S.A.
Werner (Univ. of Missouri
at Columbia)

Si 0.0708 5.07 Monsanto

51 0.0699 507 Monsanto

i 0.0250 5.08 Janos Optical Corp.

HOPG 0.1524 1.2 % 4 Union Carbide-ZYA Grade
HOPG 0.1532 1.5 %6 Union Carbide-ZYA Grade

Data analysis

All of the scans were analyzed by a FORTRAN computer program
called NLS (Nonlinear Least-Squares). The algorithm used is known as

the maximum neighborhood method (Marquardt, 1963). It is based on an
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interpolation between the Taylor series and gradient methods used to

fit nonlinear parameters in a model. Appendix A contains an outline of
the development of this method. A subroutine in NLS called CURFIT
performs the linearization of the parameters and calculates a new set

of parameters using the previously described method. The main routine,
NLSFIT, controls the iterations to CURFIT based on goodness of fit
calculations of either x2 (see Equation A3) or a r-factor. The r-factor

is given by (Hamilton, 1964)

—

[ : 1/2
Y vy - £p7 ey
rom | & (3.1)

Y Gt arey
L i

_

where the sums are over all the data, g is the ith

dependent data point,
fi is the predicted value of the ith dependent data point and oy is the
uncertainty in the data point Yi- Copies of the major computational sub-

routines used in NLS are contained in Appendix B. There are modified

versions ol subroutines published elsewhere (Bevington, 1969). They are:

1. NLSFIT - the main routine which controls the iteration
procedure.

2. CURFIT - a subroutine which performs the linearization of the
parameters.

3. RCHISQ - a subroutine which calculates the x2 and r-factor
for weighted and unweighted schemes.

4. DERIVA - a subroutine which non-analytically calculates
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derivatives described by Equation AS5.
All computations in CURFIT, RCHISQ AND DERIVA are done in double
precision where necessary.
The model used in this study is similar to Equation 1.4. The

model is
1= ID exp(- ut/sin (¢ + €)) (3.2

where t is the crystal thickness, ¢ the tilt angle of the wafer, ¢ a
phase factor, I0 the incident intensity of the beam and I is the measured
transmitted intensity (counting rate). The parameters adjusted by the

program are Io’ u and €. Variations of the model were also tried such

as

L= 101 exp(- ul(x + xz)) + I02 exp(—uz(x E xz)) (3.3)

where x = t/(sin(¢ + €)). In most cases, variations of the model did not
significantly improve the fit to the data.

Before any type of refinements of the parameters were performed,
initial estimates of u, & and Io had to be determined. I0 was determined
experimentally by the filter method described in Appendix C. € could
be determined from a plot of I vs ¢ for the raw data. There is a local
minimum at ¢ + € = 0° or 180° in these plots. € may be determined at
one of these minima. up was estimated by interpolating data in the

International Tables for X-ray Crystallography (1974). The main

routine, NLSFIT, required an operator to adjust these estimates so that
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the r-factor was below 0.075. Then the program took control and
performed its optimization. Despite the least-squares improvement in
the maximum neighborhood method, there are many examples where any
least-squares program will converge to an improper minima of xz which
is not the principal one. Therefore, manual interactions are necessary
to help in finding a local minimum in xz which would have a physical
sense.

Additionally, there were several constraints used in fitting the
data. Before fitting the model to the data, the data were smoothed with
a 3-point smoothing function. Initial estimates for the parameters
were entered into the program and all parameters were refined. This was
done for each wavelength in a particular scan. Since all three of the
intensity patterns are from the same scan, the phase angles, e, from
each fit in the scan were averaged. This average was used in subsequent
analysis of the same data. In these cases, € was not allowed to vary

during the calculations of the fitting routine.
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CHAPTER 4

Attenuation in Silicon and Germanium

Silicon data results

For the scans collected using the 0.025 cm thick silicon crystal
the exit collimator used on the monochromator box was a lead filled,
80 mm brass tube with a round tapered hole 1.0 mm in diameter at the
exit end. The counting time set on the counters was 5, 10, and 10
seconds for the fundamental, second and third harmonic wavelengths,
respectively. The x-ray source was continuously examined by a monitor
(see Figure 3.1). The monitor is a scintillation detector. During the
data gathering process, the monitor counting rate was not allowed to
fluctuate by more than 5% with respect to the original monitor reference
count number set at the beginning of each run.

A representative sample of the scans for the silicon data is given

(-]

in Figure 4.1. The angular range in the figure is from ¢ = 0° to

100° with a scan step size of 1.0°. Since the data are symmetric about
¢ = 90° (i.e. when the beam is perpendicular to the plane of the
crystal), the rest of the scans for ¢ > 100° are not shown. From
around 75° to 90°, there seem to be many structure effects (namely
multiple reflection effects), some of which may be represented by

Bragg dips. To ignore these effects, the data were analyzed excluding
the region 80° < ¢ < 100°. Upon comparing the values of the measured

intensities with those of the calculated ones derived from a fit to the

model, it was found that the data fit the model very well for all



Figure 4.1. Normalized counting rates versus the tilt angle ¢ for silicon crystal
0.0250 cm thick
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points except those in the regions where ¢ < 30° and ¢ > 150°. Figure
4.2 shows why this is.

In Figure 4.2, the natural logarithm of the measured intensities
for all wavelengths used to study the silicon crystal is plotted
against the beam path length divided by the crystal thickness. 1If the
model given by Equation 3.2 is correct, then the plots in Figure 4.2
should be straight lines whose slope is proportional to the attenuation
coefficient at that wavelength. In most of the plots, the slopes of
the lines are constant in the region 30° < ¢ < 9G°. For ¢ < 30°, the
slopes of the lines change to another constant value for all of the
fundamental wavelengths. If Equation 3.2 is valid in this region then
the attenuation coefficient has changed. This will be examined later
for the case where the wavelength, A, is 1.28181 A.

The data for each of the scans were then reanalyzed with the
following angular regions excluded from the fit: ¢ < 30°, 80° < ¢ <
100° and ¢ > 150°. The results of the fitting routine, done by the
computer program NLS, on each of the scans are given in Table 4.1. The
r-factors and initial intensities calculated by the program are also
listed so that the parameters of the model may be compared.

Examination of Equation 3.1 shows that an r-factor of zero implies
a perfect fit. That is, the model and its parameters exactly
describe the data. For most of the refinements given in Table 4.1,
the r-factors are less than 0.0l. The notable exceptions are when the
wavelength is 1.67824, 1.47369&, 0.42727% and 0.36618%. The high r-

factor of the two higher wavelengths mentioned may be due to the dips



Figure 4.2. Log(I) versus beam path length divided by the crystal thickness for 0.0250
cm thick silicon crystal, (The up arrows indicate the change of linearity
for some of the plots.)
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Table 4.1. Attenuation coefficients for silicon
A (k) u(cmwl) Io (counts/c-time) r—factor(xlo_z)

1.6782 139.2 1700000 1.04
1.47639 194.8 620000 2.07
1.28181 92.20 1700000 0.73
1.09855 57.06 780000 0.96
0.83910 26.27 320000 0.55
0.73820 17.62 100000 0.50
0.64091 11.38 97000 0.87
0.5594 8.108 27000 0.94
0.54927 7,217 100000 0.98
0.49213 5+ 322 4603 0.98
0.42727 3.922 2400 i |
0.36618 2.312 1500 1.6

which appear in the data near ¢ = 75° (See Figure 4.1). A more
important consideration is that the attenuation coefficients for these
wavelengths change nearer to ¢ = 30° than any other scan as shown in
Figure 4.2. The up arrows under some of the plots of Figure 4.2
indicate where the change in linearity takes place. The change in
linearity indicates a change in the attenuation coefficient. Since this
change in the attenuation coefficient is not accounted for by the model
of Equation 3.2, a higher than normal r-factor is expected for any
analysis which is performed in a region near this change.

Examination of the initial intensities of Table 4.1 reveals that
the higher the order of the harmonic wavelength is, the lower the in-

cident intensity. This is expected since the harmonic wavelengths are
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due to higher order Bragg reflections of the monochrometer crystals.
The structure factor, F, in Equation 1.2 accounts for the changes in
the intensities of the reflected beam due to changes of the order of
reflection. Also, the intensity of the reflected beam goes as AB.

Thus the smaller the wavelength is, the smaller the reflected intensity.

Discussion of the silicon data results

The experimental attenuation coefficients in Table 4.1 are plotted
against the wavelength cubed in Figure 4.3. Included in this plot are
attenuation coelficients reported by other autuors (see Table 4.2) and
those which have been calculated from other tabulated data (see Table
4.3). There is very little deviation of all the data from the dashed
straight line which is drawn in Figure 4.3. The dashed line is the line
of best fit for the attenuation coefficients which were calculated from
tabulated data.

These attenuation coefficients were calculated from the total at-

tenuation cross sections, o, by a method given by the International

Tables for X-ray Crystallography (1974). The total attenuation cross

sections tabulated therein include photoelectric, coherent and incoher-
ent processes. For a crystal with a unit cell volume, Vc’ the linear

attenuation coefficient u, may be calculated by

W= (l/VC) oy (4.1)
i
The summation is over all atoms in the unit cell. In silicon and

germanium crystals, there are 8 atoms per unit cell and the lattice

parameters are ag, = 5.430A and as, = 5.658A (Kittel, 1971). For



Figure 4.3. 1y versus A3 for 0.0250 cm thick silicon crystal. (I.T.C. (4) are linear
attenuation coefficients derived from the International Tables for X-ray
Crystallography (1974)
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Table 4.2. Table of total attenuation cross sections, o with associated linear attenuation coef-
ficients, u for silicon, germanium and carbon

S5i Ge C

Target . . 3 3 ] 1
Radiation A(A) o(barns/atom) uem ) o(barns/atom) plem ) c(barns/atom)a plem 7)
Ag KBl 0.4970 107.3 5.35 2739 121.0 6.005 0.6829
Pd KR1 0.5205 122 .4 610 3113 137.5 6.363 0.7236
Rh KB1 0.5456 140.1 6.98 3547 156.7 6.781 0:7711
Ag Ka 0.5608 151.8 757 3830 169.2 7.054 0.8022
Pd Ko 0.5869 1732 8.63 4345 191.9 7.5584 0.8591
Rh Ka 0.6147 198.5 9.89 4943 218.3 8.140 0.9257
Mo KB 0.6323 215, 7 10.75 5335 235.6 8.546 0.9719
Mo Ko 0...2107 304.7 15.19 7289 321.9 10.67 1.213
Zn KB 1.2952 1825 90.97 5097 225.1 49.72 5.654
Cu KB 1.3922 2256 112.5 6201 273.9 61.67 D13
Zn Ko 1.4364 2473 123.3 6750 298.1 67.78 7.708
Ni KB 1.5001 2810 140.1 7596 335.5 73,33 8.794
Cu Ka 1.5418 3047 151.9 8186 361.5 84.13 9.567
Co KB 1.6208 3519 1715.4 9376 414.1 98.02 11..15
Ni Ko 1.6591 3764 187.6 9992 G4 3 105.3 I1.:97
Fe KB 1.7565 4434 221.0 11670 515.4 125.6 14.28
Co Kua 1.7902 4684 233.5 12290 542.8 133.3 15.16
Mn KRB 1.9102 5646 281.4 14670 647.9 163.1 18.55
Fe Ko 1.9373 5878 293.6 15240 673.1 170.4 19.38
Cr KB 2.0848 7258 362.6 18630 822.8 214.6 24 .40
Mn Ko 2.1031 7439 371.6 19080 842.7 220.6 26.09
Cr Ko 2.2909 9456 47264 24100 1064, 288.3 32 49
Ti KB 2.5138 12260 612.5 31070 1372, 386.0 43.90
Ti Ka 2.7496 15670 782.8 39680 1753. 510.6 58.07

BY

“Tabulated in International Tables for X-ray Crystallography (1974).




43b

Table 4.3. Attenuation coefficients measured by other authors for
silicon and germanium

° -1 1
Target Radiation A(A) uGe(Cm ) ”Si(cm )

Ag KB 0.496 foss 5.23%
5.19°

Ag Ka 0.558 1692 .33
7.28°
7.57°

Mo Kg 0.631 2362 10.42
10.4°

Mo Ko 0.708 3202 14.62
14,40
14.6°

Cu KB 1.389 2672 1072

Cu Ka 1.538 3542 1442
150°

Co KB 1.617 4072

Fe KB 1.753 512° 2082

Co Ka 1.785 5392

Fe Ka 1.932 6812 2752

Cr K8 2.081 8122

Cr Ka 2.265 10502

8Hildebrandt et al., 1973.
Ppike, 1941.
“Giardino et al., 1973.
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HOPG (carbon), there are 4 atoms per unit cell and the volume of the
unit cell is 35.174&3 (Chen et al., 1977). The attenuation coef-
ficients calculated from the above procedure along with the
attenuation cross sections are listed in Table 4.2 for silicon,
germanium and carbon.

The change in linearity of some of the plots in Figure 4.2 is of
great interest. The up arrows under some of the plotted data
approximately indicate where the attenuation coefficient changes. To
the right of these arrows, the effective attenuation coefficient is
much smaller than would otherwise be suspected for the wavelengths
indicated.

More scans were made with silicon crystals of different thicknesses
to determine if this change in linearity was due to the particular
crystal used or if this change is characteristic of the material. The
wavelength used for these scans was 1.28181&. For the two thicker
crystals, a longer counting time was used (100 seconds). Also, the
scan step size was decreased to 0.4°. The 0.0699 cm thick crystal
was scanned in the same manner as the 0.0250 cm one except the scan
step size was 0.3°,

The data obtained during the scans are plotted in the form of log
(I) versus beam path length in Figure 4.4. There are many interesting
features in this plot. When the beam path length is less than 0.2 cm,
the slopes of the plots are the same for the 0.0250, 0.0699, and
0.1407 cm thick crystals. The 0.1407 cm thick crystal was actually

two crystal wafers put back to back and mounted in the diffractometer.



Figure 4.4. Log(I) versus beam path length for various silicon erystals. (All of the
plots start at ¢ = 90°. X = 1.28181A for all scans.)
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To the right of 0.2 cm the linearity changes so that the slope is dif-
ferent. For all of the plots, the effective attenuation coefficient
changes after the beam path length through the crystal is greater than

0.2 cm. In the plot of the data for the 0.2946 cm thick crystal are

peaks which are due to the Borrmann effect: anomalous transmission. The
angles given for the centroids of the peaks are approximate since most of
the peaks had only a few points. The mechanism responsible for the
anomalously transmitted peak is explained by the dynamical theory of x-
rays. When pt > 10, a standing wave due to multiple reflections is set up
within the crystal. At the Bragg condition, the nodes of the standing wave
are at the atomic planes and very little of the wave is attenuated
through photoelectric attenuation. When this occurs, much of the beam is
transmitted. (Much has been written about the dynamical theory of x-ray
diffraction. See, for example, Pinsker, 1978; Batterman and Cole, 1964;
James, 1982.) 1In the plot of data for the 0.1407 cm thick crystal there
are no peaks present. Since this specimen is actually two crystals and
cannot be considered a perfect one, no anomalous transmission peaks are
expected.

An attempt was made to analyze the data obtained from the 0.1407 cm
thick crystal. Only data in the region where the beam path length was
greater than 0.25 cm were considered. The data were smoothed with a three
point smoothing function and then analyzed with the computer program NLS
described in Chapter 3. It was found that the attenuation coefficient in
this region is 3.1 cm_l. The fit of the model to the data was extremely
poor with an r-factor of 0.096. The poor fit is due in part to low

counting rates.
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Analysis of the second and third harmonics of the LBl line (A =
l.ZBISlR) are not given. The results of the plot of Log (I) versus beam
path length for this data indicate that the attenuation coefficient does
not change as a function of the crystal thickness.

Silicon data conclusions

For the thin silicon crystals where the effective thickness is
less than 0.05 cm, it has been found that this technique for determining
the attenuation coefficient is accurate in terms of model fitting.
Comparison of these attenuation coefficients with those which have
been published elsewhere, reveals that the attenuation coefficients
have the same wavelength dependency. That is, the attenuation coef-
ficients are proportional to the wavelength cubed (see Figure 4.3).

When the intensity patterns for the thicker silicon crystals have
been measured, plots of log (I) versus beam path length show that the
linear attenuation coefficient changes. For the perfect thick crystal
(t = 0.2946 cm), these plots revealed the presence of anomalous
transmission peaks (see Figure 4.4). These peaks can be explained by
dynamical effects and normally appear when ut > 10. Here t is the
beam path length and p is the linear attenuation coefficient.
Examination of Figure 4.4 shows that the change in linearity of the
plotted data occurs when t = 0.2 em. In this case, p = 92.20 cm_l and
pt = (92.2 cm-l)(O.Z cm) = 18.4. From this, one might conclude that
the changes in linearity of the plots in Figures 4.2 and 4.4 are
entirely due to dynamical effects. This, however, may not be true since

the change in linearity also occurs for the somewhat imperfect crystal
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(t = 0.1407 cm) which was made by placing two crystal wafers back to back.

Germanium data results

The experimental conditions for the germanium data aquisition were
the same as those for the silicon. Due to low counting rates, for some
of the scans, the times on the pulse counters were set at 60, 60 and
60 seconds for the fundamental, second and third harmonic wavelengths,
respectively. Additionally, a measurement was taken using the fourth
harmonic wavelength of the tungsten L1 excitation line (X = 0.41963).

The analysis of the data for all the germanium scans was done in
the range 30° < ¢ < 80°. Examination of Figure 4.5 reveals a change in
linearity in the plots of log (I) versus beam path length. The model
used to analyze the data (Equation 3,2) is valid only where these plots
are linear. The angular range was chosen for convenience in the linear
region of the plots in Figure 4.5. The results of the analysis for all
of the wavelengths studied are listed in Table 4.4.

Compared to the silicon results the r-factors in Table 4.3 are
significantly higher in all cases. This may be attributed to structure
effects which are not accounted for in the model. 1In the case of the
longer wavelengths, there is the additional problem of x-ray fluorescence
due to the proximity of the K-absorption edge.

Discussion of germanium data results

In Figure 4.6, the attenuation coefficients for germanium are
plotted against the wavelength cubed. The attenuation coefficients

calculated from the International Tables for X-ray Crystallography (1974)

are listed in Table 4.2. Attenuation coefficients measured by Hildebrandt

are listed in Table 4.3. The dashed line in Figure 4.5 is the line of



Figure 4.5. Log(I) versus beam path length for the germanium crystal. (The data have
been normalized and all plots start at ¢ = 90° when viewed from left to right)
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Figure 4.6. p versus A3 for the gernamium crystal. (I.T.C. (4) are data calculated from
the International Tables for X-ray Crystallography (1974))
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Table 4.4. Attenuation coefficients for germanium

A(K) u(cm_l) Io(counts/c—time) r—factor(lo—z)
1.28181 277.0 4ok % 10° 5.3
1.09855 157.3 7.9 x 10° 6.2
0.64091 197.3 5.1 x 10° 2.9
0.5594 168.1 1.7 x 10° 1.2
0.54927 182.15 8.7 % 10° 0.73
0.42727 79.54 7.3 x 10° 2.5
0.4196 72.87 8.3 x 10° 2.2
0.36618 58.40 9.3 x 10° 1,44

One interesting feature of the plot in Figure 4.5 is the dis-

3. 1.40433. This discontinuity is due to the K absorption

continuity at A
edge of germanium at A = 1.12& and it is a consequence of Equation 2.12,.
If = cx™ for wavelengths below the K absorption edge, then only the
form is valid above the K absorption edge but the constants C and n are
different.

Another interesting feature of this plot is that the attenuation
coefficients do not seem to follow a linear behavior as a function of
A3. This is not inconsistent with what has been stated previously in
Chapter 2. The exponent does not have to be 3 but only near 3. 1In
fact, Grimvall and Persson (1969) have measured attenuation coefficients

of germanium for wavelengths greater than 1.12A and have calculated an

exponent of 2.85 from their data.
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The peaks in Figure 4.6 are due to anomalous transmission of x-rays
in the germanium. They appear in the longer wavelength plots because
the attenuation coefficients are larger at these wavelengths. The
condition, pt > 10, is achieved sooner in terms of beam path length
through the crystal and anomalous transmission peaks may be observed.

Germanium data conclusions

From the results plotted in Figure 4.6, most of the measured
attenuation coefficients seem to lie close to the dashed line explained

earlier. The most notable exception to this are at KB = 2.133

(A = 1.28181%) and A° = 1.383

(A = 1.09855K). The reason for this
behavior is due to the fact that these wavelengths are just above and
below the germanium K absorption wavelength () = 1.124).

The plots of log (I) versus beam path length show a change in
attenuation coefficient for the longer wavelengths. This is similar to
the results obtained for the silicon measurements. In general, the
attenuation coefficients seem to change to a smaller value for a given

wavelength when the effective crystal thickness increases beyond a

certain point.
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CHAPTER 5

Attenuation in HOPG

HOPG data results

The experimental conditions for measuring the transmitted x-ray
intensities through HOPG are the same as those described for the thin
silicon crystal (t = 0.0250 c¢m) in Chapter 4. Calculations by NLS, for
obtaining the attenuation coefficients of HOPG, were done for both
crystals (see Table 3.2) as per the procedure given in Chapter 3.

Only attenuation coefficients at the temperature T = 300K were determined
for the 0.1532 cm thick crystal. Results of the fitting routine, NLS,
for this crystal are reported in Table 5.1. The r-factors seem to be
high for the fits where the wavelength is 0.738203, 0.640914, and
0.54927A. This is due in part to large fluctuations of the data around
the model.

Attenuation coefficients at the temperature T = 300, 200, 150, 100,
50, 15, and 7.0K were determined for the 0.1532 cm thick crystal. This
temperature range was achieved by using a He gas, closed 2-cycle
refrigeration unit. The refrigerator head was mounted on the goniometer
with the 0.1532 cm thick crystal mounted inside. One beryllium vacuum
shroud (0.25 mm wall thickness) and two beryllium radiation shields
(0.1 mm wall thickness) isolated the crystal from the outside while
allowing the xX-ray beam to pass through. Measurements were done by first
fixing the monochrometer wavelengths: excitation line, second and third

harmonics. While keeping these wavelengths fixed, the temperature was
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Table 5.1. Attenuation coefficients for HOPG

A(R) u(cm_l) Io(counts/c—timE) r-factor (xlo_z)

1.6782 12.51 2.2 x 10 2.32
1.47639 7.990 4.6 x 10° 2.82
1.28181 5.584 6.7 x 10° 0.78
1.09855 3.659 1.7 % 10° 0.76
0.83910 1.692 3.0 % 10 0.85
0.73820 1.471 5.5 x 107 6.10
0.64091 1.323 7.2 x 10° 3.71
0.559 0.8332 6.7 x 10° 0.97
0.54927 1.223 3.9 x 10° 4.00

changed for each scan. The power of the x-ray source was kept constant
between changes of the monochrometer wavelengths. An additional
constraint in fitting the model to the data was used based on the above.
The phase angle was refined by using a procedure similar to the
one described in Chapter 3. After the phase angle was determined,
only data in the range of 100° < ¢ < 150° were used for refining the
remaining parameters. The incident intensity, Io’ of each wavelength
should be constant for all temperature since the wavelengths and

X-ray source power were fixed.



Figure 5.1. Normalized counting rate versus ¢ near 90° for the 0.1532 cm thick HOPG crystal
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The procedure for performing a fit on the data for the 0.1532 cm
thick crystal is:

1. Do a preliminary fit of all the parameters of the model on
the complete data for the excitation line and harmonic wavelengths
using NLS.

2. Do Step 1 for all temperature using the same excitation line
and harmonic wavelengths.

3. Average the phase angles for all the preliminary refinements
in Step 2. Use this average in subsequent refinements. Do not refine
the phase angle again.

4. Apply the angular constraint, 100° < ¢ < 150°, to the data
used in the refinement. Use NLS to determine I0 of each wavelength in
a scan.

5. Do Step 4 for all temperatures using the same set of wave-

lengths

6. Average I0 over the temperatures used. Do this for each wave-

7. Refine the last parameter, p, for all wavelengths and all
temperatures using the fixed value of the averaged Io determined for
each wavelength.

The range of data used in the fitting routine was determined in
exactly the same manner as that for the silicon data. Plots of normalized
counting rates versus ¢ for the wavelengths used to study HOPG are
presented in Figure 5.1. These plots are obtained from separate scans

done after each scan used to calculate attenuation coefficients. The



Figure 5.2. Log(Il) versus beam path length for 0.1532 cm thick HOPG crystal. (As viewed
from left to right, all plots start at ¢ = 90°)
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scan step size for these scans near ¢ = 90° was 0.05°. These plots
show the difficulty of measuring attenuation of xX-rays near the normal
to the crystal (¢ = 90°) since there are so many dips present.

In Figure 5.2, log (I) is plotted against the beam path length
for all of the wavelengths used to study the 0.1532 cm thick crystal
at 300K. If the model (Equation 3.2) is correct then these plots must
be straight lines. Each plot, from left to right, starts out linear
with a negative slope. Then each plot begins to curve so that the
slopes of all the plots seem to approach the same value. From these
plots, it was deduced that the most linear regions are those when the
data are in the angular range of 90° < ¢ < 150°.

The results of the attenuation coefficients for various x-ray
wavelengths and temperature in HOPG are given in Tables 5.2 through
5.8. As stated earlier in Chapter 2, the attenuation coefficients are
proportional to the wavelength cubed. This implies the smaller the wave-
length becomes, the smaller the attenuation coefficient. This is true
in most reported attenuation coefficients in Tables 5.2 through 5.8.
The notable exceptions to this trend are attenuation coefficients
calculated for the following wavelengths: 0.73820&, 0.64091%,
0.49213&, 0.42727X, and 0.366184. In each case , the attenuation coef-
ficients seem entirely too large.

Discussion of HOPG results

In Figure 5.1 are scans of the raw data near ¢ = 90°. These plots
show the difficulty of experimentally determining the attenuation coef-

ficients. This figure contradicts statements made by other authors
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Table 5.2. Attenuation coefficients for HOPG, T = 300K

A(R) u(cm-l) Io(counts/c—time) r-factor (xlOuz)
1.6782 12.23 2.2 % 107 1.2
1.47639 8.706 6.3 = 16° 1.7
1.28181 5.737 9.6 x 10° 0.89
1.09855 3.321 4.6 x 10° 2.9
0.83910 1.720 7.8 x 10 0.40
0.73820 5.785 1.0 x 10° 0.90
0.64091 5,171 2.4 x 10° 0.68
0.5594 1.033 9.6 x 10° 1.8
0.54927 1.270 6.8 x 10" 0.49
0.49213 5.400 1.7 % 10" 6.1
0.42727 5.216 1.6 = 10° 0.87
0.36618 2.942 5,5 % 10° 2.4

Table 5.3. Attenuation coefficients for HOPG, T = 200K

A(K) u(cm_l) Io(couuts/c-time) r-factor (x10"2)

1.6782 12.23 2.2 x 10° 1.0

1.47639 8.563 6.3 % 10° 1.5

1.28181 5.712 9.6 x 10° 0.82
0.83910 1.730 7.8 x 10 0.43
0.73820 5.696 1.0 x 10° 0.92
0.64091 5.150 2.0 % 10° 0.60
0.5594 1.030 9.6 x 10° 2.50
0.49213 5.410 1.7 x 10° 5.6

0.42727 5.146 1.6 = 16° 0.85
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Table 5.4. Attenuation coefficients for HOPG, T = 150K
o =y =

A(A) plem ) Io(counts/c—time) r-factor(x10 7)
1.6782 12.15 2.2 x 10° 1.3
1.28181 5.712 9.6 x 10° 0.83
1.09855 3.462 5.6 % 10° 0.78
0.83910 1.718 7.8 x 10° 0.59
0.64091 4.970 2.0 x 10° 2.3
0.5594 1.039 9.6 x 10° 1.7
0.54927 1.142 6.8 x 10° 0.37
0.42727 5.148 1.6 x 10° 0.68
0.36618 2.957 5.5 % X0~ 1.6
Table 5.5. Attenuation coefficients for HOPG, T = 100K

o -1 -2

A(A) p(em 7) Io(counts/c-time) r-factor(x10 )
1.47639 8.290 6.3 % 10° 1.8
1.28181 5.612 5.8 % 16° 0.90
0.73820 5.473 1.0 % 10° 0.80
0.64091 4.960 2.0 x 10° 1.7
0.49213 5.198 1.7 % 10 5.6
0.42727 5.069 1.6 % 10° 0.8
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Table 5.6. Attenuation coefficients for HOPG, T = 50K

o - -2
A(A) u(em l) Io(counts/c-time) r-factor(x1l0 7)
1.09855 3.330 4.6 x lO5 3.0
0.54927 1.249 6.8 x lO4 0.42
0.36618 3.01 5.5 % 15° 1.7

Table 5.7. Attenuation coefficients for HOPG, T = 15.0K

A(R) u(cm_l) Io(counts/c-time) rufactor(xlo-z)
1.6782 11.52 2.2 x 10° 1.3
1.47639 8.052 1.5 x 10° 1.3
0.83910 1.408 7.8 = 10 0.6
0.73820 6.052 2.2 x 10° 1.1
0.5594 0.4979 9.6 x 10° 5.
0.49213 5.143 1.4 % 10" 5.5

Table 5.8. Attenuation coefficients for HOPG, T = 7.0K

A(R) u(cm-l) Io(counts/c—time) r—factor(xlo*z)
1.28181 5.491 9.5 % 105 0.91
1.09855 3.420 4.6 x 10° 0.93
0.64091 4.911 2.4 % 10s 0.54
0.54927 1.171 6.8 x 10" 0.49
0.42727 4.936 1.6 % 104 0.82
0.36618 2.994 e ks > 103 1.40




Figure 5.3. u versus )\3 for HOPG crystals at T = 300K. (I.T.C. (4) are data calculated
from the International Tables for X-ray Crystallography (1974))
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