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I. IHTRCDUCTION

The primary objective of this investigation was to devel-
op & sultable method for determining the temperature at any
point in a fluid flowing turbulently through a heated annulus,
The core of the annulus is considered to enclose the heat
source, while the outer eylinder is assumed perfectly insu-
lated.

The ennulus represents no uncommon geometry in modern
heat exchanging equipment, and, therefore, the engineering ap=
plications of the analysis presented are legion. The eappars=~
tus of particuler interest to the author, and one which mani~
fests the property of axisl heat load variation according to a
reesonably predietable distribution, is the nuclear reactor.
The annulus is a frequently found configuration of reactor
¢oolant chammel, with the annulus core the fuel element and
heat source. Ideally, the heat flux from this element follows
a "chopped" cosine variation, symmetric about the longitudinal
mid-point of the fuel rod. Approximete solutions to various
degrees of accuracy are proposed for just this variation. As
an example, see Hall (10). The presence of control and struc-
tural elements caen distort this rather simple variation. Fur-
thermore, this heat load distribution is sometimes intention~
ally changed. The purposes for such & change are to provide
more nearly uniform heat transfer elong the chennel, and to
avoid a radical difference smong core temperatures at various



stations along the chamnel, The most direct meeans of adjuste
ing the heat flux variation is to use nuelear fuel of varying
enrichments as one proceeds along the fuel element. In any
case, the nuclear reactor coolant channel is one example of an
annular passage whioh oan be heated according to a diversity
of axisl heat load distributions. Consequently, the reactor
heat transfer snalyst must be able to prediet from design data
the heat transfer charscteristics of such snnular coolant
channels with potentially complex patterns of heat addition.
This paper offers one means of solution to such a problem.

The most significant aspeet of the analysis is that the
heat load iz allowed to very axially asccording to any arbie
trery flux distribution. The mest Important assumptions are
that fluld properties are considered constant snd that steady-
state conditions prevail,

A deteiled analysis and derivetion is followed by a step~
by-step presentation of the mechanioes of applying the equa=-
tions to a specific vroblem. The method is applied to a more
or less typloal heat transfer situation end the results are
presented and discussed. Finally, modes of further refinement
of the method of solution are discuased.

The bulk of the thesis 1s not intended to apply to liquid
metals, These are flulds, but flulds uniquely different from
gases and the common liquids. The prineipal peculiarity is
that of the large wvalue of thermal conductivity compared with
that of other common flulds. For a speecific disoussion of
heat tramsfer to liquid metals, see Martinelli (14).
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Wﬂiﬂ# me of fluld at constant pressure
BTU/(1b)(°F) y

Dlameter of cirecular channel, ft
Gravitational econstant, B2.2 ft/sec”
Film heat tramsfer coefficient, BTU/(sec)(sq £4)(°F)

e@W conduetivity of fiuid, BTU/(sec)(sg £t)

Statie pressure, 1b/sq £t
Rate of heat transfer per unit area, BIU/(sec)(sq %)

Rate of heat transfer from wall of ianer oylinder
unit area, m/(&ufrnq t) i

Miuﬂ; it

Rediue of maximum veloeity, Tt

Temperature at a point, °F

Tine-averaged velooity parallel to wall at a point

ﬂir'ﬂ ty pers point,
Mean time-averaged veloolity parallel %o wall of fluid

in entire chennel, ft/sec

Welght rate of flow, 1b/sec

Axlel distance along ennulus, ft

Normal distence from wall, ft

Ceefficient of eddy diffusivity for momentum,
8q ft/see

Coefficient of eddy diffusivity for heat, sq ft/see
Absolute viscosity of fluild, (1b){seeifsqg Tt
Mass density, ( 1b) (see®)/e8?



T Shear stress in fluild, 1b/sq f¢
Dimensionless guentities:
n Constant, 0,109
Pr Prandtl number, ¢, p e/x
Re Reynolds number, .E#
(ne)a Modified Reynolds number, defined by Bq. 11
n; Inner«tube radius paremeter, defined by Bg. 25
uwt VeloGity DATAMELEr, wweiwe
T .
y‘" Wall-distence parameter, E y
M
[
K Kérmén constant, 0.36
Subseripts:
w Pertaining to a wall
1 Pertaining to immer eylinder or to region between
finner eylinder snd radius of meximum veloeity
2 Perteining to outer eylinder or to reglon between

radius of maximum veloelity and outer eylinder



III. BACKGROUND MATERIAL

Investigators have been unsuecessiul thus far in thelr
efforts to formulate & complete analytic deseription of the
turbulent flow field, The prineipel difficulty lies in the
rendom mixing whieh is characteristic of turbulence. From
point of view of pure desceription of the fluctuating motions
of turbulent flow, statisticsl methods seem to offer the most
promise. However, the analyses that have been most valuable
in terms of relationships which lead most readlly to the solu-
tion of engineering problems involving fluld flow end heat
transfer under turbulent conditions, have been analyses based
on more nearly conventional fluid dynemice methods. These
anslyses have not been successful enough to yleld complete soe
lutions, but, in combination with cerefully eveluated experie
mentel data, have in many instances provided the engineer with
tools for acceptably accurate resulte, The prineipal peint to
be made is that turbulent flow is so complex a physicel ococure
rence that a complete mathematical deseription has not yet
been formulated. Therefore, at least for the present, engi-
neering problems involving turbulent conditions must be solved
by what are, at best, semieempirical relationships. For e
review of the present level of knowledge related to turbulent
phencmena, see Bird et al. (2), Ferrari (9), and Schlichting
(20)s Literature more directly applicable to the present in-
vestigation will be referred to in the body of this paper.



The characteristies of turbulent flow as it exists in
channels have been extensively investigated. By obviocus ree=
sons of geometrical snd experimental convenience, the bulk of
this work has been done with channels of eireular eross-sec-
tion. Data on walletoswall veloeity profiles, for instance,
have been gathered vm a broad range of Emémn numbers .
Technical progress both in clesrer definitions of flow condi~
tions as well ar in reliable, precise measuring apparatus has
led to a reasssuring agreement of results from various investie
gators of recent years., Noreover, temperature profile data
are not lacking. On the basis of all these efforts, semieeme
piricel relationships now exist thet give easily scoessible
results (well-correlated by mww data) which depend-
ably desoribe radial temperature end veloeity mu‘&mm
for fully developed turbulent flow in eircular channels.
¥oreover, anaslysis hes progressed to the point of solutions
for temperature and velocity distributions in the longitudin
direction aleo, but only for the simplest scrt of temperature
or heat flux distributions along the chamnel walls, Oertain
of these methods are briefly desoribed in Knudsen and Ketz
(13, pp. 480-458). However, solutions that allow for an arble
trary axial distribution of temperature at, or heat flux from,
the channel wall are notably absent,

While a comprehensive effort has been devoted to the ine
vestigation of turbulent flow in eylindrical channels and of
turbulence in general, no significant acoumulation of data




exists for turbulent flow in annular chammels, Barrow (1)
glves some sound reasons for investigators' preference for the
eireuler channel, In the first place, concerning a pure anale
yeis, the very geometry of the oconcentric annulus markedly
complicates the relationships. Secondly, there is some cone
troversy over the definition of “eharacteristic length" in the
annulus, with different interpretations being favored by the
significance of the éifferent commonly used dimensionless
ratios, 1. e, Reynolds, Nusselt and Peclet numbers. Thirdly,
there is the difficulty presented by the mechanical supports
whieh must keep the annulus walls exaotly concentrie without
noticeably disturbing flow in the test section. Finally,
measurements in the fluld near the core wall practically have
to be taken by a probe thet passes through the outer wall and
extends aoross the entire flow channel. Accuracy of date
taken near the core wall (i, e+, in the so-called laminar sube
layer) is compromised by the presense of the flow-obstrueting
probe, Of oourse, some data are avellable, in spite of these
obstacles, A comparison of two sets of data, Rothfus for aly
and Enudsen for water, is made by Knudsen and Katz (13, pp.
190-191). The comparison itself, or, rather, the disorepan-
¢les in the comparison, polnts to the need for additional
data, Davis (3) emeassed most of the then (1943) pudblished
data and ettempted to correlate the data. However, his re-
sults remain 1ittle used.

To @0‘ en from & disocussion of experimental data on radiesl



temperature and velocity distributions in annuli, to the mate
ter of a solution t¢ the complete channel problem, where heat
ean be supplied to the fluld according to any axial varistion
of heat flux, is to enter an ares hardly touched by attempted
analyses or experimental investigation, Tribus gt al. (21)
offer the only known published solution to this problem. The
scheme of the sclution presented in the present paper differs
markedly from that of Tridus, and the semi-empirical equations
that are called upen at various points in the analysis are, in
the author's opinion, better substantiated by experimental
data than are those used in the reference clted above, HNatue
rally, the ultimate test of the methods would have to be mede
in carefully plenned laboratory experimentas., Sueh experiments
would have to cope with the difficulties mentioned earlier in
addition to the formidable requirement of supplying heat to
the fluid through the annulus core and/or outer wall acoording
to & preeisely known axisl heat flux distridution,



IV, BASIC RELATIONSHIPS
A« Introductory Concepts

The problem and its prineipal assumptions will be stated
in detail, The geometry is that of a concentric, smooth annu~
lus: Fluid flow is considered fully turbulent; this excludes
the influence of sc~called "end effects", which account for
the laminar end transition regions through which the boundary
layer develops until the layers from each wall meet at the
radiel point of meximum velocity. The outer wall is assumed
to be perfectly insulated, Heat is supplied from the inner
wall or core according to a known axial distribution.

The ecolant properties are evalusted at the inlet temper=
ature and assumed constant throughout the ehannel. This as~
sumption, of course, discounts the effects of temperature and
compressibility. In most cases, temperature effects are the
more significant of the two. Pressure effects on fluld vise-
gosity, thermal conductivity, and specific heat are negligidble
below eriticel pressure {over thirty atmospheres for air, for
instance). High veloelty effects are ignored, since the
closed system being considered is not ordinerily designed for
near sonic, much less supersonic velocities,

It will be helpful to an understanding of the development
to have in mind a general conspectus of the line of attack.

In light of the paueity of data on fluid flow in annuli,
one is forced to revert, as an expedient, to circular channel
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data, supported as it is by extensive and peinstaking experi-
mentation, and to exploit such data generously in annulus
problem solutions, The velocity profile of channeled turbue
lent flow is in the general shape of a flattemed parsbola,
Veloelity at the walls is zero. Maximum veloeity in & eircular
channel is at the channel axis. Maximum velocity in the annue
lar passage exists at a radial distence not midway between the
walls but somewhat nearer the core wall., See Figure 1. The
location of this distance is a funetion of the ratio of the
shear stresses at the immer end outer walls of the annulusj
the relation between these velues will be derived later in the
paper. The following explains the customary manner of apply=-
ing eylindrical data to annular geometry. Figure 1 deplets
the idea discussed. Let ry be the imner radius of the annulus
and Tos the outer redius; let r, . denote the radius of mexi-
mum velosity. The veloelty profile between rp, and r, . 18
gsgumed identical with the "top helf"™ of the profile (under
the same conditions of wall stress, fluld properties, and flow
rate) in a circular tube of radius, r, = r .. The veloelty
profile from the core to r, . 1s assumed identical with the
#lower half" of the profile in a oircular tube with radius,
Puax = Ty+ The assumption is most velid from rp inward, for
this region might well be imagined as the outer portion of

eircular pipe flow. However, by the same comparison with the
eircular pipe condition, less validity can be expected of this
assumption as it refers to the region between ry and ry,.., for
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the core wall is, in a manner of speaking, in reverse curva=-
ture to that of its eylindriecal counterpart. In tacit ac-
knowledgement of this faot, there is a preponderant influence
of ry to ¥y, Tlow ccnditions in the ealeulation of shear
stress for both walls. (See Eq. 10,)

A distinotive characteristic of turbulence is the "eddy
diffusivity”. This concept purports to account for the transe
fer of heat and momentum due to turbulent mixing. This mixing
is viewed as the random motion of pareels of fluld, each pare
cel carrying with it the temperature and momentum it possessed
in its previous leocation, The laminar veloeity profile is
found to be parabolic ir shape, that of turbulent flow, a
flattened parabolic shape. The reason for the difference is
that the ecnstant interchange of fluid parcels, parcels of
high veloeity into lower veloelty regions, and comparatively
low veloeity pareels in the opposite direction, tends to pro-
duce the zero slope velooclty profile of "slug® flow, The unie
form veloolty condition is never achieved, but a profile of
less curvature than that of a parabole is found, Turbulent
beat transfer is similarly accomplished, in such a way that,
in most of the channel, heat transport sway from the walls and
into the coolant by turbdulent mixing is muoh more significant
than transport by ilantermolecular conduction. This explains,
in simple terms, the distinet adventage, from heet transfer
considerations, of turbulent coolant flow, The improvement is
sufficient to warrant (within limits) deliderate means of
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indueing turbulence, even though the price of increased pumpe
ing power is inevitably exacted in such cases.
Mathematioanlly, the effects of eddy diffusivity are ex~
pressed as shown below, Hddy dimﬁ;vity, as it affects mo-
mentum transfer, is regarded as analogous to viscosity, and,
consequently, 1s often called veddy viscosity". For heat
transfer, the diffusivity is treated analogously to thermal
conductivity; hence the terminology, “eddy conductivity®.
Let T = shear stress
B = viscosity
u = yeloeity in the axial direction
y = radial distance from the wall
€u= eddy viscosity
The expression for total shear stress, due both to viscous
shear and turbulence is :

T= b ps,,,%;; (1)

In like manner, let
q = radisl rate of heat transfer
k = thermal conductivity
T = temperature '
P = fluid density
g = gravitational constant
6" specific heat at constant pressure

€= oddy conduetivity
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The total rate of heat transfer 1s
v i
q*wk%w P& e, ea:: (2)

The similarity between Kqs. 1 and 2 is plainly seen.
Based on this similarity and some further menipulation of the
equations, the Prandtl analogy wes farmulated. The Prandtl
analogy states that the eddy conduotivity end eddy viscosity
ere equal for flulds with a Prandtl number of one. The anale-
ogy is extended to inelude flulds of Prandtl number nearly one
(00 8oy Pryq. = «73)s This assumption, if accepted, signifi-
cantly simplifies turbdulent heat transfer anslysis. Although
the conclusion seems almost arbitrary, reasonably accurate reo-
sults have been consistently obtained and analytic efforts
considerably expedited. For discussions of the wvalidity of
the Prandtl analogy, see Reichardt (17, pp. 14-17) and
Schlichting (20, pp. 498-499). _

Therefore, if eddy viscosity c¢an be determined, eddy con=
duotivity is known (by the Prandtl emslogy). Thus, one has at
hand most of the tools necessary for solving the turbulent
conveetive heat transfer problem.

The "similerity rule” of von Kérmén assumes that turbue
lent fluctuations at all points of the field of flow are simi~
lar, 1. e. they differ from point to point only as far as
length and time scale factors are concerned. Based on mathe-
maticel conclusions drawn from this hypothesis, von Kérmén
(12) expresses shear stress in the turbulent streanm as
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In arriving et Bg. 3, it was assumed thet viseous shear
is negligible in the principel flow region, Therefore,
&)
o8 e aal
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g \dy

€, =K "(%-7'5 (4)
where K 18 a constant to be evaluated experimentelly.

To solve for veloeity as a function of y, radial position
away from the wall, von K&rmfn integrated Eq. 3. However,
prior to the integration, the expression for shear stress was
modified so as to be expressed in Mkum‘awnubh daf-
mensionless parameters, These parameters are, by definitionm,

3
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=
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The important integrated expression is
ut =0« -é» iny" (s)
where T, = shear stress at the wall
¢ = gonstant of integration

Various values for the constants, ¢ and K, have been pre-
soribed by different workers. The most widely accepted values
are due to Deissler (4), and these values are i

¢ = 3,8

K = 0,36
Bquation 5 has been proven valid everywhere in the channel
except near the channel wall,

Deissler (4) has deduced that, while shear stress away
from the wall may be a funetion, not of u and y, but only of
the changes in veloeity in the viecinity of a point (ef. Eq. 5);
shear stress near the wall is influenced by u and y proper.
By & dimensional snalysis, Deissler arrived at the following
relationship for eddy viscosity

€y = nfuy (6)
where n has been evaluated experimentally as 0,109,

Bquation 1 can be rewritten as
Te= p%‘ + pnaay% (7)

Equation 7 can be written as a funcetion of u' and 1‘, rather
than of u and y, and integrated. The resultant expression de-

scribes the velocity-distance relationship in the region near
the channel walls
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where %’?ﬁ e 'L%"L is the norma) error funotion of n u'.

Tebulated numericel values of the integral for smy n u' appear
in most compilations of statistical tables.

Bquation § is assumed to apply in the reglon away from
the wall or in the mein flow area, while Eq. 8 i1s assumed to
deseribe the velocity distribution in the vieinity of the
walls The reason for treating the fluid in the channel as
though two separate flow regimes exist is that both laminar
and turbulent flow conditions are present, each with its chare
acteristic mechanisms of momentum and heat transport. Not
that distinet laminar end turdulent regions can be delineated,
for only the flow lmmediately adjacent to the wall is com=
pletely leminar, and only that in the centrel portion of the
flow area, completely turbulent. Between is a buffer layer
which 13 neither entirely laminar nor emntirely turbulent.
Deissler's experiments have indicated that the point of trane
sition from Eqs 8 to Bq. 5 (and from Eq. 6 to Eqe 4) is at y*
of 26, Figure 2 illustrates the division of an ammular flow
channel into the regions jJjust deseribed. The figure cannot
adequately represent the relative sizes of the zones., Under
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normal flow conditions, the transition region ccouples an ex-
tremely narrow portion of the entire channel, with the laminar
sublayer even more narrow (to y' of approximately 3).

. Eguations 5 and 8 are the governing equations for a plot
of u* versus y*, and this plot is commonly referred to as the
universal velooity profile, This combination of Xgs, 5 and 8
gives a ocurve with a slope discontinuity at the tramsition
point, but a curve, nonetheless, which has been impressively
valideted by experimental date over a Reynolds number range of
8,000 to 220,000, BSee Deissler and Tayloer (6, p. 26). The
analysis will utilize these experimentslly established rela-
tionships.

Turning from fluld shear and the veloelty distribution to
the skin friction at the echamnel walla, there is yet another
useful relationship stemming from the von Kfrmfn similarity
rule. The form of the equation is von xﬁmﬁu‘n the con=
stants have evolved to thelr jresent values.

v w 4e0 Jog 22 [BTw . 0.0 (9)
¥ Ty u, P
-pM’

where u, = average veloelty

d
Re = Reynolds number = E—S———. where & is the tube diame~

eter., See Knudsen and Katz (13, p. 178).
As with the earlier formulae, Eq. ¥ was originally de~
rived for turbulent flow through a eylindrical erocss section,
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While eireular channel velocity distributions ean be applied
direetly to annular cases (even though in plecemeal fashion,
as depleted in Pigure 1), the equation for shear stress

(Bqs 9) must be modified. As will de seen when the force
equations are derived, shear stress at the outer wall (hence=
forth designated T,) and that at the core ( Ty) differ con-
siderably. Monrad and Pelton (16) polnt out the necessity of
acoounting for this difference in ecaloulating skin frietiom.
Once the radius of maximum veloeity is kmown, the ratic of Ty
and Ty is known, Therefore, the solution for skin friction
et one boundary readily leads to a value for the other. Egua-
tion 9 was modified by Rothfus gt al. (18 and 19) to solve for
shear stress at the outer wall, Recall that fluid in the an-
nular channel is imagined to move in two separate flow mi.m
namely, between ry and ry.., and between r,,. and rg. ¥For the
reason advanced eerlier, it is likely that our deseription of
dynamic conditions in the outer region of flow (i. es, T, to
ry) is & more accurate deseription than that deduced for the
finner regions It 18 logical, therefore, that Rothfus and his
ooworkers preferentianlly deal with the former region. Thelr
reletionship is

Uy (Re)g ,E T
ia T, S o - P st
T

where



£l

..
(Re)y = W (11)

It i3 obvious that ZLgs 10 must be solved by iteration or by
graphical means. The equation is confirmed reasonably well by
experimental data presented by its originators.

To review, this seotion has dealt with the velooity pro-
file, eddy viscosity, eddy conduotivity, and wall shear ptress
as they apply to turbulent, chamneled flow.

These basie notioms lay sufficlent groundwork for derive-
tion of the heat and force equations used to seclve the partiee
ular problem of interest in this investigation.

Bs Heat Transfer Eguation

the basic eguation
The annular fluld element of Plgure 3 is to be analyzed
in terms of the heat accumulated in it., An anmnular shaped
element can be convenlently used since there is no angular
variation of eonditions, 1. @, all fluid and thermal proper-
ties are assumed symmetric about the longitudinel axis of the
channel.

Let dA be the frontal area of the fluld element, i. M;

2Ty dry Let 48 be the inner surfece which is normal to
radiel lines from the channel axis, 1. e, 202> dx.

The heat entering the fluid element may be expressed as
the sum of three termss
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HEAT OUT RADIALLY:
~(ktp568) 45 Sk

+<9/:(A*,oyc,.€”) dJ 13;7‘-_/
or dr

r+dr HEAT IN RADIALLY:

-k *p96,€,) d3 3-77_-

HEAT IN AXIALLY: HEAT OUT AXIALLY:

sire T wre, 7 + —d(“:S"T) dx
+/—¢ +pjc;.€;} dA :7);7-. */:(éf,oyo,e;} JdA g
O~k +r09 ¢ c;)cﬂ4§uc
> / ”o: L7 A

Figure 3. Heat balance in an annular fluid element
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w o, T (eonvective heat transfer in the axial direc-
tion, w being the welght rete of flow)

+ [w‘k + PR ey EI%) daa wg-i?] {conductive and

turbulent heat transfer in the axial direction)

+ [..(k + P8 p eé) as m}f*] {conductive and

turbulent heat transfer in the radial direoction)
Note that the eddy conductivity is denoted by €y as it refers
te heat transport in the axiel direetion, and by eﬁ, in the
redial direction., The distinotion is made because no reason
exists in this cese to assume isotrople eddy diffusivity.

The heat leaving the element is

" 9({% ep T) ' aT]
we,Ts+ axE dx + [w(k’* PE e, eﬁi Ms-;

+

oin's 'y ap 22
a[ (k + pg °p ea) dA aﬁ]u
ox

e 3 - i g G"V -ﬂ
[ (k+ peeo, a? as ar]
shtcres SRRl
¥ ar -

The rate at which heat 15 gooumulated in the fluid element
is the difference between the heat added and the heat leaving
per unit time or
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e a[_(k*ps ’“ﬁl_

. a[(k+ P& o €yl 48 -?ﬁ]“

or

ol °p T)
ox

Sinoce steady state oconditions are assumed, there is no
heat accumulated., Therefore

S(V?oﬁ'r) [(k+ pgo eH)uﬁ]
ox

[(k+ P&y egids-gl_ o

Now,

w=upg dA
Substituting for W, A, and 48,

' o
)
oy SAUESR T 4 ar - 2nr a[‘k‘ fe% °E ax ar
ox ox
e [r (k + pg op 533 "5'?]_ & &
or
Theraefore,

[ .
" Slupgop ) Olik + pg op €yl 5:]
ox 3x '

" aT
3 »tx y )
& LIXTERC L (12)

or

Since the fluid properties and channel flow area are



constant

upg o “.(qu Pg‘pen}‘a; a‘k*chL.E...I

~(k4~Psa€R —% AL °L€.§’..2.I

Or or

i “ 21
ke reo,ep) S

Finally,

J

o % sy 9 " 36
“93%’55 (k«o»pgepen);-::& pgcp...a.;ﬁ.ﬁ.'i

ox
a‘ll
. o
cocrene 2o oeor, 53 8

+ &(x+ pgoyen) g-g (13)

As a Tirst step toward writing Zg. 13 in 2 more directly
usuable form, the expressions referring tc eddy conductivity
will be restated in terms of known characteristics of the
¢hannel flow.

a. ié The coefficient of eddy diffusivity for hest
as it refers to turbulent mixing in the axial direction cannot
be evaluated acourately if this evalustion is to be based on
information published up to this time.

All complete channel analyses with whiech the author is
familiar circumvent the nesessity of evaluating €y since they

discard the entire axial conduetion term, 1. e.,
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(k+pg ey €.) 921/ 3xR, with a remark to this effect: "The
second derivative of temperature with respeet to x is general-
ly negligidle in comparison with the firet.® The validity of
this assumption 1s seriously questioned.

If the term were to be included, a general relationship
for €. would be requireds Determining this relationship and
gorroborating 1t experimentally would have to be accomplished
by a scheme different from that followed in the determination
of EI;,, soeffioclent of radial turbulent conductivity, For the
eveluations of € have been based on the effects of its
counterpart, €,, the coefficient of eddy 4l ffusivity for mo=
mentum, The influence of €. oan be deduced from rediel varie
ations of the time-averaged axial veloeity. No such profile
exists of padisl velocity versus gxial location, since the
time-averaged radial velocity is zero at every point in the
channel,

In any case, no discussion of €, was found in the liter-
ature, much less an attenpted evaluation. However, the dise
tinctive guality of turbulent flow is random motion of the
fluid particles. Now, while "random" need not be a rigorously
correct deseription, that is, a word implying statistical isoe
tropy at any point, this deseription certainly implies some
amount of turbulent fluctustion in all directions. Conse-
quently, there is some amount of turbulent conduetion in the

axial direction., How this compares with turbulent conduction
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in the radial direction is as yet an unsolved problem. There
seem to be insufficient grounds even Tor a qualitative conelu~
sion as to which is greater. However, it 1s unlikely that the
mixing should ooecur s¢ preferentislly in the radiel direction
that only negligible components exist in the axial direcotion.
For the sake of being adle to apply Eq. 13 in 1ts most genersl
form and on the probability that the turbulent fluectuations
have comparsble components in the x and y directions, eé is
assumed equal to eﬁ';

b, O &/3x Since €y 1s a funotion of the degree
of turbulence, and, since the degree of turbulence is s.m«m
by the Reynelds number once turbulent flow has developed,
changes in €y should be related to changes in Reynolds num-
bers A fluild of oconstant properties has been postulated. For
steady, fully developed turbulent flow of such a fluld through
& channel of constant eross section, Reynclds number is un-
varying at a given redius, Therefore, o ey 9x may be rea-
sonably equated te zero.

"

. _53 The necessity for dividing the ehannel into
two separate reglons for purposes of analysis has been dis~
cussed previously. The coefficients of eddy conductivity for
the two reglons have been defined by lgs. 4 and 6, By use of
these equations end the relationships which follow, €y will
be expressed in teims of the dimensionless parameters, u® and
y*; whieh were previously defined.
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As an intermediate step in Delssler's derivation of the
veloeity profile in the vieinity of the wall (4), the follow-
ing derivative appears

ST
dy l*n'u""y

The following derivative 1s found in the course of von Kire
mén s development for flow at a distance from the wall (12)

w | L
dy Ky*

Therefore, for the region elose to the wall,
du

Ty du Ty
-4 -..-! . -
&y P @ p(1 + ofu'y’)
Similarly, for flow in the main streem,
du Ty du* T%

ey P oay Kuy

T T
a%u Ty # ¥yt =Ty

a% T2 a%* s T2
ay® :Em K.g,’ (1

In terms of the preceding relationships, g near the
wall esn be expressed as

€§ = n‘w
€ -gﬂ?_&f (14)

Away from the wall, the applicable reletionship is



.8 T
s = K* (g) - B Kopo (;r“‘)5

| i
ol K'p M (y*)
" o ...xu.t
“u (18)

Equations 14 and 15 define €y a8 well as €y, since an

equality between axial and radiasl turbulent mixing at a point
has been assumed.

de aiﬁ or To obtain this quentity, Eqs. 14 and 15
are differentiated.

Near the wall,
aen

H 2 du

i (usy -&—y—)

-t @“‘*% v le; r]

‘Y)

= n® f.;gu*w g (141;:1“‘",*)]
";',m"” P-j * ] (16)

Away from the wall,

2y)3 ° (et '
oo, o[ (8 (58 - (5 (5) (8
- |
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gauf (gﬁf(aﬁu)
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BEquation 13 will be rewritten, incorporating Bgs. 14
through 17 as well as two more dimensionless quantities, the
Prandtl number, Pr, and the radius paremeter, r*, where

Iirum
r* = wJEgé; r
b
P

Since 9€y/ dx is zero, Eq. 15 can be written

3= - (u:Pr h'?) %:%
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Since ‘ﬁ is assumed the same as e{{,

%‘E.%(-—E—# €" -3-3«»«2%

ok (v 86 e @) 8

3

and, substituting r* and u* for » and u,

a€ I "
pur < ’;'; H*PPX"€R>-§§
(18)

A ccmbination of Bg. 18 with Zgs, 14 and 16 yields the
heat balsnoe for flow near the walls.

e (e ) (45 )
P |
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A similar procedure cen be followed im deriving a final
form of the heat balance for the reglon at a distence from the
wall. Thus,

= (r"wml *Y*) %‘% (20)
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Equations 19 and 20 are the governing relationships of
the analysis, BEguations 19 and 20, the veloeity profile rela-
tionships, and the conditions of the physical problem (1. e,
inlet temperature and pressure, weight rate of flow, heat flux
as a funotion of axial station, properties of the fluld, and
geometry of the system constitute mearly all the information
needed to sclve for the tempersture distridbutions The one
quentity still laeking is sheer stress at the wells, The fole
lowing section is directed toward this end, i. e., determining
T ye

The mode of applying Egs. 19 and 20 mey not be selfwevie
dent., As previously explained, the annulus is divided into
two regions, inner well, rys to the radius of maximm velooi-
ty, and outer wall, rp, %o ¥, ..+ In the outer regiom, y 1s
equal to (ry = r), end Ngqs. 19 and 20 are functions of shear
stress on the outer wall, Ty; in the region between ry and
Tmaxs ¥ 18 (r = ry), and the equations are written with T,
equal to Ty.

Cs Foree Bquetions
As previocusly pointed out, the ultimats result of the
following development will be a determination of the shear
stresses at each of the annulus walls. The most elusive sine
gle unknown in a solution for the shear stresses 1s the radial

location of maximum veloelty, Ipgx+ A scheme for determining
Tmax 18 derived, which is based essentially on a compatibility
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of the velooity profile segnents, begun as they are at oppo=
site walls. At Topaxe the gquasi-independent determinations of
velocity must yleld the same value. O(noe ry,, is established,
the remainder of the derivation is sccomplished by routine
mathematical methods.

Since the veloeity profile in a channel exhibits at the
point of maximum veloeity, at r, . in this case, k. Zero veloce
ity gredient, and since T=p €, du/dr, the shearing stress is
zerc at this point or rather over the surfece r = r. ... On
this basis, and by assuming ecnstant pressure across any chane
nel <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>