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CHAPTER 1. INTRODUCTION 

1.1 Background on the Voltage Stability Problem 

Voltage stability is a major challenge facing many utilities today. Although voltage 

control problems have always been important and have been a major concern in developing 

networks, the problems in more mature networks have arisen fairly recently [1]. They re­

sult in large part to intensive use of available transmission between load centers and re­

motely sited generation. Furthermore, the problems are made worse by the continued 

growth in society's electric energy demand and the relative slowness of constructing new 

power plants or transmitting lines leading to systems working closer and closer to their ca­

pacity limits. 

In a heavily loaded power system, if the injected reactive power is insufficient the 

voltage stability is very vulnerable. In some highly interconnected systems, when there is 

a generator loss, a transmission line loss or a large unforeseen load increase, the voltage 

may drop quickly and the manual or automatic system control may not be able to halt the 

drop [2]. Then the voltage drop continues leading to complete blackout of a large area. 

This phenomenon is called voltage collapse. There have been many voltage collapse inci­

dents around the world in recent years with increased frequency in recent years, resulting 

in enormous economic loss. 
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1.2 Scope and Objective 

In response to utilities' increasing concern over voltage stability, many researchers 

have been trying to understand the mechanisms of voltage collapse in order to prevent it. 

Many papers have been published on voltage collapse, and various methods have been 

proposed to predict and to prevent it. Basically, these methods use two approaches: static 

and dynamic. One well accepted theory [2] explains the voltage collapse as a consequence 

of the loss of a stable equilibrium point through a saddle node bifurcation when the total 

system active power load is increased to a critical level. At this critical load, the Jacobian 

of the power flow equation becomes singular. Therefore, a key in studying voltage col­

lapse is to find the Jacobian singularity, which is equivalent to finding the critical load. 

The continuation power flow method [3] developed at Iowa State University was designed 

to accomplish these tasks. 

The objective of this research is to improve the continuation power flow (CPF) 

method by incorporating several new techniques, thus making the CPF method capable of 

• finding the critical point in the minimum number of steps by using an optimal step 

length selection based on reactive power generation sensitivity, with improved ac­

curacy; 

• providing useful information on system voltage security for a given load change 

scenario by calculating margins to voltage instability and by revealing weak buses 

in the system; 

• identifying the worst case load change scenario and finding the worst case margin 

to voltage collapse; 

• providing the optimal strategy for load shedding to regain voltage stability when the 

initial load is in the unsolvable region. 
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1.3 Thesis Outline 

Chapter 2 describes the basic principles of the continuation power flow method. In 

Chapter 3, we fIrst derive the formula for calculating the sensitivity of reactive power gen­

eration to load increases and then present the optimal strategy for selecting step length for 

the CPF. This optimal step length is the maximum length that can be used in each step 

without any generator exceeding its reactive generation limit. Chapter 4 presents the im­

portant issue of voltage stability margin. We review two measures for proximity to voltage 

instability and present the margin to voltage instability in terms of MW (active load) 

distance and MV Ar (reactive power reserve) distance to voltage collapse. In Chapter 5 we 

incorporate a recent research result on normal vector of the critical boundary into the CPF 

and present an iterative procedure for calculating the worst case load change scenario, and 

the worst case margin to voltage collapse. Chapter 6 studies the problem of optimal load 

shedding, which uses the minimal amount of load shedding along the most effective 

direction to move an unsolvable load into the solvable region. Finally Chapter 7 concludes 

the thesis with some remarks on related research issues. 
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CHAPTER 2. CONTINUATION POWER FLOW 

2.1 Introduction 

The continuation power flow method was developed at Iowa State University [3] 

by applying the well-known mathematical continuation algorithm to the solution of the 

static power flow equations. The purpose of the continuation power flow method is to 

find a continuum of power flow solutions for a given load change scenario and to find the 

critical point. The basic principle of the continuation power flow is rather simple. It 

employs a predictor-corrector scheme to trace a solution path of the power flow equation 

parameterized by a load change parameter. As illustrated in Figure 2.1, it starts from a 

known solution and predicts a subsequent solution along the tangent direction for a 

different value of the load parameter. This predictor is then corrected by using the well­

known Newton-Raphson technique for the power flow equation. This process is repeated 

until the critical point is reached, where the component of the tangent vector corresponding 

to load parameter becomes zero. 

In the next section, we reformulate the static load flow equation to include a load 

change direction and a load change parameter. Then, the formula for predicting the next 

solution will be presented, together with the correcting process. Finally, we will discuss 

some important issues concerning the continuation power flow method. 
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Voltage Predictor 

------------, / ----. 
.....-- Corrector 

Load 

Figure 2.1: An illustration of the predictor-corrector scheme used 

in the continuation power flow 

2.2 Parameterized Static Power Flow Equation 

The static power flow equation represents the power balance at each bus. 

Therefore, for each bus i of an n bus system, we have: 

(2.1) 

(2.2) 

where P stands for the real power, Q stands for reactive power, and the subscriptsL, G, 

T denote bus load, generation and injection respectively. Let VjLDj be the voltage and 
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angle at bus i, and let yijLvij be the (i,nth element of the bus admittance matrix Ybus ' 

The real and reactive injections at bus i are of the form: 

n 

P Ti = L VYjYij cos( 0i - OJ - Vi) 
j=l 

n 

QTi = L VYjYij sin(oi - OJ - Vi) 
j=l 

(2.3) 

(2.4) 

To simulate a load change, P Li and QLi are parameterized by a load change parameter A in 

the following form: 

where 

P Li = PLiO + A (K LiS MJASE cos CPi) 

QLi = QLiO + A (K LiSMJASE sin CPi) 

PLiO : initial real load at bus i 

QLiO : initial reactive load at bus i 

K Li : multiplier designating the rate of load change at bus i as A changes 

CPi : power factor angle of load change at bus i 

(2.5) 

(2.6) 

SMJASE : a given quantity of apparent power which is chosen to provide appropriate 

scaling of A 

In addition, the active power generation term can be expressed in terms of A as: 

(2.7) 

where POiO is the initial active generation at bus and KGi is a constant used to specify the 

rate of change in generation at bus i as A varies. 

Then the parameterized power flow equations become: 

0= POiO(l + AKoJ - PLiO - A (KLiSMJASE coscpJ - PTi 

o = (kiD - QLiO - A (K LiS MJASE sin CPi) - QTi 

(2.8) 

(2.9) 
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Let V and 0 be the vector of bus voltage angle. Then, the power flow equation can be 

written in a more compact form: 

F(o, V,A) =0 (2.10) 

0:::;; A :::;; Acrtical 

For each A, the above equation admits some solutions. As A varies, O(A), V(A) form 

branches of the solution curves. When A reaches the critical value, two branches meet 

and the Jacobian matrix of F with respect to 0 and V becomes singular, and the system 

loses voltage stability. The continuation power flow method starts at a known solution and 

traces one branch to fmd the critical point 

2.3 Prediction and Correction 

Once a base solution for A = 0 has been found, a prediction of the next solution 

can be made along the tangent direction of the solution path. To do this, we differentiate 

the equation (2.10) to get 

dF(o, V,A) = Fado + FvdV + FAd)" = 0 

or 

[F. Fv F.][:]=O (2.11) 

Because of the inclusion of the load change parameter A , the above equation contains one 

more unknown than the number of equations. To ensure the unique solution, one more 

constraint needs to be introduced. In the continuation power flow method, we simply re­

quire that the kth component of the tangent vector should be unity [4], i.e., let 
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t=[:} t. =±I 

The selection of the index k and the sign of tA; will be discussed later. With this added 

constraint, we have 

(2.12) 

where eA; is a row vector with all zero elements except the kth element, which is 1. 

Once the tangent vector t is found by solving the above equation, the prediction for 

the next solution can be made as follows: 

(2.13) 

where the superscript * denotes prediction, and (J is a scalar representing the step length. 

The selection of the step length will be addressed in detail later. 

Now that a prediction has been made, a method of correcting the approximate solu-

tion is needed. This is necessary because [~:] is a point along the tangent vector di-

rection, but is not the actual solution to the power flow equations. However, as long as 

the step length is not too large, this prediction is near, but not on the solution curve, and 

the Newton-Raphson method can be used to find the point on the curve that is closest to 

the prediction. However, before we can do this, a small problem needs to be solved. 

Because of inclusion of the load parameter A., equation (2.10) contains one more 

unknown than the number of the equations. This can easily be handled by letting one of 
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the solution components be fixed, thus introducing one more equation. Mathematically, 

this is done as follows: 

let 

and introduce Xi = 1] 

where 1] is the appropriate value for the kth element of x. Then the power flow equation 

becomes: 

[ 
F(x) ]=0 

Xi -1] 
(2.14) 

This index k above can be, in theory, any integer between 1 and m + 1, where m is the 

dimension of x. However, in the continuation power flow method, we use the same 

index k as in the prediction. The corresponding state variable Xi is called the continuation 

parameter. 

To select the continuation parameter, we use the following rule, which, in our ex­

perience, works quite nicely. In each step we select the state variable with the largest cor­

responding tangent vector component as the continuation parameter. For the first step we 

will choose A to be the continuation parameter. Therefore: 

first step 

else 

Here, t is the tangent vector and m is the dimension of x. Note that in the first few steps 

dA is generally the largest, hence A is used as the continuation parameter. However, as 

the critical point is approached, dA may not be as large as some of the IdVi I' s. Therefore 

a bus voltage is used as the continuation parameter. 
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2.4 Load Change Direction 

In the fonnulation of Section 2.2, if we let 

C pj = K uS MASE cos qJj 

CQj = KUSMASE sin qJj 

Then the load change can be simply modeled as: 

PL = PLO + ACp 

QL = QLO + ACQ 

where PLO = [PLOl PL02 ... PLonf is the vector of the initial real load, QLO is the vector 

of the initial reactive load, P L is the increased real load and QL is the increased reactive 

load. As A varies, [P
L

] lies on a straight line starting at [P
LO

], and moves in the direc-
QL QLO 

lion of [~: 1 Therefore C; [ ~:] is called the load change direction. 

Once the load change direction is given, the variation in the load change parameter 

A defines a solution path leading to a critical point. When min CdA -7 0, a very small 
dVj 

load increase can cause a large voltage drop; therefore, the critical point can be identified by 

min CdA = o. If C is changed, we will have a different critical point. If C is allowed to 
dVj 

vary gradually, the corresponding critical points fonn a hyper surface in the voltage angle 
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and voltage magnitude space. We call this surface the critical surface. Inside the surface, 

the system is stable; outside, the system is not stable. 

For a given power system and a given load increase direction, the performance of 

the continuation power flow method in fmding the critical point depends largely on the 

proper selection of the step length. In the next chapter we present a strategy for selecting 

an optimal step length based on reactive power generation sensitivity. This strategy pro­

vides the minimum number of steps for reaching the critical point 
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CHAPTER 3. SENSITIVITY -BASED OPTIMAL STEP 

LENGTH 

3.1 Introduction 

In the last chapter, we reviewed the basic principles of the continuation power flow 

method, which forms the basis of our research. As mentioned there, the selection of step 

length is a very important part of the continuation power flow algorithm, since computa­

tional speed and convergence performance are both greatly affected by the choice of the 

step length. For an example, if we use a fixed step length that is too small, then we have to 

perform a very large number of prediction and correction iterations before we reach the 

critical point. Therefore, the computation is going to be very time consuming. 

Furthermore, this large number of computations will inevitably introduce more numerical 

errors because of round-off accumulation. On the other hand, if we use a fixed step length 

that is too large, then the predictor may be very far from the solution curve. That means 

the initial guess for the subsequent Newton-Raphson iterations in the correction process 

may be very far from the fmal desired value. Therefore, the N-R iteration may lead to di­

vergence. 

In this chapter, we incorporate some recent results of Flatab!2l, et al.. [5] on the 

use of sensitivity technique and apply them to the continuation power flow method to de­

velop a sensitivity-based strategy for selecting the optimal step length. To do this, we will 
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ftrst develop the formula for calculating the sensitivity of reactive power generation to sys­

tem active load changes. Then in Section 3.3, we present the procedure for optimal step 

length selection for the continuation power flow. Finally, test results based on the optimal 

step length strategy can be presented. 

3.2 Sensitivity of Reactive Power Generation 

The reactive power at a generator bus can be defmed as the function Qj in the fol-

lowing way [6]: 

(3.1) 

where 
n 

QTj = L VYj sin(Dj - Dj - (}ij) 
j=l 

is the reactive power injection at bus i and 

A = load change parameter 

QLiO = initial reactive load 

K Li = a multiplier to designate the rate of load change at bus i as A changes 

({Jj = the power factor angle of load change at bus i 

SMJASE = the apparent power that is chosen to provide appropriate scaling of A 

Therefore, the sensitivity of a reactive power generation to the variations of load parameter 

A [6] is given by 

dQj _ ~ aQTi dx j K S . ( ) --£..J--'-+ Lj MJASE sm ({Ji 
dA j=l aXj dA 

dx. 
where x is the state variable and -' can be directly obtained from the components of the 

dA 

tangent vector in the continuation power flow. 



14 

3.3 Optimal Step Length Selection 

The calculation of the critical point of voltage collapse is carried out in steps. At 

each step, we need to choose an optimal step length so that the critical point can be obtained 

accurately without causing any numerical trouble. Previously, the step length was selected 

on the basis of the curvature at the solution point of the previous step [7]. In such an ap­

proach, the corresponding reactive power generation Q 's in the next solution may exceed 

their limits or may be smaller than their limits. 

The basic idea of the optimal step length selection is as follows. In each step, we 

select the step length such that after the load is increased, at least one generator reaches its 

MV Ar generation limit and all the other generators are still within their MV Ar generation 

limits. This is the maximum step length that can be used, since any larger step length leads 

to at least one generator exceeding its reactive power generation limit. 

This optimal step length is calculated by using the sensitivity technique as follows: 

In each step n, we first calculate a candidate step length dA j) for each generator as 

follows: 

Mj"' = Q~Q~ Qj 

J dA 

From equation (3.1), we know that Q/X,A) has a linear relation to A; thus if we choose 

!l.Ajn) as above, we can guarantee that the MV Ar-generation of generator j reaches its re-

active power limit Then we set 

where 
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LU (n) = the maximum value that A can be increased 

Qjmax = maximum MV Ar-generating capacity of plant j 

j = the bus number corresponding to the generators 

Therefore, if A is increased by LU (n), then at least one generator will reach its re­

active power generation limit, but no generator will exceed its limit 

The step length at step n is fmally selected to be 

(n) _ AA(n) I 

a - IdA 

where dA can be directly given by tangent vector. Note that if the generator at bus j 

reaches its maximum MV Ar capacity at any particular step n, then bus j has to be changed 

to PQ bus. 

3.4 Simulation Results 

The optimal step length described in the last section has been incorporated into the 

continuation power flow method. Its performance has been tested by using the Iowa 

reduced system and the New England 30-bus system, whose single line diagram is given 

in Figure 3.1. There are a total of 9 generators and 20 PQ buses in the system. Tables 3.1 

and 3.2 list the number of steps and the total number of Newton-Raphson iterations. For 

comparison, we also applied the curvature-based step length method [7] to the same 

system, with the same base case and same load change direction. The number of steps and 

the total number of N-R iterations are also listed in the same table. It can be seen that by 

using the optimal step length, the number of steps is greatly reduced. This is expected, 

since the optimal step length is the maximum step length. But the total load change before 

the critical point is independent of methods and therefore is the same for both cases. Hence 
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the larger step length leads to the smaller number of steps. However, the total number of 

N-R iterations is reduced only by a small percentage. The reason may be that the initial 

guess for Newton-Raphson iteration in the correction process is further away from the 

solution curve because of the larger prediction steps. 

With a proper step length strategy, the continuation power flow method can fmd the 

critical power flow easily. The next chapter studies another important issue in static volt­

age stability analysis: margins to voltage instability. 
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Figure 3.1: The New England 3D-bus system [8] 
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Table 3.1: Perfonnance of optimal step length method (30-bus system) 

# of steps # ofN-R iterations Critical load 

Optimal step 7 77 9579MW 
length 

{;urvature-based 12 80 9570MW 
step length 

Table 3.2: Performance of optimal step length method (162-bus system) 

# of steps # ofN-R iterations Critical load 

Optimal step 8 48 3209MW 
length 

{;urvature-based 12 49 3213MW 
step length 
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CHAPTER 4. MARGINS TO VOLTAGE INSTABILITY 

4.1 Introduction 

In the previous chapter, we defined the critical point. It can be calculated by using 

the continuation power flow method with small step lengths. But small step lengths may 

require a great deal of computation. To reduce computation, we can use larger step lengths 

and then estimate the critical point by the method [9-10] discussed in Appendix A. The 

next problem of extreme importance in studying power system security and in preventing 

voltage collapse is to determine how far away the current operating point is from the critical 

point. The purpose to calculate voltage stability margins is to quantify the distance from a 

particular operating point to the point of steady-stable voltage collapse. The information so 

obtained could then be used for setting of transfer limits in the network during power sys­

tem planning studies. 

In the recent literature, Several methods designed for a similar purpose have been 

described. The voltage stability index proposed by Ajjarapu and Christy [11] uses the 

negative inverse of the sensitivity of bus voltage magnitude to the system load as a proxim­

ity measure to voltage collapse. This index is positive when the operating point is stable, 

approaches zero when the critical point is approached, and becomes negative when the sys­

tem load exceeds the critical value. Different voltage stability indices are also defined by 

using the smallest singular value of the Jacobian matrix [12-13] or using the smallest real 
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part of the eigenvalues of the Jacobian [14]. All these indices have similar advantages and 

disadvantages. The margins for voltage instability, on the other hand, offer some im­

provements in performance through calculating the MW -distance or reactive power reserve 

to voltage instability. 

For the purpose of comparison, we will fIrst review the different voltage stability 

indices in the next two sections together with some application examples. Then we will 

present in Section 4.4 the theory and procedure for calculating margins to voltage instabil­

ity as used in the continuation power flow method. Simulation results for the New 

England 30-bus test system and the 162-bus Iowa reduced system will be presented in 

Section 4.5. These results will be compared to the performance of voltage stability 

indices. 

4.2 Voltage Stability Index 

The voltage stability index defIned by Ajjarapu and Christy [11] has the dual ca­

pability of identifying weak buses and measuring the proximity to voltage collapse. This 

index, which is designed for the continuation power flow method, uses the sensitivity in­

formation available from the tangent vector of the continuation predictor. Thus, the calcu­

lation is quite inexpensive. 

In the continuation power flow method, the tangent vector describes the direction 

of the solution path at a corrected solution point. Since the elements of the tangent vector 

represent differential changes in the state variables (dVj or dDj ) in response to a 

differential change in the load parameter ( d).. ), they can be used to obtain the sensitivity of 

bus voltage to load change. 
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In the process of defming the voltage stability index, the weakest bus is identified 

first. Apparently, the weakest bus is the one that is closest to the turning point or "knee" 

of the PV curve, since that is where stability is lost for constant power type loads. CdA 

is common to all buses, so the relative change dV decides the weakest bus. Equivalently, 

a weak bus is one that has a large ratio of differential voltage change to change in the total 

load. The weakest bus is then the one with the largest - d~ ratio. Or, if the ith bus is 
Cd/\' 

the weakest bus, then 

1~~I=max{I~~lll~ll ... I~il} 
Since CdA is common to each term, the weakest bus is the one with the largest dV com­

ponent Therefore, the weak areas can be easily identified by merely looking at the largest 

dV component in the tangent vector. 

When ith bus reaches its steady state voltage stability limit, the ratio of - dV j be­
CdA 

·nfi . . I tl th . Cd)... Th f h . CdA. d comes 1 Imte, or eqUlva en y e ratIo --- IS zero. ere ore t e ratIo --- IS e-
dVj dV j 

fined as the voltage stability index for the system. This index will be high when the weak-

est bus is far from instability, but will be zero when the weakest bus reaches voltage col­

lapse. The use of the negative sign guarantees that the index is positive before the critical 

point is encountered and negative afterwards. 

The index is applied to the New England 30-bus test system as well as the 162-bus 

Iowa reduced system. Figures 4.1 and 4.2 show the trajectories of the voltage stability in­

dex for the two system respectively as the load parameter is increased from zero to the criti­

cal point As can be seen, the index is positive before the critical point is reached and de­

creases to zero at the critical point However, as can be seen from the graph, this index is 
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highly nonlinear with respect to the load parameter. Therefore it is unclear how to interpo­

late between the points on the graph. Furthermore, when the index is reduced to half, it 

does not mean that the distance to voltage collapse is reduced to half. 

4.3 Minimum Singular Value of Jacobian Matrix 

Tiranuchit et al. [12] and Lof et al. [13] recently proposed the use of the 

minimum singular value of the power flow Jacobian matrix as an indicator of the distance 

to steady-state stability limit Let x denotes the vector of bus voltages and angles and A 

denote the load change parameter. Then the steady-state power flow equation is written in 

the form: 

f(X,A) = 0 

Let dx be the differential change in voltage because of a differential change dA in load. 

Then by differentiating the above equation, we have 

Jdx+ fldA =0 

where J is the power flow Jacobian Matrix and fl = :h.. Solving for dx gives 

dx = -J-1fldA 

\\dx\\ ::; CT1 (1-1 )llf l II· IdA I 
where CT1 represents the largest singular value. Therefore, CT1 (1-1) determines how large 

the bus voltage change can be when the load is changed by d)". Near the critical point, a 

small load increase can lead to a very large voltage drop, i.e., CT1 (1-1) will be very large. 

But 
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where an (J) is the smallest singular value of J. Therefore, an (J) becomes very small 

near the critical point and is equal to zero at the critical point, and can be used to indicate 

the distance to the critical point. 

We have applied the minimum singular value of the power flow Jacobian to the 

New England 30-bus test system. Figure 4.3 shows the trajectory of an (J) as the load 

change parameter A. is increased from zero to the critical value. As can be seen, an (J) de­

creases as A. is increased and it becomes zero when A. reaches the critical value. 

However, the amount of decrease is very small during the load increase, and drops very 

sharply to zero when A. approaches the critical value. Therefore, for large systems, an (1) 

is not a good indicator of the distance to voltage instability. Besides, even for a small sys­

tem, the nonlinearity of the an(J) - A. curve introduces difficulty in interpolating between 

points on the curve and in using an(J) as a measure of the distance to voltage collapse. 

Furthermore, since an (J) is a non-negative function of A., when A. is increased beyond 

the critical point, an (J) gives a positive number, a misleading piece of information. 

4.4 Margins to Voltage Instability 

The most natural definition of margins to voltage instability would be the distance 

between the current operating point and the critical point where voltage stability is lost. 

This distance is more easily measured in the load space, i.e., the distance from the current 

load to the critical load. To quantify this, two distances can be used: the active power dis­

tance AP (MW distance) to voltage collapse: 
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Figure 4.3: Minimum singular value of Jacobian matrix vs the total system active 

load (30-bus system) 

and the reactive power reserve (MY Ar) distance flQ to voltage collapse: 

where P stands for active power and Q stands for reactive power, c stands for the critical 

point and 0 stands for the initial point. 

Since the margins of the system are different for different contingencies, we need 

to select the most severe contingency. This involves a standard contingency analysis with 

techniques available for screening and ranking candidate contingencies. Then we choose 

the state after the severe contingency as the base case, and add active load (or reactive load 

or both) until the system becomes unstable. This process can be easily carried out in the 
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continuation power flow method. At each iteration n of the continuation power flow, we 

will record the amount of active load increase M n and reactive power reserve decrease 

ll.Qn. They can be calculated as: 

and 

Once the critical point is reached, the MW-distance and MV Ar-distance can be cal-

culated : 

n=! 

where nSlep is the number of steps in the continuation power flow before the critical point is 

reached. Either AP or ll.Q, or the combined effect of both, can be used as the margin to 

voltage instability. 

4.5 Simulation Results and Comparisons 

The margins to voltage instability defined in the last section are tested using the 

New England 30-bus test system and 162-bus Iowa reduced system. The load increase is 

shared among the system's generators according to their initial generating ratio. The load 

is increased until the system reaches the critical point. The continuation power flow 

method traces a solution path for various load levels. The margins for all load levels are 

calculated according to the formulae in the previous section. Figures 4.4 and 4.5 show the 
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MW distance and the reactive power reserve versus the total system active load respectively 

for the 3D-bus system. Figures 4.6 and 4.7 are similar graphs for the 162-bus system. 

From these graphs, it can be seen that both MW distance and the reactive power re­

serve monotonically decrease as the total system active load is increased. They both be­

come zero when the critical point is reached. The behavior of the reactive power reserve is 

somewhat similar to the voltage stability index and the minimum singular value of the 

Jacobian matrix in the sense that it is nonlinear with respect to the load change. However, 

the reactive power reserve curve is much smoother and is apparently decreasing even for 

low values of load, unlike its opponents, which are insensitive at low load values. 

Therefore, the reactive power reserve can provide useful infonnation for all load levels and 

is a better candidate for measuring margins to voltage instability. 

The MW distance has even better performance. From Figures 4.4 and 4.6, it is 

seen that the MW is linear function of the total system active load. Therefore, it is not nec­

essary to calculate all the points on the curve. Once we have found two points on the 

curve, we can easily find the margin to voltage instability of any operating point by a very 

simple interpolation. Furthennore, this linearity allows easy comparison of different mar­

gins, i.e., if operating point A has a margin twice as large as that of operating point B, then 

point A is twice as far from voltage collapse as point B. Since the MW distance is equally 

sensitive to load changes at all load levels, it provides useful information about voltage 

stability at all load levels. 

Note that in this approach, we have to fmd the critical point before we can calculate 

the margin to voltage instability. Also, since different load change directions correspond to 

different critical points, the margins we calculate are dependent on load change directions. 
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For a given system and operating point, there is always a particular load change direction 

that gives the minimum amount of load increase in MW that leads to voltage collapse. If 

we can somehow find this direction, then load increase in any direction below this mini­

mum amount assures voltage stability. How to find this direction is explained in the next 

chapter. 
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CHAPTER 5. WORST CASE DISTANCE TO VOLTAGE 

STABILITY BOUNDARY 

5.1 Introduction 

In an electric power network, the solution to the static load flow equation forms a 

stable equilibrium (operating) point. This equilibrium point Xo is determined by the load 

Po. As the load is increased, the equilibrium point moves toward the critical point, until fi-

nally it disappears in a saddle node bifurcation when the load reaches the solv­

able/unsolvable boundary at PI. The continuation power flow is capable of finding this 

critical load if a load change direction is assumed. In the last chapter, it was shown that the 

difference between the critical load and the current operating load can be used as a good 

measure of voltage stability margin. However, if the actual load change direction is differ­

ent from the one used in the continuation power flow, the power system may lose stability 

before the load is increased by the amount of margin. This is because the actual load 

change direction is more severe than the assumed one. This can be prevented if we can 

find the closest point on the solvable/unsolvable boundary, since this point will give us the 

worst case stability margin. Hence whenever the load increase is less than the worst case 

margin, the power system is guaranteed to be stable. 

The objective of this chapter is to develop a procedure for finding the worst case 

stability margin. We present an iterative approach and use examples to demonstrate the 
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I 
method. The kpy point of this procedure is to find the worst case load change direction. 

I 
Dobson [15] rowed that this worst case load change direction is normal to the solv-

able/unsolvare boundary. However, in his approach, he did not consider the generator 

reactive pow~r limits. We incorporated this methodology into our continuation power flow 
1 

with considtrration of the reactive power generation limit. The derivation of the formula to 
g 

calculate th~ normal vector as proposed [16-18] is given in the next section. Section 5.3 
~ 

discusses t~e calculation of the worst case margin. In Section 5.4, these concepts are 
! 

tested by applying to the power system examples. 

5.2 Normal Vector of the Solvable/Unsolvable Boundary 

In the static power system model, the load flow equation includes the real power 

balance 

f 1(x,P) =0 (5.1) 

, and the reactive power balance 

f 2 (x,Q) = 0 (5.2) 

where II and I, are smooth functions of x, Q and P. Here x =(~) is the vector 

of the bus voltages and voltage angles. The system load is S = (~) E Rm
, where P is the 

vector of real loads and Q is the vector of reactive loads. The two power balance equa-

tions can be combined as the power flow equations 

f(x,S) = 0 (5.3) 

This power flow equation mayor may not admit a real solution for x, depending on the 

value of the load vector S. If a real vector x can be solved from equation (5.3), we say 
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that S is a solvable load; otherwise, we say that S is an unsolvable load. Then, all those 

unsolvable points form an open region in the load vector space Rm
, and all those solvable 

points form a closed region. The boundary between these two regions is a smooth m - 1 

dimensional hyper surface, denoted by I.. The points on I. are called critical loads. For 

such loads, the corresponding solution to the load flow equation is a critical point where a 

saddle node bifurcation occurs. Therefore, the Jacobian matrix at such a point is singular. 

Let SIc be a point on I. and XI the corresponding solution. Then 

(5.4) 

and Ix (Xl' SIc) is singular. Here Ix denotes the Jacobian matrix of I with respect to x. 

Since Ix is singular there exists a non zero vector w such that 

w
T fx(XI'Slc) = 0 (5.5) 

That is, w is a left eigenvector of the Jacobian Ix associated with the zero eigenvalue. Let 

dS be tangent to I. at SIc' Then, from equation (5.4), dS satisfies 

fx(XI'SIJdx+ fs (Xl' SIJdS =0 (5.6) 

for some small dx, if dS is small enough. Multiplying equation (5.6) from the left by 

w T
, we get 

w
T 
fx (xl' SIJdx + w T 

Is(xI'Slc)dS = 0 

Using equation (5.5), we obtain 

that is, 

f/ (XI ,SIJw.ldS 

Therefore 1ST (XI' Slc)W is normal to I. at SIc' This suggests the following procedure for 

finding the normal vector of the solvable/unsolvable boundary at SIc: 

1. Solve the load flow equation (5.4) 
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3. Find the left eigenvector of f x (XI' Sic) associated with the zero eigenvalue 

Although the above formula was derived in [16-18], our approach is much straight-

forward and much easier. 

5.3 Worst Case Stability Margin 

In the continuation power flow method, an initial solvable load So is given and we 

let 

where C is a vector of load change direction. We let It increase until S = SI reaches the 

critical boundary. Then the distance between SI and So is used as a stability margin for the 

initial operating point Hence, this margin is the distance from So to a critical point on the 

boundary L. Let S. be the closest point from So to the critical boundary. Since L is 

smooth locally around S., there is a tangent plane at S.. Since S. minimizes the distance 

of L to So,S. - So must be perpendicular to the tangent plane of L at S., that is S. - So 

must be in the direction of the normal vector n. of L at S.. Hence 

S. - So = It.n.. 

S. = So + It.n.. 

This suggests that we can find S. iteratively as follows. Take an initial guess of n. to be 

no and this no can be quite arbitrary. Then we can use no as the vector of load change di-
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rection in the continuation power flow method to reach the boundary L. at SI along the di­

rection of no. Once we have SI' we can use the procedure outlined in the last section to 

calculate the normal vector ~ of L. at SI. Then we use this normal vector nl as the new 

estimate of n.. and the new vector of the load change direction. This process continues 

until we get a convergent solution S •. 

To check for convergence, we can check the direction of the normal vector in each 

step. If it no longer changes direction any more, that means we have reached the closest 

point S. on L. to So. Let nH and nk be the normal vector in the (k -l)th and the kth it-

eration. The angle between nk and nH can be derived as follows: Construct a triangle as 

in Figure 5.1. 

C , , , 

A 

, , , , , 
, B 

Figure 5.1: Angle between normal vectors 

The cosine theorem gives 

-2-2-2 --
BC =AB +AC -2AB·ACcos8 

Therefore 
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Hence 

when nk is very similar to nk_1, e is very small, cos e is very close to 1. 

Therefore, the procedure for finding the worst case stability margin (of an initial 

load So) can be given as follows [15]: 

1. Let k = 0, select no 

2. k =k+l 

3. Find the critical point Sk by solving the continuation power flow for 

Sk = So + Ank_1 

4. Find nk at Sk' using the procedure in the last section 

T 

5. If 11~i1.~~:~111<1.0,got02 
6. IISk - SO II is the worst case stability margin and nk is the worst case load change 

direction. 

This procedure is graphically illustrated in Figure 5.2 

This procedure works quite satisfactorily, especially when the initial load is not too 

far from the critical boundary. In such cases, the load need not be increased very much 

when a critical point is encountered. Thus, what we are dealing with is the local behavior 
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of the critical boundary. Since the boundary is locally smooth, the convergence property 

of the iteration is nice. Although the above iterative procedure is meant to find the local 

minimum of the margin, in such cases this local minimum is likely to be the global mini­

mum. 

Unsolvable Region 

Solvable Region 

Figure 5.2: Iterative procedure to find worst case load change direction 

However, when the initial load is not so small, the situation may possibly be quite 

different. Since in such cases the voltage stability margin is large, the load needs to be in­

creased greatly before a critical point is encountered. Therefore, the distance between the 

initial load and the critical point is larger when compared to the curvature of the critical sur­

face. First of all, the local minimum we are going to find is no longer likely to be the 

global minimum. Even worse, we may not be able to find a local minimum. Figure 5.3 

on the following page illustrates one such (imaginary) situation. 
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5.4 Simulations 

In this section, we provide simulation results using the procedures developed in 

Sections 2 and 3. We fIrst present the simulation results for a 5-bus system in Figure 5.3 

as studied in [19]. Then we will present simulation results for the 3D-bus New England 

test system as shown in Figure 5.4. 

The system load So at the initial operating point is given in the first row of Table 

5.1. We arbitrarily select a load change direction vector flo as shown in row 2. Then the 

procedure outlined in the previous section is followed. The procedure converged in 9 

steps. The eight intermediate critical loads and normal vectors together with the fInal worst 

case critical load are listed in the remaining rows. The real power margins in each iteration 

Solvable 
region 

Po 

Unsolvable 
region 

Figure 5.3: Worst case margin may not be found by the proposed iteration 
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....,.......,..t 4 

5 

1 2 3 

Figure 5.4: 5-bus system 

are given in the last column. As can be seen, the margin decreased monotonically as the 

number of iterations is increased. Also, the normal vector converged to a constant vector 

rather rapidly, which corresponds to the worst case load change direction. The last critical 

load S9 is the closest point from the initial load So to the solvable /unsolvable boundary. 

This procedure is then applied to the 30 bus New England test system, and conver­

gence is obtained in only four iterations. Table 5.2 lists the initial system load, the three 

intermediate critical loads, and the fmal worst case critical load. The real power margins in 

each iteration are also listed in the last row. Although the final margin is a slightly larger 

than the preceding one, the difference is less than 0.04 percent of the initial system load. 

Therefore, we can consider the last two margins the same. This small error is expected to 

be reduced if we select a stricter convergence criterion. 

Table 5.3 contains the initial load change direction and normal vectors at the critical 

loads of Table 5.2. Although it seems that ~ and n4 are quite different, they actually rep-

resent almost the same direction (the angle between the two is less than 2 degrees). The 
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reason is that they are not unit vectors; rather, they have been scaled to satisfy a require­

ment on the load change direction vector [3] in the continuation power flow method. 

Besides providing the worst case load change direction and worst case voltage 

stability margin, the procedure can also be used to identify buses with the heaviest load 

sharing. Figures 5.5 and 5.6 show the five largest real load buses, corresponding to So 

and S4' respectively. In each figure, the Roman numerals I, II, III, IV, V by the buses 

represent the rank of the five largest active loads. Note that the two buses with the heaviest 

load sharing remain the same. However, the relative ranks of the third, fourth, and fifth 

largest load sharing buses are rotated. 

During the simulation, one special concern needs to be taken care of. Since the 

new load change directions are calculated from the left eigenvector of the Jacobian matrix, 

the components may be positive or negative. For a negative component, the corresponding 

bus experiences an actual load decrease as the total system real power load is increased. 

This may cause the real load at some buses to become negative. Since a negative real load 

is physically impossible, physical constraints must be set to prevent the real load from be­

coming negative. This is done by simply setting the corresponding negative component to 

zero in the load change direction vector when the real load approaches zero at a bus. 

Once the worst case margin is found, it can be used to assess power system secu­

rity. If the worst case margin is smaller than a certain threshold, the system is operating 

dangerously close to voltage instability. Load shedding measures must be taken to ensure 

voltage stability. For certain contingencies, the margin may be completely lost and the total 

system load is too large to be solvable. The method in this chapter is no longer useful. 

The next chapter presents an optimal load shedding strategy to deal with such cases. 
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Table 5.1: Initial and critical 10 ads and nonna1 vector in 5-bus system 

P2 q2 P4 q4 P5 q5 IISi -Solll 

So 1.1500 0.6000 0.7000 0.3000 0.7000 0.4000 

no 0.3513 0.0055 0.7160 -0.0326 0.3570 0.0074 

SI 1.8219 0.6105 2.0694 0.2377 1.3828 0.4142 2.720 

~ -9.7934d-3 -5.8608d-5 0.7372 0.6500 8.0119d-2 0.1650 

S2 1.1409 0.5999 1.3862 0.9049 0.7746 0.5536 0.7500 

~ 2.0342d-3 1.0885d-4 0.5775 0.8005 5.6537d-2 0.1499 

S3 1.1518 0.6001 1.2149 1.0137 0.7504 0.5336 0.5700 

~ -4.9995d-3 -3.1683d-4 0.5106 0.8479 3.8600d-2 0.1368 

S4 1.1455 0.5997 1.1561 1.0575 0.7345 0.5222 0.4900 

n4 -2.9286d-3 -1.8682d-4 0.4960 0.8563 4.1190d-2 0.1381 

S5 1.1474 0.5998 1.1430 1.0647 0.7368 0.5233 0.4800 

n5 -3.0338d-3 -1.9433d-4 0.4917 0.8588 4.0821d-2 0.1377 

S6 1.1473 0.5998 1.1391 1.0669 0.7365 0.5229 0.4700 

n6 -3.0437d-3 -1.9533d-4 0.4905 0.8596 4.0715d-2 0.1375 

S7 1.1473 0.5998 1.1378 1.0676 0.7364 0.5228 0.4700 

~ -3.0461d-3 -1.9559d-4 0.4901 0.8589 4.0686d-2 0.1375 

S8 1.1473 0.5998 1.1377 1.0678 0.7363 0.5228 0.4700 

ng -3.0468d-3 -1.9567d-4 0.4900 0.8589 4.0677d-2 0.1375 

S9 1.1473 0.5998 1.1377 1.0679 0.7363 0.5228 0.4700 



42 

Table 5.2: Initial and critical loads in 30-bus system 

So SI S2 S3 S4 

P3 3.2200 6.1061 3.4069 3.3417 3.3232 

q3 0.0240 0.0455 1.1129 1.3644 1.3768 

P4 5.0000 9.8416 5.2622 5.1707 5.1225 

q4 0.8400 1.5929 2.3089 2.2318 2.2070 

P7 2.3380 4.4336 2.5576 2.4851 2.4628 

q7 0.8400 1.5929 2.1848 2.0613 2.0431 

Ps 5.2200 9.8987 5.4798 5.3897 5.3638 

qs 0.7600 1.4412 2.0565 1.9354 1.9214 

P12 0.0850 0.1612 0.0000 0.0075 0.0259 

ql2 0.8800 1.6686 2.4804 2.4412 2.3784 

PIS 3.200 6.0682 3.3960 3.3022 3.2859 

qls 1.5300 2.9014 3.4183 3.2641 3.1637 

PI6 3.2940 6.2465 3.2825 3.2630 3.2818 

ql6 0.3230 0.6125 2.2078 2.2010 1.9334 

PI8 1.5800 2.9962 1.7694 1.7026 1.6879 

qls 0.3000 0.5689 1.7746 1.8293 1.8189 

P21 2.7400 5.1959 2.3563 2.4871 2.5633 

q21 1.1500 2.1808 3.2201 2.8767 2.7600 

P24 3.0860 5.8520 3.0607 3.0405 3.0632 

q24 0.9220 1.7484 2.8982 2.6703 2.5629 

P26 1.3900 2.6359 1.3079 1.3592 1.3689 

q26 0.1700 0.3224 1.0146 1.5541 1.6853 

P27 2.8100 5.3286 2.9126 2.9035 2.9056 

q27 0.7550 1.4317 1.9590 2.2871 2.3608 

P28 2.0600 3.9064 1.7886 1.8260 1.8268 

q28 0.2760 0.5234 0.4808 1.5879 1.8191 

Ilpi-polil 4.5230 0.6400 0.2600 0.2800 
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Table 5.3: Initial load change direction and normal vectors in 30-bus system 

no ~ 1l-z n3 n4 

P3 21.4667 1.2539 1.5995 1.2464 1.1783 

q3 0.1600 8.6459 17.6144 16.3370 14.6187 

P4 33.3333 1.7589 2.2432 1.7215 1.5921 

q4 5.6000 9.8530 18.2895 16.5083 14.6403 

P7 15.5876 1.4729 1.9335 1.5073 1.3638 

q7 5.6000 9.0208 16.0498 14.5300 12.8020 

Ps 34.8000 1.7424 2.2307 1.7363 1.5718 

qs 5.0667 8.6965 15.4465 14.0260 12.3523 

P12 0.5667 -0.9455 -1.0181 -0.7136 -0.6266 

qI2 5.8667 10.7351 20.5157 18.0963 15.9498 

PI5 21.3333 1.3150 1.3430 1.0370 1.0141 

qI5 10.2000 12.6661 22.7884 19.4512 17.5594 

PI6 21.9600 -7.7320 -0.4072 -0.1472 -6.4382d-2 

qI6 2.1533 12.6432 22.3132 19.4511 17.3400 

PIS 10.5333 1.2703 1.6117 1.3026 1.2559 

qiS 2.0000 9.8912 20.0965 18.3430 16.4644 

P2I 18.2667 -2.5740 -3.3237 -2.1340 -1.8734 

q2I 7.6667 13.8856 22.6907 19.4442 17.2817 

P24 20.5733 -0.1695 -0.5973 -0.2749 -0.1740 

q24 6.1467 13.2558 22.9753 19.8168 17.6507 

P26 9.2667 -0.5504 -0.4048 -0.2546 -0.2326 

q26 1.1333 5.6652 18.1877 18.2999 16.8543 

P27 18.7333 0.6880 1.2291 1.1540 1.1493 

q27 5.0333 8.0764 20.1334 19.3923 17.7303 

P28 13.7333 -1.8204 -3.0752 -2.8164 -2.7900 

q28 1.8400 1.3740 17.2401 18.6358 17.4613 
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CHAPTER 6. OPTIMAL LOAD SHEDDING FOR 

UNSOL V ABLE LOADS 

6.1 Introduction 

Up to now, we have been considering the voltage stability problem when the sys­

tem load is increased from an initial load. The presumption in doing this is that the initial 

load must correspond to a stable operating point. That is, the power flow equation must 

have a unique solution. In this chapter, we consider the problem of voltage stability by 

load shedding when the initial system load is so large that the system can not be operated at 

a stable operating point. Such a system load is called an unsolvable load, because the 

power flow equation does not have a solution. 

We study this problem because that the unsolvable loads often represent the most 

severe threats to secure system operation. If we try to operate the system with an unsolv­

able load, it will lead to voltage collapse. Therefore, it is very important to identify unsolv­

able loads and to find the best way to decrease the load to insure system stability. 

Furthermore, these unsolvable loads are not imaginary situations. For example, when 

contingency occurs, an already stressed system is further degraded through the removal of 

additional equipment. Then the solvable load before contingency may become an unsolv­

able load after the contingency. 
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The objectives of this chapter include the following: 1) to find a suitable method for 

solving the power flow equation that can be easily incorporated into the continuation power 

flow method and that can handle both solvable and unsolvable loads, 2) for an unsolvable 

load, to find the optimal load shedding to regain voltage stability. 

The organization of this chapter is as follows. In Section 6.2, we review a method 

that is very intuitive and can be easily incorporated into the continuation power flow 

method. But it can not provide guaranteed convergence, especially for the situations in 

which we are most interested. In Section 6.3, we provide a modified scheme based on the 

method in Section 6.2, which will now guarantee convergence. In Section 6.4, we intro­

duce an iterative procedure to fmd the closest point on the stability/instability boundary to 

an unsolvable load, and thus derive an optimal load shedding method for achieving voltage 

stability. Simulation results using the continuation power flow package are demonstrated 

in Section 6.5. 

6.2 Damped Newton-Raphson Method in Polar Coordinates 

The Newton- Raphson method is used to solve the power flow equation 

P(x)=O (6.1) 

using the iterative formula 

XH1 = Xl - Llxl 

Llxl = J-1p(xt ) 

where J is the Jacobian matrix evaluated at Xl. 

(6.2) 

(6.3) 

However, in the case of unsolvable loads, this method will not converge, since 

there is no solution to the power flow equation. In order to get the best approximate solu-
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tion to equation (6.1), we can transform the problem of solving a set of nonlinear 

equations to the problem of minimizing an objective function: 

minG(x) = [F(x)f F(x) (6.4) 
x 

This vector optimization problem can be further simplified by introducing the so-called 

"optimal multiplier" in order to change the problem into a scalar optimization problem [20]. 

The basic idea is as follows. Let 

(6.5) 

Then the vector minimization problem in (6.4) becomes a scalar minimization problem. 

(6.6) 

In Cartesian coordinates, the power flow equation is a second order polynomial equation, 

and the minimization of p can be obtained by solving a third-order scalar polynomial 

[20], as discussed in appendix B. In this method, the total mismatch (the objective func­

tion) is guaranteed to decrease in each step. For solvable loads, /l* "" 1. For unsolvable 

loads, p* ~ O. 

Since the continuation power flow method is formulated in the polar coordinates, 

the optimal multiplier method needs to be transformed into the polar coordinates in order 

for it to be incorporated into the continuation power flow method. However, even though 

this transformation is straightforward, once it is in the polar coordinates, the power flow 

equation becomes nonpolynomial. The higher order terms can no longer be handled ana­

lytically. A linearization technique has to be used in order to solve for the optimal multi­

plier. Because of this approximation, it is no longer guaranteed that the total mismatch will 

decrease in each N-R iteration. In our simulation, we have observed that oscillation will 

occur most of the time if the load is in unsolvable range. Furthermore, the computation in-
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volved in transforming back and forth between polar and Cartesian coordinates is quite ex-

pensive. 

Dehnel and Dommel [21] proposed a simpler method, which· they called the 

damped Newton-Raphson method. It is also a Newton/minimization method. Since it is 

formulated in polar coordinates, it can easily be incorporated into the continuation power 

flow method. 

Suppose that in the kth iteration of Newton-Raphson, we have calculated the cor­

rection vector Llxk (here everything is in polar coordinates). In an attempt to find a suitable 

multiplier Proin such that xk + ProinLlxk will minimize the total mismatch G(xk + ProinLlxk)' 

the following steps are used. First, we select an initial guess for Proin' say, IIp. Then we 

evaluate G(x) at three points: ¢! = G(xk -llpLlxk ), 

¢3 = G(xk + llpLlxk )· Interpolating these three points, G(x) can be approximated by the 

following second order polynomial: 

Finally, we will select Proin to minimize the above second order function. This Pmin can be 

easily calculated to be 

As for the selection of IIp, the authors [21] proposed the following formula 

where a has been suggested to be chosen as a = 0.25. 

The advantage of this method is that it is simple and intuitive and that it can easily 

be incorporated into the continuation power flow method, since it is formulated in polar co-
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ordinates. However, unlike the method in the Cartesian coordinates, the damped Newton­

Raphson method does not guarantee the reduction of the total mismatch in each iteration. 

The reason is that f.lmin is selected to minimize <fJ(f.l), which is an approximation of the 

total mismatch. Although we will have <fJ{f.Lmin) ~ G(xk ), we are not guaranteed to have 

G(Xk+1) = G(xk + f.lminlixk) ~ G(xk). In fact, our simulation has demonstrated that the total 

mismatch can increase, especially when we are close to the solvable/unsolvable boundary, 

which is the region in which we are most interested. 

6.3 Damped N-R Method with Guaranteed Convergence 

In order to obtain a method with guaranteed convergence for the continuation 

power flow method, we decided to modify the method outlined in the last section. Since 

the problem is already formulated in polar coordinates, simplicity will be reserved. 

The idea behind our modification is quite simple. The divergence problem of the 

method in the last section is a result of the fact that f.lmin is minimizing <fJ(f.l), an approxi­

mation of the total mismatch rather than the total mismatch G(x) itself. In order to insure 

convergence, we select f.l out of ±t,.f.l, 0, f.lmin such that the corresponding G is the mini­

mum. Then the new mismatch is guaranteed to be smaller or equal to the total mismatch in 

the previous step. Thus the convergence is guaranteed. 11.f.l is initially selected to be 0.25 

from experience and updated in each iteration. 

The rules for updating t,.f.l include three different situations. The first situation is 

graphically shown in Figure 6.1 where <fJ4 is the smallest. This means that f.l. is the best 

step size and 11.f.l has worked well for the damped Newton-Raphson method. Therefore, 

we select 11.f.l in the next step to be the average of f.l. and 11.f.l of the current step. The 
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second situation, in which ¢2 is the smallest, is graphically shown in Figure 6.2. Since 

this indicates that 0 is the best step size out of the four choices, Ap must be too large. 

Therefore, we reduce Ap by half. In the third situation, either ¢! or ¢3 is the smallest. 

Figure 6.3 shows the situation where ¢3 is the smallest. Since the minimum of the four 

points happens at the edge, the tentative step size Ap must be too small. Therefore, we 

need to increase Ap. We consider two cases: if Ap is also too small in the previous itera­

tion, we increase Ap by 100%; otherwise, we increase Ap by half. 

Then the modified damped Newton-Raphson algorithm is as follows: 

1. Take the initial Ap = 0.25 

¢! = G(x" - ApAx,,) 

2. Evaluate the total mismatch ¢2 = G(x" - 0 . Ax,,) 

¢3 = G(x" + ApAx,,) 

G(xk+~xk) 

Jl* 

Figure 6.1: lllustration of updating Ap (Case 1) 
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Il* +~ 

Figure 6.2: Illustration of updating AJ.1 (Case 2) 

G(xk + JlAxk) 

Il* Il 

Figure 6.3: Illustration of updating AJ.l (Case 3) 
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3. Compute J1 = J1* which minimizes the second order polynomial. 1. e., 

J1* = t:.J.l(¢1 - ¢3) 
2¢1 - 4¢2 + 2¢3 

5. If ¢I is the smallest, set J.l = -t:.J1 and, if the previous time ¢I is also smallest, 

t:.J.l = 2t:.J.l ; otherwise, t:.J.l = 1. 5t:.J.l 

If ¢2 is the smallest, set J1 = 0, i. e., no change and t:.J1 = t:.Jj{ 

If ¢3 is the smallest, set J.l = t:.J.l , and if ¢3 is the smallest last time, 

t:.J1 = 2t:.J.l , else t:.J1 = 1. 5t:.J1 

If ¢ 4 is the smallest, set J.l = J.l* and t:.j.1 = t:.j.1 + j.1* 
2 

6. If t:.J.l > 1, t:.j.1 = 1; if t:.J.l < -1, t:.j.1 = -1 

8. If not converged, k = k + 1; go to 2. 

9. Done. 

Note that in step 6, we have limited t:.j.1 to a maximum of ±1 to prevent potential 

divergence. This procedure guarantees that the total mismatch will be decreased at each 

step, and the solution will converge to a local minimum. 

6.4 Optimal Load Shedding to Regain Voltage Stability 

In this section, we incorporate the recent results of Overbye [22] into the continua­

tion power flow method in order to provide optimal load shedding to regain voltage stabil­

ity for unsolvable loads. The optimal load shedding is the minimum amount of the load re­

duction needed to move an unsolvable load to the solvable region. By optimality, the final 
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point must be on the solvable/unsolvable boundary, and the vector connecting the initial 

unsolvable load and the reduced load must be perpendicular to this boundary. 

Let P be the vector of the initial unsolvable load and S be the corresponding vec-

tor of injection, i.e., the constant real and reactive power load minus generation. Let pm 

be the load after the optimal load shedding and Sm be the corresponding injection. Then it 

can be easily seen that the optimal load shedding P - pm is the same as S - Sm. Therefore 

our goal is to find a new injection sm such that 1) Sm is on the solvable/unsolvable bound-

ary, and 2) S - sm is normal to the boundary. 

By using the procedure provided in the last section, the best approximation solution 

x· is guaranteed to be a local minimum of the total mismatch G(x) = [F(x)f F(x) 

= (S - f(X»T (S - f(x». Therefore, x· must satisfy the necessary condition of local 

minimum 

~G(x·) = ~[F(x·l· F(x·)] 
dx dx 

= -2l(x·l (S - f(x·» = 0 

Since we have an unsolvable load, S - f(x·),;: O. Therefore, l(x·) is singular, which 

implies that x· is on the stability/instability boundary. Hence, f(x·) corresponds to a 

load on the solvable/unsolvable boundary L. Although this f(x·) may not be sm, the 

projection of S - f(x·) onto the normal of L at f(x·) can be used as an approximation 

of the optimal load shedding. Since, by a result of Dobson [15], the left eigenvector w 

corresponding to the zero eigenvalue of l(x·) is perpendicular to the boundary, the 

following formula can be used to calculate Sm: 

Sm = S - «S - f(x*)l w)w 

This suggests the following iterative procedure [22]: 

1. Set Sa = S, i == 0, select tolerance e 
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2. Solve: min(Si - f(x)l (Si - f(x)), to get Xi· 

3. If Iisi - f(xi*)11 ~ E, go to 7 

4. Calculate left eigenvector Wi corresponding to the zero eigenvalue of J(Xi*) 

5. Let Si+l = S - «S - f(xi*)l Wi)Wi 

6. Leti=i+l,got02 

7. Optimal load shedding = S - Si 

8. Done 

This procedure is graphically illustrated in Figure 6.4. Note that SO is the initial 

injection, which lies in the unsolvable region. By solving the minimization problem in step 

2 using the method from the previous section, we land on a point f(xo*) on the solv-

able/unsolvable boundary l:. By projecting along the normal vector at this point, we ob­

tain a new injection SI. Repeating step 2, we arrive at another point on the boundary l:. 

This process continues until the injection converges to the closest point sm on l: to SO . 

6.6 Simulation 

We have applied the optimal load shedding procedure of the previous section to the 

30 bus New England test system and the 162-bus Iowa reduced system described in 

Chapter 3. In doing so, we have paid special attention to the performance of the damped 

Newton-Raphson method with guaranteed convergence, which was presented in Section 

6.4. The simulation results are summarized in the following several tables. 

Table 6.1 illustrates the simulation results for the 30 bus England test system. The 

load is a solvable load. As can be seen from the table, the total mismatch is strictly reduced 

in each step until it converges to zero, indicating that a convergent solution has been found. 
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U nsol vable Region 

S olvabl e Regi on 

Figure 6.4: lllustration of the iterative procedure for optimal load shedding 

Table 6.1: Performance of damped N-R method with guaranteed convergence 

(30-bus system) 

Iteration Number Total Mismatch Choice of Multiplier 

1 1.857 + /lp 

2 0.936 + /lp 

3 0.238 + /lp 

4 0.000 + /lp 
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Thus, this method can handle the solvable case rather efficiently. We have also compared 

the resulting solution with that obtained by a standard method, and voltage solutions are 

the same. One point we would like to point out is that in all five steps, the multiplier has 

been selected to be +ll.p, instead of Pmin. This means that Pmin as proposed by Dehnel 

and Dommel [21] did not provide as much mismatch reduction as +ll.p. Therefore, Pmin 

does not represent an "optimal multiplier". In our experience, this has usually been the 

case. 

Table 6.2 illustrates the simulation result for the same 30 bus system but with a dif­

ferent (increased) load. For this load, the iteration converged to a solution whose corre­

sponding total mismatch is not zero, meaning that we have an unsolvable load. It has also 

been verified that the Jacobian matrix at the final solution has an eigenvalue which is sev­

eral order of magnitude smaller than the rest of the eigenValues. This verifies that the itera­

tion has converged to a local minimum. From the table, it can also be seen that the total 

mismatch is reduced in each step, except when there is PV-PQ bus change, where we see a 

large change in the total mismatch. The reason for this is that when PV-PQ change hap­

pens, the system dimension is changed and, therefore, whatever solution we have arrived 

is expected to be away from the final solution. Again, we see in this example that the Pmin 

does not often correspond to the best total mismatch reduction. As a matter of fact, if we 

have selected Pmin as the optimal multiplier in each step for this example, the iteration 

would have become divergent. This explains why we have proposed the modification. 

Table 6.3 summarizes the performance of the optimal load shedding procedure as 

applied to the 30-bus test system. First, note that the total mismatch is reduced in each it­

eration until finally it converges to zero. This implies that the injection obtained by projec-
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Table 6.2: Performance of damped N-R method with guaranteed convergence 

(162-bus system) 

Iteration Number Total Mismatch Choice of Multiplier 

1 11.989 +Llp 

2 6.643 +Llp 

3 3.338 +Llp 

4 1.374 +Llp 

5 0.365 +Llp 

6 0.071 +Llp 

7 0.006 +Llp 

PV-PQ Changed 

8 16.506 0 

11 12.667 +Llp 

13 4.342 +Llp 

17 3.555 +Llp 

23 3.539 +Llp 

27 3.520 +Llp 

32 3.518 Pmin 

33 3.517 +Llp 

tion in each iteration, is finally moved from the unsolvable region to the boundary L. 

Secondly, the minimum eigenvalue of the Jacobian matrix is quite small, indicating that in 

each iteration the damped N-R method has provided convergent solution on the boundary. 

Finally, the last row shows the amount of the load shedding needed to regain voltage sta-
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bility in each step. In this example, this number is reduced in each step until it finally be­

came a minimum. This minimum is the optimal (minimum) load shedding for stability. 

Table 6.4 contains the simulation result using the same procedure but for a much 

larger, 162-bus Iowa reduced system. Note that unlike our results in the previous exam­

ple, we do not have uniform decreasing of the total mismatch, or the load shedding, al­

though the damped N-R method still produces a solution on the boundary in each step. 

Table 6.3: Testing results on optimal load shedding (30-bus system) 

Iteration Number IISi - f(x i*)112 Min Eigvl IISo - f(x i *)112 

1 3.134 -2.925* 10-6 3.558 

2 1.012 -3.158* 10-3 1.934 

3 0.363 -1.158* 10-4 1.672 

4 0.138 6.559* 10-2 1.627 

5 0.0001 1.627 

This can be explained as follows. For a large system, when the load (or injection) is close 

to the critical point (or the boundary), it is likely that some generator may have hit its reac­

tive power reserve limit, or at some bus the calculated load became negative. Our software 

automatically takes care of such incidents by imposing necessary limit bounds on the load 

and reactive power reserve. However, the use of such bounds includes a non-smooth op­

eration. Therefore, the boundary L may be altered, leading to non-smooth jumps of the 

power flow solution. 

In the case where the loads at certain buses can not be changed, the method pre­

sented can still be used. However, the load shedding will no longer be optimal. 
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Table 6.4: Testing results on optimal load shedding (162-bus system) 

Iteration Number IISi - f(x i O)1I2 Min Eigvl liSa - f(x i O)1I2 

1 3.276 4.255*10-5 3.276 

2 1.509 8.341 * 10-5 1.680 

3 0.492 -1.808* 10-5 0.990 

4 0.133 1.209*10-7 0.907 

5 0.050 -5.368* 10-3 0.906 

6 0.229 -5.800* 10-5 0.988 

7 0.089 -3.858* 10-4 0.964 

8 0.029 -1.970* 10-3 0.963 

9 0.076 2.703* 10-4 0.978 

10 0.028 -1.412* 10-4 0.976 

11 0.002 0.974 
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CHAPTER 7. CONCLUSION 

In this research, we have introduced several important features to the existing con-

tinuation power flow. Simulation results on two standard testing systems, the New 

England 30-bus system and the 162-bus Iowa reduced system, have demonstrated their ef-

fectiveness. These new features include the following. 

First, an optimal step length strategy has been derived and incorporated into the 

continuation power flow. The optimal step length is selected based on the sensitivity of 

bus reactive power generation to load change, this leads to the minimum number of steps in 

continuation power flow. Simulation results have verified these properties and also 

demonstrated a reduction in the number of Newton-Raphson iterations. 

Second, the MW distance to the critical point and the MV Ar reactive power reserve 

have proved to be an effective measure of margins to voltage instability. When compared 

to two other indices, the MW distance and reactive power reserve are much more sensitive 

over a much larger range of the load. Besides, the MW distance has a linear relationship to 
{ .. , . ........• '."". ," 

the total active power load. This property can be used to predict the final collapse even 

from the base case operating point (according to the load change direction and generation 

sharing scenario). Furthermore, our margins can be readily calculated with very little com­

putation. Simulation results have demonstrated the superior performance of MW distance 

and MV Ar reserve. 
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Third, the iterative procedure presented in Chapter 5 enables the continuation power 

flow to find the worst case load change scenario and the worst case margin to voltage in-

stability. This is especially useful when there is no reliable load change forecast available. 

The worst case margin guarantees static voltage stability as long as the total active power 

load increase is not more than the margin, no matter what the load increase pattern is. The 

worst case load change scenario provides very useful information to power system opera-

tors for precautionary measures. Simulation results demonstrate that the proposed proce­

dure is very effective ~hen the critical boundary is conve~. 

Finally, with the introduction of the dalllpeQ Newton-Raphson method with guar-
.. -"",.. . 

anteed convergence, the continuation power flow is able to deal with nonconvergent loads. 

By an iterative procedure, it is able to fmd an optimal load shedding that brings the load to 

the solvable region. This feature will be very useful in contingency analysis and power _ .. __ .---------._. ._ .. _-.... -- ......... - ...................... _.-.. ' . 

system planning. Simulation results demonstrated that our modifications have led to far 
------~-

superior perfonnance compared with that of a similar algorithm in the literature, and if the 

unsolvable load is not too far from the critical boundary, then the iteration converges fairly 

quickly. 

Future work in this direction will include the following aspects: 

• The critical boundary in general may be not convex, that is one of the reasons why 

we could not get the result for 162-bus system. Future work should be 

concentrated on this particular aspect. 

• Unsolvable power flow solution can be due to several reasons. In this thesis the 

case where large increase in load is considered to get unsolvable solution. 

However other cases where some type of outages that lead to unsolvable solution 

can be investigated. 
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APPENDIX A. ESTIMATE OF THE CRITICAL POINT 

A.I Introduction 

In order for the continuation power flow to be used in real time in utilities, improv­

ing computational speed is a very important aspect. Since the amount of computation is 

proportional to the number of points we calculate on the solution path before the critical 

point is reached, it has been our objective to reduce the number of steps that is required by 

the use of optimal step lengths or maximum step lengths. The consequence of using 

maximum step lengths is reduced resolution of the traced solution path. As a result, we 

will in general be unable to find the exact solution of the critical point. The goal of this 

chapter is to provide a more accurate estimation of the critical point based on the available 

infonnation from the continuation power flow. This improved estimation is obtained by 

solving a scalar nonlinear equation using Newton-Raphson algorithm plus some other 

scalar manipulations. Therefore, the computation needed for the improvement is minimal 

compared to that needed for solving the power flow equations, especially for large power 

systems. 

The methodology presented in this chapter is based on the work done by the au­

thors in [9-10]. we will provide a simplified derivation of the sensitivity of bus voltages 

to load changes near the critical point In Section A.3, we generalize the estimation fonnu-
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lae for the sensitivity coefficients and for the critical load change parameter such that they 

can be readily used in the continuation power flow. In Section A.4, we present an algo-

rithm based on Newton's method to solve for the desired critical load parameter. Finally in 

Section A.5, we will present simulation results on the New England 3D-bus test system. 

A.2 Voltage Sensitivity near a Singular Point 

Let z denote the vector of specified load flow injections and x denote the vector of 

bus voltage components in the Cartesian coordinates. Then, the power flow equation ofod 

choiceork is given by: 

z = F(x) 

In the Cartesian (rectangular) coordinates, the nonlinear function F(x) is a second order 

function. Small changes dz, dx of z and x respectively will satisfy the following equa-

tion [9] : 

where 

Xo : the operating point, 

dx =x-xo 

dz=z-F(xo) 

Q(dx) = 1. L(dx)dx 
2 

dz = L(xo)dx+ Q(dx) (A. I) 

Since F(x) is second order function in x, L(x) is linear in x. To obtain the voltage sen­

sitivity near a singular point, let us takexo = xs= singular point. Then L(xs) is singular 
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with rank = n - 1. Therefore, there exist column vectors VI and a such that 

L(xs)vI = 0 

aTL(xs) = 0 
(A.2) 

Let {Wp W2' • " W n-I} be the basis of the orthogonal complement of span{ VI} and 

let W = [wp w2 ,", wn-J Then any vector can be expressed as a linear combination of VI 

and wk's. Therefore, dx can be written in the form [10] : 

(A.3) 

where da is a scalar and dJ.1 is an n -1 dimensional column vector. Substituting equa-

tions (A.2) and (A.3) into equation (A. 1 ), we get 

1 
dz = L(xs)(vIda+ WdJ.1) + 2 L(vIda+ WdJ.1)(vIda+ WdJ.1) 

1 1 
= L(xs)WdJ.1 + -L(VI)VId~ + -L(vl )WdJ.1da 

2 2 
1 1 

+ 2 L(WdJ.1)v1da+"2L (WdJ.1)WdJ.1 

(A.4) 

1 I 
= L(xJWdJ.1 + -L(VI)VId~ + L(WdJ.1)v1da+-L(WdJ.1 )WdJ.1 

2 2 

To solve for da and dJ.1 from the above equation, let us keep the lowest order terms and 

ignore higher order terms. Apparently when Idzl is small, IdJ.11 will be roughly propor­

tional to Idzl, and Ida! will be roughly proportional to~ldzl, rending the last two terms in 

higher order of dz. This is verified by the following calculation. Ignoring the last two 

terms in Equation (AA), we get 

Pre-multiplying by aT yields: 

1 
dz = L(xs)WdJ.1 +-L(Vl)Vld~ 

2 

since aT L(xs ) = O. This leads to the solution: 

(A.S) 
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(A6) 

Substituting back into equation (A.S) leads to 

L(x )Wdp = dz - L(V1)V1 aT dz 
s aT L(v

1 
)Vl 

Since W spans the orthogonal complement of the null space of L(xs)' WT I! (xs)L(xs)W 

is nonsingular. Hence, we have 

WT I! (xs)L(xs)Wdp = WT LT (Xs)(dZ - ~(Vl)Vl aT dZ) 
a L(V1)V1 

dJ.l = (WT I! (xs)L(xs)WtwT LT (xs)(dz - ~(Vl)Vl aT dz) (A.7) 
a L(V1)V1 

Equations (A.6) and (A.7) verify that Ida! and \dp\ are indeed proportional to ~Idzl and 

dz respectively. 

In continuation power flow, we usually consider load changes of the form 

z= Zo +AC 

where Zo is the vector of initial load, C is the vector of load change direction, and A is the 

load change parameter. Then, the load at the critical point or the singular point is of the 

form: 

where As is the load change parameter corresponding to the critical point. Then we have: 

dz = Zs - Z = (As - A )C 

Substituting this into Equations (A6) and (A7) leads to 

(A8) 
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and (A.9) 

where kl is a scalar and k2 is an n -1 dimensional constant column vector. Using Equa-

tions (A.8) and (A.9), Equation (A.3) becomes 

(A. 10) 

where 

are n dimensional constant column vectors, and 

dx=x-x s 

with x and Xs being the corresponding power flow solution for z and Zs respectively. 

Although we started the derivation in the Cartesian space for simplicity, the qualitative rela­

tionship between dx and As - A in Equation (A.lO) holds for any coordinate system. 

Therefore, Equation (A. 10) can be directly used in the continuation power flow. 

A.3 Solution of v and OJ in the Continuation Power Flow 

From equation (A. 10) we can see: 

Once v and OJ are known, then xs ' the critical point, can be calculated using the above 

equation with x being the solution of any nearby point. Therefore, the focus is now being 

placed on the calculation of v and OJ. 

Suppose we have calculated many points on the power flow curve by using the 

continuation power flow method. Let XI' x2 ' x3 ' x4 ' Xs be the five points closest to the 

critical point, and AI' A2 , A3 , A4 , As be the corresponding load change parameters. Then 
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we have the following five equations obtained by applying Equation (A 10) to each of the 

five closest points: 

-Xs + Xl = V~IAs - All + m(As - AI) 

-Xs + x2 = v~IAs - A21 + m(As - A2) 

-Xs + X3 = v~IAs - A31 + m(As - A3) 

-Xs + X4 = V~IA,s - A41 + m(A,s - A,4) 

-Xs + Xs = V~IAs - Asl + m(As - As) 

Upon subtracting Equation (All) from Equation (A12), we get: 

Dividing this Equation by A2 - Al leads to: 

(All) 

(A12) 

(A13) 

(A. 14) 

(A15) 

(A.16) 

Similarly we can obtain three more equations of this form by using Equations (A.12) -

(A.15): 

(A17) 

(A18) 

(A.19) 

Subtracting Equation (A16) from Equation (A17) results in: 

Similarly we can get from Equations (A17) - (A19) 



72 

and 

Substituting Equation (A.20) from Equation (A21), yields: 

_ (~IAs - A41- ~IAs - A31 ~IAs - A31- ~IAs - A21 M..11 -v -2....!...:...--~~---=-
A4 -A3 A3 -A2 

(A.23) 

+ ~IAs -A21-~IAs -A1IJ 
A2 -AI 

Substituting Equation (A21) from Equation (A22), yields: 

M..12 == v(~IAs - A51- ~IAs - A41 _ 2 ~IAs - A41- ~IAs - A31 
As -A4 A4 -A3 

(A24) 

+ ~IAs - A31- ~IAs - A21 J 
A3 -A2 

Finally let us define: I!.t = ~I~:::' then we have 
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Since by defmition I1t is always positive, the "+" sign should be used if the value of the 

fraction is positive and "-" sign should be used if otherwise. Define f(As) by 

Then As satisfies the equation: 

f(As) = 0 (A.25) 

Notice that from their definitions, 111, •• 114 , 11111' ... 11113, 111111/, 11M2 and I1t are calcu­

lated from xl'···xs and A/,···As only. Therefore, they are readily available once we have 

calculated five points in the continuation power flow. 

The solution of Equation (A.25) will be discussed in the next section. Once As is 

solved, Equation (A.24) can be used to solve for v as 

v = 11M2 (A.26) 
~IAs - Asl-~IAs - A41 ~IAs - A41-~IAs - A31 ~IAs - A31- ~IAs - A21 
....!...:-~-:......--.!...:-----'- - 2 + -'-'---.::.-...!..:.-----'-

As - A4 A4 - A3 A3 - A2 

With this solution, equation (A.19) can be rewritten as 

(A.27) 
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that gives the solution for OJ. Once we have v and OJ, we can use Equation (A.15) to cal­

culate the critical point xsas follows: 

(A.28) 

Note that we have used Equations (A.24), (A. 19) and (A. 15) to calculated v, OJ, 

Xs respectively. We could have used any other combination, such as Equations (A.20), 

(A.16) and (A.1I), for the same purpose. The reason of our choice is as follows. The 

five points Xl' X2' X3' X4 ' Xs from the continuation power flow are of different distances 

to the critical point. The last point, i. e. Xs is closet to the critical point, hence we use 

Equations (A.23), (A.19) and (A. IS) instead of any others. Therefore, our numerical error 

is the smallest. 

A.4 Solution of the Critical Load Change Parameter As 

From the discussion oflast section, once As is calculated, Equations (A.26) and 

(A.27) can be easily used to obtain v and OJ respectively, then the Equations (A.28) gives 

the vector of bus voltages at the critical load. Therefore, the key is to solve As. Recall 

from last section that As has to satisfy 

(A.25) 

which is a nonlinear equation. Newton's method can be used to solve Equation (A.25). 

To derive the formula, let Ao be an initial guess for As ( the selection of Ao will be dis­

cussed later). Then the fIrst order Taylor series approximation of f(As) leads to 

Solving for As yields 
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Writing in a recursive fonn, the above equation becomes: 

By the defmition of 10.s), we have 

1 1 1 1 

dl I = ~ Ak - As - ~ Ak - A4 + (=+= Ilt -1) ~ Ak - A4 ~ Ak - A3 
dA "="1 2( As - A4) 2 (A4 - A3) 

1 1 1 1 

+(1 ± Ilt) ~Ak - A3 - ~Ak - A2 =+= M ~Ak - A2 ~Ak - Al 
2 (A3-AJ 2(A2 -AI ) 

Then the recursive computer algorithm for calculating As looks like this: 

1) Select £, Ao' set k = 1 

2) Calculate Ik using Equation (A.30) 

3) Calculate dfk using Equation (A.31) 
dA 

4) If 1 ~Ik < £, stop 

/ ~A 

(A.29) 

(A. 30) 

(A.31) 
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5) Set At = At-1 - I ~/t 
/~A 

6) Set k=k+l,got02) 

This seemingly simple algorithm will not work well if brutally implemented. The 

difficulty comes from the specific form of the function I(As)' which is not friendly at all to 

the Newton algorithm. Figure A.l illustrates one typical shape of the function. First, if, 

during iteration, At happens to be exactly one of those five points (AI' A2 , A3 , A4 , As) 

from continuation power flow, then I ~/t = 0, and At will not be updated any more. 

/~A 

10r-----------~----------------------~----------, 

. . : : : -1 : : : 

S;;C\"i1\' lt l 
o ~<.~ ....... : ...... -\ ... ! ........... l;, u u u. \ r' • . . . 

: \: : : ,-'" : : 
\ 1 'Ii : 
\ t : 

.S·\fi···· 
. "I: 

~: 
-10L-----------~----------------------~----------~ 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 

Load change parameter lambda 

Figure A.I: A Typical curve of I(A) vs A 
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This gives a false convergence, since Ak :;; As' Second, if Ak is not exactly but very close 

to one of those five points, then d;, may be exceedingly large and cause numerical prob-

lem, since f(A k ) is not differentiable at those five points. Finally, some segments of the 

curve f(A) are quite flat, therefore dfk may be very small, sending xk far away from the 
dA 

true solution. Consequently, Ak will oscillate between the two sides of As and may grow 

unbounded in magnitude. All these three situations have appeared in our simulation. To 

avoid these complications, two measures must be taken: proper selection of initial guess 

Ao, and use of hard limit to bound Ak • First the initial guess cannot be arbitrarily selected 

because of the above three mentioned difficulties. For the Newton's algorithm to work 

better, the initial guess Ao should be as close to As as possible. Since the five points AI' 

A2 , A3 , A4 , As are obtained using iterative method in the continuation power flow, it is 

always the case that As is closest to As and A4 is the second closest. It is also always 

true that A4 < As' But As is the last point from continuation power flow, it may be greater 

than As or may be smaller. This can be indicated by the voltage stability index available 

from continuation power flow program. If the index is greater than zero, As < As, if the 

index is negative, As > As' In the case As > As, a very good choice for Ao would be the 

mid-point between A4 and As. In the case As < As, we select Ao to be a little larger than 

As' Since we know As is already quite close to As' a 10% increase from As may be a 

good choice. 

In summary the initial guess Ao are to be selected as follows: 

1 
if index> 0, 

if index < 0, 
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This takes care of the selection of the initial guess. But during iteration, Ak can 

also become unstable. To prevent this, we use an upper and a lower limit to bound Ak • 

The selection of the limits are also dependent on the two cases: As > As and As < As. If 

As > As' we know As must be between A4 and As. Therefore, we select AI = A4 + e, and 

Au = As - e. If As < As' then we select AI = As + e, and Au = 1. 5As. 

Incorporating these discussions to the Newton's algorithm, we have: 

Newton's Algorithm for calculating As: 

1) Select e( = 10-6), set k = 1 

2) if voltage stability index> 0 

set AD :: 1.1As' AI:: As + e, Au :: 1.5As 

if voltage stability index < 0 

set AD :: A4 + As , AI:: A4 + e, Au:: As - e 
2 

3) Calculate Ii using Equation (A.30) 

4) Calculate d;. using Equation (A.31) 

5) If I ~/k < e, go to 9) 

/ ~A 
6) Let A,t = A,t-l - I ~fk 

/ ~A 
7) If At < AI' then At :: AI 

Else if At > Au' then At :: Au 

8) Set k = k+ 1 

9) Stop 
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A.5 Simulation Results 

The proposed scheme for estimating the critical point has tested on the New 

England 30-bus system. The regular continuation power flow method is fIrst applied to 

find a sequence of points on the solution path assuming a standard load change scenario. 

The last five points are the closest to the critical point to be found. The corresponding load 

change parameters are : 

A1=0.0969 

A2=0.1240 

A3=0.1281 

A4 =0.1337 

A5=0.1342 

using these five points a nonlinear function f(A) can be defined and the procedure from 

the last section is applied to find A
8
=0.1400. 

To verify that A
8
=0.1400 is indeed very close to the critical point, we have also 

used the continuation power flow with very small step lengths to find the critical point. 

The critical load change parameter found this way is A
8
=O.1346. It is apparent that the two 

methods led to very similar solutions. Since, at the expense of large computation with 

small step length, the critical load change parameter from the continuation power flow is 

quite accurate. However, since the estimate uses scalar manipulation after a continuation 

power flow run with large step length, the computation involved is significantly smaller. 
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APPENDIX B. OPTIMAL MULTIPLIER METHOD [19] 

The optimal multiplier method [19] transforms the problem of solving F(x) = Oto a 

minimization problem minG(x) = [F(x)f F(x)which is further reduced to a scalar prob-
x 

"optimal multiplier". To solve for the optimal multiplier Jl the power flow equation is for­

mulated in the Cartesian coordinates in the form: 

F(x) = Ys - y(x) = 0 

where Ys is the set load and y(x) is a second order hermitian function of x. Because of 

the hermitian property, 

a = Ys - y(x.t) 

where b = J(Y(Xk »lllk 

C = -y(Ax.t) 

Substituting (B.l) into (6.6) we get 

G(J.l) = (a + J.lb + J.l 2cl (a + J.lb + J.l2C) 

To solve for the minimizing J.l we set 

dG(J.l) = 2(a+ J.lb + J.l 2cl (b + 2J.lc) = 0 
dJ.l 

aTb + (2aT c + bTb)J.l + 3bT CJ.l2 + 2cT CJ.l3 = 0 

(B.l) 
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The above equation is a third order scalar polynomial equation, therefore can be 

easily solved using cardan formula. In this method, the total mismatch G(~) is guaranteed 

to decrease in each step. For solvable loads, J.L. = 1. For unsolvable loads, J.L. ~ O. 




