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I. INTRODUCTION 

In the nuclear power industry , the need of a fast and 

accurate method to calculate the power distribution and flux 

profiles is very important. This is due to the increasing 

complexity of the reactor core and the economic emphasis on 

operational optimization. 

Historically, finite difference methods were developed 

to solve this problem. However, as the situation becomes 

more and more complicated, especially in three-dimensional 

problems, the finite difference methods are too time con-

suming . For example, in a typical power reactor calcu-

lation, these calculations need prohibitive computing time 

(hours CPU time) and computer memory (thousands Kbyte), 

also, there are problems of data management and data re-

trieval associated with the use of these methods . 

The nodal model techniques firs t developed in the 

computer code FLARE [l], we.re designed to solve the problem 

with less cost and still yield acceptable results for 

many reactor problems. These techniques generally use 

averaged neutronic properties over an assembly node to 

calculate average power distributions. Another approach 

A Polynomial Fitting Technique , has proven to be quite a 

good method on the basis of calculation precision [2] . 

However, there are intrinsic computational problems involved 
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in the method, numerical stability and convergence behavior 

exhibit some problems. This research was conducted to in-

vestigate the mathematical properties of the method and to 

find some techniques to speed the convergence rate; therefore, 

these new efficient techniques can be used in reactor applica -

tions. 
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II. THE THEORY OF NEUTRON DIFFUSION NODAL MODEL 

A. The Discrete-Energy Group Diffusion Equation [3, 4) 

The discrete-energy group neutron diffusion equation 

is given by 

where 

-D v 2 ~ + [E + y,g y,g a,y,g 

2 a2 a2 
V = the Laplacian geometric operator, ~-2 + :----2 

~y,g 

ax ay 
in two-dimensional rectangular geometry 

= the neutron flux at location y and in energy 
group g, n/sec-cm2 

E = the macroscopic absorption cross section cm-l a,y,g 
E s,y,g-+n = the macroscopic scattering cross section from 

-1 energy group g to energy group n, cm 

D = the diffusion coefficient, cm y,g 
B2 = the transverse buckling term to account for the g 

effect of the leakage in the direction not 
treated explicitly, cm-2 

vEf ,y,g = the macroscopic production cross section, cm-l 

= the fission spectrum function, Ex g y ' g Xy,g 

K f • e L 
= the effective multiplication factor 

y = space location 

g = energy group 

= 1 . 0 
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In this research, the cross section data were obtained 

from a fine mesh diffusion theory calculation so that 

results can be compared to these more accurate calculations 

[ 5] • 

The following sections give a brief introduction to 

the new mathematical method for solving this equation. 

B. Neutron Diffusion-Nodal Model Concept 

The basic idea of this method is to present the flux 

distribution over fuel assemblies in terms of a polynomial 

(Fig. 1, Fig. 2) 

~(x) =a+ bx+ cy + dx2 + ey2 (2-1) 

The neutron balance equation can be solved easily by 

a simple evaluation, 
fl 

L = r~ 
-fl 
2 

e.g., the leakage term becomes 
fl 

f 
2 

o~tly=~ dx 
-b. 2 

-6. dy + 
2 

2 

(2-2) 

the integration can be evaluated over the fuel nodes easily 

which in other methods the calculation of leakage term can be 

very complicated. Similarly, much additional useful informa-

tion can be obtained as long as the coefficients have been 
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(i-1,j+l) (i , j+l) (i+l,j+l) 

(i-1, j) ( i , j ) (i+l,j) 

. 
(i-1,j-l) (i , j -1 ) (i+l,j-1} 

Figure 1. Fuel arrangement geometry 
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evaluated . 

The advantage of a polynomial representation becomes 

obvious because the manipulation of a polynomial function 

is much easier and simpler when compared to the manipulation 

of a set of discrete point values. However, the determination 

of the coefficients of the polynomial becomes the major 

concern of this method. This presents other kinds of 

problems and difficulties. 

C. The Determination of the Coefficients 

Assume that the flux distribution over the fuel 

assemblies are known, then one can apply a simple mathematical 

technique and the coefficients can be solved directly. One 

can determine the averaged flux over fuel assembly (i,j) to 

be (see Fig. 1) 
6 6 

<P • • = ~J2 dx f 2 dy <P (x,y) 1,J 62 - /j - /j 
2 2 

6 
bx2 1 I:(), (ax + d 3 2 = 

/j 2 -2- + cyx + 3X + exy )dy 

2 

= a + 
fl 2 

(d+e) IT (2-3) 

One can assume the flux distribution in node (i , j) can be 

extended into the surrounding assemblies. The averaged 

fluxes of the neighboring fuel assemblies a re: 
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6b 
62 

( 2-4) ¢> i+l , j = a + + (13d+e) 12 

6b 
6 2 

(2-5 ) cfl. 1 . = a - + (13d+e ) 12 i- , J 

~i , j+l = a + 6c + 
62 

(d+l3e) 12 ( 2-6) 

cf). . 1 = a -l , J- 6c + 
62 

(d+l3e) 12 ( 2-7 ) 

The c o efficients from Equations (2-3) to (2-7) c a n be solved : 

a = 28 ¢> i, j - ¢ i+l,j - ¢ i-l, j - ¢i,j+l - ¢ i , j-l 
24 

b = ¢ i+l , j - ¢ i-l,j 
262 

<P i,j+l - <P i,j-1 c = 
26 2 

¢ . 1 . - 2 ¢ . . + ¢ . 1 . l+ , J l,J 1- , J 
26 2 

d = 

( 2-8) 

Equa tions (2 - 3) to (2-8) g ive the relatio n s hip between the 

flux distribution, the averag e f luxes and t h e coefficients. 

D. The Partia l Fluxes 

The purpose of introducing the ide a o f the partia l 

flux is to take the space coupling effect into considera-

tion . Since the diffusion c oefficients a re almost the same 

in the neighboring fuel a ssemblie s, o ne c a n make t h e a ssurnp-

tion that the flux for a node (i,j) will be continuous across 
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the boundary at least in the partial reg ions of the sur-

rounding nodes. 

In Fig . 2 , t he average partial f lux at the right side 

can be evaluated as: 
6 

tjJ ~ . = Al 1 , J y 
f ~ dx <P ( x , y ) 

2 

6 
1 = f

2 dx(a 
- 6 

2 2 + bx + cy + dx + ey ) 

2 

(2 -9 ) 

Similarly , the average partial fluxes at the o ther sides 

are : 

tjJ t 
c 6 e 2 cS cS 2 + d 6 2 = a + -6 (l+-} + -6 (l+- + -) 4 6 12 6 62 TI (2 -1 0) 

tjJe e.6 ( l+~) d 2 6 /J.2 e 2 = a - + - /J. (l+- + -) + TI/J. 4 6 12 6 /J. 2 
(2 -11 ) 

ij;b = c cS e 2 6 /J. 2 + e /J. 2 a - -6 ( l+-) + - 6 (l+- + -) 4 /J. 12 /J. /J. 2 TI (2-12 ) 

Now, ext e nd the partial f lux into surrounding regions , apply 

the definition of averaged flux and reference to Fig . 3. 

/J. /J. cS 

1jJ 9., . 1 . 1 
I:/J. I -~ b cS = /J. <P (x , y) = a + -/J. ( 3- -) 

'1 + ' J A 4 /J. 
y 

2 2 
d 2 6 cS 2 + e 6 2 (2 - 13) +-/J. (7-s- + 2/J.) 12 /J. TI 
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I \ji t 
I 
I . 
I . 
I . 
I 
I 

--4'1,- -------t-- ----

- 6 
2 

- cS 
2 

I 

I . 
I 
I 

I 
I 
I 

I 
\jib 

I 
0 

0 
2 

--llLy - 0 

0 
2 

- 6 
6 2 
2 

Fig ure 2. Pa rtial flux c oncept f o r node i, j 
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I 

I/lb (i , j+l ) 

l/ly 

0 ·----- --------------~-------------· I 
I 
I • ( i ' j) I • 
I 
I 
I 
I 
I • • • 
I 

• . 
• 

l/J t : (i, j-1) 
I • 

- 6 +0 - 6 
-2- 2 0 

- 2 

I/It 

--- -

6 
2 

6 
2 

0 

6 
2 

6 - 6 
-2-

Figure 3 . Extend partial flux into neighboring nodes 
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c 0 ~62 (7-5i + ( i ) 2) d 2 
!Jib . . 1 = a + - 6 ( 3--) + + 126 ,1,J+ 4 6 12 6 6 

b 0 ~62 (1-5i + ( i ) 2) e 2 
!Ji . l . = a - - 6 ( 3 --) + + 126 y ,1- , ) 4 6 12 6 6 

!Jit , i , j-1 = a - c 0 - 6 ( 3--) + 4 6 ~62 (7-5i + 12 6 
( i ) 2) 
6 

+ ~62 12 

The new coefficients based on these partial fluxes are: 

a = 

b = 

c = 

d = 

e = 

0 0 2 
2[8-5T + h-) J ct> 1·J· - !Jin · 1 · - !Ji · 1 . u u ,11, ,1+ ,J y ,1- ,J 

- !Jib . ·+1 - IJJ t ,1' ,J· -1 '1, J -

!Jin · 1 · - tjJ · 1 · ,11, ,1+ , J y , 1- ,J 
~ ( 3-i ) 
2 6 

tjJb . . 1 - tjJ . 1 . ,1, J+ y ,1- , ) 
6 0 2 ( 3-li") 

tjJ n . 1 . - 2 ct>. . + lJJ . 1 . ,11, , 1+ , ) 1,J y , 1- ,J 
6 2 () 0 2 6 (6 - 5E + ( ti") ) 

tjJb . . l -,1,J+ 
6 2 0 - (6-5-6 6 

2cti . . + "'t . . 1 1.) , 1 , J-

These new coefficients approximate the c o ntinuity of 

fluxes between the fuel assemblies. 

(2-14) 

(2-1 5) 

(2-16) 

(2-17) 
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E. Assembly Average Buckling s 

One big advantage o f Diffusion-Nodal model over o the r 

methods is that it is easy t o calculate the leakages be-

tween fuel assembly, refer to Fig . 4 , the leakage from 

the right side of node (i,j ) is equal the leakage f r om the 

left side of node (i+l , j) 
6 6 

L f2 d<j> -f2 ~I d = - D .. al dy = D. 1 . y l , ) X I i+ , J ax y 
- 6 - 6 
2 2 

However , these two wil l not be equal because o f the poly-

nomial approximation. Therefore , define 

L y 
[W1 (D .. (b .. +6d . . ) 6 ) +W2 (D.+l . (b.+l .-6d.+l .) 6 )1 = - l , J l, J l , J l ,J l , J l , J 

Wl+W2 
(2-18) 

Here we introduce two weighting factors w1 , w2 t o adjust the 

flux level to p r eserve the cont inuity of c urrent over fuel 

assemblies. The l eakage term for the other three direc-

tions are : 

- W1 ( C . . + 6 9. . . ) D . . +W ( C . . - 6 9. . . ) D . . 
L = [ l , J l , J l,J 2 l,J+l l , J+l l , J+l] 6 t w1 +w2 

(2 -1 9) 

w1 (bi J.- 6di J.)Di . +W2 (b . _1 . - 6d . _1 .)D. _ 1 . 
L = [ , , _ , J l , J l ,J l , J] 6 9. Wl+W2 

( 2-20) 

L 
_ W l (d i J. - 6 9. i J. ) Di J. +W 2 ( C . . _ 1-6 9. . . -1 ) D . . - l [ - '- ,_ l,J l , J l , J ] b. 

b - W1 +W
2 

(2 - 21) 



(i-1, j) 

- 11 
2 

13 

(i , j+l) 

( i I j ) (i+l , j) 

-

(i , j-1 ) 

Figure 4 . Nodes involved in the leakage calculation 
for node (i , j) 



14 

from the physical definition of buckling : total leakage = 

DV2$ = DB2$ 

B . . 
l. I J 

= Ly + Lt + Lt + Lb 

D . . $ . . t::. 2 
l.,J l.,J 

F. The Calcula tion Procedure 

The o verall calculation procedure flowchart is 

illustrated in Fig. 5 . The calculation starts with an 

( 2-2 2) 

initial flux guess and the partial fluxes are from these 

initial f luxes. Then the coefficients are calculated 

according to Eq . (2 -1 7) . The purpose of the mathe-

matical l y average d flux calculation is to insure that there 

is flux continuity between neighboring assemblies. A new 

set of coefficients is calculated again and then used t o 

evaluate the l eakages which in turn are used to calculate 

the bucklings. Finally, the new averaged f luxes can be 

obtained by simply solving the n e utron bala nce equations . A 

new iteration begins by calculating new partia l fluxes 

b a sed upon the new fluxes just o btained. Iterations are 

repeated until the flux changes less than a preset tolerance 

criterion. 
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START 

INPUT OF NECESSARY DATA 
TO DESCRIBE THE REACTOR 
AND X/S SETS 

INITIATION 

PARTIAL FLUX CALCULATION 

COEFFICIENTS CALCULATION 

Figure 5. Calculation flowchart 
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INTERFACE AVERAGED FLUX 
CALCULATION 

LEAKAGE CALCULATION 

BUCKLING CALCULATION 

FLUX CALCULATION 

Figure 5 (Continued) 
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III. THE THEORY OF ACCELERATING TECHNIQUES 

A. The Acceleration of the Iterative Process 

For a specific system of equations, if the solutions 

are obtained by an iterative process~ then it is possible to 

ensure the convergence and also to improve the rate of 

convergence by applying some kind of mathematical techniques. 

These mathematical techniques vary from a simple extra-

polation to some sophisticated matrix manipulations called 

"accleration techniques." 

Of most techniques being used for acceleration, the 

general principle is to split the iteration matrix into 

different forms. Following are some fundamental definitions 

and theories related to the convergence properties and 

accelerating mechanisms; these theories will be used 

frequently in the next chapter. 

1. General convergence theorems 

Definition 3.l: . t6] If X' ERn is an approximation to the 

solution of the linear system defined by AX = b, the 

residual vector for X' with respect to this system is 

defined by y = b-AX' =AX-AX'= A(X-X'). 

The concept of residual vector will be used frequently 

as a measure of the closeness of the approximate solution 

to the exact solution. 
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Theorem 3.2: [6] If X' is an approximation to the solution 

of AX = b and A is a nonsingular matrix, then f o r any natural 

norm 

11 x-x I 11 < 11y11 11 A-1 11 (3-1) 

and 

I IX-X' 11 I IAI I 11 XI < provided X~O and b~O, 

(3-2) 

where y is the residual vector for X' with respect to the 

system AX=b. 

Equations 3-1 and 3-2 imply that the quantities I IA- 1
1 I 

and I IAI I I IA- 1
1 I can be used to give an indication of the 

closeness between the residual and the accuracy of the 

approximation; also 3-2 shows the relative error 

bounded by the product of ( I IAI I I IA- 1
1 I). 

11X-X' 11 is 
11 XI I 

Theorem 3. 3 : [ 6] £ 00 The sequence { X } i=O defined by 

X( i ) = AX( £-l) + C (3-3) 

for each i >l and CtO 

converges to the vector X for any 

x(O)ERn if and only if p (A}<l . 

This theory explains the necessary condition for an 

iterative process to be convergent, no matter what the 

initial vector X (O) is. Matrix A must be a convergent matrix, 
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From basic vector theory, a convergent matrix always has a 

spectral radius less than 1. 

2. Rates of convergence 

From Theorem 3-3, if 11A11 < 1 for any matrix norm then 
£ 00 the sequence { X } i =O in Eq. ( 3- 3) converges for any 

X(O) £Rn to vector X£ Rn and also the following error bounds 

hold 

llx-x( i > 11 .2 ll Al li ll x(l)_x(O) ll 
1- l IAI I 

again from basic vector theory [7] 

p (A) 2. I I A I I 
then (3-4) becomes 

( 3-4 ) 

( 3-5 ) 

(3 -6 ) 

(3-7 ) 

If p (A) <l is satisfied and X(O)=O is to be used in an 

iterative technique to approximate X with relative error 

of at most 10-t, then from Eq. (3-7) the relative error 

after £ iterations is approximately p (A)i. So accuracy 

of 10-t is expected if 

p (A) i < 10-t 
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or 

t (3-8 ) 

Equation (3-3) says that the minimum number of iterations 

is inversely proportional to the quantity l/log10 p (A). We 

are thus led to the definition of the average rate of 

convergence by 

R(A) = -log p (A). (3-9) 

Equation (3-9) gives the essential principle to all kinds 

of accelerating techniques, namely, any mathematical 

technique to reduce the spectral radius p (A) will improve 

the rate of convergence. This is the theoretic foundation 

of all accelerating techniques. 

B. Stationary Accelerating 
Techniques 

In this work , the term "iteration'' relat~s to the 

solution of the linear system: 

AX = b (3-10) 

In general , the iteration process can be defined by the 

functions 
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<t>
0

(A , b) , <t> 1 (X(O),A,b), q,
2

(X(O),X(l);A,b) 

the sequence X(O) , X(l) ..• is defined by 

x' 0
> = qi 0 (A ,b) 

( i +l) (0) (1) (i) 
X = <f>i+l (X ,X , • • • ,X ; A,b ) (3 -11) 

If, for some integer s >O, q, 1 is independent of £ for all 

i~s , then the method is said to be stationary. Otherwise 

it is nonstationary . A general form for a stationary 

iterative method is 

(3-12) 

the corresponding form to Equation (3-11) is 

Assume we are solving the equation 

AX = b 

Split A into A = No-Po 
With X{O) arbitrary, then the iterative process is given by 

N x( £ ) = P x( i -l) + k 
0 0 

and with M0 

x ( i) = 

= N -lp 
0 0 

M X( £-l) 
0 

the iteration becomes 

+ g (3-13) 
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where 

Now we introduce the one parame ter family of splittings 

N( a ) = (l+a)N0 
P( a } = (l+a)N0 -A = P0 + a N0 (3-14) 

in o rder that detjN( ~ ) I t 0, at -1 is required. If the 
-1 eigenv alues of M( a } = N {a )P( a ) are denoted by \1i{a) 

i = 1,2, ... n 

then 

= 

because 

>.. < 1, 
1. 

>.. +a 
1. 

l+a i=l,2, ... ,n 

µ . ( a ) <>. . 
1. 1 

(3-1 5 ) 

This means afte r the splitting operation, the rate of con-

vergence should be improved (refer t o Equation 3-9). After 

a de tailed study of Eqs. (3 -14 ) and (3-15), the informatio n 

a bout how to choose the best value of a can be obtained. 

The results may be stated a s 

Theorem 3-4: [SJ Let N0 and P0 be such that the eigenv alues 

Ai of N0- 1 P0 are all real and satisfy 

Then the scheme (3) will converge f o r any a such that 

a > 
l+>. l 
-2- > 1. 
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Furthermore , the largest rate of convergence for these 

schemes is obtained when 
- >. +.A. _ * 1 n a = a = 2 

forwhichvalue [M(a*) =Min p [M( a) ] 
a n 

= Min (Max Iµ. (a) I ) 
. 1 l. 1= 

(3-16) 

Another theory also gives the optimal value which is based 

upon a different splitting expression: 

Theorem 3. 5 : [ 9] 

If A is positive definite and tridiagonal then the 

optimal choice of w for SOR method is 

w = 2 (3-17) 
1 + / 1-p (A) 2 

with this choice of w , p (A) = w-1. 

Now the problem is how t o calculate w t' this will be o p 
explained in detail in the next chapter. 

C. Nonstationary Accelerating 
Techniques 

Instead of just using one single fixed accelerating 

parameter, a cyclically fixed sequence of a cceleration 

parameters can be applied to the accelerating scheme which 
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has shown a more powerful effect on the speed of convergence. 

Assume in each cycle , there a re y parameters being 

used, say, a 1 , a . . . a , for i = 1,2 , ... y . Define N(ai) 
I y 

and P(a.) as in (3-1 4) and the corresponding matrice s 
1 

a. 1 
= 1 I + M l+a. l+a. 0' i=l ,2, .. . , y 

1 1 
(3-1 8) 

The iterations are defined as follows, with X(O) arbitrary 

for t = 1, 2, . .. 

(3-1 9) 

y( t , s) = M( a )Y( t , s-l) + N- 1 (a )f s = 1 , 2, .. . y (3 -2 0) 
s s 

(3-21) 

where y vectors of 3-20 can be obtained by solving a l i near 

system of the form 

(3 - 22) 

With this notation, one iteration requires the same number 

of computations as y iterations in the ordinary acceleration 

scheme. The conver gence rate can be analyzed by means of 

the equivalent formulation 

X {t) - ( t -1) - M( a 1 , a 2 ... ay)X + g , t = 1,2 , ... , (3 -23 ) 

From Eqs. 3-19, 3- 20 and 3-21 
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(3-24) 

the eigenvalues of M(a1 , a 2 ... ay) can be determined in terms 

of the eigenvalues Ai of M0 , i.e.: 

Y Y. +a. n i J 
. 1 l+a . 
J= J 

It is an y th degree polynomial 

P (A) y 

y A+a. = n i . 1 1 +a . 
J= J 

then convergence is implied by 

IP (A. JI < l y l 
for i = 1, 2 , ... , n, 

(3-25) 

(3-26) 

If all the eigenvalues of M0 are real and lie in the interval 

a < A < b 

the convergence is implied by IPy(A ) I < 1, a ~ A ~ b. 

In this case, the fastest convergence can be expected for 

that polynomial which has the smallest absolute magnitude 

in the i ndicated interval. The Chebyshev polynomial [10] 

the property of "the least deviation f rom zero", so if the 

zeroes of the Chebyshev polynomial are used as the accelerating 

parameter, the fastest convergence speed should be observed. 
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IV . ITERATION BEHAVIOR OF NEUTRON DIFFUSION NODAL MODEL 

A. Iteration Processes 

There are four processes in the iteration procedure. 

These i nclude the partial flux calculation , interface 

averaged flux (also called averaged flux) calculation, 

buckling calculati on and assembly averaged flux (al s o cal l ed 

just f l ux) calculation. 

The purpose of the partial f l ux calculation , as shown 

in Fig . 6 , is to take the space correlation o f neighboring 

nodes into the calcula tion so that the averaged f l uxes 

~1 , ~2 , ... ~n can represent the actual situation more accu-

rately . But in the calculation of the partial fluxes, the 

average flux value used was obtained from the l as t ite r a -

tion. The who l e computation become s a nonlinear procedure 

and gives problems in convergence speed a nd stability be-

havior . 

Th e ma thematically averaged flux calculation is followed 

by the partial flux calculation which in turn uses the 

coeff icient set derived from the partial fluxes . The new 

averaged fluxes are calculated so that the f lux distribution 

will keep con tinuity over the fuel assembly interface as 

shown in Fig . 7. After the new averaged f luxes are ob-

tained , the l eakage t erm can be cal culated by a simple 

evaluation of Eq . (2 - 28). The buckling term can be 



Figure 6 . 
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~2 

•,i,P 
• '+' 2 

Partial f lux calculation (one-
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computed in terms of the leakages, then the bucklings can be 

substituted into the two group flux equations 

(4-1) 

and the average nodal fluxes can be determined. Then these 

new flux values will be used in the partial flux calculations 

in the next iteration. 

B. Sensitivity Study 

The purpose of the sensitivity study is to investigate 

the characteristics of each of the four relaxation processes 

and see which will have the most significant influence on 

the overall iteration behavior. 

First, we found that without introducing any accelerating 

technqiue, the iteration process would not converge. After 

applying one standard technique we found that the iteration 

converged with the relaxation factor located in a specific 

range, i.e., it still will not converge with certain 

relaxation factors. Also, the convergence speed varied 

quite differently according to the different values of the 

relaxation factors. 

The sensitivity study was carried out by fixing three of 
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the four relaxation factors and then by varying the value of 

the remaining one.. The number of iterations needed to reach 

a preset convergence criterion was recorded . The procedure 

was repeated for every relaxation factor. 

Figure 8 shows the effect of changing partial flux 

relaxation factor from O.lto 1.4. Figure 9 shows the effect 

of changing mathematical average flux relaxation factor 

from 0.1 to 1.4. Figure 10 shows the effect of changing the 

buckling relaxation factors from 0.1 to 1.2. Figure 11 

shows the effect of changing the average flux relaxation 

factor from 0.1 to 1.7. 

From these curves, it is very clear that one can 

easily conclude . that buckling and assembly averaged flux 

relaxation factors have a stronger effect on the iteration 

behavior than the other two. 
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V. THE APPLICATION OF ACCELERATING TECHNIQUES 

Both stationary and nonstationary accelerating tech-

niques will be tried and compared in this chapter. A brief 

introduction about the test sample problem will be presented 

first. 

A. The Basic Data for the Sample 
Test Problem 

The sample reactor chosen for this research was 

San Onofre I, a pressurized water reactor built by 

Westinghouse and operated by Southern California Edison Co . 

Figure 12 shows the fuel assembly arrangement of the 

quarter core in two-dimensions. Table 1 lists the basic 

data of the reactor. 

B. Application of the Stationary Accelerating 
Techniques 

The general form of linear stationary accelerating method 

is 

~(n+l) = G~(n) + k (5-1) 

Depending upon the expression of G, there are more than 10 

different accelerating techniques (11). Among these methods, 

the Successive Overrelaxation (SOR) method is the 

most popular and most powerful one. So we will concentrate 
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H 6 7 8 9 10 11 12 13 

J 14 1 5 16 17 18 19 20 21 

K 22 23 24 25 26 27 28 

L 29 30 31 32 33 34 35 

M 36 37 38 39 40 41 

N 42 4 3 44 45 46 

p 4 7 48 49 50 

R 51 52 

Figure 1 2 . Fue l assembly arrangement of the sample 
reactor 
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Table 1. Basic data of sample test reactor 

Rated core heat output , MWe 

System pressure, psia 

Coolant flow, lb/h 

Coolant temperature, °F 

Nominal inlet 

Nominal outlet 

Full assemblies 

Rod pitch, in. 

Fuel weight, lbs 

Total weight 

Number of fuel assemblies 

3390 

2250 
8 1.48 x 10 

553 

649.2 

0.5063 

223 . 9 x 103 

314867 

217 
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our effort in the application of the SOR technique to the 

Diffusion-Nodal model . 

1. The SOR method 

The i t erative matrix for the SOR method in (5-1) is 

G = (I - wL )-l(wU + (1-w)I) (5-2) 

a more usable form for SOR is 

¢( n+l) = w¢ * + (l-w)¢(n) (5-3) 

or 

where ¢ * is obtained from the Gauss-Seidel iterative method. 

The most important procedure when using the SOR method is to 

determine the optimal relaxation factor w, which can be 

calculated from Theorem (3-5) 

2 
;:--L l + 1-p 

The new spectra after the SOR modification is 

(wopt - 1) 

p ' = w P + (wo2pt P2 - 4( w -1))1/2 [ opt 0 _ 0 opt 12 
2 

Figure 13 shows the effect of a changing w on p ' 

(5-4 ) 

w > w t op 

w < 

(5 -5) 
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It shows a larger loss of convergence rate will occur if the 

w is slightly below the optimal value when compared to the 

case when w is slightly beyond the wopt This means , if 

the exact w can ' t be determined, then it is bette r t o over-opt 
estimate w instead of underestimating it . 

From Eq . (5 - 5) , if we know p then wopt can be calcu-

lated very easily . The traditional way to calculate p 

is very tedious and time consuming (it may take more 

computing time than the direct solutions). There .are two 

strategies to estimate w depending upon what the problem is . 

If a series calculation based on the same reactor is to be 

performed, then we can try several different w's and a 

curve like Fig . 13 can be plotted . The optimal w can be 

determined from the curve . 

succeeding calculations . 

This w t can be used in the op 
If the reactor problem is 

different every time , then a different approach would be 

applied . The calculation would start with a nonoptimal w, 

then while the calculation is proceeding, a new p is con-

tinually estimated. Theoretically, if the estimating 

formula is suitable, the estimated p will approach the 

exact p and the optimal w then can be found. The practical 

problem is that the time spent in the calculation for finding 

the wopt should not exceed , say , some certain percentage of 

the computing time when no relaxation technique is used . 

In this research, both strategies are applied and the 
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results are compared. 

2 . SOR with a fixed relaxation factor 

The easiest way to use the SOR method is to appl y a 

fixed - value relaxation factor , because there is no need t o 

calculate p for the determination of the optimal relaxation 

facto r . On the other hand, the convergence will not be the 

fas test. 

Table 2 shows the comparison of the convergence rate 

between a nonaccelerated calculation (data with * mark) and 

an accelerated calculation . The relaxation factors used in 

the accelerated calculation a r e chosen arbitrarily; all are 

0 .5 . The convergence rate is not very satisfact ory , but 

it is much better than the nonaccelerated calculation which 

did not converge . 

If all the calculations a r e based o n the same reactor 

then we may try to find the optimal relaxation factors by 

going through a thorough search. Since we have four 

relaxation factors waiting t o be optimized a nd possibly 

there are interactions between these relaxation factors , 

an iterative-like approach will be used to find the optimal 

combination of the relaxa tion fac tors. 

The process starts by keeping three fac tors a t on e fixed 

vaue and by changing the va lue of the remaining one . 

An optimal value f or this relaxation fac t or can be observed 
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under such circumstances. Using the same procedure , one 

can find the optimal values for the other three factors . 

After the optimal values are obtained, the same procedure 

can be tried again but with a different sequence . If 

these factors are linearly independent, then the same optimal 

values should be observed. 

Fig. 14 shows the result from the calculation. The 

optimum combination for the sample problem was 0.7, 1.1, 

0.4 and 1.3 for buckling, partial flux, interface average 

flux and assembly average flux relaxation factors. 

3. SOR with varying relaxation factor 

The exact eigenvalue is difficult to find before the 

iteration starts, but we may try to estimate it while the 

iteration process is going. The estimation mechanism is based 

upon the following explanation [3] • . 

If A is the iteration matrix and there are n elements 

within A, there are also n eigenvalues p ., i=l,n, corresponding 
1 

to each element . These eigenvalues are the sources of the 

error in the sense of the difference between the exact solu-

tion and current estimated value at iteration t. 

L A ( t) 
ij pp 

j 
(5-6) 

As t~oo, P~~o (because p . <l), the contribution from the 
J J 

largest pj will dominate the error decay rate. Elimination 
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of the constant A. . from Eq. (5-6) results in 
1,) 

and 

( oo ) x . 
1 
(oo) x. 

1 

(oo) x . 
i 

x~i) 
i 

- ( i -1) x . 
1 

p 
1 . 0- p 

(5-7a) 

(5-7b) 

The absolute error is reduced by p after each iteration 

and the rat io between the absolute error (X~ 00 )-x~ P )) to 
i i 

the iterate change depends upon the reciprocal of 1.0-p . 

These two formulas g i ve a practical and efficient way to 

estimate the e igenvalue which i n turn can be used to find 

the optimal r elaxation factor. The estimating formula 

(5-7) can be used t o find the ratio between two succeeding 

absolute e rrors; the ratio will approach the eigenvalue . 

The estimation can be started after s everal iterations 

h ave been performe d. This will reduce the fluctuations . 

Also, the estimating cal cul ation doesn ' t need to be per-

formed at every iteration because the approach to the 

e igenva lue is quite smooth. Based upon investigation of 

the iteration behavior, the appropriate time to estimate p 

can be decided . However, in this research, the estimation 

was performed every 8 iterations. Fig. 15 shows that p 

approaches a constant as the number of iterat ions increases . 
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Fig. 16 and Fig. 17 shows the error decay behavior. 

Table 2 gives the idea of the effectiveness of the 

acceleration technique. 

Table 2. The effectiveness of SOR 

Number of iterations to reduce error to c 
Without SOR with SOR with 

accelerationa wB=w =w8=0 . 5 optimum w's 

0.01 16 16 10 

0.001 50 50 19 

0.0001 185 97 30 

0.00001 >300 145 41 

0.000001 >300 194 48 

a Does not converge. 

C. Application of Nonstationary Accelerating 
Techniques (12) 

The general form for a nonstationary method is 

u<R-+l) = 

where 

G (R.) = G G G 
R. i -1· .. 0 

and 
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Given a stationary iterative method, one can often find an 

associated nonstationary method which will converge faster 

than the given method. In the following paragraphs, a 

nonstationary method will be derived based on the SOR method 

which was introduced earlier in this chapter. 

1. The minimax problem 

The derivation starts with a general form of the SOR 

method 

where the relation to the w in Eq. (5-4) is 

w = 1 + e 
Consider the matrix form of the iteration formula 

A¢ (t) = >. (t)cp*(t+l) 

Combine (5-8) and (5-9) 

cp (t+l) = 

Define R as 
(t) 

Rt = (l+e ]A-e (t)I 
;\ ( t) 

Then (5-10) can be rewritten as 

cp (t+l) = R cp (t) 
t 

then it is obvious 

(5-8) 

(5-9) 

(5-10) 

(5-11 ) 

(5-12) 
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Assume there are m eigenvalues and m eigenvectors of A 

represented by 

0 m < 0 m- l < • •• < 0 l ' 

a , a 1 .. . a 1 m m-

these eigenvectors form a complete set for the vector 

space of H. 

(5 - 13) 

The initial guess can be represented in terms of these 

eigenvectors 

<I> ( 0) = (5-14) 

Since a k is an eigenvec t or of A, then we can write 

1 8( i) ( ' ) = [ + ] A"' - 8 J "' . ""k '""k >. J 

(5 -1 5) 

Plugging (5 -14) into (5-15), we find 

<l> ( t ) = 

or 

ct> ( .e,) = m .e. -1 1+8 (j) 
~ c n [ a -8 ( j) J"' 
[.. k ' ( )0 

) k ""k k=l j=O I\ 

(5-16) 

Because the convergence rate is dominated by the largest 
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eigenvalue o1 and its associated eigenvector a 1 , Eq. 

(5 - 16) can be rewritten as 

or 

where 

and 

(5-17) 

(5-18) 

(5-19) 

(5-20) 

From Eq . (5 - 18) we can find the criterion for choosing 

the optimum set of extrapolation parameters e j such that 

the function g ~ ( e , ok) will have a minimum value. 

By changing variable 

µ = (5-21) 

then 
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Now we seek the polynomial which minimizes 

max I h i ( e , µ ) I 
l <u <l 

This is a typical minimax problem often found in approximation 

problems. 

2. Chebyshev polynomials 

From the study of appro ximation problems a nd the 

characteristics of Chebyshev polynomials, the fo llowing 

theorem gives the solution to this mi nimax problem. 

Theorem 5-1: {131 Among all polynomia ls of deg ree m in µ 

having the value +l at µ1 >1, there is just one having the 

minimum-maximum absolute value throughout the interval 

(-1,+l), namely the polynomial. 

S ( JJ ) = T ( U ) /T ( µ l ) m m m (5-22) 

where T (µ) is the mth_order Chebyshev polynomial, obtained m 

by expanding 

T (µ) cos(m = m cos -1 µ) (5-23 ) 

in powers of ]J • 

To make 
T ( µ) 

hn( 8 ,µ) n = Tn( µl) 

we can equate the zeroes of each polynomial since they both 
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have the same value at µ=µ 1 . 

The zeroes for Tn( µ) are 

µ t = ( 2 +l) 
cos 2n 1T I t= O, .. . ,n-1 (5-24) 

The zeroes for hn( 8 , µ ) are 

2 "t8 t o 2+om 
t=O,l, ... n-1 . (5 -2 5) )J t = [--] I 0 2- 0 m l+et a - a 2 m 

Equat ing Eqs . (5 - 24) and (5-25) , one has 

e ( t ) (n) = 
(5 - 26) 

This is the optimal se t of relaxation factors which will 

give the b est result . 

3 . The implementation 

To apply the result given by Eq . (5-26) , the eigenvalues 

a 2 a n d om must be known in advance; this turns out to be the 

same problem which happened i n t he stationary SOR method 

because we are never privileged t o have eigenvalues on 

hand in a practical case. Some more approximations must b e 

made before we can put this theory into practice . 

To reduce Eq . (5-26) to a simpler form , the a may m 
be neglected b y comparison to o 2 , then we get 
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1 + [ (2 £ +1) 7T cos 2n 

2 A (,Q,) _ l [ (2£+1) n ] -cos 2n 
0 2 

Now , define 

and 

a . 
a = max j2. J 

ifl 0 1 

therefore, (5-27) becomes 

(t) a C R, (n) e (n) = 

(5 -27 ) 

(5-28) 

The parameter a is often called the dominance ratio. Since 

i t gives the magnitude of the separation between the largest 

eigenvalue and the second largest. a is estimated by 

- R( R, ) 
a = (5-29) R( t -1) 

where 

R( t ) = 

Now we need to determine what degree Chebyshev polynomial 

will be likely to reduce the eigenvalue error to an 

acceptable value. The maximum value of jh (µ) J in n 
interval [-1, 1) is l/Tn( µ1 ) . This can be taken as a measure 

of the reduction of the coefficients of all eigenvectors with 
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eigenval ue in the range am t o o 2 . 

Since 

neglect om' 

Defin e 

E ( R. ) = 

20 1 
a - a 2 m 

/.. ( R, ) >. ( R. ) 

/.. ( R. ) 

Assume El is a preset criterion, then the degree of 

Chebyshev polynomial is decided such that 

e: ( R, ) 
2 < El• 

Tn(o -1) 

(5-30) 

(5 - 31) 

We pe r form a cycle of iterations using a sequence of e ' s 

given by Eq . (5 - 28) , R. =0 ,1, ... n -1. If convergence still has 

not been achieved , a new n is calculated based on the in-

equality (5- 31) and another cycle of n iterations is 

performed . 

Fig . 18 shows the error reduction relative to the 

number of iterations , Fig . 19 shows the convergence rate 

vs . number of iteration. 
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c. Comparison o f Methods 

Table 3 shows the results of a nonaccelerated calcula-

tion, the iteration process is very unstable and diverges . 

Table 4 shows the comparison between these two a cceleration 

methods in terms of the number of iterations needed to reduce 

the error down to a specific criterion. Case 1, accelera-

tion with optimal relaxation factors, has the best result 

and is almost 10 times faster than the case 2 in which all 

relaxation factors were chosen arbitrarily. Case 3 is 

SOR with a varying relaxation factor . The convergence rate 

is twice that of case 2, but it is slower than case 1. 

The Chebyshev calculation behaves very much like the 

SOR method . Theoretically, the Chebyshev extrapolation 

should have faster rate than the SOR method. The reason 

this does not happen is because the estimation of some of 

the key terms is not accurate enough . This reduces the 

effectiveness of the Chebyshev extrapolation. 

If accelerating techniques are applie d with wB, w8 , wp 

all at their optimal values , an improvement by 3-4 times 

faster is observed. This accounts for the interactive 

influence between these relaxation factors. 
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Table 3 . Calculat i on without acceleration 

Iterations 
n 

max 
i=l 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0 

0 . 230 
0 . 184 
0.215 
0 . 281 
0. 440 
0 . 641 
0 . 968 
4 . 191 
2 . 351 

995 . 91 8 

0 . 0841 
0.0804 
0.0867 
0 . 1159 
0 . 1587 
0 . 24134 
0 . 4097 
2 . 66481 
3 . 09604 

414 . 128 

Table 4 . Comparison between different accelerating techniques 

1. 

2 . 

3 . 

4 . 

5 . 

6 . 

Number of iterations needed to reduce 
the relative error to : 

0 . 01 0 . 001 0 . 0001 0 . 00 00 1 0 . 000001 
SOR with o ptimal 
factor s 6 12 19 28 39 

SOR with arbitrary 
chosen fac t ors 9 33 133 267 x 
SOR with vgr iable 
relaxation 11 32 78 131 194 

SOR wi t h variab l e 
relaxation c 11 26 37 42 48 

Chebyshev d 10 29 81 128 207 

Chebysh ev e 8 22 35 53 55 

a w =w =w =w =O 5 b B p 8 x • • . 
wB=wp=w 8=0 . 5 , wx i s calculated by (5-4) . 

c wB=0 . 7 , w =1 . 1 , w8=0 . 4 , w is calculated by (5-4) . d p x 
ewB=wp=w8=0 . 5 , wx is calculate~ by (5-28) . 

wB=0 . 7 , wp=l . l , w8 = 0 . 4 , wx is calculated by (5 - 28) . 
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VI. SUMMARY AND CONCLUSIONS 

The complete theory of acceleration mechanisms has not 

been fully developed [ 3J, and many acceleration techniques 

are only based upon experience and empirical formulas (14, 15]. 

Although in some cases the optimal accelerating parameter 

can be formulated (4-16 and 4-17), the actual evaluation 

of the formulas may take prohibitive computational times. 

An approximation is always needed which is a deficiency of 

the technique. However, the overall performance is im-

proved, sometimes impressively, as we saw in earlier 

discussions. 

Besides the SOR and Chebyshev extrapolation accelerating 

techniques, there are other different techniques being used 

widely, e.g., the ADI method, the conjugate gradients method, 

etc. The reason we didn't try these methods is that they 

are much more matrix-oriented techniques, i.e., a compli-

cated matrix representation and manipulation are required 

when applying the technique. This turns out to be the 

current major concern of the Neutron Diffusion-Nodal model--

the matrix form of this model which has not been developed 

completely. Although this model behaves quite well in 

many aspects, a strict and complete matrix representation 

will be very important if further improvement is expected. 

There are four relaxation factors which are adjustable 
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and need to be optimized. There is a strong interactive 

influence among these factors . A closer study of the inter-

relation of these factors may lead to the simplification of 

the whole model. The reason is that if some of the re -

laxation factors could be combined into one single factor, 

then both the computational procedure and acceleration 

process might be simplified significantly. 
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