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1. INTRODUCTION 

This study compares the performance of several algorithms used in mixed model 

sequencing. Mixed model sequencing is said to occur when more than one type of final 

product is produced and some combination of parts are used for more than one product. The 

procedure for designing a mixed-model assembly line involves the following steps (Monden 

1993): 

1. Determination of a cycle time. 

2. Computation of a minimum number of processes. 

3. Preparation of a diagram of integrated precedence relationships among elemental jobs. 

4. Line balancing. 

5. Determination of the sequence schedule for introducing various products to the line. 

6. Determination of the length of the operations range of each process. 

This study deals with the fifth step: The problem of sequencing various products models on 

the line. The algorithms studied include Goal Chasing I and II, Time Spread, Quick and Dirty 

and Miltenburg Algorithm 1 and 3. The performance measures include goal chasing D, 

weighted goal chasing D, objective functions of time spread, variance and computational 

effort required. Twenty-three problem sets with different demand patterns and eleven part 

structures are used to test the algorithms. 

Just in time (TIT) is a total system philosophy that was developed and promoted by 

Toyota Motor Corporation. It has gained much attention from both researchers and industrial 

practitioners. TIT requires the production of only the necessary items in the necessary 
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quantities at the necessary time to keep in process inventory and its fluctuation to a minimum. 

It may not be overstating that TIT would be another revolutionary production management 

system that follows Taylor's scientific management and Ford's mass assembly system (Monden 

1993). The primary goal of the TIT system is cost reduction through elimination of waste. 

Waste is defined as any surplus over the minimum amount of anything needed for production. 

To achieve this primary goal, three subgoals must be met, which are quantity control, quality 

assurance and respect of humanity. 

There are several key concepts and requirements to implement the TIT philosophy, 

such as the pull system, utilization ofKanbans, setup reduction, new definition of vendor 

relationship, leveling production, etc. Among these techniques, mixed model sequencing is 

often applied to produce many different products without carrying large inventories 

(Miltenburg 1989). This technique helps many companies to maintain diversified small-lot 

production to satisfy customers' demands for a variety of products, without holding large 

inventories. Mixed model sequencing is said to occur when more than one type of final 

product is produced and some types of parts are used for more than one product (Joo and 

Wilhelm 1993). The complexity of the mixed model sequencing problem stems from the large 

number offinal products to be sequenced and the differing usage patterns of various parts by 

each final product. 

The difficulty of mixed model sequencing is more acute in an assembly line setting. An 

assembly line is essentially a production system where fabricated parts and assemblies are 

installed, or other work done, on units of a main product as they move form one station to 

another. The issue is complicated because the performance of the assembly line is influenced 

by the order in which products are sequenced during each day, and it makes the traditional 

assembly line balancing problem more complex. 
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Monden points out that the procedure to design a mixed-model assembly line is to 

determine the cycle time, compute a minimum number of processes, prepare a diagram of 

integrated precedence relationships among elemental jobs, balance the line, determine the 

sequence schedule for introducing various products to the line. Particularly, the mixed model 

sequencing is targeted at the fifth step: sequence to introduce the models into the assembly 

line. 

Due to the different goals and purposes of controlling the assembly line, there are 

different sequences of introducing models. Two major goals suggested by Monden (1993) 

are: 

1) Leveling the load (total assembly time) on each process within the line, and 

2) Keeping a constant speed in consuming each part on the line 

The first goal recognizes that all products do not have the same operation time at each work 

station on the line, and some workstations might have a longer than average cycle time. The 

second goal attempts to keep the quantity of each part used by the mixed-model assembly line 

per unit time constant. In Toyota, the second goal is considered to be more important and 

critical in a TIT production system. 

The difficulty imposed by mixed model sequencing has prompted some research. 

Different sequencing algorithms have been proposed and developed to meet different 

requirements and objectives. This study surveys and classifies some existing mixed model 

sequencing algorithms, which include Goal Chasing I and II, Time Spread, Quick and Dirty 

sequencing, and Miltenburg's algorithm 1 and 3. Goal Chasing I and II, Time Spread and 

Miltenburg's third algorithm are selected because some existing literature has compared their 

results and concluded that they perform reasonably well. The Quick and Dirty algorithm is 

newly developed and is added to the comparison. Although Miltenburg's algorithm 1 does not 

always provide a feasible sequence, it does give a quick performance lower bound against 
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which other algorithms can be compared. Miltenburg's algorithm 2 is not included in the 

study. Although it guarantees feasibility, it is too slow to be considered for any practical 

purposes. The performance of these algorithms is compared based on several measurements, 

such as deviation from constant part consumption rate, total variation of the actual production 

from the desired production, ability to smooth the load on each workstation on an assembly 

line and the computational effort needed. 

The following section reviews a collection of existing literature in mixed model 

sequencing. Section 2.2 gives a brief review of the algorithms under study. The measure of 

performance and problem sets used to evaluate the algorithms are presented in Section 3. 

Section 4 shows the results and finally in Section 5, concluding remarks are made. 
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2. LITERATURE REVIEW 

2.1 Related Review 

The importance of the order in which models are assembled on a mixed-model line has 

been recognized by practitioners and academics alike. Monden (1993) presented a goal 

chasing method, the first analytical scheduling model used in Toyota production. He also 

introduced a simplified algorithm, Goal Chasing II. Both algorithms try to keep a constant 

part consumption rate on the line. 

Miltenburg (1989) extended the Goal Chasing algorithm and developed three 

additional algorithms. His first algorithm does not guarantee a feasible sequence but quickly 

provides a lower bound on performance. Inman and Bulfin (1992) proposed a quick and dirty 

sequencing method which only considers the due date of the final products. Sumichrast, et aI. 

(1992) developed the Time Spread method which takes into consideration the processing time 

at each workstation. 

Groeflin, et aI. (1989) proposed an algorithm for sequencing the final assembly of 

highly customized end products. Their algorithm seeks to minimize the usage variability of 

component parts by giving priority to the parts with the largest variability among different 

models. Lee and Kim (1988) combined MRP with nT to reduce work in process. They 

extended goal chasing and apply it in an environment with short delivery distance and low risk 

of accident during delivery. Kubiak and Sethi (1991) converted the mixed model sequencing 

problem into an assignment problem and claimed that an optimal solution can be found. 

Because of the numerous algorithms proposed, literature exists which reports on the 

comparison ofthe perfonnance of the algorithms. Sumichrast and Russell (1990) compared 
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Goal Chasing algorithms and Miltenburg's algorithms based on model usage rate and 

component usage rate. Miltenburg's algorithm 3, heuristic 2 produced the highest quality 

feasible solutions under all conditions tested. Both goal chasing algorithms were also 

compared to the mixed integer programming model, and Goal Chasing I was found to be 

more desirable. 

Sumichrast, et al. (1992) compared the two Goal Chasing algorithms, Miltenburg's 

algorithm 3 and the Time Spread method, according to four measures of assembly line in 

efficiency, work not completed, worker idleness, worker station time and a measure of 

variability in uniform component usage using a simulation model. They conclude that Time 

Spread and Miltenburg's algorithm 3, heuristic 2 are most effective. The former is a better 

choice when the main concern is assembly efficiency (such factors as product quality and 

worker flexibility) and the latter is the preferred selection when fabrication efficiency (i.e. 

uniform parts usage) is more important. 

This research further examines the two Goal Chasing algorithms, Time Spread, Quick 

and Dirty and Miltenburg's algorithms. These seven algorithms are reviewed in the next 

section. 

2.2. Review of Mixed Model Sequencing Algorithms 

Goal Chasing I and II focus on the objective of maintaining a constant usage of parts. 

Miltenburg'S algorithms are designed to achieve uniform production rates for each model and 

thus indirectly achieve uniform parts usage rate. Time Spread is designed to smooth the work 

load at each station on the line to achieve efficient assembly. The Quick and Dirty algorithm 

is a newly developed algorithm which provides a sequence by using a simple and highly 
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efficient procedure based on minimizing the deviation between cumulative production and 

cumulative demand. These algorithms are discussed briefly in the following section. 

2.2.1. Goal Chasing I 

Goal Chasing I method was developed at Toyota and reported by Monden (1983). 

The objective of Goal Chasing I is to keep the actual usage rate and the ideal usage rate as 

close as possible. To achieve this goal, the withdrawal rate of each part must be held as 

constant as possible. This condition is described as follows: 

MinD k = Min 
b (KNj )2 L --Xjk 

j=l Q 

where Q = total production quantity of all products Ai (i = 1, ... , a) 
a 

= L Qi , ( Qi = production quantity of each product Ai ) 
i=1 

Nj = Total necessary quantity of part aj to be consumed for producing all 

products Ai (i = 1, ... , a, j == 1, ... , P) 

Xjk = Total necessary quantity of part aj to be utilized for producing the 

products of determined sequence from first to Kth 

The first item in the equation, KNjlQ, represents the quantity of part aj required to assemble 

the first k items in the sequence given a constant usage for a specific partial sequence. The 

squared differences between KNjlQ and Xj,k are summed over all component parts to provide 

a measure of non-uniform usage. Position k in the sequence is filled by the model which 

minimizes this measure. As the sequence is constructed, at each step the 'distance' between 

the expected usage of components and actual usage is minimized. Goal Chasing I assumes 
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that each time slot represents a time unit during which an end-product is assembled and that 

assembly time is the same for all types of products. 

Procedure 

Step 1 Initialization: let k = 1; Xj,O = 0, j = 1,2 ... , p; S =1,2, ... , a; and M= 0. 

Repeat the following steps until S = 0. 

Step 2 For i e S calculate Dki such that: 

Dki = Min ~ (KNj - Xj,k -1- bij)2 
j=1 Q 

where bij = necessary quantity of the part aj, j = 1, ... , b, for producing 

one unit of product Ai, i = 1, ... , a 

Select to produce r such that Dkr = Min {Dki}, i e S. 

Append r to the scheduled list M. 

Step 3 Set Qr = Qr - 1. If Qr = 0, set S = S - {r}. 

Step 4 If S = 0, then stop; otherwise, set Xjk = Xj,k-l + brj, j = 1, ... , p, and k = k+ 1. 

Numerical Example (Monden 1993) 

Suppose the production quantities Qi (i = 1,2, 3) of each product AI, A2, and A3, 

and the required unit bij (i = 1,2, 3; j = 1,2, 3,4) of each part a 1> a2, a3, and a4 for 

producing these products are as shown in Table 1. 
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Table 1 Production Quantities Qi and Parts Condition bi} 

Product At At A2 A1 

Planned 2 3 5 

Production 

Quantity Qi 

Parts aj 

at a2 a1 a4 

Product Ai At 1 0 1 1 

A2 1 1 0 1 

A1 0 1 1 0 
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Then, the total necessary quantity (Nj) of part aj G = I, 2, 3, 4) for producing all 

products Ai (i = 1,2,3) can be computed as follows: 

[Nj] = [Qi] [bij] [1011] 

= [2, 3, 5] 1101 = [5, 8, 7, 5] 
0110 

Further, the total production quantity of all products Ai (i = I, 2, 3) will be: 

3 

L,Q; = 2 + 3 + 5 = 10 
;=1 

Therefore, 

[NjlQ] = [5/10, 8/10, 7/10, 5/10] 

G = 1, 2, 3, 4) 

Next, applying the values of [NjlQ] and [bij] to the formula in step 2 of the above algorithm, 

when K = I, the distances Dki can be computed as follows: 

fori = 1, DI 1 = 

(IX5 _0_1)2+(IX8 _0_0)2+(IX7 _0_1)2+(IX5 -0-1)2 
10 10 10 10 

= 1.11. 
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for i = 2, D 1 2 = 

(IX5 -0-1)2 +( lx8 -0-1)2 +( lx7 -0-0)2 +( lx5 -0-1)2 
10 10 10 10 

= 1.01 

for i = 1, Dl 3 = 

(IX5 -0-0)2 +( lx8 -0-1)2 +( Ix7 -0-1)2 +( lx5 -0-0)2 
10 10 10 10 

=0.79 

Thus, Dl i* = min {1.11, 1.01, 0.79} = 0.79 , 

:. r* = 3 

New Qr (r = 3) = 5-1 = 4 :;t 0 

Therefore, the first order in the sequence schedule is the product A3. Proceeding to 

Step 4 of the algorithm, 

Xjk = Xj, k-l + b3f 

Xll=O+O=O , 

X2 1 = 0 + 1 = 1 , 

X3 1 = 0 + 1 = 1 , 

X41 =0+0=0 , 

Thus, the first line in Table 2 was written based on the above computations. 

Similarly, when k = 2 , then 
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for i = 1, D2 1 = 

(2X5 -0-1)2 +(2XS -1-0)2 +(2X7 -1-1)2 +(2X5 -0-1)2 
10 10 10 10 

=0.S5. 

for i = 2, D2 2 = 

(2X5 -0-1)2 +(2XS -1-1)2 +(2X7 -1-0)2 +(2X5 -0-1)2 
10 10 10 10 

=0.57. 

for i = I, D2 3 = 

(2X5 -0-0)2 +(2XS -1-1)2 +(2X7 -1-1)2 +(2 x5 -0-0)2 
10 10 10 10 

= l.59. 

Thus, D2 i* = min {O.SS, 0.57, l.S9} = 0.57 , 

:. i* =2 

Therefore, the second order in the sequence schedule is the product A2. Also, Xjk 

will be computed as: 

Xjk = Xj, k-I + b2j= 

XII=O+I=I , 

X2 1 = 1 + 1 = 2 , 

X3 1 = 1 + 0 = 1 , 

X41=0+1=1 , 

This procedure was used to developed the second line of Table 2. The remaining lines 

in Table 2 can also be written by following the same procedures. As a result, the complete 

sequence schedule of this example will be: 
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2.2.2 Goal Chasing II 

This method is a simplified version of Goal Chasing I, whose goal is to keep a constant 

speed in the utilization of each part on the mixed model assembly line. A product is assigned 

to position k in the assembly sequence that will 

(

KN .. 
Maximize L Jl 

j.eB. Q 
1 J 

where 

Bj is a set of constituent parts aij for the product Ai 

i.e., Goal Chasing II selects the model requiring those parts that most need to catch up to their 

average usage rate. The notations used are the same as those in Goal Chasing I. 

To avoid introducing successively the same product requiring a longer operation time, 

all automobiles on the line are classified according to large (a/), or medium (am), or small (as) 

total assembly times. Each aj G ::::: 1, m, and s in the situation) must be introduced to the line 

so as to keep the speed constant on the line. This goal can be achieved by using the same 

simplified algorithm for keeping the speed constant of utilizing each part aj on the line. 

(Monden 1993) 

Procedure 

Step 1 Initialization: let k::::: 1; Xj,O ::::: 0, j ::::: 1,2 ... , p, S::::: 1,2, ... , ex, and M= 0. 

Repeat the following steps until S ::::: 0. 

Step 2 For i e S calculate Eki such that: 

(
KN.. J Eki::::: L Jl X . 

. B Q J,k-1 
Ji E j 

Select product r such that Ekr::::: Max {Eki}, i e S. 



15 

Append r to the scheduled list M. 

Step 3 Set Qr = Qr - 1. If Qr = 0, set S = S - {r}. 

Step 4 If S = 0, then stop; otherwise, set Xjk = Xj,k-I + bIj, j = I, ... , p, and k = k+ 1. 

Numerical Example (Monden 1993) 

Production quantities Qi and part condition bij are referred to Table I. 

Bj = {j I bij't= 0 } 

:. BI = { 1,3,4 } B2 = { 1,2,4 } B3 = { 2,3,4 } 

for i = 1, Ell = , 

C~5 -0 )+C;07 -0 )+C~5 -0) 

=1.7 

for i = 2, E 1 2 = , 

C;05 -0)+e~8 -0)+e~5 -0) 
=1.8 

for i = 1, E 1 3 = , 

e~8 -0 )+e~7 -0) 
=1.5 

Thus, El i* = max {1.7, 1.8, 1.5} = 2 , 
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:. i* = 2 

Therefore, the first order in the sequence schedule is product A2. 

Xjk = Xj, k-l + b2f 

Xll=O+I=1 , 

X2 1 = 0 + 1 = 1 , 

X3 1 =0+0=0 , 

)41=0+1=1 , 

Thus, the first line in Table 3 was written based on the above computations. 

Next, when k = 2, then 

for i = 2, E2 1 = , 

=1.4 

for i = 2, E2 2 = , 

(~l\J~lV~l) 10 J'l 10 J'l 10 

=0.6 

for i = 1, E2 3 = , 

=2 
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Table 3 Sequence schedule of Goal Chasing II Example 

K E X 

1 1.7 1.8* 1.5 A2 1 1 0 1 

2 1.4 0.6 2* A2A1 1 2 1 1 

3 2.1* 1.4 1.5 A2A1Al 2 2 2 2 

4 0.8 1.2 2* A2A1A1A1 2 3 3 2 

5 1.5 2* 1.5 A2A1A1A1A2 3 4 3 3 

6 1.2 0.8 2* A2A1A1A1A2A1 3 5 4 3 

7 1.9* 1.6 1.5 A2A1A1A1A2A1Al 4 5 5 4 

8 0.6 1.4 2.0* A2A1A1A1A2A1A1A1 4 6 6 4 

9 1.3 2.2* 1.5 A2A1A1A1A2A1A1A1A2 5 7 6 5 

10 1.0 1.0 2.0* 5 8 7 5 

* Indicates smallest distance Ekj-
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Thus, E2 i* = max {1.4, 0.6, 2} = 2 , 

:. i* =3 

Therefore, the second order in the sequence schedule is product A3. Also, Xjk will be 

computed as: 

Xjk = Xj, k-l + b3f 

X12=1+0=1 , X3 2 = 0 + 1 = 1 , 

Xt2=1+O=1 , 

This procedure was used to developed the second line of Table 3. The remaining lines 

in Table 3 can be determined by following the same procedures. As a result, the complete 

sequence schedule of this example will be: 

2.2.3 Time Spread 

Time Spread was proposed by Sumichrast et aI. (1992) to smooth the work load at 

each station on the line to achieve efficient assembly. The mixed model assembly line is 

assumed to be balanced so that each station can at least produce the average amount of work 

without requiring additional, non-assigned workers. The structure of this function is similar to 

that in Goal Chasing I except that the individual terms representing quantities of parts and 

products in Goal Chasing I have been replaced by their individual corresponding assembly 

(process) times. A product is assigned to position k in the sequence that will 
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AT/(k_I) 

s 

til 
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= the actual time required at station I to assemble the first k-l units of 

the sequence 

= the number of assembly stations 

= the assembly time required by product i at station I 

= the total time to assemble all parts in the sequence at all stations 

= the total time to assemble all parts in the sequence at station I 

= the quantity of components j required to assemble one end item i 

= the total demand quantity of product i 

Procedure 

Step 1 Calculate the time to assemble all items at station i, 

Tj = bij x Ni, i = 1,2, ... , ex, 

j = 1, ... , p. 
{3 

Calculate the sum of the assembly time at each station, T = L. T
J
. 

j=1 

Step 2 Initialization: let k = 1; Xj,O = 0, j = 1,2 ... , p; S = 1,2, ... , ex; and M= 0. 

Repeat the following steps until S = 0. 

Step 3 For i E S calculate Tki such that: 

s (kT )2 Tki = Min L. _I -ATI(k-l)-til 
1= 1 T 

Select to produce r such that Tkr = Min {Tki} i E S. 

Append r to the scheduled list M. 
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Step 4 Set Qr = Qr - 1. IfQr = 0, set S = S - {r}. 

Step 5 IfS = 0, then stop~ otherwise, set Xjk = Xj,k-l + brj, j = 1, ... , p, and k = k+ 1. 

Numerical Example (Sumichrast et al. 1992) 

Using the data shown in Table 4, the time to assemble all items at station 1 is computed as 

follows: 

TI = (3)(4) + (2)(5) +(2)(4) = 30 

Similarly, for the remaining stations: 

T2 = (3)(2) + (2)(3) +(2)(6) = 24 

T3 = (3)(0) + (2)(2) +(2){1) = 6 

T4 = (3)(5) + (2)(2) +(2)(0) = 19 

Total time is the sum of the assembly time at each station. 

Table 4 Assembly Times by Station and Demand 

Assembly time by station 

Products 1 2 3 4 Demand 

1 4 2 0 5 3 

2 5 3 2 2 2 

3 4 6 1 0 2 
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T=30+24+6+ 19=79 

Tki is now calculated for each model. Since this will determine the model to sequence in 

position 1; k = 1 and ATI(k-l) = 0 for each station, I. 

( 
30 )2 (24 )2 (6 )2 (19 )2 lx--0-4 + lx--0-2 + lx--O-O + lx--0-5 = 3864 
~ ~ ~ ~ . 

The objective function Tki is calculated for product 2 and 3 in the same way. 

Stage 2 

Objective function value by product 

1 2 3 

38.64 35.41 46.46 

Method TS would select product 2 as the first one in the assembly sequence since it minimizes 

the objective function. 

The procedure is followed again as the second position in the sequence is filled. Now 

k = 2 and ATI(k-l) is 
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Actual time required by station before stage 2 

1 2 3 4 

5 3 2 2 

Tki is recomputed for each product. For product 1, its value is 

( 
30 )2 (24 )2 (6 )2 (19 )2 2x--5-4 + 2x--3-2 + 2x--2-0 + 2x--2-5 = 133 11 
79 79 79 79 . 

Perfonning this calculation for all products gives the following results. 

Stage 1 

Objective function value by product 

1 2 3 

133.11 141.66 148.76 

Product 1 minimizes the objective function at this stage and is therefore selected. 

Continuing in this manner. TS selects the following product sequence. 

Position 1 2 3 4 5 6 7 

Product 2 1 3 1 2 1 3 
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2.2.4. Quick and Dirty 

Quick and Dirty algorithm was developed by Inman and Bulfin (1991) to provide a 

new formulation and solution procedure to sequence a mixed model just-in-time (JIT) 

assembly system. The purpose of the algorithm is to identify an alternative and equally 

approximate pair of objectives for which an optimal schedule may be determined by a simple 

and highly efficient procedure. The problem may be interpreted as a single-machine 

scheduling problem with each unit of product treated as a separate job, where tik is defined as 

the due date of job of product i in stage k. The problem becomes significantly more difficult 

when the processing times are different. The objectives can be expressed as: 

where 

a Q 2 
Min L L (X·t - d·t ) i=1 t=1 1 1 

or a Q
1 

I Min L L X. -d. 
i=l t=1 It It 

Xik denotes the time at which kth unit of product i is actually produced 

Q: total demand (=l:Qi, Qi is production quantity of each product Ai) 

dit : the cumulative demand for product i at time t 

The algorithm assumes that the unit production times of all items are identical and without 

loss of generality, equal to one time unit. This implies that Q = LQj. Also, there are no 

setups when switching production from one product to another. The cumulative demand for 

product i at time t equals dit = tQi/(LQi). The purpose is to minimize the deviation between 

cumulative production and cumulative demand. Let tik denote the time at which the kth unit 

of product i is needed, which will be used as its due date. Then 

[(K -1/2)T] 
tik = Q. 

1 

i = 1, ... , a; k= 1, ... , Qi, 

where T: the total demand of all products 
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Procedure 

Step 1 Calculate every value of t 'k =.::....[ (::-k_-_l_I_2 ),--T.-.::.] 
1 Q, 

1 

Step 2 Sort the due date by ascending order. 

Ties can be broken up arbitrarily, However, scheduling the product with the largest 

demand seems to generate good schedules. 

Numerical Example (Inman and Bulfin 1991) 

n = 3 product types with demands 6, 6 and 1 units. There are a total 13 jobs to 

be assigned to 13 positions. Table 5 gives the due dates according to equation in step 1. 

Ordering these jobs results in the optimal schedule 2-1-2-1-2-1-3-1-2-1-2-1-2. 

2.2.5. Miltenburg's Algorithm 

Miltenburg (1989) proposed several algorithms to solve the mixed model sequencing 

problem. The purpose of the algorithms are to develop a theoretical basis for scheduling 

mixed model assembly lines in TIT production systems, with minimum variation in model 

production rate. It was assumed that all products require approximately the same number and 

mix of parts. Using the following notation: 

Qi = the production quantity of each product Ai 
a 

Q= LQ, 
i=l 1 

k: stage number 

mi,k: the nearest integer point to the k points, 

mk: scheduled products in stage k, 

x' k=kr 1, l' 

Ti = Qi/Q : the ratio of the production quantity of product Ai to the total demand. 
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Table 5 Due Dates of Quick and Dirty Example 

Unitk 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

1 

Due Date 

13/12 

39/12 

65/12 

91/12 

117/12 

143/12 

13/12 

39/12 

65/12 

91/12 

117/12 

143/12 

1312 

= 

= 

= 

= 

= 

= 

= 

= 

tjk 

1.083 

3.250 

5.417 

7.583 

9.750 

11.917 

1.083 

3.250 

5.417 

7.583 

9.750 

11.917 

6.500 
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2.2.5.1. Algorithm 1 

In the first algorithm developed by Miltenburg, the sequence produced is not 

necessarily feasible. At each stage of mixed model sequencing the total production should be 

increased by one. However, algorithm 1 occasionally selects to produce two items and then 

destroys one. There is no potential for practical use due to the infeasibility of the sequence, 

but it can quickly create a lower bound for variability against which other schedules may be 

compared. The procedure can be described by using the following notation: 

Procedure 

Point X = (QJ, Q2, .,. , Qn) E Rn where Ii=I mi = Ii=I Xi = k. And the nearest 

integer. The following algorithm finds nearest integer point M = (mI, m2, ... , mn) E Zn to a 

point in the production schedule. 
a 

Step 1 Calculate k = I Q .. 
i=I 1 

Step 2 Find the nearest non-negative integer mi to each coordinate Qij, that is, find mi such 

that 1 m, - Q·I ~ ..!.., i = 1, 2, ... , a. 
1 1 2 

ex 
Step 3 Calculate km = I m· 

i=I 1 

Step 4 (a) Ifk - km = ° stop. The nearest integer point is M = (mJ,m2, ... ,mn) 

(b) Ifk - km > 0, go to step 5. 

(c) Ifk - km < 0, go to step 6. 

Step 5 Find the coordinate Qi with the smallest mi - Qi· 

Increment the value of this mi; mi~mi + 1. Go to step 3. 

Step 6 Find the coordinate Xi with the largest mi - xi. 

Decrement the value of this mi; mi~mi - 1. Go to step 3. 

Step 7 Stop when all stages are scheduled. 
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Numerical Example (Miltenburg 1989) 

There are n = 3 products with D = (6,6, 1) to be assembled on a mixed-model 

assembly line. Hence the vector of demand ratios, is r = (6/13, 6/13, 1/13). Algorithm 1 gives 

the schedule shown in Table 6. 

The optimal production over 5 stages is (2, 2, 1) while the optimal production over 6 

stages is (3,3,0). During the sixth stage one unit of product 1 and one unit of product 2 

must be produced while one unit of product 3 must be destroyed. Of course this is 

impossible. Only one product can be assembled during a stage and products assembled earlier 

cannot be destroyed. 

2.2.5.2. Algorithm 3 heuristic 1 

This is an algorithm that is fast enough to solve problems approaching a realistic size 

and which guarantees a feasible solution. This heuristic starts by scheduling using Algorithm 

1 and then revises the sequence produced to obtain feasibility. The choosing criteria is very 

similar to Goal Chasing II when all models use the same parts. 

Procedure 

Step 1 Use algorithm 1 to schedule a sequence. 

Step 2 For the infeasible schedule determined in Step 1, find the first (or next) stage I where 

mi/- mi/-l < O. , , 

Step 3 Set a = number of product i, for which mi 1- mi I-I < 0 and beginning at stage I-a , , 

Step 4 Schedule stages I-a, I-a + 1, ... , I+w by selecting the product with the lowest 

Xi k-l- kri; where w ;::: o. , 

(l+w is the first stage where the schedule determined by the heuristic matches the 

schedule determined in step 1) 
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Table 6 Example Data of Miltenburg's Algorithm 1 

Stage Product Total 
n 2 

k X M Scheduled L (mi,k-xi,k) Variation i=l 

1 6/13 6/13 1113 100 1 0.5088 0.5088 

2 12/13 12/13 2/13 1 1 0 2 0.0355 0.5444 

3 18/13 18/13 3/13 210 1 0.5799 1.1243 

4 24/13 24/13 4113 220 2 0.1420 1.2663 

5 30/13 30/13 5/13 221 3 0.5680 1.8343 

6 36/13 36/13 6113 330 1,2, -3 0.3195 2.1538 

7 42/13 42/13 7/13 331 3 0.3195 2.4734 
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Step 5 Repeat steps 2,3 and 4 for other stages where mi k - mi k-l < 0 or until the mk , , 

values are the same as those obtained in algorithm 1. Then stop. 

Numerical Example (Miltenburg 1989) 

There are n = 7 products with demands d} = d2 = d3 = d4 = 25 and d5 = d6 = d7 = 4. 

Hence rl = r2 = r3 = r4 =25/112 and r5 = r6 = r7 = 41112. 

The schedule in Table 7 was obtained by using Algorithm 1. For each stage k, a point 

Xk is calculated (where xik = kri). The nearest integer point is calculated (Mk-initial). If 

Li=1 mi * k the point is adjusted to give Mk-final. The schedule for stage 1 to 10 is 1-2-3-4-

5-(1,2, -5)-3-4-5-6 giving a total variation 8.078. Unfortunately this is not a feasible schedule. 

In stage 6 one unit of product 5 is destroyed (m5 6 - m5 6 = 0 - 1 < 0) while both product 1 , , 

and product 2 are scheduled. Suppose we use Heuristic 1 to calculate an entire schedule (see 

Table 8). For each stage k, Xi k-l - kri, i = 1,2, ... , n, is calculated and the product i with the , 

smallest value is scheduled. Ties are arbitrarily broken. (Note that Xi 0 = 0, for all i.) The , 

schedule is 1-2-3-4-5-1-2-3-4-6 for 10 stages. The total variation is 9.953 which is 

considerably more than Algorithm l's schedule. This is not the optimal schedule. 

In Tables 9 and 10, Algorithm 3 with Heuristic 1 is used to determine a schedule. It 

begins by using Algorithm 1. Stage 6 is found to be infeasible and so Heuristic 1 is used to 

reschedule stages 5, 6, ... , until a stage is reached where Mk matches the original schedule. 

As we see in the second part of Table 9, stages 5 to 9 are scheduled with Heuristic 1. At 

stage 9, M9 from Heuristic 1 matches the original schedule - namely 2222 1 0 O. The final 

schedule is 1-2-3-4-5-1-2-3-4-6 (shown in Table 11). Notice that this schedule is the same as 

the schedule produced by Heuristic 1 alone. 
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Table 9 Scheduling Example Using Miltenburg Algorithm 3 with Heuristic 1 (II) 

(From stage I-a, a = number of product i, for which mi./-mi./-1 < 0) 

M· P d am roce ure- Al ·th 1 I!On m 

Algorithm 1 Heuristic 1 

(from Table 3.5.2.1) 

Stage Product Product Total 

k Mk Scheduled Mk Scheduled Variation Variation 

1 1000000 1 0.757 0.757 

2 1100000 2 1.027 1.784 

3 1110000 3 0.810 2.594 

4 1111000 4 0.lD7 2.701 

5 1111100 5 1111100 5 0.792 3.493 

6 2211000 12-5** 2111100 1 1.491 4.984 

7 2221000 3 2211100 2 1.703 6.687 

8 2222000 4 2221100 3 1.429 8.116 

9 2222100 5 2222100 4 0.667 8.783 

10 2222110 6 1.170 9.953 

** Infeasible. Using Heuristic 1 to reschedule stages 5, 6, ... 
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2.2.5.3. Algorithm 3 heuristic 2 

Miltenburg claimed that Heuristic 2 improves the performance from Heuristic 1 but it 

takes more effort computationally. Heuristic 2 also begins by creating a trial schedule and 

revises it to obtain feasibility. It uses the same criteria as Heuristic 1 except a product is 

selected to be produced which minimizes the approximate variation over stages k and k+ 1. 

Procedure 

Step 1 Use algorithm 1 to schedule a sequence. 

Step 2 For the infeasible schedule determined in Step 1, find the first (or next) stage I where 

mi I-mi 1-1 < o. , , 

Step 3 Set h =1. 

Step 4 Tentatively schedule product h to be produced in stage k. 

Calculate the variation for stage k and call it VI h. 

Step 5 Schedule the product i with the lowest Qi k-(k+ l)fj for stage k+ 1. It is the same , 

decision rule as Heuristic 1 

Calculate the variation for stage k+ 1 and call it V2h. 

Calculate Vh=.VIh.+V2h. 

Step 6 Increment h; h ~ h+ 1. 

Ifh > n go to Step 7, otherwise go to Step 3. (n is the number of products.) 

Step 7 Schedule the product h with the lowest Vh. 

Step 8 Stop when all mk values are the same as those obtained in algorithm 1. 
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Numerical Example (Miltenburg 1989) 

Tables 12 and 13 shows how Heuristic 2 would be used with Algorithm 3. In the first 

section Algorithm 1 is used to calculate the k nearest integer points Mk Stage 6 is found to 

be infeasible. The algorithm backtracks to stage 5, and uses Heuristic 2 to schedule stages 5, 

6, ... , until a stage is reached where Mk matches the original schedule. For the problem stages 

5 and 6 are scheduled with Heuristic 2. At stage 6 the schedule produced by Heuristic 2 

matches the original schedule-namely 22 1 1 000. 

The next part of the table shows the detailed calculations for Heuristic 2. First stage 

k = 5 is considered. The first row shows that the variation in stage 5 when product 1 is 

scheduled is VI = 0.917. Given this schedule for the current stage, product 2 should be 

scheduled for the next stage because product 2 has the lowest Xi k - (k+ 1 )fj. If product 2 is , 

scheduled for stage 6, the variation in stage 6 is V2 = 1.241. Hence the variation over stages 

5 and 6, when product 1 is scheduled for stage 5, is approximately 0.917 + 1.241 = 2.158. 

When this procedure is repeated for each product we see that it is best to schedule product 1 

for stage 5 because VI + V2 is the lowest. 

Schedule: 

Sta e, k 

Algorithm 1 

Heuristic 1 

12345678910 

1234 3456 

1 2 
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Table 12 Scheduling Example Using Algorithm 3 with Heuristic 2 

am oce ure-M· Pr d Al ·thm 1 Jgon 

Algorithm I Heuristic 2 

(from Table 7) 

Stage Product Product Total 

k Mit- Scheduled Mit- Scheduled Variation Variation 

I 1000000 I 0.757 0.757 

2 1100000 2 1.027 1.784 

3 1110000 3 0.810 2.594 

4 1111000 4 0.107 2.701 

5 1111100 5 2111000 1 0.917 3.618 

6 2211000 1 2 -5** 2211000 2 1.241 4.859 

7 2221000 3 1.078 5.937 

8 2222000 4 0.429 6.366 

9 2222100 5 0.667 7.033 

10 2222110 6 1.170 8.203 

** Infeasible. Using Heuristic 2 to reschedule stages 5, 6, ... 
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Table 13 Subprogram - Correcting Infeasibilities Using MA3H2 

Stagek Stagek+l 

Stage Lowest Product Total 

k Product VI X; Ic- Product V2 V1+V2 Scheduled Variation Variation 

(k+l)r; 

5 1 0.917 -0.339 2 1.214 2.158 1 0.917 3.618 

2 0.917 -0.339 1 1.214 2.158 

3 0.917 -0.339 1 1.214 2.158 

4 0.917 -0.339 1 1.214 2.158 

5 0.792 -0.339 1 1.491 2.283 

6 0.792 -0.339 1 1.491 2.283 

7 0.792 -0.339 1 1.491 2.283 

6 1 3.241 -0.562 2 3.078 6.319 

2 1.241 -0.562 3 1.078 2.319 2 1.241 4.859 

3 1.241 -0.562 2 1.078 2.319 

4 1.241 -0.562 2 1.078 2.319 

5 1.491 -0.562 2 1.703 3.194 

6 1.491 -0.562 2 1.703 3.194 

7 1.491 -0.562 2 1.701 3.194 

n 2 * VI = :L(Xi.k - kn) 
n 2 

V2= :L(Xi.k+l-(k+l)n) 
i = 1 i = 1 

** MA3H2: Miltenburg Algorithm 3 with Heuristic 2 
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2.3. Summary of Algorithms 

The objective function and the criterion considered by each algorithm are summarized 

and presented in the following sections. 

2.3.1. Objective Function 

Table 14 is a summary of the objective function used by each algorithm. 

T bl 14 S a e umma.ry 0 )Jec Ive unClon fOb' f F f 

Algorithms Objective Function 

Goal Chasing I P (KN. J 
mm~ 

L _J- X 
(GC1) j = 1 Q jk 

KN .. 
Goal Chasing II Jl 

max L (---X .. k 1) 

(GC2) 
j.eB. Q Jl, -
1 J 

Time Spread 
. s kTl 2 

mm 1~1 (T-ATI(k-l) -til) 

(TS) 
ex Q 2 Quick and Dirty min I I(Xit -dit ) 

(Q&D) i=lt=l 

Miltenburg Algorithm 1 
Q ex 2 

min L L (x. k - kr. ) 
k=li=l 1, 1 

(MAl) 

Miltenburg Algorithm 3 
. Q ex 2 

mm L L (x. k - kr. ) 
k=li=l 1, 1 

Heuristic I(MA3Hl) 

Miltenburg Algorithm 3 
Q ex 2 

min L L (x. k - kr. ) 
k=li=l 1, 1 

Heuristic 2(MA3H2) 
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2.3.2. Criterion Considered 

Table 15 summarizes some of the specific criterion considered by each algorithm in 

this study. Both Goal Chasing I and II consider the part structure. Time Spread explicitly 

considers processing time at each workstation. Quick and Dirty algorithm considers due date. 

All algorithms except Miltenburg's Algorithm 1 consider the feasibility of the sequence 

generated. Miltenburg'S Algorithm 1 does provide a quick lower bound of variability. In 

addition, when the algorithm creates a feasible sequence, it performs relatively well when 

measured against the performance discussed. 

Table 15 Criterion Considered by Each Algorithm 

GC 1 GC2 Time Q&D MAl MA3HI MA3H2 

Spread 

Part Structure ~ ~ 

Processing Time ~ 

Due Date ~ 

Feasibility ~ ~ ~ ~ ~ 

~ 
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3. EVALUATION 

In this section, the measures of performance used to compare the algorithms are 

discussed, which are Goal Chasing D, Weighted Goal Chasing D, objective function of Time 

Spread, variance and the computational effort required. The problem sets used in this study 

are presented. The problem sets consist of twenty-three different demand patterns and eleven 

different product structures. 

3.1. Measure of Performance 

The measure of performance considered in this study are primarily the objective 

function of each algorithm. They are selected to test different aspects and robustness of the 

algorithms, such as the ability to maintain a constant part consumption rate, minimize model 

usage variance, etc. 

3.1.1. Goal Chasing D 

The first performance measure used in this study is the ability to maintain a constant 

speed in consuming each part on the line. This is similar to minimizing the deviation, D, of the 

number of each part actually consumed to the ideal value. This is an important evaluation 

criteria especially in the just in time environment utilizing a pull system. Under the pull 

system, the variation in production quantities or conveyance times at preceding processes 

must be minimized. As a result, the quantity used for each part (consumption rate) in the line 

must be kept as constant as possible. The sequences produced by various algorithms are 

substituted into the Goal Chasing I calculation and 
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D= 
fJ KN. 

J 2 L(--X.) 
j=l Q J 

is calculated for each product. The D's corresponding to the products schedule to be produced 

are summed up. This sum is then used as the measure of performance. 

3.1.2. Weighted Goal Chasing D 

This measure is similar to Goal Chasing D, except a different weight is assigned to 

each part. Goal Chasing D implicitly assumes each part is of the same importance. By 

assigning a different weight, the importance of different parts can be considered. In this study, 

the weight is calculated as the ratio of the number of parts to the total number of parts, i.e. 

heaviest weight is assigned to a part which is required by most products. Similarly, the 

sequences produced by each algorithm are subject to calculation. 

To evaluate these algorithms, the mean of the total average Xj for part aj is computed 

as 
Q KN 

Xj = I, --j - X j " for each part aj 
"=1 Q 

The ratios of the part number to total part number are used as the weights, i.e. 
N. 

W·=-' 
J N 

fJ 
Dw = I,(Uj x Xj)' for each method. 

j=1 

At each stage, the weighted Dw values corresponding to the scheduled products are summed 

up. 



42 

3.1.3. Objective Function of Time Spread 

This performance measure evaluates the ability of the algorithms to prevent a 

continuous stream of unfinished work from the station. Under this measure, the processing 

time at each workstation is taken into consideration. Again, all the sequences generated by 

each algorithm are put into the Time Spread calculation, 
Q 

Dts = I. Tk 
k=l 

where Dts = the measure value obtained by using the objective function of Time Spread. 

Tk = the minimum value obtained by using the Time Spread algorithm at 

each stage 

Q = the total demand 

3.1.4. Variance 

This measure of performance evaluates the variance, i.e., how close the proportion of 

product i produced (over a time period) to the total production rj (for all time periods), where 

fi = Qi/Q. Similarly, all sequences obtained by each algorithm are subject to variance 

calculation. At each stage, the variance, defined as: 
a 2 
i~l (mi,k - xi,k) 

is calculated and summed up. The total variance thus obtained is then used as the 

performance measure. 

3.1.5. Computational Effort 

Most real life production line problems involve a minimum of thousands of products 

and parts, thus an efficient algorithm in terms of computational complexity is a very important 

consideration for the algorithm to have any practical usage. Some mathematical programming 
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techniques such as linear programming or mixed integer programming can guarantee 

optimality but are often too slow to be considered for any real world applications. Therefore, 

most algorithms are heuristic in nature and require different amounts of computational effort. 

When scheduling large problems, most good algorithms will produce a short sequence 

and simply repeat this short sequence a number of times to meet the production demand. In 

practice, this can be done by taking the largest common divisor among the product demand 

rates. This can greatly reduce the computational effort while creating feasible sequences. 

3.2. Problem Sets 

The problem sets used in this study are designed to test the algorithm on their 

versatility against different demand patterns (i.e. uniformity of product demands) and different 

part structures (i.e. uniformity of part demands). 

3.2.1. Demand Patterns 

This project studies and compares the seven algorithms based on the problem sets 

shown in Table 16, 17 and 18. The problem sets are designed to test the mixed model 

sequences against different product demands. All problem sets have the same total demand of 

20 products. Demand patterns with 5, 10 and 15 different models of products are considered 

to test these algorithms. The coefficient of variation (standard deviation divided by the mean) 

is used as an attribute of each problem set. Problem set 1 to problem set 6 have 5 models of 

products and whose coefficients of variations shift gradually from 2.2 to o. Problem set 7 to 

problem set 14 have 10 models of products and whose coefficients of variations shift gradually 

from 3.2 to o. Problem set 15 to problem set 23 have 15 models of products and whose 

coefficients of variations shift gradually from 3.9 to 0.4. 
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Table 16 Product Demand Pattern (5 kinds of products) 

Product 
Problem Set 2 3 4 5 Coefficient 

of Variation 
PS 1 20 0 0 0 0 2.2 
PS2 18 1 1 0 0 2.0 
PS3 14 5 1 0 0 1.5 
PS4 11 3 3 2 I I 
Ps5 6 6 4 2 2 0.5 
PS 6 4 4 4 4 4 0 

Table 17 Product Demand Pattern (10 kinds of products) 

Product 
Problem 2 3 4 5 6 7 8 9 10 C.V. 
Set 
PS7 20 0 0 0 0 0 0 0 0 0 3.2 
PS 8 19 1 0 0 0 0 0 0 0 0 3.0 
PS9 16 2 1 1 0 0 0 0 0 0 2.5 
PS 10 12 6 1 1 0 0 0 0 0 0 2.0 
PS 11 11 I I 1 I I I I I I 1.6 
PS 12 7 4 2 I I 1 I I I I 1.0 
PS 13 3 3 3 3 2 2 I I I I 0.5 
PS 14 2 2 2 2 2 2 2 2 2 2 0 

** C.V. : Coefficient of Variation 

Table 18 Product Demand Pattern (15 kinds of products) 

Product 
Problem 2 3 4 5 6 7 8 9 10 II 12 13 14 IS C.V. 
Set 
PS 15 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.9 
PS 16 18 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3.5 
PS 17 16 1 1 1 1 0 0 0 0 0 0 0 0 0 0 3.1 
PS 18 13 2 1 1 I 1 I 0 0 0 0 0 0 0 0 2.5 
PS 19 10 5 1 1 I I 0 0 0 0 0 0 0 0 2.0 
PS20 8 2 1 1 I 1 I 1 1 1 I 0 0 0 1.4 
PS 21 6 1 1 1 1 I I 1 1 I I I I I 1.0 
PS22 3 3 2 1 I I I I I I 0.5 
PS 23 2 2 2 2 2 I I I I I 0.4 

** C.V. : Coefficient of Variation 



45 

3.2.2. Part Structures 

Eleven different product structures (as shown in Table 19 to Table 29) are designed to 

test the algorithms robustness against part usage variation. Part structures a and e are simple 

structures such that all products require a similar number of parts and similar number of parts 

requires by all products. Part structures b, f and i are moderate structures such that each part 

is required at most by 2 products and every demand is only 1. Part structures c, g and j are 

another kind of moderate structure that each part is required at most by 2 products but each 

demand is not necessarily only 1. Part structures d, hand k are complex structures that have 

larger variance among each part requirement, where each product requires a very different 

number of parts. 

In this study, it is assumed that each part will take one unit of time to be assembled, 

and each workstation only assembles one part. Therefore, the total assembly time at each 

workstation is equal to the total number of parts required. 
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Table 19 Part Structure a 

Part 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 1 1 0 0 0 0 
2 0 0 0 1 0 0 1 0 0 0 

Products 3 0 0 1 0 0 0 0 1 0 0 
4 0 1 0 0 0 0 0 0 1 0 
5 1 0 0 0 0 0 0 0 0 

Table 20 Part Structure b 

Part 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 1 0 0 0 0 
2 0 1 1 0 0 0 1 0 0 0 

Products 3 1 0 1 0 0 0 1 1 1 0 
4 0 0 0 1 0 0 0 0 1 0 
5 0 0 0 0 0 0 0 0 0 1 

Table 21 Part Structure c 

Part 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 7 0 0 0 0 
2 0 3 6 0 0 0 6 0 0 0 

Products 3 4 0 2 0 0 0 5 8 9 0 
4 0 0 0 5 0 0 0 0 4 0 
5 0 0 0 0 0 0 0 0 0 7 

Table 22 Part Structure d 

Part 
1 2 3 4 5 6 7 8 9 10 

1 3 2 5 5 0 1 9 3 2 2 
2 2 1 3 1 8 0 1 0 4 3 

Products 3 1 0 6 2 3 4 4 2 5 0 
4 4 2 1 8 0 0 7 3 0 4 
5 7 3 2 0 5 3 3 6 4 0 
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Table 23 Part Structure e 

Part 
1 2 3 4 5 6 7 8 9 10 

1 1 0 0 0 0 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 0 0 
3 0 0 1 0 0 0 0 0 0 0 

Products 4 0 0 0 1 0 0 0 0 0 0 
5 0 0 0 0 1 0 0 0 0 0 
6 0 0 0 0 0 1 0 0 0 0 
7 0 0 0 0 0 0 1 0 0 0 
8 0 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 0 1 0 
10 0 0 0 0 0 0 0 0 0 

Table 24 Part Structure f 

Part 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 1 0 0 0 0 0 
2 0 1 1 0 0 0 1 0 0 0 
3 1 0 0 0 0 0 1 1 1 0 

Products 4 0 0 0 1 0 0 0 0 1 0 
5 0 0 0 0 0 0 0 0 0 1 
6 1 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 1 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 1 
9 0 0 0 1 0 0 0 0 0 0 
10 0 1 0 0 0 0 0 0 0 0 
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Table 25 Part Structure g 

Part 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 5 0 0 0 0 0 
2 0 4 6 0 0 0 7 0 0 0 
3 8 0 0 0 0 0 9 2 8 0 

Products 4 0 0 0 9 0 0 0 0 3 0 
5 0 0 0 0 0 0 0 0 0 4 
6 3 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 5 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 3 
9 0 0 0 6 0 0 0 0 0 0 
10 0 7 0 0 0 0 0 0 0 0 

Table 26 Part Structure h 

Part 

I ~ 2 3 4 5 6 7 8 9 10 
1 2 5 5 0 1 9 3 2 2 
2 2 1 3 1 8 0 1 0 4 3 
3 1 0 6 2 3 4 4 2 5 0 

Products 4 4 2 1 8 0 0 7 3 0 4 
5 7 3 2 0 5 3 3 6 4 0 
6 0 2 4 2 3 1 0 4 3 6 
7 2 3 2 1 3 2 8 4 5 0 
8 3 4 6 7 8 9 0 2 1 1 
9 3 3 1 1 0 2 3 4 8 9 
10 2 1 3 0 6 4 3 0 0 5 
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Table 27 Part Structure i 

Part 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 1 0 0 0 0 0 
2 0 1 1 0 0 0 1 0 0 0 
3 1 0 0 0 0 0 1 1 1 0 

Products 4 0 0 0 1 0 0 0 0 1 0 
5 0 0 0 0 0 0 0 0 0 1 
6 1 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 1 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 1 
9 0 0 0 1 0 0 0 0 0 0 
10 0 1 0 0 0 0 0 0 0 0 
11 1 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 1 0 0 0 0 
13 0 0 0 0 0 1 0 0 0 0 
14 0 0 0 0 0 0 0 1 0 0 
15 0 0 1 0 0 0 0 0 0 0 

Table 28 Part Structure j 

Part 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 6 0 0 0 0 0 
2 0 4 5 0 0 0 7 0 0 0 
3 4 0 0 0 0 0 8 7 5 0 

Products 4 0 0 0 9 0 0 0 0 8 0 
5 0 0 0 0 0 0 0 0 0 6 
6 4 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 3 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 2 
9 0 0 0 4 0 0 0 0 0 0 
10 0 8 0 0 0 0 0 0 0 0 
II 2 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 7 0 0 0 0 
13 0 0 0 0 0 3 0 0 0 0 
14 0 0 0 0 0 0 0 8 0 0 
15 0 0 9 0 0 0 0 0 0 0 
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Table 29 Part Structure k 

Part 
1 2 3 4 5 6 7 8 9 10 

1 3 2 5 5 0 1 9 3 2 2 
2 2 1 3 1 8 0 1 0 4 3 
3 1 0 6 2 3 4 4 2 5 0 

Products 4 4 2 1 8 0 0 7 3 0 4 
5 7 3 2 0 5 3 3 6 4 0 
6 0 2 4 2 3 1 0 4 3 6 
7 2 3 2 1 3 2 8 4 5 0 
8 3 4 6 7 8 9 0 2 1 1 
9 3 3 1 1 0 2 3 4 8 9 
10 2 1 3 0 6 4 3 0 0 5 
11 0 5 2 1 9 2 0 4 2 3 
12 9 2 1 6 4 3 2 4 5 7 
13 7 0 4 3 2 3 4 7 5 2 
14 6 8 5 0 1 2 5 3 2 3 
15 2 7 3 3 5 2 0 6 4 8 



51 

4. COMPUTATIONAL EXPERIENCE 

Using the measure of performance discussed in the previous section, and the different 

problem sets created, the performance of the algorithms are evaluated and the results are 

shown in the following sections. The algorithms that performed well under each measure 

were identified, the relations between part structures and performance were also revealed. 

4.1. Comparison by Goal Chasing D 

From Figure 1 to Figure 11, when using goal chasing D as the measurement, Goal 

Chasing I has the best performance as evident from the lowest D values obtained. Time 

Spread algorithm results in the highest D value amount in all the algorithms. It is noted that, 

the performance of Miltenburg Algorithm 3 Heuristic 1 is very good, steady and close to that 

of Goal Chasing I. Quick and Dirty, Heuristic 1 of Miltenburg's Algorithm 3 have similar 

performances in part structures a, b, c, d, g, i and j. Goal Chasing II performs well except part 

structure b, c and d. Quick and Dirty has very good performance except problem set 14 of 

structure e. And Miltenburg Algorithm 3 Heuristic 2 has unsteady performance. 

Comparing the D values obtained for eleven part structures, it is also found that 

basically the performance of all algorithms worsen when the variance of part structure 

increases, i.e., it is harder to achieve ideal parts usage rate when the parts requirement by each 

product varies. But there are some exceptions, i.e., structures band f 
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4.2. Comparison by Weighted Goal Chasing D 

From Figure 12 to Figure 22, it is obvious that, Goal Chasing I performed best among 

all algorithms when compared against Weighted-D, because of the lowest values obtained. 

Miltenburg Algorithm 3 Heuristic 1 is steady and close to the best. Time Spread Algorithm 

has good performance in structure e , fair performance in structure i and bad performance in 

other structures. Quick and Dirty has very good performance generally except structures e 

and f. Goal Chasing II's performance is all right except structure d. Some performance of 

algorithms worsen when the part structure becomes more complex, this again leads to the 

conclusion that basically the ideal parts usage rate is harder to achieve when the parts 

requirement varies among products. 
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Weighted-D Comparison (Structure g) 
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4.3. Comparison by Objective Function of Time Spread 

From Figure 23 to Figure 33, when using the objective function of Time Spread 

Algorithm as the measure of performance, the processing time at each workstation becomes 

an important issue. As expected, Time Spread Algorithm performs well except structure a 

because it is the only algorithm that takes process time into consideration when generating the 

mixed model sequence. Miltenburg Algorithm 3 Heuristic lIs performance is steady and close 

to the best. Goal Chasing I has very good performance except problem set 22 of structure i. 

Goal Chasing II's performance is not steady. And Miltenburg Algorithm 3 Heuristic 2 has 

very good performance except problem set 14 of structure e and problem set 19 of structure i 

It is also noted that the performance of some algorithms deteriorates from simple part 

structure to complex part structure, i.e., it is harder to smooth the work load at each 

workstation when there is a large variance of part requirements. 
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4.4. Comparison by Variance 

From Figure 34 to Figure 44, by using total variance as the measure of performance, 

Miltenburg Algorithm 1 has the lowest total variance. However, the sequence generated may 

be infeasible. When Miltenburg Algorithm 1 failed to generate a sequence, Heuristic 1 of 

Miltenburg Algorithm 3 has the best performance. Goal Chasing I, Goal Chasing II and 

Miltenburg Algorithm 3 Heuristic 2 have unsteady performance. Quick and Dirty has very 

good performance in part structure a, b, c and d. Again Time Spread algorithm has the worse 

performance. 

Basically when the variance of part structure increases, the performance gets worse 

but there are some exceptions. 
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4.5. Computational Efforts 

The computational effort was measured quantitatively by the degree of difficulty in 

programming and summarized in Table 30. Among these algorithms, Quick and Dirty and 

Time Spread algorithm require the least amount of effort. Both Goal Chasing I and II require 

moderate computational time and Miltenburg's Algorithm 3 Heuristic 1 & 2 require the most 

calculations and iterations. But when testing the running time of each program, the interval of 

running time is only 1 second or less. 
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Table 30 Comparison of Computational Effort 

GC 1 GC2 Time Q&D MAl MA3HI MA3H2 

Easy -.J -.J 

Average -.J -.J -.J 

Hard -.J -.J 
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5. CONCLUSIONS 

Seven mixed model sequencing algorithms, Goal Chasing I and II, Time Spread, Quick 

and Dirty and three algorithms suggested by Miltenburg, have been studied and compared. 

Several performance measures are suggested and used to compare the efficiency of these 

algorithms. Almost all algorithms perform well when evaluated against their own objective 

function. 

This study can be used as a basis of several future research efforts, and has 

demonstrated the procedure for comparison of mixed model sequencing techniques. When 

using the problem sets and part structures suggested, this study concludes that Heuristic 1 of 

Miltenburg Algorithm 3 generates the most efficient mixed model sequence. Goal Chasing I 

performs well in D, weighted-D and time spread comparisons. Quick and Dirty has some 

good performance in each evaluation but its performance is not steady all the time. Goal 

Chasing II and Miltenburg Algorithm 3 Heuristic 2 have unsteady performance. And Time 

Spread Algorithm generates the worst results. Basically when the variance of part structure 

increases, it is harder to achieve the ideal production objectives. 

In practical applications, it would be very important for the managers to decide the pay 

off between computational complexity and performance and select an algorithm that best suits 

the needs. In addition, the objectives of the mixed model sequencing should be well identified. 

Different algorithms perform significantly different when evaluated under different 

performance measures. Some criterion may be developed to allow managers to quickly 

determine whether the sequence generated is acceptable. If the managers are interested in 

applying mixed-model sequence to their companies and their objectives are maintaining a 

constant speed in consuming each part on the line, preventing a continuous stream of 
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unfinished work from the station and reducing the variance, Miltenburg Algorithm 3 Heuristic 

1 is a very good choice for them. Goal Chasing I is also a good choice for the managers if 

they do not care about the variance very much. Goal Chasing I takes less effort to get the 

sequences than Miltenburg Algorithm 3 Heuristic 1. 

The first extension of this study is to include the evaluation of more newly developed 

algorithms and other heuristics that have performed well either theoretically or practically. 

Secondly, more comprehensive measures of performance may be suggested so that all 

algorithms can be evaluated under the same and fair basis, and to satisfy different objectives of 

maintaining a mixed model sequencing, such as assembly line efficiency, ability to satisfy 

customers' demand in a timely manner, reducing lot size and setup time, etc. Thirdly some 

existing good algorithms can be improved by involving the new criteria, i.e., considering the 

part structure, processing time and due date in Miltenburg Algorithm 3 Heuristic 1. In the 

real world, if the managers have some other objectives, they can create their own suitable 

methods. 
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