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I. INTRODUCTION 

The prediction of the power and burnup behavior of r eactor cores 

is very important in nuclear fuel management. When a reactor generates 

power, the fuel composition changes due to burnup. The way that power 

and burnup change with time must be known in order to assure that the 

r eac tor will operate safely throughout the life of the core. 

The finite e l ement nodal model [l] has been developed to determine 

flux distribution in an operating reactor. It has proved to be 

good method fo r flux calculations. However, these previous analyses 

do not i nvolve power and burnup calculations. Therefore, the purpose 

of this resear ch is to develop and test a one-dimensional nodal model 

for nuclear fuel management by considering the power and burnup of the 

reactor cor e. 

In an oper ating reactor, there are a number of phenomena [2) that 

give rise to small but significant changes in some group parameters. 

Thus, the gr oup parameters canno t be assumed constant over a given 

node. One technique of accounting for these changes is to assume that 

the group par ameters can also be approximated by polynomials over a 

given node s imilar to the neutron flux . 

The basic idea of the finite element nodal model is to present the 

neutron flux for a given node in terms of a polynomial. The power 

density at each location r is proportional to the neutron flux at that 

l ocation r of a reactor. The burnup at each location r is also 

pr oportional to the power density at that location r for time T. 
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Ther efor e , the power density and burnup at time T can also be 

approximated by polynomials over a given node. In order to keep the 

reactor critical and to simplify the control calculation, chemical 

s him control is used in this research. With chemical shim, control is 

accomplished by varying the concentration of boric acid in the coolant 

throughout the life of the core. 

The results from extensive calculations for fuel management were 

compare d to fine mesh finite difference results. All r esults compared 

very favorably between the two methods. A large number of variables [2] 

affect the analytical model of the reactor for nuclear fuel management . 

In thi s research, only the variables, e.g . fuel enrichment, power 

distribution and multiplication factor, were considered in making fuel 

management . 
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II. THE THEORY OF FINITE ELEMENT NEUTRON 
DIFFUSION NODAL MODEL 

A. The Neutron Diffusion Equation 

The diffusion equation for neutron conservation for an energy 

group g is given by [3]: 

where 

- V·D (r) V¢ (r) + L (r) ¢g(r) g g Tg 

g-1 
L 

g"=l 
L ,. ( r ) ¢ ... (r) sg g g 

¢ (r) g 

D (r) g 

L (r) Tg 

1 G 
+ - X L v ... Lf ... (r) ¢ ... (r) 

K g g"=l g g g 

neutron flux a t location r in group g , 

= neutron diffusion coefficient at location r 

in group g, 

removal cross section at location r 

in group g, L (r) = L: (r) - L (r), Tg tg sgg 

= fission spectrum function in group g, 

the eigenvalue of the diffusion equation, 

V ... L:f ... (r) =neutrons per fission times fission cross g g 

section in group g" and 

(2-1) 

L: ... (r) sg g cross section for scattering of neutrons from 

group g" to group g . 

For one dimension with two neutron groups, the diffusion equation for a 

given node becomes 
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- V. n1 (x) V¢1 (x) + [Eal (x) + ERl (x)] ¢1 (x) 

0 (2-2) 

(2-3) 

where ERl (x) is the group transfer cross section from the fast (group 1) 

to the thermal (group 2) group. The V·D(x) V¢ (x) term is equal to 

d [D(x) d¢(x)] 
dx dx 

2 
D(x)d ¢ix) + dD(x) d¢(x) 

dx dx dx 
(2-4) 

Thus, Eq uation (2-2) and (2-3) become: 

2 
d ¢1 (x) + 1 

dx2 Dl (x) 

1 
dD

1 
(x) d¢

1 
(x) K vl Efl (x) - Eal (x) - ERl (x) 

dx dx + ------D-
1

-(x_) _ _____ ¢1 (x) 

1 K v2Ef2(x) 
¢2 (x) 0 + D1 (x) (2-5) 

2 dD2 (x) d<j>2 (x) ERl (x) d ¢2 (x) 
+ 1 <l>1(x) n2 (x) dx dx + 

dx2 D2 (x) 

Ea2 (x) 
¢2 (x) 0 = D2 (x) ( 2-6) 

The neutron flux and gr oup parameters are f unctions of x and can 

be approximated by polynomials over a given node (Figure 2-1). For 

instance , the fluxes in two gr oups are approximated by 



i-1 

x = 

i 

·\ 
I 
I 
I 

x=O 

i+l 

11 . 
l. 

x = 2 = ni 

Figure 2-1 . The flux distribution over each node 
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<Pl (x) fast group (2 - 7) 

thermal gr oup (2- 8) 

Thus , the determination of the coefficients of t he polynomials becomes 

the major concern of this method. 

B. The Determination of the Coefficients 

Equa tions (2- 5) and (2- 6) are rewritten as 

+ a 2 (x) <t>2 (x) 0 (2-9) 

2 dD2 (x) d</>
2 

(x) d <t>2 (x) 
+ 1 + 131 (x) <I\ (x) 

dx2 D2 (x) dx dx 

+ B2 (x) <1>2 (x) = 0 (2-10) 

where 
1 

- l: Rl (x) 
a1 (x) 

_ K v l l: fl (x) - Lal (x) 
(2-11) D1 (x) 

1 
a 2(x) 

_ K v2l:f2(x) 
(2-12) D1(x) 

61 (x) 
l:Rl(x) 

(2-13) - D2 (x) 
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(2-14) 

The fast neutron diffusion coefficient o1 (x) over a given node 

can also be approximated by 

(2-15) 

The polynomial in Equation (2-15) has five unknown d
0

, d1 , d2 , d3 and d4 . 

Therefore, five conditions are needed t o define these coefficients. 

These five conditions are def i ned as follows: 

1. Evaluate o1 (x) at three points, the left, center and 

right of a given node (Figure 2-2) as 

R, :: o1 (-n)=d
0 

- d n + d2n 2 d3n 3 + d4n 4 
01 -1 

0 o :: o1 (o) = d 1 0 

0 r = D (n) = d + d1n + d2n 2 + d3n 3 + d4n 4 
1 - 1 0 

2 . Evaluate the average O(x) at the l ef t half side and the 

right half s ide of a given node as 

- - 1 
Ol - n 

(2-16) 

(2-17) 

(2 - 18) 

(2-19) 



DR. 

-n i 

D 

0 

i 

Fi gure 2- 2. Node geometry for diffusion coefficient evaluation 



D + - 1 
1 - n I 

9 

n 

0 

n n2 n3 n4 
= d 0 + 2 dl + 3 d2 + 4 d 3 + s d 4 (2- 20) 

3. The values of n1 (x) at the above five conditions are known . 

Thus, the coefficients d
0 

through d4 can be obtained by solving the 

s imultaneous Equations (2-16) through (2-20). The results are written 

as fo llows: 

d D o 
0 1 (2- 21) 

dl 
1 [2(D1+ - D - ) - l(n r D £)) 
n 1 2 1 1 (2-22) 

3 + - r D £) - 8 D 0
) d2 =-- [5(D1 + D1 ) - (D1 + 

4n2 1 1 (2-23) 

2 [.!_ (D r £ + - D - )] d3 n3 2 1 Dl ) - (Dl 1 (2-24) 

5 [(Dlr + D £) + + Dl-) + 4 Dl o ] d4 = 4n4 1 3(D1 (2-25) 

The same procedure for n1 (x) is also applied to the nther group 

parameters, La(x), LR(x) and VLf(x) . Thus, r esults similar to 

Equations (2-16) through (2-25) for the other group parameters can be 

obtained. Using the definit ion of a (x) and the above results, one can 

evaluat e the a (x) at the five conditions. 
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1 R, R, 
ERl 

R, 
KvlEfl - E -R, al (2- 26) a l e. I\ 

1 o E o - ERl 
0 

0 KvlEfl - al 
(2-27) a l D o 

1 

1 E r E r 
- ERl 

r 
r I< v1 n - a l (2- 28) a l = D r 

1 

1 - - - ERl -K \)1 Efl - E 
(2-29) al 

a l 
Dl 

1 + + + 
K \)1 Efl - Eal - l:Rl 

(2-30) + 
a l + 

Dl 

1 R, 
R, K \) 2Lf2 

(2- 31) a2 R, 
Dl 

1 0 

0 K \)2Lf2 
(2- 32) a2 = 

D o 
1 

1 r 
r K \)2Lf2 

(2-33) a2 r 
Dl 
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1 K \12Ef2 
Cl2 = 

Dl 

1 + 
+ K \12Ef2 

Cl2 D + 
1 

The first derivative of n1 (x) is 

dD1 (x) 

dx 

(2-34) 

(2-35) 

(2-36) 

Using Equat ions (2- 21) through (2-25), the following results can be 

obtained: 

dDl 
JI, 

dD1 (x) 
<l1 - 2 a2n + 3 d3n 2 - 4 3 

dx - dx <l4n 
x= -n 

1 [-(Dlr + 6 D R,) = -n 1 

+l 
2 (7 + 

Dl + 23 D
1
-) - 8 D 0

] 1 (2 - 37) 

dD o dD1 (x) 1 I dl -- -dx dx x=O 

1 [2(0/ - D -) 1 (D r - D JI,)] (2-38) = - -2 n 1 1 1 
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dx dx 

0 

J -n 

0 

1 s 
n - n 

+ (6 D r + D ~ ) + 8 D1°J 
1 1 

dDl (x) 
d dx x 

= .!_ (D 0 
- D ~) 

n 1 1 

n dD + 
1 - 1 S 

dD1 (x) 
dx dx -- --dx - n 

0 

1 n 2 3 n s (dl + 2 d2x + 3 d3x + 4 d4x ) dx 
0 

= .!_ (D r - D o) 
n 1 1 

(2-39) 

(2-40) 

(2-41) 
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The first derivative of ¢1 (x) is 

(2-42) 

Applying the same procedure as D(x) to ¢1 (x), the fo llowing results can 

also be obtained: 

d<j> 0 
1 -
~ = 

d¢1 (x) 

dx 

d<J>1 (x) 

dx 

0 

I -n 

I 
x=O 

x=n 

1 + -= - l 2 <<1>1 - <l>1) n 

1 (<j> r - ¢ .e,) ] - 2 1 1 

+ (6 ¢ r + ¢ .e,) + 8 ¢101 1 1 

d¢1 (x) 1 .e, 
--- dx = - (¢ 0 

- ¢ ) 
dx n 1 1 

d¢ + 
1 - 1 

dx - n Jn d<j>l (x) 1 r _ ~ o) 
dx dx = n (¢1 ~l 

0 

(2-43) 

(2-44) 

(2-45) 

(2-46) 

(2-4 7) 



where 

<I> .Q, 
1 -

,+- 0 
"'1 -

-+- r 
"'1 -

a 
0 

14 

2 3 4 n n n n 
a o - 2 al + 3 a2 - 4 a 3 + S a 4 

2 3 4 n n n n a + 2 al + 3 a2 + 4 a3 + 5 a4 0 

Define the function r 1 (x) as 

r 1 (x) 1 dD1 (x) d<l>1 (x) 
+ a l (x) <1>1 (x) D1 (x) dx dx 

(2-48) 

(2-49) 

(2-50) 

(2-51) 

(2-52) 

(2-53) 

Thus, r 1 (x) can be evaluated by using Equations (2-7), (2-8), (2-11), 

(2-12), (2-15), (2-36) and (2-42). In order t o keep the function 

r 1 (x) also as a fourth order polynomial, let 
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(2-54) 

Applying the same procedure as D1 (x), the coefficients C
0 

through c4 

can be evaluated as 

where 

c 
0 

0 ,+. 0 
1 dDl d~l o 

=-----+a 
D o dx dx 1 

1 

r r 
1 dDl d<f> l r 

=-----+a 
D r dx dx 1 

1 

(2-55) 

(2-56) 

(2- 57) 

(2-58) 

(2- 59) 

(2- 60) 

,i.O O,i.O 
~l + al ~2 (2-61) 

(2-62) 

(2- 63) 



+ + 
1 dDl dcpl 
----- -- + 
D + dx dx 

1 

16 

+ A. + + A. + C\ '+'l + a2 '+'2 

Using Equations (2-53) and (2-54), Equation (2-9) becomes 

0 

(2-64) 

(2-65) 

The coefficients C
0 

through c4 are still unknown unless the coefficients 

of cp1 (x) are known . 

Assume that the fluxes at the left and right of a given node for 
r R, the fast group, cp1 and cp1 , are known. Thus, the coefficients a and 

0 

a 1 can be solved from Equation (2-48) and Equation (2- 50) as 

cp r + cp R, 
2 4 1 1 

2 - a 2n - a n 4 

cp r - cp R, 
2 1 1 

2n - a n 3 

But a2 , a 3 and a 4 are still unknown . Therefore, othe r assumptions and 

techniques are needed. 

The second derivative of Eq uation (2-7) is 

2 d cp1 (x) 

dx2 

Substitute Equation (2- 68) into Equation (2-65). Equation (2-65) 

becomes equal to g1 (x) instead of zero because Equations (2-7) and 

(2-54) are only approximations. 

(2-68) 
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(2- 69) 

-
The coefficients C

0 
through c4 ar e ass umed known from a previous 

iter a tion a nd independent of a 2 , a 3 and a 4 . 

In order to determine the coefficients a 2 , a 3 and a 4 , the least-

square approximation [4] is used , defined 

The me thod is t o find the coefficients a 2 , a 3 and a 4 such that E is 

minimum. A necessary condi tion for E t o be minimum is 

ClE O 
Cla. = fo r i 2' 3 , 4 (2 - 70) 

1 

Using Leibnitz's rule, one can equate Equation (2- 70) 

0 (2- 71) 

Jn 2 
g1 (x)dx 

- T) 
0 (2- 72) 

.
r n 2 
I g l (x)dx (2-73) 
- T) 
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Fr om Equations (2-71) t o (2-73), the coefficients a 2 , a 3 and a 4 can be 

fo und . 

1 - 3 c4n 4 
a2 - c + 70 2 0 

(2- 74) 

1 - 1 - 2 
a3 - - c - - c n 6 1 10 3 (2- 75) 

1 - 1 - 2 
a4 12 c2 - 14 c4n (2- 76) 

where the terms on the right-hand s ide are also known from a previo us 

iteration . 

Define the f unction r 2 (x) as 

(2-77) 

In order t o keep the function r 2 (x) also as a fourth orde r polynomial , 

le t 

(2-78) 

Applying the same procedure as for ¢1 (x) , the coefficient s of the 

thermal group flux ¢2 (x) can be found. 

cp r + cp R, 
2 4 b 2 2 b2n - b4n (2- 79) 

0 2 

cp r - cp R, 
2 

bl 
2 2 b 3n (2- 80) 2n 



! c--
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(2-81) 

(2-82) 

(2-83) 

Now the flux distribution over each node can be obtained by inserting 

these coefficients into Equations (2-7) and (2-8). 

C. Interface Condition 

The interface diffusion theory boundary conditions between two nodes 

(Figure 2-3) are the continuity of flux and current density across the 

interface [3]: 

<Pr i 
i <f>i+l (2-84) 

d<f>:: i 
-Dr i d<f>.+1 

(-l.) Di+l ( l. ) 
l. dx dx (2-85) 

The first derivative of flux distribution at the interface between 

node i and node i+l is 

dx (2-86) 

where the coefficients a1 through a4 were evaluated for node i. 



i i+l I 

lE- e e ~ 

<l>i+l 

0 1 i-1 i i+l I-1 

Figure 2-3. Assumption of flux distribution at the interface and at the boundary 

I 

N 
0 
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(2-87) 
x=-ni+l 

where the coefficients a1 through a4 wer e evaluated fo r node i+l. 

In order to es timate new interface fluxe s , two fi ctitious parameter 

,,,r_ d ,,,R. f f f f o/
1 

an o/i+l are de ined such that they satis y the allowing inite 

difference equations at any interface: 

<P~ - ljl: d<j>: 
1 1 l. 

e dx x=n i 
(2-88) 

!l, !l, !l, 
ljli+l - <Pi+l d<Pi+l 

e dx (2-89) 
x=-ni+l 

where 6 is an arbitrarily chosen dis tance factor. Substitute 

Equations (2-88) , (2-89) and (2-84) i nto Equa tion (2-85) and solve fo r 

the flux a t the interface as 
r r !l, 

D. ljl. + D.+l 
1 1 1 

Dr. + DR, 
1 i+l 

!l, 
ljli+l 

r !l, where ljli and ljli+l a r e found f r om the previous iteration by using 

Eq uat ions (2-88) and (2-89). 

D. Bounda ry Condi t ion 

The homogeneous boundary condition for the bo\.Uldary node I 

(Figure 2- 3) can be written as [5] 

(2-90) 



r Thus , ¢1 becomes 

= 

x=n I 

T dx x=n I 
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T<j>~ I 
x=n 

I 

wher e the coefficients a1 through a4 were evaluated for node I. 

If the outer boundary is a free surface, the vacuum boundary 

condition can be used. For this case, T can be expressed as 

T = 1 
3(0 . 7104) 

(2-91) 

(2-92) 

(2-93) 

If the outer boundary is not a free surface, the albedo boundary 

condition can be used. For this case , T can be expr essed as 

1 (1 - a 
T = 3(0.7104) 1 +a) (2-94) 

where a is the ratio b e tween the curr ent out of the reflecting region 

to the current into the reflecting region: 

a = 
J out 
3in 

E. Neutron Source Calculation 

For a one dimensional steady-state condition with two neutron 

groups, the neutron source over each node can be written as 

(2- 95) 
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(2 - 96) 

S(x) is also approximated by a fourth order polynomial as 

S(x) (2-97) 

Applying the same procedure as for n1 (x), the coefficients s
0 

through s
4 

can be obtained as 

where 

s s0 

0 

3 
s 2 

4n2 

2 
s 3 =-3 n 

s 4 
5 =-

4n4 

(2-98) 

(2-99) 

[S(S+ + S-) - (Sr + Si) - 8 S0 ] (2-100) 

[!(sr i + -- S ) - (S - S )] 2 (2 - 101) 

[(Sr+ Si ) - 3(S+ + S-) + 4 S0 ] (2-102) 

(2-103) 

(2-104) 

(2- 105) 
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0 - - 1 s f S(x)dx = v1E;1¢~ + v2E;2¢; - n - n 

s+ - 1 Jn S(x)dx + + + + 
v1Efl¢1 + v2Ef2¢2 - = n 

0 

The average source over a given node is 

S - 1 f n = 2n S(x)dx 
-n 

1 f n ( s + =- s1x + s 2x 2n 0 
- n 

s2 2 5 4 4 s +- n + -n 
0 3 5 

Thus, the source over all the nodes becomes 

I 
E 

i=l s = total I 
E 

i=l 

where V. is a volume of node i . 
1 

Si Vi 

v. 
1 

2 + s3x 

(2-106) 

(2- 107) 

3 4 + s4x )dx 

(2- 108) 

(2- 109) 
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III. THE APPLICATION OF FINITE ELEMENT NODAL 
MODEL FOR NUCLEAR FUEL MANAGEMENT 

A. New Group Parameter Calculation 

In this research, the group parameters with boron concentration 

(O and 1200 PPM) and burnup (13 steps from 0 to 45,000 WD/g) are 

tabulated functions taken from a calculated cross-section set [6]. Fo r 

one t ype of LWR f uel , the group parameters of one neutron group are 

briefly shown in Table 3-1 . Assume the group parameters of burnup in any 

burnup interval to be linear functions of burnup over the limited range 

in the group parameters. Thus, using an interpolation technique, the 

gr oup parameters NB of burnup B in any burnup interval BI and BI+l can 

be evaluated as follows (Figure 3- 1) : 

where NI+l the known group paramet ers of burn up BI+l and 

NI the known group parameter s of burnup Br 

Therefore, NB becomes 

NB NI+l + 
(NI+l - NI)(B - BI+l) 

BI+l - BI 
(3- 1) 

Also assume that the relationship of the gr oup parameters and boron 

concentration is linear between 0 and 1200 PPM. Using the same 

interpolation technique, the group parameters NPPM of bor on concentration 

PPM can be obtained as: 



Table 3-1. Example of fast neutron group cross section 

Burn up step (WD/g) 

0 150 500 2500 5000 

B - 3 x 10-3 x 10- 3 -3 - 3 
0 Lal 9.1835 x 10 9.1835 9.1700 9.1770 x 10 9.2544 x 10 
R 
0 KL fl 6.7497 x 10-14 6.7497 x io-14 6 . 7256 x l0-14 6.5611 x 10-14 6 . 3455 x l0-14 

N 
0 VLfl 5.3524 x 10- 3 5.3524 x 10-3 5. 3404 x 10-3 5 . 2464 x 10-3 5 .1137 x 10- 3 

c 
0 LRl 1. 7468 x 10-2 1. 7468 x 10- 2 1.7471 x 10-2 1. 7410 x 10- 2 1. 7279 x 10-2 

N 
c Dl 1.2605 1.2605 1. 2607 1. 2613 1. 2626 
E 

N 
N 0\ 

T 
x 10- 3 x 10- 3 x 10- 3 -3 - 3 

R Lal 9 . 4204 9 . 4204 9 . 4090 9.4306 x 10 9.5224 x 10 
A 
T KL fl 6 . 7386 x i o- 14 6 . 7386 x 10-14 6 . 7187 x lo- 14 6 . 5748 x lo- 14 6 . 3848 x 10- 14 

I 
0 1200 VLfl 5 . 3441 x 10- 3 5.3441 x 10- 3 5 . 3358 x 10- 3 5.2593 x 10- 3 5.1478 x 10- 3 

N 
,,...... LRl 1. 7263 x 10-2 1. 7263 x 10-2 1. 7263 x 10- 2 1. 7189 x 10-2 1.7044 x 10- 2 
p 
p Dl 1. 2744 1.2744 1. 2745 1. 274 7 1.2757 
M ........ 



Table 3-1. (Continued) 

Burnup step (WD/ g) 

10,000 15,000 20 ,000 25,000 30,000 

B 
x 10- 3 x 10-3 x 10-2 0 Lal 9.4312 x 10-3 9. 6134 x 10-3 9.8023 9 .9744 1.0124 

R 
0 KI fl 5.9457 x 10-14 5.5780 x 10- 14 5. 2356 x 10-14 4. 9383 x lo-14 4.6891 x 10-14 
N 

0 VLfl 4 . 8573 x 10-3 4 . 6115 x 10- 3 4.3736 x 10-3 4.1649 x 10-3 3.9870 x 10-3 
c 
0 LRl 

-2 1. 6801 x 10-2 1. 6582 x 10-2 1.6385 x 10-2 1. 6214 x 10-2 1. 7029 x 10 
N 
c Dl 1. 2653 1.2696 1.2773 1.2858 1. 294 7 
E N 
N '-..J 

T 
x 10-3 10-3 x 10-2 x 10-2 -2 R Lal 9. 7134 9. 9043 x 1. 0098 1. 0275 1. 0430 x 10 

A 
x l0-14 x 10- 14 x l0- 14 x 10-14 x 10-14 T KI fl 6 .0342 5.7167 5.4198 5 .1632 4 . 9463 

I 
x 10-3 x 10-3 x 10-3 x 10-3 x 10-3 0 1200 VLfl 4.9316 4 . 7265 4 . 5267 4 .3504 4.1992 

N 
x 10-2 x 10-2 x 10-2 x 10-2 x 10-2 

,....._ LRl 1. 6 781 1.6545 1. 6323 1.6124 1. 5950 
p 
p Dl 1.2788 1. 2834 1. 2909 1. 2992 1.3069 
M 
'-' 



Table 3-1. (Continued) 

Burn up step (WD/g) 
35,000 40,000 45 ,000 

B 
x 10-2 - 2 x 10- 2 0 L:al 1.0256 1. 0375 x 10 1. 0483 

R 
x io-14 4.3203 x io-14 x 10-14 0 KL:fl 4.4845 4.1915 

N 
x 10-3 -3 x 10-3 0 vl: fl 3.8292 3.7193 x 10 3.6241 

c -2 x 10-2 x 10-2 0 L:Rl 1. 6063 x 10 1. 5929 1. 5809 
N 
c Dl 1.3030 1.3099 1. 3169 
E N 

N CX> 

T -2 x 10-2 x 10-2 R L:al 1.0567 x 10 1.0689 1.0800 
A 

4.7653 x io-14 x io-14 x 10-14 T KL fl 4.6169 4. 4968 
I 
0 1200 vl: fl 4.0714 x 10-3 3. 9654 x 10-3 3.8786 x 10-3 
N 

10-2 x io-2 x io-2 
L:Rl 1.5 797 x 1.5661 1. 5540 ,....._ 

p 
p Dl 1 . 3146 1 . 3216 1.3283 
M 
'-' 
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(N1200 - N
0

)(PPM - 1200) 
Nl200 + 1200 (3-2) 

where the known group parameters of boron concentration 

1200 PPM and 

N the known group parameters of boron concentr ation 
0 

0 PPM. 

B. Power Density Cal cul ation 

The power density at location r of a multigr oup calculation is 

given by [7]: 

P(r) E K Ef (r) cp ( r) g g g g (3-3) 

where recoverable energy (joules per fiss ion) and 

fission cross section. 

For one dimension with two neutron groups, the power dens ity becomes 

(3-4) 

P(x) is also appr oximated by a fourth order polynomial as 

(3-5) 

App l ying the same procedure as fo r D1 (x), the coefficient s p
0 

through 

p4 can be obtained as 

(3-6) 
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= _!_ [2(P+ - P-) 1 (Pr - PR,)] pl n - 2 

3 [S(P+ + P-) - (Pr + PR,) P2 =-
4n2 

where 

The average power density over a given node is 

- 1 
P = 2n 

1 =-2n 

P(x)dx 

-n 

(3- 7) 

- 8 P0
] (3-8) 

(3- 9) 

(3- 10) 

(3- 11) 

(3- 12) 

(3- 13) 

(3- 14) 

(3-15) 

(3-16) 
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C. Burnup Calculation 

Assume the power density P(x) over a time interval 6t is constant . 

Thus , the burnup at a given time t 2 can be written as [7]: 

B(x, t2) B(x , tl) + P(x) 6 t 
p (3- 17) 

where B(x, tl ) = burnup at previous time tl, 

P (x) powe r density , 

p fuel dens ity , and 

6 t = t 2 - tl, time interval. 

B(x, t 2) can a lso be approximated as 

(3- 18) 

Applyin g the same procedure as n1 (x), the coefficien ts b
0

(t2) t hrough 

b4 (t2) can a lso be obtained as 

(3-19) 

(3- 20) 

(3-21) 



where 
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b
3
(t2) = ~ {}[Br(t 2) - Bi (t 2)] - [B+( t 2) - B- (t2)] } 

n 
5 { r i + - 4 [B (t2) + B ( t 2) ] - 3[B (t 2) 

4 n 

+ B-(t2)] + 4 B0 (t2) } 

Bi(t2) i B (t1 ) 
pi 

+ - !1t p 

0 

Bo(t2) Bo(tl) + R__ 6 t p 

Br(t2) Br(tl) 
pr 

+ -6t p 

B- (t 2) B-(t
1

) + R__ 6 t 
p 

B+ (t
2

) = B+(t
1

) 
+ 

+ R__ 6 t 
p 

The average burnup over a given node at time t 2 is 

1 n 
B = - f B( x , t 2) dx 2n 

-n 
b2(t2) 2 b4(t2) 4 

bo(t2) + 3 n + 5 n 

D. :::.or on Concentratjon Calculation 

( 3- 22) 

(3-23) 

(3- 24) 

(3-25) 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

It is assumed that the reac t or is controlled by a chemical shim 

system. I nc r easing the concentration of boron by 100 PPM can decrease 

the r eactivity of the reactor abou t 0 . 01 [7] . Tiius , the chan~e in th~ 
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r eac t ivi t y of the r eact or r esulti ng f rom a change in boron 

concentration can be written as 

where PPM 

100 
- 0 . 01 

6PPM 
t;p 

PPM - PP~ 

s - 1 
s 

previous boron concentration, 

PPM1 = estimative critical boron concentration and 

S = neutron source at boron concentration PPM. 

Therefore , PPM1 can be obtained from the above equation as 

PPM - 104 (1:. - 1) s 

(3-30) 

(3-31) 

One cannot assume that PPM1 is a critical boron concentration because 

PPM1 is only an estimated critical boron concentration. If the 

reactor is not critical af ter us i ng the PP~ calculation, a linear 

extrapolation technique is used to estimate the critical boron 

concentrat ion (Figure 3-2): 

where PPM(P-l) 

S(P) - 1.0 
PPM(P-l) - PPM(P) PPM(P) - PPM(P+l) 

previous boron concentration at neutron 

source S(P-l) and 

present boron concentration at neutron 

source S(P). 

(3-32) 

The boron concentration PPM(P+l) for the next iteration can be obtained 

from Equation (3-32) as 



I 
I 

-1-

PPM(P-l) 

1' 
I '-

' " ! 
PPM (P+l ) 

bor on concentration (PPM) 

es t imat e critical 
bor on concentra t ion 

Figure 3-2 . Cr itical bor on concentration estimation 
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PPM(P) - S(P) - l.O (PPM(P-l) - PPM(P)) 
s(P-1) _ s(P) (3-33) 

Therefore , the critical boron concentration can be estimated after a 

number of iterations. 

At startup, the reactor i s necessarily fueled with more fissile 

material than needed t o become critical, and the excess reactivity of 

the fuel is held down by the soluble poison. The critical boron 

con centra tion can be estimated from Equation (3-31) and the iteration 

technique (Equation 3-33). Once the reac tor is operating in a s t eady 

s tate at the des ire d power level, as the fuel i s consumed , the burnup at 

any given time t 2 can be evaluated from Equation (3-17). Thus, the 

boron concen tration is reduced to keep the reactor critical and to 

compensate for the burnup of fuel during the time interval 6t . This 

critical boron concentration can also be estimated from Equation ( 3-31) 

and the iteration technique (Equation 3-33). For each time interval, 

the critical boron concentration is determined. A t ypical curve of 

criti cal boron concentration as a function of time af t e r s t a rtup is 

shown in rigure 3-3 [ 7 1. (Temperat ure defec t and xenon effect 

are not included in this r esearch.) 

If the life of the core is not a multiple of 6t (assume 6 t is 

cons tant), the boron concentration will become n ega tive after the 

calculation of the final time interval (Figure 3- 3) . This negative 

boron concentration is not a realistic s itua tion. In order t o get a 

reasonable concentra tion at the end of the cor e life, ano the r 

technique is used . Choose a new fac tor PPM , th e boron concentration 
w 
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Figure 3-3. Critical boron concentration as function of time after startup 



38 

window. The time for which the critical boron concent r a tion is within 

this PPM is defined as the end of core life. Thus, PPM is a criterion w w 
for searching for the end of core life. Ass ume the boron concentration 

curve i n the final time interval is linear. Thus, an interpol ation 

technique can be applied to sear ch fo r the r eal final time interval 

(Figure 3-4), i.e. 

(3-34) 

where b. t = t2 - tl, constant time interval, 

6 tf the r eal final time interval , 

pp~ = the boron concentration at time tl, 

PPM2 the boron concentration a t time t 2 , and 

PPMf PPM /2 w 

The real f inal time interval can be obtained from Equation (3-34): 

PPM1 - PPMf 
b. t x x A . PPM1 - PPM2 
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IV. THE CALCULATION PROCEDURE 

A. Relaxation Method 

To enhance the speed of convergence to the final solution, a 

relaxation technique [4] is applied to the finite element nodal model . 

Let R(P) be the value calculated by the finite element nodal model. 

R(P-l) is a present value after P-1 iterations. The actual value R(P) 

for P iterations is 

aR(P) + (1 - a) R(P-l) (4- 1) 

where a is a relaxation parameter. If a = 1, the value used for P 

iteration is just the value obtained f r om the finite element nodal model . 

If a F 1, a relaxation technique is used to help speed convergence to 

the final solution. 

The following parameters were used in the relaxation method that 

was applied to the finite element nodal model: 

1. The coefficient of the fl ux distribution ¢(x) 

(P) a. 
1 

i 0 , 1, 2, 3 , 4 

2. The flux at interface and boundary 

¢ (P) = a ¢<P) + (1 - a) ¢(P-l) 

(4-2) 

(4-3) 



41 

3. The neutron source 

S(P) = a S(P) + (1 - a) S(P-l) (4- 4) 

B. Convergence Crite ria 

Convergence for the f lux distribut ion i s established on the ~2 

norm (4) . The ~2 no rm for the flux distribution i s 

£ = II 1 - <ii (P-1) 11 
'¢(P) 2 

I 
E (1 

i=l 

<ii?-1) 2 1/2 
-(P) ) ] 
cpi 

whe re cf>i is the ave r age flux over each node . The convergence is 

establis hed when 

£ < L 

wher e L i s an input convergence c riterion. 

Co nver gen ce for criticality is establishe d on the following 

equation : 

(4-5) 

(4-6) 
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Is 1 - 1.01 < L' to ta (4-7) 

where 1.0 is the eigenvalue of a critical reactor and L' is an input 

convergence criterion for the neutron source. Therefor e, the reactor 

is critical when a converged neutron source has been determined. 

C. Computer Code and Calculation Procedure 

A computer program called BNODE was developed by Dr . Rohach [8) 

which is a one-dimension model with two neutron groups. A flow chart 

of this code is shown in Figure 4-1. The procedure starts with an 

initial flux guess for each node. Then the procedure enters an 'inner 

loop' consisting of four blocks. This loop is an iteration process that 

yields polynomial coefficient s , flux distribution and neutron source. 

Once the flux distribution converges, the procedure moves to the 

criticality convergent decision . If the reactor is not critical, the 

boron concentration needs to be adjusted. Owing to t he change of boron 

concentration, new group parameters are calculated. The procedure then 

enter s the 'inner loop' again . Once the reactor is critical, the 

procedure moves to the PPM decision. If the boron concentration is w 

larger than the PPM , power density is calculated . Using this power w 
density and a selected time interval , burnup can be evaluated. Thus, new 

group parameters are calculated again for the next iterat ion . The 

iterations are repeated until the boron concentration is less than 

the PPM window. 
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Figure 4-1 . Calculat ion flow chart 
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V. RESULTS AND DISCUSSION 

Some neutron fuel data [6] are shown in Table 5-1 . 

Table 5-1. Neutron fuel data 

Fuel Density 3 (g/cm ) Enrichment (%) 

la 2.541 2.38 

2a 2.587 2 . 88 

3a 2.541 2 . 88 

4 2.725 1 . 87 

5 2.725 2.88 

6 2.725 3.52 

a Burnable poison fuel. 

A burnable poison is a large absorption cross section material 

which is converted into a low absorp tion cross section material as the 

result of neutron absorption. Thus, burnable poison can decrease the 

necessary boron concentration in the reactor that is cont r olled by a 

chemical shim. The burnable poison fuel elements are placed at selected 

locations in the core. The fuel loading pattern A in a one-dimensional 

model is shown in Figure 5- 1. 

A computer program DODMG has been developed [9] for finite 

difference approximation to one-dimension, multigroup diffusion theory. 

The flux and power distribution of a fine mesh (1 cm per mesh point) 
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calculation can be obtained by this code . Thus, the DODMG code can be 

used as a reference calculation. 

Using the different convergence criteria of the BNODE code , the flux 

and power distribution at BOC (beginning of cycle) are shown in Figures 

5-2 and 5-3 . -7 When the conve r gence cri t erion is e qual to 10 , one can 

ge t r esults very favorably comparable to the DODMG co de (Figures 5-4 and 

5-5). Thus, using the same convergence criterion 10-7 , the fl ux and 

power distribution at EOC (end of cycle) are also obtained (Figures 5-6 

and 5-7) . One can observe that the results are also very good by 

comparing the results with the DODMG code . In order to save computer 

-5 time , the convergence criterion 10 was used for following r esults . 

The flux and power dis tribution at BOC are shown in Figures 5-8 and 

5-9. One can note that the flux dis tribution shows four depressions in 

the locations of fuel t ype 1. This behavior is due to the high 

absorption cross section and low enrichment of burnable poison fuel . The 

power distribution is not continuous at the interfaces, owing to the 

discontinuity of K Lf . The critical boron concentra tion at BOC is g g 

564 PPM. 

Using the time interval of 50 days and adjusting the PPM , the w 

flux , power and t o tal burnup distribution at certain times dur ing the 

core life can be obtained. Figures 5-10 through 5-12 show the above 

dis tributions at 100, 200 and 300 days after s t artup. Thus , the change 

of flux , power and burnup ar e known duri ng the core life . One can 

note tha t t he peak i s l ocated in node 8 at 200 and 300 days. This 

behavior is a result of high burnup of fuel 3 at that time due to high 
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enrichment, burnable poison fuel. The burnup is proportional to the 

power density at a certain time after startup. This behavior can also 

be observed in Figur es 5-11 and 5-12 . 

The critical boron concentration reduces to 79 PPM after 400 days 

of burnup. This is the end of the cycl e (EOC) because the critical boron 

concentration is less than 100 PPM, a chosen PPM . Figures 5-13 and w 

5- 14 show the flux and power distribution at EOC. Both distributions 

are flat t er than befor e . This is another advantage of using the 

burnable poison f uels at selected locations in a core. The total burnup 

distribution is shown in Figure 5-15. The maximum burnup is in fuel 

element 3 (Figure 5-1) because of the high enrichment , burnable poison 

fuel. The critical boron concentration as a function of time after 

startup is shown in Figure 5-16. The critical bo ron concentration 

increases at the beginning and then decreases until the end of the 

core life. This behavior shows that the converted rate (from a high-

absorption c ross section to a low-abs orption c ross section) i s faster 

than cite burnup of burnable poison fuels at the beginning. Therefore , 

more boron concentration is needed to keep the r eactor critical. 

The diffus ion coefficient has been assumed t o be a function of x. 

The a ss umption that the diffus ion coefficien t is independent of x was 

also made in this research. If the diffusion coefficient is not a 

function of x, then Equations (2-5) and (2-6) become 
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2 
d <I\ (x) 

dx2 
- ERl (x) 

<P1(x) 

(5-1) 

(5- 2) 

The comparison of these two cases for the diffusion coefficient at 

EOC is shown in Figure 5-17. The the rmal group diffusion coefficient 

is identical fo r both cases . The fast group diffusion coefficient is 

almost the same for both cases . Thus, one can assume that the dif f usion 

coefficient i s not a function of x to s implify the diffusion cal culat ion. 

Al so note no s ignif i cant differences were noted in the final results . 

Figures 5-18 and 5-19 show the absorption cross sec tion E and ag 

the fission neutron generation probability v Ef . One can observe g g 

that both are functions of x, especially at the outer region of the core. 

The uniform burnup and nonuniform burnup cases were also done in 

this research. In the uniform burnup case , it is assumed that the 

aver age burnup (Equation 3-29) is used for each node. In the nonunifor m 

burnup case , the burnup is a function of x (Equation 3- 18) fo r each 

node. Figure 5-20 shows the comparison between the uniform burnup and 

the nonunifo rm burnup. One can note significant differences t o the 

fue l elements which are located at the outer r egion of the core. 

Therefore, one can accumulate err or s with the use of uni fo rm burnup for 
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calculations , especially in considerin g a reloading pattern. 

Figure 5-21 shows the neutron current distribution at EOC. The 

continuity of neutron current along the core exis t s and fi t s the 

interface diffusion theory boundary condi tion. Figures 5- 22 and 5- 23 

show the eq ua tion balance at EOC . The equation balance for the fast 

neutron group is the comparison between Equations (2- 68) and (2-65), i .e. 

2 d ¢1 (x) 
2 a 2 + 6 a 3x + 12 2 = a4x 

dx2 (2- 68) 

2 d ¢1 (x) 
c - c x - c2x 2 c3x 3 c4x 4 

dx2 0 1 (2- 65) 

The fluxes and gr oup parameters are approximated by the fourth order 

polynomials . The five conditions and the least-square approximation 

were used to determine the coefficient s of the polynomials. These 

app roximations can be observed in Figures 5- 22 and 5- 23 . 

The flux and criticali t y convergence ar e s hown in Figures 5-24 

and 5-25. The log s norm (i2 norm) and the eigenvalue oscillated at 

the change of the bor on concent r ation and then conver ged as the number 

of iterations incr eased . One can observe the above results in 

Figures 5-24 and 5-25 . 

The vacuum boundary conditions were used fo r the above calculation. 

A reflector is very important in reactor operation because it can 

reduce the critical size of a reactor and the maximum t o average flux 

ratio. A boundary concept which app roximates a neutron reflector is 

the use of an albedo boundary cond i tion . Thus , the albedo boundary 
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condition was used for the fol lowing calculations. Another fuel 

loading pattern B in a one-dimensional model is shown in Figure 5-26 . 

The group parameters for fuel type 7, which are loaded on the periphery 

of the co re, were calculated from the interpolation technique 

(5-3) 

where the known group parameters of enrichment ERI+l and 

the known group parameters of enrichment ER1 . 

In order to get a flattened power distribution in a core, the 

enrichment of fuel t ype 7 needed to be estimated. After several 

calculations , a 2% enrichment of fuel 7 gave acceptable results . The 

flux and power distribution at BOC and EOC are shown in Figures 5-27 

through 5-30 . One can observe that both distributions show some 

improvements, especially in the outer region of the core, even using the 

lower enriched fuel. This behavior r esults from using the albedo boundary 

condition , i.e. a r eflector simulated on the outer side of the core. 

Figure 5-31 shows the burnup distribution at EOC . The burnup in the 

outer region of the core is less than that in the center of the core and 

has a negative gradient, i.e. the burnup on the left side is greater than 

that on the right side of these fuel elements . Thus, a fuel reloading 

plan is also considered in this research . 

Many variables and constraints r21 affect a fuel reloading plan 

in the reactor. Only the multiplication factor K for each fuel is 
00 

considered here. The definition of K
00 

is [3] 
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infinite r egion 

The K at EOC for each fuel is s hown in Table 5-2 . 
00 

(5-4) 

Table 5-2. The multiplication factor K
00 

at EOC for each fuel element 

Fuel location Fuel t ype K 
00 

1 1 1. 02 79 

2 4 0 . 9741 

3 1 1. 0252 

4 4 0.9721 

5 1 1.0216 

6 4 0.9738 

7 1 1. 0462 

8 4 1.0122 

9 7 1.0844 

The K00 o f fuel at locations 2 , 4 and 6 are l ess than 1.0. These 

f ue l elements are also the e lement s wh i ch do not contain burnable poison 

Thus , these fuel elements ar e replaced by f uel from the outer region 

(location 9), and a fresh f uel el ement (type 7) is a dded to l oca tion 9 . 
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The rest of the fuel elements remain in their previous locations. The 

fuel reloading pattern C is shown in Figure 5-32. The symbol ' ,'means 

a on ce-burnup fuel. 

Figures 5-33 and 5-34 show the flux and power distribution at BOSC 

(beginning of the second cycle). Figure 5-35 shows the burnup 

distribution at BOSC . One can observe that the burnup at location 9 is 

zero because of the fresh fuel without burnup. Figures 5-36 through 5-38 

show the flux, power and burnup distributions at EOSC (end of the second 

cycle). One can observe that the distribution at EOSC does not change 

very much from each distribution at BOSC. This behavior results from a 

short second cycle. This short second cycle can be improved by using and 

reloading higher enrichment or burnable poison fuels for the second cycle . 

One can recall that the f uel burnup in the outer region of the core 

has a negative gr adient at the end of the first cycle (Figure 5-31) 

and these fuels were reloaded into the second cycle. For actual reactor 

operation, uniform burnup of fuel is desirable before it is unloaded 

from the core. Thus, a loading pattern of rotated fuel is considered. 

The rotated fuel is such that the side of low burnup is placed 

opposi t e the center of the core. Figure 5-32 shows the fuel reloading 

pattern D. The symbol '-' means that the reloaded fuel is rotated . 

The flux, power and burnup distribution at BOSC are shown in 

Figures 5-39 through 5-41. One can note that the gradient burnup at 

locations 2, 4 , 6 and 8 becomes positive because of the rotated fuel. 

Figures 5-42 through 5-44 show the flux, power and burnup distribution 
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at EOSC . The burnup of the rotated fue l does not give a significant 

improvement. The reason is that the burnup is not large enough during 

t his shor t life core . If t he l ife of the core was long enough , the 

b urnup of the rotated fuels will become more uniform t han befor e. 

Compa ring the power distribution between Figures 5-37 and 5-43, 

one can also note that the r otated fuel affects the power distribution . 

Thus , one can use this concept t o ge t a mor e flattened power distribution 

in a co r e . 
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CONCLUSI ON AND FURTHER STUDI ES 

The purpose of this r ese arch was t o deve l op and t est a one -

dimens i onal f inite e l emen t nodal mode l for nuclear f ue l management by 

cons ide ring the powe r and burnup of the r eac t or cor e . The mai n i dea was 

t o ass ume tha t t he gr oup par ame t e r s a r e known at five conditi ons over an 

as sembly and then can be a pproximate d by a pol ynomial. These f ive 

conditions we r e evaluated fo r t he pa rameter s at the lef t botmda r y , cen t e r 

point and right boundary as well as t he ave r a ge pa r ame t e r s over the l ef t 

ha l f s ide and r igh t hal f side of a gi ven node . The powe r dens ity and 

burnup we r e al so approx ima t ed by polynomials and e va luate d by us ing the 

known gr oup parame ter s a nd f luxes a t t he five condi tions ove r a n assembly 

f or a given t i me T. Thus , by applying the finit e e l ement noda l mode l and 

ad j usting the critical bor on concentra tion , the power dens ity and burnup 

were obtaine d. 

For a one-dimens i ona l nuclear f uel management calc ula tion , the 

method was s hown t o give accep t able res ults: 

1 . When the con ver gence was in cr i t icality , the flux and power 

dis tribution s a r e al mos t the same as tha t f r om a fine mesh 

ca lculati on. 

2 . The f lux , power and burnup dis tri bution a t a certain time 

can be eva l ua t ed by adjus tment of t he bor on concentr ation 

window PPMw. Thus , the above dis tributions t hr oughout t he 

life of the cor e can be known. This i s ve r y us e f ul for 

reac t or oper ation . 
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3. The critical boron concentration as a func tion of time af t er 

s tartup can be evaluated. Thus, the life of a co r e is known . 

4 . The diffusion coefficient can be ass umed constant over each 

node t o simplify the neutron diffusion calculations . 

5 . The K
00 

of each fuel at EOC can be obtained and used as a 

r efer ence fo r a r e loading plan . 

6 . Al though the burnup of the rotated fuel does not show any 

obvious improvement, the concept can be used for fur ther 

studies . 

The theory of this method has not been completely developed for 

practical use . The recommendations for further s tudies a r e as follows : 

1. Th e deve lopment of an analytical model for nuclear f uel 

management is a difficult task because of the l arge number 

of variables involved . A one-dimensional model i s not enough 

fo r practical use . Two- and three-dimensional models should 

be developed. 

2 . The convergence rate of flux is s l ower t han that of the 

source . An accelerated flux convergent technique needs 

t o be developed in order t o save computer (CPU) t ime . 

3. Several var iables affect a loadi ng pl an , e.g . fuel 

enrichment, the arrangement of the fresh and partially-

s pent fuels in the core, the f ue l cycl e length, e tc. These 

variables should be considered in order to get an optimum 

l oading pattern. 
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