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I. INTRODUCTION

The prediction of the power and burnup behavior of reactor cores
is very important in nuclear fuel management. When a reactor generates
power, the fuel composition changes due to burnup. The way that power
and burnup change with time must be known in order to assure that the
reactor will operate safely throughout the life of the core.

The finite element nodal model [1] has been developed to determine
flux distribution in an operating reactor. It has proved to be
good method for flux calculations. However, these previous analyses
do not involve power and burnup calculations. Therefore, the purpose
of this research is to develop and test a one-dimensional nodal model
for nuclear fuel management by considering the power and burnup of the
reactor core.

In an operating reactor, there are a number of phenomena [2] that
give rise to small but significant changes in some group parameters.
Thus, the group parameters cannot be assumed constant over a given
node. One technique of accounting for these changes is to assume that
the group parameters can also be approximated by polynomials over a
given node similar to the neutron flux.

The basic idea of the finite element nodal model is to present the
neutron flux for a given node in terms of a polynomial. The power
density at each location r is proportional to the neutron flux at that
location r of a reactor. The burnup at each location r is also

proportional to the power density at that location r for time T.



Therefore, the power density and burnup at time T can also be
approximated by polynomials over a given node. In order to keep the
reactor critical and to simplify the control calculation, chemical
shim control is used in this research. With chemical shim, control is
accomplished by varying the concentration of boric acid in the coolant
throughout the life of the core.

The results from extensive calculations for fuel management were
compared to fine mesh finite difference results. All results compared
very favorably between the two methods. A large number of variables [2]
affect the analytical model of the reactor for nuclear fuel management.
In this research, only the variables, e.g. fuel enrichment, power
distribution and multiplication factor, were considered in making fuel

management.



II. THE THEORY OF FINITE ELEMENT NEUTRON
DIFFUSION NODAL MODEL

A. The Neutron Diffusion Equation
The diffusion equation for neutron conservation for an energy

group g is given by [3]:

g-1
_V-Dg(r) V¢g(r) + ZTg(r) ¢g(r) = g§=1 zsg’g(r) ¢g’(r)
1 G
* 5 xg g’El \)g’ ng,(r) ¢g»(r) (2-1)
where ¢g(r) = neutron flux at location r in group g,
Dg(r) = neutron diffusion coefficient at location r
in group g,
ZTg(r) = removal cross section at location r
in group g, ETg(r) = Ztg(r) - ngg(r),
Xg = fission spectrum function in group g,
K = the eigenvalue of the diffusion equation,
vg,ng,(r) = neutrons per fission times fission cross
section in group g~ and
ng,g(r) = cross section for scattering of neutrons from

group g  to group g.

For one dimension with two neutron groups, the diffusion equation for a

given node becomes



-V-Dl(X) Vo, (x) + [Zal(:c) ¥ ERl(X)] ¢l(X)

-1 T 00 6,60 + VT, (0 6,01 = 0 (2-2)

VoD, (1) Vi, () + T, () 6,y (%) = Zp () 6 () = 0 (2-3)

where ZRl(x) is the group transfer cross section from the fast (group 1)

to the thermal (group 2) group. The V-.-D(x) V¢(x) term is equal to

2
d. do(x), _ Ao (x) | dD(x) dé(x)
dx [D(x) —a;——] = D(x) o th e o (2-4)
X
Thus, Equation (2-2) and (2-3) become:
2 = Tl = B & B (50
d ¢l(x) 1 le(x) d¢1(x) K 17f1 al R1
de * D, (x) dx = Dl(x) ¢1(X)
1
= VL., (%)
K “2F2
Yo a0 ™ =0 @
0,0, dDy(0 do, () T ()
2 ¥ D, (x) dx dx + D, (x) ¢l(x)
dx Z 2
E )
a2
"D, 2 =0 (2-6)

The neutron flux and group parameters are functions of x and can
be approximated by polynomials over a given node (Figure 2-1). For

instance, the fluxes in two groups are approximated by



i i+l

L
¢1‘ /-T\ ¢i+l
= . 7

Figure 2-1. The flux distribution over each node



2 3 4
¢l(x) a + ax - a2x - a X + ahx fast group (2-7)

[

b0 - blx + b x2 + b x3 + b xA thermal group (2-8)

9, (x) 2 3 4

Thus, the determination of the coefficients of the polynomials becomes

the major concern of this method.

B. The Determination of the Coefficients

Equations (2-5) and (2-6) are rewritten as

dz:iz(}{) * Dl]ix) dD;)((x) d¢i}({x) T a;(x) ¢ (x)
oy () 9, (x) =0 (2-9)
o003 00 4,00 R
2 5, Tax 1) ¢
+ By (x) 9,(x) =0 (2-10)

where

1 -
R Vite (®) - £ (%) - Zpy (x)

al(x) 7 Dl(x) (2-11)
1
=V, IZ_,(x)
_X “2%82 y
az(x) = _BIE;T———— (2-12)
% %)
_ R1
Bl(x) - Dz(x) (2-13)



Ea2<x)

BZ(X) Z - BET;T_

(2-14)

The fast neutron diffusion coefficient Dl(x) over a given node

can also be approximated by

2 3 4
Dl(x) = do + dlx + d2x + d3x + dax

The polynomial in Equation (2-15) has five unknown do’ dl, d2’ d3
Therefore, five conditions are needed to define these coefficients
These five conditions are defined as follows:

1. Evaluate Dl(x) at three points, the left, center and

right of a given node (Figure 2-2) as

g 2 3 4
Dl _Dl(—n)-— dD - dln + d2n - d3n + dan

o: -_
Dl ..Dl(o) d0

- _ 2 3 4
Dl _Dl(n) = d0 + dln -+ d2n + d3n + dan

2. Evaluate the average D(x) at the left half side and the
right half side of a given node as

(o}

Dl"E% I—n (do+dlx+d2x2+d3x3+d4x4) dx
=L @ax+a x—2+d —3+d ﬁ+c1 i)lo
n 4 12 2 3 3% B8 g

2 3 4

and d

(2-15)

4"

(2-16)

(2-17)

(2-18)

(2-19)



=8

Figure 2-2. Node geometry for diffusion coefficient evaluation



n
L . 2 3 4
= - + = +
Dl - IO (clO + dlx dzx d3x dax ) dx
= dO e 5 dl + 3— d2 b i I_ d3 + 5— d4 (2-20)

3. The values of Dl(x) at the above five conditions are known.
Thus, the coefficients dO through d4 can be obtained by solving the
simultaneous Equations (2-16) through (2-20). The results are written

as follows:

d =D, (2-21)

a = 2et -7 - 507 - 0] (2-22)

4, =2 50,  + 0,7 - @ + 0, - 80,°] (2-23)
4n

dy = —i-g [% (" - Dll) -, -] (2-24)

a, = iz [@," + 0" - 30, + 1) +4D° (2-25)

The same procedure for Dl(x) is also applied to the other group
parameters, Ea(x), ZR(x) and vZf(x). Thus, results similar to
Equations (2-16) through (2-25) for the other group parameters can be
obtained. Using the definition of a(x) and the above results, one can

evaluate the a(x) at the five conditions.
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1 2
¥ 1fpn ~ Iy R1
)
By
il 0
e R1
(8]
!
1 15
x Y1751 o Rl
r
Py
1 - =
¥Vala  Ia R1
Hy
1 " +
& Y1ifa - Za1 R1
+
By
1 2
K V2lgr
T
By
1 o0
K Voleo
(o]
Dy
1 T
K Y2ie2
D r

(2-26)

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)

(2-33)
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1
u—=i"22f2
2 b -
1
1 +
Ot+=§\’22f2
2 g
1

The first derivative of Dl(x) is

le(x) .
dx

1 +2d,x+3d

2

3

2

x + 4 dax

(2-34)

(2-35)

3 (2-36)

Using Equations (2-21) through (2-25), the following results can be

obtained:
dD A dD. (x)
1 - 1. -
dx dx —- 1
S
n
1
3
an.°  ap. (x)
L = i - &l
dx dx sl 1

(7 D

1

-2 d2n +3d

+

1 + -
T [2007 -

2 _ 4 d n3

37 4

r ')
[-(D1 + 6 Dl )

- o

+ 23 Dl ) - 8 D1 ] (2-37)
1 T 2

) -5 0 =1 (2-38)



dD
dx

dD
dx

1

12

B _ 2
s | =d; +2dn+3dn° +4d,
X="
. + -
-5 [ 5 (23 D1 + 7 D, )
60T+ + 2 0.H
1 1 1
1 o le(x)
n f dx a%
-1
o
1 2 3
— j (d) +2 dyx + 3 dx” + 4 d,x ) dx

1

2 3
d1 - dzn + d3n - dan

1
= (D, =D
g &

=R
a5 *
o
E]
(o}
%

2 44 d4x3) i

3=

J (4 #28x4+34x

o)

3 3
d1 e dzn + d3n + d&”

3
n

(2-39)

(2-40)

(2-41)
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The first derivative of ¢l(x) is

do, (x)
dx i

Applying the same procedure as

also be obtained:

)
b _ 4 1 r 2
d&x - dx T R
x= -
5007 +2397) - 8¢°)
d¢,° ¢, (x)
g . Wy 1 T
= == [2(¢;, -9, )
dx dx - n 1 7 |
1 T 1
-1 @F - oM
de. " do, (x)
1 _ 9% 1.1 + -
dx dx |x=n T [ 2(23 ¢l 7 ¢l )
+ (6 6, + 6,7 +80°]
do. o d¢, (x)
4= e 1 1 )
et i - LS AR
+
o, N4 ) 1
ek e - H OWER.

3

2
= a, + 2 a,X + 3 ax + 4 a,x

3

(2-42)

D(x) to ¢l(x), the following results can

(2-43)

(2-44)

(2-45)

(2-46)

(2-47)
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where

2 3
1 ¢1(—n) =a, -an+anmn - agn + a,n

o
]

-
11

1 = #le) =

|
f

_ 2 3 4
¢1 = ¢1(ﬂ) =a_ +amn+a,n +ayn + a,n
O
_:';L—
¢ = = f; ¢; (x) dx
n n? n> n’
=a, -8 taa-gray Ty gy
n
+ _ 1
0 =5 [ 600 ax
(e}
2 3 4
- n_ n_ n_ n_
By Wy Ey Ay g By g Ay
Define the function rl(x) as
b s o T ) s )
Eqhd = D, (x)  dx dx R R

+ 02(X) ¢2(X)

(2-48)

(2-49)

(2-50)

(2-51)

(2-52)

(2-53)

Thus, rl(x) can be evaluated by using Equations (2-7), (2-8), (2-11),

(2-12), (2-15), (2-36) and (2-42). 1In order to keep the function

rl(x) also as a fourth order polynomial, let
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- 2 3 4
rl(x) = Co - Clx + sz + C3x + Cax (2-54)

Applying the same procedure as Dl(x), the coefficients C0 through C4

can be evaluated as

CO =1 (2-55)
1 + - 1 r 2
C; o [2(r1 . By ¥ g (rl - )] (2-56)
_ .3 + - T 2 o} ¥
C2 = ——E-[S(rl + T ) - (rl + r, ) - 8 3 ] (2-57)
4n
_2 1 T 2 + '
Cqy = 3 (5 (x;" -5y - (1 ry )] (2-58)
) r + - o
Gy = e [(xy” +1,7) - 3(r; +1, ) +4r] (2-59)
where
g1 le2 d“’1£ VR P TR % _—
Ty T 7% dx dx 1 %1 2 2
D
1
o] (o]
dp, - d¢
o _ 1 1 1 o, o0 0 4 O L
D T ax ax TH % toy % (2-61)
D
1
5 i :
dp,  d¢
: N 1 il B X P
rl - r dx dx v %y ¢1 v ) ¢2 (2-62)
D
3
dp.  d¢,
- _ 1 1 1 =, = ~ . a B
1T, - d&x dx o 9 to, o (2-63)
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+
T T i dx dx Y W T Wy (2-64)

Using Equations (2-53) and (2-54), Equation (2-9) becomes

2
d 9yt 2 3 4
'-"-c-];“z—'—' + CO + Clx - sz + C3X + C4x =0 (2-65)

The coefficients Co through C4 are still unknown unless the coefficients

of ¢l(x) are known.
Assume that the fluxes at the left and right of a given node for
the fast group, ¢lr and ¢lg, are known. Thus, the coefficients a, and

a, can be solved from Equation (2-48) and Equation (2-50) as

o £
a_¢1 +¢1_a2_84 (266
- 7 2" 4N -66)
)
4 -4 2
8 = =5 - a,n (2-67)

But ayy ag and a, are still unknown. Therefore, other assumptions and

techniques are needed.
The second derivative of Equation (2-7) is
2
d ¢l(x) 9
— 2 a2-+6 asx + 12 a,x (2-68)
dx
Substitute Equation (2-68) into Equation (2-65). Equation (2-65)
becomes equal to gl(x) instead of zero because Equations (2-7) and

(2-54) are only approximations.
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2 a, +6 a,x+ 12 a x2 + Eo + C.x + szz + 63x3

2 3 4 1

- 4
+ Cax = gl(x)

The coefficients Eo through 64 are assumed known from a previous

and a, .

iteration and independent of a 3 4

2* @

In order to determine the coefficients a,, ag and a

square approximation [4] is used, defined

. 2
E(a,, a4, a,) = 'I‘-n g1 (x)dx

(2-69)

4 the least-

The method is to find the coefficients ag, ag and a, such that E is

minimum. A necessary condition for E to be minimum is

JE

da,
1

=0 for i = 2, 3, 4

Using Leibnitz's rule, one can equate Equation (2-70)

g, (x)
3 n 2 - " &1 ~
Ba I gl(x)dx = 2 j‘ gl(x) s dx =

2 -n -N 2
dg. (x)
3 L n 81

5;; j gl(x)dx = 2 I gl(x) e dx

_n -T] 3

n dg, (x)
s [ ajGodx =2 [ s -§§~ dx

0

(2-70)

(2-71)

(2-72)

(2-73)
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From Equations (2-71) to (2-73), the coefficients ay, aq and a, can be

found.

- -
a, = -5 C +355 T (2-74)
edz L 72 »
8g = =% % ~jo C3" (2-75)
-1 37 1 = 2 L
B, ==13 %=1 & (2-76)

where the terms on the right-hand side are also known from a previous
iteration.
Define the function rz(x) as

| dDZ(X) d¢2(X)
ry(x) = D,(x)  dx ax

+ B8, (x) ¢, (x)
+ B, (x) ¢,(x) (2-77)

In order to keep the function rz(x) also as a fourth order polynomial,
let

- - JZ )3 14
rz(x) = C0 + Clx + sz + CBx + C4x (2-78)

Applying the same procedure as for ¢1(x), the coefficients of the

thermal group flux ¢2(x) can be found.

)
9" + 9, 2 4
B, = e = Bl = By (2-79)
9
by = 4 2
bl = —"——i-n__ - b3T] (2-80)
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b2 = > C0 + 76—C4n (2-81)
__ler L2 '
b3 Sl C1 10 C3n (2-82)
il » i i o 2
b4 = - iE-CZ - EZ-CAH (2-83)

Now the flux distribution over each node can be obtained by inserting

these coefficients into Equations (2-7) and (2-8).

C. Interface Condition
The interface diffusion theory boundary conditions between two nodes
(Figure 2-3) are the continuity of flux and current density across the
interface [3]:

r 2

% = b5 (2-84)
r 2
dé do,
T I ' i+l
uDi (dx ) = = Di+1 ( dx ) (2-85)
The first derivative of flux distribution at the interface between
node i and node i+l is
T
Efi =a +2ax+3a 2 b i x3| (2-86)
dx 1. 2 3 4
x=n,; x=n,

where the coefficients a; through a, were evaluated for node i.



Figure 2-3,

i i+l I

i-1 i | i+l I-1

Assumption of flux distribution at the interface and at the boundary

0¢



2L

2 3
=a; +2a,x+3a;x +4ax [ (2-87)

. LT |

x=-

where the coefficients a; through a, were evaluated for node i+l.
In order to estimate new interface fluxes, two fictitious parameter
'3 ;
wg and wi+l are defined such that they satisfy the following finite

difference equations at any interface:

o; - Vi do
- @69
Ny
9 ) )
Visp ~ % _ %541 | (2-89)
0 dx

where O is an arbitrarily chosen distance factor. Substitute

Equations (2-88), (2-89) and (2-84) into Equation (2-85) and solve for

the flux at the interface as

; I L 2
£ R Py Vg ¥ Pogy ¥y
¢, = ¢, - (2-90)
i i+l Dr + Dﬂ
i i+l

2
where wi and wi+l are found from the previous iteration by using

Equations (2-88) and (2-89).

D. Boundary Condition

The homogeneous boundary condition for the boundary node I

(Figure 2-3) can be written as [5]
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r
d¢
2 & I r
A IR |x= (2-91)
I 3
Tr
Thus, ¢I becomes
p N
¢ = - El.ifl
| T dx _
i
)
iy 2 3
- - ,—[—-(a1 +2 ax + 3 ax" + 4 a,x ) | {2=92)
X=T
 §
where the coefficients a; through a, were evaluated for node I.
If the outer boundary is a free surface, the vacuum boundary
condition can be used. For this case, T can be expressed as
T i s (2-93)
3(0.7104)

If the outer boundary is not a free surface, the albedo boundary

condition can be used. For this case, T can be expressed as

3 (1 = Oy
3(0.7104) "1 + a

T = (2-94)

where o is the ratio between the current out of the reflecting region

to the current into the reflecting region:

% J°“t (2-95)
in

E. Neutron Source Calculation
For a one dimensional steady-state condition with two neutron

groups, the neutron source over each node can be written as
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S(x) = VI () 0,00 + V,Ee, (x) ¢,(x) (2-96)
S(x) is also approximated by a fourth order polynomial as

) 2 3 4
S(x) = 8, * 8% + S,x° + s.x7 + 5, X (2=97)

Applying the same procedure as for Dl(x), the coefficients S, through Sy

can be obtained as

So = S (2-98)
s, = Lt -s) -%(sr = 85y] (2-99)
5, = _%-[5(5+ +87) - (sF + 8% - 8 5°] (2-100)
4n
s I 2 + -
Sy =3 [5(8 -587) - (5 -5)] (2-101)
n
s, =2 [T+ 8% - 36" +87) +4 8 (2-102)
4n
where
g _ N ')
S° = 8(-n) = v I 0 + V,I00, (2-103)
0 - —
s® = S(0) = VI3 ¢7 + v 0,0 (2-104)
st =s(n) = v.25 oF + v 25 ¢F 2-105
= 8l = Vpder @y F Volea®s (2-105)



The average source

wl

Thus, the source

24

o

)

=n

S(x)dx = lef1¢1 + VZE (2-106)

0|

f2¢2

jn S(x)dx

(e}

3|

+ + + +
vlzﬂcpl + v22f2¢2 (2-107)

over a given node is

n
%ﬁ I S(x)dx
=H

n

1 2 3 4
o f (s0 + 51X + 5% + 54X + 54X )dx

2

% (s+ + 87 (2-108)

over all the nodes becomes

(2-109)

where V, is a volume of node 1i.

i
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III. THE APPLICATION OF FINITE ELEMENT NODAL
MODEL FOR NUCLEAR FUEL MANAGEMENT
A. New Group Parameter Calculation
In this research, the group parameters with boron concentration
(0 and 1200 PPM) and burnup (13 steps from 0 to 45,000 WD/g) are
tabulated functions taken from a calculated cross-section set [6]. For
one type of LWR fuel, the group parameters of one neutron group are
briefly shown in Table 3-1. Assume the group parameters of burnup in any
burnup interval to be linear functions of burnup over the limited range

in the group parameters. Thus, using an interpolation technique, the

group parameters NB of burnup B in any burnup interval BI and BI+1 can
be evaluated as follows (Figure 3-1):
N "N N o Ny
B ™ Yy I+
where NI+1 = the known group parameters of burnup BI+l and
NI = the known group parameters of burnup BI‘
Therefore, NB becomes
n R 3 (Npag = 87 (B~ Bepy) (3-1)
B I+l B - B

I+1 I

Also assume that the relationship of the group parameters and boron
concentration is linear between 0 and 1200 PPM. Using the same

interpolation technique, the group parameters N of boron concentration

PPM
PPM can be obtained as:



Table 3-1. Example of fast neutron group cross section

Burnup step (WD/g)
0 150 500 2500 5000

: -3 -3 -3 #3 -3
0 I, 9.1835 x 10 9.1835 x 10 1700 x 10 9.1770 x 10 L2544 x 10
R
0 K 6.7497 x 104 6.7497 x 10°* 6.7256 x 10714 6.5611 x 10 % 6.3455 x 107%%
N

0 VI 5.3524 x 1072 5.3524 x 1072 5.3404 x 1072 5.2464 x 1070 5.1137 x 107>
C
0 B 1.7468 x 1072 1.7468 x 1072 1.7471 x 10°2  1.7410 x 10°2  1.7279 x 102
N
C D, 1.2605 1.2605 .2607 1.2613 2626
E
N
¥ -3 -3 -3 -3 <
R I, 9.4204 x 10 9.4204 x 10 .4090 x 10 9.4306 x 10 .5224 x 10
A
T B 6.7386 x 1014 6.7386 x 10°* 6.7187 x 10°1* 6.5748 x 1074 6.3848 x 10 1%
24
0 1200 VI 5.3441 x 1072 5.3441 x 10”3 5.3358 x 1072 5.2593 x 107> 5.1478 x 107>
N
R . 1.7263 x 1072 1.7263 x 102 1.7263 x 1072 1.7189 x 1072  1.7044 x 1072
P
p D, 1.2744 1.2744 .2745 1.2747 .2757
M

9¢



Table 3-1. (Continued)
Burnup step (WD/g)
10,000 15,000 20,000 25,000 30,000

= 3 3 -3 3 -2
0 Eal 9.4312 x 10~ 9.6134 x 10~ .8023 x 10 L9744 x 10 L0124 x 10
R
0 KE,, 5.9457 x 1014 5.5780 x 10°* 5.2356 x 10°* 4.9383 x 10°1* 4.6891 x 107 1%
N

0 Vi 4.8573 x 1073 4.6115 x 10°2  4.3736 x 10> 4.1649 x 107>  3.9870 x 107>
C
0 e 1.7029 x 1072 1.6801 x 1072  1.6582 x 1072  1.6385 x 1072  1.6214 x 102
N
C D, 1.2653 1.2696 2773 .2858 .2947
E
N
X 3 3 2 2 2
R Loy 9.7134 x 10 9.9043 x 10~ L0098 x 10 L0275 x 10~ L0430 x 10
A
T KD, 6.0342 x 10714 5.7167 x 1071 5.4198 x 10°1% 5.1632 x 10°1* 4.9463 x 1071%
I
0 1200 VI, 4.9316 x 1070 4.7265 x 10™2  4.5267 x 107> 4.3504 x 107> 4.1992 x 10>
N
~ ZRl 1.6781 x 102  1.6545 x 10~2 6323 x 1072 6124 x 102 .5950 x 102
P
p D, 1.2788 1.2834 .2909 .2992 .3069
M

LT



Table 3-1. (Continued)
Burnup step (WD/g)
35,000 40,000 45,000
a 2 -2 =3
0 B 1.0256 x 10 .0375 x 10 .0483 x 10
R
0 KB 4.4845 x 1074 4.3203 x 1074 4.1915 x 10714
N .
0 vIg 3.8292 x 10'3 .7193 x 1073 6241 x 1072
C
0 X 1.6063 x 102 .5929 x 102 .5809 x 102
- R1
c D 1.3030 .3099 .3169
. 1
N
= -2 -2 -2
R By 1.0567 x 10 .0689 x 10 .0800 x 10
A
T KL 4.7653 x 10°1* 4.6169 x 10714 4.4968 x 10°1%
I
0 1200 VI 4.0714 x 10°°  3.9654 x 10> 3.8786 x 10 >
N
5 1,5797 & 1072  1.5661 % 1072 1.5540 = 10°2
i; R1
P D 1.3146 .3216 .3283
: 1

8¢
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. . . (NIZOO - No)(PPM - 1200) _—
PPM 1200 1200
where N1200 = the known group parameters of boron concentration
1200 PPM and
N = the known group parameters of boron concentration

0 PPM.

B. Power Density Calculation
The power density at location r of a multigroup calculation is

given by [7]:

P(r) = L K T 3-3
(1) = LK, I (50, (1) (3-3)
where Kg = recoverable energy (joules per fission) and
ng = fission cross section.

For one dimension with two neutron groups, the power density becomes
P(x) is also approximated by a fourth order polynomial as
_ 2 3 4
P(X) - PO * plx % pzx + p3x + pax . (3—5)

Applying the same procedure as for Dl(x), the coefficients P, through

p, can be obtained as

p =P (3-6)



where

_1 a7 2 3 4
- I (po + ppX + pyxT F pax” 4 p,x )dx

4

2 4l r
== F @ -P) -
n

Po

1 -
n (2" ~® ) =

3

e 15

2
n

5

-

P
+ -2
3
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P+ PT) -

2

')
+ KyIeod,

(0] (e}
+ Kyleod,

r

r
+ Kyleod,

+ Kyleod,

¥ 4
+ Kyleoty

1
7 (P

(p*

@t

(e + Y - 3¢t

P7)]
p%y _ 8 p9)
P)]

P) + 4 P9

over a given node is

P(x)dx

P
2 4 4
n + 5 N

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)
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= % (P+ +P)

C. Burnup Calculation
Assume the power density P(x) over a time interval At is constant.

Thus, the burnup at a given time t2 can be written as [7]:

P(x)
:—] B -
B(x, t2) B(x, tl) 5 At (3-17)
where B(x, tl) = burnup at previous time tys
P(x) = power density,
p = fuel density, and
At =t time interval.

2 ~ t10
B(x, t2) can also be approximated as
B(x, t,) = b_(t,) + b;(t,)x + b,(t )x2 + b, (t )x3
¥ 2 o' 2 172 22 372
+ b, (£)x" (3-18)
4°72 '

Applying the same procedure as Dl(x), the coefficients bo(tz) through

ba(tz) can also be obtained as

]

o
b (t,) = B (t,) (3-19)

1 + - (I 2
b, (t)) = % {2[B (t,) - B (t,)] - 5[B°(t,) - B (t,)1} (3-20)

b, (t,) = ié- {5[8"(t,) + B(t,)]

- [Br(tz) + Bﬂ(tz)] -8 B°(t2)} (3-21)
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2 y I L + o~
by(t,) = ? {E[B (t,) - B (t,)] - [B'(t,) - B (tz)]} (3~22)
b, () = —2 ([B°(t,) + B'(t))] - 3[B'(t,)
41
+ B (t)] + 4 B°(t2)} (3-23)
where
) g p*
B (tz) =B (tl) +E_ At (3-24)
PO
B°(c2) = Bo(tl) ¥ bk (3-25)
r T Pr
B (t2) =3B (tl) + 5 At (3-26)
= = P T
B (t2) — ! (tl) + R At (3-27)
+ + pt
B (t,) = B (r;) + = B¢ (3-28)

The average burnup over a given node at time t2 is

¥ n
T | B(x, £,) dx

¥ =
-1
b,(t,) b, (t,)
2 2 s 4
=b(t)) +—F—n +—5—n
1 ..+ -
= 5 [B (t2) + B (tz)] (3-29)

D. Zoron Concentration Calculation
It is assumed that the reactor is controlled by a chemical shim
system. Increasing the concentration of boron by 100 PPM can decrease

the reactivity of the reactor about 0.01 [71, Thus, the change in the
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reactivity of the reactor resulting from a change in boron

concentration can be written as

100 _ Appy _ FPM - PPM;

T 0.01  Ap

(3-30)
S -1
S

where PPM

previous boron concentration,

PPM estimative critical boron concentration and

neutron source at boron concentration PPM.

w
]

Therefore, PPM, can be obtained from the above equation as

1

PEM, = PPM - 104(%-- 1 . (3-31)

One cannot assume that PPM1 is a critical boron concentration because

PPMl is only an estimated critical boron concentration. If the

reactor is not critical after using the PPM. calculation, a linear

1

extrapolation technique is used to estimate the critical boron

concentration (Figure 3-2):

s _g® B _ 4, e
- - P+T =
ppM (P~ _ ppy®)  ppy () _ ppy )
KE=1)
where PPM = previous boron concentration at neutron
source S(P—l) and
PPM(P) = present boron concentration at neutron

(P)

source S ’

(P+1)

The boron concentration PPM for the next iteration can be obtained

from Equation (3-32) as



S(P—l) . i i

I
|
[
[
l
[
|
I
I
I
I
1

40 'y
S
.t

U
I \ estimate critical
| \ boron concentration
! %

1.0 ! -

ppy (P-1) ppy (P ppy (FH1)

boron concentration (PPM)

Figure 3-2. Critical boron concentration estimation
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(P)
(B) _ S0 = 1.0 _ (ppy(P-1)
SB-D) _ (P

- ppu(P)y (3-33)

Therefore, the critical boron concentration can be estimated after a
number of iterations.

At startup, the reactor is necessarily fueled with more fissile
material than needed to become critical, and the excess reactivity of
the fuel is held down by the soluble poison. The critical boron
concentration can be estimated from Equation (3-31) and the iteration
technique (Equation 3-33). Once the reactor is operating in a steady
state at the desired power level, as the fuel is consumed, the burnup at

any given time t, can be evaluated from Equation (3-17). Thus, the

2
boron concentration is reduced to keep the reactor critical and to
compensate for the burnup of fuel during the time interval At. This
critical boron concentration can also be estimated from Equation (3-31)
and the iteration technique (Equation 3-33). For each time interval,
the critical boron concentration is determined. A typical curve of
critical boron concentration as a function of time after startup is
shown in Figure 3-3 [7]. (Temperature defect and xenon effect

are not included in this research.)

If the life of the core is not a multiple of At (assume At is
constant), the boron concentration will become negative after the
calculation of the final time interval (Figure 3-3). This negative
boron concentration is not a realistic situation. In order to get a

reasonable concentration at the end of the core life, another

technique is used. Choose a new factor PPMW, the boron concentration
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window. The time for which the critical boron concentration is within

this PPMW is defined as the end of core life. Thus, PPMw is a criterion

for searching for the end of core life. Assume the boron concentration

curve in the final time interval is linear. Thus, an interpolation

technique can be applied to search for the real final time interval

(Figure 3-4), i

where At

At

PPM

PPM

PPM

The real final

i.e.

PPM1 - PPMf PPMl — PPMz
At = At (3-34)

=t constant time interval,

2 ~ Fpo
= the real final time interval,

= the boron concentration at time tl’

= the boron concentration at time t2, and

= PPMW/Z .

time interval can be obtained from Equation (3-34):

PPMl - PPMf

At = At KoK A ,
i PPMl - PPM2
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IV. THE CALCULATION PROCEDURE
A. Relaxation Method

To enhance the speed of convergence to the final solution, a

relaxation technique [4] is applied to the finite element nodal model.

~

Let R(P) be the value calculated by the finite element nodal model.

L (B-1) (P)

is a present value after P-1 iterations. The actual value R

for P iterations is

(P) (P) (P-1)

R = oR + (1 -a)R (4-1)

where o is a relaxation parameter. If a = 1, the value used for P
iteration is just the value obtained from the finite element nodal model.
If o # 1, a relaxation technique is used to help speed convergence to
the final solution.

The following parameters were used in the relaxation method that
was applied to the finite element nodal model:

1. The coefficient of the flux distribution ¢(x)

S o o 3B

1 + (1 -a al®h (4-2)

[ N
I

=0,1, 2, 3, 4

2. The flux at interface and boundary

5B _ o 5 ® (P-1)

a ¢ +(1-0a)¢ (4-3)
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3. The neutron source

s® . a5® 4 @ -a sV

(4=4)
B. Convergence Criteria
Convergence for the flux distribution is established on the Rz

norm [4]. The QZ norm for the flux distribution is

—-(P-1)
o 7
E(P) 1

m
il

1 -

=(P-1)
: ; . ¢, 5 L2
: - —m ) | (4-5)
i=1 ¢§ )

where ¢i is the average flux over each node. The convergence is

established when
€ <L (4-6)

where L is an input convergence criterion.

Convergence for criticality is established on the following

equation:
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|s 1.0] £1* (4=7)

total

where 1.0 is the eigenvalue of a critical reactor and L' is an input
convergence criterion for the neutron source. Therefore, the reactor

is critical when a converged neutron source has been determined.

C. Computer Code and Calculation Procedure

A computer program called BNODE was developed by Dr. Rohach [8]
which is a one-dimension model with two neutron groups. A flow chart
of this code is shown in Figure 4-1. The procedure starts with an
initial flux guess for each node. Then the procedure enters an 'inner
loop' consisting of four blocks. This loop is an iteration process that
yields polynomial coefficients, flux distribution and neutron source.
Once the flux distribution converges, the procedure moves to the
criticality convergent decision. If the reactor is not critical, the
boron concentration needs to be adjusted. Owing to the change of boron
concentration, new group parameters are calculated. The procedure then
enters the 'inner loop' again. Once the reactor is critical, the
procedure moves to the PPMw decision. If the boron concentration is
larger than the PPMW, power density is calculated. Using this power
density and a selected time interval, burnup can be evaluated. Thus, new
group parameters are calculated again for the next iteration. The
iterations are repeated until the boron concentration is less than

the PPM window.



43

Start

Input group parameters
and control parameters

L

Initialize parameters

Calculate new
group parameters

Figure 4-1,

T

Calculate coefficient

i

Calculate flux at
interface and boundary

|

Calculate neutron
source

Calculation flow chart




b4

Adjust PPM

Calculate burnup

[

Calculate power
density

Figure 4-1. (Continued)

Convergence

Convergence
of criticality

of flux

PPM < PPM
w



45

V. RESULTS AND DISCUSSION

Some neutron fuel data [6] are shown in Table 5-1.

Table 5-1. Neutron fuel data

Fuel Density (g/cm3) Enrichment (%)
12 2.541 2.38
a® 2.587 2.88
32 2.541 2.88
4 2.725 1.87
5 2.725 2.88
6 2.725 3.52

@Burnable poison fuel.

A burnable poison is a large absorption cross section material
which is converted into a low absorption cross section material as the
result of neutron absorption. Thus, burnable poison can decrease the
necessary boron concentration in the reactor that is controlled by a
chemical shim. The burnable poison fuel elements are placed at selected
locations in the core. The fuel loading pattern A in a one-dimensional
model is shown in Figure 5-1.

A computer program DODMG has been developed [9] for finite
difference approximation to one-dimension, multigroup diffusion theory.

The flux and power distribution of a fine mesh (1 cm per mesh point)
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calculation can be obtained by this code. Thus, the DODMG code can be
used as a reference calculation.

Using the different convergence criteria of the BNODE code, the flux
and power distribution at BOC (beginning of cycle) are shown in Figures
5-2 and 5-3. When the convergence criterion is equal to 10*7, one can
get results very favorably comparable to the DODMG code (Figures 5-4 and
5-5). Thus, using the same convergence criterion 10-7, the flux and
power distribution at EOC (end of cycle) are also obtained (Figures 5-6
and 5-7). One can observe that the results are also very good by
comparing the results with the DODMG code. In order to save computer
time, the convergence criterion 10-5 was used for following results.

The flux and power distribution at BOC are shown in Figures 5-8 and
5-9. One can note that the flux distribution shows four depressions in
the locations of fuel type 1. This behavior is due to the high
absorption cross section and low enrichment of burnable poison fuel. The
power distribution is not continuous at the interfaces, owing to the
discontinuity of Kngg. The critical boron concentration at BOC is
564 PPM.

Using the time interval of 50 days and adjusting the PPMW, the
flux, power and total burnup distribution at certain times during the
core life can be obtained. Figures 5-10 through 5-12 show the above
distributions at 100, 200 and 300 days after startup. Thus, the change
of flux, power and burnup are known during the core life. One can
note that the peak is located in node 8 at 200 and 300 days. This

behavior is a result of high burnup of fuel 3 at that time due to high
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enrichment, burnable poison fuel. The burnup is proportional to the
power density at a certain time after startup. This behavior can also
be observed in Figures 5-11 and 5-12.

The critical boron concentration reduces to 79 PPM after 400 days
of burnup. This is the end of the cycle (EOC) because the critical boron
concentration is less than 100 PPM, a chosen PPMW. Figures 5-13 and
5-14 show the flux and power distribution at EOC. Both distributions
are flatter than before. This is another advantage of using the
burnable poison fuels at selected locations in a core. The total burnup
distribution is shown in Figure 5-15. The maximum burnup is in fuel
element 3 (Figure 5-1) because of the high enrichment, burnable poison
fuel. The critical boron concentration as a function of time after
startup is shown in Figure 5-16. The critical boron concentration
increases at the beginning and then decreases until the end of the
core life. This behavior shows that the converted rate (from a high-
absorption cross section to a low-absorption cross section) is faster
than the burnup of burnable poison fuels at the beginning. Therefore,
more boron concentration is needed to keep the reactor critical.

The diffusion coefficient has been assumed to be a function of x.
The assumption that the diffusion coefficient is independent of x was
also made in this research. If the diffusion coefficient is not a

function of x, then Equations (2-5) and (2-6) become
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2 i )
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2 R1 a2 _
o + 5 ¢1(X) SN e ¢2(x) =0 (5-2)
X 2 2

The comparison of these two cases for the diffusion coefficient at
EOC is shown in Figure 5-17. The thermal group diffusion coefficient
is identical for both cases. The fast group diffusion coefficient is
almost the same for both cases. Thus, one can assume that the diffusion
coefficient is not a function of x to simplify the diffusion calculation.
Also note no significant differences were noted in the final results.
Figures 5-18 and 5-19 show the absorption cross section zag and

the fission neutron generation probability v I One can observe

g fg’
that both are functions of x, especially at the outer region of the core.
The uniform burnup and nonuniform burnup cases were also done in

this research. 1In the uniform burnup case, it is assumed that the
average burnup (Equation 3-29) is used for each node. In the nonuniform
burnup case, the burnup is a function of x (Equation 3-18) for each
node. Figure 5-20 shows the comparison between the uniform burnup and
the nonuniform burnup. One can note significant differences to the

fuel elements which are located at the outer region of the core.

Therefore, one can accumulate errors with the use of uniform burnup for
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calculations, especially in considering a reloading pattern.

Figure 5-21 shows the neutron current distribution at EOC. The
continuity of neutron current along the core exists and fits the
interface diffusion theory boundary condition. Figures 5-22 and 5-23
show the equation balance at EOC. The equation balance for the fast

neutron group is the comparison between Equations (2-68) and (2-65), i.e.

2
d ¢1(X) 2
—~——§——-= 2 32 + 6 33x + 12 a,x (2-68)
dx
2
d ¢, (%)
; i 2 3 4
dxz = - C0 - Clx - sz - 03x - CAx (2-65)

The fluxes and group parameters are approximated by the fourth order
polynomials. The five conditions and the least-square approximation
were used to determine the coefficients of the polynomials. These
approximations can be observed in Figures 5-22 and 5-23.

The flux and criticality convergence are shown in Figures 5-24
and 5-25. The log snorm (Qz norm) and the eigenvalue oscillated at
the change of the boron concentration and then converged as the number
of iterations increased. One can observe the above results in
Figures 5-24 and 5-25.

The vacuum boundary conditions were used for the above calculation.
A reflector is very important in reactor operation because it can
reduce the critical size of a reactor and the maximum to average flux
ratio. A boundary concept which approximates a neutron reflector is

the use of an albedo boundary condition. Thus, the albedo boundary
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condition was used for the following calculations. Another fuel
loading pattern B in a one-dimensional model is shown in Figure 5-26.
The group parameters for fuel type 7, which are loaded on the periphery

of the core, were calculated from the interpolation technique

(N1+l - NI) (ERO'-ERI+1)
N, = N + (5-3)
7 I+l ER — ER
Bl I
where NI+1 = the known group parameters of enrichment ERI+1 and
N, = the known group parameters of enrichment ER;.

In order to get a flattened power distribution in a core, the
enrichment of fuel type 7 needed to be estimated. After several
calculations, a 2% enrichment of fuel 7 gave acceptable results. The
flux and power distribution at BOC and EOC are shown in Figures 5-27
through 5-30. One can observe that both distributions show some
improvements, especially in the outer region of the core, even using the
lower enriched fuel. This behavior results from using the albedo boundary
condition, i.,e. a reflector simulated on the outer side of the core.

Figure 5-31 shows the burnup distribution at EOC. The burnup in the
outer region of the core is less than that in the center of the core and
has a negative gradient, i.e. the burnup on the left side is greater than
that on the right side of these fuel elements. Thus, a fuel reloading
plan is also considered in this research.

Many variables and constraints [2] affect a fuel reloading plan
in the reactor. Only the multiplication factor K, for each fuel is

considered here. The definition of K, is [3]
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_ Rate of neutron production !

infinite region
Rate of neutron loss g

The Km at EOC for each fuel is shown in Table 5-2.

Table 5-2. The multiplication factor K_ at EOC for each fuel element

Fuel location Fuel type K,
I 1 1.0279
2 4 0.9741
3 1 1.,0252
4 4 0.9721
5 1 1.0216
6 4 0.9738
7 1 1.0462
8 4 1.0122
9 7 1.0844

The K_ of fuel at locations 2, 4 and 6 are less than 1.0. These
fuel elements are also the elements which do not contain burnable poison
Thus, these fuel elements are replaced by fuel from the outer region

(location 9), and a fresh fuel element (type 7) is added to location 9.
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The rest of the fuel elements remain in their previous locations. The
fuel reloading pattern C is shown in Figure 5-32. The symbol '.' means
a once-burnup fuel.

Figures 5-33 and 5-34 show the flux and power distribution at BOSC
(beginning of the second cycle). Figure 5-35 shows the burnup
distribution at BOSC. One can observe that the burnup at location 9 is
zero because of the fresh fuel without burnup. Figures 5-36 through 5-38
show the flux, power and burnup distributions at EOSC (end of the second
cycle). One can observe that the distribution at EOSC does not change
very much from each distribution at BOSC. This behavior results from a
short second cycle. This short second cycle can be improved by using and
reloading higher enrichment or burnable poison fuels for the second cycle.

One can recall that the fuel burnup in the outer region of the core
has a negative gradient at the end of the first cycle (Figure 5-31)
and these fuels were reloaded into the second cycle. For actual reactor
operation, uniform burnup of fuel is desirable before it is unloaded
from the core. Thus, a loading pattern of rotated fuel is considered.
The rotated fuel is such that the side of low burnup is placed
opposite the center of the core. Figure 5-32 shows the fuel reloading
pattern D, The symbol '-' means that the reloaded fuel is rotated.

The flux, power and burnup distribution at BOSC are shown in
Figures 5-39 through 5-41. One can note that the gradient burnup at
locations 2, 4, 6 and 8 becomes positive because of the rotated fuel.

Figures 5-42 through 5-44 show the flux, power and burnup distribution
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at EOSC. The burnup of the rotated fuel does not give a significant

improvement. The reason is that the burnup is not large enough during

this short life core. 1If the life of the core was long enough, the

burnup of the rotated fuels will become more uniform than before.
Comparing the power distribution between Figures 5-37 and 5-43,

one can also note that the rotated fuel affects the power distribution.

Thus, one can use this concept to get a more flattened power distribution

in a core.
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CONCLUSION AND FURTHER STUDIES

The purpose of this research was to develop and test a one-
dimensional finite element nodal model for nuclear fuel management by
considering the power and burnup of the reactor core. The main idea was
to assume that the group parameters are known at five conditions over an
assembly and then can be approximated by a polynomial. These five
conditions were evaluated for the parameters at the left boundary, center
point and right boundary as well as the average parameters over the left
half side and right half side of a given node. The power density and
burnup were also approximated by polynomials and evaluated by using the
known group parameters and fluxes at the five conditions over an assembly
for a given time T. Thus, by applying the finite element nodal model and
adjusting the critical boron concentration, the power density and burnup
were obtained.

For a one-dimensional nuclear fuel management calculation, the
method was shown to give acceptable results:

1. When the convergence was in criticality, the flux and power
distributions are almost the same as that from a fine mesh
calculation.

2. The flux, power and burnup distribution at a certain time
can be evaluated by adjustment of the boron concentration
window PPMW. Thus, the above distributions throughout the
life of the core can be known. This is very useful for

reactor operation.
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3. The critical boron concentration as a function of time after
startup can be evaluated. Thus, the life of a core is known.

4. The diffusion coefficient can be assumed constant over each
node to simplify the neutron diffusion calculations.

5. The K of each fuel at EOC can be obtained and used as a
reference for a reloading plan.

6. Although the burnup of the rotated fuel does not show any
obvious improvement, the concept can be used for further
studies.

The theory of this method has not been completely developed for

practical use. The recommendations for further studies are as follows:

1. The development of an analytical model for nuclear fuel
management is a difficult task because of the large number
of variables involved. A one-dimensional model is not enough
for practical use. Two- and three-dimensional models should
be developed.

2. The convergence rate of flux is slower than that of the
source. An accelerated flux convergent technique needs
to be developed in order to save computer (CPU) time.

3. Several variables affect a loading plan, e.g. fuel
enrichment, the arrangement of the fresh and partially-
spent fuels in the core, the fuel cycle length, etc. These
variables should be considered in order to get an optimum

loading pattern.
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