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I . INTRODUCTION 

Neutron noise analysis has become a practical tool for i nvestigating 

the dynamic characteristics of an operating power reactor. In particular, 

the applications of neutron noise measurements have been useful for the 

detection and diagnosis of reactor malfunctions. Numerous sources of 

driving functions, such as forced vibrations and moving voids within the 

reactor core, contribute to the observed neutron detector signals. These 

neutron noise signals can be sensitive to a variety of anomalous condi-

tions in power reactors. Therefore, present attention is focused upon 

on-line diagnostic techniques based on neutron noise analysis for the 

detection of abnormal behavior or component malfunction in a reactor core 

[1-5] . 

The simplest form of noise analysis is the direct observation of the 

time behavior of a neutron noise signal . A signal from a typical in-core 

detector consists of a mean value component (d .c. level) and a randomly 

fluctuating component (noise signal) . The fluctuating component is usu-

ally a nuisance to D.C. instrumentation. In the detection of abnormal 

vibrations, for example, in a monitored system, some useful information 

can be extracted from the noise signal to describe the dynamic or opera-

tional characteristics of a nuclear power plant during its steady-state 

operation. In this study, the randomly fluctuating signals are trans-

formed into power spectral density (PSD) estimates in the frequency domain 

using a Fast Fourier Transform (FFT) algorithm. A set of PSD estimates 

plotted as a function of frequency provides a noise signature pattern. 
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In general, the operational state of the monitored system can be 

characterized from an analysis of neutron noise signals. The noise sig-

natures are repeatable characteristics that identify the operational s tate 

of the system. The pattern recognition of descriptors such as PSD allows 

a decision of association with a class of data, i.e., "normal" or 

"abnormal." The microcomputer-based pattern recognition algorithm devel-

oped in this research determines the normality of a new noise signature 

based upon the previous history of the reactor. This algorithm could be 

utilized for non-destructive testing in industries where vibration signa-

tures are employed. 

The motivation for advanced surveillance and diagnostic methods in 

reactor core monitoring programs has been anticipated regulatory require-

ments and the potential for increased availability in nuclear power 

plants. Both factors have been strongly influenced by operating power 

plant experience. Reactor core motion monitoring activities at several 

nuclear power facilities have shown excessive vibration causing fatigue 

damage, fretting damage, and loosening of mechanical parts . The main 

justifications for neutron noise monitoring are [6]: 

1. Proving the mechanical integrity of a suspect structure 
whose failure could have safety implications . 

2. Measuring a specific quantity to provide assurance that 
it remains within a safety-analyzed limit. 

3. Fulfilling a regulatory requirement . 

4. Providing a "credit" when a problem arises and is deemed 
to require a number of corrective actions. 
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The application of neutron noise analysis techniques in reactor core 

monitoring programs ha s several advantages . When these techniques are 

ful l y developed a nd are accepted by the Nuclear Regu l a t ory Commission, the 

most importan t benefits to a commercial nuclear power station will be [6]: 

1. Interva l s between in-service inspections can be extended, 
and compl ex inspections can be partially replaced. 

2 . Component failure problems could be detected early 
enough t o prevent serious damage and/or to provide ample 
time for planning corrective measures. 

3. Wa s teful deratings of power production due to inadequate 
information about operational conditions are minimized . 

4. A safe limit is provided for normal operations. 

Basically, neutron no ise analysis t echniques have the potential to 

be cost effective in solving surveillance, diagnostic , and safety-related 

problems in nuclear power stations. In nucl ear power plants of current 

size, downtime cost penalties accumulate at the rate of several hundred 

thousand dollars per day. Neutron noise analysis is now considered a 

practical a nd useful tool by vendors in the nuclear industry for improv ing 

the safety and availability of nuclea r power stations . 

Based on these considerations, the main objectives of this study 

are to : 

1 . Statistica lly eva l uate power spectral dens ity data for appli-
cation t o an automated signature analysis. 

2. Develop an off-line system based on multivariate s tatistical 
pattern r ecogni tion for detecting abnormal ope rating condi -
tions in the reactor core . 

3. Demons trate the sensi ti vi ty of the multi variate pattern recogni -
tion a l gorithm to ' simulated ' anomalous noise signature patterns. 
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II. LITERATURE REVIEW 

The applications of reactor noise analysis have been reviewed by 

Thie [1], Uhrig [2], and Booth [3] in recent years. Thie presents the 

rationale for the utilization of randomly fluctuating signals from reactor 

instrumentation for extracting useful information about the operational 

behavior of a reactor core. Uhrig summarizes the state-of-the-art of noise 

analysis in power reactors up to 1973. He includes a discussion of safety-

related measurements and surveillance procedures dealing with vibration, 

boiling, stress wave emission, control during normal operation and malfunc-

tion detection. In his review of the 1974 Specialists Meeting on Reactor 

Noise (SMORN-I), Thie [4] commented that a depth of understanding of zero-

power noise was exhibited. However, good experimental and theoretical 

understanding of power reactor noise was projected in a few specific cate-

gories . The SMORN-I successfully covered the status of noise analysis in 

both zero-power and power reactors. In contrast, practical applications 

of noise analysis for increasing the safety and availability of nuclear 

power plants were emphasized in the SMORN-II, 1977 [5]. The important con-

clusion from this conference was that noise analysis techniques have proved 

successful and cost-effective in solving surveillance, diagnostic, and 

safety-related problems of nuclear power stations. With new and challeng-

ing applications identified, noise analysis has become a practical tool used 

by vendors in the nuclear industry. 

The techniques for extracting useful information from noise signals 

are described in current texts [7-9]. Since these signals are mathemati-

cally random variables, various descriptors have been utilized in both the 
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time and frequency domains. Time domain descriptors include RMS levels, 

auto- and cross-correlation, and the amplitude probability density. Fre-

quency domain variables include auto- and cross-power spectral densities, 

and coherence. Analysis in the frequency domain has proved to be useful 

and more suitable for on-line reactor surveillance and malfunction diag-

nosis. 

Experience in surveillance of nuclear reactors using neutron noise 

analysis techniques has demonstrated success in diagnosis of incipient com-

ponent failure in control rod bearings at HFIR [10], detection of core-

barrel motion of the Palisades pressurized water reactor [11], and confir-

mation of impacting by instrument tubes in BWR-4's [12]. The techniques 

for acquisition of neutron noise data and subsequent analysis have been 

presented by Lewis et al. (13], Fry et al. [11], Fry et al. (14] and 

Fukuni shi et al. [15]. The data acquisition techniques and equipment used 

in the present study were strongly influenced by the work performed by 

Hol thaus [16] and Howard [17]. 

The frequency domain analysis of reactor neutron noise is by the Fast 

Fourier Transform algorithm which provides nearly real -time power spectrum 

analysis of noise signals (18]. This provides noise signatures which are 

utilized to describe the dynamic characteristics and "normal" operational 

state of a nuclear reactor. The use of noise signatures in neutron noise 

monitoring and diagnostic methods for the determination of "abnormal" con-

ditions often requires a trained noise analyst. Computer-based pattern 

recognition algorithms applied to noise analysis provide the advantage of 

automated decision-making and greater efficiency . Gonzalez et al . [19] 

• 
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used the ISODATA algorithm (20] in their pattern recognition surveillance 

system for the HFIR to detect in-core component failures by means of dif-

ferences in the time-dependent noise power spectra. Abnormal operating 

conditions in the Duane Arnold Energy Center boiling water reactor core 

were detected in June, 1975 by Holthaus (16] using the same principles in 

a noise analysis-pattern recognition system. 

In the statistical approach, the use of an on-line reactor surveil-

lance system based on the multivariat e analys i s of noise signals was 

demonstrated by Piety and Robinson [21] and Piety [22]. A new time series 

modeling technique, called Dynamic Data System (DDS), was applied by Chow 

et al. [23] to detect malfunctions in a nuclear reactor by using operating 

neutron flux data. In investigating the time-series model for noisy data 

representation, Allen f24] statistically evaluated theautoregression time-

series model for analysis of a noisy signal to determine quantitatively the 

uncertainties of the model parameters. 

Statistical methods provide a quantitative basis for automating the 

detection of anomalous conditions in a nuclear reactor. For on-line appli-

cations, Piety (25] implemented a statistical algorithm on a minicomputer 

system for automated signature analysis of power spectral density data. In 

the automatic monitoring of reactor operational states, Saedtler [26] intro-

duced sequential hypothesis testing of spectral density functions to char-

acterize the monitored system. Besides spectral functions, the random 

fluctuations of the process variables, such as pressure variations and re-

circulation flow in a boiling water reactor, may be processed to yield 

information about the noise source distribution. Multivariate time domain 
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algorithms were developed by Upadhyaya ct al. [27] to study the relation-

ship between reactor dynamic variables, both in pressurized water reactors 

and boiling water reactors. Applications of mini-computer oriented algo-

rithms were also evaluated using test data from operating power reactors. 

Based on the literature reviewed, the signals from in-core neutron 

sensors in most nuclear power plants are adequate for noise analysis sys-

t ems . The applications of system theoretic approaches for analysis of 

reactor dynamics is gaining great er importance in view of increasing empha-

sis on safe reactor operations. The advent of fast and sophisticated mini-

and micro-computers has made feasible the applicabilityof these techniques . 
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III. THEORY 

A signal from a typical in-core detector in a nuclear power plant con-

sists of a mean value component (d.c. level) and a randomly fluctuating 

component (noise signal). These random fluctuations, which are a nuisance 

to the D.C. instrumentation, contain useful information about the dynamic 

behavior of the reactor core during "normal" plant operation. Neutron 

noise analysis is the statistical analysis of the noisy (fluctuating com-

ponent) signal to provide information about the reactor behavior. The 

random noise signal in the time domain is often transformed into spectral 

functions in the frequency domain. This is achieved through the Fast 

Fourier Transform (FFT) which is a digi tal computer algorithm that allows 

time-economical calculation of discrete Fourier transforms [18] . The fre-

quency domain descriptors from this transformation are the power spectral 

density (PSD), the cross-power spectral density (CPSD) , and coherence. 

A. Frequency Domain Analysis in Power Reactors 

Historically, the frequency domain has found the most widespread usage 

in noise analyses. Consider an associated sample record x . (t) from the 
l. 

stationary random process {xi (t)} . For a finite time interval 0 ~ t ~ T, 

the spectral density function is developed from the definition: 

where 

X. (f, T) 
1 

= JT x.(t) e-j27rft dt 
0 1 

(1) 

(2) 
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For general stationary random data, the spectral density function is de-

fined by the expression: 

G (f) 
x 

2 lim _Tl E[X~(f,T) X. (f,T)) 
T__, 1 1 

(3) 

If x(t) is sampled at N equally spaced points a distance h apart where h 

has been selected to produce a sufficiently high cutoff frequency, the 

discrete version of Eq. (2) is 

N-1 
X(f,T) = h L 

n=O 
x exp [ - j 2nfnh] n 

The usual selection of discrete frequency values for the computation of 

X(f,T) is 

- k - k 
fk - T - Nh k = 0,1,2, ... , N-1 

(4) 

(5) 

At these frequencies, the transformed values give the Fourier components 

defined by 

= 
N-1 

L xn exp [ -j 2nNkn ] 
n=O 

k = 0,1,2, ... ,N-1 (6) 

where h has been included with X(fk,T) to have a scal e factor of unity 

before the summation. The raw estimate of the power spectral density func-

tion at any frequency for a single record x(t) via FFT procedures is, 

therefore, 

Gx(f) = f X*(f,T) X(f,T) = ~ jX(f,T) j2 (7) 

or 

(8) 
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In a reactor at high power, the power spectral density (PSD) of the 

observed signal from a fission chamber is given by [10] 

P2W2Q2 
¢N(f) ~ ~ IGoCf) 12 ¢P(f) 

A 
(9) 

where P is the reactor power level in fissions per second, W is the detec-n 

tion efficiency with units of detections per fission, Q is the average 

charge produced in the detector per neutron absorbed, A is the neutron 

generation time, and G0 (f) is the zero-power reactivity transfer function. 

¢ (f) is the PSD of the reactivity driving function which describes the p 

neutron noise caused by external reactivity perturbations such as core 

component vibrations and reactivity feedback effects . The average detector 

current is given by 

Id = P W Q c n 

Hence, Eq. (9) becomes 

12 
¢N(f) ~ ~c IGo(f) 12 ¢p(f) 

A 

(10) 

(11) 

Since the voltage output, Vdc' of a signal from the in-core detector is 

proportional to Ide; 

(12) 

2 If the observed PSD is normalized via division by Vdc' the PSD will be 

independent of power level. This normalization permits power spectra from 

different detectors and different reactors to be compared on the same abso-

lute scale. It also corrects both the detector efficiency and sensitivity 

to the neutron density at the detector locations. Since G0(f) is, typically 
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for LWR's, a smooth function over the frequency range in which flow-induced 

vibrations occur, the normalized PSD has the shape of the external reac-

tivity spectrum, ~p(f). The amplifying effect of IG (f) 1
2 results in the 

0 

PSD being sensitive to changes in ¢ (f), which is easily observed during p 

"normal" reactor operation . 

As shown by the response of an in-core detector to moderator density 

fluctuations [28), neutron noise in BWR's is composed of a "global" and a 

"local" part . Global noise dominates in the frequency range from 0 to 2 Hz 

and is due to the total core reactivity changes [14). Local noise, which 

dominates in the frequency range from approximately 2 to 10 Hz, is due to 

void formation, component vibrations, and other anomalous conditions in the 

vicinity of the detector. Hence, loose parts and component malfunction 

monitoring should be confined between 2 to 10 Hz frequency range of the 

power spectrum. 

B. Surveillance Methodology 

The operational state of a nuclear reactor system being monitored for 

abnormal conditions, can be characterized from an analysis of neutron noise 

signals. The power spectra derived from the analysis of noisy signals, 

provide the noise signatures for the characterization of the "normal" oper-

ational state of the system. For malfunction detection, a library or his-

tory of "normal" noise records must be collected to serve as baseline data 

for comparison against records of anomalous reactor behavior. 

A noise signature is a set of n variables that is to be considered as 

a column vector in n-dimensional Euclidean space. It is called a measure-

ment vector and it is used to construct a pattern in the monitored system. 
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The noise signature is represented as an n-dimensional vector such that 
T PSD = [PSD(f1), PSD(f2), PSD(f3), .•. , PSD(fn)] (13) 

where 'T' indicates the transpose and PSD(f1) represents the power spectral 

density at frequency f 1 (Hz) [19]. 

The basic assumption is that the monitored system is operating nor-

mally. The surveillance scheme forms a statistical description of the nor-

mal variation in the measurement vectors. If the incoming measurements 

differ significantly, the state of the monitored system is suspect . This 

is the basis of "pattern recognition" which differentiates the input data 

between populations via the search for features or invariant attributes 

among the members of a population. 

The selection of a set of n measurements which form a single measure-

ment vector out of a possible larger set of variables available for analysis 

is called preprocessing [29]. The PSD descriptors that represent a noise 

signal constitute a large set of numbers. Preprocessing condenses this 

large set by deletions which reduces the dimensionality of the measurement 

space to a tractable level. This is compatible with computational limita-

tions. 

The pattern recognition algorithm in this research is summarized as 

follows . During an observation period, the surveillance algorithm must 

characterize the "normal" behavior of the reactor core by forming a statis-

tical description of its "normal" operation from an analysis of neutron 

noise. At the end of the learning session, the surveillance algorithm 

monitors the system and indicates when "abnormal" conditions occur via a 

decision function. If "normal" conditions prevail, the statistical 
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descriptions may be adaptively updated. 

Automated surveillance requires the demonstration of an algorithm that 

differentiates between normal and abnormal noise signatures in on-line ap-

plications. Recognizing whether a pattern is normal or abnormal differs 

from the usual classification problem where a measurement vector is assigned 

to one of several classes [29] . Because individual data classes are com-

posed of normal noise signatures, abnormal signatures have no class iden-

tity. Since few abnormal patterns are observed, the identification and 

description of "abnormal classes" will be inefficient . Mathematically, 

the state of the reactor at any time can be associated with some point in 

the n-dimensional measurement space. The surveillance algorithm partitions 

the measurement space into normal regions that correspond to the individual 

pattern classes. It then classifies an abnormality as any point outside a 

normal region. 

C. Statistical Considerations 

The statistical approach to pattern recognition of monitored variables 

in a reactor system takes into account the statistical properties of pat-

tern classes. Statistical considerations provide the derivation of an 

optimal classification rule which yields the lowest probability of error. 

The classification rule that sets the standard of optimum classification 

performance is the Bayes classifier [29] . In this research, the classifi-

cation rule is derived from the assumptions considered below . 
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The covariance matrix Ck is symmetric and the diagonal element C . . is 
JJ 

the variance of the jth element of the measurement vectors. The off-

diagonal element c .. is the covariance of X. and X . . When the elements 
1J 1 J 

X. and X. are statistically independent, C .. = 0. The multivariate normal 
l. J l.J 

density function reduces to the product of the univariate normal densities, 

when all the off-diagonal elements of the covariance matrix are zero. 

The transformed covariance matrix, given by 

(15) 

A 2 
is a diagonal matrix whose elements C .. represent the variances (cr .. ) along 

J J J J 
the transformed coordinate directions . The columns of the transformation 

matrix, V, are normalized eigenvectors of the covariance matrix. In the 

transformed space, Eq. (14), with the subscript k deleted, becomes 

(16) 

Expanding Eq. (16) yields 

n "' A 2 
G2 = L ex. - µ . ) 

J J (17) 
j=l ,....z 

(J • • 
JJ 

"' This is similar to a measure of distance between µ and X , this distance 

being specified along each coordinate direction in standard deviation units 

and weighted by the variance. The classification scheme here is one of 

determining how different a particular measurement is from the mean of the 

population by examination of the G2 value . If G2 exceeds some prescribed 

value, y , the "normality" of the given vector is suspect. n 
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3. Criterion for normality 

The criterion for normality, y , fixes the volume of the partitioning n 

hyperellipsoid such that a certain proportion of samples from the population 

are enclosed. In the pattern recognition algorithm here, the value of y n 

is selected "a priori." The hyperellipsoid region which encloses a percent-

age of the multivariate Gaussian population can be derived on the basis of 

the chi-square variate. This provides confidence regions to characterize 

all measurement vectors for normality. 

For an n-variate Gaussian distribution with a known mean vector µ and 

known covariance matrix C, 

T -1 2 (!_ - µ) C (!_ - .!:) = Xn (18) 

where ~ is the chi - square variate with n degrees of freedom. The enclo-

sure region defined by the chi-square variate is denoted by ~(1-a) where 

a is the level of significance . Hence, the hyperellipsoid region can be 

specified by 

T -1 2 (!_ - µ) C (!_ - µ) = x (1-a) - n (19) 

The sensitivity of the pattern recognition algorithm is based on the multi-

variate Gaussian distribution of incoming vectors exceeding the hyper-

ellipsoid enclosure. Since the chi-square variate was utilized to describe 

the enclosure region, the normality or abnormality of a noise signature can 

be established from a previous history of measurement vectors with differ-

ent levels of confidence. The confidence coefficient is (1-a). The "a 

priori" selection for y is n 

(20) 
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IV. EXPERIMENTAL APPARATUS AND PROCEDURES 

The neutron noise data used in this investigation were acquired from 

the Duane Arnold Energy Center (DAEC) reactor, which is operated by Iowa 

Electric Light and Power Company. The DAEC unit is a 550 MW(e) boiling 

water reactor located near Palo, Iowa. The neutron noise data were obtained 

from the local power range monitors (LPRM's) in the reactor core during 

October, 1977. The DAEC unit was at or near full power during this data 

acquisition period. 

The DAEC nuclear facility was one of the BWR-4's that experienced LPRM 

tube impacting against fuel channels in 1975 [16] . This was resolved by 

plugging bypass coolant holes in the core plate to reduce vibrations in-

duced by coolant flow through two 9/16-inch-diameter holes drilled in the 

lower tie plate. 

The LPRM's are vertical strings of four fission chambers spaced regu-

larly throughout the core. The four fission chambers of a LPRM are fixed 

18, 54, 90 and 126 inches from the bottom of the core. They are labeled 

A, B, C and D respectively. The neutron noise data were monitored from 

LPRM 40-25 because all surrounding control rods were withdrawn during data 

acquisition. With the control rods in the withdrawn position, the local 

power distribution was constant. The signal from each in-core detector 

which consists of a mean value component (d.c. level) and a randomly fluc-

tuating component (noise signal) is shown in Figure 1. 



18 

RANDOMLY FLUCTUATING 

COMPONENT (NOISE SIGNAL) 

MEAN-VALUE OR DC-LEVEL 

TIME 

Figure 1. Components of a detector signal 
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A. Data Acquisition 

The data acquisition system consisted of a signal conditioning unit 

and an FM tape recorder. The signal conditioning unit was locally designed 

and built for correct acquisition of all neutron noise data necessary to 

obtain a normalized power spectral density (NPSD). The tape recorder used 

was a Precision Instrument Company Model PI-6200 four channel FM tape re-

corder. 

The flow process for the acquisition of analog data is shown in Figure 

2. The noise signals from the neutron detectors in a LPRM were fed into 

the four channels of the signal conditioning unit. For each channel, the 

signal conditioner biased out the mean voltage (d.c. level) where this bias 

voltage was measured on the digital volt meter (DVM) located on the panel 

of the signal conditioner. The noise signal was then amplified, the gain 

applied was noted on a data log sheet, and the neutron noise data were re-

corded on the FM tape recorder at the upper cutoff frequency of 1000 Hz . 

B. Signal Processing and Digital Analysis System 

The noise records were brought back to the laboratory to be analyzed. 

The noise signals, recorded on magnetic tape, were played back from the FM 

tape recorder . These noise signals were amplified and biased again using 

the signal conditioning unit to reconstruct the original signal condition. 

The noise signal in a single channel was then sent through an anti-aliasing 

low-pass filter (Krohn-Hite Corp., Model 3321) with a cutoff frequency 

setting of 10 Hz. The filtered noise signal was fed to the analog input 

system (Burr-Brown MP21) of the microcomputer (MSI-6800, Midwest Scientific 

Instruments). This microcomputer was connected to a disk memory (FD-8, 
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Midwest Scientific Instruments). The microcomputer has 32 K bytes of RAM. 

The microcomputer noise analysis system consisted of an ADC to digitize 

the noise signal and a FFT program, written in BASIC language, to calcu-

late the power spectral densities (PSD). The output data from the FFT were 

viewed from the screen of the CRT display unit (ADS Information Display), 

or reproduced on the printer. The data analysis system is shown in Figure 

3. 

A potential problem in analog-to-digital conversion is aliasing. For 

an A-D converter sampling at an interval h, the Nyquist frequency is 

defined as 

1 1 
fN = 2h = 2 f s (2l) 

where fs is the sampling frequency [7]. If fN is less than the maximum 

frequency component in the noise signal, the frequency components higher 

than fN will fold back into the measured frequency spectrum and produce 

aliasing. From the sampling theorem [7], the sampling frequency, f, must s 

be at least twice the highest frequency component in the noise signal to 

avoid aliasing. The f used was 25 . 6 Hz so that the maximum usable fre-s 
quency was 12.8 Hz. 

The FFT program computed the PSD estimates for two signals of interest 

from detectors C and D. The flow diagram of the FFT program is shown in 

Figure 4. This program computes 100 valid spectral points from 256 data 

points per channel for each signal. 

The gain of the amplifier and the d.c. level of the noise signal were 

used as input parameters to normalize the raw PSD. Normalization of the 
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REMOVE D.C. COMPONENT 

READ 
NO. OF DATA POINTS/CHAN. 
SAMPLING FREQUENCY 
D.C. LEVEL OF SIGNALS 
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RAW PSD 
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& 

SEGMENT AVERAGING 

END 

Figure 4. Flow chart of the FFT program 
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raw PSD's is necessary for noise signatures from different types of reac-

tors to be compared . 

The standard error, E, of the PSD is estimated by [7] . 

E = 1 

(B T) 72 
e 

(22) 

where B is the resolution bandwidth for the PSD and T is the record length e 
of the data. Since B is equal to the reciprocal of T, Eq. (22) shows the e 
normalized standard error of the PSD estimate to be 100% . The different 

smoothing techniques for reducing E are frequency smoothing and segment 

averaging. Frequency smoothing is averaging together several neighboring 

frequency points, and segment averaging is simply the averaging of the 

PSD's from several separate time records. For t spectral components and q 

separate time records, the s tandard error is (7] 

1 
E = ----..-

(tq)Yz 
(23) 

The noise analysis system was calibrated using a Hewlett-Packard Model 

3722A Noise Generator . The test setup is shown in Figure 5. Gaussian 

white noise from the fixed output of 3.16 V rms at the noise generator pro-
2 -1 duced a constant PSD of 0.02 Volts Hz over the frequency range from 0 to 

500 Hz. This white noise was fed to the analysis equipment to determine 

the calibration factors for the two channels. The FFT output at the fre-

quency where the filter gain equals unity is multiplied by the calibration 

f b . h 2 -1 actor to o ta1n t e constant PSD of 0 . 02 Volts Hz . This is formulated 

as 

(24) 
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where yFFT is the PSD estimate from the FFT output and K is the calibration 

factor for the FFT program. Therefore, 

K = 0.02 
YFFT 

(25) 

In this research, yFFT was averaged over frequencies from 1 to 7 Hz where 

filter gain was unity. The calibration factor for channel A was KA equals 
4 4 1.822(10) and channel B had KB equals 2.155(10 ). These calibration fac-

tors were utilized for the normalization of the PSD's. 

C. Pattern Recognition of Noise Signatures 

The pattern recognition algorithm was developed to statistically eval-

uate the noise descriptor, PSD(f), from a specific neutron detector, and 

the data were characterized as "normal" or "abnormal" depending on the 

selected normality criterion. This pattern recognition/anomaly detection 

algorithm was written in BASIC language, and it can be implemented on the 

MS! 6800 microcomputer by using a floppy disk memory. The flow chart for 

this microcomputer-based algorithm is shown in Figure 6. 

The "normal" statistical description of the noise descriptors being 

analyzed is based on the mean vector and the covariance matrix of the pop-

ulation. These quantities can be estimated for a sample size N from the 

population by 

(26) 

and 

(27) 
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Figure 6. Flow chart of pattern recognition/anomaly detection program 
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The use of Eqs. (26) and (27) requires memory storage of all N measurement 

vectors. This increases the storage capacity requirements for implementa-

tion of the algorithm. 

Due to limitations in memory space of the microcomputer, the dimen-

sions of each measurement vector were confined to a tractable level of ten 

arrays. Therefore, the PSD data file for each vector used to construct the 

pattern was input with NPSD estimates at frequencies 1, 2, 3, ... , 10 Hz 

for convenience. This data file can be updated as neutron noise monitoring 

is continued. 

The pattern recognition/anomaly detection program provides instruc-

tions to the user on the ADS display. After the PSD data file of learning 

vectors and the measurement vector are input into the routine, the various 

input parameters defining the number and the dimensions of the learning 

vectors, and normality criterion are requested from the user. The routine 

then computes the mean vector, variance vector, and standard deviations 

vector from the data class. The covariance matrix is computed and inverted 

to provide the variance weighting required in characterizing an incoming 

measurement vector. In this study, it was assumed that the monitored 

variable at each frequency in the noise signature is independent from those 

at other frequencies. Hence, the off-diagonal elements of the covariance 

matrix were deleted by having zero values in their respective arrays. 

2 Based on the data in the incoming measurement vector, the G value 

describing the hyperellipsoid volume is calculated. This G2 value is shown 

on the display. If this G2 value is greater than the normal criterion, the 

measurement vector, or noise signature, is classified as "abnormal." 
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Otherwise, the noise signature is characterized as "normal" depending on 

the desired confidence level. 
2 If the G value completely exceeds the normal criterion as established 

by chi-square statistics, the measurement vector can be further character-

ized from the number of standard deviations by which the components of the 

anomalous vector differ from those of the "normal" mean vector. This pro-

vides an enlarged enclosure region to classify a measurement vector. 
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V. EXPERIMENTAL RESULTS AND ANALYSIS 

The performance of the microcomputer-based pattern recognition algo-

rithm and its sensitivity to "simulated" abnormal noise signatures were 

evaluated. The "normal" noise signature patterns were obtained from proc-

essing the LPRM signals recorded during constant power operation at the 

DAEC boiling water reactor plant. Abnormal noise signature patterns can be 

"simulated" by creating known changes in the monitored variables, i.e., 

the power spectral density data. From testing "normal" and "abnormal" 

noise signatures with the algorithm, the analysis demonstrates this sur-

veillance system to be effective and practical for on-line applications in 

real systems. 

A. Noise Analysis Results 

The noise signatures were obtained from processing the neutron noise 

data, acquired in October, 1977, using the FFT algorithm. The PSD's of 

the monitored noise signals were obtained at the filter cut-off frequency 

(f ) of 10 Hz. The set of PSD estimates in each noise signature has a c 
range from 0.0 to 10.0 Hz with 0.1 Hz resolution. These data can be stored 

on a floppy disk, if so desired. 

The noise signatures, as shown by a broken line in Figures 7 and 8, 

were monitored from LPRM 40-2SC and LPRM 40-250, respectively. These noise 

signatures are similar in shape and magnitude to NPSD ' s obtained by Fry 

et al. [14]. The 0-2 Hz range is dominated by the large global effects , 

and the 2-10 Hz range is governed by local noise sources. 
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From the compar ison of the two det ectors in the same LPRM string, viz . 

C and D, the slope of the PSD curve i n the noise signatures flattens or 

becomes less negative as upward vertical position of the neutron detector 

i ncreases. This effect is thought t o be due to the increase of local noise 

from s team-bubble formation. It i s a l so observed that the spectral density 

decreases wi th increasing frequencies, and the spectra diverge at about 

4 Hz. The top detector (D) shows spectral densit ies much higher than the 

lower detector (C). Since the top detector is in a location where it is 

assumed that void f raction is high, the difference between the spectral 

densities i n the two det ect ors seems to depend significantly on the local 

void fraction. 

After the noise data acquisition, the 40- 25 LPRM detectors were visu-

ally i nspected for excessive wear duri ng a refueling outage at DAEC [17]. 

No excessive damage or evidence of impacting was discovered. Fr om the 

operational viewpoint, the noise signatures f r om the C and D detectors can 

be characterized as "normal." 

B. Pattern Recognition Results and Interpretation 

The microcomputer-based pattern recogni t ion algorithm is called PRMS 

(Patt ern Recognition us ing Multivariate Statist i cs). To use the algorithm, 

ten-dimension vectors were constructed from PSD estimates at frequencies 

1, 2, 3 , . .. , 10 Hz . In this s tudy, the number of learning vectors used to 

establish the "normal" operating history of the BWR during t he monitori ng 

period was eight. The normality cri t erion, based on chi- square statistics, 

was set a t y = 18. 31 for t en degrees of freedom with 95% confidence level n 



34 

desired. The enclosure bound s were set at G3 = 1, 2, or 3 times the 

s tandard deviations of the mean vector. 

The "normal" mean vector, shown in Figures 7 and 8 as a solid line for 

each detector, is the average of PSD es timates at the corresponding fre-

quencies from the past history of eight noise signatures. This mean vector 

es tablishes the noise signature pattern for the monitoring period. The 

incoming noise signature (broken line), after the previous eight records, 

was classified as "normal" or "abnormal" by the program PRMS depending on 

the enclosure bounds defined by the number of standard deviations from the 

"normal" mean vector. With the assumption that the monitored variables 

are independent at different frequencies , the incoming noise signature is 

characterized based on the variance weighting provided by the data in the 

noise signature pattern from the learning period. The results of noise 

s ignature characterization by PRMS are summaried in Table I. 

Table I. a b Pattern Recognition of Noise Signatures ' 

Detector 1 S.D. 

c 2 G =68.04 (Abnormal) 

D 2 G =60 .38 (Abnormal) 

ENC LOSURE BOUNDS 

2 S.D. 

G2=17.01 (Normal) 

G2=15 .10 (Normal) 

aNormality Criterion, y (IO d.f.) = 18. 31 n 

bConfidence Level = 95% 

3 S.D. 

2 G =7.56 (Normal) 
2 G =6 . 71 (Normal) 

These results clearly indicate that the noise signatures for both 

detectors C and D are characterized as "normal" with 95% confidence when 
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the enclosure bounds are defined by two or more standard deviations from 

the "normal" mean vector during the same time period. The noise signatures 

are classified as "abnormal" if the enclosure bounds are defined by one 

standard deviation from the "normal" mean vector. Since the spectral 

shapes of the incoming noise signatures are essentially similar to their 

corresponding mean vectors, the criterion of twice the standard deviation 

from the "normal" mean vector for the enclosure bounds is acceptable in 

characteri zing the normality of the incoming noise signatures . This in 

turn establishes the operational state of the reactor to be "normal." 

The sensitivity of the program PRMS to anomalous conditions can be 

tested by simulated "abnormal" noise signatures . If an anomaly occurs in 

a reactor , some peaks usuall y appear on the power spectral densities of the 

noise signal s . Mott et al. [30] reported that a significant resonance peak 

appeared at the frequency of about 3 Hz on the PSD of LP~~ signals when 

LPRM guide tubes began to vibrate in a BWR plant . 

The simulated "abnormal" noise signatures were constructed with PSD 

estimates very close in value to those i n the "normal" mean vectors for 

detec t ors C and D except for a small frequency range in which the resonance 

peaks occur. For detector C, the resonance peak was " simulated" to appear 

about the frequency of 6 Hz with a PSD estimate of greater than one order 

of magnitude. Similarly for detector D, the "simulated" resonance peak 

appeared about the frequency of 5 Hz. The simulated "abnormal" noise sig-

natures are shown in Figures 9 and 10 as broken lines . The results of the 

simulat ion t es t by the program PRMS are summarized in Table II. 
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Figure 9. Simulated "abnormal" noise signature for detector C 
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Table II. Simulation Test of "Abnormal" Noise Signatures a, b 

ENCLOSURE BOUNDS 
Detector 

C (Peak at 6 Hz) 

D (Peak at 5 Hz) 

a 

1 s.o. 

G2=810.90 
(Abnormal) 

G2=400.00 
(Abnormal) 

Normality Criterion, y (10 d.f.) = 18.31 n 
b . Confidence Level = 95% 

2 S.D. 

G2=202 . 73 
(Abnormal) 

G2=100.75 
(Abnormal) 

3 S.D. 

G2=90.10 
(Abnormal) 

G2=44 . 78 
(Abnormal) 

These results show that the program PRMS is sensitive to "abnormal" 

noise signatures with resonance peaks about the frequencies , i.e., 5 Hz 

and 6 Hz that were tested. The simulated noise signatures were character-

ized as "abnormal" even when the enclosure bounds were defined by three 

times the standard deviation from the "normal" mean vector. If the reso-

nance peak is limited to an abnormal PSD estimate at a single frequency 

between 2 Hz and 8 Hz, the pattern recognition algorithm is sensitive to 

the magnitude of PSD estimates about three times the standard deviation 

from the "normal" mean estimated from the learning vectors . Since the 

multivariate pattern recognition algorithm is sensitive to changes of the 

monitored parameters such as the resonance peak at a single frequency in 

the PSD, it should also be sensitive to PSD changes over a broad frequency 

range . 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

The multivariate pattern recognition algorithm developed and imple-

mented on an inexpensive microcomputer in this research has proven to be 

effective for automatically assessing the normality of system behavior by 

examining noise signatures from monitored data . This will be useful for 

on-line analysis and the efficient characterization of operational informa-

tion monitored with an efficient reactor data acquisition system. Thi s 

surveillance system is conceptually simple, computationally convenient, and 

economically inexpensive to implement. 

A. Conclusions 

Based on the experimental results and analysis in this study, the fol-

lowing i mportant conclusions can be stated: 

1 . The monitored system can be characterized as "normal" by examining 

the neutron noise data in the form of noise signatures. This monitored 

system was in its normal operational state because no system degradation 

was observed during data acquisition. This conclusion is based on the ob-

servation that the spectral shapes of the noise signatures and the noise 

signature patterns as shown in Figures 7 and 8 are similar . No resonance 

peaks appeared in the noise signatures which would indicate abnormality. 

2. The surveillance algorithm developed here demonstrates a technique 

that adequately characterizes a noise signature as "normal" or "abnormal" 

based on the previous history of the reactor. The variance weighting from 

the monitored data that established the noise signature pattern during a 

learning period is an integral part of this technique for classifying a 



40 

given noise signature. This conclusion is based on the pattern recognition 

results shown in Table I. 

3. When the algorithm successfully characterized the given noise sig-

natures shown in Figures 7 and 8 as "normal" based on the selected criteria, 

the condition that the monitored variables remain independent at different 

frequencies in a noise signature is implicitly verified . This independence 

condition was assumed in the formulation of the pattern recognition algo-

rithm for reasons of computational convenience. 

4. The anomaly detection program is sensitive to changes in the moni-

tored variables, i.e., the PSD data in noise signatures from neutron detec-

tor signal s . This sensi tivity was demonstrated by "simulated" noise signa-

tures as shown in Figures 9 and 10. These noise signatures with resonance 

peaks about single frequencies between 2 Hz and 8 Hz were characterized as 

"abnormal" as shown by the results in Table I I. 

5. The statistical pattern recogni tion algorithm can be implemented 

in an on-line system for automated signature analysis and processing with-

out perturbing norma l reactor operation. 

6. The implementation of the surveillance techniques on a microcompu-

ter system provides an attractive cost-to-benefit ratio compared to down-

time cost penalties from power deratings. The present costs of a micro-

computer with other peripherals such as a CRT, plotter, etc . and a trained 

noise analyst to implement these techniques represent a small fraction of 

downtime cost for replacement power in a day. 
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B. Suggestions for Future Work 

The following are recommendations for future work related to this 

study: 

1. Collect a high-quality library of noise signature patterns from a 

power reactor over the full range of operating conditions for routine analy-

sis. 

2. Develop a complete on-line monitoring system by linking the noise 

analysis routine (FFT algorithm) to the anomaly detection program (PRMS) 

with the capability of storing the noise data on a floppy disk to recall 

for comparison. 

3. Provide greater freedom in setting new values for input parameters 

during a restart of the surveillance program. For example, the normality 

criterion and the parameter for enclosure bounds can be changed only at the 

outset of the program execution. There is no flexibility to retain prior 

input parameters, such as the number of learning vectors to establish a 

pattern, and change the normality criterion during the course of program 

execution. 

4. Investigate the time interval over which the "normal" noise signa-

ture patterns are valid. 

5. Verify the applicability of the surveillance system to noise sig-

nals from ex-core detectors which have lesser safety implications . 
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IX. APPENDIX A: THE PRMS COMPUTER PROGRAM 

The computer program, PRMS (acronym for Pattern Recognition using 

Multivariate Statistics) was written in the BASIC language . It is stored 

on the floppy disk under the file name PRMS. The implementation of this 

program on the microcomputer system is initiated by the following prelimi-

nary steps: 

1. Insert the floppy disk with stored program into the disk memory 
module. 

2. Type in the access code "G EC 00" on the CRT terminal. 

3. When "DOS READY" appears on the CRT screen, type in "BASIC." 

4. After "MSI READY" appears, type in "LOAD PRMS," and then, "RUN." 

At this stage, user instructions are displayed on the CRT screen to 

describe the format of placing data input into the program for processing. 

After all data input are entered, the user can type in "RUN." The following 

input parameters are then requested in an interactive manner: 

1. NUMBER OF LEARNING VECTORS? 

2. DIMENSIONS OF VECTORS? 

3 . NORMALITY CRITERION? 

4. ENCLOSURE BOUNDS (1,2,3, ... DEVIATIONS)? 

The number of learning vectors is the number of noise signatures that 

are used to establish the "normal" operating history of the monitored sys-

tern during the initial or learning period. The dimensions of vectors spec-

ify the maximum number (or array) of variables in each of the measurement 

vectors . The normality criterion is the chi-square statistic that 
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characterizes an incoming noise signature as being "normal" or "abnormal." 

The enclosure bounds specify the magnitude of standard deviations from the 

"normal" mean vector that forms the partitioning surface for pattern classi-

fication. Non-integer values are permitted. 

After the input parameters are entered accordingly, PRMS computes the 

"normal" mean vector, the variance and deviations vectors, and the covari-

ance matrix from the data of the learning vectors. The covariance matrix is 

then inverted to provide the weighting required for characterization. The 

elements of these vectors and matrices are displayed or printed as the proc-

essing occurs. The classification discriminant G2 is printed and the diag-

nosis for the noise signature characterization is shown . 

The following is the program listing of PRMS. 
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0010 Din A<10,10>,Alt10,10l,C(10,10),T!l0,10l,£(10) 
0020 DIM P(10l,D(l0l,V(l0>,X(10l,X1110l,Yll0l,Y1(10l 
0030 Dil'i Z<lOl 
00 •1 0 DIGITS= 4 
0050 GO'TO 1500 
0500 ? 
0510 INPUT 11 NUMBER OF LEARNING VECTORS 11 ,M 
0520 ? 
0530 INPUT 11 DIMENSIONS OF VECTORS 11 ,N 
0540 ? 
0550 INPUT " NORMALITY CRITERION ",Gl 
0555 ? 
0560 INPUT " ENCLOSURE BOUNDS ( 1,2,3, ••• llEVIATIONS> ",63 
0565 ? 
0570 REH READ PSD VALUES OF NOISE SIGNATURE PATTERNS 
0580 FOR I=l TO M:FOR J=1 TO N 
0590 READ A(l,Jl 
0600 NEXT J:NEXT I 
0610 REM COMPUTE THE MEAN PSll VALUES OF LEARNING VECTORS 
0620 FOR J=l TO N 
0630 s = 0.0 
0640 FOR 1=1 TO M 
0650 S = S + A!I,Jl 
0660 NEX'T I 
0670 Z(J) = SIM 
0680 NEXT J 
0690 ? 
0700 ? "MEAN VECTOR:" 
0710 FOR J=l TO 5:? TAB!(J-1l*12l;Z(Jl;:NEXT J 
0720 ? 
0730 FOR J=l TO S:? TAB((J-1l•12l;Z(J+5>;:NEXT J 
0740 ? 
0750 ? 
0760 REM COMPUTE THE VARIANCE ANll DEVIATION VECTORS 
0770 FOR J= 1 TO N 
0780 Sl = 0.0 
0790 FOR I=l TO N 
0800 Sl = Sl + (A(l,J) - Z(JJH(A(l,Jl - Z(J)) 
0810 NEXT I 
0820 V(J ) = Sl/~ 
OBJO £(J ) = SQR !S1 / Ml 
0840 NEXT J 
0850 '? "VARIANCE VECTOR:" 
0860 FOR J=l TO 5: ? lABl<J-ll*121;VIJl;:NEXl J 
0870 'i 

0880 FOR J=l TO 5:? TAB!(J- 1l*12l;V(J+5>;:NEXT J 
0890 ? 
0900 ? 
0910 ? "DEVIATION VECTOR:" 
0920 FOR J=l TO 5:? TAB!!J-1 l*12l;E(J);:NEXT J 
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0930 ? 
0940 FOR J=1 TO 5:? TAB((J- 1)*12l;E(J+5l;:NEXT J 
0950 ? 
0960 ? 
0970 REM COMPUTE THE ELEMENTS OF COVARIANCE MATRIX VIA SUBROUTINE 2000 
0980 T( K,J> = 0.0 
0990 FOR I=1 TO M 
1000 GOSUB 2000 
1010 FOR K=1 TO N:FOR J=1 TON 
1020 TCK,J> = TCK,J> + Al(K,J) 
1030 NEXT J:NEXT K 
1 040 NEX"T I 
1050 FOR K=l TO N:FOR J=1 TO N 
1060 CCK,J) = T(K,J) / M 
1065 IF K<> J THEN C(K,J> = 0.0 
1070 NEXT J:NEXT K 
1080 ? "COVARIANCE MATRI X:" 
1090 ? 
1100 FOR K=1 TON 
1110 FOR J=l TO 5:? TABCCJ-1)*12>;C<K,J>;:NEXT J 
1120 ? 
1130 FOR J=1 TO 5:? TABC(J-1)•12>;C(K,J+S>;:NEXT J 
1140 ? 

1150 ? 
1160 NEXT I< 
1170 REM COMPUTE INVERSE OF COVARIANCE MATRIX VIA SUBROUTINE 3000 
1180 GOSUB 3000 
1190? "INVERSE COVARIANCE MATRIX:" 
1200 ? 
1210 FOi~ I= 1 TO N 
1220 FOR J=1 TO 5:? TAB(CJ-1>•12>;C<I,J>;:NEXT J 
1230 ? 
1240 FOR J=1 TO 5:? TAB( (J-1 >:1: 12> ;C( I ,J+5); :NEXT J 
1250 ? 
1260 ? 
1270 NEXT I 
1275 REM READ PSD VALUES OF INCOMING VECTOR FOR CLASSIFICATION 
1280 I = 11 + 1 
1290 FOR J=1 TON 
1300 READ A<I,J > 
1310 Y1CJ) = A(I,J> - ZCJ) 
1320 NEX'T J 
1330 REM COMPUTE VALUE OF 62 
1340 Xl(J) = 0.0 
1350 FOR J=1 TO N 
1360 FOR K=1 TO N 
1370 X1(J) = X1CJJ + Y1CK>*C<K,J) / (G3*G3) 
1380 NEXT K 
1390 NEXT J 
1400 G2 :: 0. 0 



1410 FOR J=1 10 N 
1 420 G2 = G2 + X 1 < J >*'fl ( J l 
1430 NEXT J 
1440 1F G2 <= 0.0 THEN G2 = 0.0 
1450 ? " G2 = ",G2 
1460 ? 

so 

1470 IF G2 <= Gt rHEN ? "NOISE SIG NA fURE F' ATTERN IS NORl'IAL II 
1480 IF G2 > G1 THEN ? "NOISE SIGNAlURE PAHE.RN IS ABNOl<MAL" 
1490 GOTO 1690 
1500 ? 
1510 ? "PRNS: THIS PROGRAM IS A F'AT'lERN RECOGNITION ALGORITHM" 
1520 ? II FOR ANALYSIS OF NOISE SIGNATURES USING II 

1530 ? " HULTIVARIATE STATISTICS" 
154 () ? 
1 550 ? II ENTER DAT A ( PSfl VALUES) OF LEAr<N ING VECTORS FROM LINE 50·-450 . II 
1560 ? "INPUT DATA OF INC OMING NOISE SIGNATURE VECTOI< ON" 
1570 ? "LINE AFTER THE LAST ENrnY OF LEARNING VECTOl<S . " 
1580 ? 
1590 ? "SELECT CRITERION FOR NORMALIT Y FROM CHI-SQUARE lABLE:" 
1600 ? 
1610 ? "DEGREE OF FREEDOM IDIMENSIONSl = 10" 
1620 ? 
1630 ? "CONFIDENCE LEVEL (%> CHI - SQUAl<E 
1640 ? 11 90 .00 15.99 
1650 ? II 95 . 00 18 .31 
1660 ? " 97.50 20.48 
1670 ? 11 99.00 23.21 
1675 ? 

VALUE" 
II 

II 

II 

II 

1680 ? "IF DIM . < 10 , SELECT CRITEIU ON rnoM PROGRAM CHISQ" 
1690 ? 
1700 END 
2000 FOR J=1 TO N 
2010 Y<J> = A<I,J > - Z(J) 
2020 NEXT J 
2030 FOR K= 1 TO N:J=K 
20 40 X<K> = Y<J > 
2050 NCrT K 
2060 FOi\ K= 1 10 N: FOI< J-=1 ro N 
2070 A1 <K , JJ ~ X(Kl *YIJl 
2080 NE XT J:NEXT K 
'..!090 l<ETUl<N 
3000 [I = 1 .o 
3010 FOR L=1 TO N 
3020 B = 0.0 
JOJO FOR K~L 10 N 
3040 FO R J=L TO N 
3050 IF ABS<BI ~ = ABSIC< K, Jll THEN 3070 
3060 IF ABS IBl > ABS<C<K,Jll THEN 3100 
J0 70 B = C<K,J l 
J080 P<L 1 = K 



3090 Q(L) = J 
3100 NEXT J:NEXT K 
3110 IF IBI <> 0 THEN 3150 
3120 IF IBI = 0 THEN 3130 
3130 II = 0.0 
3140 GOTO 3670 
3150 I< = F'(L) 
3160 IF K<L THEN 3030 
3170 IF K=L THEN 3230 
3180 IF K>L THEN 3190 
3190 FOR J=1 TO N 
3200 S2 = C(L,J> 
3210 C<L,JJ = CCK,J> 
3220 C(K,J) = - 52: NEXT J 
3230 J = Q(l) 
3240 IF J ·'.L THEN 3030 
3250 IF J=L TH EN 3310 
3260 IF J>L THEN 3210 
3270 FOR K= l TO N 
3280 52 "' C(l{,U 
3290 C(K ,LI = C<K,J) 
3300 C<K,JJ = -52:NEXT K 
3310 FOR K=l TO N 
3320 IF K <> L THEN 3340 
3330 IF K = L THEN 3350 
3340 C<K,LJ = - C<K,Ll/B 
3350 NEXT K 
3360 FOR K=l TO N 
3370 FOR J=1 TO N 
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3380 IF K <> l THEN IF J <> L THEN 3410 
3390 IF K = L THEN 3420 
3400 IF J = L THEN 3420 
3410 CI K,J ) = C<K,J> + C(K,L >*C<L,J) 
3420 NEXT J:NE XT K 
3430 FOR J=l TO N 
3450 IF J = L THEN 3470 
3460 CCL,J ) = C<L,Jl/B 
3470 NEX"T J 
3480 C<L, LI = 1. 0/B 
3490 II = D• B:NEXT L 
3500 FOR R=1 TO N 
3510 L = N-R+l 
3520 J = f'(L) 

3530 IF J <= L THEN 3590 
3540 IF J ) L THEN 3550 
3550 FOR K=1 TO H 
3560 52 = c (K, L) 
3570 C<K,Ll = -C<K,Jl 
3580 CCK,J) = S2:NEXT K 
3590 K = Q(L) 



3600 IF K <= L THEN 3660 
3610 IF K > L THEN 3620 
J620 FOR J=1 TO N 
3630 S2 = C<L,J> 
3640 C<L,J) - -CCK,J) 
3650 CCK,Jl = S2:NEXT J 
3660 NEXT R 
3670 HETURN 

52 
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This is the output from a sampl e run of PRMS. 

NUMBER OF LEARNING VECTORS ? 8 

DIMENSlONS OF VECTORS ? 10 

NORMALITY CRITERION ? 18.31 

ENCLOSURE BOUNDS <1,2,3, ••• DEVIATIONS> ? 

MEAN VECTOR: 
2 .91 25E-05 5.1562E-06 1.7525E-06 1.3212E-06 1.0087E-06 

7 .7500E-07 S.9000E-07 5.9625E-07 6.3875£-07 4.4375E-07 

VARIANCE VECTOR: 
6.1315E-10 1.7604£-11 1.8316E-12 1.2828E-12 9.0778E-13 

5.1827E-13 2.21oOE-13 2.6977E-13 2.9533£-13 1.25o9E-13 

DEVIATION VECTOR: 
2.4762E-05 4.19S7E-06 1.3533E-06 1.1326E-06 9.5277E-07 

7.1991E-07 4.7074E-07 5.1939E-07 5.4344E-07 3.S4SJE-07 

COVARIANCE MATRlX: 

6.1315E- 10 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 1.7604E- 11 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 1.8316£-12 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 
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0 .0000 0.0000 0 . 0000 1.2828E- 12 0 . 0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 9.0778E-l 3 

0.0000 0. 0000 0.0000 0.0000 0.0000 

0 .0000 0 . 0000 0. 0000 0.0000 0.0000 

5 .l827E -1 3 0.0000 0.0000 0.0000 0. 0000 

0 . 0000 0. 0000 0.0000 0. 0000 0. 0000 

0.0000 2. 2160E-13 0. 0000 0. 0000 0. 0000 

0.0000 0. 0000 0.0000 0.0000 0.0000 

0. 0000 0.0000 2.6977E-13 0.0000 0.0000 

0 .0000 0.0000 0. 0000 0. 0000 0 .0000 

0.0000 0. 0000 0.0000 2. 9S33E-13 0.0000 

0.0000 0 . 0000 0. 0000 0. 0000 0 . 0000 

0.0000 0.0000 0. 0000 0.0000 1.2569E-13 

INVERSE COVARIANCE HATRIX: 

1.6309E09 0 . 0000 0. 0000 0 . 0000 0.0000 

0 . 0000 0.0000 0.0000 0 . 0000 0.0000 

0.0000 5.6803E10 0.0000 0.0000 0 . 0000 

0.0000 0. 0000 0.0000 0.0000 0.0000 

0.0000 0.0000 S.4596£11 0.0000 0. 0000 

0.0000 0.0000 0. 0000 0.0000 0. 0000 



SS 

0.0000 0.0000 0.0000 7.7952E11 0.0000 

0. 0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0 .0000 1. 1015E 12 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0 .0000 0.0000 0.0000 

1.9294E12 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 4.5126E12 0.0000 0.0000 0.0000 

0.0000 0.0000 0 .0000 0 .0000 0.0000 

0.0000 0.0000 J.7068E12 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0 .0000 0.0000 0.0000 3.3859E12 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0. 0000 0.0000 7.9555E12 

G2 = 60.3840 

NOISE SIGNATURE PATTERN IS AIIHORMAL 
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NUMBER OF LEARNING VECTORS ? 8 

DIMENS I ONS OF VECTORS ? 10 

~ORMALITY CRI TERION ? 18.31 

ENCLOSURE BOUNDS <1,2,3, ••• DEVIATIONS> ? 2 

MEAN VECl lJR: 
2.9125£- 05 S. 1562E-06 1.7525E-06 1.3212£-06 1.0087E-06 

7.7SOOE-07 5.9000£-07 5.9625£-07 6.3875E-07 4.4375£-07 

VARIANCE VECTOR: 
6.1315E-10 1.7604E-11 1.8316E- 12 1. 2828E-1 2 9.0778E - 13 

5.1827£-13 2.2160£- 13 2.6977£- 13 2.9533£- 13 1.2569£- 13 

DEVIATION VECTOR: 
2.4762£- 05 4.1957E-06 1.3533£-06 1.1326E-06 9.5277£-07 

l .1991E-07 4.7074E-07 5.1939£-07 5.4344E-07 3.5453£-07 

COVARIANCE MATRIX: 

6.1315£-10 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

v.oooo 1 .7604£-1 1 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 1.8316E-1 2 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 1 .2828E·-12 0.0000 

0.0000 0. 0000 0.0000 0.0000 0.0000 
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0.0000 0.0000 0.0000 0.0000 9.0778E-t3 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

5.1827E-13 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 2.2160E-13 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 2.o977E-13 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 2.9533E-13 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0 .0000 0.0000 0.0000 0.0000 1.2569E-13 

INVERSE COVARIANCE HAT RIX: 

1.6309£09 0.0000 0. 0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 5.6803E10 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 5.4596£11 0.0000 0.0000 

0 .0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 7 .7952E11 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 
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0.0000 0. 0000 0.0000 0.0000 l .1 01 5E12 

0.0000 0.0000 0.0000 0.0000 O. JOOO 

0.0000 0.0000 0.0000 0.0000 0.0000 

l . 929-4E12 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 -4.5126E12 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0. 0000 

0.0000 0.0000 3.7068E12 0.0000 0. 0000 

0.0000 0.0000 0 .0000 0.0000 0.0000 

0.0000 0.0000 0.0000 J.3859E12 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 7.9555E12 

G2 = 15 .0960 

NOISE SIGNATURE PATTERN IS NORMAL 
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NUHBER OF LEARHlNG VECTORS ? 8 

DIMENSIONS OF VECTORS ? I 0 

NORMALITY CRITERION ? 18.31 

ENCLOSURE BOUNDS (1,2,3, ••• DEVIATIOHS> ? 3 

11EAN VECTOR: 
2.9125E-05 5.1562E-06 1.7525E-06 1 • 3212£--06 1.0087£-06 

7.7SOOE-07 5.9000E-07 5.9625E-07 6.3875E-07 4.4375E-07 

VARIANCE VECTOR: 
6.1315E-10 1.7604E-11 1 • 831 6£ --1 2 1.2828£-12 9.0778E-13 

5.1827E-13 2.2160E-13 2.6977E-13 2.9533E-13 1.2569E-13 

DEVIATION VECTOR: 
2.4762E-05 4.1957£-06 1.3533£-06 1 • 1326E·-06 9.5277£-07 

7.1991E-07 4.7074E-07 5.1939£-07 5.4344£-07 3. 5453E ·-07 

COVARIANCE MATRIX: 

6.1315£-10 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 1.7604£-11 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 1.8316£-12 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 1.2828£-12 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 
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0.0000 0.0000 0 .0000 0.0000 9.0778E- 13 

0 . 0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0. 0000 0.0000 0.0000 0.0000 

5.1827E -1 3 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 2.2160E-13 0.0000 0.0000 0.0000 

0 .0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 2 .6977£·-13 0.0000 0.0000 

0.0000 0.0000 0 .0 1.>00 0.0000 0.0000 

0.0000 0.0000 0.0000 2. 9533E- 13 0.0000 

0 . 0000 0.0000 0.0000 0 .0000 0.0000 

0 .0000 0.0000 0. 0000 0.0000 1.2569E-13 

INVERSE COVARIANCE MATRIX: 

1.6309E09 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 5.6803E10 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 5.4596£11 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 7 .7952E11 0 .0000 

0.0000 0.0000 0.0000 0.0000 0.0000 
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0.0000 0.0000 0.0000 0.0000 1. 1015E12 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

1.9294E12 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 4.5126E12 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 3.7068E12 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 3.3859£12 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 7.9555E12 

G2 :: 6.7093 

NOISE SIGNATURE PATTERN IS NORMAL 
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X. APPENDIX B: THE FFT PROGRAM 

The computer program FFT was implemented on the microcomputer to cal-

culate the spectral densities of the monitored noise signals. It was com-

piled in machine code using the Software Dynamics BASIC compiler to provide 

normalized power spectral densities using the Fast Fourier Transform alga-

rithm. The program is loaded on the microcomputer by the following steps: 

1. Insert the floppy disk with stored program into the disk memory 
module. 

2. Type in the access code "G EC 00." After "DOS READY" appears, 
type in "RTP FFT . " 

The following will be displayed on the CRT screen as the system routines 

are loaded: 

"LOADING SDRTP" 

"LOADING SDIOPACK" 

"LOADING FFT" 

The input parameters requested from the user for program execution are 

listed in Table B.l. The monitored signal s are then fed into the micro-

computer input terminals for processing by the FFT program . After signal 

processing, the program provides the output options in the manner shown in 

Table B.2. The program output is then displayed in the manner desired. 

The range of frequencies and the amount of frequency smoothing are specified 

by these options. The output data can be stored on a floppy diskif desired. 

The options for this purpose are listed in Table B.3 . The listing of the 

source program for FFT is provided on the following pages. 



63 

Table B.l. Input Parameters for Program Execution 

Description 

ENTER TOTAL DELAY, DELAY? 

ENTER, IN PERCENT, 11IE TAPER LENGTH IN EACH SIDE? 

NO. OF DATA POINTS/CHAN.? 

SAMPLING RATE/SEC. 

NO. OF RECORDS TO BE AVE. 

ENTER D.C. CH. A 

ENTER D.C. CH. B 

ENTER GAIN CH. A 

ENTER GAIN CH. B 

Table B.2. Output Options 

Parameter 
Required 

169, 9 

0 

256 

25.6 

15 

1.65 

3.10 

2.10 

2.30 

Description Option 

DO YOU WANT TO PRINT OUTPUT? "Y" or "N" 

ENTER START FREQ. 0 

ENTER FINAL FREQ. 10. 0 

ENTER THE NO. OF FREQ. AVE. 1 
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Table B.3. Data Storage Options 

Description 

DATA SAVED? 

ENTER FILE NAME: UP TO 8 CHAR. 

ENTER FILE I.D.: UP TO 72 CHAR. 

DO YOU WANT TO READ BACK FROM DISC? 

Option 

"Y" or "N" 

PSDFILE 

100 

"Y" or "N" 
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0010 DIM AC512>,SC130>,B<130>,CC130J,R8(130),l8<130l 
0020 DIH &9,I,11,12,13,I4,I5,J,A8,C8,B6,C6,I6,R6,M,BB,D8,D,R,D1,D4 
0030 DIH D9,D2,D3,S1,L,K,K2,K3,A1,A2,A3,A4,A5,A6,A$C1),N,N1,N2,N7,N8 
0040 DIH N9,N$( 1 > ,X, Y, Y1, Y2, Y9, Y$( 1) ,V,C1 ,C3,0,G1 ,G2,P1 ,P2,P3,L9,R9 
0050 DIM £1,E2,F,F2,F3,F6,F$(1l,H8,TB,B5 
0060 DIH TDEL,DEL,ZS,Z6,Z7,VS,V6,19 
0070 DIH C5,FILNAHESCB>,FILID1C 72> 
0080 DIH 111,K1 ,Q1 ,Q2,Fl'IHC62) 
0090 FKT$="11.KM 1.#•A• • #.# ···· M.1 A• • • -1##.# *I.#### #,##1#" 
0100 Z6=Pl\T9=0 
0110 PRINT"ENTER TOTAL DELAY,DELAY"\ INPUT TDEL,DEL 
0120 ON ERROR GOTO 114 
0130 14 INPUT"ENTER,IN PERCENT,THE TAPER LENGTH ON EACH SIDE"Z5 
0140 Z5=Z5/100 
0150 A6=180 / Pl\N9=1\Y=O\PRINT "DO YOU UANT TO OUTPUT PREV. RUN" 
0160 INPUT YS\IF Y$="Y" THEN 1320 
0170 INPUT"DO YOU UANT TO ADD l'IORE AVE TO PREVOUS RUN"Y$ 
0180 IF Y$="Y" THEN 119 
0190 FOR I=O TO 127\BCI>=O\CCI>=O\RB<I>=0\18(1)=0\NEXT I 
0200 119 GOSUB 700 
0210 1111 GOSU& 1000 
0220 IF Y=1 THEN GOSUB 820\Y=O\GOTO 1111 
0230 GOSUB 900 
0240 20 IF ZS<>O THEN GOSUB 1200 
0250 GOSUB 100\IF N9- C3=0 THEN 64 
0260 N9=N9+1 \ PRINT"PASS #'';N9-1 \GOSUB 820\G OTO 20 
0270 36 FOR K=1 TO N/ 4\L= N1-K\H=K+K\J=L+L\A8=ACMl+A(Jl 
0280 B8=ACHl - ACJl\C8=A (H+1l+ACJ+ll\DB=A<M+1)-A(J+ll 
0290 B6=AB*A8+D8*DB\B(K)=B<K>+B6\C6~ca*C8+B8*BB\C(K)=C(K)+C6 
0300 16=-AB•B8-D8•CB\R6=AS•C8-B8•DB 
0310 R8(K l= RB<K>+R6 \I B<K>=I8<Kl+l6\NEXT K\RETURN 
0320 64 GOSUB 1300\PRINT"DO YOU UANT TO CONTINUEE Y OR N" 
0330 INPUT AS\IF AS ="Y" THEN 14 
0340 STOP 
0350 100 V=O\N1 =N/2\ N2=N / 4+2\ L=N2+1\D=O\R=PI/N1\IF N9 <> 1 THEN 131 
0360 SC1l=O\D1=1\S(N2-1>=1\D4=SIN<R>\S(2l=D4\D2=COS<R> 
0370 FOR I=3TON/8+1\R=D2*Dl\D3=R-D\S(L-I>~D3\D=Dl\Dl=R+D3 
0380 SCI> =D l*D4\NEXT I 
0390 131 IF V=2 THEN 220 
0400 IF V=3 THEN 149 
0410 A5=1/Nl\FOR 1=1 TO N\ACI-1> =A<I-1l*AS\NEXT I 
0420 149 J=1\FOR l=l TO N STEP 2 
0430 IF J>I THEN GOSUB 300 
0440 i<=Hl 
0450 160 IF J>K THEN GOSUB 400 
0460 IF J>K THEN 160 
0470 J=J+K\ NEXT I\13=2\1=2\11 =N1 
0480 170 14=1+1 \ 12=1 \F OR J=I TO I STEP 2\S1=-S(l2)\IFV=3 THEN S1=-S1 
0490 Cl=S<N2-I2>\ IF J>=I3 THEN GOSUB 500 
0500 IF J<I3 THEM 12=12+11 



66 

0510 FOR K=J TON STEP 14\L=K+l\Al=Cl ~A<L - 1>-Sl*A<L> 
0520 A2=Cl*A(L)+Sl•A<L-1)\A<L-1>=A<K-1l-A1\A(L)=A<K>-A2 
0530 A<K-1>=A<K-1>+A1\A(K>=A<Kl+A2\NEXT K\NEXT J\I3=I+1\I=I4 
0540 11=11/2\IF I <=Nl THEN 170 
0550 IF V=1 THEN 290 
0560 IF V=3 THEN 290 
0570 RE" THE REAL SUB. IS NOT TRANS. 
0580 220 PRINT "INVERSE IS NOT COMPUTED" 
0590 290 GOSUB 36\RETURN 
0600 300 A1=ACJ-1)\A2=A<J>\A(J-1>=A<I-1)\A(J)=A<I> 
0610 A<I-1>=A1\A<I>=A2\RETURN 
0620 400 J=J-K\K=K/2\RETURN 
0630 500 l2=12-I1\C1=-C1\RETURN 
0640 600 A(1l=A5+A<N+1)\A<2>=A5-ACN+1l\V=3\GOTO 149\RETURN 
0650 7000=1\INPUT"M OF DATA POINTS/CHAN. "N\N=N•2 
0660 PRINT "SAMPLING RATE/SEC"\INPUT Y9\PRINT"# OF SAMPLES TO BE AVE." 
0670 INPUT C3\PRINT"ENTER D.C CH. A"\INPUT Y1\PRINT Y1 
0680 T9=T9+C3 
0690 PRINT"ENTER D.C CH. B"\INPUT Y2\PRINT Y2 
0700 PRINT"ENTER GAIN CH.A"\INPUT G1\PRINT G1 
0710 PRINT"ENTER GAIN CH. B"\INPUT G2\ PRINT G2 
0720 C1=N*Y9*256•256\C1=100/C1\Pl=ll•Y1~G1•G1\P1=C1/P1 
0730 P2=Y2•62\P2=P2•P2\P2=C1/P2\P3=Y1•Y2•Gl*G2\P3=C1/P3 
0740 P1=P1/.875\P2=P2/ . 875\P3=P3/.875 
0750 D9=INTC1000000/Y9l\D9=D9- TDEL\D9=D9/DEL 
0760 L9=INTCD9/256>\R9=INTCD9-L9•256) 
0770 RE" PUT SAMPLING DELAY AT LOC. F01C 
0780 POKE :F01C,L9\POKE :F01D,R9 
0790 REM PUT M OF POINTS/SAMPLE AT F012 
0800 L9=INTCN/256)\R9=INT<N-L9*256l\POKE :F012,L9\POKE :F013,R9 
0810 REH SET START ADDR. OF DATA TO :6200,PUT IN LOC. F01E 
0820 POKE :F01E,:62\POKE :F01F,O 
0830 820 REM START DATA CONVERSION & STORAGE 
0840 CALL DCOLEC 
0850 REH TRANSFER DATA TO MATRIX A 
0860 B9=:6200\FOR I=O TO N-1\A(Il=PEEK<B9+ll 
0870 NEXT !\RETURN 
0880 REM EXTRACT D.C FROM SIGNAL 
0890 900 Y=O\X=O\FOR l=O TO N-1 STEP 2\X=X+A<Il\Y=Y+ACI+ll\NEXT I 
0900 N1=N/2\Y=Y/N1\X=X/N1\FOR I=O TO N-1 STEP 2\A(Il=A(Il-X 
0910 A<I+l >=A<I+1l-Y\NEXT ! \ RETURN 
0920 1000 E1=0\E2=0\FOR I=O TO N-1 STEP 2\IF A<I>=O THEN El=E1+1 
0930 IF<A<I>-256>=0 THEN El=El+l 
0940 lF<A(I+t>-256)=0 THEN E2=E2+1 
0950 IF A<I+1>=0 THEN E2=E2+1 
0960 NEXT l\IF<E1+E2>=0 THEN RETURN 
0970 PRINT"# OF EXTREKA HIT IN CH.A=";Et 
0980 PRINT"# OF EXTREMA HIT IN CH. B=";E2 
0990 PRINT"RE-EHTER DATA Y OR N"\INPUTYS\IFYS="t'' THEN 1=01\RETURN 
1000 REK APPLY COS SOR UIHDOU TO RAU DATA 
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1010 1200 K=INT(N1• l 5> \ IF K<3 THEN K=J 
1020 D9=Z6/(4•K-4 )\A(0)=0\ A(1 >=O\ A (N-1l=O\A( N-2 >=0\K2~2•K- 4 
1030 K3=N-4\FOR I= 2 TO K2 STEP 2\X=SIN(D9•1)\A(l)=A(ll*X 
1040 A(l+1 >=A<I+l >•X\fdK3>=A(K3>*X\A(K3+1 l=A<K3+1 >*X 
1050 K3=K3-2\NEXT I\RETURN 
1060 1300 IF N9 >1 THEN PRINT "PASS #" ;N9 
1070 1320 F6=Y9/Nl\N$= "Y" \PRINT"DO YOU UANT TO PRINT OUTPUT? " 
1080 INPUT A$ \ IF LEFT$ (A$,1) () NS THEN 1500 
1090 PRINT "ENTER START FREIL "\INPUT F2\PRINT F2 
1100 PRINT "ENTER FINAL FREQ. "\ INPUT F3\PRINT F3 
1110 INPUT"ENTER THE W OF FREQ. AVE."Z7\R=(Z7-1l•F6•.5 
1120 111 PRINT II II 
11 30 PR INT II FREQ. II ; T All( 8) ; II PSII II ; TAB ( 17> ; "PSD II; TAB ( 26) ; "CPSD II; TAB ( 35) ; 
1140 PRINT"PHASE";TAB(43>;"TRANSF";TAB<52>;"COHERN" 
1150 PRINT TAB(Bl;"CH A";TAB(17l;"CH B"jTA.B(35>;"DEGR" 
1160 IF Ql=PI THEN RETURN 
1170 Il=INT<F2/F6l\I2=INT<F3/ F6l\IF I2>N J4 THEN I2=N/4 
1180 I5=0\I6=0\F=O\B5=0\CS=O\H8=0\TS=O\N8=0\IF Il=O THEN 11=1 
1190 F=F6•Cl1-1l\VS=O\V6=0 
1200 N7=.25/T9\FOR Gl =Il TO I2\I=01 
1210 V5=VS+B(l) \ V6=V6+C(l) 
1220 GOSUB 1400\GOTO 1120 
1230 1400 X=I8<I>*IB(I >+R8(Il*R8<Il 
1240 H8=H8+X/<B<I>•C(l))\X=SQR(Xl 
1250 I5=IS+X\T8=T8+X/B(l ) 
1260 Y=90\IF R8(I> <>O THEN Y=A6•ATNC18Cll/R8(1))\Y=ABS<Y> 
1270 IF IB<I> >=O THEN IF RB<I> >O THEN NS=NB+Y-360 
1280 IF IB<I> >=O THEN IF R8(I) <O THEN N8=N8-Y-180 
1290 IF IB<I> <O THEN IF RB(I > <O THEN N8=N8+Y - 180 
1300 IF IB(l) <O THEN IF RB<I> >O THEN N8=N8-Y 
131 0 BS=B5+B(I) \ CS=C5+C(l ) 
1320 RETURN 
1330 1120 F=F+F6\16=1 6+1 \IF I6 <Z7 THEN NEXT Ql 
1340 IF I6<Z7 THEN 1321 
1350 Y=1/Z7\BS=BS•Pl•N7\CS=C5*P2*N7\I5=IS*P3*N7 
1360 T8=T8•Y\H8=H8•Y \ N8=NB*Y 
1370 PRINT USING FHT$,F-R ,B5,CS,I5,N8,T8,H8 
1380 16=0\BS=O\C5=0\I5=0\T8=0\ H8=0\N8=0\NEXT 01\GOTO 1321 
1390 VS=V5*P1*N7\V6=V6•P2*N7 
1400 1321 PRINT"VARIANCE A= " ;V5*Foj" VARIANCE B == "jV6*F6\GOTO 1320 
1410 1500 INPUT"DATA SAVED?"YS\IF YS< >" Y" THEN RETURN 
1420 PRINT"ENTER FILE NAKE:UP TO 8 CHAR."\INPUT FILNAMES\PRINT FILNAHES 
1430 INPUT "ENTER FILE I.D:UP TO 72 CHAR."FILID$\PRINT FILIDS 
1440 FILNAKE$=LEFT$<FILNAKES,LEN<FILNAKE$)) 
1450 CREATE 1101,FILNAHES 
1460 PRINT 1101,FlLIDS 
1470 F=O\FOR 01=0 TO N/4-1\I =Gl \ GOSUB 1400 
1480 URITE #01,F,BS,CS,IS,NS,T8,H8 
1490 F=F•F6\NEXT 01\CLOSE 101 \PRINT"IIO YOU UANT TO READ BACK FROM DISK" 
1500 INPUT YS \ IF YS<>"Y" THEN RETURN 
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1510 INPUT "ENTER FILE NAHE" FILNAME$\PRINT FILNAMEi 
1520 FILNAHE$=LEFT$<FILNAHEf,LEN<FILNAME$)) 
1530 OPEN #01,FILNAHE$ 
1540 INPUT#01,FILID$\PRINT FILID$ 
1550 Qt=PI\GOSUB 111\01=0\FOR I=O TO N/4-1\READ#01,F,A1,A2,Q1,AJ,Q2,A4\ 
1560 PRINT USING FMT$,F,Al,A2,01,A3,Q2,A4 
1570 NEXT !\CLOSE #01 
1580 RETURN 
1590 114 PRINT"ERROR tl=";ERR\GO"TO 14 
1600 END 
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The output from a sample run of the FFT program is shown bel owa: 

FREQ . 

0.10 

0.20 

0.30 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

aTape 25 (Oct. 13, 1977) 

Ch. A = Detector D 
Ch. B = Detector C 

PSD PSD 

CH A CH B 

2.7E-04 2.2E-05 

4 . 7E-04 4.3E-05 

2.8E-04 2.9E- 05 

7.3E-05 1.4E-05 

1 . 0E-05 2. 9E-06 

6.3E-06 1 .7E-06 

4 . 3E-06 7.7E-07 

2.8E-06 5.7E-07 

2.0E-06 5.3E-07 

1.9E-06 2 . 6E-07 

2.3E-06 4.4E- 07 

2. 3E-06 3.9E- 07 

1. lE-06 2.lE-07 


