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I. INTRODUCTION

A major problem assoclated with the present develop-
ment of nuclear power and the widespread use of radlioisotopes
is that of providing protection for human beings agalnst
gamma radiation. To provide adequate shilelding which com=

pletely surrounds a source of intense gamma activity is
.uaually an expensive undertaking, requiring materials which
are very heavy or very bulky or both.

An alternative to the full shield is a partial or shad~
ow shield placed between the personnel and the radloactive
source which will absorb the direct radiation. Such a
shield type may be employed to advantage in nuclear powered
aireraft, nuclear powered ships or submarines, storage tanks
for spent fuel elements or other applications where limited
access by persommel obviates the need for a shield which
completely surrounds the source of radiation.

However, the use of a shadow shield to block the direct
radiation leaves the problem of the gamma rays which are
scattered around and over the shadow shield by the material
in the surrounding structure. Thus, it becomes important in
the design of shielding systems to be able to predict the
amount of gamma activity scattered into a given region by
the adjacent structure such as an aireraft fuselsge, a bulk-
head or a storage tank wall.



2

In 1955, Kenneth C. Hey (1), in his thesis for the
Master of Science degree, reported his study of gamma rays
scattered by thinewalled eylindrical shells. The objeoct of
the study treating both gamma rays and neutrons was to
establish the relationship between the scattering in a model
of an airplene fuselage and the scattering in a fullescale
structure. A theoretical analysis was made of the scattering
in a eylindricel geometry, and an experimental study was
conducted to verifly the theoretical analysis. Although the
findings indlcated similar trends in both the theoretical
and experimental work, the results for various reasons were
not conclusive.

The purpose of the present study is twofold. The first
objective is to re-examine the theoretical enalysis of the
scattering problem and make the necessary modifications in
order to achieve a more useful expression for the scattering
of photons in a coylindrical geometry. The second objective
18 to conduct an experimental study in an attempt to elimi-
nate the difficulties of the previous investigator and
thereby obtain a means of verifying the theoretical analysis.
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II., SCOPE OF INVESTIGATION

Before elaboreting on the present investigation, 1t 1s
important to define the specific problem under study and
outline the investigation that has previously been made of
this subject.

A point source of isotropic gamme radiation is located
on the longitudinel axis of a ¢ylindrical shell., Of the
photons that arrive at the shell wall, a certain portlnn
pass through the wall unaffected, some are completely ab-
sorbed in the wall, and some are scattered by the wall and
emerge with increased wavelength in a new direction. The
specific problem is to determine what portion of the photons
emitted by the point source are scattered by the shell wall
into a finite target located also on the eylinder axis,

With the exception of the thesis by Ney, no literature
was found on the subject of geometrical considerstions in
gamma ray scattering in thin absorbers. Considerable ine
vestigation has been made of gamma scattering in infinite
and semi-infinite media, but since such treatments are not
directly applicable to the problem at hand, a review of this
literature is considered unnecessary here.

In Ney's investigation, a theoretical analysis was made
of the ac‘ttoring in the shell wall as a funetion of source
strength, scattering eross sections, shell materials and

other geometrical parameters., An equation was developed
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for finding the activity scattered into a eylindrical target
representing a detector tube. With some simplifying assump-
tions the equation was solved for a varlety of wall thicke
nesses, shell radii and source~to~detector distances. Then
experiments were conducted to verify the analytical findings.
Although the experimental results indicated the same trends
predicted by the theory, the statistiecal uncertainties in
the experimental data were so great that the findings were
not conelusive, Ney attributed the large statistical devia~
tions to the scattering of gamme rays by the alr and walls
of the room, which made a large contribution to the counting
rates as compared to the shell scattered activity.

The emphasis of the present study is focused on (1)
analyzing the approach of the previous investigator; (2)
locating the areas, both theoretiecal and experimental, where
weaknesses or difficulties existed, and (3) eliminating
these weaknesses and difficulties in order to achieve a use=
ful theéretical expression for thin-wall gamma scattering
which can be verified by experiment.

In the present study, as in the previous one, the
prineiples of gamma ray interactions with matter are applied
to the problem in order to obtain an expression for the
activity scattered into & small cylindriocal detector by a
thin-walled shell. The investigation is restricted to pho-
tons within the energy renge of a few Mev. The scattering
material of the shell wall is restricted to materials of
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low atomic number. These restrictions confine the problem
to one primary type of interaction, Compton scattering,
which for light elements comprises essentially the entire
absorption coefficient for gamua rays between 0.5 and 5 Mev.

After the theoretical expression 1s simplified and the
simplifying assumptions justifled, the expression is solved
by a direet anslytical method and also by a graphical
method., The graphical method has the advantage of treating
several nearly~-constant terms as variables which, in the
analytical method, mmst be treated as constants in order for
the expression to be analyticelly integrable.

Finally, an experimental study has been conducted to
verify the theory. Employing a similar source, detector and
geometrical arrangement, the experiments are essentially the
same as those conducted by Ney, although more shells and
shell parameters are measured. Here, the difficulties
encountered in the previous work are eliminated and, conse-

quently, the resultant data are conclusive.
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III. ANALYSIS
A. Development of the Theoretical Eguation

1. Application of prineiples

The method of developing the desired theoretical equa-
tion consists of determining the proper scattering expression
for a small differential volume in the shell wall as a funce
tion of all the contributing variables, and then integrating
this differential expression through the entire volume of
the shell to obtain the total activity scattered into the
target. Illustrated in Fignrovl is the gamma ray scattering
geometry. One quarter of the c¢ylindrical shell is shown
with the source snd the eylindrical detector located on the
axis of the shell.

The dimensions and angles used in the development are
labeled on the sketch. The other terms are defined as

follows:
Syrbol Units Definition
hot
3 %E%E%ﬁa Source strength
by om™ Total absorption coefficient
for gamma rays in air.
by em™t Total absorption coefficient

for gamma rays in the shell
wall.
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Symbol Units
g oni”
Q electron, steradian
electrons

n‘ ;;
. et

a, Mev
S Mev
< unit less
£, em
Ez em

Definition

Klein-Nishina differential
collision cross section,

The probability of a photon
being scattered through ane-
gle ~ into an element of
solid angle d 0 centered
around < , where n, is unity.

Electron density of the
scattering material.

Number of gamma rays per unit
time scattered into the
detector by the shell wall.
Initiel photon energy.

Photon energy alfter a Comp-

‘ton scattering reaction.

.-
™

Pathlength in the shell wall
of an incident photon.

Pathlength in the shell wall
of an emerging photon.

The gamma ray flux ﬂé incident on a unit area at point P

-y r -, t
in the shell wall is equal to 8 (;nlﬁz) (; . %) (; - 1) .
h”l
Here S, the total number of photons per second emitted iso-

tropically from the source, is first multiplied by the proba-
bility of a photon being emitted in the direction of a unit

area at distance rye This term<mwl~§ is expressed as the ra-

bary

tio of the unit area to the entire surface area of a sphere

with radius Py The product is then multiplied in turn by
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op r
( o & 1) , the probability of the photon passing through
a distance r, =~ tl without being absorbed by the air, and

(;.u'el) , the probability of passing through distance t,
in the shell wall without being absorbed or scattered. The
distance ry is so large compared to tl that the term r, may
be used in place of ryo- tl to represent the distance
traveled in air by photon incident on P.

Now, a differential volume 4V at P in a spherical co-
ordinate system is chosen with dimensions ry sin 8 dy,
rlde, and drl as shown in Figure 2. The scattering which
takes place in this differential volume is the product of
the incident flux ﬂp times the surface area r, sin 8 dy,
rlde, times the probability of scattering in passing through
a distance ﬂrl.

The Compton scattering process is not 1sotropie, but
rather has a strong prelerence for forward, or smalle-angle
scattering. The larger the angle scattered, the more energy
is given up by the photon in the process, as indicated by
the relationship,

N o=l [ 1+ %o (1 = cos @) J

©

where @, is the initial photon energy, @ is the final photon

2

energy, 4 is the scattering angle and m ¢~ 1is the rest energy

of the recolling electron. All energies are in Mev units.
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The probability of a photon being scattered through a
particular angle /O was caleulated by Klein and Nishina and
is expressed gs a cross section. Since the probability of
scattering through an exact angle /@ 18 zero, 1t is neces-
sary to specify e reglon, or solid angle () around the
angle / s for which a finite probablility can be expressed.
This accounts for the differential cross section term ﬁ-‘%—
which hay the units of B'Wg%;nﬁ per steradian of solid
angle.

The relationship between the differential collision
eross section and A as found by Klein and Wishina is

2
r
%__‘cr' n-—&- L
ca [L+a,(1=cos@ 2

24y o 2
{i*nmaﬁ 4?-9{1 Tl }

lﬁaﬁtl-»am/@}

where To is the classical electron radius,
Using the ratioc of initial to finel photon energles A,
the amlwimum ia obtained,

2
%—%*Z}t/‘t-»/ae sin?l+ 43) .
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It is seen that the total probability of scattering
in passing through the distance arl is not sufficiently
meaningful and, therefore, the probability of secattering
into a particular solid angle is sought. Thus, in a volume
element at P the number of photons scattered through an
angle (& per unit time in the direction of the detector may

be expressed as

g
én, = ﬂ% gﬁaf-jzn n, av

where dV is the differential volume (r,de) (ry sin 6 dy¢ )
(drl), the term n, is the number of electrons per unit volume
of the seattering material, and 0, is the solid angle at P
subtended by the detector,

The number of photons that arrive at the detector per
unit time is equal to the number seattered in its direction
maltiplied by the respective probabilities, t“““ta, of pass-
ing through distance t, in the wall, and Q~a‘r2* of passing
through distance ry in the air without being absorbed or
scattered,

The inal expression for the number of photons, single-

scattered into the detector by a unit volume 4V is

do- ”ﬁﬁa) “BaT
ang =, 45~ apn, (o (74%2) a



or, by expanding,

n, = h‘jz, (:p‘rl) ( ‘y"tl) ot

-t -l r
Q. 0, (e w&) (u ‘2> r, 46 ry dy dr,

To solve for the total activity scattered from the entire
eylinder, the differential volume 13 integrated between the
geometrical limits for &, Y and r, as follows:

n, = fffﬁ ,“"u“‘z"”z’ ."'*w“l”‘z)

da
ninﬂ(_n_ Npn, 46 aY dr,

This resultant equation is considered generally eppliecable

to the problem of singlee-scattered gamma rays within thin-
walled cylindrieal shells.

2. Simplifications and assumptions

For a particular application the expression obtained in
the previous section 1s rather unwieldy, and any simplifica-
tion which can be made for certain limited ranges of
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scattering geometries will facilitate the evaluation of the
integral.

If the scattering material 1z homogeneous, the electron
density n, is a constant, If the source 1s fairly constant
or if its half-life is long with respect to the period under
study, as is that of Cobalt-60, 5 may be considered a con~
stant, Then this term and the other constant terms may be
withdrawn from the integrand to obtain:

*+r,) =p (t +t¢t
oo i ff[;‘“;"l "t SN

ry Y @

do
sin G(;-a-) Npaedy dry

Mentioned briefly here are the treatments given to the
several variable terms by the previous investigator. Fol-
lowing this is a discussion of the analysis of these terms
by the present investigator with particular emphasis on the
problems involved in their simplification.

The variable terms include: (1) Air Absorption, The
non-absorption probability in air, n.““rl f rz)’ was in-
veatigated by Ney and found to be no less than 0.,9935 for
the maximum distances involved., This ecalculation is con-

firmed in the present study and the air absorption can be
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considered negligihl;. (2) Wall Absorption. The matter of
absorption in the shell wall was not treated at all, This
term was not mentioned as a factor in the Ney study. (3)
Differential Cross Sections Although the differential scab-
tering crosa aeatimn«%%%m is a varisble, the varistion is
qulte small for large scattering nnglea/é’n Ney found this
term to be fairly constant for seattering angles greater
than 70‘, and since few scattering angles smaller than this
oceurred in his study, he treated %%%m as a constant for
- the entire range conecerned and withdrew 1t from the inte-
grand. (l) Solid Angle. The solid angle subtended by the
eylindrical detector I)b presented a particularly trouble-
some problem. An attempt was made to find this by a
double integration over the area projected by the detector
tube on the surface of a sphere passing through the center
of the tube., Because the limits of integration were very
hard to establish properly, the plane angle subtended by
the dlameter of the tube was considered constant and the
vertical plane angle was integrated graphiecally for all loca~-
tions of P in the shell wall. The result was an average
value for () which was treated as a constant and withdrawn
from the integrand,

The net equation of the previocus study was

SOn
BB [ [ e
; " y @
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The variable dr, was integrated between the limits ;zng
and ;%%35 ; then dY was integrated between the constant
limits Y = 0 and ¢ = 2% giving an expression as a function

of only one variasble, .

a
., .D.n t 10 20
2 an 5 sin @

With the limits of # established by the cndpoinﬁa of

the cylindrical shell, &, = tan™ - ~§5 and @, = tan -&

this expression 1s easily solved by direet integration for
each scattering geometry.

The present study 1is concerned with the problems in
Justifying the sbove simplifications and some other assump-
tions not jJustified in the previous study.

a. Wal b tion. A photon inecident on the wall in
the direction of P may be absorbed or scattered belfore reach-
ing P; or, after being scattered at P toward the detector,
it may be absorbed gF belore it passes out of the ﬁalliuntarin
als A limit snalysis is made here to determine the signifi-
cance of the wall absorption. The absorption probability is
found for the maximum and minimum extremes encountered in
the particular shells avallable for experimental study. The
pathlength ty of the ineident photon in the shell wall can
have any value from geroc buigxgug » Likewlse, the wall path
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length ta of the emerging photon scattered at P can have
values from gero to 35553’ « For shells of {inite length
the maximum possible value of &, + *2 occurs when the
source and detector are nearly coincident at one extreme
end of the shell and the scattering point F is in the op-
posite end in the outermost {iber of the wall. In this
case ® and Y would be virtually equel and the total pathe
length in the shell wall would be c5i— or

2t Vrz + h:z
r -

The maximum poassible pathlength is found for the most
extreme nh@ll aveilsble in this investigation. For the
thickest shell with the smallest radius and greatest length,
(t = 0.,250", r = 3,0%, b = 16"), the maximum possible
pathlength is found to be 6,89 cms The probability of non-
absorption in aluminum for a l.25-Mev photon (“t =
0,150 em™}) passing this distance is e~ (04150) (6439)
0e356.

Moreover, even in the case of the least severe geometry
where the photon enters the materisl perpendicular to the
surface and, after being scattered, emerges again perpen-
dicular to 1t, the absorption probability becomes large as P
approaches the outermost fiber of the shell wall., Here,

“1 + te approaches 2t and the probability of non-absorption
for the thickest shell (0,635 em) is e~ (0+150) (2) (0.635) _
0,826, It must be concluded that noneasbsorption
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probabilities on the order of 0,36 and 0,83 are too far
from unity to be ignored. Therefore, the wall absorption
term must be included in the theoretical secattering ex-
pression.

be Second-scattered setivity. The basiec expression
was developed under the presumption that all the shell-
scattered photons arriving at the detector are singly scat-
tered, However, it is intuitively obvious that the total
scattered activity is the sum of an infinite series of terms
representing the contributions from {irst scatters, second
scatters, third scatters, etoc. Now, if it can be shown
that the contribution from second scatters 1is quite small
with respect to the activity from first scatters alone, the
third term can be shown to have the same relationship to
the second term and, consequently, all terms except the one
representing first scatters may be neglected.

Since the probability of a first scatter is very small,
it seems reasconable to expect the probnbiiity of a second
scatter to be correspondingly smell with respect to the
first and, hence, negligible with respect to the first scat-
ter contribution. A limit enalysis caleulation was made to
verify this expectation. It consisted essentially of first
selecting a volume element at P in the shell walls, Then
the activity scattered inte the detector by this element
was compared with that activity scattered first from P to
other points on the shell and then scattered again into the
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detector. To evaluate the second scatter a horizontal band
of width 4h around the shell was selected at a value of h
where the secattering contribution was near maximum. (The
location of this region of maximum scattering contribution
is disoussed in Section V.) The volume element P was se-
lected within this horizontal band.

The hypothesia of the limits analysis was as follows:
If no other horizontal band contributes more than this
"maxirmum” band, then the total activity, first-scattered in
a unit volume at P and second-scattered by all other points
in the shell into the detector will not exceed the total
activity found by sssuming all bands to be as important as
this "maximum" band., Then, if the sum of the second-
scattered activities {rom all such bands in the shell wall
is quite small compared to the firstescattered aotivity,
the second=scatter can be considered negligible in this
limiting case and, consequently, in all cases,

Two postulates were helpful in finding the activity
scattered by P into the horizontal band, First, the angle
of a firstescatters from point P to any point in the narrow
horizontal band is always equal to, or greater than 90°,
Second, for scattering angles equal to, or greater than 909,
the differentlal scattering cross section, ﬁ%—-— , remains
essentially constant for photons of 1425 Mev. (See Figurel )
Therefore, a [irst-gcatter from P in any horizontal direc-
tion toward the shell is equally probable.
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The horizontal plane angle (180°) subtended by the
eylinder at point P in the wall was divided into six equal
angles which intercepted six arcs on the horizontal band.
Por each of these arcs a representative point, P', wes
selected., Then the {lux at P' from first-scatter in the
volume element at ¥ was caleulated from the relationship:

Ppr = Py e p Vp By Op1

where V, is the volume of the element at P, and Dy is the
solid angle subtended at P by & unit normsl area at P'.

The flux QF, was considered to be a failr average value
for all points in the arc represented by point P', The flux
at the detector ﬁn, resulting f'rom second-gseatter in this

are can be expressed as:

fior = Bor §5— 1 % s Vpr

where V., 1s the volume of the arc of the horizontal band
represented by P', and Qg 1s the solid angle subtended by
& unit normel area at the detector,

The total activity secondescattered from a unit volume
at P into the detector by the entire horizontal band is the
sum of the contributions from its seversal arcs. This
aotivity 1s multiplied by the mumber of bands of width Ah



22

in the total shell length hh to give the total second-
scatter contribution at the detector for photons firste-
scattered at P.

The caleculation by this method for the most severe
shell avallable (t = 0,250", r = 3.0”,‘hh = 16") ylelded
for the second generstion flux at the detector a value of
3.02 x 1077 #p» whereas the first generation flux was found
to be 1,58 x 107 [

It is seen that the second~scattered contribution is
less than 2 per cent of the firstescattered contribution
in the limiting case where all regions were considered to
be as important as the meximum. Therefore, it can be con-
cluded that the second-scattered activity, and, consequently,
all activity from higher order scatter is very small com-
pared with the first-scattered activity, and, hence, can be
neglected.

¢. Differential cross section. In the previous study

the assumption was made that the scattering or'photanl in

the shell wall was isotropic. This assumption was based on
the Klein-Nishina differential collision cross sections for
Cobalt-60 gamma rays, the values for which cross sections

were evidently obtained from a graph in the literature of Ples-
set and Cohen (2). The previous study proposed that an aver-
age value of differential collision eross section %ﬁ%— for
scattering angles greater than 70° could be employed as a

constant in the development of the theoretical expression.
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The reasons were that -ﬁ-%- shows little variation for scate
tering angles greater than 70°, and few scattering angles
smaller than this occurred in his study.

Heither of the two qualifying conditions 1s entirely
satisfied, According to Latter and Kahn (3) who have
tabulated preciuly the values of -g-g— f'or a wide range of

gemma energles, the dirrumnténl eross section varies be=

«26
tween 0,697 x 10 'i?[oetrog'? eI for ﬁ = 180°,
and 1,233 x 1072 ror & = 70°, Purthermore, scattering

angles as small as }1° occur in the range of geometries

studied, and for the shells of 3" radius the proportion of
these small scattering angles becomes quite large. Two
curves are included to show how the differential scattering
eross section actually varies with the values of & en-
countered in the two extreme geometries investigated, Fige-
ure U 1s for the shell of smallest radius, 3", and Figure
5 1s for the greatest radius, 8". It should be noted that
the source~to~detector distance in both cases 1is the maximum
possible within the end limits of the 16" shell length. For
any distance hs less than 16" the scattering angles would be
greater and the corresponding values of g—:—;—- would be smaller.
It is seen that Ney's use of the average value of 0,78 x
10726 o per electron per steradian for %4_"-';_- is a satis-
faotory simplification for shells of large radii, but intro-
duces & rather large source of error when applied to shells

of smaller radii,
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The eonclusion of this analysis 1s that the treatment
of $2— as a constant is justified in a limited range of
geometries where the shell radii are large and the source=-
to-detector distances are small.,  However, a more exact
solution of the general problem requires that the dif-
ferential scattering cross section be treated as a variable
guantity.

d. Solid angle. The solid angle subtended by the
detector 1z not easily determined because of the cylindrical
shape of the G=-M tube. Ney's approach to this difficulty
consisted of finding the aolid-amgla subtended by the area
projected by the detector onto a spherical surface which
passed through the center of the top of the counting tube.
The surface was generated by swinging an are of radius ry
centered at the volume element P, |

The solid angle > could be found from the double inte-

5, 2
n = ,}/’ sin¥ av¥ 46
5 vy |

where ¥ and § represent the verticel and horizontal plane

gration

angles at P, respectively, and the subseripts 1 and 2 signi-
fy the limits of these angles subtended by the detector.
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Since the limits on ¥ and &6 are interdependent in a
complicated manner due to the cylindrical shaped counter,

Ney simplified the expression as:
V2

Io -aem"l;,'&- gin¥ ay

¥y

This simplification assumes that the horizontal plane
angle subtended by the detector remains constant for all
scattering points. This assumption is not valid since
2 tnnfl'% is the horizontal plane angle subtended by the
detector at only one value of h, that is, where the scatter-
ing point P is directly opposite the detector and ry is
equal to r. For all other scattering points, r, is greater
than r and the Ney expression will result in values for
that are too large.

When Ney's final expression for Sl was substituted into
the complete scattering equation the result was the extreme-
ly complicated integral

Lf

%2
S n, S . -1a
n, = —— §5— [ 2tan™" & sinY dY]-'%-‘
“1

L4}
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where, although Y and & have a one-to-one correspondence,

the resultant funetion of @ cannot be integrated analytically.
To overcome this complication, Ney used an average value for
N which was obtained by graphical integration between the
limits imposed by the geometries of the available scattering
shells. The solid angle was determined for each of sixteen
values of h eand the arithmetic mean Qt these sixteen determi-
nations wes used for the average solid sngle 0. Then O
was removed from the integrand to leave the final scattering

expression: ‘
Sn tao 4, 2
. T g?{ ////ﬂziﬁ*s

The method of using an arithmetic mean for O assumes that all
scattering points are equally significant to the overall scat-
tered activity. This assumption is invalid as shown in Pig-
ure 6 which illustrates the relative scattering importance

of the various regions of the shell.

Thus, it is seen that the previous investigator's ap-
proach to the problem of the solid angle subtended by the
detector was basically sound, but two of the simplifying as-
sumptions made were invalid, The present study is concerned
with meens of achieving a useful expression for the solid
angle term without depending on these two assumptions. The
expression used here to find the solid angle is



29
=
e

where A is the area the detector projects on a plane perpen-
dicular to the radius Poe
If it can be shown that A is a eonstant or nearly con-

stant, then the integral /[ {1 4@ can be expressed as

A / % which can be integrated analytically. The area A
¥2

may be represented by A = A, sin)y + A, cos Y where A. is

the projected rectangular area of the side or wall of the

detector on & plane through its longitudinal axis, A. is the

area of the circular end of the detector, and ¥ 1s the angle

formed at the center of the detector by the longitudinal

axis and the radius vector *2‘

The perpendicular areas A. and A. are assumed to be
located at the midpoint of the detector. A small error intro-
duced by this assumption occurs when the scattering point P
is located directly opposite the detector. In thia region
the A, cos Y term decreases and becomes zero. Actually, the
contribution to A from the ends of the counting tubes never
completely disappears., Therelfore, a more exact expression
can be written which does not assume that Ay is located at
the midpoint of the detector, but instead represents the
actual situation where half of A, appears at the bottom of
the counter and half at the top. This expression is
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A A
A' = A sin Y *gﬁooa 7'023003 ¥t

where the area is designated A',and (' and Y" are the
angles formed at P by the vertical wall and the radius vec~
tors to the center of the counter bottom and counter top
respectively.

The expressions for A and A' are plotted as functions
of h to 1llustrate the effect of using the corrected ex-
pression, and also to show the extent of the variation in
this area term with location of seattering point P in the
shells of smallest and largest radil 3 inches and 8 inches,
respectively, (See Pigures ), and 5 ),

Two conclusions can be drawn from the curves: The
values of A and A' are so nearly alike there is little ad-
vantage in using the more exact expression; and although the
variation in A with h is significent for the shells of small
radil, the projected area term becomes nearly constant for
shells of large radii. The curves are plotted for the ex-
treme case where the center of the detector is at h = 0. A
detector location at any other value of h would yileld a
smaller variation in A than the cases 1llustrated. It is
seen that certain simplifications are esasential in order to
obtain an equation that can be solved. VWhere the range of
application is limited, 1t is posaible to treat the terms

(¢, + ¢,) :
a.u' 1 2 ’ ﬁ%&w and A as constants and use the expression
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Stn - ep (8, + t,)
do W'l 2 ds
2

which can be integrated directly. On the other hand, if the
limits of the application are broad and the terms %ﬁ%,<a

and e.“'(tl . ta) vary considerably over the given range,
then they muat be retained in the expression as variables.
In such cases the equation cannot be integrated directly and
a graphical solution must be employed, 1In the present study

an analytical solution for the integral -}(gﬁ%~und a graphi-
r
2

cal solution was obtained for the expression

Sn_ t - (t, + t,) V
n'n-—-zg—- Zé—:‘?;ﬂi”gl 2 &S .

Only the latter solution was found to be sufficiently useful
for the present study. '

B. Solution of Equation

1. Evaluation of terms.
In order to solve the theoretical expression for par-

ticular cases, it 12 necessary to evaluate the terms in-
volved. The terms here are evaluated for the particular

materials and geometries encountered in the experimental
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portion of this study. Brielly, the materials consisted

of 2457 aluminum alloy shells, some of which were Alclad,

an end-window CeM tube, and a small Cobalt-60 source.

These are described more fully in the experimental section.
a. Source term. The source term 3 was evaluated from

the relationship o, = 8 :%_IZI_ where g is the number of

photons rediated directly into the end of the detector per

unit time, ..().E is the solid engle subtended by the end

of the detector, and Q 1is the total solid angle. If 4

is the distance {rom the source to the end of the detector,

and a is the radius of the detector, then

-

The counting rate for direct radiation is

2
= = €8
WO

where €& 1s the counting efficlency of the detector.

| There was no particular advantage in determining the
exact strength of the gamma source, even if it could have
been done. Since the counting efficiency of the G-M de-
tector was not known but 1s generally on the order of one
per cent, the source term was considered to be proportional
to the counting rate and no attempt was made to determine
the absolute source strength. Therefore, the product €3
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is represented as 8' and has the units of counts per min-
utes The term ¢° absorbs the difference in units.

The detector radius a and the counting rate RD could
be measured directly. However, the distance d was diffioult
to measure because the exact location of the effective end
of the detector was unknown. In other words, the mica
window eould not be considered as the effective end of the
tube since most of the intersetions occur in the tube cover.
Therelore, the effective end of the tube was determined
through an indirect methods This method consisted of meas-
uring the direct counting rate for two widely separated
values of the distance, hS

Prom the relationship Ry = s'-&z where d = hy - x,

the unknown distance x from the dctoctar midpoint to the
effective end wall was determined. The distance x was pre-
sumed to be constant, Therefore, its value could be found
by the simultaneous solution of

The distance x was found to be 0,20 inch whiech in turn

was used in the same equation to find the velue, L.012 x 10&
counts per minute for 8°',
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b. Electron density. The term n, was determined from
the composition of the aluminum used in the experiment. The
24ST aluminum alloy has a nominal cmﬁtlmf (L) of 93.4
per cent aluminum, L5 per cent copper, 0.6 per cent manga-
nese, and 1.5 per cent magnesium. Although small amounts
of some impurities may be present, their contributions to
the electron density of the alloy are negligible. A value
of 7.99 x 1023 eleotrons per orP was found, using the rela-
tionshlp

Here, N, in Avogadro's number, ° is the density
(2.77 gn/en’), € is the welght fraction, Z is the atomic
number and A is the atomlc weight.

The electron density of the cladding, which is essen-
tially pure aluminum, was found to be 7,88 = 1023 electrons
per emP, Since the cladding composes 5 per cent of the total
weight of sheets with thickness of 0,064" or greater, and
10 per eent for sheets less than 0,064" thick, a value of
electron density of 7.98 electrons per o may be used withe
out significant error for all shells concerned in this study.

The theoretical equation was solved both analytically
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and graphically. In order to obtain an expression that
eould be integrated analytically it was necessary to find
average values for several varisbles and by treating them
as constants, remove them from the integral. Such simplie
fication has certain inherent shortcomlngs as pointed out
in the section on Simplifications and assumptions. However,
if the terms remain falirly constant over the given range,

or if proper, weighted=-average values can be found for the
variasbles, then the simplified enalytical solution may be

used, The present section describes the analytiecal solu-

tion of the intogra%)/ﬁ—ﬂgm

F2
raw’-/-"z“-

From Figure 1 it is seen that r, = ;zﬁfyw-unﬁ by the law of

cosines
2 2 2 .
ra = bg + ry + ahsrl cos 8

However since ry = ;I%"ﬁ » ténn raa = rz + (hs - r cgot 9)2 .

. 46
y ﬁzﬁ+(nwnm0)2

Let x = (a - cot @) and dx = ena2 8 48 .,

h
Let a = ;5
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Then by trigonometric substitution, dx = [(n - x)z + 1 ]de.

}_;2 dx
* ht - z)a + ;] [i + an

Thus y =

Now, by the method of partial fractions,

b 2] [114 (a - x)a] 8 *’ 3 % : %;If‘;)gl ‘

> X

and rly = f)//:agé"i + B ;_25.5
* X

1+ x

+ ¢ dx - + 8 7 bl dx‘
1+ (a = x) 1+ (a - x)

where A, B, C and D are undet<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>