
Interfacing a speed control processor to the IBM PC

by

Ting-Woen Woen

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Department:
Major:

Requirements for the Degree of

MASTER OF SCIENCE

Electrical Engineering and Computer Engineering
Computer Engineering

Signatures have been redacted for privacy

lowa ~~d~~ university
Ames, Iowa

1988

ii

TABLE OF CONTENTS
PAGE

I. INTRODUCTION .. 1

II. OVERVIEW OF THE IBM PC SYSTEM. . . • • • . . • • 3
A. System Board . . • .• .•• .•.• . 3
B. 8088 Registers • . • . • • . . • . 7
C. Addressing Scheme . . . • • • • • •• ••••. 7
D. System Bus • • • • . • • . • • . . . 9

Bus cycle . 15
E. ROM Software and Interrupt Vectors . • . . • • . . 18
F. The 8253 Timer Clock • . • • . . • . . •.•. 22

III. MC14460 SPEED PROCESSOR · . 25

IV. THE IMPLEMENTATION . . . • • . • • . • . 31
A. The PC System Board and System Bus • • • ... 31
B. The Address Decoder and Latches • ••. • . 31

1. The latches . . . • . • . . • . . . •.•. 33
2. The address decoders . . . • • . . • •... 35
3. The additional logic circuits •.••... 35

C. The PPI Chip and Feedback Circuits •.••.. 35
1. The feedback circuits • • . • • • • •.•. 36
2. The PPI chip . • . . . • . . • . . . •. 37

D. The Speed Control Processor Circuits .••.. 38
E. The Supporting Software • • . • •.•. 40

1. The Command • •• ••... 40
a. Increase the speed •••..••.. 43
b. Decrease the speed . . . • • • • •. • . 43
c. Brake.. 43
d. Resume.•.. • • • •. 43
e. Inhibit. ..•• • •.••••. 43
f. Terminate the program. • . . • . •. 44

2. The feedback••••..•..• 44

V. RESULT AND APPLICATION ...• ·
A. Automotive Cruise Control .••.•••
B. Electric Motor Speed Control

VI. CONCLUSION
VII. BIBLIOGRAPHY . . ·

• • • • • 46
· . 47

. . . 50

• . 53

• • 54

IX. ACKNOWLEDGEMENT • · • 55

X. APPENDIX: THE PROGRAM LISTING · · . 56

TABLE 1.

TABLE 2.

TABLE 3.

TABLE 4.

iii

LIST OF TABLES

PAGE

Hardware interrupts in the PC 6

1-megabyte memory addresses 10

I/O port addresses .. • 11

The truth table of the MC14460 outputs 26

iv

LIST OF FIGURES

PAGE

FIGURE 1. System board block diagram · · · · · · 4

FIGURE 2. 8088 registers · · · · · · 8

FIGURE 3. The 62-pin I/O channel bus · · · · · · · · · · 12

FIGURE 4. Memory read bus cycle · · · · · · · · · · 17

FIGURE 5. Memory write bus cycle · · · · · · · · · · 18

FIGURE 6. I/O port read bus cycle · · · · · · · · · 19

FIGURE 7. I/O port write bus cycle · · · · · · · · · · · 20

FIGURE 8. Extending the timer interrupt · · · · · · · · 23

FIGURE 9. The MC14460 speed control processor · · · · · 26

FIGURE 10. System timing of MC14460 · · · · · 27

FIGURE 11. The oscillator of the MC14460 · · · · · · 27

FIGURE 12. rhe MC14460 · · · · · · · · · · · · 28

FIGURE 13. The speed control system block diagram · · 32

FIGURE 14. Latches and address decoder · · · · · 34

FIGURE 15. The feedback circuits and the PPI · · · · 36

FIGURE 16. The 8255 PPI chip block diagram · · · · · 38

FIGURE 17. Speed control processor circuits · · · · · · · 41

FIGURE 18. The PPI control register · · · · · · · · · 42

FIGURE 19. Output timing diagram · · · · · · · · · · 47

FIGURE 20. The output decoder . . · · · · · · · · · · 48

FIGURE 21. The speed control system in application · 48

v

FIGURE 22. Typical automotive cruise control
application . •• ••....

FIGURE 23. DC motor speed control block diagram.

49

• • 52

I

I. INTRODUCTION

Within recent years, there has been a rapid growth in

the microcomputer industry. Microcomputers have become

smaller in size, less expensive, easier to use and some even

more powerful than earlier mainframe computers. From the

many microcomputers available today, the IBM PC and its

compatibles (referred simply as PC for the rest of this

paper) are the most popular and widely used. The reasons

for this are:

• IBM does not make most of the software and hardware

used in the PC. IBM selects a set of programs and

hardware components from the microcomputer

industry. For example:

• IBM uses a disk operating system, MS-DOS,

made by Microsoft, a leading microcomputer

software company.

• IBM uses a well known microprocessor made by

Intel, the Intel 8088.

• IBM publishes a complete technical reference

manual.

All of these have encouraged companies to build PC

compatible computers, develop application software, and

additional hardware components for the PC. A PC compatible

computer can now be purchased for less than $500.

2

As a result, there have been more applications using

the PC than ever before. These applications involve not

only software (spreadsheets, word processors, games) but

also hardware (communications, device controllers).

Unfortunately, interfacing the PC to devices to provide

real time control has been a challenge for engineers. This

application will be the focus of this work. In particular,

we will implement the interfacing of a PC to a speed control

processor to control the speed of motors. We have chosen

the MCl4460 speed control processor as the processor chip

which is used to help the PC in controlling speed. We will

implement the hardware using a prototype card which can be

plugged into one "of the I/O channels in the system board

inside the PC cabinet.

The advantage of using a PC to control the speed is

that it provides more accurate, reliable, and automatic

control than a conventional circuit. In a conventional

circuit, hundreds of electronic components are typically

needed. In our design, we only need one speed control

processor and some interface circuitry.

3

II. OVERVIEW OF THE IBM PC SYSTEM

Before we describe our design, we will give an overVlew

of some important parts of the PC that are related to our

design. We will start by looking at the system board inside

the PC.

A. System Board

When we open .the PC cabinet, we will find a system

board, several add-on boards, one or more disk-drives, a

power supply, and a fan.

Figure 1 shows the block diagram of the system board.

In this board, there are five I/O channels (eight on the PC

XT system) in which expansion boards can be inserted. The

I/O channels, which have 62 pins, are also called the system

bus.

On the system board, up to 256K bytes of RAM and 40K

bytes of ROM can be installed. The ROM contains progr~ms

for basic interfacing to the keyboard, screen, disk,

cassette, timer, serial communication, parallel printer,

etc.

The most important chip on the system board is the 8088

microprocessor. The 8088 has eight l6-bit arithmetic

registers. Beside the 8088, there are four other important

chips: the 8253 counter/timer chip, the 8237 DMA chip, the

RAM

4

CASSETTE:

SYSTEM EXPPNSION
SLOTS

FIGURE 1. System board block diagram

Va

POWER
~CONNECTIONS

SOB7

BOBS
8259

DIP
SWITCH

8255

8237

8253

5

8255 PPI chip, and the 8259 interrupt controller chip. We

will discuss them briefly here. In the latter part of this

chapter, we will discuss the 8253 counter/timer chip in

detailed because we will utilize this chip in our speed

control system.

First, we discuss the 8253 counter/timer chip. This

chip allows the PC to maintain the time of the day and the

date if the power is left on, to keep track of refreshing

the RAM memory at a specific time interval, and to create

sound through the use of the speaker. Then, we discuss the

8237 direct memory access (DMA) chip. This chip will allow

slower devices like disk-drives controller to transfer data

directly to and from the main memory without involving the

CPU. This chip together with the 8253 are also used to

refresh the RAM memory.

Next, we discuss the 8255 parallel I/O chip. This chip

is also called the PPI (Programmable Peripheral interface)

chip. This chip is used by the PC to read the two system

board DIP switches. From these two DIP switches, the PC

determines the amount of memory in the PC, the number of

disk-drives, and the type of the screen used. The 8255 is

also used to read the data coming from the keyboard. The

last chip is the 8259 eight-channel interrupt controller

chip. This chip is used to handle the hardware interrupts.

6

The hardware interrupts are signals sent to the CPU by the

hardware to request an attention from the CPU. The 8259

will determine the level of each interrupt and send

interrupt to the CPU according to the level of priority.

There are eight levels of priority. Table 1 shows the

interrupt assignments in the pc.

TABLE 1. Hardware interrupts in the pc

IRQ

a
1
2
3
4
5
6
7

Used by

timer
keyboard
I/O channel
COM1
COM2
fixed disk
diskette controller
LPT1

There is an empty socket reserved for the 8087

floating-point arithmetic coprocessor. With this chip

installed, the PC's power in calculating is increased in the

neighborhood of ten to fifty times faster.

7

B. 8088 Registers

To program the 8088, we need to know its registers.

Figure 2 shows the 8088 registers. These registers are

grouped into.four groups: data registers, segment

registers, pointer and index registers, and flag register.

Data registers consist of AX, BX, CX, and OX. Each register

is sixteen-bit long but we can use it as an eight-bit long

register by specifying 'H' (high) or 'L' (low): for example,

AH, AL, etc. These registers are used to temporarily store

the intermediate results and operands of arithmetic and

logical operations. The four segment registers hold the

segment part of addresses (discuss shortly). The pointer

and index registers are used to hold the offset part of the

addresses. Finally, the flag register consists of nine one

bit flags that record the status of the 8088 operations.

C. Addressing Scheme

The PC can address up to one mega bytes of addresses.

Twenty-bit registers are required to hold these addresses

but the 8088 registers only have sixteen bits. To overcome

this problem, the 8088 uses segmented address scheme. The

8088 divides the memory space into segments: each segment

contains 64K bytes. Each segment begins at a location that

is evenly divisible by 16 bytes. This segment is called the

, P
5P
BP
51
01

8

15
FOINTER ANO I NDEX REGISTERS .. 0

I "1- I I ,
I

I I I I

IS FLAG REGISTER 0

I I I "I IOFloFllFITFISFIZFI IAFI IPFI ICF\

FIGURE 2. 8088 registers

segment part of an address. To access individual byte, the

8088 uses additional address called the offset address,

which points to the specific byte within the 64K segmented

memory. The address is created by combining the sixteen-bit

segment address and the sixteen-bit relative offset address.

To do this, the segment address is shifted four bits to the

left and added to the offset address. Now the address is 20

bits long. The segment registers in the 8088 registers set

are used to hold the segment addresses; the pointer and the

index registers are used to hold the offset addresses. Note

9

that since the segment register is shifted 4 bits to the

left, it can only point to actual memory spaces that are

mUltiple of 16. A specific address will be written as

xxxx:yyyy (in hexadecimal); where x is the segment address

and y is the" offset address. The actual address is

xxxxO+yyyy.

The PC uses separate addresses for the memory and I/O

ports. The PC uses only 10 bits to address the I/O ports:

AO through A9 are used and AlO through A19 are ignored.

Therefore, there are only 64K spaces available for the I/O

ports.

Now we will show how the PC allocates its I-mega memory

addresses and its 64K I/O port addresses. Table 2 shows the

I-mega memory addresses assigned by the PC. Table 3 shows

the I/O port addresses assigned by the PC. For our design,

we will use a prototype card; therefore, we will use

location 300-3lF of I/O port addresses.

D. System Bus

For interfacing application, the connection to the PC

is through the system bus. The system bus has 62 signal

lines which consist of 20 address lines, 8 data lines, 27

control lines, 7 power supplies and ground. There are 5

62-pin I/O channel slots on the system board (7 in the PC-

10

TABLE 2. I-megabyte memory addresses

Address

0-3FF
400-47F
480-5FF
600-9FFFF
AOOOO-AFFFF
BOOOO-B7FFF
B8000-BFFFF
COOOO-CFFFF
DOOOO-DFFFF
EOOOO-F3FFF
F4000-F5FFF
F6000-FDFFF
FEOOO-FFFFF

Function

Interrupt vector table
BIOS data area
BASIC and special system function RAM
Program memory
EGA graphics mode video RAM
Monochrome video RAM
Color/graphics video RAM
I/O ROM BIOS's, EMS window
I/O ROM BIOS's, EMS window
Unused on PC
PC spare ROM socket
ROM BASIC
ROM BIOS

XT) that are available for attaching interfacing cards.

Figure 3 shows the 62-pin of the I/O channel bus.

Now we discuss the 62 signals that are important for our

design.

1. AO through A19

These are the address lines. These signals are

the output lines from the CPU or the DMA

controller to address the memory or the I/O

ports. AO is the least significant bit and A19

is the most significant bit. One mega bytes of

memory location can be addressed by these 20

lines. For the I/O ports addressing, only 10

address lines are used.

11

TABLE 3. I/O port addresses

Address

O-IF
20-3F
40-5F
60-7F
80-9F
OAO-OBF
OCO-ODF
OEO-OFF
100-lFF

lFO-lF8
200-20F
210-217
220-24F
250-277
278-27F
280-2EF
2FO-2F7
2F8-2FF
300-3lF
320-32F
378-37F
380-38C
3AO-3AF
3BO-3BF
3DO-3DF
3FO-3F7
3F8-3FF

Function

System Board

8237 DMA controller
8259 interrupt controller
8253 counter/timer
8255 PPI
DMA 64K page register
NMI reset
Unused on PC
8087 math coprocessor interface
Unused on PC

I/O Channel

Unused on PC
Game I/O adapter
Expansion unit
Reserved
Not used
LPT2
Not used
Reserved
COM2
Prototype card
XT hard disk
LPTI
SDLC
Primary binary synchronous
Monochrome display and LPTI
Color/graphics display adaptor
Floppy disk drive controller
COMI

GND
RESE
+5 V
IRQ
-5V
ORQ
-12
Res
+12
GND
-MEMW

T

2

2
V

erved
V

-MEM R
-10 Vi
-10 R
-OA CK3

3 ORQ
-OA
ORQ
-OA
CLO
IRQ
IRQ
IRQ
IRQ
IRQ
-OA
T/C
ALE
+5
OSC
GND

CK1
1
CKO
CK
7
6
S
4
3
CK2

V

12

-

FIGURE 3. The 62-pin I/O channel bus

I

-I/O CH CK
07
06
05
04
03
02
01
DO
I/O CH RDY
AEN
Al9
AlB
Al7
Al6
AIS
Al4
A13
Al2
All
AIO
A9
AS
A7
A6
AS
A4
A3
A2
Al
AO

13

2. 00 through 07

These are eight data lines used to carry data

from and to the CPU, the memory, and the I/O

ports. The data should be placed in 01 through

07 right before lOW, MEMW, lOR, or MEMR line is

activated.

3. lOW, MEMW, lOR, MEMR

These signals are low-level active output-only

signals from the CPU. lOW indicates that the CPU

wants to write data into the I/O ports. MEMW

indicates that the CPU wants to write data into

the memory. lOR indicates that the CPU wants to

read data from the I/O ports. MEMR indicates

that the CPU wants to read data from the memory.

4. IRQ2 through IRQ7

These are interrupt requests 2 through 7 lines.

These lines are used to request the hardware

interrupts to the CPU. These signals go to the

8259 interrupt controller. If the interrupt is

not masked, a signal will be generated to

interrupt the CPU.

5. ALE

ALE is address latch enable line. This is an

output line from the bus controller and is used

14

to indicate that the address lines are valid

addresses.

6. AEN

This is a signal issued by the DMA controller

indicating a DMA bus cycle. This signal is used

to disable the CPU address, data, and control

buses from the system bus.

7. DRQl through DRQ3 and DACKO through DACK3

DRQI-DRQ3 are direct-memory access request 1

through 3 lines and are used to request the DMA

bus cycle. DACKO-DACK3 are direct-memory access

acknowledge 0 through 3 lines. These signals

issued by the 8237 DMA controller to indicate

that a DRQ has been granted.

8. TC (terminal count)

This is an output signal from the DMA controller

used to indicate that the DMA has reached the

preprogrammed number of transfer cycles.

9. I/O Ch Ck (I/O channel check)

This signal is used by interface cards to

indicate error conditions.

10. I/O Ch Rdy (I/O channel ready)

This is a ready line used to extend the length of

the bus cycles so that the memory or the I/O

15

ports that are not fast enough to respond to the

CPU bus cycle can still be attached to the system

bus.

11. OSC (Oscillator) and CLK (Clock)

The OSC has a frequency of 14.31818 MHz. It has

the highest frequency on the system bus and it is

used to derive other timing signal. CLK is

derived from OSC signal. This is the system

clock and has a frequency of 4.77 MHz. The

period is 210 ns with 70 ns high and 140 ns low

time.

12. RESET DRV (reset driver)

During system power-on, this signal is held high

until all levels have reached their operating

range; then, this signal goes low.

13. Power supplies and ground

The power supplies are +5 VDC, -5 VDC, +12 VDC,

-12 VDC, and GND (ground).

Bus cycle

The communication between the CPU and the memory or the

I/O devices is done in a bus cycle.

There are five different bus cycles:

• Memory read bus cycle:

16

In this bus cycle, instructions and data are

fetched from the memory to the CPU. This bus cycle

consists of a minimum of 4 processor clocks or

approximately 840 nanoseconds. This cycle can be

extended by memory device by using the ready line.

The memory-read bus cycle is shown in Figure 4.

• Memory write bus cycle:

In this bus cycle, data are written into the memory

from the CPu. The cycle length is the same as the

memory read bus cycle. This bus cycle is shown in

Figure 5.

• I/O port read bus cycle:

This cycle is initiated when the CPU executes "IN"

instruction. Data are fetched from the I/O port to

the cpu. It has a minimum of 5 clocks, or

approximately 1.05 ms in length. The ready bus

signal can be activated by the I/O port to slow

down the bus cycle. This bus cycle is shown in

Figure 6.

• I/O port write cycle:

This bus cycle writes data from the CPU to the I/O

port. It is used when the instruction "out" is

executed. The bus cycle length is the same as the

I/O port read bus cycle. This bus cycle is shown

in Figure 7.

17

• DMA-driven bus cycles:

DMA driven bus cycles are not driven by the CPU but

they are driven and controlled by the DMA

controller.

There are two DMA-driven bus cycles:

• DMA write I/O:

This cycle reads data from an interface

adaptor and writes them to a memory location.

• DMA read I/O:

This cycle reads data from a memory location

and writes them to an interface adaptor.

~ - T1- -* T2-*" -T3- -~ - T 4- -">:

'nn n n CLOCK

U I ~----------------------------ALE.

..0- ,1.19 t=x _____ A_D_D_R_E_S_S _______ xJ
-MEMR I

I
I

00-07 iii-_______ --JXDATA X ____ -l

FIGURE 4. Memory read bus cycle

18

·1.... I I I
~ - T J-~ - T2-><- -T3-~ - -T4-7

CLOCK ! nL-----Jn,--' _--In r:
ALEn i
AO-A8~~ _____ A_D_D_R_E_S_S ___________ ~

J I

-MEMW' I :
I· I

00-07 i ________ ~)(~ ______ D_A_T_A ________ >CJ

FIGURE 5. Memory write bus cycle

E. ROM Software and Interrupt Vectors

To make the computer runs, the software is needed.

Some of this software is permanently built into the

computer. This is called the ROM (Read Only Memory)

software.

There are 4 parts of ROM in the pc:

1. The start-up program is used to get the computer

started.

2. The ROM-BIOS (Basic Input/Output System) is used

to provide services needed for continuing

19

CLOCK

ALE

I

AO-AI5 0\ ____ A_O_OR_E_S_S ________ ~
I
I

-lOR

00-07 ~---------------~, J

FIGURE 6. I/O port read bus cycle

operation of the computer such as the display

screen, keyboard, and disk-drives. We can access

these services by using the interrupts. The ROM

BIOS is also used to handle the hardware

interrupts.

3. The ROM-BASIC is used for BASIC programming

language.

4. The ROM-Extensions are added when optional

equipments are installed to the PC.

In the start-up program, several tasks are performed:

• The Power On Self Reset (POST):

20

AO AISI ADDRESS 1
I .J
I I

-lOW I
I

I
I

L-
DO-D7

I X DATA ~ I
I

FIGURE 7. I/O port write bus cycle

This is a reliable test to make sure that the

computer is ready.

• The Initialization Process:

This routine will initialize the chips and standard

equipments in the PC, fill the default values to

the interrupt vectors, and check to see what

optional equipments have been installed in the PC.

• The Boot-Strap Loader:

This routine will load the operating system from

the disk and pass the control to this operating

system.

21

The PC uses interrupts intensively to control the

operation of the computer. These interrupts can be

generated by hardware and software. Each of the ROM-BIOS

service routines is assigned an interrupt number that can be

called to get its service. When an interrupt occurs, the

control of the CPU is passed to the interrupt service

routine. The address of this routine can be found in the

interrupt vector table. The first 400H bytes of memory are

reserved for the interrupt vector table. In writing a

program, we can generate a software interrupt by executing

the instruction INT nn, where nn is the interrupt number.

This interrupt number is used to find an entry in the

interrupt vector table. This entry is in the absolute

address O:nn*4. The content of this entry will be the

address of the interrupt service routine. We will show how

to change the entry of this table to point to our service

routine in Chapter IV.

One of the interrupt, interrupt 21, will invoke the DOS

functions. There are 98 different functions provided by the

DOS. Some of these functions are used to read the input

from the keyboard, write data to the screen, change or read

interrupt vector table entries, and manage the files. We

will discuss some of these functions as we use them in

implementing our design.

22

F. The 8253 Timer Clock

Before we conclude discussing about the PC, we will

talk about one chip that will be used in our design, the

8253 timer c~ip. The PC uses the 8253 timer chip to count

the system clock. The outputs of 8253 are used to count the

time of the day, or to produce the sound, or to refresh the

RAM.

There are three programmable channels in the 8253 chip.

Channel 0 is used by BIOS timer routine to keep the time of

the day. This BIOS routine keeps a time-of-day count. In

every 18.2 times per second, the output of channel 0 causes

a hardware interrupt (INT 8) to this BIOS routine to

increment the time-of-day count. This time-of-day count is

reset to 0 at midnight. The actual time can be calculated

by dividing this count with 18.2 for every second.

When this BIOS routine is executed, another interrupt

(INT lCH) is called. Initially, INT lCH service routine is

empty (only has an interrupt return instruction). We can

supply a special routine to replace INT lCH. As a result,

this new routine will be executed 18.2 times per second.

Figure 8 shows the timer interrupt and the INT lCH.

Channel 1 is used to refresh the RAM. The output of

this channel will cause the DMA chip to refresh the RAM.

VECTOR
TABLE

INT
ICH

IN T 8 1<"------,

8259
INTERRuPT

CONTROLLER

?I

23

- IRET

INT ICH

END
J-----~~ 13 lOS

OUR
SERVIC E
ROUT1NE

BIOS
TIM E-OF-DAY
ROUT I t'-JE

INTER RU?T

825
TIMER CHIP ~(---- BEGIN BIOS
CHANNEL 0 INTERRUPT

\
SYSTEM CLOCK

FIGURE 8. Extending the timer interrupt

24

Channel 2 is connected to the speaker in the system

board. This channel's output is a square wave which

frequency can be changed by programming the counter of

channel 2. In addition, the PPI chip in the system board is

used to enable this channel's output to the speaker.

25

III. MC14460 SPEED PROCESSOR

In this chapter, we will discuss about the MC14460

automotive speed control processor. The MC14460 is a

processor dedicated to control speed. It has an internal

register to store a reference speed. The MC14460 will

measure an input speed and provide pulse-width modulated

outputs to increase or decrease the speed to maintain an

internally stored reference speed.

The internally stored reference speed can be altered by

Decel (deceleration) and Accel (acceleration) commands. The

Accel command will increase the speed; the Decel command

will decrease the speed. This processor also has two other

input commands: brake and resume. The brake command will

turn off the outputs and the resume command will increase or

decrease the speed to the last stored reference speed.

The output commands are derived from two output lines:

VAC and VENT. The truth table of VAC and VENT is shown in

Table 4.

Figure 9 shows the block diagram of the MC14460. There

are two separate oscillators: the master oscillator for the

system time reference and the pulse oscillator for the

output pulse width. Figures 10 and 11 show the system

timing and oscillators of the MC14460.

26

TABLE 4. The truth table of the MC14460 outputs

DEC
ACC
RES
aRK

VAC VENT

O' 0
o 1
1 0
1 1

MMM
000
12:'
I I I

M"STER
OSCILLATOR

SYSTEM
TIMING

COMMAND
DECODER

~----"

FUNCTION

Decrease speed
Hold speed
Invalid output
Increase speed

S
P
D
!

SPEED
CONDITIONER

SPEED
REGISTER

CONTROL
LOGIC

OUTPUT
DECOCER

FIGURE 9. The MC14460 speed control processor

~ P P
000
1 2. '3

PljLS~
OSCiLLATOR

PULSE
WIDTH
ONVERTE~

OUTPUT
DRIVERS

V V
A E
C N

T

27

I
tCYC

t
'<:- 7. It \ I
I"

SPEED I
SAMP~

YAC

tcyc
tsmpl
tproc
tout
Pwl
Pwt
fM
fP

tSMpL ~IE PROC-~

I I
~iOUTi

I
!~FWI ~ I

= system cycle time
= speed sample time
= speed processing time
= output delay time

r--I_
r I
f;"Pwt ----71

= initialization output pulse width
= trim output pulse width
= main oscillator frequency
= pulse oscillator frequency

FIGURE 10. System timing of MC14460

= 1024/fM
=1008/fM
=16/fM
=9/fM
= l/fP
= l/fP
= 1/2.43RC
= 1/2.43RC

f ::. 2.f3 R C

7 3

RS
V--_.-J--J

R

FIGURE 11. The oscillator of the MC14460

28

POl -L 15 ·voo
P02 2 15 AC
P03

3 14
ENT

SPD 4 13
MCI4460 RK

MOl 5 12
RES

M02 11 CC
tv03 10 EC
GO 9

POR

FIGURE 12. The MC14460

Figure 12 shows the pin assignment of the MC14460. The

operations of these pins are described as follows:

1. Pulse oscillator (Pol, Po2, Po3; Pins 1,2,3):

This oscillator sets the relative pulse width of

the VAC and VENT outputs. These pins are the

outputs of the output pulse oscillator which is a

three-terminal RC type.

2. Speed (Spd; Pin 4):

This is the speed input to be stored and

controlled. This input frequency should not

exceed 1/3 of the master oscillator frequency

(fM) •

3. Master oscillator (MOl, Mo2, Mo3; Pins 5,6,7):

29

Like the pulse oscillator, these pins determine

the master system timing. The master oscillator

is also a three-terminal RC type.

4. Power-on Reset (POR; Pin 9):

When this pin is held low, the internal system IS

cleared and the outputs are disabled.

Internally, a pull up device will source 15-200

~A of current from this pin to allow capacitor

charging for automatic power-on reset.

5. Decel (Dec; pin 10):

This is an input line to decrease the speed.

When the Decel is activated, the VAC and VENT

outputs will be low. When the Decel is

inactivated, the current speed is stored in the

reference speed register.

6. Accel (Acc; Pin 11):

This is an input line for the acceleration

command. When the Accel is activated, the VAC

and VENT outputs will be modulated to maintain a

fixed-rate of acceleration. When the Accel is

inactivated, the last sample input input will be

stored in the reference speed register.

7. Resume (Res; Pin 12);

30

This is an input line for the resume command.

When the resume is activated, the VAC and VENT

outputs will be modulated to maintain a fixed

rate acceleration which end when the input speed

matches the stored reference speed.

8. Brake (Brk; Pin 13):

This is an input line for the brake command.

When the brake is activated, the system 1S

disabled until the Decel, the Accel, or the

Resume command is received.

9. VENT and VAC (pins 14.15):

These are the outputs used to control the speed.

The truth table is shown in Table 4.

31

IV. THE IMPLEMENTATION

In this chapter, we will discuss the implementation of

a speed control system. We will begin the discussion by

looking at the block diagram, Figure 13, which consists of

four parts:

1. The PC system board and system bus.

2. The address decoders and latches.

3. The PPI and feedback circuits.

4. The speed control processor circuits.

The circuits are implemented on a prototype card and tested

in one of the I/O channel buses.

A. The PC System Board and System Bus

We have discussed this topic in Chapter II.

B. The Address Decoder and Latches

To interface the system bus to the rest of our design,

some address decoders and latches/buffers are essential.

These circuits separate the interface circuits from the

system board and drive the interface circuits. By using the

latches, the system bus does not have to source as much

current as driving the interface circuits directly.

U
S

E
R

 w
i

IB
M

P

C

S
Y

S
TE

M

BO
AR

D

J (- '\
 -

--
-

, J I
I
AD

D
KE

SS

DE
CD

DE
K

AN
D

LA
TC

HE
S

\=
=

i
P

P
I

I S?E
ED

.

CO
U

N
TE

R

FI
G

U
R

E

1
3

.
T

he

sp
e
e
d

c
o

n
tr

o
l

sy
st

em
 b

lo
c
k

d

ia
g

ra
m

 - <
 r

::--
.,.

SP
EE

D

CO
N

TR
O

'L

7
PR

O
C

ES
SO

R

C
iR

C
U

IT
S

O
U

TP
U

T
C

O
N

TR
O

L
5

,) 7 S
P

E
E

D

/
IN

 P
u

T
/

i"
"

....

\
I

W

tv

33

Figure 14 shows the circuit design for this purpose.

There are three parts:

• The latches.

• The address decoders.

• The additional logic circuits.

~ The latches

We use three chips: one 74LS245 and two 74LS244 (lCl,

lC2, and lC3). lCl (the 74LS245) is an octal bidirectional

tristate buffer with Schmitt-trigger inputs. This chip is

used to buffer and drive the eight bidirectional data lines

(DO-D7). This chip drives the data in two ways: to the

interface circuits or to the CPU. Pin 1 of this chip is the

direction line which controls the direction of the data.

When this pin is high, the data flow from the system bus to

the interface circuits. When this pin is low, the data flow

from the interface circuits to the system bus. This line is

controlled by lOR (I/O read) line.

lC2 and lC3 are both 74LS244 which are octal tristate

buffers with Schmitt-trigger inputs. These two chips are

used to latch address and control lines (lOR, lOW, MEMR,

MEMW, Reset, ALE, and AEN). These lines are one direction

lines, from the system bus to the interface circuits.

0
I

2

+D
+D
+D
t-D
tD
.. D

3

+0
+D

4
5
6
7

-lOR

2
3

4-
5
G ,
~
-9
I

~

4
I')

MR (,
MW-fI-

-lOW
-~E
-ME
-+RES
-tAEN
+A9
-tAS

7
6
~
4

ET ~
17
2
I
~

---=-

II
e,
~
h

.3--l?-
4

tA
-tA
+A
i-A
+A
-f-A
+A
+ AO

2 17
I _2

I
B

-- -

+5120

74LS245

I C I

~

+5~O

74LS244

IC2

-1;0

+5/20

74LS244

I C 3

~

TO PP I
BUFFERED

~r-D7
0

TC)
14
13
12
II

TO
-lOW P

34

!

16 p-
5 -lOR

1-ff- MEMR
-MEMW SUFF-
tRr:-SET ERED 12 -

::;
18

i&- f-

"7
14

3"

E>r{~~
~IC4 ~

7400

~ 1C4>J

FE>-
+~116

,.
.) ~

TCY 74 LS'OS
I
14-

~tiC 15 I C G
9 S-

lIT
~
~

1-
B -

4.~ +~ 116
10 ./\,/'\/'--

~. ,-.i. 15 ()-3
~ 74LSL38 B! 4-7

t~ C-F tlt,8-B
16 4.7li 6 I C 5 j[1O-1 4 ~S " 3 j

DIP 2 Ie,-I

PPI

3
7
B ~ SWITCH I

tf-14-1
(-1. C'

~ SEL£C -;..,t.: r- ~
T

AI 8UFfE~D AO
TO PPI

FIGURE 14. Latches and address decoder

35

~ The address decoders

Two chips (ICS and IC6) are used for this purpose. ICS

(the 74LS138) is a 3-to-8-line decoder. Three of the

address lines, A2 through A4, are decoded to select eight

group-of-four addresses. For our system, we will use the

first group which will address xxxxxOOOOO through xxxxxOOOll

in binary. rC6 (the 74LS8S) is a 4-bit magnitude

comparator. This chip is used to compare AS through A8 with

the DIP switch setting. We use the DIP switch so that the

user can select the desired AS-A8. For prototype card, the

address used in the PC ranges between 300 and 3lF or A8

through A5 will be 1000 in binary. In the PC design, for

standard interfacing purpose, line A9 will always be 1.

Now, we have selected our address from 1100000000 through

1100000011 in binary or 300 through 303 in hexadecimal.

~ The additional logic circuits

rC4 and IC7 are used to provide the additional logic

circuits to enable IC1, ICS, and IC6. The logics are the

'and' and 'or' gates.

C. The PPI Chip and Feedback Circuits

We will first discuss the feedback circuits and then

the PPI chip.

36

~ The feedback circuits

The purpose of using the feedback circuits is to send

the input speed to the CPU by using the PPI chip. Figure 15

shows the feedback circuits diagram. This diagram shows how

the speed is channelled to the PPI chip by using two 4-bit

binary counters. Two 74191 binary counters are used to

count the frequency of the input speed. The PPI chip will

read these counters.

00
01

8 02
FROM 03 U
LAl'CH F 0-4

05 g. F
ADDRESS E 06
DECODER R 07

DIAGRAM ~ -lOW
-lOR

AO
AI

RESET 35
SELECT

0-3

S255

7

/0 PC? m
I~PC

17PC3
IGPCZ
IS
li...fQ

FIGURE 15. The feedback circuits and the PPI

+5

II

74191

81NARf 4
l5

COLNTER 10
9

~ - !

4-5

74191. 13

CCUNTER I~n
. 10

9

INPuT
SPEED

37

~ The PPI chip

The 8255 PPI (programmable Peripheral Interface) chip

is also called the PIO (Parallel I/O) chip. We first

encounter this chip in the system board; here, we will use

it for our design. Figure 16 shows the block diagram of the

8255 chip. There are three 8-bit ports: A, B, and C. Each

of these ports can be programmed separately as input or

output port. Moreover, port A can be used as bidirectional

port by using 5 lines of port C for handshaking. The PPI

chip has four internal registers which are addressed by Al

and AO:

• Al,AO = 00; select port A

• Al,AO = Olf select port B

• Al,AO = 10; select port C

• Al,AO = 11; select the control register

The control register is used to select the direction of data

flow through ports A, B, and C and to choose the modes of

operation. For our design, we will use mode 0 for no

handshaking mode.

Figure 15 shows the PPI chip and its connections. We

use port A to send the commands to the speed con-trol

processor circuits and port B to read the two 4-bit counters

for the input speed frequency.

38

L ~

GROUP GROU?
ri A .L ~ A L ~

CONTROL , FORT ~-I ,
A

PA7-PAO

(8) ~ '-,-
D

~1~ Group

7-DO ,c. ~ A ~
/ DATA ~ ~I &~~C r-/ () BUS "- /

BUF::-ER
, (4)

PC7-FC4

GROUP

l .:. , B
~.~ RJRT C ,

I LOWER '~ "7
PC3-PCO

h
t4)

RD -----7-' I '-~-~

WR ~
AI READ II GROUP GROUP
Ao , WRITE B /. ~ B -L-:; RESET - CONTROL

CONTROL h LOGIC
, (PORT f'\-

l- S

P87-PBO

l8)
~

f

j
CS

FIGURE 16. The 8255 PPI chip block diagram

D. The Speed Control Processor Circuits

In order for the speed control processor chip (MC14460)

to work properly, some additional circuits are needed as

shown in Figure 17. The descriptions of the design are as

follows:

1. Pin 1, 2, 3 (Pulse oscillator):

The design parameters chosen are:

R = 43 K OHM

2.

39

Rs = 100 K OHM

C = 5100 pF

The pulse oscillator frequency, fP, is:

1
fP=

2.43 R C

=1.877 KHz

Pin 5, 6, 7 (Master Oscillator):

The design parameters chosen are:

R = 43 K OHM

Rs = 100 K OHM

C = 5100 pF

The master oscillator frequency, fM, is:

1
fM=

2.43 R C

=1.877 KHz

3. '+Sensor' and '-Sensor':

These are speed input. '+Sensor' 1S connected to

pin 4. '-Sensor' is connected to ground. For

our design, the speed input is simulated by using

a function generator. The function generator

will produce a square wave with frequency between

50 and 300 Hz.

4. Decel, Accel, Resume, and Brake:

40

These are the input commands from the PPI chip.

5. VAC and VENT:

We connect 2 transistors to pin 14 and pin 15.

The reason is to separate the MC14460 from the

outer world and to allow more drives on the VENT

and VAC lines.

6. POR:

POR is connected to a capacitor. At power-up,

this capacitor will be able to reset the MCl4460

and eventually charged up by the current source

from the internal circuit.

E. The Supporting Software

So far, we have discussed the implementation of the

hardware. In order for our system to be useful, it needs to

communicate with the user. The user should be able to give

commands to control the speed and to read the current speed

on the screen. We will implement this by using the

software. We will divide the software into two parts: the

command and the feedback.

h The Command

The user can issued seven commands:

• Increase the speed

• Decrease the speed

• Brake

41

VAC 0
U

VENT T
P
U

1:20SL :J. 'v\/
MPAS

T
VDD

IK
13 MPASI3

S 5o).<F
P -SENSOR '"" 25 If 27\/
E IK ,w
E
0
1
N +SENSOR
p
U

F T BRAKE
R DECE 0
M

P ACCE
P

RESUME I
10K 10K 10K

o.I)LF

FIGURE 17. Speed control processor circuits

• Resume the speed

• Inhibi t

• Terminate the program

We will first discuss the implementation of this

commands and we will then discuss the interaction with the

user. First, we need to initialize the PPI chip. As

discussed earlier, the addresses for our PPI chip will be

42

from 300 to 303 in hexadecimal. Address 300 is used to

address port A, address 301 is used to address port B,

address 302 is used to address port C, and address 303 IS

used to address the control register. Figure 18 shows the

PPI control register. Since we use port A as the output to

send the command to the speed control processor circuits and

port B as the input to read the speed counter, we set bit D4

to 0 and bit D1 to 1. The modes setting for both port A and

port Bare O. As a result, we write 10000010 in binary to

address 303.

MODE
SET

< FLAG
r=ACT IVE

GROUP A

FORT C "
UPPER l'

I PORT A L
(MODE I,

07
1
06

I

05104103 02 Dl

\

I:INPUT
O.::OlJTPUT

FIGURE 18. The PPI control register

DO

GROUP B
PORT C I
LOWER

~ PORT B I

(MODE I

43

h Increase the speed If the user chooses to

increase the speed, we will send a signal to the PPI to

command an increase speed signal to the speed control

processor. Since bit 1 of port A (PAl) is connected to the

Accel input of the speed control processor, we move

OOOOOOlOB (binary) to address 300H (hexadecimal).

~ Decrease the speed Bit 2 of port A (PA2) of the

PPI is connected to Decel input to the speed control

processor. We need to move OOOOOlOOB to address 300H.

~ Brake The user can stop the speed without

affecting the stored reference speed by using the Brake

command. Bit 3 of port A (PA3) of the PPI is connected to

Brake input of the speed control processor. We move

OOOOlOOOB to address 300H.

~ Resume The Brake command can be restored by

using the Resume command. The resume will increase the

speed to the stored reference speed. Bit 0 of port A (PAO)

of the PPI is connected to the Resume input of the speed

processor. We move OOOOOOOlB to address 300R.

~ Inhibit Whenever the user wants to stop the

increase, the decrease or the resume command, he should use

inhibit command. To implement this signal, we just send

OOOOOOOOB to address 300H. This will inactivate all command

lines to the speed control processor.

44

~ Terminate the program If the user chooses to

terminate the program, we restore int 1CH back to its old

service routine (this will be discussed in the next section)

and terminate the program.

Since the user will select these commands by using the

keyboard, we will use DOS function 6 to get these commands.

This function can be accessed through INT 21. The command

codes will be returned to the register AL.

~ The feedback

The feedback is used to read the speed from the

counters by using port B of the PPI and print the speed on

the screen. We want to read the PPI periodically at a known

interval of time so we can calculate the actual speed. The

CPU can continually count the time and read the PPI at a

specific interval of time but this will occupy the cPU. The

efficient way to do this is to use the timer interrupt

service routine as discussed in Chapter II. We write an

interrupt service routine (read the speed counters) to

replace INT 1CH. Here, we will discuss how to change INT

1CH to point to our routine. Function 35 of INT 21 will get

the old interrupt vector (address). We need to get the old

interrupt vector because we want to restore the old routine

after we have done. To execute function 35 of INT 21, we

need to move this function number (35H) into register AH and

45

the interrupt number (lCH) into register AL. We then call

INT 21. This function's call will return the old interrupt

vector in ES (segment part) and BX (offset part). At the

end of our program (when the user chooses to terminate the

program), we restore the old interrupt vector. To change

the interrupt vector table, function 25 of INT 21 will be

used. We place the old vector in DX (offset) and DS

(segment), the function number (25H) in AH, the interrupt

number (lCH) in AL, and then call INT 21.

After we take care of the old vector, we want to change

the interrupt vector table entry to point to our routine.

We use function 25 of INT 21. We move the offset of our

routine to register DX, the segment of our routine to

register DS, the function number (25H) to register AH, the

interrupt number (lCH) to register AL, and then call INT

2lH.

In this way, the hardware will interrupt INT 8 every

l8,~ times per second; INT 8 will call INT ICH, which will

point to execute our routine. In our routine, we will read

the speed counters to determine the frequency of the input

speed.

Next, we print this speed on the screen by using DOS

function 10 of INT lOH. Now, the user can monitor the

current speed and send the commands to change it, if

necessary, by typing the corresponding code.

46

V. RESULT AND APPLICATION

We have implemented a speed control system. The timing

diagrams of the outputs (VAC and VENT control lines) of our

system are shown in Figure 19a. These two lines can be

easily decoded to produce three control lines: increase,

decrease, and hold speed lines. Figure 20 shows the output

decoder and Figure 19b shows the timing diagram.

Figure 21 shows the block diagram of the speed control

system. The input to our system will be a variable

modulated frequency that need to be controlled. This

frequency ranges from of 50 to 300 Hz. The outputs are

three control lines: increase speed, decrease speed, and

hold speed. The typical device to be controlled is shown in

Figure 21. The device's output is a modulated frequency

(50-300 Hz). The control is needed for changing or

maintaining this frequency. The device will be able to

accept input control lines that can be derived from the

three control lines. Our system will be able to control the

output of the device by using the control lines and the

device will return the speed feedback to our system.

In fact, our system can be used to control any devices

that can be modeled as in Figure 21. Here, we will discuss

two major applications that utilize our system effectively:

1. Automotive cruise control

2. Electric motor speed control

47

HOLD
INCREASE DECREASE SPEED

SPEED SPEED
I I

I n n VAC I
r
I
I

U
I U VENT a
I
I I

I
I

HOLD U U U U
I I I

I I I
INCREASE n n I

I I

DECREASE n 11
b

FIGURE 19. Output timing diagram

A. Automotive Cruise Control

A good example to utilize our system is the automotive

cruise control. The automotive speed stays constant despite

of the road condition. The feedback from the automotive is

48

-+5
1 16

.3 4
DECREASE VAC 74139 5

2 0 HOLD
VENT

2 T04 INVALID
7

15 DEC COER INCREAs-t

8

FIGURE 20. The output decoder

INT~~;~' ~ SPE

~ CON
SYS

N-~

ED T)
R » DEVICE TROL 0 TO BE TEM L CONTROL

...=.. ,-

SPEED FEEOBACI<

FIGURE 21. The speed control system in application

49

the speed measured by a speedometer. The controls are the

VAC and VENT lines which will drive the gasoline throttle

with an output proportional to the difference between the

desired speed and the actual speed. Figure 22 shows the

typical automotive cruise control application.

u
S
E
R

/

\.

-

COM
VAC

SPEED VENT

CONTROL
SYSTEM

VAC COIL
~

VENT COIL
",--

rv
SPEED
SENSOR

FIGURE 22. Typical automotive cruise control application

50

To adopt our design to the automotive cruise control,

only a microprocessor system is needed instead of the entire

PC system. For today's vehicle to have a microprocessor is

typical. There are many applications for having a

microprocessor in the vehicle beside the speed control, for

example, electronic transmission control, electronic cooling

system control, on-board diagnostic systems, sleep detector,

etc. Without the microprocessor, both active and passive

components are used in the automotive system. However, a

large number of these components are needed, for example, 60

active and 120 passive components are needed in a cruise

control [2].

B. Electric Motor Speed Control

In industry system control, it is necessary to be able

to adjust the speed of a motor over a wide range with a good

resolution and reliability. To accomplish this, a closed

loop system with feedback is essential. The conventional

analog control is not accurate, it produces nonlinearity in

the analog speed transducer and causes error easily in the

control lines due to the temperature, component aging, and

noise. By using microcomputer to control the speed of these

motors, we eliminate the nonlinearity in the speed

transducer (digital rather than analog). The control lines

51

can be transmitted over a long distance with no degradation.

These digital control lines are not subject to temperature

variation, component aging, or noises.

Most of the speed of a motor is a function of the

applied voltage. For example, the speed of any dc motor can

be altered by changing the voltage across the armature. On

the other hand, the speed of a single phase motor can be

altered by changing the applied voltage across the motor

line terminals. For these types of motors, our design can

be easily adopted for them. As an example, we will show a

dc motor speed control design as in Figure 23.

The speed of the motor is measured optically by using

light sources and photocells. The pulses from the photocell

are fed into our system. The VAC and VENT output lines are

decoded into 3 control lines to drive the up/down counter.

To increase/resume the speed, the counter is counted up; to

decrease/brake the speed, the counter is counted down. The

content of the counter is converted into the analog voltage.

This analog voltage is applied across the armature of the dc

motor. If the counter is increased, the analog voltage also

increases, and the speed of the motor will also be

increased.

52

CONTROL
UP/DOWN
COUNTER

SPEED
CONTROL
SYSTEM

D/A
CONVERTOR

II' VOLTAGE
SPEED

,[,

~r FIER
DIGITAL

TACHOMETER

--_\ 11- __
If"

I

I MOTOR AAM.AJURE
I

I - - -- - -- _1

FIGURE 23. DC motor speed control block diagram

53

VI. CONCLUSION

As technology has advanced, computer control in

industrial applications has become increasingly important.

In this paper, we have discussed one kind of computer

control, a speed control system. To effectively and

accurately control a device (motor) with speed, it is

essential to have a closed loop system (a system with the

feedback) like the speed control system discussed in this

paper. The speed control system will continuously sample

input from its environment and generate controls to

change/maintain the speed of the device.

In this paper, we have emphasized an interfacing

methodology involving an IBM personal computer. The

circuits needed, especially those interacting with the PPI

chip and the speed control processor are discussed in

detail. We also discuss the software used to control the

hardware. Our experience here suggests a microcomputer

control system is often better than a conventional circuit

because it is easier to design with and the results are more

reliable and accurate.

We intend to continue this work by implementing a dc

motor speed controller and to incorporate better real-time

response into the system. We also plan to extend this work

into more sophisticated speed control applications.

54

VII. BIBLIOGRAPHY

1. Eggebrecht, L. Interfacing to the IBM Personal
Computer. Indiana, IN: Howard W. Sams & CO., Inc.,
1983.

2. Hordeski, M. Microprocessors in Industry. New
York: Van Nostrand Reinhold Company, 1984.

3. iAPX 86/88, 186/188 User's Manual. Santa Clara, CA:
Intel Corporation, 1983.

4. IBM PC Macro Assembler. Boca Raton, FL: IBM
Corporation, 1983.

5. IBM PC Technical Reference. Boca Raton, FL: IBM
Corporation, 1983.

6. Jourdain, R. Programmer's Problem Solver for the IBM
PC, XT ~ AT. New York, NY: A Brady Book Published
by Prentice Hall Press, 1986.

7. Kosow, I. Control of Electric Machines. Englewood
Cliffs, N.J.: Prentice-Hall, INC., 1973.

8. Maloney, T. and Alvarado, F. "A Digital Method for
DC Motor Speed Control." IEEE Transactions on
Industrial Electronics andlCOntrol Instrumentation,
IECI-23, NO.1 (February 1976): 44-46.

9. Microsystem Components Handbook. Santa Clara, CA:

10.

11.

Intel Corporation, 1983.

Norton, P.
the IBM PC.
1985-. - --

The Peter Norton Programmer's Guide to
Redmond, Washington: Microsoft Press,

Sargent III, M. and Shoemaker,
Computer From the Inside Out.
Massachusetts: Addison-Wesley
Inc., 1986.

R. The IBM Personal
Reading-,-

Publishing Company,

12. Wadlow, T. Memory Resident Programming on the IBM
PC. Reading, Mass.: Addison-Wesley Publishing
Company, INC., 1987.

55

IX. ACKNOWLEDGEMENT

I wish to thank my major professor, Dr. C. Wright, for

giving me the opportunity to do my project and helping me in

preparing this thesis. I also wish to thank Dr. A. Pohm and

Dr. R. Lamb for serving on my committee and Mr. G. Bridges

for helping me in setting up the equipment for my project.

56

X. APPENDIX: THE PROGRAM LISTING

57

IIfLf SPEED CON1ROL SYSTEM
; BY '·ING-WDEN WOEN

PF:OGSTP,CK
mi)

PF:OE'ST{;C~·::

F'F:UI::;DA·rA
t·1SG DB

DB
DB
DB
DB
DB
DB
DR

t·1SGl DB
CmH DB
CON2 DB
cor.\3 DB
em·:f+ DB
DIF m·)
DIFF DI;)

PF:CJGDr4TA

FRClGCODE
'~SSLJt'1E

t·1AIN FRUC
PUSH
SUB
PUSH
I'll]\)
t'lD')

SEGr1ENT STACK
80 DUP (?)
ENDS

SEfWIENT
'PLEASE CHOOSE :",OAH,ODH
"(I) INCREASE THE SPEED'~OAH,ODH
"CD) DECREASE THE SPEED",OAH,ODH
OCR) RESUME THE SPEED",OAH,ODH
"(B) BRAKE',OAH,ODH
"(N) NEu·rRAL",OAH,ODH
'(Q) QUIT',OAH,ODH
"ANY OTHER KEY TO SEE THE CURRENT SPEED',

OAH,OUH, '.$"

'SPEED: $'
<)

o
I)

(;

(I

(I

Erms

SEGt'lENT
CS:PROGCODE,DS:PRDGDATA,ES:PROGDATA
FAR
DS
{')X ,AX

AX
/~x ,PROGDATA
DS,AX

----SET THE PPI CCJNfRDL REGISTER----
,'1DV
t'm'..'
OUT

~d_, 8BH
DX,303H
DX ,,;L

-- -._. nIH I BIT LOA!) TD THE CIJUNTER----
i'm'v' r~)L , 10H
t'IDV D X ,300H
[JUT DX,AL

),

58

;"---SET INTERRUPT ICH TO POINT TO RoUTINE----
PUSH DS
NOV
MoV
t10V
MoV
t10V
INT
POP

;----CLEAR THE
MoV
MOV
INT

DX,OFFSET ROUTINE
AX,SEG ROUTINE
DS,AX
AH,25H
AL,lCH
21H
DS

SCREEN---
AH,O
AL,2
10H

;----MOVE CURSOR----
START: MOV BH,O

t10V DH,10
I'm v DL ,0
1"10V AH, 2
INT 10H

;----PRINT MESSAGE MSG----
MOV DX,OFFSET MSG
MOV AH,09
INT 21H

;----RECEIVE INPUT FROM USER----
NEXT1: MOV AH,06
AGAIN: MOV DL,OFFH

INT 21H
JZ AGAIN

;----QUIT ?---
CI"1P AL, 'Q'

NEXTB
NEXT2

JNE
JMP

I'JEXTB:
;----NEUTRAL

Ct1P
JNE
JM?

; ---- I NCF:EASE
NX 1 : CI"1P

JNE
JMP

7----
AL, ' N'
f\.IX 1
NOTH

THE SPEED ?---
AL, ' I '
NX2
INCREASE

59

;----DECREASE THE SPEED ?----
NX2: CMP AL,'D'

JNE NX3
JMP DECREASE

;----RESUME 1----
NX3: CMP AL,'R'

JNE NX4
JMP RESUME

;----BRAKE 7----
NX4: CMP AL,'B'

JNE START
JMP BRAKE

PTT:
;----PRINT THE SPEED EVERY NEW SPEED AVAILABLE----

CMP CON2,l
JB NEXTl
MOV CON2,O

;----MOVE CURSOR----
MOV BH,O
MOV DH,O
MOV DL,12
MOV AH,2
INT 10H

;----PRINT MESSAGE MSGl----
MOV DX,OFFSET MSGl
MOV AH,09
INT 21H

;----PRINT THE FIRST DIGIT----
NX5: MOV BH,O

MOV DH,O
MOV DL,20
MOV AH,2
INT 10H

MOV AX,DIF
MOV DIFF,AX
MOV CL,4
SHR AH,CL
AND AH,OFH
CMP AH,9
JLE NXTl
ADD AH,7H

60

I'·JXT 1 : ADD AH,30H
MO~) AL,AH
t-lOV CX,l
~1OV AH,OAH
INT 10H

;----F'RINT THE SECOND DIGIT----
MOV DH,O
MOV DL,21
MOV AH,2
INT 10H

t'IOV AX,DIFF
AND AH,OFH
eMF' AH,9
JLE NXT2
ADD AH,7H

NXT2: ADD AH,30H
1'10 V AL,AH
1'10 V CX,l
MOV AH,OAH
INT 10H

; ----F'F: I NT THE THIRD DIGIT----
1'10V DH,O
MOV DL,22
1'10 V AH,2
II'H 10H

r10 1 . ./ {..)X,DIFF
MOl,} CL,4
SHR I~L, CL
AND AL,OFH
CMF' AL,9
JLE NXT3
ADD AL,7H

NXT3: ADD AL,30H
1'10 V CX,1
MOV AH,OAH
INT 10H

;----F'RINT THE FOURTH DIGIT----
MOV DH,O
MOV DL,23
MOV AH,2
INT 10H

61

1'10V AX,DIFF
AND AL,OFH
eMF' AL,9
JLE 1',IXT4
ADD AL,7H

NXT4: ADD AL,30H
MOV eX,l
MOV AH,OAH
·INT 10H

;----GO BACK----
JMP NEXTl

/\10TH: r10V AL,10H
MOV DX,300H
OUT Dx,AL
JMP START

INCREASE: /,,10 V AL,12H
r10V DX,300H! - ,

OUT DX,AL
Jl'lP START

DECF:EASE: MOV AL,14H
MOV DX,300H
OUT DX,AL
Jl'lP START

F:ESUI'lE: /"10 V AL,llH
MOV DX,300H I

OUT DX,AL
JMP START

BF:AKE: MOV AL,lSH
MOV DX,300H
OUT DX,AL
JI"lP START

62

NEXT2: PUSH DS

MOV DX,OFF53H
MOV AX,OFOOOH
MOV DS,AX
MOV AL,lCH
MOV AH,25H
INT 21H
POP DS

RET
MAIN ENDP

;----INTERRUPT
ROUTINE PROC

PUSH
PUSH
PUSH
PUSH

SERVICE ROUTINE ICH---
FAR
AX
BX
CX
DX

MOV AX,PROGDATA
MOV DS,AX

;----POLL THE SAMPLING CLOCK----
MDV DX,302H
IN AL,DX
AND AL,OlH
CMP AL,O
JNE NEXT6

;----READ THE CDUNTER----
MDV DX,301H
IN AL,DX
MDV AH,O
CMP AX,O
JE NEXT6
MDV DIF,AX
ADD DIF,AX

;----RESET THE
NOV
IN
Arm
1"10 V
OUT
tvlOV

LOOP: DEC
eMP
JI'JE
OR
MOV
OUT

NEXT,'S:

POP
POP
POP
POP
IF:ET

ROUTINE ENDP

PF:OGCODE
END

63

COUNTER----
DX~300H

AL,DX
AL~1110ll11B

DX,300H
DX,AL
COl'll ,5
CONl
CON1 ,0
LOOP
AL,OOOlOOOOB
DX~300H

DX,AL

DX
ex
BX
AX

ENDS
NAIN

