Predicting core parameters in a pressurized water reactor

using an artificial neural network

by

Scott E. Wendt

A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

Department : Mechanical Engineering
Major: Nuclear Engineering
SQHaUHGShavebeenredamedforpnvacy Signatures have been redacted for privacy

Iowa State University
Ames, Iowa
1994

Copyright © Scott E. Wendt. 1994. All rights reserved.



ii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION
Nuclear Power Reactor Core Reloads
Artificial Neural Networks
Problem Statement
CHAPTER 2. ARTIFICIAL NEURAL NETWORKS
Introduction
Multi-layer Perceptrons
Feed Forward
Back Propagation
Output Layer
Hidden Layer
Batch Training and n
RMS Error
Network Architecture
Verification
CHAPTER 3. NUCLEAR REACTOR CORE RELOADS
Introduction
Nuclear Fuel Management
Core Reload Methods
Backward Diffusion
Linear Empirical

Expert Systems

= B

11
1l
15
16
18
18
19
25
25
25
29
30
21
31



iid
Constant Power Depletion
Simulated Annealing
Scope of Problem
SOAl Database
CHAPTER 4. THE PROBLEM AND ITS SOLUTIONS
Introduction
Data Collection and Processing
Normalization of the Data
Final Data Set
Parameter Prediction
Training
Results
Discussion
Comparison with Similar Work
CHAPTER 5. CONCLUSIONS
Possible Future Work
BIBLIOGRAPHY
APPENDIX A. COMPUTER CODES

APPENDIX B. SAMPLE DATA FILES

CONCENTRATIONS

APPENDIX C. APPROXIMATING k,,, FROM CRITICAL BORON

33

34

35

38

41

41

42

42

43

44

44

44

51

52

55

55

57

60

78

82



Table
Table
Table
Table

Table

iv

LIST OF TABLES

XOR inputs and outputs

Eight to one decoder inputs and outputs
Eight to one decoder trained outputs
Training and recall results

ANN comparison table

20
22
22
45

54



Figure

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

LIST OF FIGURES

A three layer MLP with three inputs, four
hidden and two output nodes e @ &

A three layer MLP during the feed-forward
phase e e e e e e e e e e e e e e
A single hidden node in an MLP

A three layer MLP durlng the back
propagation phase  wm B

Output node during back propagation
Hidden node during back propagation
Input data for Lippmann’s circle problem

ANN decision region for Lippmann‘s circle
problem

Plan view of full and eighth core models

Eighth core model numbering system and
example core loading

Prediction results - critical boron
concentration training set

Prediction results - critical boron
concentration validation set

Prediction results - pin peaking ratio
training set e ows u

Prediction results - pin peaking ratio
validation set . ;

10

12

13

16

23

24

37

40

47

48

49

50



CHAPTER 1. INTRODUCTION

Nuclear Power Reactor Core Loads

Every 12 to 24 months the reactor at a nuclear power
plant is shutdown, partially dismantled and refueled. During
the refueling process, approximately one third of the fuel
assemblies in the core are removed and placed in a nearby
storage facility for eventual disposal. The remaining fuel
assemblies will remain in service in the core for an
additional one or two fuel cycles until they too will be
discharged. The new, fresh fuel assemblies and the old,
partially spent fuel assemblies are "shuffled" and placed back
into the core. This new core arrangement or pattern is not
random or haphazard, but is the result of months of careful
analysis by a team of nuclear engineers.

Depending on the reactor, the new core loading pattern
(LP) must satisfy several design criteria based on safety and
operational goals. Some of the possible criteria the
designers may have to consider are: the maximization of the
length of the next power cycle, the minimization of the
neutron flux at the reactor vessel wall, and/or the
minimization of the power peaks. Currently, the analysis of
core LPs is accomplished with complex computer programs which

use diffusion or transport theory, often employing Monte Carlo



2
methods, to calculate the various parameters which quantify
the physical characteristics of the new core.

These computer codes, while accurate, often require large
amounts of computing power and time. Often, while the
computer is performing the calculations, the engineer must
wait, pondering the next step. Without the feedback provided
by the current calculation, the next step is a mystery. The
development of a faster core parameter prediction system,
which would give almost instant estimates of the values of
thousands of new designs, could greatly speed the design of
new core reloads.

Artificial Neural Networks

Artificial neural networks (ANNs) are computer prbgrams
which employ a distributed memory scheme to ‘learn’ such
things as function mapping, pattern classification, pattern
recognition, etc.. ANNs ‘learn’ or are trained through a
process where internal memory parameters, or weights, are
systematically altered until the network performs as desired.
During the training phase, the ANN is presented with an input
pattern and the correct answer. The answer is stored for
future reference while the input pattern is ‘fed’ into the
network. After many internal mathematical calculations, the
network produces an answer. This calculated answer or output
1s compared to the correct answer stored in memory. If the

calculated answer is not the same as the stored answer, which



3

is very likely early in the learning process, the internal
memory parameters or weights are adjusted to produce a better
answer the next time. This process 1s repeated many times on
many input/answer pairs until the ANN learns to produce output
‘close enough’ to the true answers, then the training
procedure is halted. The objective 1n training an ANN is to
have it learn the underlying functionality between the input
and the output by example. If this occurs there is a good
probability that the ANN has learned the functionality between
the input and the output and will produce an adequately
accurate answer when novel input data (i.e., not part of the
training set) is presented to the network.

Problem Statement

This work describes the use of ANNs to estimate or
predict key physical parameters which are needed to validate a
particular core LP design. The beginning of cycle (BOC)
parameters which this work will try to predict are the
critical boron concentration and the pin peaking ratio.

In an industrial setting, it is proposed that the
engineers in charge of designing the new core LP would use the
results from the previous core loading calculations to train
the ANN for the current analysis. For this work, a database,
developed by Studsvik of America[31], containing core LPs and
the corresponding core parameters was used to train and test

the ANN.



CHAPTER 2. ARTIFICIAL NEURAL NETWORKS

Introduction

The field of neural computing is new and ever expanding.
Dr. L. M. Simmons, Chair and executive vice president of the
Sante Fe Institute (SFI) wrote, "We are witnessing the
creation of new sciences of complexity, sciences that may well
occupy the center of intellectual life in the twenty-first
century."[13] (p. xiii). Indeed, as time progresses,
scientists and engineers are finding more and more ways to put
ANNs to work.

Multi-layer Perceptrons

Although there are many types of ANNs, this work will
focus on the feed forward multi-layer perceptron (MLP). 1In
the class of neural networks which include MLPs the convention
1s to construct a network consisting of ‘neurodes’ arranged in
groups, or layers, with ‘connections’ between the wvarious
layers. The neurodes, also referred to as processing elements
or just nodes, are the location where all of the calculations
carried out within the network occur. In this work, the
neurcodes are defined to be everything within the region
bounded by the dotted lines in Figure 2.1.

As stated above, the neurodes are arranged in layers with

each neurode in one layer connected to each neurode in the



Hidden
Nodes

Figure 2.1 A three layer MLP with three inputs, four hidden and
two output nodes.



6
previous layer and to each node in the successive layer.
Because of this scheme of neurode connections, the MLP is said
to be completely inter-connected between layers. Normally
there are no connections between neurodes in the same layer.

The MLP architecture consists of multiple layers of
neurodes. The layers are broken down into an input layer, one
or more hidden layers and an output layer; the network shown
in Figure 2.1 has a single hidden layer. In the figure, the
row of solid boxes below the circle represent the adjustable
learning parameters, or weights. The circle represents the
neurode activation function and the solid lines between the
circles and boxes are the interconnections.

During the training, or learning phase, input vectors
with known output vectors are presented to the network. This
process where only ’‘questions’ with known ‘answers’ are put
through the network is known as supervised learning. Repeated
application of the various input/output vectors allows the
network to learn to produce the correct output to each set of
inputs by adjusting its weight values.

If enough examples are presented to the network, and
these examples are representative of the data set as a whole,
the network may be able to learn the underlying functionality
between the input and the output. If the ANN does learn the
input/output functionality correctly, it may then be able to

correctly classify novel input data. This ability to learn



7
the correct classification for novel data is referred to as
generalization. When a network fails to generalize, but
instead learns to produce the correct answers only to the
specific inputs it was trained on, it is said to have
memorized the data.

The flow of data through a feed forward MLP can be
divided into two phases. First the network receives an input,
or question, from the outside world via the input nodes. The
input nodes pass the data forward, or up the network
structure, fanning out their data to all of the nodes in the
hidden layer. No calculations are performed by the input
nodes. The hidden nodes pass their outputs on to the output
nodes and the output nodes display the network’s output to the
outside world. This stage, from input to output, is aptly
called the feed-forward phase.

The second phase begins with a comparison of the
calculated output and the desired output for each of the
output nodes. The difference between the calculated and
desired output is the network error. This error is used to
alter the interconnection weight parameters so that the error
will be smaller the next time. It is the systematic changing
of these weights that is responsible for the ability of the
ANN to ‘learn’. The error is propagated backward through the
network from the output nodes to the input nodes so that each

weight'’s contribution to the error can be calculated. This



8
second phase is called the back propagation phase.
Feed Forward

The learning process begins in the feed forward phase,
the various node inputs and outputs are depicted in Figure
2.2. An input vector is applied to the network via the input
nodes. The input values are ’‘fanned out’ by the input nodes
to each node in the next layer. Again, no calculations are
performed in the input layer. In the hidden layer neurodes,
the inputs are multiplied by the connection weights and the
resulting products are summed together, see Figure 2.3. A
bias value, b;;, is subtracted from the sum and the result,

net is applied to the nodal activation function. The output

i1
of the activation function, x;;, is the output of the node.
The formula for calculating the nodal output is given by

Equations 2.1 and 2.2.

Nl-l
net,; = E:WUkXFLk—bt
kel

In these equations, the subscript i indicates the current
layer, 1-1 indicates the previous or lower layer, and i+l
indicates the next layer. The subscript j represents the
number of the current node in layer i. The subscript k
represents the number of the specific weight associated with

node j in layer i-1. The node passes its output value to all






10

NODE 1
LAYER 2

3
net,= Elwzu X 3= Doy

Wa11 w:u]wznl

Figure 2.3 A single hidden node in an MLP.

of the nodes in the next layer where the process is repeated
with the new input values and with the next layer’s weight
values. When the output layer is reached, the output from the
nodal transfer function is also the output from the network.

The nodal transfer or activation function used in this
work is the arctangent sigmoid function described in Equation
I

The arctangent function is preferred over the more common



11
f(x)= %arctan(x)+ % (:2...3:)

exponential sigmoid function of the form

1

l+e*

fi{x)=

because the latter tends to cause underflow and overflow
errors when the magnitude of the weights gets large. In this
work, all of the neurodes in the hidden and output layers use
the same activation function.

The process just described is the feed-forward pass of
the MLP. For a trained ANN, the forward pass produces the
answer completing the process. For an untrained ANN, however,
the forward pass is just the first step, since the output 1is
most likely incorrect.

Back Propagation

The backward pass, depicted in Figure 2.4, is the
beginning of the process whereby the error is calculated and
the weights that produced the error are changed. The back
propagation (BP) algorithm, as derived by Hecht-Nielsen[11],
is used to modify the weights.

Output Layer

The BP algorithm uses a gradient descent procedure[4] to
adjust the weights. Plotting the error agailnst various
combinations of weights creates an N-dimensional surface with

peaks where the weight combinations give large errors and



N s 7 v N ~
r e
m - / v ™
™ “©Q s i ! v N
s / \ \ Pry
m ’ m v M- E
’ ™~ -\
L ~ ' 25Ty Ay
= - - hnu -7\ L !
ol S \ N
N Y \ AN
\ ’ A
\ ~ \
\ ] R |
L 4 ~ ’
N 4 \
\ ’ 4 A
3 ’ \ \d/__ \
z, \\/ ’ v 4
A Y 7/ ! >
(o] V] Ny a« J ~
i n PAS ’ ;
A N ¢ N v
/ v/ W / Ve
] Z A N Ly /
oA S W ’ K ’
m ros A \ LY
« 0 (A \ =" 5N v.
0 e / 1 T4
- / A \
- \
L] L R ~ 2y ¥
= ™~ 4 \
\ Iﬁr /—
\ ss 7~ \
Lo \ ’ ™%
~ \ e s SR S LR L ]
~ \ I3 7
1 L]
~ < ’ " 4 F

2

’
’
’
’
'---'---__-_;-_-;_,
g
I
i g
\
\
\
\

Figure 2.4 A three layer MLP during the back propagation phase.



13
valleys where the error is small. If the current weight
vector 1is located on a peak on that error surface, the
gradient descent algorithm attempts to move the network down
the slope of the error surface by adjusting the weights in the
direction of steepest descent.

The backward pass begins at the output layer. The error,
defined as the difference between the desired output and the
calculated output, 1is computed for each neurode in the output
layer. To minimize the error function, the derivative of the
activation function, Equation 2.5, is used to find the slope

of the error surface.
£/ (%) = (2.5)

Inserting net;; into Equation 2.5, results in the slope of the
error surface at that point. Then, multiplying by the
difference between the desired and the calculated output,
scales the §;; term to compensate for large or small errors.
The estimate of the weight change is obtained by multiplying
d;; by the initial input, see Figure 2.5.

The new output node weights, w;;"", are found using
Raw . py9ld (2.6)
Wijkx = Wijk + M€y :

where M is the learning rate (0 <M < 1) and e;;, is the error

for each weight. This error is calculated using



14

NODE 1
LAYER 3

0. = flnet. )d
31 31 31
©311|%312 easal“:u _
P N €31 O3y % 54
’I \ \\ -.\\\
/ \ ~ -~
X X
x21 Xzz 23 24

Figure 2.5 Output node during back propagation.

S = 045%; 1.5 (2:7)

r]

where X; is the output from the previous layer and Su is

i-1,3

defined as

5, = £ (net,,)d,, (2.8)

£ 13

where £’ is defined in Equation 2.5 and d;; is the difference



15
between the desired and actual outputs of node j in layer 1.
The bias term is trained in a similar manner, Equation

2.6 becomes

b??w"bf}d"’n[e}:’]” (2.9)

where M is the learning rate (0 < n < 1) and [eb];; is the

error for each bias which is calculated using
eb;; = 0, het (2.10)

where net;; is the summed, weighted input to the node from the
previous layer and 8;; is defined as before in Equation 2.8.
Hidden Layer

Calculating 0;; using Equation 2.8 is applicable for the
output layer where d;; is known, but what about the hidden
layers where the correct output is not known? The back
propagation algorithm deals with this problem by determining
each hidden node’s contribution to the error at the output
nodes. This contribution is then used in the weight change
calculations. Each hidden layer node’s contribution to the

output error is calculated using

N

irl
/
81)’ -t (HEtij)Zwi+1,jk8i+l,k

i=1

{2l L)

see Figure 2.6. Here 1 signifies the current layer and
i+1 signifies the next layer (which is the output layer if the

ANN has a three layers).



16

NODE 1
LAYER 2

6,,= f(net,) w0,

e le
211 212 atal -
© e <. e2:1. E=p 6211x11

Figure 2.6 Hidden node during back propagation.

Batch Training and 0
There are two ways to present the data to the ANN during
the training phase, on-line and batch mode. When on-line
training is employed, the weights are adjusted after each
pattern from the training set has been passed through the
network. By contrast, when batch training is employed the
weights are adjusted only after all of the patterns in the
training set have been fed through the ANN. In this work

batch training was employed and the error terms, e;;, act as



17
accumulators of the error from each training pattern. Only
after all of the training patterns have been fed both forward
and backward through the network are the weight wvalues
changed.

The learning rate, 7, 1is used so that each of the weights
are adjusted only a fraction of the amount computed by
Equation 2.7. The larger the value of M the larger the size
of the step down the slope on the error surface. MmN can range
from 0.0 to 1.0, 0.3 is a typical value and was used in this
work. Since batch training was used in this work, mM was
divided by the number of patterns in the training set to
account for the accumulation of the error from each pattern.
Also in this work, N was divided by the number of nodes in the
previous layer in an attempt to balance the rate of learning
in each layer.

In addition, Equation 2.6 was modified as follows

wise = wije + nef§y + aelj} (2.12)
where M 1s, again, the learning rate and o is a number on the
range [0.0,1.0] that is multiplied with the accumulated error
from the previous training batch. The use of the additional
term, called momentum, helps to speed convergence and may help
the model escape from a local minimum, see Hecht-Nielsen[11].
In this work, the momentum term is applied only if the

previous change was in the downhill direction.



18
RMS Error
To quantify the error of the network output over all of
the output nodes, M, and for all of the training patterns, N,

the root mean square (RMS) error is calculated

RMS - J ﬁiidfj 213}

j=li=1
where d;; is the difference between the calculated and the
desired output.
Network Architecture

The number of input and output nodes is usually
determined by the problem to be solved. As a minimum there
should be one input node for each unique independent variable
and there should be at least one output node for each unique
dependent variable. But, how should the number of hidden
nodes and hidden layers be determined?

This question has long been the topic of heated debate in
the artificial neural network community. In Hecht-Nielsen[1l1]
Kolmogorov’s Theorem is shown to prove that any continuous
function £:[0,1])" = R", f(x) =y, f can be implemented exactly
by a three layer feed forward network that has n input nodes,
(2n+1) hidden nodes and m output nodes. In general, it is
widely believed that the smaller the number of hidden nodes
the better the generalization and that the number of training
patterns should be greater than the number of weights in the

network[17].



19

Bartlett[1l] and Basu([2] use a dynamic node architecture
scheme to train problems with simulated condensation and back
propagation, respectively. They start the training process
with a few hidden nodes and add nodes until the ANN is able to
learn the mapping to a pre-determined low error level. When
the error is low enough, the least important hidden node is
deleted and the network 1s retrained, if necessary. If the
error again falls below the pre-determined limit, more nodes
are deleted until the ANN will no longer learn the mapping.
The process of adding and deleting nodes continues until the
minimum number of hidden nodes required to map the input to
the output is determined. They have shown that better
generalization occurs with the fewest number of hidden nodes.

Verification

Since it is difficult to verify that an ANN has been
correctly constructed, or programmed, an acceptable way to
show that the ANN is performing properly is to model several
well known problems. To verify that the ANN constructed for
this work does indeed model problems correctly, three examples
were used as benchmarks, these are: the exclusive-or problem
(XOR), the eight-to-one decoder problem[2] and the Lippmann
circle problem[20].

The first example, the exclusive-or (XOR) problem, is
taken from the Boolean function in linear algebra. By

definition, the XOR function returns a positive response if



20
one but not both of the inputs has the value 1.0. A network
was constructed with two input nodes, three hidden nodes and
one output node and was trained to an RMS error of 0.01. The
input pairs and the desired and calculated output are shown in

Table 2.1. Note that the desired outputs have been normalized

Table 2.1: XOR inputs and outputs.

Input Input Desired Calculated
1 2 Output Output
0.0 0.0 0 1. 0.08227
0.0 1.0 0.9 0.89896
1.0 0.0 0.9 0.89889
1.0 1.0 0.1 0.10913

on the range [0.1,0.9] to aid in convergence of the ANN. As
can be seen the ANN correctly classifies the four input
points.

The second example problem is known as the eight-to-one
decoder problem. The three inputs represent binary bits which
take the values 0 or 1. When taken together the three digit
binary number can represent the decimal numbers zero to seven.
The network is trained to fire one of eight outputs depending
on the particular combination of zeroes and ones in the input.
An ANN with three input nodes, five hidden nodes and eight
output nodes was trained to an RMS error of 0.026. Again,

note that the desired outputs have been normalized on the



21
range [0.1,0.9] to aid in convergence of the ANN. Table 2.2
gives the input/output vector pairs and Table 2.3 gives the
calculated output values after the network was trained.

The third example problem is the circle problem as
described in Lippmann[20]. Two hundred points, defined by
their location on the x-y plane, are chosen at random for the
training set. One hundred points are chosen from within the
unit circle (0 < r < 1) and one hundred points are chosen from
the annular region described by 1 < r < 5. The data points
are shown in Figure 2.7. The x and y coordinates of each of
the points are the inputs to the ANN. The desired output is
0.9 if the point falls within the unit circle and 0.1 if the
point falls outside the unit circle. An ANN with two input
nodes, eight hidden nodes, and one output node was trained to
an RMS error of 0.04. The resulting decision region is shown
in Figure 2.8.

From the success of the ANN models of the three benchmark
problems, one can infer with an adequate degree of confidence

that the network has been constructed properly.



22

Table 2.2: Eight to one decoder inputs and outputs.
Input Desired Output
0.0]0.0( 0.0 0.9(0.12] 0.1 0.1 0.1 | 9.1 | 8.1 | #:1
0.8]6.0] 1.0 4 0.1) 8.9] 8.1 . 0.1 1 6.1 | 6.1 | 4.1
0.0/1.0({ 0.0 0.2 0.2] 0.9 0.1 u.d | 8.0} 0.1 | ¢.1
0,8]12-0] 1.0 6.3 ] 8.3 ] 9.1 0.9 .1 19.1 ] 6.1 | 8,1
1.0({0.0] 0.0 J0.2]0.2]|0.1 0.1 0.910.1] 0.1 ]0.1
1.010.0] 1.0 f0.2(0.2] 0.1 0.1 0.110.9] 0.1 (0.1
1.0(1.0| 0.0 |f0.2] 0.1 (0.1 0.1 P31 | 8. | 82 | 8.1
1.0(1.0| 1.0 .0 | @1 0.1 0.1 0.1 @1 0.1 ] 0.9
Table 2.3: Eight to one decoder trained outputs.
B Calculated Output
1 .975 .101 .106 .099 099 : 108 <107 .038
2 116 .896 .104 .104 « 113 .104 .030 .098
3 JA106 | 108 .888 « 102 .103 .039 095 | .112
4 .048 | .098 .106 .884 .039 .097 .107 .086
5 .116 | .104 .088 .047 .906 .088 s 05 + 103
6 .097 .106 P37 .099 | .095 889 .098 sddd
7 .104 .041 « T .106 | .107 . 102 .896 gl
8 6 | J101 .104 .107 1] 15 ] +112 .101 .894




23

Figure 2.7

Input data for Lippmann’s circle problem.



24

Lippman’s circle problem
2 layer MLP with back propagation
RMS = 0.04; 8 hidden hodes

0.75

0.25

Q

wn

o
Network Response

Network Response

Network Response

Figure 2.8 ANN decision region for Lippmann’s circle problem.



£

CHAPTER 3. NUCLEAR REACTOR CORE RELOADS

Introduction

The periodic core reloading of nuclear reactors has long
been a topic of study and research[6,7,10,14-16,18,21,25, 26,
32]. In general, the goal of these studies has been to find a
method to optimize reactor performance and safety by way of
"shuffling" the core reload pattern. The parameters to be
optimized may vary depending on the particular reactor or
specific circumstances at hand. For example, if there is a
concern about pressure vessel embrittlement, then the
objective may be to minimize peripheral neutron leakage while
constraining cycle length and relative power peaking to
specified design limits. Nevertheless, regardless of the
criteria employed, the idea is the same, to determine an
optimum set and arrangement of fuel assemblies and burnable
poisons in the core for each fuel cycle.

Nuclear Fuel Management

The job of acquiring the nuclear fuel, placing it into
the reactor core, storing and/or disposing of the spent fuel
and all related aspects to these tasks is called nuclear fuel
management. The term out-of-core fuel management is used to
describe the overall long term strategy to purchase nuclear

fuel for several fuel cycles in the planning horizon. The



26
contracts between the utility and the fuel manufacturer
usually specify fabrication details such as fuel enrichment,
pellet size, cladding composition, quantity and type of
burnable poisons, etc.. In contrast, the term in-core fuel
management, restricted to a single fuel cycle, is used to
describe the process whereby the existing fresh and used fuel
assemblies (and burnable poisons) are arranged into the best
loading pattern (LP) possible. 1In this work, the term fuel
management will refer to in-core nuclear fuel management.

A brief description of fuel management terminology such
as batch sizes, loading configurations, pin peaking, boron
concentrations, burnup, k. and burnable poisons follows.

A fuel batch is a group of fuel assemblies which have
been in the reactor for the same number of cycles. The four
batches discussed in this work are: new fuel, new fuel with
burnable poison, once burned fuel and twice burned fuel. Once
burned fuel, as the name implies, has been in the core for one
fuel cycle and is about to enter its second cycle of service.
Similarly, twice burned fuel has been in the core for two fuel
cycles and is about to enter its third, and usually last,
cycle of service. Since about one third of the core is
removed each cycle, batch sizes are roughly one third of the
total number of fuel assemblies in the core.

Loading configurations refer to the various patterns in

which the fuel assemblies may be arranged. Two of the most



27
common schemes for loading a reactor core are referred to as
the in-out and the out-in loading strategies. The out-in
strategy places the new fuel assemblies towards the periphery
of the core and has the advantageous effect of flattening the
power profile across the core. These fuel assemblies then
‘migrate’ toward the center of the reactor during subsequent
cycles. The in-out strategy, on the other hand, places the
new fuel assemblies more toward the center of the core from
which they ‘migrate’ toward the periphery with each cycle.
The advantage of this latter strategy is a lower neutron
leakage at the periphery, leading to less neutron damage at
the reactor vessel wall.

Some loading configurations can be eliminated out of hand
by means of engineering intuition and experience, for example:
non-symmetric patterns, patterns with new assemblies adjacent
to control rods, patterns with two new assemblies side by
side, patterns with new assemblies at the core periphery (in
the in-out strategy) or patterns with a new assembly in the
center location, etc. are all untenable. The reason for
eliminating LPs in this manner is to reduce the number of
possible candidates to a more manageable size.

Pin peaking refers to the ratio of the maximum power
level at a specific fuel pin in a fuel assembly to the core
average power level. 1In general, a flat power profile across

the core is desired and thus upper design limits for the pin



28
peak ratio must be obeyed. These criteria are conservatively
set to prevent the temperature of any fuel pin from exceeding
thermal limits designed to preserve the integrity of the fuel
pin and the fuel assembly.

Reactivity is a term used to describe the state of
balance between the production and loss of neutrons (and thus
fissions) 1n a nuclear reactor. The mathematical parameter
used to define the reactivity level of the core is k., also
known as the multiplication factor. 1In the absence of
burnable poisons (discussed later), k., at beginning of cycle
(BOC) is proportional to the cycle length, so a longer cycle
length can be implied by maximizing the BOC k.

Boron dissolved in the coolant is a neutron absorber and
is employed to adjust k. to a value of 1.0, denoted
“critical". Boron dilution, also known as "chemical shim",
compensates for the depletion of the fuel and for the buildup
of fission products. K, can be adjusted with control rods,
chemical shims and burnable poisons. The use of a chemical
shim reduces the number of expensive control rods that are
required to adjust k. and control the reactor. Also, since
the shim is dissolved in the coolant and is evenly distributed
throughout the core, the concentration can be reduced to
account for fuel burnup without altering the power
distribution across the core. The amount of boron required,

measured in parts per million (ppm), is proportional to the



29
unadjusted k. thus, maximizing the ppm of boron also implies
maximizing the unadjusted k. and cycle length.

There are several definitions of burnup. In general,
burnup of the fuel is defined as the total energy released by
the fission of a given amount of fuel and is measured in terms
of megawatt-days (MWd). Specific burnup, on the other hand, 1is
defined as the total energy released by the fission per unit
mass of fuel and is measured in terms of megawatt-days per
metric ton (MWd/t). Finally, fractional burnup is defined as
the total number of atoms of fuel that undergo fission per
total number of fuel atoms initially present in the fuel.

A burnable poison (BP) is constructed from a material
that, like boron, has a negative effect on reactivity. The
isotope that is formed when the BP absorbs neutrons does not
have a large negative effect on reactivity, thus the term
"burnable". Placing burnable poison pins within the fuel
assemblies or blending it within the fuel itself has two major
objectives: (1) to hold down the positive reactivity of the
fuel at BOC thus allowing more fuel (higher enrichment) to be
loaded, thereby giving rise to a longer power cycle and (2) to
shape the power distribution in the reactor.

Core Reload Methods

For in-core fuel management, the massive number of the

possible core LPs, makes it highly improbable that an optimal

solution can be found by means of an exhaustive search method.



30

For that reason, many techniques have been developed as
alternatives to the trial and error approach of an experienced
engineer. Some of these methods are: backward diffusion[6],
linear empirical core models[25], expert systems[10], constant
power depletion([l16] and simulated annealing[26]. These
methods will be discussed in the following sections.
Backward Diffusion

The diffusion equation is well known to nuclear engineers
and is typically used to calculate the neutron flux and power
distribution in a reactor core for a given core loading. The
backward diffusion method([6) was derived so that the engineer
could assume a desired power distribution and then generate
the corresponding reactivity distribution. From this, the
core loading is then inferred from the available fuel
assemblies by best matching the reactivities of fuel
assemblies to the computed reactivity distribution. A forward
diffusion calculation is then performed to obtain the
corresponding power distribution which may or may not satisfy
constraints on cycle length, power peaking, etc.. If one or
more of the constraints are violated, the LP is discarded and
the process is repeated.

Although the backward diffusion method has been
extensively employed in an actual industrial scenario, several
assumptions are made which limit the accuracy of the

calculation. Also, there is no optimization of the LP which



31
best matches the target power distribution.
Linear Empirical
Fuel management via linear empirical core models[25] is a
method whereby a model is created which relates state
variables to control variables to determine the optimal BOC

k The state variables are assembly power fractions and

burnup increments; the control variables are the zone
enrichments. The method tries to indirectly model the reactor
core by treating it as a linear programming problem, bypassing
the computationally expensive direct calculations. The method
assumes uniform poison distribution, linearity between state
and control variables and zero BOC burnup. The assumption of
linearity between the state and control variables limits the
accuracy of the predictions of the highly nonlinear reactor
core to first order at best.
Expert Systems

A heuristic, as defined by Webster[37] (p. 568), is
"involving or serving as an aid to learning, discovery, or
problem solving by experimental and especially trial-and-error
methods; also: of or relating to exploratory problem-solving
techniques that utilize self-educating technigues to improve
performance <a ~ computer program>". The expert system method
in fuel management uses a computer algorithm to heuristically
search for near optimal solutions to the core reload problem.

Rules based on past experience are developed for and



32
implemented by the expert system. These rules limit the
scolution space by eliminating LPs which are untenable such as,
patterns with a fresh fuel assembly in the core’s center
position. The expert system must be used in conjunction with
a core neutronics code to evaluate the candidate LPs produced
by the expert system.

In Galperin([1l0] et al. the expert system was programmed
to avoid loading fuel schemes that promoted high local power
peaks while keeping the lowest possible power at the
periphery. The solution space was assumed to be divided into
groups or regions characterized by specific patterns, and it
was also assumed that within these groups there were large
numbers of almost identical solutions. The core loading
begins with fresh fuel assemblies followed by the once and
twice burned assemblies. Examples of some of the rules
employed are: no loading of fresh fuel into the inner part of
the core, no two fresh fuel assemblies should have a common
surface, no twice-burned fuel assembly should be loaded into
the outermost positions.

The probability of finding a global optimum core reload
pattern using this method is lessened by the fact that the
solution space is restricted. For example, suppose a specific
search method uses binary fuel exchanges to develop new LPs.
If THE optimal core LP happens to be a binary fuel exchange

away from an LP which has already been rejected, the expert



33

system will never find it.
Constant Power Depletion

The constant power, or Haling, depletion method[16]
assumes the optimum power distribution is constant throughout
the entire cycle and thus can deplete the core in a single
time step. This method is usually used in the core reload
design of boiling water reactors (BWRs) where greater
flexibility in reactivity control is possible. In the design
of core reloads for pressurized water reactors (PWRs), the
Haling depletion method provides a consistent means of
comparing new reload patterns without taking into account
optimal control policy. With the core loading and control
policy decoupled, the two factors can be optimized separately.

Kim et al. first performs an eighth core, two
dimensional, Haling power calculation on the initial core
reload pattern using SIMULATE-3[29], a commercially available
nodal diffusion code. Next, the objective function is
evaluated to find the end of cycle (EOC) critical boron
concentration, after which the nodal power peaking is
calculated. The results are recorded and a binary fuel
exchange (two fuel assemblies switch positions) is performed
using heuristics to ensure that untenable LPs are eliminated.
The process is repeated until the core LP which maximizes
cycle length and stays within the constraints for the initial

LP is determined.



34

After the best LP has been found, the second phase begins
by estimating the distribution of burnable poisons (BPs)
necessary to match the Haling distribution. The optimal
distribution of BPs is determined separately using a first-
order accurate perturbation approximation. The drawbacks to
the Haling depletion method are similar to those of backward
diffusion in that the assumptions about the optimum LP are
made a priori and no optimization is done.
Simulated Annealing

Simulated annealing is a form of artificial intelligence
that is analogous to the annealing process in metals. In the
annealing of a metal, the atoms align themselves as the metal
cools - reaching an arrangement which minimizes the energy
state of the solid. 1In simulated annealing, the trainable
parameters or weights are adjusted so as to reach a lower
error level. A weight vector which reduces the error is
accepted with 100% probability. Entrapment into a local
minimum is avoided by allowing the acceptance of weight
vectors with a higher error level at a low probability. This
probability of acceptance is reduced with time and is
analogous to the reduction of the temperature of the metal
being annealed.

In fuel management, Parks[26] first used simulated
annealing (SA) to optimize the performance of a fuel stringer

for the British Advanced Gas Reactor (BAGR). A neutronics



35
code provided a measure of the cost of the fuel stringer to be
minimized by the SA algorithm. Heuristics were used to
decrease the size of the solution space.

Kropaczek[18] and Maldonado([21l] combined simulated
annealing optimization with second order nodal generalized
perturbation theory to generate families of near optimal core
reload patterns without the need for heuristics. The
combination of these techniques into the FORMOSA code results
in a method of core reload optimization which is
computationally accurate and efficient with a minimal number
of assumptions made[21]. The expense of the direct
calculation of the core parameters is considerably lessened by
the use of nodal generalized perturbation theory.

Stevens [32] recently presented work on the optimization
of reactor core reload designs by simulated annealing with the
inclusion of heuristics for candidate LP generation. The
commercially available SIMULATE-3[29] is used to evaluate each
LP which is generated by the combination of heuristics and
artificial intelligence.

Scope of Problem

With the advent of faster and more powerful computers,
methods of finding optimal core reload patterns which were not
feasible a few years ago are now becoming tractable. Despite
that, however, the core reload problem is still too massive to

be solved by a purely exhaustive search technique. Given a



36
reactor with 157 fuel assemblies, approximately 105 of these
assemblies are once or twice burned and are therefore unique
(different burnups, power histories, etc.) and 52 are
identical new fuel assemblies (assuming no burnable poison 1is
used). The number of possible combinations is 157!/52! or
1.45%10%'°, If one half of the new assemblies have burnable
poisons then the number of possible combinations is
157!/(26!-26!) or 7.21x10°*,

To direct the focus of this research more so upon the ANN
application, several assumptions were adopted to reduce the
extent of the search space. Since the reactor core is
geometrically symmetric the core LP and its parameters (i.e.,
assembly reactivity, burnup, neutron flux and thus reactor
power) are also assumed to be symmetric. Depending on the
placement of control rods, it can usually be assumed that the
reactor is symmetric down to an eighth of the core, see Figure
3.1. When one eighth core symmetry is assumed, using the same
core with 157 fuel assemblies, the number of available fuel
locations is reduced to 26, nine are for fresh fuel leaving 17
positions for once and twice burned assemblies. The number of
possible combinations drops to 26!/9! or 1.11x10%,

An additional simplifying assumption was that all of the
fuel assemblies in a batch have similar characteristics. The
1/8 core is then loaded with the three batches of identical

fuel assemblies. The ‘typical’ once and twice burned fuel



37

Full Core - top view

N\,

Eighth
Core -
top view

Figure 3.1 Plan view of full and eighth core models.



38
assemblies are determined by calculating the average
characteristics over the entire batch. When this further
simplification is made, the number of possible combinations
decreases to 26!/(8!-8!.9!) or 6.84x10'; if burnable poisons
are present the number of possible combinations is
26!/(8!-8!-51-.4!) or 8.61x10"”. These simplifying assumptions
were drawn in agreement with the SOAl Database described next.
SOAl Database

To aid nuclear utilities in developing a system for
designing a near optimal core reload pattern, Studsvik of
America developed a database[31] containing over 300,000 core
reload patterns and their respective core parameters as
calculated by the Studsvik package SIMULATE-3[29]. The core
modeled for the database was an unspecified PWR with 157 fuel
assemblies. To simplify matters, an average fuel assembly was
assumed for each batch and eighth core symmetry was used.
Parameters such as critical boron concentration, k., pin
peaking ratio, and burnup were calculated at four depletion
steps in the fuel cycle and recorded in the database.

The description of the format for the database follows.
The first entries are 26 integers ranging in value from one to
four. A one indicates twice burned fuel, a two indicates once
burned fuel, a three indicates new fuel and a four indicates
new fuel with burnable poison. The position of the integer in

the string of 26 is important because it indicates the



39
location of the particular fuel assembly in the eighth core.
In Figure 3.2, the top figure shows the numbering system for
the eight core model - the position in the string of integers
is indicated by the number shown in the fuel locations. The
bottom figure shows a typical LP with the various "flavors" of
fuel (here flavors describe the fuel batch: twice burned - 1,
once burned - 2, fresh - 3, and fresh with burnable poison -
4).

Following the 26 LP integers are thirty floating point
numbers. These numbers represent the calculated core
parameters for that particular LP at four different depletion
steps. The first and second numbers are the hot zero power
(HZP) critical boron concentration and the HZP moderator
temperature coefficient, respectively for the LP. The next
five numbers are: critical boron concentration, k., core pin
peaking factor, ratio of assembly pin peak to assembly
averaged power in the peak assembly and the location of the
pin peak assembly. These five parameters are calculated for
the first depletion step in the fuel cycle and the next
fifteen numbers are the parameters for the last three
depletion steps. The final eight numbers in the database
entry are the LP’s average end of cycle (EOC) assembly average
burnup and peak EOC assembly average burnup for each of the

four batches.



40

@

o
w
vk
U
a

17118(1920
2223|124
26

Eighth core numbering systen

H

e
NP NN
WN|H N

w

NEESEENE RSN
Wld|[d o] e

Typical loading pattern

Figure 3.2 Eighth core model numbering system and example core
loading.



41

CHAPTER 4. THE PROBLEM AND ITS SOLUTION

Introduction

In the optimization of core reload patterns, a good
estimate of the key core parameters such as k., (or critical
boron concentration) and pin peaking is crucial in evaluating
candidate patterns. Current methods either require direct
computation of these parameters for each pattern under
consideration or make simplifying assumptions which decrease
the accuracy of the calculations.

The commercial computer codes that are used in fuel
management today must be robust enough to be used by many
engineers. These codes are used on various designs of
reactors at many facilities across the country, each reactor
and each facility having its own peculiarities. Often
different facilities will have relevant information, such as
cross section data, stored in different locations or in
computer files which have different formats depending on the
vendor or the utility.

This work investigates the use of an ANN to estimate the
pin peaking ratio and the critical boron concentration for a
typical reactor core. The network would be trained initially
on data from core reload efforts for previous cycles. The

data required to train the network would be the core LP and



42
its associated parameters - libraries of data would not be
needed. As estimates are generated for the current core
reload, any and all miscues could be added to the training
data so that the model can be refined to better reflect the
current core. In other words, the ANN learns the mapping from
core reload pattern to core parameter for each specific core.
Data Collection and Processing

The SOAl Countm Suite and Database[31] was used in this
work to train the an ANN to map core LPs to their respective
core parameters. The training sets were made up of 3068 or
3069 randomly chosen loading patterns. The first LP was
chosen at random followed by every 100" successive LP. There
were 306,884 loading patterns in the database to choose from -
dividing by 100 gives 3068 or 3069 depending on the number of
the initial pattern. The validation set consisting of 3069
different LPs was generated randomly (a random long integer
was generated and then the MOD function was applied to obtain
the number of the LP).
Normalization of the Data

As 1s common in the training of ANNs, both the output
data and the input data were normalized. The input data,
consisting of a series of ones, twos, threes and fours, was
converted to 0.2, 0.4, 0.6 and 0.8. The desired output
values, continuous real valued numbers, were normalized on the

range [0.1,0.9]. The normalization was accomplished by first



43
finding the largest and smallest values for each parameter
over the entire set of 306,884 LPs. The range of each
parameter was calculated as the difference between the largest
and smallest core parameter. The smallest value was
subtracted from all of the patterns in the training set. The
resulting numbers were then divided by the range giving a set
of numbers normalized on the range [0,1]. These numbers were
then multiplied by 0.8 and 0.1 was added to the product. The
result of these manipulations was a set of numbers normalized
on the range [0.1,0.9].
Final Data Set

The final data set consists of 3068 or 3069 lines of
input and output data. Each line contains 26 decimal numbers
[0.1,0.9] (25 input values and one output value). The first
25 numbers represent the fuel batch number and its location in
the eighth core. The last number on the line of data is the
normalized parameter for pin peaking or critical boron
concentration depending on the output of interest.

The number representing the center position in the
reactor core was dropped from the training set due to the fact
that all of the loading patterns have a twice burned fuel
assembly in that location. Only unique inputs are important
to the network mapping between loading pattern and core
parameter, thus the inclusion of the center fuel assembly

would have been redundant.



44
Parameter Prediction

Training

An ANN model was developed for the problem of predicting
core parameters from the loading pattern. The inputs to the
ANN are the 25 normalized fuel batch numbers. Thus, the 25
input nodes each represent a particular location in the eighth
core model. The output is the desired core parameter, 1.e.
critical boron concentration or pin peaking ratio. To
increase the probability of network generalization, it is
desirable to keep the total number of weights in the ANN model
less than the number of training patterns([17]. The number of
hidden nodes was chosen to be 17 resulting in an ANN which has
442 weights and 18 bias values. With 3068 training patterns,
there are over six training patterns per weight value. If the
model can correctly classify a number of training patterns
that is larger that the number of weights in the model, the
implication is that the model has learned the functionality
between the input and the output and has not just memorized
the correct outputs for the given inputs.
Results

Due to the large number of training patterns, and LPs in
general, presentation of the results is not simple. The RMS
error gives a measure of the cumulative error over the entire
training set, but does not give detailed information about

specific LPs. Table 4.1 contains information about the RMS



45

Table 4.1 Training and recall results.

Core Parameter Training Validation
RMS RMS
Boron concentration 0.0243 0.0266
Pin peaking 0.0411 0.0449

error of the training and validation sets for the critical
boron concentration and pin peaking ratio.

The RMS error reported in Table 4.1 is that of the
normalized data, therefore its magnitude 1is not the important
feature. A better measure of the ANN’s ability to predict the
correct output will be presented later. However, with RMS
errors for critical boron concentration of 0.0243 and 0.0266
on the training and validation sets, respectively, one can
infer that the network performed the desired mapping between
input and output almost equally well for both data sets. It
follows, therefore, that the ANN model has learned to predict
the critical boron concentration of the validation set from
training on the data in the training set.

For the case of pin peaking, the ANN had more trouble
learning the functionality between input and output, as
indicated by the larger value of the RMS errors of 0.0411 and
0.0409. However, there was still good agreement between the
training and validation sets. And, it again follows, that the
ANN model has learned to predict the pin peaking of the

validation set to a similar degree of accuracy as the training



46
set.

The RMS error is, however, not the only, or even the
best, way to measure the acceptability of the ANN model.
Another method of presenting the results of the ANN modelling
is to plot the un-normalized predicted output against the un-
normalized actual output. A perfect mapping of input to
output would be represented by a line on the plot of slope one
and y-intercept of zero. When the appropriate error bounds
are placed on the plots, it is relatively easy to see where
the ANN performs well and where it doesn‘t.

Figures 4.1 and 4.2 show the actual or target boron
concentration plotted against the predicted output from the
ANN for the training and the validation sets, respectively.
The lines drawn on the figures are the +3% (approximately 57
ppm) error bands, more than 99% of the data points in the
training set and more than 98% of the data points in the
validation set are within these bands. This corresponds to a
Pearson’s product-moment correlation coefficient of 0.97995
and 0.97618 between the predicted and the actual output for
the training and validation sets, respectively.

Figures 4.3 and 4.4 show the actual or target pin peaking
plotted against the predicted output from the ANN for the
training and the validation sets, respectively. The lines
drawn on the figures are the *10% error bands, more than 90%

of the data points from the training set and more than 87% of



ppm

Predicted boron concentration,

47

Predicted vs. Actual Boron Concentration

+/- 3% error lines
Training set

2400

2300

2200

2100

2000

1500

1800

1700

1700 1800

Figure 4.1

| I 1 I |
1500 2000 2100 2200 2300 2400

Boron concentration, ppm

Prediction results - critical boron
concentration training set.



ppm

Predicted boron concentration,

48

Predicted vs. Actual Boron Concentration

2400

+/- 3% error lines
Validation set

2300

2200

2100

2000

1500

1800

1700

Figure 4.2

1 || I I |
1700 1800 1900 2000 2100 2200 2300 2400

Boron concentration, ppm

Prediction results - critical boron
concentration validation set.



49

Predicted vs. Actual Pin Peak Ratio
+/- 10.0% error lines
Training set

Predicted Pin Peak Ratio

Pin Peak Ratio

Figure 4.3 Prediction results - pin peaking ratio training set.



Predicted Pin Peak Ratio

50

Predicted vs. Actual Pin Peak Ratio
+/- 10.0% error lines
Validation set

Pin Peak Ratio

Figure 4.4 Prediction results - pin peaking ratio
validation set.



51

the data points from the validation set are within these
bands. This corresponds to a Pearson’s product-moment
correlation coefficient of 0.96597 and 0.95848 between the
predicted and the actual output for the training and
validation sets, respectively.
Discussion

When the accuracy of the results reported above are
compared with the accuracy of other methods of calculating
core parameters, the results are mixed. For the critical
boron concentration, the reported accuracy of SIMULATE-3 is
within 5-10 ppm[33] which is around 1% of a typical value for
the critical boron concentration. The ANN model in this work
was able to predict 75% and 71% of the core reload patterns to
within 1% in the training and validation sets, respectively.

Typical errors in the calculated pin peaking ratios are
also reported to be approximately 1%[33]. 1In this area, the
ANN obviously does not perform well. A possible reason for
this is in the problem definition. The critical boron
concentration is related to k., which is a global core
parameter and the ANN was able to learn the mapping from input
to output in the training set. The pin peak ratio, however,
is a local condition and is in fact accompanied in the SOAl
Database by the location of the pin peak in the core. The
inclusion of the location of the maximum pin peak ratio as a

parameter in the training (and recall) set may allow the ANN



54
to learn a more correct functionality.

While the accuracy of the ANN predictions is not as good
as the conventional methods, the speed at which the ANN can
make those predictions is unparalleled. The computational
inefficiency in ANN models occurs in the training phase which
is separated from the production phase. Therefore, when the
user wants to use the ANN to predict core parameters, the
prediction for any given core LP is almost instantaneous on
almost any modern personal computer or workstation. This 1is
not true in methods where the parameter is calculated
directly.

Comparison with Similar Work

In the work by H. Kim[l4] et al. two reactor core
parameters, pin peaking and k., were predicted using an ANN
trained with back propagation. The exponential sigmoid
transfer function was used to construct a network with 21
inputs (the size of their eighth core), 500 hidden nodes and
18 output nodes. The input values for fresh fuel were
modified by the neutron importance function under the
impression that this was necessary to further distinguish the
physical location of the fuel assemblies in the core in
relation to position in the input vector. The eighteen output
values form a 1x18 binary vector that is broken into two
groups of nine bits each. The two nine bit numbers are

converted into a real valued number by the group-and-weight



% |
scheme as presented in the paper. One thousand random loading
patterns were generated to train the ANN and one hundred other
loading patterns were generated at random to test the ANN.
The loading patterns consisted of twice burned, once burned
and fresh fuel assemblies and were represented as -1, 0, 1,
respectively.

With their 19,500 node ANN, Kim et al. were able to train
the network in roughly 300 iterations to predict 90% of the
power peaks and 95% of the k. values to within +6.0% and
+0.3%, respectively. Table 4.2 summarizes the differences

between the work by Kim et al. and the work in this paper.



54

Table 4.2 ANN comparison table.
Comparison This work Kim et al.
Architecture 25-17-1 21-500-18
Pre-processing Normalize Neutron.imp.
function
Output Normalized 18 bit binary
real no.
Batch N =1,0,1
Training patterns > 3000 1000
1/8 core size 26 21
Transfer function arctangent sigmoid

Resultsd Kaer > 98% < +.3%* > 90% < £.3%
boron concentration | > 98% < +3% -————
pin peaking > 87% < #10% > 95% < *6%

* The results for kg, for this work are an approximation based on a

personal communication with G.I.

Maldonado([22].

approximation was arrived at is shown in Appendix C.

The method by which the




55

CHAPTER 5. CONCLUSIONS

Based on the results presented in the previous chapter,
the conclusion drawn from this work is that PWR core
parameters can be predicted fairly accurately with ANNs, as
shown by the predictions of the critical boron concentration.
While the error level in the ANN predictions is larger than
that achieved by direct calculation of the parameters, there
is a considerable time savings in the ANN technique. Further
time savings will be realized in ANN predictions of EOC core
parameters since nodal diffusion codes must do separate
calculations for each depletion step. However, until the
accuracy level of the ANN parameter prediction is improved for
local parameters, the usefulness of this method in nuclear
fuel management will be limited.

Possible Future Work

Further work on increasing the accuracy of the ANN
parameter predictions is necessary. One possible way to
improve the accuracy of the prediction would be to research
and develop a new ANN architecture. There is considerable
knowledge about the nature of the core reload problem and the
neutron diffusion equation that could be used to construct a
specialized ANN architecture. An ANN which more closely

models the diffusion equation should be able to learn the



56
underlying functionality of the core reload problem more
efficiently than an ANN with a standard architecture.

The ANN model developed in this work was used to model an
eighth core of a PWR. Although the core reload problem 1is
much more complicated for BWR'’s, an ANN method would have the
same speed advantage over direct methods used in BWR core
reload design as was demonstrated in this work. Therefore,
some investigation into using ANNs to predict BWR core
parameters would be warranted.

In the broader scheme of designing core LPs, the
development of an ANN to generate core parameters is just the
first step. The development of a core reload system (COS)
which would automate the process of finding a new core reload
pattern is the ultimate goal. The proposed COS would employ a
second ANN, or some other optimization method, which would be
trained to re-order the core to maximize a given parameter or
parameters. The optimization method that is eventually chosen
would use the core parameter predictor, developed as a result
of this work, to evaluate the core reload patterns that it

generates.



10

BIBLIOGRAPHY

[1] E.B. Bartlett. "Nuclear Power Plant Status Diagnostics
Using Simulated Condensation: An Auto-Adaptive Learning
Technique." Ph.D. Dissertation, University of Tennessee
at Knoxville. (1990).

[2] A. Basu. "Nuclear power plant status diagnostics using a
neural network with dynamic node architecture." M.S.
Thesis, Iowa State University, (1991).

[3] M. Caudill. "Neural Networks Primer, Part 1." AI Expert 6
(Dec, 1987): 46-52.

[4] M. Caudill. "Neural Networks Primer, Part 2." ATl Expert 7
(Feb, 1988): 55-61.

[5] M. Caudill. "Neural Networks Primer, Part 3." AI Expert 7
(June, 1988): 53-59.

[6] Y.A. Chao, C.W. Hu and C.A. Suo. "A Theory of Fuel
Management via Backward Calculation." Nucl. Sci. Eng. 93
(1986): 78-87.

[7] J. Colletti, S.H. Levine, and J.B. Lewis. "Iterative
Solution to the Optimal Poison Management Problem in
Pressurized Water Reactors" Nucl. Technol. 63 (Dec,
1983): 415-425.

[8] "CITATION Code Manual." National Energy Software Center,
Argonne National Laboratory (Oct, 1971).

[9] W.J. Freeman. "The Physiology of Perception." Scientific
American (Feb, 1991): 78-85.

[10] A. Galperin, S. Kimhi and M. Segev. "A Knowledge-Based
System for Optimization of Fuel Reload Configurations."
Nucl. Sci. Eng. 102 (1989): 43-53.

[11] R. Hecht-Nielsen. Neurocomputing; Addison-Wesley
Publishing Company: Reading, Massachusetts, (1990).

[12] R. Hecht-Nielsen. "Counterpropagation networks." Proc. of
the Int. Conf. on Neural Networks II, IEEE Press, New
York (June 1987): 19-32.




[13]

[14]

[15]

[16]

[17]

(18]

58

J. Hertz, A. Krogh and R.G. Palmer. Introduction to ;he
Theory of Neural Computation; Addison-Wesley Publishing
Company: Reading, Massachusetts, (1991).

H.G. Kim, S.H. Chang and B.H. Lee. "Pressurized Water
Reactor Core Parameter Prediction Using an Artificial
Neural Network." Nucl. Sci. Eng. 113 (1993): 70-76.

H.G. Kim, S.H. Chang and B.H. Lee. "Optimal Fuel Loading
Pattern Design Using an Artificial Neural Network and a
Fuzzy Rule-Based System." Nucl. Sci. Eng. 115 (1993):
152-163.

Y.J. Kim, T.J. Downar and A. Sesonske. "Optimization of
Core Reload Design for Low-Leakage Fuel Management in
Pressurized Water Reactors." Nucl. Sci. Eng. 96 (1987):
85=-101.

M.A. Kramer and J.A. Leonard. "Diagnosis Using
Backpropogation Neural Networks - Analysis and
Criticism." Computers chem. Engng. 14 12 (1990): 1323-
1338

D.J. Kropaczek and P.J. Turinsky. "In-Core Nuclear Fuel
Management for Pressurized Water Reactors Utilizing
Simulated Annealing." Nucl. Technol. 95 (1991): 9-32.

J.R. LaMarsh. Introduction to Nuclear Engineering, 2nd
Edition; Addison-Wesley Publishing Company: Reading,
Massachusetts, (1983).

R. Lippmann. "An Introduction to Computing with Neural
Nets.", IEEE Acoustics Speech and Signal Processing
Magazine 4 (Apr, 1987): 4-22.

G.I. Maldonado. "Non-Linear Nodal Generalized
Perturbation Theory Within the Framework of PWR In-Core
Nuclear Fuel Management Optimization." Ph.D.
Dissertation, North Carolina State University, (1993).

G.I. Maldconado. Personal communication. Iowa State
University, Ames, Iowa, (July 7, 1994).

H. Motoda. "Optimal Control Rod Programming of Light
Water Reactors in Equilibrium Fuel Cycle" Nucl. Sci. Eng.

46 (1971): 88-111.

H. Motoda. "Optimization of Control Rod Programming and
Loading Poison in a Multiregion Nuclear Reactor by the
Method of Approximation Programming" Nucl. Sci. Eng. 49
(1972): 515-524.




59

[25] K.C. Okafor and T. Aldemir. "Construction of Linear
Empirical Core Models for Pressurized Water Reactor In-
Core Fuel Management." Nucl. Technol. 81 (1988): 381-392.

[26] G.T. Parks. "An Intelligent Stochastic Optimization
Routine for Nuclear Fuel Cycle Design." Nucl. Technol.
233 (1990): 233-246.

[27] C.J. Pfeifer. "PDQ-7 Reference Manual II." WAPD-TM-
947 (L), Bettis Atomic Power Laboratory (June, 1972).

[28] K. Sekimizu. "Optimization of In-Core Fuel Management and
Control Rod Strategy in Equilibrium Fuel Cycle" J. Nucl.
Sci. Technol. 12 5 (May, 1975): 287-296.

[29] "SIMULATE-YA Code Manual." YAEC-1518, Yankee Atomic
Energy Corporation (Nov, 1985).

[30] D.A. Sprecher. "On the structure of continuous functions
of several variables." Trans. Am. Math. Soc. 115 (Mar,
1965): 340-355.

[31] J.G. Stevens, K.S. Smith and T.J. Downar. "The COUNTM
Suite and SOAl Loading Pattern Database." Studsvik of
America, Idaho Falls, Idaho, (June, 1992).

[32] J.G. Stevens, K.S. Smith, K.R. Rempe and T.J. Downar.
"Optimization of PWR Shuffling by Simulated Annealing
with Heuristics." Proc. of the American Nuclear Society
I, (Apr, 1994).

[33] J.G. Stevens. Personal communication. Studsvik of
America, Idaho Falls, Idaho, (June 9, 1994).

[34] M. Takeda and J. W. Goodman. "Neural Networks for
Computation: Number Representations and Programming
Complexity." Appl. Optics 25, 18 (1986): 3033.

[35] P.J. Werbos. "Backpropagation Through Time: What It Does
and How to Do It." Proceedings of the IEEE 79.10 (Oct,
1990): 1550-1560.

[36] B. Widrow and M.A. Lehr. "30 Years of Adaptive Neural
Networks: Perceptron, Madaline, and Backpropagation."
Proceedings of the IEEE 78.9 (Sept, 1990): 1415-1441.

[37] Merriam-Webster Inc.. Webster’'s Ninth New Collegiate
Dictionary; Publishers: Springfield, Massachusetts,
(1985) .




60

APPENDIX A. COMPUTER CODES

This chapter contains the computer codes used in this
work. The back propagation program, called annl, is made up
of three files: mainl.c, iol.c and bckprpl.c. The program is
initiated by mainl.c which calls various routines from iol.c
and bckprpl.c. The routines in iol.c are mostly input and
output routines which handle reading in values which control
the execution of the program, the network input and output,
and the weights. The routines in bckprpl.c deal mainly with
the various stages of the back propagation algorithm, such as:

feed forward, back propagation of errors and change of

weights.

MAIN1.C

/* * * *  BACK PROPAGATION NEURAL NETWORK * * =
* * * WRITTEN BY: SCOTT E. WENDT o
* * * TOWA STATE UNIVERSITY, AMES, IA * * *

W R This is the main program from which control is

transferred to the appropriate subroutines. The
file ‘net.inp’ contains all the important parameters
required for execution and 1is read almost

immediately.
* % ok ok Kk */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>



61

#include <string.h>

#include "annl.h" /* Contains dimension info for arrays * iy
inkt KASE, /* Number of patterns int training set */
mode; /* Training or recall mode *x/
float rms = 0.0, /* Accumulator of RMS err per data set */
StpRMS; /* Target RMS value JINP O/
long 1int
SAFE, /* # of iters between saves JINP */
count = 0; /* # of iters *
main ()
{
extern void initl (), init2(), input(), initerr (), fdfwd(),
deltarule(), backprop(), sdiff(), tstsav(),
RMS (), outp(), cnt();
int 1i;
time_t t;
srand ( (unsigned) time(&t)); /* Randomize using system clock */
indtd () /* Read "net.inp" ¥
araed (g /* Read wts file 2
switch (mode) {
cgage Dz { #* secroescossses Tradn whe. ssssessemraananmas * 7
input (0) ; /* Read input and answers ar i
initerr(); /* Init. error terms L
do { /* Maln program loop LN
count++; /* Incr counter for wgt sav B
deltarule(); /* Back propagate the errors */
initerr(); /* Init. error terms */
for (i = 0; i < KASE; i++) { /* Loop thru training set */
fdfwd (1) ; /* Process hidden/output layers */
backprop (i) ; /* Calculate the errors i
} /* 1 loop - KASE */
RMS () ; /* Function to calc RMS error */
tstsav(); /* Test if time to save wgts wy
} while (rms > StpRMS); /* End main program loop ¥
count = SAFE; /* Force program to save wgts */
tstsav() ; /* Test if time to save wgts o]
break;
} /* End case 1 */
case 1: { /* ======= Recall wts on validation set ======= */
input (1) ; /* Read input and answers */
for (i = 0; i < KASE; i++) { /* Loop thru training set */
fdfwd (1) ; /* Process hidden/output layers */
sdiff(i); /* Calculate the errors L7 4
} /* 1 loop - KASE */
RMS () ; /* Function to calc RMS error * g



62

printf ("\nRMS err on the recall set = %f; %5d patterns.\n",

outp (1) ;

ent();

break;

} /* End case 1

case 2: { /* ====

1aput (2) 3

for (i = 0y 1 <
fdfwd (i) ;
}

outp(2) ;

break;

} /* End case 2

} /* End switch

return;

}

rms, KASE) ;
/* Write .out file
/* Count patterns by error

== Recall wts on unknown data set ======
/* Read input and answers

KASE; i++) { /* Loop thru training set
/* Process hidden/output layers
/* 1 loop - KASE
/* Write .out file

N
*7



63

Iol 'C

L This part of the program delas mostly with input and
output functions, such as: reading weight and data

files and writing new weights to a file.
* % Kk ok Kk */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "annl.h"

FILE *textfilel, *textfilel,

*rtextfile3; /* Poilinter to file being used ¥*]
char
inbuf [50], /* Input buffer L
fnamel [8], fname2[8], /* Data file names L7
wnamel[16] ,wname2[16], /* Weight file names oot
name[16] ; /* 4 letter prefix & dummy */
int
nodes [MXLYRS], /* Number of nodes per layer *y
MX, /* One less than MXLYRS L
save, /* Save when 1 */
sav = 1, /* flag for wt file to use *J
prn, /* Scrn print: O=no, l=yes .INP */
indx [MXHNDES], /* Index array for hidden node */
mxnds [4] ; /* No of nodes arrays can hold */
float
x]1 [MXKASE] [MXINDES], /* Input array - read from file */
w2 [MXHNDES] [MXINDES], /* Hidden layer weights i
w3 [MXONDES] [MXHNDES], /* Output layer weights 27
L2 [MXHNDES] , /* Bias term for second layer */
L3 [MXONDES] , /* Bias term for third layer L/
x3 [MXKASE] [MXONDES], /* Output layer e
ans [MXKASE] [MXONDES] , /* Correct answer from file it
beta2, beta3, /* Learning rates - wts Eif
blZ; bl3; /* Learning rates - biass '
alpha, /* momentum term */
savrms = 2., /* Best RMS err - to be saved */
poldrms = 2., /* RMS err from prev iter w
oldrms2 = 2., /* RMS err prior to prev iter */
delrms = 0.0, /* Accum diff btwn rms/oldrms */
pi = 3.1415926535; /* pi */
extern int
KASE, /* No. of patterns *yf
mode ; /* training or recall mode .INP*/
extern float
rms, /* Accum RMS err per data set */
StpRMS; /* Target RMS wvalue LJINP */

extern long int



64

SAFE, /* # of iters between saves.INP*/
count ; /* # of iters */

Read "net.inp" file for current instructions

void initl ()

int i,dum,lyrs;

MX = MXLYRS - 1;

mxnds [0] = MXINDES;
mxnds (1] = MXHNDES;
mxnds [MX] = MXONDES;

if ((textfile3 = fopen("net.inp", "r")) == NULL ) {
printf ("net.inp not found\n");
return;
}

fscanf (textfile3, "%s %s\n", fnamel, inbuf);
fscanf (textfile3, "%d %s\n", &KASE, inbuf);
fscanf (textfile3, "%s %s\n", fname2, inbuf);
fscanf (textfile3, "%d %s\n", &lyrs, inbuf);
for (1 = 0; 1 < 1yEs; i++)

fscanf (textfile3, "%d ", &nodes[1i]);
fscanf (textfile3d, "%s\n", inbuf);
fscanf (textfile3, "%d %s\n", &mode, inbuf);
fscanf (textfile3d, "%d %s\n", &SAFE, inbuf);
fscanf (textfile3, "%d %s\n", &prn, inbuf);
fscanf (textfile3d, "%f %s\n", &beta2, inbuf);
fscanf (textfile3, "%f %s\n", &beta3, inbuf);
fscanf (textfile3, "%f %s\n", &alpha, inbuf);
fscanf (textfile3, "%f %s\n", &StpRMS, inbuf);
fscanf (textfile3, "%d %s\n", &dum, inbuf);
fscanf (textfile3, "%d4d %s\n", &dum, inbuf);
fclose(textfilel);

beta2 /= (float)KASE;
betal /= (float)KASE;
bl2 = beta2/(float)nodes([0];
bl3 = betald/(float)nodes[1];
if (lyrs > MXLYRS) {
printf ("ERROR: Specified no. of layers
exceeds array formatting.\n");

exit (0) ;
}
for (1 = 07 1 < 1yEs; i+s

)
if (nodes[i] > mxnds[i])
o

{
printf ("ERROR: Spec. of nodes in layer



65

%d exceeds array formatting.\n",1i);

exit (0);
}
return;

}

/* ______________________________________________________
Initialize weights - random or from previous file
______________________________________________________ */

void 1init2()

{

int i, 3j,dum;

int nds[MXLYRS], nlyrs;
strcpy (wnamel, fname2) ;
strcpy (wname2, fname2) ;
strcat (wname2, " .bak") ;
strcat (wnamel, ".wts");
strcat (wname2, ".wts");

/* Generate new random wts */
for (1 = 0; 1 < nodes[1l]; 1++) {
for (j = 0; j < nodes[0]; Jj++)

w2[1i][J] = ((float)rand()/(float)RAND_MAX - 0.5);
L2[i] = ((float)rand()/(float)RAND_MAX - 0.5);
}
for (i = 0; i < nodes[MX]; i++) {
for (j = 0; jJ < nodes[1]; J++)
w3[i][J] = ((float)rand()/(float)RAND_MAX - 0.5);
L3[1i] = ((float)rand()/(float)RAND MAX - 0.5);
}
/* Check to see if "name".wts exists from a previous run. */
strcpy (name, fname2) ;
strcat (name, ".wts");
if ((textfile2 = fopen( name, "r")) == NULL ) {
printf ("%s not found\n", name);
return;
}

/* File exists so read in previous values */

fscanf (textfile2, "%f %s\n", &savrms, inbuf);
fscanf (textfile2, "%d %s\n", &nlyrs, inbuf);
for (1 = 0; i < nlyrs; is+)

fscanf (textfile2, "%d ", &nds[i]);
fscanf (textfile2, "%s\n", inbuf);
oldrms = savrms;

oldrms2 = savrms;



66

if (nlyrs > MXLYRS) {
printf ("ERROR: Specified no. of layers
exceeds array formatting.\n");

exit (0) ;
}
for (1 = 0; 1 < nlyrs; i++)

if (nds([i] > mxnds[i]) {
printf ("ERROR: Spec. # of nodes in layer
$d exceeds array formatting.\n",1i);
exit (0) ;
}
for (i = 0; 1 < nlyrs; i++)
if (nds[i] > nodes[i]) {
printf ("WARNING: Spec. # of nodes in layer
%d exceeds previous nodes.\n",i);
printf ("Continue anyway? Enter 1 for yes. \n");
gets (inbuf) ;
sscanf (inbuf, "%d", &dum) ;
1f (dum != 1) exit(0);
}

for (i = 0; 1 <« nds[1l]; i++) {
for (3 = 0; j < nds[0]; j++)
fscanf (textfile2, "%f %s\n",&w2[1][J], inbuf);
fscanf (textfile2, "%f %$s\n",&L2[1i], inbuf);
}
for (i = 0; 1 < nds[MX]; i++) |
for (3 = 0; J < nds[1l]; J++)
fscanf (textfile2, "%f %s\n",&w3[i][j], inbuf);
fscanf(textfile2, "%f %s\n",&L3[1], inbuf);
}
fclose(textfilel) ;

return;

void input (int tst)

int i, j, dum;

strcpy (name, fnamel) ;

strcat (name, ".dat");

if ((textfilel = fopen(name, "r")) == NULL ) {
printf ("%s not found\n", name):
return;

}



67

switch (tst) {

case 0:
case 1: {
for (i = 0; 1 < KASE; i++) {
for (j = 0; j < nodes[0]; J++)
fscanf (textfilel, "%f ", &x1[i][j]);
for (3 = 0; j < nodes[MX]; Jj++)
fscanf (textfilel, "%f ", &ans[il[J]);
}
break;
}
case 2: {
for (1 = 0; 1 < KASE; 1i++) {
for (37 = 0; j < nodes[0]; J++)
fscanf (textfilel, "%f ", &x1[i][3]);
}
}
}

fclose(textfilel) ;

/* Init index array */
for (j = 0; J < MXHNDES; j++)
indx[j] = J;
return;

}

/* ________________________________________________________
Test if rms error is a min. and SAFE iterations have passed

void tstsav()

{
extern void wgtsav (), imp();

1€ (80 == 1) [
printf("%10.8f,%10.8f\n", rms, delrms);
}
i1f (count % SAFE == 0)
save = 1;
if (rms <= savrms && save == 1) {

wgtsav () ;
save = 0;

count = 0;

savrms = rms;

}
oldrms2 = oldrms;
oldrms = rms;
return;



/* ________________________________________________________
Save current network values

void wgtsav()

{

int 4,9

/* Open file, testing for success */
if (sav == 1) {
if ((textfile2 = fopen(wnamel, "w")) == NULL ) {
printf ("Error opening %s for writing\n", wnamel) ;
exit (0) ;
}
gsav = 23
}
else
if ((textfile2 = fopen(wname2, "w")) == NULL ) {
printf ("Error opening %s for writing\n", wname2) ;
exit (0) ;
}
gav = 1;
}

fprintf(textfile2, "%f\t$SavRMS\n", rms);
fprintf (textfile2, "%d\t\t$No_layers\n", MXLYRS);
for (i = 0; 1 < MXLYRS; i++)
fprintf (textfile2, "%2d ", nodes[i]);
fprintf (textfile2, "\t$Inodes_Hnodes_Onodes\n") ;

for (1 = 03 i = nodes[1]s i+xs) {
for (j = 0; j < nodes[0]); Jj++)
fprintf(textfile2, "%f\ts$w2([%d][%d]\n",
w2 [indx([1]][j],indx[1i],3]);

fprintf (textfile2, "%$f\t$L2[%d]\n",L2[indx[i]],indx[1i]);

}
for (i = 0; i1 < nodes[MX]; 1i++) {
for (j = 0; j < nodes[1]; J++)
fprintf (textfile2, "%f\t$w3[%d][%d]\n",

w3 [i] [indx[]]],1,indx[3]);
fprintf (textfile2, "$£\t$L3[%d]\n",L3[i],i);
}

fclose(textfile2);

return;



69

void outp(int tst)
{

int 3,3;

/* Open file, testing for success */
strcpy (name, fnamel) ;
strcat (name, ".out");

if ((textfile2 = fopen(name, "w")) == NULL ) (
printf ("%s not found\n", name);
return;
}

switch (tst) {
case 1: {
fprintf (textfile2, "RMS error on recall %f\n",rms);
for (j = 0; j < nodes[MX]; Jj++)
fprintf (textfile2, " Ans[%2d] Out[%2d] ",3J.3J);
fprinitf(textfilel, *\a“);
for (1 = 0; 1 < KASE; i++) {
for (j = 0; j < nodes[MX]; Jj++)
fprintf (textfile2, "S$f, %f£, *.ans[il[3]1.x3[i1[3]1);
fprintf (textfile2, "\n");
}
break;
}
case 2: {
for (j = 0; j < nodes[MX]; j++)
fprintf (textfile2, * Out[%2d] “,3);
fprintf(textfile2, "\n*);
for (1 = 0; 1 < KASE; i++)
for (j = 0; J < nodes[MX]; Jj++)
fprintf (textfile2, *%E£, *.x3[1][3]1);
fprintf (textfile2, "\n");
}
}

}
fclose(textfile2);

return;

}

void cnt()

{

int i,3J,COUNT[6];
float limit[7], dum;
float ABS(float);



limit [0]
Tarmie 1]
limit[2]
limit [3]
limit[4)]
Iimat.[5]
limit[6]
far (1 =
COUNT [ 1

— ol innnwnn

for (1 = 0
for {3 =

70

00 ;
. 001:
.005;

OO0 O0O0OO0O0
o
',_.\

; 1 < KASE; i++)
0; J < nodes[MX];

1if (damr< limit[1])
COUNTI[O] ++;

else i

f (dum < limit([2])

COUNTI[1]++;

else i

f (dum < limit[3])

COUNT[2] ++;

else 1
COUN
else 1
COUN
else {
COUN
£ F |

}

i 6] =

)

printf (*Gr
for (3 = 0
printf(*

f (dum < limit[4])
T[3]++;
£ (dum = 1limit[5])
T[4]++;

T[5]++;
dum > limit[6])
dum;

oup\t

7 J < 6; J++)

gd\t %5.3f < x < %5.3f\t %54\t

J++)
dum = ABS(ans[i][j]-x3[1]1(3]);

Error Range\t\t Number\t

/* Set limits on categories */

{

Percent \n");

$5.2f3%%\n",

j+1,limit[j],1limit[j+1],COUNT[3],
(float)COUNT[j]/ (float)KASE*100.) ;

float ABS(float x)

{

1f (% = 0.0)

return
else
return

{ =8¢ )3

X )&



BCKPRP1.C

* %k kK *k

* %k Kk kK

#include
#include
#include
#include
#include
#include

float

This part of the program contains the ’‘meat’ of‘the
ANN - the feed forward, back propagation and weight

change routines.
*/

<stdio.h>
<stdlib.h>
<math.h>
<time.h>
<string.h>
"annl.h"

12 [MXKASE] [

x2 [MXKASE] [

i3 [MXKASE] [MXONDES
1
]

MXHNDES ]

]

]

x3 [MXKASE] [MXONDES]
S

S

MXHNDES

e2 [MXHNDES] [MXINDE
e3 [MXONDES] [MXHNDE
eL2 [MXHNDES] ,
eL3 [MXONDES] ,

r
I
’
I
],
1,

delta2 [MXHNDES] [MXINDES],
deltal [MXONDES] [MXHNDES] ;

extern int

KASE,

nodes [MXLYRS],
MX,

indx [MXHNDES] ;

extern float

x1 [MXKASE] [MXINDES],
w2 [MXHNDES] [MXINDES],
w3 [MXONDES] [MXHNDES] ,
L2 [MXHNDES],

L3 [MXONDES] ,

ans [MXKASE] [MXONDES],
betaz2, beta3l,

bli, bl3,;

alpha,

rms,

delrms,

oldrms,

pis

/*
/'k
/*

/'k
/*
/'k
/*
/*
/*

/*
/‘k
/*
/*

/‘k
/'k
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

inputs
outputs

Hidden layer
Hidden layer
Output layer inputs
Output layer outputs
Error for hidden nodes
Error for output nodes
Error for hid lyr bias
Error for out lyr bias
Momntm for hid nodes
Momntm for out nodes

No. of patterns
No. of nodes per layer
One less than MXLYRS

Used to order nodes

from file
weights
weights

Input array -
Hidden layer
Output layer
Bias for hid nodes
Bias for out nodes
Answer from file
Learning rates - wts
Learning rates - bias
momentum term

i

Accum of RMS for data set*/

Accum diff rms & oldrms
RMS from prev iter

pi

*/
*/
¥



72

void initerr ()

{
ingE i, Ji
for (i = 0; 1 < nodes([1]; i++) {
for (j = 0; j < nodes[0]; J++)
e2[1][3J] = 0.0;
eL2[1] = 0.0;
}
for (i = 0; i1 < nodes[MX]; i++) {
for (j = 0; j < nodes[1]; j++)
e3[i][3] = 0.0z
elLL3[1] = 0.0;
}
rms = 0.0;
retburn;
}
/* ________________________________________________________
Hidden and output layer feed-forward
________________________________________________________ */
void fdfwd(int set)
{
int i,73;
float sigmd(float) ;
for (1 = 0; 1 < nodes[1]; i++) {
i2[set][1i] = 0.0;
for (3 = 0; J < nodes[0]; J++)
i2([set] [1] += w2[i][j]*x1[set] []];
i2[set][i] -= L2[1i];
2[set][i] = sigmd(i2([set][1]);
}
for (1 = 0; 1 < nodes[MX]; i++) {
i3([set][i] = 0.0;
for (j = 0; j < nodes[1l]; Jj++)
_ i3[set] [i] += w3 [i]([j]*x2[set][]];
13 [set] [1] -= L3[1i];
x3[set][i] = sigmd(i3[set][1]);
}
return;
}
/* ________________________________________________________
Back propagate the errors
________________________________________________________ */

void backprop (int set)



13

{
float deriv(float);
float sum, d[MXONDES], dum;

int i; 33

for (1 = 0; 1 < nodes[MX]; i++) {
dum = ans[set][i] - x3[set][i];
rms += dum*dum;
d[i] = deriv(i3[set] [i]) *dum;
for (j = 0; j < nodes[1]; j++)

e3[1][J] += d[i] * x2[set][3];

eL3[i] += d[i] * i3[set][i];
}

for (i = 0; 1 < nodes[1]; 1i++) |

sum = 0.0;

for (j = 0; j < nodes[MX]; J++)
sum += w3 [Jj][1]1*d[]];

dum = sum * deriv(i2[set] [i]);

for (j = 0; j < nodes[0]; Jj++)
e2[1i][]j] += dum * x1([set][]];

eL2[1i] += dAum * i2[set][i];

}

return;

}

volid sdiff (int set)
{

float dum;
int i;

for (1 = 0; 1 < nodes[MX]; 1i++) {

dum = ans[set][1] - x3[set][1];
rms += dum*dum;
}
return;
}
/* ________________________________________________________

void deltarule()
{

float dummy;

int 1, d:



For i = 0;
for {§ = < nodes
dummy = w3[i][3];
if (delrms > 0.0)
w3[1i][j] += (beta3*e3[i][j] + alpha*delta3([i][]]);

else

w3[i][j] += (beta3*e3[i][]]);
delta3[1][j] = w3[i][3J] - dummy;
I

L3[1] += bl3 * eL3[i];

}

for (1 = 0; 1 < nodes[1]; 1i++) {
for [ = 0; 9

< nodes[0]; Jj++) {
dummy = w2[1][3];
if (delrms > 0.0)
w2[1][J] += (beta2*e2([i][j] + alpha*delta2[i]l[]]):
else
w2([i][j] += (beta2*e2[i][j] + alpha*delta2[i][]]);
delta2([1][3] = w2([1][3] - dummy;
}
L2[i] += bl2 * eL2[i];
}

return;

float sigmd(float mu)
{

}

return(atan(mu) /pi + 0.5);

Function 2 - Inverse function for backprop

float deriv(float mu)

{
}

return{(1.0/(1.0+mu*mu)) ;

Find RMS, delrms and delrms2



5

rms = (float)pow(rms/ (double)KASE/ (double)nodes[MX],0.5);
delrms = oldrms-rms;

return;

)



ANN1l.H

* %k k Kk %k

* % Kk Kk Kk */

#define
#define
#define
#define
#define
#define

This is the header file for the ANN.

76

information on array subscripting.

MXKASE 3100
MXLYRS 3

MXINDES 26
MXHNDES 26
MXONDES 26
MXNODES 26

/*
/*
/*
/*
/ir

max
max
max
max
max

= o3 e 3

of
of
of
of
of

training sets/files
layers

input layer nodes
hidden layer nodes
output layer nodes

It contains



77

NET.INP

*okkokk This is the input file for the ANN. It contains all

pertinent information on the execution of ANN1.
%* %k k% Kk */

namel $SPrefix_for_data_file

8 SNo_of_patterns_to_read

name2 SPrefix_for wts_files

3 SNo_of_layvers

3 3 8 S$No_of_input_hidden_output_layers
0 $Training,_validation_or_unknown_(0,1,2)
500 $Iterations_btwn_saves

1 $Print_to_screen_ (0=no, l=yes)

3 S$Hidden_layer_learning_rate

5 $Output_layer_learning_rate

il SMomentum_learning_rate

.01 $Stopping_RMS

0 $Undefined

0 $Undefined

0 SUndefined

0 SUndefined

0 $Undefined



78

APPENDIX B. SAMPLE DATA FILES

This chapter contains a sample of the data from the SOAl
database and the normalized and abbreviated data files which
were created from the database. Ten lines from the SOAl
database appear in ten.dat. The data files created from the

SOAl database are: boronl0O.dat and pinl0.dat.

TEN.DAT - sample from SOAl database.

12132412242424214233224223 .194917E+04 .328458E+01

.145279E+04 .999993 1.774000 1.089113 811. .105580E+04
1.000020 1.6140001.074097 811. .466003E+03 1.000001 1.433000
1.055167 811. -.694324E+02 1.000004 1.326000 1.041435 811.

.367388E+02 .384481E+02 .311928E+02 .361563E+02
.162734E+02 .227378E+02 .185455E+02 .212195E+02

12132422142424224242123323 .190085E+04 .255812E+01
.140061E+04 .999996 1.823000 1.088243 811. .101469E+04
1.000003 1.637000 1.074664 811. .443510E+03 1.000007 1.439000
1.057877 811. -.852874E+02 1.000005 1.330000 1.043800 811.
.370418E+02 .379102E+02 .314673E+02 .363399E+02

.146373E+02 .229464E+02 .190479E+02 .212648E+02

12142132142324324242242322 ,192821E+04 .293691E+01
.142241E+04 .999994 1.808000 1.100316 912. .102115E+04
1.000002 1.619000 1.083774 912. .441953E+03 1.000006 1.422000
1.063972 912. -.863070E+02 1.000005 1.319000 1.034393 1011.
.370379E+02 .376806E+02 .316241E+02 .362784E+02

.143405E+02 .225466E+02 .189813E+02 .215323E+02

12142213242424224243222313 .183408E+04 .206408E+01
.132532E+04 1.000000 1.545000 1.078865 910. .959150E+03
1.000005 1.473000 1.053214 910. .408913E+03 1.000007 1.387000
1.043862 811. -.111558E+03 1.000002 1.311000 1.039119 912.
.354271E+02 .387097E+02 .327194E+02 .364472E+02

.112912E+02 .146098E+02 .196054E+02 .216102E+02



19

12142321242324214242224323 .197695E+04 .345457E+01
.146764E+04 .999998 1.888000 1.098934 912. .104099E+04
1.000000 1.664000 1.080372 912. .447003E+03 1.000002 1.429000
1.053242 912. -.837359E+02 1.000002 1.315000 1.036031 912.
.349685E+02 .386034E+02 .319949E+02 .369268E+02

.156200E+02 .230817E+02 .181719E+02 .214939E+02

BORON10.DAT - normalized data for boron concentration.

0.400000 0.200000 0.400000 0.200000 0.800000 0.200000 0.600000
0.400000 0.800000 0.400000 0.800000 0.400000 0.600000 0.600000
0.400000 0.800000 0.400000 0.800000 0.400000 0.400000 0.400000
0.800000 0.400000 0.400000 0.600000 0.238887

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.200000
0.400000 0.800000 0.400000 0.800000 0.400000 0.800000 0.600000
0.400000 0.600000 0.400000 0.800000 0.400000 0.400000 0.400000
0.800000 0.400000 0.600000 0.600000 0.418360

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.400000
0.400000 0.800000 0.400000 0.800000 0.400000 0.400000 0.600000
0.400000 0.800000 0.400000 0.800000 0.600000 0.200000 0.400000
0.800000 0.400000 0.600000 0.600000 0.226818

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.600000
0.200000 0.800000 0.400000 0.400000 0.400000 0.800000 0.400000
0.400000 0.800000 0.400000 0.800000 0.600000 0.400000 0.800000
0.400000 0.600000 0.400000 0.600000 0.190077

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.600000
0.400000 0.400000 0.400000 0.800000 0.400000 0.800000 0.600000
0.400000 0.800000 0.400000 0.800000 0.400000 0.400000 0.400000
0.800000 0.600000 0.200000 0.600000 0.137289

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.600000
0.400000 0.800000 0.400000 0.800000 0.400000 0.400000 0.600000
0.400000 0.800000 0.400000 0.800000 0.400000 0.200000 0.400000
0.800000 0.600000 0.400000 0.600000 0.157181

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.600000
0.400000 0.800000 0.400000 0.800000 0.400000 0.800000 0.400000
0.400000 0.800000 0.400000 0.800000 0.600000 0.400000 0.600000
0.400000 0.400000 0.200000 0.600000 0.349818

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.600000
0.400000 0.800000 0.400000 0.800000 0.400000 0.800000 0.600000
0.400000 0.800000 0.400000 0.800000 0.600000 0.400000 0.600000
0.400000 0.400000 0.200000 0.400000 0.339752

0.400000 0.200000 0.400000 0.400000 0.800000 0.200000 0.400000



(= @ =]

DD OO

PIN10.DAT - normalized data

OO O OO0 O [ o i e L= B i o Y <) o= Jl = > o O OO

o000 O

(= = e )

.400000
.400000
.800000

.400000
.200000
.400000
.400000

.400000
.400000
.400000
.800000

.400000
.400000
.400000
.800000

.400000
.400000
.400000
.800000

.400000
.200000
.400000
.400000

.400000
.400000
.400000
.800000

.400000
.400000
.400000
.800000

.400000
.400000
.400000
.400000

.400000
.400000
.400000
.400000

o e = (e No N o]

(=No el ] OO0 OO O0OO0o OO0 oOo = N e oo i =) [efelels] [l v o= B

OO O

.800000
.800000
.400000

.200000
.800000
.800000
.600000

.200000
.800000
.800000
.400000

.200000
.800000
.600000
.400000

.200000
.800000
.800000
.400000

.200000
.800000
.800000
.600000

.200000
.400000
.800000
.600000

.200000
.800000
.800000
.600000

.200000
.800000
.800000
.400000

.200000
.800000
.800000
.400000

(=l BB oo oo (e e Jlan f a ) (= Bl B (=R ool OO OO OO0 oo COoOO0O oo o

Qoo o

.400000
.400000
.600000

.400000
.400000
.400000
.400000

.400000
.400000
.400000
.400000

.400000
.400000
.400000
.600000

.400000
.400000
.400000
.600000

.400000
.400000
.400000
.400000

.400000
.400000
.400000
.200000

.400000
.400000
.400000
.400000

.400000
.400000
.400000
.200000

.400000
.400000
.400000
.200000

{2l = I v 2 oo oo QO OCO O OO OO OO ejiicle -] o OO

(e J o 4 o B ]

(s> Nes el ) O OO

80

.800000
.800000
.400000

.400000
.600000
.800000
.400000

for pin peaking.

.200000
.800000
.800000
.600000

.200000
.800000
.800000
.600000

.200000
.800000
.800000
.600000

.200000
.400000
.800000
.600000

.200000
.800000
.800000
.600000

.200000
.800000
.800000
.600000

.200000
.800000
.800000
.600000

.200000
.800000
.800000
.400000

(o= Bl = = I o= ] elelaNo] OO O0o oo Bl e B oo i e oo o lle] o0 o0 o oo o= o R B ] (ar o e

ocooo

.400000
.600000
.306682

.800000
.400000
.600000
.401232

.800000
.400000
.400000
«151531

.800000
.400000
.400000
.377086

.800000
.400000
.600000
163358

.800000
.400000
.600000
159134

.800000
.400000
.400000
137592

.800000
.400000
.400000
.187434

.800000
.400000
.600000
265153

.800000
.400000
.600000
.230095

sz o o

coOo

o oo (o e i an ] OO O i (e i e Bl an)

oo O

.600000
.200000

.200000
.800000
.400000

.200000
.600000
.400000

.400000
.800000
.400000

.400000
.400000
.200000

.400000
.800000
.400000

.400000
.800000
.400000

.400000
.400000
.200000

.400000
.800000
.400000

.400000
.800000
.400000

oo o [N R o O 0O

O oo

o oo (e e Il = ]

o OO

.600000
.400000

.600000
.400000
.800000

.600000
.600000
.400000

.200000
.600000
.400000

.400000
.600000
.400000

.600000
.400000
.800000

.600000
.600000
.400000

.600000
.600000
.400000

.600000
.400000
.600000

.600000
.600000
.600000



oo o

(e I e B e e

.400000
.400000
.400000
.800000

.400000
.200000
.400000
.400000

OO0 0

Do OO

.200000
.800000
.800000
.400000

.200000
.800000
.800000
.600000

20 00

(o I s B s [ o)

.400000
.400000
.400000
.600000

.400000
.400000
.400000
.400000

O C OO

o oOo0

81

.400000
.800000
.800000
.400000

.400000
.600000
.800000
.400000

[ g =l

L= e R

.800000
.400000
.600000
.145618

.800000
.400000
.600000
~a302323

o OO

.200000
.600000
.200000

.200000
.800000
.400000

(@ Ne N

.400000
.600000
.400000

.600000
.400000
.800000



82

APPENDIX C. APPROXIMATING k.., FROM CRITICAL BORON
CONCENTRATION

This chapter contains a description of how I converted my
prediction accuracy in critical boron concentration to a
prediction accuracy in K.¢.

The following rules-of-thumb for critical boron
concentration and k., during a 12 month cycle were related to
me by G.I. Maldonado[22]. The critical boron concentration is
approximately 1000-1200 ppm at BOC and is roughly 0 ppm at
EOC. This corresponds to a percent change in boron
concentration of 8.3% to 10% per month. The change in k. per
month is roughly 0.01 which corresponds to a percent change in
keee of 0.83% or 1.0%.

Based on the above comparisons of thumb rules, the
conclusion is that a 3% accuracy rate in critical boron

concentration is equivalent to a 0.3% accuracy rate in K. .



