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CHAPTER 1. INTRODUCTION 

Nuclear Power Reactor Core Loads 

Every 12 to 24 months the reactor at a nuclear power 

plant is shutdown, partia lly dismantled a nd refueled. During 

the refueling process, approximately one third of the fuel 

assemblies in the core are removed and placed in a n earby 

storage facility for eventual disposal. The remaining fuel 

assemblies will remain in service in the core for an 

additional one or t wo fuel cycles until they too will be 

discharged. The new, fresh fuel assemblies and the old, 

partially s p ent fuel assemblies are "shuff l e d" and p laced back 

into t h e core. This n ew core arrangement or pattern is not 

random or haphazard , but is the result of months o f careful 

analysis by a team o f nuclear engineers. 

Depending on t h e reactor, the new core loading pattern 

(LP) must satisfy several design criteria based on safety and 

operational goals. Some of the possible criteria the 

designers may have to consider are : the maximization of the 

length of the n ext power cyc l e , the minimi za t ion of the 

n eutron flux at the reac t or vessel wall, a nd/or the 

minimization of the power peaks. Current l y, the analysis of 

core LPs is accomplished with complex computer programs which 

use diffusion or transport theory, often employing Monte Carlo 
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methods, to calculate the various parameters which quantify 

the physical characteristics of the new core . 

These computer codes, while accurate , often require large 

amount s of computing power and time . Often , while the 

computer is performing the calculations , the engineer must 

wait, pondering the next step . Without the feedback provided 

by the current calculation, the next step is a mystery. The 

development of a fast er core parameter prediction system, 

which would give almost instant estimates of the values of 

thousands of new designs, could greatly speed the design of 

new core reloads. 

Artificial Neural Networks 

Artificia l neural networks (ANNs) are computer programs 

which employ a distributed memory scheme to 'learn ' such 

things as function mapping, pattern classification, pattern 

recognition, etc . . ANNs ' learn' or are trained through a 

process where internal memory parameters, or weights, are 

systematically altered until the network performs as desired . 

During the training phase , the ANN is presented with an input 

pattern and the correct answer. The answer is stored for 

future reference while the input pattern is 'fed' into the 

network. After many internal mathematical calculations, the 

network produces an answer. This calculated answer or output 

is compared to the correct answer stored in memory. If the 

calculated answer is not the same as the stored answer, which 
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is very likely early in the learning process, the interna l 

memory parameters or weights are adjusted to produce a better 

answer the next time. This process is repeated many times on 

many input/answer pairs until the ANN learns to produce output 

'close enough' to the true answers, then the training 

procedure is halted. The objective in training an ANN is to 

have it learn the underlying functionality between the input 

and the output by example. If this occurs there is a good 

probability that the ANN has learned the functionality between 

the input and the output a nd will produce an adequately 

accurate answer when novel input data (i.e ., not part of the 

training set) is presented to the network. 

Problem Statement 

This work describes the use of ANNs to estimat e or 

predict key physical parameters which are needed to va l idate a 

particular core LP design. The beginning of cycle (BOC ) 

parameters which this work will try to predict are the 

crit i cal boron concentration and the pin peaking ratio. 

In an industrial setting , it is proposed that the 

engineers in charge of designing the new core LP would use the 

results from the previous core loading calculations to train 

the ANN for the current analysis. For this work, a database, 

developed by Studsvik of Arnerica[31], containing core LPs and 

the corresponding core parameters was used to train and test 

the ANN. 
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CHAPTER 2 . ARTIFICIAL NEURAL NETWORKS 

Introduction 

The field of neural computing is new and ever expanding. 

Dr. L. M. Simmons, Chair and executive vice president of the 

Sante Fe Institute (SFI) wrote, "We are witnessing the 

creation of new sciences of complexity, sciences that may well 

occupy the center of intellectual life in the twenty-first 

century." [ 13] (p. xiii ) . Indeed, as time progresses, 

scientists and engineers are finding more and more ways to put 

ANNs to work. 

Multi-layer Perceptrons 

Although there are many types of ANNs, this work will 

focus on the feed forward multi-layer perceptron (MLP) . In 

the class of neural n etworks which include MLPs the convention 

is to construct a network consisting of 'neurodes ' arranged in 

groups, or layers , with 'connections' between the various 

layers. The neurodes, also referred to as processing elements 

or just nodes, are the location where all of the calculations 

carried out within the network occur . In this work, the 

neurodes are defined to be everything within the region 

bounded by the dotted lines in Figure 2.1 . 

As stated above, the neurodes are arranged in layers with 

each neurode in one l ayer connected to each neurode in the 
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previous layer and to each node in the successive layer. 

Because of this scheme o f neurode connections , the MLP is said 

to be completely inter-connected between layers. Normally 

there are no connections between neurodes in the same layer. 

The MLP architecture consists of multiple layers of 

neurodes. The l ayers are broken down into an input layer, one 

or more hidden layers and an output layer ; the network shown 

in Figure 2 . 1 has a single hidden layer. In the figure, the 

row of solid boxes below the circle represent the adjustable 

learning parameters, or weights. The circle represents the 

neurode activation function and the solid lines between the 

circles and boxes are the interconnections . 

During the training, or l earning phase, input vectors 

with known output vectors are presented to the network . This 

process where only ' questions' with known 'answers ' are put 

through the network is known as supervised learning. Repeated 

application of the various input / output vectors allows the 

network to l earn to produce the correct output to each set of 

inputs by adjusting its weight values. 

If enough examples are presented to the network, and 

these examples are representative of t h e data set as a whole, 

the network may be able to learn the underlying functi onality 

between the input and the output. If the ANN does learn the 

input/output functionality correctly , it may then be able to 

correct l y classify novel input data. This ability to learn 
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the correct classification for novel data is referred to as 

generalization . When a network fails to generalize , but 

instead learns to produce the correct answers only to the 

specific inputs it was trained on , it is said to have 

memorized the data. 

The flow of data through a feed forward MLP can be 

divided into two phases . First the netwo rk receives an input, 

or question, from the outside world via the input nodes. The 

input nodes pass the data forward, or up the network 

structure , fanning out their data to all of the nodes in the 

hidden layer . No calculations are performed by the input 

nodes. The hidden nodes pass their outputs on to the output 

nodes and the output nodes display the network's output to the 

outside world . This stage, from input to output, is aptly 

called the feed-forward phase. 

The second phase begins with a comparison of the 

calculated output and the desired output for each of the 

output nodes. The difference between the calculated and 

desired output is the network error. This error is used to 

alter the interconnection weight parameters so that the error 

will be smaller the next time . It is the systematic changing 

of these weights that is responsible for the ability of the 

ANN to 'learn'. The error is propagated backward through the 

network from the output nodes to the input nodes so that each 

weight's contribution to the error can be calculated . This 
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second phase is called the back propagation phase . 

Feed Forward 

The learning process begins in the feed forward phase, 

the various node inputs and outputs are depicted in Figure 

2.2. An input vector is applied to the network via the input 

nodes. The input values are 'fanned out' by the input nodes 

to each node in the next layer. Again, no calculations are 

performed in the input layer. In the hidden layer neurodes, 

the inputs are multiplied by the connection weights and the 

resulting products are summed together, see Figure 2 . 3. A 

bias value, b ij ' is subtracted from the sum and the result, 

net ij ' is applied to the nodal activation function. The output 

of the activation function, xi j ' is the output of the node . 

The formula for calculating the nodal output is given by 

Equations 2.1 and 2.2. 

N1-1 

net ij = L wi jkx i-1, k - b ij 
k-1 

In these equations, the subscript i indicates the current 

( 2 .1 ) 

(2. 2) 

layer, i-1 indicates the previous or lower layer, and i+l 

indicates the next layer. The subscript j represents the 

number of the current node in layer i. The subscript k 

represents the number of the specific weight associated with 

node j in layer i-1. The node passes its output value to all 
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Figure 2.2 A thr ee l ayer MLP during the feed-forward phase . 
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Figure 2.3 A single hidden node in an MLP . 

of the nodes in the next layer where the process is repeated 

with the n ew i nput values and with the next layer's weight 

values. When the output layer is reached, the output from the 

nodal transfer function is also the output from the network. 

The nodal transfer or activation function used in this 

work is the arctangent sigmoid function described in Equation 

2. 3 . 

The arctangent function is pref erred over the more common 
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f (x) - ~arctan (x) + ~ 
1t 

exponential sigmoid function of the form 

f(x)- 1 

because the latter tends to cause underflow and overflow 

(2 . 3 ) 

(2 . 4) 

errors when the magnitude of the weights gets large . In this 

work, all of the neurodes in the hidden and output layers use 

the same activation function. 

The process just described is the feed-forward pass of 

the MLP. For a trained ANN , the forward pass produces the 

answer completing the process. For an untrained ANN, however , 

the forward pass is just the first step , since the output i s 

most likel y incorrect . 

Back Propagation 

The backward pass, depicted in Figure 2.4 , is the 

beginning of the process whereby the error is ca l culated and 

the weights that produced the error are changed . The back 

propagation (B P) algorithm, as derived by Hecht-Nielsen[ll), 

is used to modify the weights. 

Output Layer 

The BP algorithm uses a gradient descent procedure [4) to 

adjust the weights. Plotting the error aga i nst vari ous 

combinations of weights creates an N-dimensional surface with 

peaks where the weight combinations give l arge errors and 
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valleys where the error is small. If the current weight 

vector is located on a peak on that error surface, the 

gradient descent algorithm attempts to move the network down 

the slope of the error surface by adjusting the weights in the 

direction of steepest descent. 

The backward pass begins at the output layer. The error, 

defined as the difference between the desired output and the 

calculated output, is computed for each neurode in the output 

layer . To minimize the error function, the derivative of the 

activation function, Equation 2.5, is used to find the slope 

of the error surface. 

f' (x) -
l+x2 

1 (2 . 5) 

Inserting net ij into Equation 2 . 5, results in the slope of the 

error surface at that point. Then, multiplying by the 

difference between the desired and the calculated output, 

scales the 8i j term to compensate for large or small errors . 

The estimate of the weight change is obtained by multiplying 

bij by the initial input, s ee Figure 2. 5 . 

The new output node weights, W new f d ijk , are oun using 

(2 . 6) 

where 11 is the learning rate ( 0 < 11 < 1) and e ijk is the error 

for each weight. This error is calculated using 
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Figure 2 . 5 Output node during back propagation . 

( 2. 7) 

where x i-t , j is the output from the previous layer and 8 ij is 

defined as 

( 2 . 8) 

where f ' is defined in Equation 2.5 and d 1 j is the difference 
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between the desired and actua l outputs of node j in layer i . 

The bias term is trained in a similar manner , Equation 

2.6 becomes 

b~7w - bo~d [ b) 
1) I) + Tl e ij ( 2 . 9) 

where Tl is the learning rate ( 0 < Tl < 1) and [ eb] i j is the 

e rror f o r each bias which is calculat ed using 

(2 . 10) 

where n e t ij is the summed, weighted input to the node from the 

previous layer and Oij is defined as before in Equation 2 . 8 . 

Hidden Layer 

Calculating oij using Equation 2 . 8 is applicable for the 

o u t put l ayer whe re d ;j is known, but what about the h idden 

l ayers where the corr ect output is not known? The back 

propagation algor i thm deals with this problem by determining 

each hidden node's contribution to the e rror at the output 

nodes . This contribution is then used in the weight change 

calcul ations . Each hidden layer node ' s contribution to the 

output error is cal culated using 

N a1 

01.J. - f' (net . . )°"'w. 1 .ko . 1 k 1 ) L i + , J 1 -.. , 

( 2 .11 ) 

i - 1 

see Figure 2.6. Here i signifies the current layer and 

i+l signifies the next layer (which is the output layer if the 

ANN has a three layers) . 
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Figure 2.6 Hidden node during back propagation. 

Batch Training and ~ 

There are two ways to present the data to the ANN during 

the training phase, on-line and batch mode . When on-line 

training is employed, the weights are adjusted after each 

pattern from the training set has been passed through the 

network. By contrast, when batch training is employed the 

weights are adjusted only after al l of the patterns in the 

training set have been fed through the ANN. In this work 

batch training was employed and the error terms , e 1j , act as 



17 

accumulators of the error from each training pattern. Only 

after all of the training patterns have been fed bot h forward 

and backward through the network are the weight values 

changed. 

The learning rate, 11 , is used so that each of the weights 

are adjusted only a fraction of the amount computed by 

Equat i on 2.7. The larger the value of 11 the larger the size 

of the step down the slope on the error surface. 11 can range 

from 0.0 to 1 . 0, 0.3 is a typical value and was used in this 

work. Since batch training was used in this work, 11 was 

divided by the number of patterns in the training set to 

account for the accumulation of the error from each pattern. 

Also in this work, 11 was divided by the number of nodes in the 

previous layer in an attempt to balance the rate of learning 

in each layer. 

In addition, Equation 2.6 was modified as follows 

new o ld new old 
wi j k = w ij k + ll e ijk + ae;jk ( 2 . 12 ) 

where 11 is, again, the learning rate and a is a number on the 

range [0 . 0,1.0) that is multiplied with the accumulated error 

from the previous training batch. The use of the additional 

term, called momentum, helps to speed convergence and may help 

the model escape from a local minimum, see Hecht-Nielsen[l l ] 

In this work, the momentum term is applied only if the 

previous change was in the downhill direction. 
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RMS Error 

To quan tify the error of the network output over all of 

the output nodes, M, and for all of the training patterns, N, 

the root mean square (RMS) error is calculated 

RMS -
( 2 . 13) 

where d ij i s the difference between the calculated and the 

desired output . 

Network Architecture 

The number of input and output nodes is usually 

determined by the problem to be solved. As a minimum there 

should be one input node for each unique independent variable 

and there should be at least one output node for each unique 

dependent variable . But, how should the number of hidden 

nodes and hidden layers be determined? 

This question has long been the topic of heated debate in 

the artificial neural network community. In Hecht - Nielsen [ll] 

Kolmogorov's Theorem is shown to prove that any continuous 

function f : [ 0,1]" ~ Rm , f( x ) = y , f can be implemented exactly 

by a three layer feed forward network that has n input nodes, 

(2n+l) hidden nodes and m output nodes . In general, it is 

widely believed that the smaller the number of hidden nodes 

the better the generalization and that the number of training 

patterns should be greater than the number of weights in the 

network [ 1 7] . 
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Bartlett[!] and Basu[2] use a dynamic node architecture 

scheme to train problems with simulated condensation and back 

propagation, respectively. They start the training process 

with a few hidden nodes and add nodes until the ANN is able to 

learn t h e mapping t o a pre-determined low error level. When 

the error is low enough, the least important hidden node is 

deleted and the network is retrained, if necessary . If the 

error again falls below the pre-determined limit, more nodes 

are deleted until the ANN will no l onger learn the mapping. 

The process of adding and deleting nodes continues until the 

minimum number of hidden nodes required to map the input to 

the output is determined. They have shown that better 

general i zation occur s with the fewest number of hidden nodes . 

Verification 

Since it is difficult to verify that an ANN has been 

correctly constructed, or programmed , an acceptable way to 

show that the ANN is performing properly is to model several 

wel l k nown problems. To verify that the ANN constructed for 

this work does indeed model problems correctly, three examples 

were used as benchmarks, these are : the exclusive-or problem 

(XOR) , the eight-to- one decoder problem[2] and the Lippmann 

circle problem [ 20] . 

The first example, the exclusive-or (XOR) problem, is 

taken from the Boolean function in linear algebra . By 

definition, the XOR function returns a positive response if 
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one but not both of the inputs has the value 1.0. A network 

was constructed with two input nodes, three hidden nodes and 

one output node and was trained to an RMS error of 0.01. The 

input pai rs and the desired and cal culated output are shown in 

Table 2.1. Note that the desired outputs have been normalized 

Table 2.1: XOR inputs and outputs. 

I 
Input 

I 
Input 

I 
Desi red Calcul ated 

1 2 Output Output 

0.0 0.0 0.1 0.08227 

0. 0 1. 0 0.9 0.89896 
1.0 0 . 0 0.9 0.89889 
1.0 1. 0 0.1 0.10913 

on the range ( 0.1,0.9] to aid in convergence of the ANN . As 

can be seen the ANN correctly classifies the four input 

points. 

The second example problem is known as the eight-to-one 

decoder problem. The three inputs represent binary b i ts which 

take the values 0 or 1. When taken together the three digi t 

binary number can represent the decimal numbers zero to seven. 

The network i s trained to fire one of eight outputs depending 

on the particular combination of zeroes and ones in the input. 

An ANN with three input nodes, five hidden nodes and eight 

output nodes was trained to an RMS error of 0.026 . Again , 

note that the desired outputs have been normalized on the 
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range (0 . 1,0 . 9) to aid in convergence of the ANN . Table 2 . 2 

gives the input /output vector pairs and Table 2 . 3 gives the 

calculated output va lues after the network was trained . 

The third example problem is the circle problem as 

described in Lippmann[20]. Two hundred points, defined by 

their location on the x-y plane , are chosen at random for the 

training set. One hundred points are chosen from within the 

unit circle (0 < r < 1) and one hundred points are chosen from 

the annular region described by 1 < r < 5 . The data points 

are shown in Figure 2 . 7 . The x and y coordinates of each of 

the points are the inputs to the ANN. The desired output is 

0.9 if the point falls within the unit circle and 0 .1 if the 

point falls outside the unit circle . An ANN with two input 

nodes, eight hidden nodes, and one output node was trained to 

an RMS error of 0 . 04 . The resulting decision region is shown 

in Figure 2.8. 

From the success of the ANN models of the three benchmark 

problems , one can infer with an adequate degree of confidence 

that the network has been constructed properly. 
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Table 2 . 2 : Eight to one decoder inputs and outputs. 

Input Desired Output 

0.0 0 . 0 0 . 0 0.9 0 .1 0.1 0 .1 0 . 1 0 . 1 0 . 1 0 . 1 

0 . 0 0 . 0 1. 0 0 .1 0 . 9 0.1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 

0 . 0 1. 0 0 . 0 0.1 0 . 1 0 . 9 0 . 1 0 . 1 0 .1 0 . 1 0 . 1 

0 . 0 1 . 0 1. 0 0 . 1 0 .1 0 . 1 0 . 9 0 . 1 0 . 1 0 . 1 0 . 1 

1 . 0 0 . 0 0 . 0 0 . 1 0 .1 0.1 0 .1 0 . 9 0 . 1 0 . 1 0 . 1 

1 . 0 0 . 0 1. 0 0 . 1 0 .1 0 .1 0 . 1 0 . 1 0 . 9 0 . 1 0 . 1 

1 . 0 1 . 0 0 . 0 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 9 0 . 1 

1 . 0 1.0 1 . 0 0 . 1 0 . 1 0 . 1 0 . 1 0 .1 0 . 1 0 .1 0 . 9 

Table 2.3: Eight to one decoder trained outputs . 

# Calculated Output 

1 . 975 . 101 .106 . 099 . 099 .1 09 . 107 . 038 

2 .116 .896 .104 . 104 . 113 . 104 . 030 .098 
3 .106 . 108 . 888 .1 02 . 103 .039 . 095 . 112 
4 . 048 . 098 . 106 .884 .039 . 097 .1 07 . 086 
5 . 116 . 104 . 088 . 047 . 906 . 088 . 105 . 1 01 
6 . 097 . 106 . 037 .099 . 095 .889 . 098 . 111 
7 . 104 .041 .1 07 .1 06 . 107 . 102 . 896 . 101 
8 . 01 6 . 101 .1 04 . 107 . 101 . 112 . 101 . 894 
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Figure 2.7 Input data for Lippmann's c i rcle problem. 
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CHAPTER 3. NUCLEAR REACTOR CORE RELOADS 

Introduction 

The periodic core reloading of nuclear reactors has long 

been a topic of study and research [ 6,7,10,14-16,18,21,25 , 26, 

32]. In general , the goal of these studies has been to find a 

method to optimize reactor performance and safety by way of 

"shuffling" the core reload pattern. The parameters to be 

optimized may vary depending on the particular reactor or 

specific circumstances at hand. For example , if there is a 

concern about pressure vessel embrittlement, then the 

objective may be to minimize peripheral neutron leakage while 

constraining cycle length and relative power peaking to 

specified design limits. Nevertheless, regardless of the 

criteria employed, the idea is the same, to determine an 

optimum set and arrangement of fuel assemblies and burnable 

poisons in the core for each fuel cycle . 

Nuclear Fuel Management 

The job of acquiring the nuclear fuel, placing it into 

the reactor core, storing and/or disposing of the spent fuel 

and all related aspects to these tasks is called nuclear fuel 

management. The term out - of-core fuel management is used to 

describe the overall long term strategy to purchase nuclear 

fuel for several fuel cycles in the p l anning horizon. The 
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contracts between the utility and the fuel manufacturer 

usually specify fabrication details such as fuel enrichment, 

pellet size, cladding composition, quantity and type of 

burnable poisons, etc.. In contrast , the term in-core fuel 

management, restricted to a single fuel cycle , is used to 

describe the process whereby the exi sting fresh and used fuel 

assemblies (and burnable poisons) are arranged into the best 

loading pattern (LP) possible . In this work, t he term fuel 

management will refer to in-core nuclear fuel management . 

A brief description of fuel management terminology such 

as batch sizes, loading configurations, pin peaking, boron 

concentrations, burnup, keff and burnable poisons follows. 

A fuel batch is a group of fuel assemblies which have 

been in the reactor f or the same number of cycles. The four 

batches discussed in this work are: new fuel, new fuel with 

burnable poison, once burned fuel and twice burned fuel. Once 

burned fuel, as the name implies, has been in the core for one 

fuel cycle and is about to enter its second cycle of service. 

Similarly, twice burned fuel has been in the core for two fuel 

cycles and is about to enter its third, and usually last, 

cycle of service . Since about one third of the core is 

removed each cycle, batch sizes are roughly one third of the 

total number of fuel assemblies in the core . 

Loading configurations refer to the vari ous patterns in 

which the fuel assemblies may be arranged. Two of the most 
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common schemes for loading a reactor core are ref erred to as 

the in-out and the out-in loading strategies. The out-in 

strategy places the new fuel assemblies towards the periphery 

of the core and has the advantageous effect of flattening the 

power profile across the core . These fuel assemblies then 

'migrate' toward the center of the reactor during subsequent 

cycles . The in-out strategy, on the other hand, places the 

new fuel assemblies more toward the center of the core from 

which they 'migrate ' toward the periphery with each cycle . 

The advantage of this latter strategy is a lower neutron 

leakage at the periphery, leading to less neutron damage at 

the reactor vessel wall. 

Some loading configuration s can be eliminated out of hand 

by means of engineering intuition and experience , for example : 

non-symmetric patterns, patterns with new assemblies adjacent 

to control rods, patterns with two new assemblies side by 

side , patterns with new assemblies at the core periphery (in 

the in-out strategy) or patterns with a new assembly in the 

center location, etc. are all untenable. The reason for 

eliminating LPs in this manner is to reduc e the number of 

possible candidates to a more manageable size . 

Pin peaking refers to the ratio of the maximum power 

level at a specific fuel pin in a fuel assembly to the c o re 

average power level. In general, a flat p ower profile across 

the core is desired and thus upper design limits for the pin 
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peak ratio must be obeye d. These criteria a re conservatively 

set to prevent the temperature o f any fuel pin from e x ceeding 

thermal limits designed to preserve the integrity of the fuel 

pin and the fuel assembly. 

Reactivity is a term u sed to describe the state of 

balance between the production and l oss of neutrons (and thus 

fissions) in a nuclear reactor. The mathematical parameter 

used to define the reactivity level of the core is k 0 u , also 

known as the multipl ication factor. In the absen ce of 

burnable poisons (discussed later), keff at beginning o f cycle 

(BOC) is proportional to the cycle length, so a longer cycle 

length can be implied by maximizing the BOC keff · 

Boron dissolved in the coolant is a neutron absorber a nd 

is employed to adj ust keff to a value of 1 . 0 , denoted 

"cri tical ". Boron dilution , also known as "chemical shim", 

compensates for the depletion of the fuel and for the buildup 

of f ission products . K0 u can be adjusted wi t h control rods, 

c hemical s hims and burnabl e poisons . The use of a c h emi cal 

shim reduces the number of expens i ve control rods that are 

required to adjust keff and control the reactor . Also, since 

the shim i s dissolved in the cool a nt and is evenly distributed 

throughout the core , the con centration can be reduced t o 

account for fuel burnup without altering the power 

dis tributio n across the core . The amount of boron required , 

measured in parts per million (ppm) , is proportional to the 
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unadjusted k etf thus, maximizing the ppm of boron also implies 

maximizing the unadjusted k e tt and cycle length . 

There are several definitions of burnup. In general, 

burnup o f the fuel is defined as the total energy released by 

the fission of a given amount of fuel and is measured in terms 

of megawatt -days(MWd) . Specific burnup, on the other hand, is 

defined as the tota l energy rel eased by the f i ssion per unit 

mass of fuel and is measured in terms of megawatt-days per 

metric ton (MWd / t). Finally , fractional burnup is defined as 

the total number of atoms o f fuel that undergo fission per 

total number of fuel atoms initially present in the fuel. 

A burnable poison (BP) is constructed from a material 

that, like boron, has a negative effect on reactivity . The 

isotope that is formed when the BP absorbs neutrons does not 

have a large negative effect on reactivity, thus the term 

"burnable". Placing burnable poison pins within the fuel 

assemblies or blending it within the fuel itself has two major 

objectives : (1) to hold down the positive reactivi ty of the 

fuel at BOC thus allowing more fuel (higher enrichment) to be 

loaded , thereby giving rise to a longer power cycle and (2 ) to 

shape the power distribution in the reactor. 

Core Reload Methods 

For in-core fuel management, the massive number of the 

possible cor e LPs, makes it highly improbable that an optimal 

solution can be found by means of a n exhaustive search method . 
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For that reason, many techniques have been developed as 

alternatives to the trial and error approach of an experienced 

engineer. Some of these methods are: backward diffusion[6], 

linear empirical core models[25] , expert systems[lO], constant 

power depletion[16] and simulated annealing [26] . These 

methods will be discussed in the following sections. 

Backward Diffusion 

The diffusion equation is well known to nuclear engineers 

and is typically used to calculate the neutron flux and power 

distribution in a reactor core for a given core loading . The 

backward diffusion method[6] was derived so that the engineer 

could assume a desired power distribution and then generate 

the corresponding reactivity distribution. From this, the 

core loading is then inferred from the available fuel 

assemblies by best matching the reactivities of fuel 

assemblies to the computed reactivity distribution. A forward 

diffusion calculation is then performed to obtain the 

corresponding power distribution which may or may not satisfy 

constraints on cycle length, power peaking, etc.. If one or 

more of the constraints are violated, the LP is discarded and 

the process is repeated. 

Although the backward diffusion method has been 

extensively employed in an actual industrial scenario , several 

assumptions are made which limit the accuracy of the 

calculation . Also, there is no optimization of the LP which 
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best matches the target power distribution. 

Linear Empirical 

Fuel management via linear empirical core models[25] is a 

method whereby a model is created which relates state 

variables to control variables to determine the optimal BOC 

k_. The state variables are assembly power fractions and 

burnup increments ; the control variables are the zone 

enrichments . The method tries to indirectly model the reactor 

core by treating it as a linear programming problem, bypassing 

the computationally expensive direct calculations. The method 

assumes uniform poison distribution, linearity between state 

and control variables and zero BOC burnup. The assumption of 

linearity between the state and control variables limits the 

accuracy of the predictions of the highly nonlinear reactor 

core to first order at best . 

Expert Systems 

A heuristic, as defined by Webster[37] (p. 568), is 

"involving or serving as an aid to learning, discovery, or 

problem solving by experimental and especially trial-and-error 

methods; also: of or relating to exploratory problem-solving 

techniques that utilize self-educating techniques to improve 

performance <a - computer program>". The expert system method 

in fuel management uses a computer algorithm to heuristically 

search for near optimal solutions to the core reload problem . 

Rules based on past experience are developed for and 
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implemented by the expert system. These rules limit the 

solution space by eliminating LPs which are untenable such as, 

patterns with a fresh fuel assembly in the core ' s center 

position. The expert system must be used in conjunction with 

a core neutronics code to evaluate the candidate LPs produced 

by the expert system . 

In Galperin[lO] et al . the expert system was programmed 

to avoid loading fuel schemes that promoted high local power 

peaks while keeping the lowest possible power at the 

periphery. The solution space was assumed to be divided into 

groups or regions characterized by specific patterns, and it 

was also assumed that within these groups there were large 

numbers of almost identical solutions. The core loading 

begins with fresh fuel assemblies followed by the once and 

twice burned assemblies. Examples of some of the rules 

employed are: no loading of fresh fuel into the inner part of 

the core , no two fresh fuel assemblies should have a common 

surface, no twice-burned fuel assembly should be loaded into 

the outermost positions. 

The probability of finding a global optimum core reload 

pattern using this method is lessened by the fact that the 

solution space is restricted. For example, suppose a specific 

search method uses binary fuel exchanges to develop new LPs. 

If THE optimal core LP happens to be a binary fuel exchange 

away from an LP which has already been rejected, the expert 
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The constant power, or Haling, depletion rnethod[l6] 

assumes the optimum power distribution is constant throughout 

the entire cycle and thus can deplete the core in a single 

time step. This method is usually used in the core reload 

design of boiling water reactors (BWRs) where greater 

flexibility in reactivity control is possible . In the design 

of core reloads for pressurized water reactors (PWRs), the 

Haling depletion method provides a consistent means of 

comparing new reload patterns without taking into account 

optimal control policy . With the core loading and control 

policy decoupled, the two factors can be optimized separately. 

Kirn et al. first performs an eighth core , two 

dimensional, Haling power calculat i on on the initial core 

reload pattern using SIMULATE-3(29] , a commercially available 

nodal diffusion code . Next, the objective function is 

evaluated to find the end of cycle (EOC) critical boron 

concentration, after which the nodal power peaking is 

calculated . The resul ts are recorded and a binary f uel 

exchange (two fuel assemblies switch positions) is performed 

using heuristics to ensure that untenable LPs are eliminated. 

The process is repeated until the core LP which maximizes 

cycle length and stays within the constraints for the initial 

LP is determined. 
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After the best LP has been found, the second phase begins 

by estimating the distribution of burnable poisons (BPs) 

necessary to match the Haling distribution. The optimal 

dist r ibution of BPs is determined separately using a first -

order accurate perturbation approximation . The drawbacks to 

the Haling depletion method are similar to those of backward 

diffusion in that the assumptions about the optimum LP are 

made a priori and no optimization is done. 

Simulated Annealing 

Simulated annealing is a form of artificial intelligence 

that is analogous to the annealing process in metals. In the 

annealing of a metal, the atoms align themselves as the metal 

cools - reaching an arrangement which minimizes the energy 

state of the solid. In simulated annealing, the trainable 

parameters or weights are adjusted so as to reach a lower 

error level. A weight vector which reduces the error is 

accepted with 100% probability. Entrapment into a local 

minimum is avoided by allowing the acceptance of weight 

vectors with a higher error level at a low probability. This 

probability of acceptance is reduced with time and is 

analogous to the reduction of the temperature of the metal 

being annealed. 

In fuel management, Parks[26] first used simulated 

annealing (SA) to optimize the performance of a fuel stringer 

for the British Advanced Gas Reactor (BAGR) . A neutronics 
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code provided a measure of the cost of the fuel stringer to be 

minimized by the SA algorithm . Heuristics were used to 

decrease the size of the solution space . 

Kropaczek[ 18] a nd Maldonado[21] combined simulated 

annealing opt i miza t ion wi th second order nodal gen eralized 

perturbation t h eory to generate families of near optimal core 

reload patterns without the need for heuristics . The 

combination of these techniques into the FORMOSA code results 

in a method of core reload optimization which i s 

computationally accurate and efficient with a minimal number 

of assumptions made[21] . The expense of the direct 

calculation of the core parameters is considerably lessened by 

the use of noda l generalized perturbation theory . 

Stevens[32 ] recently presented work on the optimization 

of reactor core reload designs by simulated annealing with the 

inclusion of heuristics for candidate LP generation . The 

commercially available SIMULATE-3(29) is used to evaluate each 

LP which is generated by the combination of heuristics and 

artificial intelligence. 

Scope of Problem 

With the advent of faster and more powerful computers, 

methods of f i ndin g optimal core reload patterns which were not 

feasible a few years ago are now becoming tractable . Despite 

that, however, the core re l oad problem is still too massive to 

be solved by a purely exhaustive search technique . Given a 
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reactor with 157 fue l assemblies, approximately 1 05 o f these 

assemblies are once or twi ce burned and are there f ore unique 

(di fferent burnups, power histories, etc . ) and 52 are 

ident i cal new fuel assemblies (assuming n o burnable poison is 

u sed ) . The number o f possibl e combinations is 1 57 ! /52 ! or 

l . 45x10 210 • If one half of t h e new assemblies have burnable 

poisons then the number of possible combinations i s 

157 ! /(26 !·26 ! ) or 7 . 21 xl0 22 4 • 

To direct the fo c us of this r esearc h more so upon the ANN 

application , several assumptions were adopted to reduce the 

extent o f the search space . Since the reactor core is 

geometrically symmetric the core LP a nd its parameters (i . e . , 

assembly reactivity , bur nup , neut ron flux and thus reactor 

power) are also assumed to be symmetri c . Depending on the 

placement of contro l rods, it can usually be assumed that the 

reactor is symmetric down to an eighth of the core, see Figure 

3 . 1 . When one eighth core symmet ry is assumed , using the same 

core with 157 fuel assemblies, the number of avai lable fuel 

locations is reduc e d to 26, nine are for fresh fuel leaving 17 

posit ions for once and twice burned assemblies. The number of 

possible combinat i on s drops to 26 ! /9 ! or l . llx10 21 • 

An additional simplifying assumption was t hat all of the 

f uel assemblies in a batch have similar characteri stics . The 

1/8 core is then l oaded with the three batches of i dentical 

fuel assemblies . Th e 'typical ' once and twice burned fuel 
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assembl ies are determined by ca l culating the average 

characteristics over the entire batch . When this further 

simpl i fication is made, the number of possible combinations 

decreases to 26 ! /(8 ! ·8! ·9!) or 6 . 84xl0 11 ; if burnable poisons 

are presen t the number of poss i b l e combinations is 

26 ! /(8 ! ·8! ·5! · 4 ! ) or 8 . 6lxl0 13 . These simplifying assumptions 

were drawn in agreement with the SOAl Database described next . 

SOAl Database 

To aid n uclear utilities i n deve l oping a system for 

design i n g a near optimal core reload pattern, Studsvik of 

America developed a database[31] containing over 300,00 0 core 

reload patterns and their respective core parameters as 

calcul ated by the Studsvik package SIMULATE-3[29 ]. The core 

modeled for the da t abase was an un specified PWR with 157 fuel 

assemblies. To simplify matters, an average fuel assembly was 

assumed for each batch and eighth core symmetry was used . 

Parame ters such as critical boron concentration , keff • pin 

peaking ratio , and burnup were calculated at four depletion 

steps in the fuel cycle and recorded in the database . 

The description of the format for the database f o llows . 

The first entries a r e 26 integers ranging in va l ue from one to 

four. A one indicates twice burned fuel, a two indi cates once 

burned fuel, a three indicates new fuel and a four indicates 

new fuel with burnable poi son. The position of the integer in 

the string of 26 is important because it indicates the 
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location of the particular fuel assembly in the eighth core. 

In Figure 3 . 2, the top figure shows the numbering system for 

the eight core model - the position in the string of integers 

is indicated by the number shown in the fuel locations. The 

bottom figure shows a typical LP with the various " flavors " of 

fuel (here flavors describe the fuel batch : twice burned - 1 , 

once burned - 2 , fresh - 3, and fresh with burnable poison -

4) . 

Following the 26 LP integers are thirty floating point 

numbers. These numbers represent the calculated core 

parameters for that particular LP at four different depletion 

steps. The first a nd second numbers are the hot zero power 

(HZP) critical boron concentration and the HZP moderator 

temperature coefficient , respectively for the LP. The next 

five numbers are : critical boron concentration, keff' core pin 

peaking factor, ratio of assembly pin peak to assembly 

averaged power in the peak assembly and the location of the 

pin peak assembly. These five parameters are calculated for 

the first depletion step in the fuel cycle and the next 

fifteen numbers are the parameters for the last three 

depletion steps. The final eight numbers in the database 

entry are the LP ' s average end of cycle (EOC) assembly average 

burnup and peak EOC assembly average burnup for each of the 

four batches. 
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Figure 3.2 Eighth core model numbering system and example core 
loading. 
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CHAPTER 4 . THE PROBLEM AND ITS SOLUTION 

Introduction 

In the optimization of core reload patterns , a good 

estimate of the key core parameters such as keff (or critical 

boron concentration) and pin peaking is crucial in evaluating 

candidate patterns. Current methods either require direct 

computation of these parameters for each pattern under 

consideration or make simplifying assumptions which decrease 

the accuracy of the calculations. 

The commercial computer codes that are used in fuel 

management today must be robust enough to be used by many 

engineers. These codes are used on various designs of 

reactors at many facilities across the country , each reactor 

and each facility having its own peculiarities . Often 

different facilities will have relevant information, such as 

cross section data, stored in different locations or in 

computer files which have different formats depending on the 

vendor or the utility. 

This work invest igates the use of an ANN to estimate the 

pin peaking ratio and the critical boron concentration for a 

typical reactor core. The network would be trained initially 

on data from core reload efforts for previous cycles. The 

data required to train the network would be the core LP and 
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its associated parameters - libraries of data would not be 

needed. As estimates are generated for the current core 

reload, any and all miscues could be added to the training 

data so that the model can be refined to better reflect the 

current core. In other words, the ANN learns the mapping from 

core reload pattern to core parameter for each specific core . 

Data Collection and Processing 

The SOAl Countm Suite and Database[31] was used in this 

work to train the an ANN to map core LPs to their respective 

core parameters . The training sets were made up o f 3068 or 

3069 randomly chosen loading patterns . The first LP was 

chosen at random followed by every lOOth successive LP . There 

were 306,884 loading patterns in the database to ch oose from -

dividing by 100 gives 3068 or 3069 depending on the number o f 

the initial pattern. The validation set consisting of 3 069 

different LPs was generated randomly (a random long integer 

was generated and then the MOD function was applied to obta i n 

the number of the LP) . 

Normalization of the Data 

As is common in the training of ANNs, both the output 

data and the input data were normalized. The input data, 

consisting of a series o f ones, twos, threes and fours, was 

converted to 0.2 , 0.4, 0 . 6 and 0.8. The desired output 

values, continuous real valued numbers, were norma l ized on the 

range [0.1,0 . 9). The normalization was accomplished by first 
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finding the largest and smallest values for each parameter 

over the entire set of 306,884 LPs. The range of each 

parameter was calculated as the difference between the largest 

and smallest core parameter. The smallest value was 

subtracted from all of the patterns in the training set . The 

resulting numbers were then divided by the range giving a set 

of numbers normalized on the range [0,1). These numbers were 

then multiplied by 0 . 8 and 0.1 was added to the product . The 

result of these manipulations was a set of numbers normalized 

on the range [0.1,0.9) 

Final Data Set 

The final data set consists of 3068 or 3069 lines of 

input and output data. Each line contains 26 decimal numbers 

[0.1,0.9) (25 input values and one output value) . The first 

25 numbers represent the fuel batch number and its location in 

the eighth core. The last number on the line of data is the 

normalized parameter for pin peaking or critical boron 

concentration depending on the output of interest. 

The number representing the center position in the 

reactor core was dropped from the training set due to the fact 

that all of the loading patterns have a twice burned fue l 

assembly in that location. Only unique inputs are important 

to the network mapping between loading pattern and core 

parameter, thus the inclusion of the center fuel assembly 

would have been redundant. 



44 

Parameter Prediction 

Training 

An ANN model was developed for the problem of predicting 

core parameters from the l oading pattern. The inputs to the 

ANN are the 25 normalized fuel batch numbers. Thus, the 25 

input nodes each represent a particular location in the eighth 

core model . The output is the desired core parameter, i.e. 

critical boron concentration or pin peaking ratio. To 

increase the probability of network generalization, it is 

desirable to keep the total number of weights in the ANN model 

less than the number of training patterns[17] . The number of 

hidden nodes was chosen to be 17 resulting in an ANN which has 

442 weights and 18 bias values. With 3068 training patterns, 

there are over six training patterns per weight value. If the 

model can correctly classify a number of training patterns 

that is larger that the number of weights in the model, the 

implication is that the model has learned the functionality 

between the input and the output and has not just memorized 

the correct outputs for the given inputs. 

Results 

Due to the large number of training patterns, and LPs in 

general, presentation of the results is not simple. The RMS 

error gives a measure of the cumulative error over the entire 

training set, but does not give detailed information about 

specific LPs. Table 4.1 contains information about the RMS 
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Table 4.1 Training and recall results. 

Core Parameter Training Validation 
RMS RMS 

Boron concentration 0 . 02 4 3 0 . 0266 

Pin peaki ng 0 . 0411 0 . 0449 

error of the training and validation sets for the critical 

boron concentration and pin peaking ratio . 

The RMS error reported in Table 4.1 is that of the 

normalized data, therefore its magnitude is not the important 

feature. A better measure of the ANN's ability to predict the 

correct output will be presented later. However, with RMS 

errors f or crit ical boron concentration of 0 . 0243 and 0 . 0266 

on the training and validation sets, respectively, one can 

i n f er t hat the network performed the desired mapping between 

input a nd output almost equally well for both data sets . It 

follows , therefore, that the ANN model has learned to predict 

the critical boron concentration of the validation set from 

training on the data in the training set. 

For the case of pin peaking , the ANN had more trouble 

learning the functionality between input and output , as 

indicated by the l a rger value of the RMS errors of 0 . 0411 and 

0 . 0409 . However, there was still good agreemen t between the 

training and validat i on sets. And, it again follows, that the 

ANN model has learned to predict the pin peaking of the 

validation set to a similar degree of accuracy as the training 
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set . 

The RMS error is, however, not the only , or even the 

best, way to measure the acceptability of the ANN model. 

Another method of presenting the results of the ANN modelling 

is to plot the un-normalized predicted output against the un-

normalized actual output. A perfect mapping of input to 

output would be represented by a line on the plot of slope one 

and y-intercept of zero. When the appropriate error bounds 

are placed on the plots, it is relatively easy to see where 

the ANN performs well and where it doesn't. 

Figures 4.1 and 4 . 2 show the actual or target boron 

concentration plotted against the predicted output from the 

ANN for the training and the validation sets, respectively. 

The lines drawn on the figures are the ±3% (approximately 57 

ppm) error bands, more than 99% of the data points in the 

training set a nd more than 98% of the data points in the 

validation set are within these bands . This corresponds to a 

Pearson ' s product-moment correlat i on coefficient of 0 . 97995 

and 0.97618 between the predicted and the actual output for 

the training and validation sets, respectively . 

Figures 4.3 and 4.4 show the actual or target pin peaking 

plotted against the predicted output from the ANN for the 

training and the validation sets, respective ly . The lines 

drawn on the figures are the ±10% error bands, more than 90% 

of the data points from the training set and more t han 87% of 
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Predicted vs . Actual Boron Concentration 
+/- 3% error lines 
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Figure 4.1 Prediction resul ts - critical boron 
concentration training set . 
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Predicted vs. Actual Boron Concentration 
+/- 3% error lines 

Validation set 
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Figure 4.2 Prediction results - critical boron 
concentration validation set. 
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Predicted vs. Actual Pin Peak Ratio 
+/- 10.0% error lines 

Training set 
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Figure 4 . 3 Prediction results - pin peaking ratio training set. 
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Predicted vs. Actual Pin Peak Ratio 
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the data points from the validation set are within these 

bands . This corresponds to a Pearson's product-moment 

correlation coefficient of 0.96597 and 0.95848 between the 

predicted and the actual output for the training and 

validation sets, respectively. 

Discussion 

When the accuracy of the results reported above are 

compared with the accuracy of other methods of calculating 

core parameters, the results are mixed. For the critical 

boron concentration, the reported accuracy of SIMULATE-3 is 

within 5-10 ppm [ 33] which is around 1% of a typical value for 

the critical boron concentration . The ANN model in this work 

was able to predict 75% and 71% of the core reload patterns to 

within 1% in t he training and validation sets, respectively . 

Typical errors in the calculated pin peaking ratios are 

also reported to be approximately 1%[33] . In this area, the 

ANN obviously does not perform well. A pos s ible reason for 

this is in the problem definition . The critical boron 

concentration is related to k ecc i which is a global core 

parameter and the ANN was able to learn the mapping from input 

to output in the training set . The pin peak ratio, however , 

is a local condition and is in fact accompanied in the SOAl 

Database by the location of the pin peak in the core . The 

inclusion of the location of the maximum pin peak ratio as a 

parameter in the training (and recall) set may allow the ANN 
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to learn a more correct functionality. 

While the accuracy of the ANN predictions is not as good 

as the conventional methods, the speed at which the ANN can 

make those predictions is unparalleled. The computational 

inefficiency in ANN models occurs in the training phase which 

is separated from the production phase. Therefore, when the 

user wants to use the ANN to predict core parameters, the 

prediction for any given core LP is almost instantaneous on 

almost any modern personal computer or workstation. This is 

not true in methods where the parameter is ca l culated 

directly . 

Comparison with Similar Work 

In the work by H. Kim [ l4] et al. two r eactor core 

parameters, pin peaking and k ett 1 were predicted using an ANN 

trained with back propagation . The exponential sigmoid 

transfer function was used to construct a network with 21 

inputs (the size of their e ighth core) , 500 hidden nodes and 

18 output nodes . The input values for fresh fuel were 

modified by the neutron importance function under the 

impression that this was necessary to further distinguish the 

physical location of the fuel assemblies in the core in 

relation to position in the input vector. The eighteen output 

values form a l x18 binary vector that is broken into two 

groups of nine bits each. The two nine bit numbers are 

converted into a real valued number by the group-and-weight 
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scheme as presented in the paper. One thousand random loading 

patterns were generated to train the ANN and one hundred other 

loading patterns were generated at random to test the ANN. 

The loading patterns consisted of twice burned, once burned 

and fresh fuel assemblies and were represented as -1, 0, l, 

respectively. 

With their 19,500 node ANN, Kim et al. were able to train 

the network in roughly 300 iterations to predict 90% of the 

power peaks and 95% of the k ett values to within ±6 . 0% and 

±0.3%, respectively. Table 4.2 summarizes the differences 

between the work by Kim et al . and the work in this paper. 
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Table 4.2 ANN comparison table. 

I Comparison I This work I Kim et al. 

Architecture 25-17-1 21-500-18 

Pre-processing Normalize Neutron imp. 
function 

Output Normalized 18 bit binary 
real no. 

Batch 1,2,3,4 -1,0,l 

Training patterns > 3000 1 0 00 

1/8 core size 26 21 

Transfer function arctangent sigmoid 

Results: keff > 98% < ± . 3%* > 90% < ± . 3% 

boron concentrat i on > 98% < ±3% ----

pin peaking > 87% < ±10% > 95% < ±6 % 

* The results fo r kerr for t hi s work a r e an approximat ion based on a 
personal communication with G. I . Maldonado[22] . The method by which the 
approximation was arrived at i s shown i n Appendix c. 

I 
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CHAPTER 5 . CONCLUSIONS 

Based on the results presented in the previous chapter, 

the conclusion drawn from this work is that PWR core 

parameters can be predicted fairly accurately with ANNs, as 

shown by the predictions of the critical boron concentration . 

While the error level in the ANN predictions is larger than 

that achieved by direct calculation of the parameters, there 

is a considerable time savings in the ANN technique. Further 

time savings will be realized in ANN predictions of EOC core 

parameters since nodal diffusion codes must do separate 

calculations for each depletion step. However , until the 

accuracy level of the ANN parameter prediction is improved for 

local parameters, the usefulness of this method in nuclear 

fuel management will b e limited. 

Possible Future Work 

Further work on increasing the accuracy of the ANN 

parameter predictions is necessary. One possible way to 

improve the accuracy of the prediction would be to research 

and develop a new ANN architecture. There is considerable 

knowledge about the nature of the core reload problem and the 

neutron diffusion equation that could be used to construct a 

specialized ANN architecture. An ANN which more closely 

models the diffusion equation should be able to learn the 
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underlyi ng functionality of the core reload problem more 

efficiently than an ANN with a standard architecture. 

The ANN model developed in this work was used to model an 

eighth core of a PWR . Although the core reload problem is 

much more complicated for BWR ' s, an ANN method would have the 

s ame speed advantage over direct methods used in BWR core 

reload design as was demonstrated in this work. Therefore, 

some investigation into using ANNs to predict BWR core 

parameters would be warranted. 

In the broader scheme of designing core LPs, the 

development o f an ANN to generate core parameters i s just the 

first step. The development of a core reload system (COS} 

which would automate the process of finding a new core reload 

pattern is the ultimate goal. The proposed COS would employ a 

second ANN, or some other optimization method, which would be 

trained to re-order the core to maximize a given parameter or 

parameters. The optimization method that is eventually chosen 

would use the core parameter predictor, developed as a result 

of thi s work , to evaluate the core reload patterns that it 

generates. 
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APPENDIX A . COMPUTER CODES 

This chapter contains the computer codes used in this 

work. The back propagation program, called annl, is made up 

of three files: mainl.c, iol.c and bckprpl . c . The program is 

initiated by mainl.c which calls various routines from iol . c 

and bckprpl.c. The routines in iol.c are mostly input and 

output routines which handle reading in values which control 

the execution of the program, the network input and output, 

and the weights. The routines in bckprpl.c deal mainl y with 

the various stages of the back propagation algorithm, such as: 

feed forward, back propagation of errors and change of 

weights . 

MAINl.C 

/* 

***** 

***** * / 

* * * 
* * * 
* * * 

BACK PROPAGATION NEURAL NETWORK 
WRITTEN BY: SCOTT E. WENDT 
IOWA STATE UNIVERSITY, AMES, IA 

* * * 
* * * 
* * * 

This is the main program from which control is 
transferred to the appropriate subroutines. The 
file ' net . inp' contains all the important parameters 
required for execution and is read almost 
immediately . 

#include <stdio .h> 
#include <stdl ib . h> 
#include <math.h> 
#include <time.h> 



#include 
#include 

int 

float 

long int 

main () 
{ 

<string . h> 
"annl .h" /* 

KASE, / * 
mode; / * 
rms = 0 • 0 / /* 
StpRMS; /* 

SAFE, /* 
count = 0 i /* 
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Contains dimension info for arrays */ 

Number of patterns int training set */ 
Training or recall mode */ 
Accumulator of RMS err per data set * / 
Target RMS value .INP * / 

# of iters between saves .INP * / 
# of iters * / 

extern void initl(), init2(), input(), initerr(), fdfwd(), 
deltarule(), backprop(), sdiff(), tstsav(), 
RMS(), outp(), cnt(); 

int i; 
time_ t t ; 

srand( (unsigned) time(&t)); / * Randomize using system clock */ 
initl(); / *Read "net.inp " * / 
init2 () ; / * Read wts file * I 

switch (mode) { 
case 0: { I * 

input(O) ; 
initerr() ; 
do { 

============ == Train wts. ================== * / 

count++; 
deltarule(); 
initerr(); 
for (i = O; i < 

fdfwd(i); 
backprop(i); 
} 

RMS() ; 
tstsav () ; 

/* Read input and answers * / 
/* Init. error terms * / 
/* Main program loop * / 
/ * Iner counter for wgt sav * / 
/* Back propagate the errors * / 

/* Init. error terms * / 
KASE; i++) { /* Loop thru training set * / 

/* Process hidden/output layers * / 
/* Calculate the errors * / 
/ * i loop - KASE * / 
/* Function to calc RMS error */ 
/ * Test if time to save wgts * / 

} while (rms 
count = SAFE; 
tstsav () ; 

> StpRMS); /* End main program loop * / 
/* Force program to save wgts * / 
/ * Test if time to save wgts * / 

break; 
} / * End case 1 */ 

case 1: { / * == ===== Recall wts on validation set === ==== * / 
Read input and answers * / 
{ /* Loop thru training set */ 
Process hidden/ output layers * / 

input(l); 
for (i = O; i < KASE; 

fdfwd(i); 
sdiff (i); 
} 

RMS (); 

/* 
i++) 

/* 
/ * 
/ * 
/ * 

Calculate the errors * / 
i loop - KASE * / 
Function to calc RMS erro r * / 
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printf(" \ nRMS err on the recall set= %f; %5d patterns. \ n ", 
rms, KASE); 

outp(l); 
cnt() ; 
break; 

/ * Write .out file 
/ * Count patterns by error 

* / 
* / 

} /* End case 1 * / 
case 2: { I* ====== 
input(2); 

Recall wts on unknown data set ====== * / 

for (i = 0; i < KASE; 
fdfwd(i); 
} 

outp(2); 
break; 
} / * End case 2 * / 

} / * End switch * / 
return; 
} 

/ * Read input and answers */ 
i++) { /* Loop thru training set * / 

/ * Process hidden/ output layers * / 
/ * i loop - KASE * / 
/ * Write .out file * / 
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IOl . C 

** ** * This part of the program delas mostly with input and 
output functions, such as : reading weight and data 
files and writing new weights to a file. 

***** */ 

#incl ude <stdio . h> 
#incl ude <stdlib.h> 
#include <string.h> 
#include "annl.h " 

FILE *textfilel, *textfile2 , 
*textfi le3; /* Pointer to file being used * / 

char 
inbuf (50], /* Input buffer */ 
fname1 [8] , fname2[8], /*Data file names * / 
wname1 [16],wname2[16], /*Weight file names * / 
name[16]; /* 4 letter prefix & dununy * / 

int 

float 

nodes [MXLYRS], 
MX, 
save, 
sav = 1, 
prn , 
indx [MXHNDES ] , 
mxnds[4] ; 

xl[MXKASE] [MXINDES], 
w2 [MXHNDES] [MXINDES], 
w3[MXONDES] [MXHNDES], 
L2 [MXHNDES] I 

L3 [MXONDES] I 

x3[MXKASE] [MXONDES], 
ans[MXKASE] [MXONDES], 
beta2 , beta3, 
bl2 , bl3, 
alpha, 
savrms = 2., 
oldrms = 2. , 
oldrms2 = 2. , 
delrms = 0.0, 
pi = 3.1415926535; 

extern int 
KASE, 
mode; 

extern float 
rms, 
StpRMS; 

extern long int 

/* Number of nodes per layer * / 
/* One less than MXLYRS · * / 
/* Save when 1 * / 
/* flag for wt file to use */ 
/* Scrn print: O=no, l=yes . INP * / 
/* Index array for hidden node * / 
/* No of nodes arrays can hold * / 

/* Input array - read from file * / 
/* Hidden laye r weights * / 
/ * Output layer weights */ 
/* Bias term for second layer * / 
/* Bias term for third layer * / 
/* Output layer * / 
/* Correct answer from file * / 
/* Learning rates - wts * / 
/ * Learning rates - biass * / 
/* momentum term * / 
/ * Best RMS e rr - to be saved * / 
/* RMS err from prev ite r * / 
!* RMS err prior to prev iter * / 
/ * Accum diff btwn rms / oldrms * / 
I * pi * I 

/* No . of patterns * / 
/* training or recall mode .INP* / 

/ * Accum RMS err per data set * / 
/ * Target RMS value . INP * / 
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SAFE, 
count; 

/ * # of iters between saves.INP* / 
/ * # of iters * / 

/* --------- - ---------------- -- - -------- -- ------- -------- --
Read "net.inp " file for current instructions 
-------------------- - ---- --- ------ - --- - -------- ------- -- * / 

void initl() 
{ 
int i,durn,lyrs ; 

MX = MXLYRS - l; 
rnxnds[O] = MXINDES; 
rnxnds[l] = MXHNDES; 
rnxnds[MX] = MXONDES ; 

if ((textfile3 = fopen("net.inp", "r" )) -- NULL) { 
printf("net.inp not found \ n"); 
return; 
} 

fscanf (textfile3, " %s %s \ n", fnarnel , inbuf) ; 
fscanf(textfile3 , " %d%s\n ", &KASE , inbuf); 
fscanf(textfile3, " %s %s \ n", fnarne2 , inbuf); 
fscanf(text file3, " %d %s \ n", &lyrs , inbuf) ; 
for (i = O; i < lyrs; i++) 

fscanf(textfile3, " %d ", &nodes[i]) ; 
fscanf (text file3 , %s \ n", inbuf); 
fscanf (textfile3, %d %s \ n , &mode, inbuf); 
fs canf (textfile3 , %d %s \ n , &SAFE, inbuf); 
fscanf (textfile3, %d %s \ n , &prn , inbuf); 
fscanf (textfile3, %f %s \ n , &beta2 , inbuf); 
fscanf (textfile3 , %f %s \ n , &beta3, inbuf) ; 
fscanf (textfile3, %f %s \ n , &alpha, inbuf) ; 
fscanf (textfile3 , '%f %s \ n , &StpRMS , inbuf); 
fscanf (textfile3 , "%d %s \ n", &dum, inbuf); 
fscanf(textfile3, "%d%s \ n", &dum, inbuf); 
fclose(textfile3); 

beta2 /= (float)KASE; 
beta3 I= (float)KASE; 
bl2 = beta2/(float)nodes[OJ; 
bl3 = beta3 / (float)nodes[l]; 
if (lyrs > MXLYRS) { 

printf ("ERROR: Specified no. o f layers 
exceeds array forrnatting. \ n"); 

exit(O); 
} 

for (i = O; i < lyrs; i++) 
if (nodes[i] > rnxnds[i]) { 

printf("ERROR: Spec. #of nodes in layer 
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%d exceeds array formatting. \n ",i ) ; 
exit(O); 
} 

return; 

/* ------------------------------------------------------
Initialize weights - random or from previous file 
------------------------------------------ - ----------- * / 

void init2() 
{ 
int i,j,dum; 
int nds[MXLYRS], nlyrs; 

strcpy(wnamel,fname2); 
strcpy(wname2,fname2); 
strcat(wname2 , " . bak" ) ; 
strcat (wnamel, 11

• wts 11
) ; 

strcat (wname2, 11 
• wts 11

) ; 

/ * Generate new random wts */ 

for (i = O; i < nodes[l]; i++) { 
for (j = O; j < nodes[O]; j++) 

w2[i] [j] = ( (float)rand()/(float)RAND_MAX - 0 . 5) ; 
L2[i] = ( (float)rand()/(float)RAND_MAX - 0.5); 
} 

for (i = O; i < nodes[MX]; i++) { 
for (j = O; j < nodes[l]; j++) 

w3 [ i] [j] = ((float)rand()/(float)RAND_MAX - 0 . 5); 
L3[i] = ( (float)rand()/(float)RAND_MAX - 0 . 5); 
} 

/ * Check to see if 11 n ame " .wts exists from a previous run . */ 
strcpy(name,fname2) ; 
strcat(name, 11 .wts 11

); 

if ((textfile2 = fopen( name, 11 r " )) NULL) { 
printf("%s not found\n", name) ; 
return; 
} 

/ * Fi le exists so read in previous values */ 

fscanf (textfile2, " %f %s\n " , &savrms, inbuf); 
fscanf(textfile2, "%d%s\n ", &nl yrs, inbuf); 
for (i = O; i < nlyrs; i++) 

fscanf(textfile2, " %d " , &nds[i]); 
f scanf (textfile2 , "%s\n 11

, inbuf) ; 
oldrms = savrms; 
oldrms2 = savrms; 
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if (nlyrs > MXLYRS) { 
printf ( "ERROR: Specified no. of layers 

exceeds array formatting.\n " ); 
exit(O); 
} 

for (i = O; i < nlyrs; i++) 
if (nds[i] > mxnds[i]) { 

printf ( "ERROR: Spec. #of nodes in layer 
%d exceeds array formatting. \n ", i) ; 

exit ( 0) ; 
} 

for (i = O; i < nlyrs; i++) 
if (nds[i] > nodes[i]) { 

printf ( "WARNING: Spec. #of nodes in layer 
%d exceeds previous nodes.\n",i); 

printf ( "Continue anyway? Enter 1 for yes. \n") ; 
gets ( inbuf) ; 
sscanf ( inbuf , "%d", &dum) ; 
if (dum ! = 1 ) exit(O); 
} 

for (i = O; i < nds[l]; i++ ) { 
for ( j = 0 ; j < nds [ 0] ; j ++) 

fscanf(textfile2, "%f %s\n ", &w2[i][j], inbuf); 
f scanf (textfile2 , "%f %s\n ", &L2 [i], inbuf); 
} 

f o r (i = O; i < nds[MX]; i++) { 
for (j = O; j < nds[l]; j++) 

fscanf(textfile2, "%f %s\n ", &w3[i] [j], inbuf) ; 
fscanf(textfile2, " %f %s\n ", &L3 [i], inbuf) ; 
} 

fclose(textfile2 ); 

return; 

/ * ----------------------------- ---------------------------
Read input values and answers 

-------- ------------- ----------------------------------- * / 
void input(int tst) 
{ 
int i, j, dum; 

strcpy(name,fnamel ) ; 
strcat (name, ". dat"); 
if ( (textfilel = fopen (name, " r " )) -- NULL ) { 

printf("%s not found \ n" , name ) ; 
return; 
} 
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switch (tst) { 
case 0: 
case 1: { 
for (i = O; i < KASE; i++) { 

for (j = O; j < nodes[OJ; j++) 
f scan f ( text f i le 1 , 11 % f 11 

, &x 1 [ i J [ j J ) ; 
for (j = O; j < nodes[MX]; j++) 

fscanf(textfilel, "%f 11
, &ans[i][j]); 

} 
break; 
} 

case 2: { 
for ( i = O; i <KASE; i++) { 

for (j = O; j < nodes[O]; j++) 
fscanf (textfilel, 11 %f 11

, &xl [i) [j]); 
} 

} 
} 
fclose(textfilel); 

/* Init index array */ 

} 

for (j = 0; J < MXHNDES; j++) 
indx [ j] = J; 

return; 

/* ------------ - - - ------- - - ---------------- - ------ - --------
Test if rms error is a min. and SAFE iterations have passed 
------ --------------------------------------------------- */ 

void tstsav () 
{ 
extern void wgtsav(), imp(); 

} 

if (prn == 1) { 
printf ( 11 %l0.8f,%l0 . 8f\n 11 ,rms, delrms); 
} 

if (count % SAFE == 0) 
save = l ; 

if (rms <= savrms && save 1) { 
wgtsav(); 
save = O; 
count = O; 
savrms = rms; 
} 

oldrms2 = oldrms ; 
oldrms = rms; 

return; 
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/* --------------------------------------------------------
Save current network values 

-------------------------------------------- --- --------- */ 
void wgtsav () 
{ 
int i,j; 

/ * Open file, testing for success * / 
if (sav == 1) { 

} 

if ( (textfile2 = fopen(wnamel, 11 w 11
)) == NULL ) { 

printf ( 11 Error opening %s for writing\n 11
, wnamel); 

exit(O); 
} 

sav = 2; 
} 

else { 
if ( ( textf ile2 = fopen (wname2, 11 w 11

)) == NULL ) { 
printf( 11 Error opening %s for writing\n 11

, wname2); 
exit ( 0) ; 
} 

sav = l; 
} 

fprintf (textfile2, 11 %f\t$SavRMS\n 11
, rms); 

fprintf (textfile2, 11 %d\t\t$No_layers\n 11
, MXLYRS); 

for (i = 0; i < MXLYRS; i++) 
fprintf(textfile2, 11 %2d ", nodes[i]); 

fprintf(textfile2, 11 \t$Inodes_Hnodes_Onodes\n 11
); 

for (i = O; i < nodes[l]; i++) { 
for (j = O; j < nodes[O]; j++) 

fprintf ( textfile2, 11 %f \ t$w2 [%d] [%d] \ n 11
, 

w2 [ indx [ i J ] [ j J , indx [ i] , j ) ; 
f print f ( text f i 1e2 , 11 % f \ t $ L 2 [ % d] \ n 11 

, L 2 [ in dx [ i ] ] , in dx [ i ] ) ; 
} 

for (i = O; i < nodes[MX]; i++) { 
for (j = O; j < nodes[l]; j++) 

f print f ( text f i 1e2 , 11 % f \ t $ w 3 [ % d ] [ % d] \ n 11 
, 

w3 [ i J [ indx [ j J J , i, indx [ j ] ) ; 
f print f ( text f i 1e2 , 11 % f \ t $ L 3 [ % d ] \ n 11 

, L 3 [ i ] , i ) ; 
} 

fclose(textfile2); 

return; 

/* - - ------- - ------------- -- ------------- - -----------------
Write out output 

- -- --- - ------- - ------------- -- -- - ------- - -- - --- - -------- * / 
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void outp(int tst) 
{ 
int i,j; 

/ * Open file, testing for success */ 
strcpy(name,fnamel); 
strcat (name, ". out " ) ; 
if ( (textfile2 = fopen(name, "w" )) -- NULL ) { 

printf ( " %s n ot found\n", name); 
return; 
} 

switch (tst) { 
case 1: { 

} 

fprintf (text f ile2, "RMS error on recall %f \n 11
, rms) ; 

for (j = O; j < nodes[MX]; j++) 
fprintf(textfile2," Ans[%2d] Out[%2d] 11 ,j,j); 

fprintf(textfile2, 11 \n 11
); 

for (i = O; i < KASE; i++) { 
for (j = O; j < nodes[MX]; j++) 

fprintf(textfile2, 11 %f, %f, " ,ans[i] [j],x3[i] [j]); 
fprintf ( textfile2, 11 \n 11

) ; 

} 
break; 
} 

case 2: { 
for (j = O; j < nodes[MX]; j++) 

fprintf(textfile2, 11 Out[%2d ] 11 , j); 
fprintf ( textf ile2, 11 \n 11

) ; 

for (i = O; i < KASE; i++) { 

} 

for (j = O; j < nodes[MX]; j++) 
f print f ( text f i 1e2 , " % f , 11 

, x 3 [ i ] [ j ] ) ; 
fprint f (text£ ile2, " \n " ) ; 
} 

} 
fclose(textfile2); 

return; 

/* ------- -------------------------------------------------
Counts number of patterns in certain categories 

------------------------- ------------------------------- * / 
void cnt () 
{ 
int i,j,COUNT[6]; 
float limit[?], dum; 
float ABS(float); 



} 
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limit[O] = 0 . 00; ! * Set limits on categories * / 
limit[l] = 0.001 ; 
1 imi t [ 2 J = 0 . 0 0 5 ; 
1 imi t [ 3 ] = 0 . 01 ; 
limit[4] = 0 . 05 ; 
1 irni t [ 5 ] = 0 . 1 ; 
1 imi t [ 6 ] = 0 . 1 ; 
for (i = O; i < 6; i++) 

COUNT [ i ] = 0 ; 

for (i = O; i < KASE; i++) 
for (j = O; j < nodes[MX]; j++) { 

durn = ABS (ans [ i] [ j ] -x3 [ i] [ j ] ) ; 
if (dum < limit[l]) 

COUNT[O]++; 
else if (durn < limit[2]) 

COUNT[l]++; 
else if (dum < limit[3]} 

COUNT[2]++; 
else if (durn < limit[4] } 

COUNT[3]++; 
else if (dum < limit[S]} 

COUNT[4]++; 
else { 

} 

COUNT[S]++; 
if (dum > limit[6]} 

limit[6] = durn; 
} 

printf("Group\ t Error Range \ t \ t Number \ t Percent \ n" ) ; 
for ( j = 0 ; j < 6; j ++} 

printf ( " %d\t %5.3f < x < %5.3f\t %5d\t %5.2f%%\n", 
j+l,limit[j],limit[j+l],COUNT[j], 
(float}COUNT[j] /( float)KASE*lOO.}; 

return; 

/ * ------ ----- - --------------------- -----------------------
Returns absolute value 

- ----------------------------------------- -------------- * / 
float ABS(float x) 
{ 

} 

if (x < 0 .0 ) 
return ( -x } ; 

else 
return ( x ) ; 
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BCKPRPl . C 

***** This part of the program contains the 'meat' of the 
ANN - the feed forward, back propagation and weight 
change routines . 

***** * / 

#include <stdi o.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
#include <string.h> 
#include "annl.h" 

float 
i2[MXKASE] [MXHNDES], 
x2[MXKASE] [MXHNDES], 
i3[MXKASE] [MXONDES], 
x3[MXKASE] [MXONDES], 
e2[MXHNDES] [MXINDES], 
e3 [MXONDES] [MXHNDES], 
eL2[MXHNDES], 
eL3[MXONDES], 
delta2[MXHNDES] [MXINDES], 
delta3 [MXONDES] [MXHNDES]; 

extern int 
KASE, 
nodes[MXLYRS], 
MX, 
indx[MXHNDES]; 

extern float 
xl[MXKASE] [MXINDES], 
w2[MXHNDES] [MXINDES], 
w3[MXONDES] [MXHNDES], 
L2[MXHNDES] , 
L3[MXONDES] I 

ans [MXKASE] [MXONDES], 
beta2, beta3, 
bl2, bl3, 
alpha, 
rms, 
delrms, 
oldrms, 
pi; 

/* Hidden layer inputs */ 
/ * Hidden layer outputs */ 
/ * Output layer inputs * / 
/ * Output layer outputs * / 
/ * Error for hidden nodes */ 
/* Error for output nodes */ 
/ * Error for hid lyr bias * / 
/ * Error for out lyr bias */ 
/* Momntm for hid nodes */ 
/ * Momntm for out nodes */ 

/* No. of patterns */ 
/ * No. of nodes per l ayer */ 
/ * One less than MXLYRS */ 
/* Used to order nodes * / 

/* Input array - from file */ 
/ * Hidden l ayer weights */ 
/* Output l ayer weights */ 
/ * Bias for hid nodes */ 
/* Bias for out n odes * / 
/ * Answer from file * / 
/* Learning rates - wts */ 
/* Learning rates - bias */ 
/* momentum term */ 
/ * Accum of RMS for data set * / 
/ * Accum diff rms & oldrms */ 
/ * RMS from prev iter */ 
/ * pi */ 

/* ---- ---------------------------------- ------------------
Initialize error terms 
---------- - -------------- - - - ---------------------------- */ 
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void initerr( ) 
{ 
int i / j; 

} 

for (i = O; i < nodes[l]; i++) { 
for (j = O; j < nodes[O]; j++) 

e2 [ i] [ j ] = 0 . 0; 
eL2 [ i] = 0 . 0 ; 
} 

for (i = O; i < nodes[MX]; i++ ) { 
for (j = O; j < nodes[l]; j++) 

e3 [ i] [ j ] = 0 . 0 ; 
eL3 [ i] = 0 . 0 ; 
} 

rms = 0.0 ; 

return; 

/* ---------------------------------------- ----------------
Hidden and output layer feed-forward 

-------------------------------------------------------- * / 
void fdfwd(int set) 
{ 
int i,j; 
float sigmd(float); 

} 

f or ( i = O; i < nodes[l]; i++) { 
i2[set] [i] = 0.0; 
for ( j = O; j < nodes[O]; j++) 

i2 [set] [i] += w2 [i ) [j] *xl [set] [j]; 
i2[set][i] -= L2[i]; 
x2 [set] [i ] = sigmd(i2 [set] [i]) ; 
} 

for ( i = O; i < nodes[MX]; i++) { 
i3[set] [i) = 0.0 ; 
f or (j = O; j < nodes[l]; j++) 

i3[set][i] += w3[i][j]*x2[set][j]; 
i 3 [set] [i] -= L3 [i]; 
x 3 [set) [i] = s igmd (i3 [set) [i)); 
} 

return; 

/* --- --------------------------------------------- --------
Back propagate the errors 

---------- -------------- ---------------------- ---------- * / 
void backprop(int set) 
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{ 
float deriv{float); 
float sum, d[MXONDES] , dum; 
int i I j ; 

} 

for {i = O; i < nodes[MX]; i++) { 
dum = ans [set] [i] - x 3 [set] [i]; 
rms += dum*dum; 
d[i] = deriv(i3 [set] [i])*dum; 
for (j = O; j < n odes[l]; j++) 

e3 [ i] [ j ] += d [ i] * x2 [set] [ j ] ; 
eL3 [i ] += d[i] * i3 [set] [i] ; 
} 

for ( i = O; i < nodes[l]; i++ ) { 
sum= 0 . 0 ; 
f or ( j = O; j < nodes[MX]; j++) 

sum += w3 [ j J [ i J *d [ j] ; 
dum =sum* deriv {i2[set] [i]); 
for {j = O; j < nodes[ O] ; j++) 

e2 [i] [j J += dum * xl [set] [j] ; 
e L 2 [ i ] + = d um * i 2 [ set ] [ i ] ; 
} 

return; 

/ * --------------------- -------- ------------ ----------- ----
Cale square of the error 

----------- ---------- ---- ---------------- ------- -------- * / 
void sdiff {int set) 
{ 
float dum ; 
int i; 

} 

f or (i = O; i < nodes [MXJ; i++) { 
dum = ans [set] [i] - x 3 [ set] [i]; 
rms += dum*dum ; 
} 

return ; 

/ * -------------- -------------- -------------- - -------------
Adjust wgts using d e l ta r ule 

-- - ---------------------------- -------- ----------------- * / 
void deltarule() 
{ 
float dummy; 
int i I j i 



} 

74 

f or (i = O; i < nodes[MX]; i++) { 
for ( j = O; j < nodes[l]; j++) { 

dummy= w3[i] [j]; 
if (delrms > 0.0) 

w3 [i] [ j] += (beta3*e3 [i] [ j ] + alpha*delta3 [i] [j J); 
else 

w3[i][j] += (beta3*e3[i][j]); 
del ta3 [ i] [ j] = w3 [ i J [ j ] - dununy ; 
} 

L3[i] + = bl3 * eL3[i]; 
} 

for ( i = O; i < nodes[l]; i++) { 
for (j = O; j < nodes[O]; j++ ) { 

dummy= w2 [i] [ j]; 
if (delrms > 0 . 0) 

w2 [i] [j] + = (beta2 * e2 [i] [j J + alpha *del ta2 [i] [j J); 
e lse 

w2 [i] [j] += (beta2*e2 [i] [j J + alpha*delta2 [i] [j J); 
delta2 [i] [j] = w2 [i] [j] - dummy; 
} 

L2[i] += bl2 * e L2[i] ; 
} 

return; 

/ * -------------------------------- ---- ---------------- - -- -
Function 1 - Sigmoid function 

----------------- - - --- -- --------------- -- - --- --------- -- * / 
float s i gmd(f l oat mu) 
{ 

return(atan(mu) / pi + 0.5); 
} 

/* ---------------------------------------------------- - - --
Funct i on 2 - Inverse function for backprop 

-------------- - - -------------- - --------------- ---- -- - -- - * / 
float deriv(floa t mu) 
{ 

return(l.0/(1.0+mu*mu)); 
} 

! * ------ - - - - ---------------------- - -- --- - ---------------- -
Find RMS, del rms and delrms2 

-------------- -------------------- - - - ------ - -- - - -------- * / 
void RMS () 
{ 



} 
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rrns = (float)pow(rms /( double)KASE/( double)nodes[MX],0 . 5) ; 
delrrns = oldrms-rrns ; 

return ; 



ANNl . H 

***** 

***** */ 

This is the 
information 

#define MXKASE 31 00 
#define MXLYRS 3 
#define MXINDES 26 
#define MXHNDES 26 
#define MXONDES 26 
#define MXNODES 26 
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header file for the ANN. It contains 
on array subscripting. 

/* max # of training sets/files * / 
/* max # of layers * ! 
/* max # of input layer nodes * / 
/ * max # of hidden layer nodes * / 
/* max # of output layer nodes * / 



NET.INP 

***** 

***** */ 

narnel 
8 
narne2 
3 
3 3 8 
0 
500 
1 
. 5 
.5 
. 1 
.01 
0 
0 
0 
0 
0 
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This is the input file for the ANN. It contains all 
pertinent information on the execution of ANNl . 

$Pref ix_for_data_file 
$No_ of_patterns_ to_read 
$Pref ix_ for_wts_files 
$No_ of_layers 
$No_ of_input_ hidden_output_ layers 
$Training,_validation_or_unknown_(O,l,2) 
$Iterations btwn saves - -
$Print_to_screen_ (O=no , l=yes) 
$Hidden_layer_ learning_rate 
$0utput_layer_ learning_ rate 
$Mornenturn_learning_ rate 
$Stopping_ RMS 
$Undefined 
$Undefined 
$Undefined 
$Undefined 
$Undefined 
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APPENDIX B . SAMPLE DATA FILES 

This chapter contains a sample of the data from the SOAl 

database and the normalized and abbreviated data files which 

were created from the database. Ten lines from the SOAl 

database appear in ten.dat. The data files created from the 

SOAl database are: boronlO . dat and pinlO.dat. 

TEN.DAT - sample from SOAl database. 

12132412242424214233224223 .194917E+ 04 .328458E+Ol 
.145279E+04 .999993 1.7740 00 1.089113 811. .1 05580 E+04 
1.000020 1.6140001.074097 811. . 466003E+03 1. 00000 1 1 . 433000 
1.055167 811. -.694324E+02 1.000004 1.326000 1.041435 811 . 
. 367388E+02 . 384481E+02 . 311928E+02 . 361563E+02 
.162734E+02 . 227378E+02 .185455E+02 . 212195E+02 

12132422142424224242123323 .190085E+04 .255812E+Ol 
.140061E+04 . 999996 1.823000 1.088243 811. . 101469E+04 
1.000003 1.637000 1.074664 811. .443510E+03 1.000007 1.439 000 
1. 057877 811. -.852874E+02 1.0 00005 1.330000 1.043800 811 . 
. 370418E+02 . 379102E+02 .314673E+02 .363399E+02 
. 146373E+02 .229464E+ 02 .19 0479E+0 2 .212 648E+02 

12142132142324324242242322 .192821E+04 .29369 1E+ Ol 
.142241E+04 . 999994 1. 808000 1 . 100316 912. .1 02115E+04 
1.000002 1.619000 1.083774 912. .441953E+ 03 1 . 000006 1.422000 
1.063972 912. - . 863070E+02 1.000005 1.3190 00 1 . 034393 1011 . 
. 370379E+02 .376806E+02 .316241E+02 .362784E+02 
.143405E+ 02 . 225466E+02 .189813E+02 . 215323E+02 

12142213242424224243222313 .183408E+04 .206408E+Ol 
.132532E+04 1.000000 1.545000 1 .07 8865 910. .959150E+03 
1.000005 1.4730 00 1.053214 910 . .408913E+03 1. 000007 1.387000 
1 . 043862 811. -.111558E+03 1.000002 1 . 311000 1. 03 9119 912 . 
. 354271E+02 . 387097E+02 . 327194E+02 . 364472E+ 02 
.112912E+02 .146098E+02 . 196054E+02 . 2161 02 E+ 02 
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12142321242324214242224323 .197695E+04 .345457E+Ol 
.146764E+04 .999998 1.888000 1.098934 912. . 104099E+04 
1 . 000000 1.664000 1 . 080372 912. .447003E+03 1 . 000002 1 . 429000 
1.053242 912. -.837359E+02 1 . 000002 1.315000 1 . 036031 912 . 
. 349685E+02 . 386034E+02 . 319949E+02 . 369268E+02 
.156200E+02 . 230817E+02 .181719E+02 . 214939E+02 

BORONlO.DAT - normalized data for boron concentration. 

0.400000 0.200000 0.400000 0.200000 0.800000 0.200000 0.600000 
0.400000 0.800000 0.400000 0.800000 0 . 400000 0.600000 0.600000 
0 . 400000 0.800000 0.400000 0.800000 0.400000 0.400000 0.400000 
0 . 800000 0.400000 0.400000 0.600000 0.238887 

0 . 400000 0 . 200000 0.400000 0.200000 0.800000 0 . 400000 0 . 200000 
0.400000 0.800000 0 . 400000 0.800000 0.400000 0.800000 0.600000 
0 . 400000 0.600000 0.400000 0.800000 0 . 400000 0.400000 0 . 400000 
0.800000 0 . 400000 0.600000 0.600000 0.418360 

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.400000 
0 . 400000 0.800000 0.400000 0.800000 0.400000 0.400000 0 . 600000 
0 . 400000 0.800000 0.400000 0 . 800000 0.600000 0.200000 0 . 400000 
0 . 800000 0 . 400000 0.600000 0.600000 0.226818 

0 . 400000 0 . 200000 0.400000 0.200000 0.800000 0 . 400000 0.600000 
0 . 200000 0.800000 0 . 400000 0.400000 0.400000 0.800000 0.400000 
0.400000 0.800000 0.400000 0.800000 0 . 600000 0.400000 0.800000 
0 . 400000 0.600000 0.400000 0.600000 0.190077 

0.400000 0 . 200000 0.400000 0.200000 0.800000 0.400000 0 . 600000 
0.400000 0 . 400000 0 . 400000 0.800000 0 . 400000 0.800000 0 . 600000 
0.400000 0 . 800000 0 . 400000 0.800000 0 . 400000 0.400000 0.400000 
0 . 800000 0.600000 0.200000 0.600000 0 . 137289 

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.600000 
0 . 400000 0 . 800000 0 . 400000 0.800000 0.400000 0.400000 0.600000 
0.400000 0.800000 0 . 400000 0 . 800000 0.400000 0.200000 0.400000 
0 . 800000 0.600000 0 . 400000 0.600000 0.157181 

0 . 400000 0 . 200000 0 . 400000 0.200000 0.800000 0 . 400000 0 . 600000 
0.400000 0.800000 0.400000 0 . 800000 0.400000 0 . 800000 0.400000 
0.400000 0.800000 0 . 400000 0.800000 0.600000 0 . 400000 0 . 600000 
0.400000 0.400000 0 . 200000 0.600000 0 . 349818 

0.400000 0 . 200000 0.400000 0 . 200000 0.800000 0 . 400000 0 . 600000 
0.400000 0 . 800000 0 . 400000 0.800000 0 . 400000 0.800000 0 . 600000 
0 . 400000 0.800000 0.400000 0 . 800000 0.600000 0 . 400000 0.600000 
0.400000 0.400000 0.200000 0.400000 0.339752 

0 . 400000 0.200000 0.400000 0.400000 0.800000 0.200000 0 . 400000 
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0 . 400000 0.800000 0 .4 00000 0.800000 0 . 400000 0 . 600000 0.600000 
0 .4 00000 0.800000 0 .4 00000 0.800000 0.600000 0 . 200000 0 .4 00000 
0 . 800000 0.400000 0 . 600000 0.400000 0 . 306682 

0.400000 0 . 200000 0.400000 0.400000 0 . 800000 0 . 200000 0 . 600000 
0.200000 0 . 800000 0 .4 00000 0.600000 0.400000 0 . 800000 0.400000 
0. 400000 0 . 800000 0 .400 000 0.800000 0 . 600000 0.400000 0 . 800000 
0. 400000 0 . 600000 0. 40 0000 0 .40 0000 0 . 40 1232 

PIN10.DAT - normalized data for pin peaking . 

0 .4 00000 0.200000 0.400000 0 . 200000 0 . 800000 0.20000 0 0 . 600000 
0 .400000 0 . 800000 0. 4 00000 0.800000 0 .400000 0 . 600000 0.600000 
0.400000 0 . 800000 0.400000 0.800000 0 . 400000 0 .4 00000 0.400000 
0 . 800000 0.400000 0 .4 00000 0 . 600000 0 .1 51531 

0 . 400000 0 . 200000 0. 400000 0.200000 0.800000 0 . 400000 0.200000 
0.400000 0 . 800000 0.400000 0.800000 0 . 400000 0 . 800000 0.600000 
0.400000 0 . 600000 0.400000 0 . 800000 0 . 400000 0.400000 0 . 400000 
0.800000 0 . 400000 0.600000 0 . 600000 0.377086 

0.400000 0.200000 0. 4 00000 0 . 200000 0.800000 0 . 400000 0.400000 
0 . 400000 0.800000 0. 4 00000 0.800000 0 . 400000 0 .4 00000 0 . 600000 
0 .4 00000 0 . 800000 0.40000 0 0 . 800000 0 . 600000 0.200000 0.400000 
0.800000 0.400000 0.600000 0 . 600000 0 .1 63358 

0.400000 0.200000 0.400000 0.200000 0 . 800000 0.400000 0.600000 
0.200000 0.800000 0 .4 00000 0.400000 0.400000 0.800000 0 . 400000 
0 .4 00000 0 . 800000 0 .4 00000 0.800000 0 . 600000 0 . 400000 0 . 800000 
0.400000 0.600000 0 .4 00000 0.600000 0 .1 59134 

0. 400000 0.200000 0 .4 00000 0 . 200000 0.800000 0 .4 00000 0 . 600000 
0 . 400000 0.400000 0 .4 00000 0.800000 0 . 400000 0 . 800000 0 . 600000 
0.400000 0 . 800000 0 .4 00000 0.800000 0.400000 0.400000 0 . 400000 
0.800000 0.600000 0 .200000 0 . 600000 0.137592 

0 . 400000 0 . 200000 0.400000 0 . 200000 0 . 800000 0.400000 0 . 600000 
0. 4 00000 0 .800000 0.400000 0 . 800000 0.400000 0 .4 00000 0.600000 
0.400000 0.800000 0 .4 00000 0.800000 0 .4 00000 0.200000 0 .4000 00 
0.800000 0.600000 0 .4 00000 0.600000 0.187434 

0.400000 0 . 200000 0 .4 00000 0 . 200000 0.800000 0 . 400 000 0 . 600000 
0 . 400000 0.800000 0 .4 00000 0.800000 0.400000 0 . 800000 0.400000 
0 .4 00000 0.800000 0 .400000 0.800000 0.600000 0.400000 0.600000 
0.400000 0 .4 00000 0.200000 0 .600000 0 . 265153 

0 .4 00000 0 . 200000 0 . 400000 0 . 200000 0.800000 0 . 400000 0 . 600000 
0 . 400000 0.800000 0.400000 0 .800000 0 . 400000 0 . 800000 0 . 600000 
0. 40 0000 0 . 800000 0. 4 00000 0 . 800000 0 . 600000 0 .4 00000 0.600000 
0.400000 0.400000 0 . 200000 0.400000 0.230095 
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0.400000 0.200000 0.400000 0.400000 0 . 800000 0.200000 0 . 400000 
0.400000 0.800000 0.400000 0.800000 0.400000 0.600000 0.600000 
0 . 400000 0.800000 0.400000 0.800000 0.600000 0.200000 0 . 400000 
0.800000 0.400000 0.600000 0.400000 0 . 145618 

0.400000 0.200000 0.400000 0.400000 0.800000 0.200000 0 . 600000 
0.200000 0.800000 0.400000 0.600000 0.400000 0.800000 0 . 400000 
0.400000 0.800000 0.400000 0.800000 0.600000 0.400000 0 . 800000 
0.400000 0 . 600000 0.400000 0.400000 0.302323 
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APPENDIX C . APPROXIMATING kett FROM CRITICAL BORON 
CONCENTRATION 

This chapter contains a description of how I converted my 

prediction accuracy in critical boron concentration to a 

predict ion accuracy in keff . 

The following rules-of-thumb for critical boron 

concentration and k ecc during a 12 month cycle were related to 

me by G.I. Maldonado[22]. The critical boron concentration is 

approximately 1000-1200 ppm at BOC and is roughly 0 ppm at 

EOC. This corresponds to a percent change in boron 

concentration of 8.3% to 10% per month. The change in k ecc per 

month is roughly 0.01 which corresponds to a percent change in 

k e ff 0 f 0 . 8 3 % 0 r 1. 0 % • 

Based on the above comparisons of thumb rules, the 

conclusion is that a 3% accuracy rate in critical boron 

concentration is equivalent to a 0. 3 % accuracy rate in k eff. 


