
Predicting core parameters in a pressurized water reactor

using an artificial neural network

by

Scott E . Wendt

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department:
Maj or :

Signatures have been redacted for privacy

Mechanical Engineering
Nuclear Engineering

Signatures have been redacted for privacy

Iowa State Univers ity
Ames, Iowa

1994

Copyright © Scott E. Wendt. 1994 . All rights reserved .

ii

TABLE OF CONTENTS

CHAPTER 1 . INTRODUCTION

Nuclear Power Reactor Core Reloads

Artificial Neural Networks

Problem Statement

CHAPTER 2 . ARTIFICIAL NEURAL NETWORKS

Introduction

Multi-layer Perceptrons

Feed Forward

Back Propagation

Output Layer

Hidden Layer

Batch Training and ~

RMS Error

Network Architecture

Verification

CHAPTER 3 . NUCLEAR REACTOR CORE RELOADS

Introduction

Nuclear Fuel Management

Core Reload Methods

Bac kward Diffusion

Linear Empirical

Expert Systems

1

1

2

3

4

4

4

8

11

11

15

16

18

18

19

25

25

25

29

30

31

31

lll

Constant Power Depletion

Simulated Annealing

Scope of Problem

SOAl Database

CHAPTER 4 . THE PROBLEM AND ITS SOLUTIONS

Introduction

Data Collection and Processing

Normalization of the Data

Final Data Set

Parameter Prediction

Training

Results

Discussion

Comparison with Similar Work

CHAPTER 5 . CONCLUSIONS

Possible Future Work

BIBLIOGRAPHY

APPENDIX A. COMPUTER CODES

APPENDIX B . SAMPLE DATA FILES

APPENDIX C. APPROXIMATING k.tt FROM CRITICAL BORON
CONCENTRATIONS

33

34

35

38

41

41

42

42

43

44

44

44

51

52

55

55

57

60

78

82

iv

LIST OF TABLES

Table 2 .1 : XOR inputs and outputs 20

Table 2. 2: Eight to one decoder inputs and outputs 22

Table 2. 3: Eight to one decoder trained outputs 22

Table 4.1: Training and recall results 45

Table 4. 2: ANN comparison table . . . 54

v

LIST OF FIGURES

Figure 2.1: A three layer MLP with three inputs, four
hidden and two output nodes 5

Figure 2 . 2 : A three layer MLP during the feed-forward
phase 9

Figure 2 . 3: A single hidden node in an MLP 1 0

Figure 2. 4: A three layer MLP during the back
propagation phase 12

Figure 2.5: Output node during back propagation 13

Figure 2. 6: Hidden node during back propagation 16

Figure 2.7: Input data for Lippmann's circle problem 23

Figure 2.8: ANN decision region for Lippmann's circle
problem 24

Figure 3 . 1 : Plan view of full and eighth core models 37

Figure 3.2: Eight h core model numbering system and
example core loading 4 0

Figure 4.1: Prediction results - critical boron
concentration training set . 47

Figure 4.2: Prediction resul ts - critical boron
concentration validation set

Figure 4.3: Prediction results - pin peaking ratio
training set

Figure 4 . 4: Prediction results - pin peaking ratio
validation set

48

49

50

1

CHAPTER 1. INTRODUCTION

Nuclear Power Reactor Core Loads

Every 12 to 24 months the reactor at a nuclear power

plant is shutdown, partia lly dismantled a nd refueled. During

the refueling process, approximately one third of the fuel

assemblies in the core are removed and placed in a n earby

storage facility for eventual disposal. The remaining fuel

assemblies will remain in service in the core for an

additional one or t wo fuel cycles until they too will be

discharged. The new, fresh fuel assemblies and the old,

partially s p ent fuel assemblies are "shuff l e d" and p laced back

into t h e core. This n ew core arrangement or pattern is not

random or haphazard , but is the result of months o f careful

analysis by a team o f nuclear engineers.

Depending on t h e reactor, the new core loading pattern

(LP) must satisfy several design criteria based on safety and

operational goals. Some of the possible criteria the

designers may have to consider are : the maximization of the

length of the n ext power cyc l e , the minimi za t ion of the

n eutron flux at the reac t or vessel wall, a nd/or the

minimization of the power peaks. Current l y, the analysis of

core LPs is accomplished with complex computer programs which

use diffusion or transport theory, often employing Monte Carlo

2

methods, to calculate the various parameters which quantify

the physical characteristics of the new core .

These computer codes, while accurate , often require large

amount s of computing power and time . Often , while the

computer is performing the calculations , the engineer must

wait, pondering the next step . Without the feedback provided

by the current calculation, the next step is a mystery. The

development of a fast er core parameter prediction system,

which would give almost instant estimates of the values of

thousands of new designs, could greatly speed the design of

new core reloads.

Artificial Neural Networks

Artificia l neural networks (ANNs) are computer programs

which employ a distributed memory scheme to 'learn ' such

things as function mapping, pattern classification, pattern

recognition, etc . . ANNs ' learn' or are trained through a

process where internal memory parameters, or weights, are

systematically altered until the network performs as desired .

During the training phase , the ANN is presented with an input

pattern and the correct answer. The answer is stored for

future reference while the input pattern is 'fed' into the

network. After many internal mathematical calculations, the

network produces an answer. This calculated answer or output

is compared to the correct answer stored in memory. If the

calculated answer is not the same as the stored answer, which

3

is very likely early in the learning process, the interna l

memory parameters or weights are adjusted to produce a better

answer the next time. This process is repeated many times on

many input/answer pairs until the ANN learns to produce output

'close enough' to the true answers, then the training

procedure is halted. The objective in training an ANN is to

have it learn the underlying functionality between the input

and the output by example. If this occurs there is a good

probability that the ANN has learned the functionality between

the input and the output a nd will produce an adequately

accurate answer when novel input data (i.e ., not part of the

training set) is presented to the network.

Problem Statement

This work describes the use of ANNs to estimat e or

predict key physical parameters which are needed to va l idate a

particular core LP design. The beginning of cycle (BOC)

parameters which this work will try to predict are the

crit i cal boron concentration and the pin peaking ratio.

In an industrial setting , it is proposed that the

engineers in charge of designing the new core LP would use the

results from the previous core loading calculations to train

the ANN for the current analysis. For this work, a database,

developed by Studsvik of Arnerica[31], containing core LPs and

the corresponding core parameters was used to train and test

the ANN.

4

CHAPTER 2 . ARTIFICIAL NEURAL NETWORKS

Introduction

The field of neural computing is new and ever expanding.

Dr. L. M. Simmons, Chair and executive vice president of the

Sante Fe Institute (SFI) wrote, "We are witnessing the

creation of new sciences of complexity, sciences that may well

occupy the center of intellectual life in the twenty-first

century." [13] (p. xiii) . Indeed, as time progresses,

scientists and engineers are finding more and more ways to put

ANNs to work.

Multi-layer Perceptrons

Although there are many types of ANNs, this work will

focus on the feed forward multi-layer perceptron (MLP) . In

the class of neural n etworks which include MLPs the convention

is to construct a network consisting of 'neurodes ' arranged in

groups, or layers , with 'connections' between the various

layers. The neurodes, also referred to as processing elements

or just nodes, are the location where all of the calculations

carried out within the network occur . In this work, the

neurodes are defined to be everything within the region

bounded by the dotted lines in Figure 2.1 .

As stated above, the neurodes are arranged in layers with

each neurode in one l ayer connected to each neurode in the

Hidden
Nodes

Input
Nodes

5

Output
Nodes

Figure 2.1 A three layer MLP with three inputs, four hidden and
two output nodes.

6

previous layer and to each node in the successive layer.

Because of this scheme o f neurode connections , the MLP is said

to be completely inter-connected between layers. Normally

there are no connections between neurodes in the same layer.

The MLP architecture consists of multiple layers of

neurodes. The l ayers are broken down into an input layer, one

or more hidden layers and an output layer ; the network shown

in Figure 2 . 1 has a single hidden layer. In the figure, the

row of solid boxes below the circle represent the adjustable

learning parameters, or weights. The circle represents the

neurode activation function and the solid lines between the

circles and boxes are the interconnections .

During the training, or l earning phase, input vectors

with known output vectors are presented to the network . This

process where only ' questions' with known 'answers ' are put

through the network is known as supervised learning. Repeated

application of the various input / output vectors allows the

network to l earn to produce the correct output to each set of

inputs by adjusting its weight values.

If enough examples are presented to the network, and

these examples are representative of t h e data set as a whole,

the network may be able to learn the underlying functi onality

between the input and the output. If the ANN does learn the

input/output functionality correctly , it may then be able to

correct l y classify novel input data. This ability to learn

7

the correct classification for novel data is referred to as

generalization . When a network fails to generalize , but

instead learns to produce the correct answers only to the

specific inputs it was trained on , it is said to have

memorized the data.

The flow of data through a feed forward MLP can be

divided into two phases . First the netwo rk receives an input,

or question, from the outside world via the input nodes. The

input nodes pass the data forward, or up the network

structure , fanning out their data to all of the nodes in the

hidden layer . No calculations are performed by the input

nodes. The hidden nodes pass their outputs on to the output

nodes and the output nodes display the network's output to the

outside world . This stage, from input to output, is aptly

called the feed-forward phase.

The second phase begins with a comparison of the

calculated output and the desired output for each of the

output nodes. The difference between the calculated and

desired output is the network error. This error is used to

alter the interconnection weight parameters so that the error

will be smaller the next time . It is the systematic changing

of these weights that is responsible for the ability of the

ANN to 'learn'. The error is propagated backward through the

network from the output nodes to the input nodes so that each

weight's contribution to the error can be calculated . This

8

second phase is called the back propagation phase .

Feed Forward

The learning process begins in the feed forward phase,

the various node inputs and outputs are depicted in Figure

2.2. An input vector is applied to the network via the input

nodes. The input values are 'fanned out' by the input nodes

to each node in the next layer. Again, no calculations are

performed in the input layer. In the hidden layer neurodes,

the inputs are multiplied by the connection weights and the

resulting products are summed together, see Figure 2 . 3. A

bias value, b ij ' is subtracted from the sum and the result,

net ij ' is applied to the nodal activation function. The output

of the activation function, xi j ' is the output of the node .

The formula for calculating the nodal output is given by

Equations 2.1 and 2.2.

N1-1

net ij = L wi jkx i-1, k - b ij
k-1

In these equations, the subscript i indicates the current

(2 .1)

(2. 2)

layer, i-1 indicates the previous or lower layer, and i+l

indicates the next layer. The subscript j represents the

number of the current node in layer i. The subscript k

represents the number of the specific weight associated with

node j in layer i-1. The node passes its output value to all

9

x 3 1 x
3 z

x x x
1 1 1 2 1 3

Figure 2.2 A thr ee l ayer MLP during the feed-forward phase .

10

J

NODE 1
LAYER 2

n e t 21= [wzu x a - b 21
k =1

Figure 2.3 A single hidden node in an MLP .

of the nodes in the next layer where the process is repeated

with the n ew i nput values and with the next layer's weight

values. When the output layer is reached, the output from the

nodal transfer function is also the output from the network.

The nodal transfer or activation function used in this

work is the arctangent sigmoid function described in Equation

2. 3 .

The arctangent function is pref erred over the more common

11

f (x) - ~arctan (x) + ~
1t

exponential sigmoid function of the form

f(x)- 1

because the latter tends to cause underflow and overflow

(2 . 3)

(2 . 4)

errors when the magnitude of the weights gets large . In this

work, all of the neurodes in the hidden and output layers use

the same activation function.

The process just described is the feed-forward pass of

the MLP. For a trained ANN , the forward pass produces the

answer completing the process. For an untrained ANN, however ,

the forward pass is just the first step , since the output i s

most likel y incorrect .

Back Propagation

The backward pass, depicted in Figure 2.4 , is the

beginning of the process whereby the error is ca l culated and

the weights that produced the error are changed . The back

propagation (B P) algorithm, as derived by Hecht-Nielsen[ll),

is used to modify the weights.

Output Layer

The BP algorithm uses a gradient descent procedure [4) to

adjust the weights. Plotting the error aga i nst vari ous

combinations of weights creates an N-dimensional surface with

peaks where the weight combinations give l arge errors and

/
/

/
/

/

/
/

/

:- -- -- - - ----7'- - -;.->/-,
' ' I
I

I
I

1 2

d 3 1

... ... / ... / ', ~(/ ,,,

.... , , ;"'
... / ... /

/ ...
/ ...

/ ...
/ ...

/ ...
/ ...

I
I

d
3 z

6
3 2

' ' ' ' ' ' ' ' ' ' '

24

Figure 2.4 A three layer MLP during the back propagation phase.

13

valleys where the error is small. If the current weight

vector is located on a peak on that error surface, the

gradient descent algorithm attempts to move the network down

the slope of the error surface by adjusting the weights in the

direction of steepest descent.

The backward pass begins at the output layer. The error,

defined as the difference between the desired output and the

calculated output, is computed for each neurode in the output

layer . To minimize the error function, the derivative of the

activation function, Equation 2.5, is used to find the slope

of the error surface.

f' (x) -
l+x2

1 (2 . 5)

Inserting net ij into Equation 2 . 5, results in the slope of the

error surface at that point. Then, multiplying by the

difference between the desired and the calculated output,

scales the 8i j term to compensate for large or small errors .

The estimate of the weight change is obtained by multiplying

bij by the initial input, s ee Figure 2. 5 .

The new output node weights, W new f d ijk , are oun using

(2 . 6)

where 11 is the learning rate (0 < 11 < 1) and e ijk is the error

for each weight. This error is calculated using

I

I
I

I

x 21

I '
I '
I ' '

14

NODE 1
LAYER 3

~ 2 2 ' x 23 ' x 2 4

Figure 2 . 5 Output node during back propagation .

(2. 7)

where x i-t , j is the output from the previous layer and 8 ij is

defined as

(2 . 8)

where f ' is defined in Equation 2.5 and d 1 j is the difference

15

between the desired and actua l outputs of node j in layer i .

The bias term is trained in a similar manner , Equation

2.6 becomes

b~7w - bo~d [b)
1) I) + Tl e ij (2 . 9)

where Tl is the learning rate (0 < Tl < 1) and [eb] i j is the

e rror f o r each bias which is calculat ed using

(2 . 10)

where n e t ij is the summed, weighted input to the node from the

previous layer and Oij is defined as before in Equation 2 . 8 .

Hidden Layer

Calculating oij using Equation 2 . 8 is applicable for the

o u t put l ayer whe re d ;j is known, but what about the h idden

l ayers where the corr ect output is not known? The back

propagation algor i thm deals with this problem by determining

each hidden node's contribution to the e rror at the output

nodes . This contribution is then used in the weight change

calcul ations . Each hidden layer node ' s contribution to the

output error is cal culated using

N a1

01.J. - f' (net . .)°"'w. 1 .ko . 1 k 1) L i + , J 1 -.. ,

(2 .11)

i - 1

see Figure 2.6. Here i signifies the current layer and

i+l signifies the next layer (which is the output layer if the

ANN has a three layers) .

' ' '

16

I

X H X12

NODE 1
LAYER 2

0211 x1 1

Figure 2.6 Hidden node during back propagation.

Batch Training and ~

There are two ways to present the data to the ANN during

the training phase, on-line and batch mode . When on-line

training is employed, the weights are adjusted after each

pattern from the training set has been passed through the

network. By contrast, when batch training is employed the

weights are adjusted only after al l of the patterns in the

training set have been fed through the ANN. In this work

batch training was employed and the error terms , e 1j , act as

17

accumulators of the error from each training pattern. Only

after all of the training patterns have been fed bot h forward

and backward through the network are the weight values

changed.

The learning rate, 11 , is used so that each of the weights

are adjusted only a fraction of the amount computed by

Equat i on 2.7. The larger the value of 11 the larger the size

of the step down the slope on the error surface. 11 can range

from 0.0 to 1 . 0, 0.3 is a typical value and was used in this

work. Since batch training was used in this work, 11 was

divided by the number of patterns in the training set to

account for the accumulation of the error from each pattern.

Also in this work, 11 was divided by the number of nodes in the

previous layer in an attempt to balance the rate of learning

in each layer.

In addition, Equation 2.6 was modified as follows

new o ld new old
wi j k = w ij k + ll e ijk + ae;jk (2 . 12)

where 11 is, again, the learning rate and a is a number on the

range [0 . 0,1.0) that is multiplied with the accumulated error

from the previous training batch. The use of the additional

term, called momentum, helps to speed convergence and may help

the model escape from a local minimum, see Hecht-Nielsen[l l]

In this work, the momentum term is applied only if the

previous change was in the downhill direction.

18

RMS Error

To quan tify the error of the network output over all of

the output nodes, M, and for all of the training patterns, N,

the root mean square (RMS) error is calculated

RMS -
(2 . 13)

where d ij i s the difference between the calculated and the

desired output .

Network Architecture

The number of input and output nodes is usually

determined by the problem to be solved. As a minimum there

should be one input node for each unique independent variable

and there should be at least one output node for each unique

dependent variable . But, how should the number of hidden

nodes and hidden layers be determined?

This question has long been the topic of heated debate in

the artificial neural network community. In Hecht - Nielsen [ll]

Kolmogorov's Theorem is shown to prove that any continuous

function f : [0,1]" ~ Rm , f(x) = y , f can be implemented exactly

by a three layer feed forward network that has n input nodes,

(2n+l) hidden nodes and m output nodes . In general, it is

widely believed that the smaller the number of hidden nodes

the better the generalization and that the number of training

patterns should be greater than the number of weights in the

network [1 7] .

19

Bartlett[!] and Basu[2] use a dynamic node architecture

scheme to train problems with simulated condensation and back

propagation, respectively. They start the training process

with a few hidden nodes and add nodes until the ANN is able to

learn t h e mapping t o a pre-determined low error level. When

the error is low enough, the least important hidden node is

deleted and the network is retrained, if necessary . If the

error again falls below the pre-determined limit, more nodes

are deleted until the ANN will no l onger learn the mapping.

The process of adding and deleting nodes continues until the

minimum number of hidden nodes required to map the input to

the output is determined. They have shown that better

general i zation occur s with the fewest number of hidden nodes .

Verification

Since it is difficult to verify that an ANN has been

correctly constructed, or programmed , an acceptable way to

show that the ANN is performing properly is to model several

wel l k nown problems. To verify that the ANN constructed for

this work does indeed model problems correctly, three examples

were used as benchmarks, these are : the exclusive-or problem

(XOR) , the eight-to- one decoder problem[2] and the Lippmann

circle problem [20] .

The first example, the exclusive-or (XOR) problem, is

taken from the Boolean function in linear algebra . By

definition, the XOR function returns a positive response if

20

one but not both of the inputs has the value 1.0. A network

was constructed with two input nodes, three hidden nodes and

one output node and was trained to an RMS error of 0.01. The

input pai rs and the desired and cal culated output are shown in

Table 2.1. Note that the desired outputs have been normalized

Table 2.1: XOR inputs and outputs.

I
Input

I
Input

I
Desi red Calcul ated

1 2 Output Output

0.0 0.0 0.1 0.08227

0. 0 1. 0 0.9 0.89896
1.0 0 . 0 0.9 0.89889
1.0 1. 0 0.1 0.10913

on the range (0.1,0.9] to aid in convergence of the ANN . As

can be seen the ANN correctly classifies the four input

points.

The second example problem is known as the eight-to-one

decoder problem. The three inputs represent binary b i ts which

take the values 0 or 1. When taken together the three digi t

binary number can represent the decimal numbers zero to seven.

The network i s trained to fire one of eight outputs depending

on the particular combination of zeroes and ones in the input.

An ANN with three input nodes, five hidden nodes and eight

output nodes was trained to an RMS error of 0.026 . Again ,

note that the desired outputs have been normalized on the

21

range (0 . 1,0 . 9) to aid in convergence of the ANN . Table 2 . 2

gives the input /output vector pairs and Table 2 . 3 gives the

calculated output va lues after the network was trained .

The third example problem is the circle problem as

described in Lippmann[20]. Two hundred points, defined by

their location on the x-y plane , are chosen at random for the

training set. One hundred points are chosen from within the

unit circle (0 < r < 1) and one hundred points are chosen from

the annular region described by 1 < r < 5 . The data points

are shown in Figure 2 . 7 . The x and y coordinates of each of

the points are the inputs to the ANN. The desired output is

0.9 if the point falls within the unit circle and 0 .1 if the

point falls outside the unit circle . An ANN with two input

nodes, eight hidden nodes, and one output node was trained to

an RMS error of 0 . 04 . The resulting decision region is shown

in Figure 2.8.

From the success of the ANN models of the three benchmark

problems , one can infer with an adequate degree of confidence

that the network has been constructed properly.

22

Table 2 . 2 : Eight to one decoder inputs and outputs.

Input Desired Output

0.0 0 . 0 0 . 0 0.9 0 .1 0.1 0 .1 0 . 1 0 . 1 0 . 1 0 . 1

0 . 0 0 . 0 1. 0 0 .1 0 . 9 0.1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1

0 . 0 1. 0 0 . 0 0.1 0 . 1 0 . 9 0 . 1 0 . 1 0 .1 0 . 1 0 . 1

0 . 0 1 . 0 1. 0 0 . 1 0 .1 0 . 1 0 . 9 0 . 1 0 . 1 0 . 1 0 . 1

1 . 0 0 . 0 0 . 0 0 . 1 0 .1 0.1 0 .1 0 . 9 0 . 1 0 . 1 0 . 1

1 . 0 0 . 0 1. 0 0 . 1 0 .1 0 .1 0 . 1 0 . 1 0 . 9 0 . 1 0 . 1

1 . 0 1 . 0 0 . 0 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 9 0 . 1

1 . 0 1.0 1 . 0 0 . 1 0 . 1 0 . 1 0 . 1 0 .1 0 . 1 0 .1 0 . 9

Table 2.3: Eight to one decoder trained outputs .

Calculated Output

1 . 975 . 101 .106 . 099 . 099 .1 09 . 107 . 038

2 .116 .896 .104 . 104 . 113 . 104 . 030 .098
3 .106 . 108 . 888 .1 02 . 103 .039 . 095 . 112
4 . 048 . 098 . 106 .884 .039 . 097 .1 07 . 086
5 . 116 . 104 . 088 . 047 . 906 . 088 . 105 . 1 01
6 . 097 . 106 . 037 .099 . 095 .889 . 098 . 111
7 . 104 .041 .1 07 .1 06 . 107 . 102 . 896 . 101
8 . 01 6 . 101 .1 04 . 107 . 101 . 112 . 101 . 894

23

•
• • •

• • • •
• •

• •
• • • • ••

• •• • r = s . o
• • • • •

• r = 1 . 0 •
• • .. • • ••

• • •
• • ••

•

Figure 2.7 Input data for Lippmann's c i rcle problem.

1. 0

Y-Axis

24

Lippman's circle problem
2 l ayer MLP with back propagation
RMS = 0.04; 8 hidden hodes

1. 00

0. 75

0.50

0 .25

0.00

X-Axis

0.0

Cl) 1. 00 al
I::
0

0 .75 0.
al
Q)

0.50 ~

~
~ 0.25 0
~ .w

0.00 Cl) z
Y-Axi s X-Axi s

1.00 Cl)
al
I::
0

0.75 0.
al
Cl)

0.50 ~

~
~ 0 . 25 0
~ .w

0.00 Cl) z

Figure 2 .8 ANN decision region for Lippmann's circle problem.

25

CHAPTER 3. NUCLEAR REACTOR CORE RELOADS

Introduction

The periodic core reloading of nuclear reactors has long

been a topic of study and research [6,7,10,14-16,18,21,25 , 26,

32]. In general , the goal of these studies has been to find a

method to optimize reactor performance and safety by way of

"shuffling" the core reload pattern. The parameters to be

optimized may vary depending on the particular reactor or

specific circumstances at hand. For example , if there is a

concern about pressure vessel embrittlement, then the

objective may be to minimize peripheral neutron leakage while

constraining cycle length and relative power peaking to

specified design limits. Nevertheless, regardless of the

criteria employed, the idea is the same, to determine an

optimum set and arrangement of fuel assemblies and burnable

poisons in the core for each fuel cycle .

Nuclear Fuel Management

The job of acquiring the nuclear fuel, placing it into

the reactor core, storing and/or disposing of the spent fuel

and all related aspects to these tasks is called nuclear fuel

management. The term out - of-core fuel management is used to

describe the overall long term strategy to purchase nuclear

fuel for several fuel cycles in the p l anning horizon. The

26

contracts between the utility and the fuel manufacturer

usually specify fabrication details such as fuel enrichment,

pellet size, cladding composition, quantity and type of

burnable poisons, etc.. In contrast , the term in-core fuel

management, restricted to a single fuel cycle , is used to

describe the process whereby the exi sting fresh and used fuel

assemblies (and burnable poisons) are arranged into the best

loading pattern (LP) possible . In this work, t he term fuel

management will refer to in-core nuclear fuel management .

A brief description of fuel management terminology such

as batch sizes, loading configurations, pin peaking, boron

concentrations, burnup, keff and burnable poisons follows.

A fuel batch is a group of fuel assemblies which have

been in the reactor f or the same number of cycles. The four

batches discussed in this work are: new fuel, new fuel with

burnable poison, once burned fuel and twice burned fuel. Once

burned fuel, as the name implies, has been in the core for one

fuel cycle and is about to enter its second cycle of service.

Similarly, twice burned fuel has been in the core for two fuel

cycles and is about to enter its third, and usually last,

cycle of service . Since about one third of the core is

removed each cycle, batch sizes are roughly one third of the

total number of fuel assemblies in the core .

Loading configurations refer to the vari ous patterns in

which the fuel assemblies may be arranged. Two of the most

27

common schemes for loading a reactor core are ref erred to as

the in-out and the out-in loading strategies. The out-in

strategy places the new fuel assemblies towards the periphery

of the core and has the advantageous effect of flattening the

power profile across the core . These fuel assemblies then

'migrate' toward the center of the reactor during subsequent

cycles . The in-out strategy, on the other hand, places the

new fuel assemblies more toward the center of the core from

which they 'migrate ' toward the periphery with each cycle .

The advantage of this latter strategy is a lower neutron

leakage at the periphery, leading to less neutron damage at

the reactor vessel wall.

Some loading configuration s can be eliminated out of hand

by means of engineering intuition and experience , for example :

non-symmetric patterns, patterns with new assemblies adjacent

to control rods, patterns with two new assemblies side by

side , patterns with new assemblies at the core periphery (in

the in-out strategy) or patterns with a new assembly in the

center location, etc. are all untenable. The reason for

eliminating LPs in this manner is to reduc e the number of

possible candidates to a more manageable size .

Pin peaking refers to the ratio of the maximum power

level at a specific fuel pin in a fuel assembly to the c o re

average power level. In general, a flat p ower profile across

the core is desired and thus upper design limits for the pin

28

peak ratio must be obeye d. These criteria a re conservatively

set to prevent the temperature o f any fuel pin from e x ceeding

thermal limits designed to preserve the integrity of the fuel

pin and the fuel assembly.

Reactivity is a term u sed to describe the state of

balance between the production and l oss of neutrons (and thus

fissions) in a nuclear reactor. The mathematical parameter

used to define the reactivity level of the core is k 0 u , also

known as the multipl ication factor. In the absen ce of

burnable poisons (discussed later), keff at beginning o f cycle

(BOC) is proportional to the cycle length, so a longer cycle

length can be implied by maximizing the BOC keff ·

Boron dissolved in the coolant is a neutron absorber a nd

is employed to adj ust keff to a value of 1 . 0 , denoted

"cri tical ". Boron dilution , also known as "chemical shim",

compensates for the depletion of the fuel and for the buildup

of f ission products . K0 u can be adjusted wi t h control rods,

c hemical s hims and burnabl e poisons . The use of a c h emi cal

shim reduces the number of expens i ve control rods that are

required to adjust keff and control the reactor . Also, since

the shim i s dissolved in the cool a nt and is evenly distributed

throughout the core , the con centration can be reduced t o

account for fuel burnup without altering the power

dis tributio n across the core . The amount of boron required ,

measured in parts per million (ppm) , is proportional to the

29

unadjusted k etf thus, maximizing the ppm of boron also implies

maximizing the unadjusted k e tt and cycle length .

There are several definitions of burnup. In general,

burnup o f the fuel is defined as the total energy released by

the fission of a given amount of fuel and is measured in terms

of megawatt -days(MWd) . Specific burnup, on the other hand, is

defined as the tota l energy rel eased by the f i ssion per unit

mass of fuel and is measured in terms of megawatt-days per

metric ton (MWd / t). Finally , fractional burnup is defined as

the total number of atoms o f fuel that undergo fission per

total number of fuel atoms initially present in the fuel.

A burnable poison (BP) is constructed from a material

that, like boron, has a negative effect on reactivity . The

isotope that is formed when the BP absorbs neutrons does not

have a large negative effect on reactivity, thus the term

"burnable". Placing burnable poison pins within the fuel

assemblies or blending it within the fuel itself has two major

objectives : (1) to hold down the positive reactivi ty of the

fuel at BOC thus allowing more fuel (higher enrichment) to be

loaded , thereby giving rise to a longer power cycle and (2) to

shape the power distribution in the reactor.

Core Reload Methods

For in-core fuel management, the massive number of the

possible cor e LPs, makes it highly improbable that an optimal

solution can be found by means of a n exhaustive search method .

30

For that reason, many techniques have been developed as

alternatives to the trial and error approach of an experienced

engineer. Some of these methods are: backward diffusion[6],

linear empirical core models[25] , expert systems[lO], constant

power depletion[16] and simulated annealing [26] . These

methods will be discussed in the following sections.

Backward Diffusion

The diffusion equation is well known to nuclear engineers

and is typically used to calculate the neutron flux and power

distribution in a reactor core for a given core loading . The

backward diffusion method[6] was derived so that the engineer

could assume a desired power distribution and then generate

the corresponding reactivity distribution. From this, the

core loading is then inferred from the available fuel

assemblies by best matching the reactivities of fuel

assemblies to the computed reactivity distribution. A forward

diffusion calculation is then performed to obtain the

corresponding power distribution which may or may not satisfy

constraints on cycle length, power peaking, etc.. If one or

more of the constraints are violated, the LP is discarded and

the process is repeated.

Although the backward diffusion method has been

extensively employed in an actual industrial scenario , several

assumptions are made which limit the accuracy of the

calculation . Also, there is no optimization of the LP which

31

best matches the target power distribution.

Linear Empirical

Fuel management via linear empirical core models[25] is a

method whereby a model is created which relates state

variables to control variables to determine the optimal BOC

k_. The state variables are assembly power fractions and

burnup increments ; the control variables are the zone

enrichments . The method tries to indirectly model the reactor

core by treating it as a linear programming problem, bypassing

the computationally expensive direct calculations. The method

assumes uniform poison distribution, linearity between state

and control variables and zero BOC burnup. The assumption of

linearity between the state and control variables limits the

accuracy of the predictions of the highly nonlinear reactor

core to first order at best .

Expert Systems

A heuristic, as defined by Webster[37] (p. 568), is

"involving or serving as an aid to learning, discovery, or

problem solving by experimental and especially trial-and-error

methods; also: of or relating to exploratory problem-solving

techniques that utilize self-educating techniques to improve

performance <a - computer program>". The expert system method

in fuel management uses a computer algorithm to heuristically

search for near optimal solutions to the core reload problem .

Rules based on past experience are developed for and

32

implemented by the expert system. These rules limit the

solution space by eliminating LPs which are untenable such as,

patterns with a fresh fuel assembly in the core ' s center

position. The expert system must be used in conjunction with

a core neutronics code to evaluate the candidate LPs produced

by the expert system .

In Galperin[lO] et al . the expert system was programmed

to avoid loading fuel schemes that promoted high local power

peaks while keeping the lowest possible power at the

periphery. The solution space was assumed to be divided into

groups or regions characterized by specific patterns, and it

was also assumed that within these groups there were large

numbers of almost identical solutions. The core loading

begins with fresh fuel assemblies followed by the once and

twice burned assemblies. Examples of some of the rules

employed are: no loading of fresh fuel into the inner part of

the core , no two fresh fuel assemblies should have a common

surface, no twice-burned fuel assembly should be loaded into

the outermost positions.

The probability of finding a global optimum core reload

pattern using this method is lessened by the fact that the

solution space is restricted. For example, suppose a specific

search method uses binary fuel exchanges to develop new LPs.

If THE optimal core LP happens to be a binary fuel exchange

away from an LP which has already been rejected, the expert

system will never find it .

Constant Power Depletion

33

The constant power, or Haling, depletion rnethod[l6]

assumes the optimum power distribution is constant throughout

the entire cycle and thus can deplete the core in a single

time step. This method is usually used in the core reload

design of boiling water reactors (BWRs) where greater

flexibility in reactivity control is possible . In the design

of core reloads for pressurized water reactors (PWRs), the

Haling depletion method provides a consistent means of

comparing new reload patterns without taking into account

optimal control policy . With the core loading and control

policy decoupled, the two factors can be optimized separately.

Kirn et al. first performs an eighth core , two

dimensional, Haling power calculat i on on the initial core

reload pattern using SIMULATE-3(29] , a commercially available

nodal diffusion code . Next, the objective function is

evaluated to find the end of cycle (EOC) critical boron

concentration, after which the nodal power peaking is

calculated . The resul ts are recorded and a binary f uel

exchange (two fuel assemblies switch positions) is performed

using heuristics to ensure that untenable LPs are eliminated.

The process is repeated until the core LP which maximizes

cycle length and stays within the constraints for the initial

LP is determined.

34

After the best LP has been found, the second phase begins

by estimating the distribution of burnable poisons (BPs)

necessary to match the Haling distribution. The optimal

dist r ibution of BPs is determined separately using a first -

order accurate perturbation approximation . The drawbacks to

the Haling depletion method are similar to those of backward

diffusion in that the assumptions about the optimum LP are

made a priori and no optimization is done.

Simulated Annealing

Simulated annealing is a form of artificial intelligence

that is analogous to the annealing process in metals. In the

annealing of a metal, the atoms align themselves as the metal

cools - reaching an arrangement which minimizes the energy

state of the solid. In simulated annealing, the trainable

parameters or weights are adjusted so as to reach a lower

error level. A weight vector which reduces the error is

accepted with 100% probability. Entrapment into a local

minimum is avoided by allowing the acceptance of weight

vectors with a higher error level at a low probability. This

probability of acceptance is reduced with time and is

analogous to the reduction of the temperature of the metal

being annealed.

In fuel management, Parks[26] first used simulated

annealing (SA) to optimize the performance of a fuel stringer

for the British Advanced Gas Reactor (BAGR) . A neutronics

35

code provided a measure of the cost of the fuel stringer to be

minimized by the SA algorithm . Heuristics were used to

decrease the size of the solution space .

Kropaczek[18] a nd Maldonado[21] combined simulated

annealing opt i miza t ion wi th second order nodal gen eralized

perturbation t h eory to generate families of near optimal core

reload patterns without the need for heuristics . The

combination of these techniques into the FORMOSA code results

in a method of core reload optimization which i s

computationally accurate and efficient with a minimal number

of assumptions made[21] . The expense of the direct

calculation of the core parameters is considerably lessened by

the use of noda l generalized perturbation theory .

Stevens[32] recently presented work on the optimization

of reactor core reload designs by simulated annealing with the

inclusion of heuristics for candidate LP generation . The

commercially available SIMULATE-3(29) is used to evaluate each

LP which is generated by the combination of heuristics and

artificial intelligence.

Scope of Problem

With the advent of faster and more powerful computers,

methods of f i ndin g optimal core reload patterns which were not

feasible a few years ago are now becoming tractable . Despite

that, however, the core re l oad problem is still too massive to

be solved by a purely exhaustive search technique . Given a

36

reactor with 157 fue l assemblies, approximately 1 05 o f these

assemblies are once or twi ce burned and are there f ore unique

(di fferent burnups, power histories, etc .) and 52 are

ident i cal new fuel assemblies (assuming n o burnable poison is

u sed) . The number o f possibl e combinations is 1 57 ! /52 ! or

l . 45x10 210 • If one half of t h e new assemblies have burnable

poisons then the number of possible combinations i s

157 ! /(26 !·26 !) or 7 . 21 xl0 22 4 •

To direct the fo c us of this r esearc h more so upon the ANN

application , several assumptions were adopted to reduce the

extent o f the search space . Since the reactor core is

geometrically symmetric the core LP a nd its parameters (i . e . ,

assembly reactivity , bur nup , neut ron flux and thus reactor

power) are also assumed to be symmetri c . Depending on the

placement of contro l rods, it can usually be assumed that the

reactor is symmetric down to an eighth of the core, see Figure

3 . 1 . When one eighth core symmet ry is assumed , using the same

core with 157 fuel assemblies, the number of avai lable fuel

locations is reduc e d to 26, nine are for fresh fuel leaving 17

posit ions for once and twice burned assemblies. The number of

possible combinat i on s drops to 26 ! /9 ! or l . llx10 21 •

An additional simplifying assumption was t hat all of the

f uel assemblies in a batch have similar characteri stics . The

1/8 core is then l oaded with the three batches of i dentical

fuel assemblies . Th e 'typical ' once and twice burned fuel

37

~

""" "" """ """ " ['-.
"" ~ ~

I"'
~

Full Core - top view

Eighth
Core -
top view

['-.

I "

"" "' ~
I"'

Figure 3.1 Plan view of full and e i ghth core mode ls.

38

assembl ies are determined by ca l culating the average

characteristics over the entire batch . When this further

simpl i fication is made, the number of possible combinations

decreases to 26 ! /(8 ! ·8! ·9!) or 6 . 84xl0 11 ; if burnable poisons

are presen t the number of poss i b l e combinations is

26 ! /(8 ! ·8! ·5! · 4 !) or 8 . 6lxl0 13 . These simplifying assumptions

were drawn in agreement with the SOAl Database described next .

SOAl Database

To aid n uclear utilities i n deve l oping a system for

design i n g a near optimal core reload pattern, Studsvik of

America developed a database[31] containing over 300,00 0 core

reload patterns and their respective core parameters as

calcul ated by the Studsvik package SIMULATE-3[29]. The core

modeled for the da t abase was an un specified PWR with 157 fuel

assemblies. To simplify matters, an average fuel assembly was

assumed for each batch and eighth core symmetry was used .

Parame ters such as critical boron concentration , keff • pin

peaking ratio , and burnup were calculated at four depletion

steps in the fuel cycle and recorded in the database .

The description of the format for the database f o llows .

The first entries a r e 26 integers ranging in va l ue from one to

four. A one indicates twice burned fuel, a two indi cates once

burned fuel, a three indicates new fuel and a four indicates

new fuel with burnable poi son. The position of the integer in

the string of 26 is important because it indicates the

39

location of the particular fuel assembly in the eighth core.

In Figure 3 . 2, the top figure shows the numbering system for

the eight core model - the position in the string of integers

is indicated by the number shown in the fuel locations. The

bottom figure shows a typical LP with the various " flavors " of

fuel (here flavors describe the fuel batch : twice burned - 1 ,

once burned - 2 , fresh - 3, and fresh with burnable poison -

4) .

Following the 26 LP integers are thirty floating point

numbers. These numbers represent the calculated core

parameters for that particular LP at four different depletion

steps. The first a nd second numbers are the hot zero power

(HZP) critical boron concentration and the HZP moderator

temperature coefficient , respectively for the LP. The next

five numbers are : critical boron concentration, keff' core pin

peaking factor, ratio of assembly pin peak to assembly

averaged power in the peak assembly and the location of the

pin peak assembly. These five parameters are calculated for

the first depletion step in the fuel cycle and the next

fifteen numbers are the parameters for the last three

depletion steps. The final eight numbers in the database

entry are the LP ' s average end of cycle (EOC) assembly average

burnup and peak EOC assembly average burnup for each of the

four batches.

40

Eighth core numbering system

I 1 2 1 2 2 4 2 3
1 4 2 2 2 4 3

1 4 2 4 2
2 2 4 3

2 3

Typical loading pattern

Figure 3.2 Eighth core model numbering system and example core
loading.

41

CHAPTER 4 . THE PROBLEM AND ITS SOLUTION

Introduction

In the optimization of core reload patterns , a good

estimate of the key core parameters such as keff (or critical

boron concentration) and pin peaking is crucial in evaluating

candidate patterns. Current methods either require direct

computation of these parameters for each pattern under

consideration or make simplifying assumptions which decrease

the accuracy of the calculations.

The commercial computer codes that are used in fuel

management today must be robust enough to be used by many

engineers. These codes are used on various designs of

reactors at many facilities across the country , each reactor

and each facility having its own peculiarities . Often

different facilities will have relevant information, such as

cross section data, stored in different locations or in

computer files which have different formats depending on the

vendor or the utility.

This work invest igates the use of an ANN to estimate the

pin peaking ratio and the critical boron concentration for a

typical reactor core. The network would be trained initially

on data from core reload efforts for previous cycles. The

data required to train the network would be the core LP and

42

its associated parameters - libraries of data would not be

needed. As estimates are generated for the current core

reload, any and all miscues could be added to the training

data so that the model can be refined to better reflect the

current core. In other words, the ANN learns the mapping from

core reload pattern to core parameter for each specific core .

Data Collection and Processing

The SOAl Countm Suite and Database[31] was used in this

work to train the an ANN to map core LPs to their respective

core parameters . The training sets were made up o f 3068 or

3069 randomly chosen loading patterns . The first LP was

chosen at random followed by every lOOth successive LP . There

were 306,884 loading patterns in the database to ch oose from -

dividing by 100 gives 3068 or 3069 depending on the number o f

the initial pattern. The validation set consisting of 3 069

different LPs was generated randomly (a random long integer

was generated and then the MOD function was applied to obta i n

the number of the LP) .

Normalization of the Data

As is common in the training of ANNs, both the output

data and the input data were normalized. The input data,

consisting of a series o f ones, twos, threes and fours, was

converted to 0.2 , 0.4, 0 . 6 and 0.8. The desired output

values, continuous real valued numbers, were norma l ized on the

range [0.1,0 . 9). The normalization was accomplished by first

43

finding the largest and smallest values for each parameter

over the entire set of 306,884 LPs. The range of each

parameter was calculated as the difference between the largest

and smallest core parameter. The smallest value was

subtracted from all of the patterns in the training set . The

resulting numbers were then divided by the range giving a set

of numbers normalized on the range [0,1). These numbers were

then multiplied by 0 . 8 and 0.1 was added to the product . The

result of these manipulations was a set of numbers normalized

on the range [0.1,0.9)

Final Data Set

The final data set consists of 3068 or 3069 lines of

input and output data. Each line contains 26 decimal numbers

[0.1,0.9) (25 input values and one output value) . The first

25 numbers represent the fuel batch number and its location in

the eighth core. The last number on the line of data is the

normalized parameter for pin peaking or critical boron

concentration depending on the output of interest.

The number representing the center position in the

reactor core was dropped from the training set due to the fact

that all of the loading patterns have a twice burned fue l

assembly in that location. Only unique inputs are important

to the network mapping between loading pattern and core

parameter, thus the inclusion of the center fuel assembly

would have been redundant.

44

Parameter Prediction

Training

An ANN model was developed for the problem of predicting

core parameters from the l oading pattern. The inputs to the

ANN are the 25 normalized fuel batch numbers. Thus, the 25

input nodes each represent a particular location in the eighth

core model . The output is the desired core parameter, i.e.

critical boron concentration or pin peaking ratio. To

increase the probability of network generalization, it is

desirable to keep the total number of weights in the ANN model

less than the number of training patterns[17] . The number of

hidden nodes was chosen to be 17 resulting in an ANN which has

442 weights and 18 bias values. With 3068 training patterns,

there are over six training patterns per weight value. If the

model can correctly classify a number of training patterns

that is larger that the number of weights in the model, the

implication is that the model has learned the functionality

between the input and the output and has not just memorized

the correct outputs for the given inputs.

Results

Due to the large number of training patterns, and LPs in

general, presentation of the results is not simple. The RMS

error gives a measure of the cumulative error over the entire

training set, but does not give detailed information about

specific LPs. Table 4.1 contains information about the RMS

45

Table 4.1 Training and recall results.

Core Parameter Training Validation
RMS RMS

Boron concentration 0 . 02 4 3 0 . 0266

Pin peaki ng 0 . 0411 0 . 0449

error of the training and validation sets for the critical

boron concentration and pin peaking ratio .

The RMS error reported in Table 4.1 is that of the

normalized data, therefore its magnitude is not the important

feature. A better measure of the ANN's ability to predict the

correct output will be presented later. However, with RMS

errors f or crit ical boron concentration of 0 . 0243 and 0 . 0266

on the training and validation sets, respectively, one can

i n f er t hat the network performed the desired mapping between

input a nd output almost equally well for both data sets . It

follows , therefore, that the ANN model has learned to predict

the critical boron concentration of the validation set from

training on the data in the training set.

For the case of pin peaking , the ANN had more trouble

learning the functionality between input and output , as

indicated by the l a rger value of the RMS errors of 0 . 0411 and

0 . 0409 . However, there was still good agreemen t between the

training and validat i on sets. And, it again follows, that the

ANN model has learned to predict the pin peaking of the

validation set to a similar degree of accuracy as the training

46

set .

The RMS error is, however, not the only , or even the

best, way to measure the acceptability of the ANN model.

Another method of presenting the results of the ANN modelling

is to plot the un-normalized predicted output against the un-

normalized actual output. A perfect mapping of input to

output would be represented by a line on the plot of slope one

and y-intercept of zero. When the appropriate error bounds

are placed on the plots, it is relatively easy to see where

the ANN performs well and where it doesn't.

Figures 4.1 and 4 . 2 show the actual or target boron

concentration plotted against the predicted output from the

ANN for the training and the validation sets, respectively.

The lines drawn on the figures are the ±3% (approximately 57

ppm) error bands, more than 99% of the data points in the

training set a nd more than 98% of the data points in the

validation set are within these bands . This corresponds to a

Pearson ' s product-moment correlat i on coefficient of 0 . 97995

and 0.97618 between the predicted and the actual output for

the training and validation sets, respectively .

Figures 4.3 and 4.4 show the actual or target pin peaking

plotted against the predicted output from the ANN for the

training and the validation sets, respective ly . The lines

drawn on the figures are the ±10% error bands, more than 90%

of the data points from the training set and more t han 87% of

El
Pi
Pi
..

Q
0
•rt
+.l
Id
H
+.l
Q
Cl)
0
Q
0
0

Q
0
H
0

..Q

"d
Cl)
+.l
0

·rt
"d
Cl)
H
Al

47

Predicted vs . Actual Boron Concentration
+/- 3% error lines

Training set

2400 ---Al""'----.

2300

2200

2100

2000

1900

1800

1700 ------..------.-------..------.-------..-----..... -------1

1700 1800 1900 2000 2100 2200 2300

Boron concentration, ppm

Figure 4.1 Prediction resul ts - critical boron
concentration training set .

2400

s
04
04
..

i::
0

-rt
J,.l
RS
M
J,.l
i::
Q)
tJ
i::
0
tJ

i::
0
M
0

..Q

'O
Q)
J,.l
tJ
ro
Q)
M
Al

2300

2200

2100

2000

1900

1800

1700

48

Predicted vs. Actual Boron Concentration
+/- 3% error lines

Validation set

1800 1900 2000 2100 2200 2300

Boron concentration, ppm

Figure 4.2 Prediction results - critical boron
concentration validation set.

2400

3.0
0

·rl
.L)
nj
~

...!< 2.5 nj
O.>
~

i::
~

"d
Ql 2.0
.L)
u

·rl
"d

O.>
14
A.

1.5

1.0

49

Predicted vs. Actual Pin Peak Ratio
+/- 10.0% error lines

Training set

1.5 2.0 2.5 3.0

Pin Peak Ratio

3.5

Figure 4 . 3 Prediction results - pin peaking ratio training set.

0
·ri
.j..l m p::
..!(
m
Q)
~

i::::
·ri
~

"O
Q)
.j..l
CJ

·ri
"O
Q)
~
~

50

Predicted vs. Actual Pin Peak Ratio
+/- 10.0% error lines

Validation set 3.5 __ ...,,. ____ __

3.0

2.5

2.0

1.5

1.0 .J_~:::._ ____________ -T"'--------r--------,----------1
1. 0 1.5 2.0 2.5 3.0

Pin Peak Ratio

Figure 4.4 Prediction results - pin peaking ratio
validation set.

3.5

51

the data points from the validation set are within these

bands . This corresponds to a Pearson's product-moment

correlation coefficient of 0.96597 and 0.95848 between the

predicted and the actual output for the training and

validation sets, respectively.

Discussion

When the accuracy of the results reported above are

compared with the accuracy of other methods of calculating

core parameters, the results are mixed. For the critical

boron concentration, the reported accuracy of SIMULATE-3 is

within 5-10 ppm [33] which is around 1% of a typical value for

the critical boron concentration . The ANN model in this work

was able to predict 75% and 71% of the core reload patterns to

within 1% in t he training and validation sets, respectively .

Typical errors in the calculated pin peaking ratios are

also reported to be approximately 1%[33] . In this area, the

ANN obviously does not perform well. A pos s ible reason for

this is in the problem definition . The critical boron

concentration is related to k ecc i which is a global core

parameter and the ANN was able to learn the mapping from input

to output in the training set . The pin peak ratio, however ,

is a local condition and is in fact accompanied in the SOAl

Database by the location of the pin peak in the core . The

inclusion of the location of the maximum pin peak ratio as a

parameter in the training (and recall) set may allow the ANN

52

to learn a more correct functionality.

While the accuracy of the ANN predictions is not as good

as the conventional methods, the speed at which the ANN can

make those predictions is unparalleled. The computational

inefficiency in ANN models occurs in the training phase which

is separated from the production phase. Therefore, when the

user wants to use the ANN to predict core parameters, the

prediction for any given core LP is almost instantaneous on

almost any modern personal computer or workstation. This is

not true in methods where the parameter is ca l culated

directly .

Comparison with Similar Work

In the work by H. Kim [l4] et al. two r eactor core

parameters, pin peaking and k ett 1 were predicted using an ANN

trained with back propagation . The exponential sigmoid

transfer function was used to construct a network with 21

inputs (the size of their e ighth core) , 500 hidden nodes and

18 output nodes . The input values for fresh fuel were

modified by the neutron importance function under the

impression that this was necessary to further distinguish the

physical location of the fuel assemblies in the core in

relation to position in the input vector. The eighteen output

values form a l x18 binary vector that is broken into two

groups of nine bits each. The two nine bit numbers are

converted into a real valued number by the group-and-weight

53

scheme as presented in the paper. One thousand random loading

patterns were generated to train the ANN and one hundred other

loading patterns were generated at random to test the ANN.

The loading patterns consisted of twice burned, once burned

and fresh fuel assemblies and were represented as -1, 0, l,

respectively.

With their 19,500 node ANN, Kim et al. were able to train

the network in roughly 300 iterations to predict 90% of the

power peaks and 95% of the k ett values to within ±6 . 0% and

±0.3%, respectively. Table 4.2 summarizes the differences

between the work by Kim et al . and the work in this paper.

54

Table 4.2 ANN comparison table.

I Comparison I This work I Kim et al.

Architecture 25-17-1 21-500-18

Pre-processing Normalize Neutron imp.
function

Output Normalized 18 bit binary
real no.

Batch 1,2,3,4 -1,0,l

Training patterns > 3000 1 0 00

1/8 core size 26 21

Transfer function arctangent sigmoid

Results: keff > 98% < ± . 3%* > 90% < ± . 3%

boron concentrat i on > 98% < ±3% ----

pin peaking > 87% < ±10% > 95% < ±6 %

* The results fo r kerr for t hi s work a r e an approximat ion based on a
personal communication with G. I . Maldonado[22] . The method by which the
approximation was arrived at i s shown i n Appendix c.

I

55

CHAPTER 5 . CONCLUSIONS

Based on the results presented in the previous chapter,

the conclusion drawn from this work is that PWR core

parameters can be predicted fairly accurately with ANNs, as

shown by the predictions of the critical boron concentration .

While the error level in the ANN predictions is larger than

that achieved by direct calculation of the parameters, there

is a considerable time savings in the ANN technique. Further

time savings will be realized in ANN predictions of EOC core

parameters since nodal diffusion codes must do separate

calculations for each depletion step. However , until the

accuracy level of the ANN parameter prediction is improved for

local parameters, the usefulness of this method in nuclear

fuel management will b e limited.

Possible Future Work

Further work on increasing the accuracy of the ANN

parameter predictions is necessary. One possible way to

improve the accuracy of the prediction would be to research

and develop a new ANN architecture. There is considerable

knowledge about the nature of the core reload problem and the

neutron diffusion equation that could be used to construct a

specialized ANN architecture. An ANN which more closely

models the diffusion equation should be able to learn the

56

underlyi ng functionality of the core reload problem more

efficiently than an ANN with a standard architecture.

The ANN model developed in this work was used to model an

eighth core of a PWR . Although the core reload problem is

much more complicated for BWR ' s, an ANN method would have the

s ame speed advantage over direct methods used in BWR core

reload design as was demonstrated in this work. Therefore,

some investigation into using ANNs to predict BWR core

parameters would be warranted.

In the broader scheme of designing core LPs, the

development o f an ANN to generate core parameters i s just the

first step. The development of a core reload system (COS}

which would automate the process of finding a new core reload

pattern is the ultimate goal. The proposed COS would employ a

second ANN, or some other optimization method, which would be

trained to re-order the core to maximize a given parameter or

parameters. The optimization method that is eventually chosen

would use the core parameter predictor, developed as a result

of thi s work , to evaluate the core reload patterns that it

generates.

57

BIBLIOGRAPHY

[1] E.B. Bartlett. "Nuclear Power Plant Status Diagnostics
Using Simulated Condensation: An Auto-Adaptive Learning
Technique . " Ph.D. Dissertation, University of Tennessee
at Knoxville. (1990) .

[2] A. Basu. "Nuclear power plant status diagnostics using a
neural network with dynamic node architecture." M. S.
Thesis, Iowa State University, (1991) .

[3] M. Caudill. "Neural Networks Primer, Part 1. " AI Expert 6
(Dec, 1987): 46-52.

[4] M. Caudill. "Neural Networks Primer, Part 2 ." AI Expert 7
(Feb, 1988): 55-61.

[5] M. Caudill. "Neural Networks Primer, Part 3 ." AI Expert 7
(June, 1988): 53-59.

[6] Y.A. Chao, C.W. Hu and C.A. Suo. "A Theory of Fuel
Management via Backward Calculation. " Nucl. Sci. Eng. 93
(1986): 78-87.

[7] J. Colletti, S.H. Levine, and J . B. Lewis. "Iterative
Solution to the Optimal Poison Management Problem in
Pressurized Water Reactors" Nucl. Technol. 63 (Dec,
1983) : 415-425.

[8] "CITATION Code Manual." National Energy Software Center,
Argonne National Laboratory (Oct , 1971).

[9] W.J. Freeman. "The Physiology of Perception." Scientific
American (Feb, 1991): 78-85 .

[10] A. Galperin, S. Kimhi and M. Segev. "A Knowledge -Based
System for Optimization of Fuel Reload Configurations."
Nucl. Sci. Eng. 102 (1989): 43-53.

[11] R. Hecht-Nielsen. Neurocomput ing; Addison-Wesley
Publishing Company: Reading, Massachusetts, (1 990).

[12) R. Hecht-Niel sen. "Counterpropagation networks." Proc . of
the Int. Conf. on Neural Networks II, IEEE Press, New
York (June 1987): 19-32.

58

(13] J . Hertz , A. Krogh and R.G. Palmer. Introduct i on to t h e
Theory of Neural Computation ; Addison-Wesley Publishing
Company : Reading , Massachusetts , (1991).

(14] H.G. Kim, S. H. Chang and B.H. Lee . "Pressurized Water
Reactor Core Parameter Prediction Using a n Artif i cial
Neural Network. " Nucl. Sci. Eng . 113 (1993) : 70-76.

(15] H.G. Kim, S .H. Chang and B.H . Lee. "Optimal Fuel Loading
Pattern Design Using an Artificial Neural Network and a
Fuzzy Rule-Based System. " Nucl . Sci. Eng . 115 (1993) :
152-163 .

(16] Y. J . Kim, T . J . Downar and A. Sesonske . "Optimization of
Cor e Reload Design for Low-Leakage Fuel Management in
Pressurized Water Reactors ." Nucl. Sci. Eng. 96 (1987) :
85-101 .

(17] M.A . Kramer and J . A. Leonard . "Diagnosis Using
Backpropogation Neural Networks - Analysis and
Criticism. " Computers chem. Engng. 14 12 (1990): 1323-
1338.

[18] D.J . Kropaczek and P . J . Turinsky. "In-Core Nuclear Fuel
Management for Pressurized Water Reactors Utilizing
Simulated Annealing. " Nucl. Technol. 95 (1991): 9 - 32 .

(19] J . R. LaMarsh. Introduction to Nuclear Engineering, 2nd
Edition ; Addison - Wes l ey Publishing Company : Reading ,
Massachusetts , (1983) .

(20] R. Lippmann. " An Introduction to Computing with Neural
Nets. " , IEEE Acoustics Speech and Signal Processing
Magazine 4 (Apr , 1987) : 4 - 22.

(21] G . I. Maldonado . "Non-Linear Nodal Generalized
Perturbation Theory Within the Framework of PWR In- Core
Nuclear Fuel Management Optimization. " Ph . D.
Dissertation, North Carolina State University, (1993) .

(22] G . I . Maldonado . Personal communi cation . Iowa State
University, Ames, Iowa, (July 7, 1994) .

(23] H. Motoda. "Optimal Control Rod Programming of Light
Water Reactors in Equilibrium Fue l Cycle " Nucl . Sci. Eng .
46 (1971): 88-111.

(24] H. Motoda . "Optimization of Control Rod Programming and
Loading Poison in a Multiregion Nuclear Reactor by the
Method of Approximation Programming " Nucl . Sci . Eng . 49
(1972): 515-524 .

59

[25) K.C. Okafor and T. Aldemir. "Construction of Linear
Empirical Core Models for Pressurized Water Reactor In-
Core Fuel Management . " Nucl . Technol. 81 (1988) : 381-392.

[26) G.T. Parks. "An Intelligent Stochastic Optimization
Routine for Nuclear Fuel Cycle Design." Nucl. Technol.
233 (1990): 233-246.

[27) C.J. Pfeifer. "PDQ-7 Reference Manual II." WAPD-TM-
947(L), Bettis Atomic Power Laboratory (June, 1972).

[28] K. Sekimizu. "Optimization of In-Core Fuel Management and
Control Rod Strategy in Equilibrium Fuel Cycle" J . Nucl .
Sci. Technol . 12 5 (May, 1975): 287-296.

[29) "SIMULATE-YA Code Manual ." YAEC-1518, Yankee Atomic
Energy Corporation (Nov, 1985) .

[30] D.A. Sprecher. "On the structure of continuous functions
of several variables. " Trans. Am. Math. Soc . 115 (Mar,
1965): 340-355 .

[31) J.G. Stevens, K.S. Smith and T.J. Downar. "The COUNTM
Suite and SOAl Loading Pattern Database." Studsvik of
America, Idaho Falls, Idaho, (June, 1992).

[32) J.G . Stevens, K. S. Smith, K. R. Rempe and T.J. Downar .
"Optimization of PWR Shuffling by Simulated Annealing
with Heuristics." Proc. of the American Nuclear Society
I, (Apr, 1994).

[33) J.G . Stevens . Personal communication. Studsvik of
America, Idaho Falls , Idaho, (June 9 , 1994).

[34) M. Takeda and J. W. Goodman. "Neural Networks for
Computation: Number Representations and Programming
Complexity ." Appl. Optics 25, 18 (1986): 3033 .

[35) P.J. Werbos. "Backpropagation Through Time : What It Does
and How to Do It. " Proceedings of the IEEE 79 . 10 (Oct,
1990) : 1550-1560.

[36) B . Widrow and M.A. Lehr. "30 Years of Adaptive Neural
Networks : Perceptron, Madaline, and Backpropagation."
Proceedings of the IEEE 78 . 9 (Sept, 1990): 1415-1441.

[37) Merriam-Webster Inc .. Webster 's Ninth New Collegiate
Dictionary; Publishers : Springfield, Massachusetts,
(1985) .

60

APPENDIX A . COMPUTER CODES

This chapter contains the computer codes used in this

work. The back propagation program, called annl, is made up

of three files: mainl.c, iol.c and bckprpl . c . The program is

initiated by mainl.c which calls various routines from iol . c

and bckprpl.c. The routines in iol.c are mostly input and

output routines which handle reading in values which control

the execution of the program, the network input and output,

and the weights. The routines in bckprpl.c deal mainl y with

the various stages of the back propagation algorithm, such as:

feed forward, back propagation of errors and change of

weights .

MAINl.C

/*

***** * /

* * *
* * *
* * *

BACK PROPAGATION NEURAL NETWORK
WRITTEN BY: SCOTT E. WENDT
IOWA STATE UNIVERSITY, AMES, IA

* * *
* * *
* * *

This is the main program from which control is
transferred to the appropriate subroutines. The
file ' net . inp' contains all the important parameters
required for execution and is read almost
immediately .

#include <stdio .h>
#include <stdl ib . h>
#include <math.h>
#include <time.h>

#include
#include

int

float

long int

main ()
{

<string . h>
"annl .h" /*

KASE, / *
mode; / *
rms = 0 • 0 / /*
StpRMS; /*

SAFE, /*
count = 0 i /*

61

Contains dimension info for arrays */

Number of patterns int training set */
Training or recall mode */
Accumulator of RMS err per data set * /
Target RMS value .INP * /

of iters between saves .INP * /
of iters * /

extern void initl(), init2(), input(), initerr(), fdfwd(),
deltarule(), backprop(), sdiff(), tstsav(),
RMS(), outp(), cnt();

int i;
time_ t t ;

srand((unsigned) time(&t)); / * Randomize using system clock */
initl(); / *Read "net.inp " * /
init2 () ; / * Read wts file * I

switch (mode) {
case 0: { I *

input(O) ;
initerr() ;
do {

============ == Train wts. ================== * /

count++;
deltarule();
initerr();
for (i = O; i <

fdfwd(i);
backprop(i);
}

RMS() ;
tstsav () ;

/* Read input and answers * /
/* Init. error terms * /
/* Main program loop * /
/ * Iner counter for wgt sav * /
/* Back propagate the errors * /

/* Init. error terms * /
KASE; i++) { /* Loop thru training set * /

/* Process hidden/output layers * /
/* Calculate the errors * /
/ * i loop - KASE * /
/* Function to calc RMS error */
/ * Test if time to save wgts * /

} while (rms
count = SAFE;
tstsav () ;

> StpRMS); /* End main program loop * /
/* Force program to save wgts * /
/ * Test if time to save wgts * /

break;
} / * End case 1 */

case 1: { / * == ===== Recall wts on validation set === ==== * /
Read input and answers * /
{ /* Loop thru training set */
Process hidden/ output layers * /

input(l);
for (i = O; i < KASE;

fdfwd(i);
sdiff (i);
}

RMS ();

/*
i++)

/*
/ *
/ *
/ *

Calculate the errors * /
i loop - KASE * /
Function to calc RMS erro r * /

62

printf(" \ nRMS err on the recall set= %f; %5d patterns. \ n ",
rms, KASE);

outp(l);
cnt() ;
break;

/ * Write .out file
/ * Count patterns by error

* /
* /

} /* End case 1 * /
case 2: { I* ======
input(2);

Recall wts on unknown data set ====== * /

for (i = 0; i < KASE;
fdfwd(i);
}

outp(2);
break;
} / * End case 2 * /

} / * End switch * /
return;
}

/ * Read input and answers */
i++) { /* Loop thru training set * /

/ * Process hidden/ output layers * /
/ * i loop - KASE * /
/ * Write .out file * /

63

IOl . C

** ** * This part of the program delas mostly with input and
output functions, such as : reading weight and data
files and writing new weights to a file.

***** */

#incl ude <stdio . h>
#incl ude <stdlib.h>
#include <string.h>
#include "annl.h "

FILE *textfilel, *textfile2 ,
textfi le3; / Pointer to file being used * /

char
inbuf (50], /* Input buffer */
fname1 [8] , fname2[8], /*Data file names * /
wname1 [16],wname2[16], /*Weight file names * /
name[16]; /* 4 letter prefix & dununy * /

int

float

nodes [MXLYRS],
MX,
save,
sav = 1,
prn ,
indx [MXHNDES] ,
mxnds[4] ;

xl[MXKASE] [MXINDES],
w2 [MXHNDES] [MXINDES],
w3[MXONDES] [MXHNDES],
L2 [MXHNDES] I

L3 [MXONDES] I

x3[MXKASE] [MXONDES],
ans[MXKASE] [MXONDES],
beta2 , beta3,
bl2 , bl3,
alpha,
savrms = 2.,
oldrms = 2. ,
oldrms2 = 2. ,
delrms = 0.0,
pi = 3.1415926535;

extern int
KASE,
mode;

extern float
rms,
StpRMS;

extern long int

/* Number of nodes per layer * /
/* One less than MXLYRS · * /
/* Save when 1 * /
/* flag for wt file to use */
/* Scrn print: O=no, l=yes . INP * /
/* Index array for hidden node * /
/* No of nodes arrays can hold * /

/* Input array - read from file * /
/* Hidden laye r weights * /
/ * Output layer weights */
/* Bias term for second layer * /
/* Bias term for third layer * /
/* Output layer * /
/* Correct answer from file * /
/* Learning rates - wts * /
/ * Learning rates - biass * /
/* momentum term * /
/ * Best RMS e rr - to be saved * /
/* RMS err from prev ite r * /
!* RMS err prior to prev iter * /
/ * Accum diff btwn rms / oldrms * /
I * pi * I

/* No . of patterns * /
/* training or recall mode .INP* /

/ * Accum RMS err per data set * /
/ * Target RMS value . INP * /

64

SAFE,
count;

/ * # of iters between saves.INP* /
/ * # of iters * /

/* --------- - ---------------- -- - -------- -- ------- -------- --
Read "net.inp " file for current instructions
-------------------- - ---- --- ------ - --- - -------- ------- -- * /

void initl()
{
int i,durn,lyrs ;

MX = MXLYRS - l;
rnxnds[O] = MXINDES;
rnxnds[l] = MXHNDES;
rnxnds[MX] = MXONDES ;

if ((textfile3 = fopen("net.inp", "r")) -- NULL) {
printf("net.inp not found \ n");
return;
}

fscanf (textfile3, " %s %s \ n", fnarnel , inbuf) ;
fscanf(textfile3 , " %d%s\n ", &KASE , inbuf);
fscanf(textfile3, " %s %s \ n", fnarne2 , inbuf);
fscanf(text file3, " %d %s \ n", &lyrs , inbuf) ;
for (i = O; i < lyrs; i++)

fscanf(textfile3, " %d ", &nodes[i]) ;
fscanf (text file3 , %s \ n", inbuf);
fscanf (textfile3, %d %s \ n , &mode, inbuf);
fs canf (textfile3 , %d %s \ n , &SAFE, inbuf);
fscanf (textfile3, %d %s \ n , &prn , inbuf);
fscanf (textfile3, %f %s \ n , &beta2 , inbuf);
fscanf (textfile3 , %f %s \ n , &beta3, inbuf) ;
fscanf (textfile3, %f %s \ n , &alpha, inbuf) ;
fscanf (textfile3 , '%f %s \ n , &StpRMS , inbuf);
fscanf (textfile3 , "%d %s \ n", &dum, inbuf);
fscanf(textfile3, "%d%s \ n", &dum, inbuf);
fclose(textfile3);

beta2 /= (float)KASE;
beta3 I= (float)KASE;
bl2 = beta2/(float)nodes[OJ;
bl3 = beta3 / (float)nodes[l];
if (lyrs > MXLYRS) {

printf ("ERROR: Specified no. o f layers
exceeds array forrnatting. \ n");

exit(O);
}

for (i = O; i < lyrs; i++)
if (nodes[i] > rnxnds[i]) {

printf("ERROR: Spec. #of nodes in layer

}

65

%d exceeds array formatting. \n ",i) ;
exit(O);
}

return;

/* --
Initialize weights - random or from previous file
-- - ----------- * /

void init2()
{
int i,j,dum;
int nds[MXLYRS], nlyrs;

strcpy(wnamel,fname2);
strcpy(wname2,fname2);
strcat(wname2 , " . bak") ;
strcat (wnamel, 11

• wts 11
) ;

strcat (wname2, 11
• wts 11

) ;

/ * Generate new random wts */

for (i = O; i < nodes[l]; i++) {
for (j = O; j < nodes[O]; j++)

w2[i] [j] = ((float)rand()/(float)RAND_MAX - 0 . 5) ;
L2[i] = ((float)rand()/(float)RAND_MAX - 0.5);
}

for (i = O; i < nodes[MX]; i++) {
for (j = O; j < nodes[l]; j++)

w3 [i] [j] = ((float)rand()/(float)RAND_MAX - 0 . 5);
L3[i] = ((float)rand()/(float)RAND_MAX - 0 . 5);
}

/ * Check to see if 11 n ame " .wts exists from a previous run . */
strcpy(name,fname2) ;
strcat(name, 11 .wts 11

);

if ((textfile2 = fopen(name, 11 r ")) NULL) {
printf("%s not found\n", name) ;
return;
}

/ * Fi le exists so read in previous values */

fscanf (textfile2, " %f %s\n " , &savrms, inbuf);
fscanf(textfile2, "%d%s\n ", &nl yrs, inbuf);
for (i = O; i < nlyrs; i++)

fscanf(textfile2, " %d " , &nds[i]);
f scanf (textfile2 , "%s\n 11

, inbuf) ;
oldrms = savrms;
oldrms2 = savrms;

}

66

if (nlyrs > MXLYRS) {
printf ("ERROR: Specified no. of layers

exceeds array formatting.\n ");
exit(O);
}

for (i = O; i < nlyrs; i++)
if (nds[i] > mxnds[i]) {

printf ("ERROR: Spec. #of nodes in layer
%d exceeds array formatting. \n ", i) ;

exit (0) ;
}

for (i = O; i < nlyrs; i++)
if (nds[i] > nodes[i]) {

printf ("WARNING: Spec. #of nodes in layer
%d exceeds previous nodes.\n",i);

printf ("Continue anyway? Enter 1 for yes. \n") ;
gets (inbuf) ;
sscanf (inbuf , "%d", &dum) ;
if (dum ! = 1) exit(O);
}

for (i = O; i < nds[l]; i++) {
for (j = 0 ; j < nds [0] ; j ++)

fscanf(textfile2, "%f %s\n ", &w2[i][j], inbuf);
f scanf (textfile2 , "%f %s\n ", &L2 [i], inbuf);
}

f o r (i = O; i < nds[MX]; i++) {
for (j = O; j < nds[l]; j++)

fscanf(textfile2, "%f %s\n ", &w3[i] [j], inbuf) ;
fscanf(textfile2, " %f %s\n ", &L3 [i], inbuf) ;
}

fclose(textfile2);

return;

/ * ----------------------------- ---------------------------
Read input values and answers

-------- ------------- ----------------------------------- * /
void input(int tst)
{
int i, j, dum;

strcpy(name,fnamel) ;
strcat (name, ". dat");
if ((textfilel = fopen (name, " r ")) -- NULL) {

printf("%s not found \ n" , name) ;
return;
}

67

switch (tst) {
case 0:
case 1: {
for (i = O; i < KASE; i++) {

for (j = O; j < nodes[OJ; j++)
f scan f (text f i le 1 , 11 % f 11

, &x 1 [i J [j J) ;
for (j = O; j < nodes[MX]; j++)

fscanf(textfilel, "%f 11
, &ans[i][j]);

}
break;
}

case 2: {
for (i = O; i <KASE; i++) {

for (j = O; j < nodes[O]; j++)
fscanf (textfilel, 11 %f 11

, &xl [i) [j]);
}

}
}
fclose(textfilel);

/* Init index array */

}

for (j = 0; J < MXHNDES; j++)
indx [j] = J;

return;

/* ------------ - - - ------- - - ---------------- - ------ - --------
Test if rms error is a min. and SAFE iterations have passed
------ --- */

void tstsav ()
{
extern void wgtsav(), imp();

}

if (prn == 1) {
printf (11 %l0.8f,%l0 . 8f\n 11 ,rms, delrms);
}

if (count % SAFE == 0)
save = l ;

if (rms <= savrms && save 1) {
wgtsav();
save = O;
count = O;
savrms = rms;
}

oldrms2 = oldrms ;
oldrms = rms;

return;

68

/* --
Save current network values

-- --- --------- */
void wgtsav ()
{
int i,j;

/ * Open file, testing for success * /
if (sav == 1) {

}

if ((textfile2 = fopen(wnamel, 11 w 11
)) == NULL) {

printf (11 Error opening %s for writing\n 11
, wnamel);

exit(O);
}

sav = 2;
}

else {
if ((textf ile2 = fopen (wname2, 11 w 11

)) == NULL) {
printf(11 Error opening %s for writing\n 11

, wname2);
exit (0) ;
}

sav = l;
}

fprintf (textfile2, 11 %f\t$SavRMS\n 11
, rms);

fprintf (textfile2, 11 %d\t\t$No_layers\n 11
, MXLYRS);

for (i = 0; i < MXLYRS; i++)
fprintf(textfile2, 11 %2d ", nodes[i]);

fprintf(textfile2, 11 \t$Inodes_Hnodes_Onodes\n 11
);

for (i = O; i < nodes[l]; i++) {
for (j = O; j < nodes[O]; j++)

fprintf (textfile2, 11 %f \ t$w2 [%d] [%d] \ n 11
,

w2 [indx [i J] [j J , indx [i] , j) ;
f print f (text f i 1e2 , 11 % f \ t $ L 2 [% d] \ n 11

, L 2 [in dx [i]] , in dx [i]) ;
}

for (i = O; i < nodes[MX]; i++) {
for (j = O; j < nodes[l]; j++)

f print f (text f i 1e2 , 11 % f \ t $ w 3 [% d] [% d] \ n 11
,

w3 [i J [indx [j J J , i, indx [j]) ;
f print f (text f i 1e2 , 11 % f \ t $ L 3 [% d] \ n 11

, L 3 [i] , i) ;
}

fclose(textfile2);

return;

/* - - ------- - ------------- -- ------------- - -----------------
Write out output

- -- --- - ------- - ------------- -- -- - ------- - -- - --- - -------- * /

69

void outp(int tst)
{
int i,j;

/ * Open file, testing for success */
strcpy(name,fnamel);
strcat (name, ". out ") ;
if ((textfile2 = fopen(name, "w")) -- NULL) {

printf (" %s n ot found\n", name);
return;
}

switch (tst) {
case 1: {

}

fprintf (text f ile2, "RMS error on recall %f \n 11
, rms) ;

for (j = O; j < nodes[MX]; j++)
fprintf(textfile2," Ans[%2d] Out[%2d] 11 ,j,j);

fprintf(textfile2, 11 \n 11
);

for (i = O; i < KASE; i++) {
for (j = O; j < nodes[MX]; j++)

fprintf(textfile2, 11 %f, %f, " ,ans[i] [j],x3[i] [j]);
fprintf (textfile2, 11 \n 11

) ;

}
break;
}

case 2: {
for (j = O; j < nodes[MX]; j++)

fprintf(textfile2, 11 Out[%2d] 11 , j);
fprintf (textf ile2, 11 \n 11

) ;

for (i = O; i < KASE; i++) {

}

for (j = O; j < nodes[MX]; j++)
f print f (text f i 1e2 , " % f , 11

, x 3 [i] [j]) ;
fprint f (text£ ile2, " \n ") ;
}

}
fclose(textfile2);

return;

/* ------- ---
Counts number of patterns in certain categories

------------------------- ------------------------------- * /
void cnt ()
{
int i,j,COUNT[6];
float limit[?], dum;
float ABS(float);

}

70

limit[O] = 0 . 00; ! * Set limits on categories * /
limit[l] = 0.001 ;
1 imi t [2 J = 0 . 0 0 5 ;
1 imi t [3] = 0 . 01 ;
limit[4] = 0 . 05 ;
1 irni t [5] = 0 . 1 ;
1 imi t [6] = 0 . 1 ;
for (i = O; i < 6; i++)

COUNT [i] = 0 ;

for (i = O; i < KASE; i++)
for (j = O; j < nodes[MX]; j++) {

durn = ABS (ans [i] [j] -x3 [i] [j]) ;
if (dum < limit[l])

COUNT[O]++;
else if (durn < limit[2])

COUNT[l]++;
else if (dum < limit[3]}

COUNT[2]++;
else if (durn < limit[4] }

COUNT[3]++;
else if (dum < limit[S]}

COUNT[4]++;
else {

}

COUNT[S]++;
if (dum > limit[6]}

limit[6] = durn;
}

printf("Group\ t Error Range \ t \ t Number \ t Percent \ n") ;
for (j = 0 ; j < 6; j ++}

printf (" %d\t %5.3f < x < %5.3f\t %5d\t %5.2f%%\n",
j+l,limit[j],limit[j+l],COUNT[j],
(float}COUNT[j] /(float)KASE*lOO.};

return;

/ * ------ ----- - --------------------- -----------------------
Returns absolute value

- --- -------------- * /
float ABS(float x)
{

}

if (x < 0 .0)
return (-x } ;

else
return (x) ;

71

BCKPRPl . C

***** This part of the program contains the 'meat' of the
ANN - the feed forward, back propagation and weight
change routines .

***** * /

#include <stdi o.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include "annl.h"

float
i2[MXKASE] [MXHNDES],
x2[MXKASE] [MXHNDES],
i3[MXKASE] [MXONDES],
x3[MXKASE] [MXONDES],
e2[MXHNDES] [MXINDES],
e3 [MXONDES] [MXHNDES],
eL2[MXHNDES],
eL3[MXONDES],
delta2[MXHNDES] [MXINDES],
delta3 [MXONDES] [MXHNDES];

extern int
KASE,
nodes[MXLYRS],
MX,
indx[MXHNDES];

extern float
xl[MXKASE] [MXINDES],
w2[MXHNDES] [MXINDES],
w3[MXONDES] [MXHNDES],
L2[MXHNDES] ,
L3[MXONDES] I

ans [MXKASE] [MXONDES],
beta2, beta3,
bl2, bl3,
alpha,
rms,
delrms,
oldrms,
pi;

/* Hidden layer inputs */
/ * Hidden layer outputs */
/ * Output layer inputs * /
/ * Output layer outputs * /
/ * Error for hidden nodes */
/* Error for output nodes */
/ * Error for hid lyr bias * /
/ * Error for out lyr bias */
/* Momntm for hid nodes */
/ * Momntm for out nodes */

/* No. of patterns */
/ * No. of nodes per l ayer */
/ * One less than MXLYRS */
/* Used to order nodes * /

/* Input array - from file */
/ * Hidden l ayer weights */
/* Output l ayer weights */
/ * Bias for hid nodes */
/* Bias for out n odes * /
/ * Answer from file * /
/* Learning rates - wts */
/* Learning rates - bias */
/* momentum term */
/ * Accum of RMS for data set * /
/ * Accum diff rms & oldrms */
/ * RMS from prev iter */
/ * pi */

/* ---- ---------------------------------- ------------------
Initialize error terms
---------- - -------------- - - - ---------------------------- */

72

void initerr()
{
int i / j;

}

for (i = O; i < nodes[l]; i++) {
for (j = O; j < nodes[O]; j++)

e2 [i] [j] = 0 . 0;
eL2 [i] = 0 . 0 ;
}

for (i = O; i < nodes[MX]; i++) {
for (j = O; j < nodes[l]; j++)

e3 [i] [j] = 0 . 0 ;
eL3 [i] = 0 . 0 ;
}

rms = 0.0 ;

return;

/* -- ----------------
Hidden and output layer feed-forward

-- * /
void fdfwd(int set)
{
int i,j;
float sigmd(float);

}

f or (i = O; i < nodes[l]; i++) {
i2[set] [i] = 0.0;
for (j = O; j < nodes[O]; j++)

i2 [set] [i] += w2 [i) [j] *xl [set] [j];
i2[set][i] -= L2[i];
x2 [set] [i] = sigmd(i2 [set] [i]) ;
}

for (i = O; i < nodes[MX]; i++) {
i3[set] [i) = 0.0 ;
f or (j = O; j < nodes[l]; j++)

i3[set][i] += w3[i][j]*x2[set][j];
i 3 [set] [i] -= L3 [i];
x 3 [set) [i] = s igmd (i3 [set) [i));
}

return;

/* --- --- --------
Back propagate the errors

---------- -------------- ---------------------- ---------- * /
void backprop(int set)

73

{
float deriv{float);
float sum, d[MXONDES] , dum;
int i I j ;

}

for {i = O; i < nodes[MX]; i++) {
dum = ans [set] [i] - x 3 [set] [i];
rms += dum*dum;
d[i] = deriv(i3 [set] [i])*dum;
for (j = O; j < n odes[l]; j++)

e3 [i] [j] += d [i] * x2 [set] [j] ;
eL3 [i] += d[i] * i3 [set] [i] ;
}

for (i = O; i < nodes[l]; i++) {
sum= 0 . 0 ;
f or (j = O; j < nodes[MX]; j++)

sum += w3 [j J [i J *d [j] ;
dum =sum* deriv {i2[set] [i]);
for {j = O; j < nodes[O] ; j++)

e2 [i] [j J += dum * xl [set] [j] ;
e L 2 [i] + = d um * i 2 [set] [i] ;
}

return;

/ * --------------------- -------- ------------ ----------- ----
Cale square of the error

----------- ---------- ---- ---------------- ------- -------- * /
void sdiff {int set)
{
float dum ;
int i;

}

f or (i = O; i < nodes [MXJ; i++) {
dum = ans [set] [i] - x 3 [set] [i];
rms += dum*dum ;
}

return ;

/ * -------------- -------------- -------------- - -------------
Adjust wgts using d e l ta r ule

-- - ---------------------------- -------- ----------------- * /
void deltarule()
{
float dummy;
int i I j i

}

74

f or (i = O; i < nodes[MX]; i++) {
for (j = O; j < nodes[l]; j++) {

dummy= w3[i] [j];
if (delrms > 0.0)

w3 [i] [j] += (beta3*e3 [i] [j] + alpha*delta3 [i] [j J);
else

w3[i][j] += (beta3*e3[i][j]);
del ta3 [i] [j] = w3 [i J [j] - dununy ;
}

L3[i] + = bl3 * eL3[i];
}

for (i = O; i < nodes[l]; i++) {
for (j = O; j < nodes[O]; j++) {

dummy= w2 [i] [j];
if (delrms > 0 . 0)

w2 [i] [j] + = (beta2 * e2 [i] [j J + alpha *del ta2 [i] [j J);
e lse

w2 [i] [j] += (beta2*e2 [i] [j J + alpha*delta2 [i] [j J);
delta2 [i] [j] = w2 [i] [j] - dummy;
}

L2[i] += bl2 * e L2[i] ;
}

return;

/ * -------------------------------- ---- ---------------- - -- -
Function 1 - Sigmoid function

----------------- - - --- -- --------------- -- - --- --------- -- * /
float s i gmd(f l oat mu)
{

return(atan(mu) / pi + 0.5);
}

/* -- - - --
Funct i on 2 - Inverse function for backprop

-------------- - - -------------- - --------------- ---- -- - -- - * /
float deriv(floa t mu)
{

return(l.0/(1.0+mu*mu));
}

! * ------ - - - - ---------------------- - -- --- - ---------------- -
Find RMS, del rms and delrms2

-------------- -------------------- - - - ------ - -- - - -------- * /
void RMS ()
{

}

75

rrns = (float)pow(rms /(double)KASE/(double)nodes[MX],0 . 5) ;
delrrns = oldrms-rrns ;

return ;

ANNl . H

***** */

This is the
information

#define MXKASE 31 00
#define MXLYRS 3
#define MXINDES 26
#define MXHNDES 26
#define MXONDES 26
#define MXNODES 26

76

header file for the ANN. It contains
on array subscripting.

/* max # of training sets/files * /
/* max # of layers * !
/* max # of input layer nodes * /
/ * max # of hidden layer nodes * /
/* max # of output layer nodes * /

NET.INP

***** */

narnel
8
narne2
3
3 3 8
0
500
1
. 5
.5
. 1
.01
0
0
0
0
0

77

This is the input file for the ANN. It contains all
pertinent information on the execution of ANNl .

$Pref ix_for_data_file
$No_ of_patterns_ to_read
$Pref ix_ for_wts_files
$No_ of_layers
$No_ of_input_ hidden_output_ layers
$Training,_validation_or_unknown_(O,l,2)
$Iterations btwn saves - -
$Print_to_screen_ (O=no , l=yes)
$Hidden_layer_ learning_rate
$0utput_layer_ learning_ rate
$Mornenturn_learning_ rate
$Stopping_ RMS
$Undefined
$Undefined
$Undefined
$Undefined
$Undefined

78

APPENDIX B . SAMPLE DATA FILES

This chapter contains a sample of the data from the SOAl

database and the normalized and abbreviated data files which

were created from the database. Ten lines from the SOAl

database appear in ten.dat. The data files created from the

SOAl database are: boronlO . dat and pinlO.dat.

TEN.DAT - sample from SOAl database.

12132412242424214233224223 .194917E+ 04 .328458E+Ol
.145279E+04 .999993 1.7740 00 1.089113 811. .1 05580 E+04
1.000020 1.6140001.074097 811. . 466003E+03 1. 00000 1 1 . 433000
1.055167 811. -.694324E+02 1.000004 1.326000 1.041435 811 .
. 367388E+02 . 384481E+02 . 311928E+02 . 361563E+02
.162734E+02 . 227378E+02 .185455E+02 . 212195E+02

12132422142424224242123323 .190085E+04 .255812E+Ol
.140061E+04 . 999996 1.823000 1.088243 811. . 101469E+04
1.000003 1.637000 1.074664 811. .443510E+03 1.000007 1.439 000
1. 057877 811. -.852874E+02 1.0 00005 1.330000 1.043800 811 .
. 370418E+02 . 379102E+02 .314673E+02 .363399E+02
. 146373E+02 .229464E+ 02 .19 0479E+0 2 .212 648E+02

12142132142324324242242322 .192821E+04 .29369 1E+ Ol
.142241E+04 . 999994 1. 808000 1 . 100316 912. .1 02115E+04
1.000002 1.619000 1.083774 912. .441953E+ 03 1 . 000006 1.422000
1.063972 912. - . 863070E+02 1.000005 1.3190 00 1 . 034393 1011 .
. 370379E+02 .376806E+02 .316241E+02 .362784E+02
.143405E+ 02 . 225466E+02 .189813E+02 . 215323E+02

12142213242424224243222313 .183408E+04 .206408E+Ol
.132532E+04 1.000000 1.545000 1 .07 8865 910. .959150E+03
1.000005 1.4730 00 1.053214 910 . .408913E+03 1. 000007 1.387000
1 . 043862 811. -.111558E+03 1.000002 1 . 311000 1. 03 9119 912 .
. 354271E+02 . 387097E+02 . 327194E+02 . 364472E+ 02
.112912E+02 .146098E+02 . 196054E+02 . 2161 02 E+ 02

79

12142321242324214242224323 .197695E+04 .345457E+Ol
.146764E+04 .999998 1.888000 1.098934 912. . 104099E+04
1 . 000000 1.664000 1 . 080372 912. .447003E+03 1 . 000002 1 . 429000
1.053242 912. -.837359E+02 1 . 000002 1.315000 1 . 036031 912 .
. 349685E+02 . 386034E+02 . 319949E+02 . 369268E+02
.156200E+02 . 230817E+02 .181719E+02 . 214939E+02

BORONlO.DAT - normalized data for boron concentration.

0.400000 0.200000 0.400000 0.200000 0.800000 0.200000 0.600000
0.400000 0.800000 0.400000 0.800000 0 . 400000 0.600000 0.600000
0 . 400000 0.800000 0.400000 0.800000 0.400000 0.400000 0.400000
0 . 800000 0.400000 0.400000 0.600000 0.238887

0 . 400000 0 . 200000 0.400000 0.200000 0.800000 0 . 400000 0 . 200000
0.400000 0.800000 0 . 400000 0.800000 0.400000 0.800000 0.600000
0 . 400000 0.600000 0.400000 0.800000 0 . 400000 0.400000 0 . 400000
0.800000 0 . 400000 0.600000 0.600000 0.418360

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.400000
0 . 400000 0.800000 0.400000 0.800000 0.400000 0.400000 0 . 600000
0 . 400000 0.800000 0.400000 0 . 800000 0.600000 0.200000 0 . 400000
0 . 800000 0 . 400000 0.600000 0.600000 0.226818

0 . 400000 0 . 200000 0.400000 0.200000 0.800000 0 . 400000 0.600000
0 . 200000 0.800000 0 . 400000 0.400000 0.400000 0.800000 0.400000
0.400000 0.800000 0.400000 0.800000 0 . 600000 0.400000 0.800000
0 . 400000 0.600000 0.400000 0.600000 0.190077

0.400000 0 . 200000 0.400000 0.200000 0.800000 0.400000 0 . 600000
0.400000 0 . 400000 0 . 400000 0.800000 0 . 400000 0.800000 0 . 600000
0.400000 0 . 800000 0 . 400000 0.800000 0 . 400000 0.400000 0.400000
0 . 800000 0.600000 0.200000 0.600000 0 . 137289

0.400000 0.200000 0.400000 0.200000 0.800000 0.400000 0.600000
0 . 400000 0 . 800000 0 . 400000 0.800000 0.400000 0.400000 0.600000
0.400000 0.800000 0 . 400000 0 . 800000 0.400000 0.200000 0.400000
0 . 800000 0.600000 0 . 400000 0.600000 0.157181

0 . 400000 0 . 200000 0 . 400000 0.200000 0.800000 0 . 400000 0 . 600000
0.400000 0.800000 0.400000 0 . 800000 0.400000 0 . 800000 0.400000
0.400000 0.800000 0 . 400000 0.800000 0.600000 0 . 400000 0 . 600000
0.400000 0.400000 0 . 200000 0.600000 0 . 349818

0.400000 0 . 200000 0.400000 0 . 200000 0.800000 0 . 400000 0 . 600000
0.400000 0 . 800000 0 . 400000 0.800000 0 . 400000 0.800000 0 . 600000
0 . 400000 0.800000 0.400000 0 . 800000 0.600000 0 . 400000 0.600000
0.400000 0.400000 0.200000 0.400000 0.339752

0 . 400000 0.200000 0.400000 0.400000 0.800000 0.200000 0 . 400000

80

0 . 400000 0.800000 0 .4 00000 0.800000 0 . 400000 0 . 600000 0.600000
0 .4 00000 0.800000 0 .4 00000 0.800000 0.600000 0 . 200000 0 .4 00000
0 . 800000 0.400000 0 . 600000 0.400000 0 . 306682

0.400000 0 . 200000 0.400000 0.400000 0 . 800000 0 . 200000 0 . 600000
0.200000 0 . 800000 0 .4 00000 0.600000 0.400000 0 . 800000 0.400000
0. 400000 0 . 800000 0 .400 000 0.800000 0 . 600000 0.400000 0 . 800000
0. 400000 0 . 600000 0. 40 0000 0 .40 0000 0 . 40 1232

PIN10.DAT - normalized data for pin peaking .

0 .4 00000 0.200000 0.400000 0 . 200000 0 . 800000 0.20000 0 0 . 600000
0 .400000 0 . 800000 0. 4 00000 0.800000 0 .400000 0 . 600000 0.600000
0.400000 0 . 800000 0.400000 0.800000 0 . 400000 0 .4 00000 0.400000
0 . 800000 0.400000 0 .4 00000 0 . 600000 0 .1 51531

0 . 400000 0 . 200000 0. 400000 0.200000 0.800000 0 . 400000 0.200000
0.400000 0 . 800000 0.400000 0.800000 0 . 400000 0 . 800000 0.600000
0.400000 0 . 600000 0.400000 0 . 800000 0 . 400000 0.400000 0 . 400000
0.800000 0 . 400000 0.600000 0 . 600000 0.377086

0.400000 0.200000 0. 4 00000 0 . 200000 0.800000 0 . 400000 0.400000
0 . 400000 0.800000 0. 4 00000 0.800000 0 . 400000 0 .4 00000 0 . 600000
0 .4 00000 0 . 800000 0.40000 0 0 . 800000 0 . 600000 0.200000 0.400000
0.800000 0.400000 0.600000 0 . 600000 0 .1 63358

0.400000 0.200000 0.400000 0.200000 0 . 800000 0.400000 0.600000
0.200000 0.800000 0 .4 00000 0.400000 0.400000 0.800000 0 . 400000
0 .4 00000 0 . 800000 0 .4 00000 0.800000 0 . 600000 0 . 400000 0 . 800000
0.400000 0.600000 0 .4 00000 0.600000 0 .1 59134

0. 400000 0.200000 0 .4 00000 0 . 200000 0.800000 0 .4 00000 0 . 600000
0 . 400000 0.400000 0 .4 00000 0.800000 0 . 400000 0 . 800000 0 . 600000
0.400000 0 . 800000 0 .4 00000 0.800000 0.400000 0.400000 0 . 400000
0.800000 0.600000 0 .200000 0 . 600000 0.137592

0 . 400000 0 . 200000 0.400000 0 . 200000 0 . 800000 0.400000 0 . 600000
0. 4 00000 0 .800000 0.400000 0 . 800000 0.400000 0 .4 00000 0.600000
0.400000 0.800000 0 .4 00000 0.800000 0 .4 00000 0.200000 0 .4000 00
0.800000 0.600000 0 .4 00000 0.600000 0.187434

0.400000 0 . 200000 0 .4 00000 0 . 200000 0.800000 0 . 400 000 0 . 600000
0 . 400000 0.800000 0 .4 00000 0.800000 0.400000 0 . 800000 0.400000
0 .4 00000 0.800000 0 .400000 0.800000 0.600000 0.400000 0.600000
0.400000 0 .4 00000 0.200000 0 .600000 0 . 265153

0 .4 00000 0 . 200000 0 . 400000 0 . 200000 0.800000 0 . 400000 0 . 600000
0 . 400000 0.800000 0.400000 0 .800000 0 . 400000 0 . 800000 0 . 600000
0. 40 0000 0 . 800000 0. 4 00000 0 . 800000 0 . 600000 0 .4 00000 0.600000
0.400000 0.400000 0 . 200000 0.400000 0.230095

81

0.400000 0.200000 0.400000 0.400000 0 . 800000 0.200000 0 . 400000
0.400000 0.800000 0.400000 0.800000 0.400000 0.600000 0.600000
0 . 400000 0.800000 0.400000 0.800000 0.600000 0.200000 0 . 400000
0.800000 0.400000 0.600000 0.400000 0 . 145618

0.400000 0.200000 0.400000 0.400000 0.800000 0.200000 0 . 600000
0.200000 0.800000 0.400000 0.600000 0.400000 0.800000 0 . 400000
0.400000 0.800000 0.400000 0.800000 0.600000 0.400000 0 . 800000
0.400000 0 . 600000 0.400000 0.400000 0.302323

82

APPENDIX C . APPROXIMATING kett FROM CRITICAL BORON
CONCENTRATION

This chapter contains a description of how I converted my

prediction accuracy in critical boron concentration to a

predict ion accuracy in keff .

The following rules-of-thumb for critical boron

concentration and k ecc during a 12 month cycle were related to

me by G.I. Maldonado[22]. The critical boron concentration is

approximately 1000-1200 ppm at BOC and is roughly 0 ppm at

EOC. This corresponds to a percent change in boron

concentration of 8.3% to 10% per month. The change in k ecc per

month is roughly 0.01 which corresponds to a percent change in

k e ff 0 f 0 . 8 3 % 0 r 1. 0 % •

Based on the above comparisons of thumb rules, the

conclusion is that a 3% accuracy rate in critical boron

concentration is equivalent to a 0. 3 % accuracy rate in k eff.

