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CHAPTER 1. INTRODUCTION 

1.1 Artificial Neural Networks 

The field of artificial neural networks (ANNs) has experienced a resurgence of interest in 

the last ten years. This is due in part to the use of neural networks for a variety of new 

applications, including forecasting. Neural networks are ideally suited to this application 

when the forecast is to be made based on the complex interactions of several variables, where 

the exact functional relationships between the variables is not known [1]. 

The most common form of neural network training-the determining of weights for 

interconnections between neurons- is known as the back-propagation algorithm. This 

algorithm is suited to networks having smooth, differentiable transfer functions. 

Unfortunately, back-propagation converges to only a local minimum in many instances or fails 

to converge at all. The development of new training algorithms for ANNs is an active area of 

research today. 

1.2 Interior Point Linear Programming Algorithms 

At about the same time that ANNs became popular again, the field of linear programming 

experienced a major advance with the introduction ofKarmarkar's interior point algorithm [8]. 

This algorithm guaranteed polynomial-time solutions to large linear programs, where 

traditional methods such as the simplex technique could not. The interior point algorithms 

operate by shooting through the interior of the feasible region rather than moving from vertex 

to vertex of this region as in the simplex approach. Subsequent refinements to the 

Karmarkar's algorithm have reduced the computational complexity while at the same time 

speeding convergence to the solution. One of these improved algorithms is the affine scaling 

algorithm [17]. The affine scaling algorithm is guaranteed to converge to the optimal solution 

for a linear program where all the variables are constrained to be nonnegative. The original 

version of this algorithm operates by re-scaling the variables so they are equidistant from the 
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nonnegativity constraint boundaries, and then the solution moves in the direction of a 

projected gradient. 

1.3 Power System Short-Term Load Forecasting 

Modem electric utilities attempt to operate in the most economic fashion possible while 

offering highly reliable service to customers. The short-term load forecast (STLF) is a useful 

tool for accomplishing this task. This forecast estimates the power system load in the period 

from one hour to several weeks into the future [1]. With this information, the utility may 

schedule their equipment and personnel to meet the load demand in a secure fashion, while 

keeping costs to a minimum. Artificial neural networks are becoming popular tools for 

performing load forecasts, because this technique is simple to implement while still being able 

to handle the complex relationships between the many variables that affect the load. 

1.4 Contents of the Thesis 

Chapter 2 of this thesis furnishes background information about artificial neural networks, 

beginning with their origins and progressing through their design and applications. That 

chapter includes a description of an artificial neuron, as well as the Hopfield and feedforward 

networks and their operation. It concludes by presenting information about the application of 

ANNs to the STLF problem. 

Chapter 3 contains a powerful extension to the affine scaling algorithm. The modification 

uses a version of the algorithm that allows it to work with negative variables and variables 

with nonzero lower bounds, which allows the algorithm to be applied to a more general class 

of problems [18]. The extension to the affine scaling algorithm presented here incorporates 

the restricted basis entry technique into the algorithm by altering the upper and lower bounds 

on variables. This modification is useful in the linear programs where a nonlinear curve is 

represented by a piecewise-linear (PWL) curve. 
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Also in Chapter 3 is the description of an artificial neural network that has a piecewise

linear transfer function in the hidden layer neurons. This type of transfer function allows the 

training problem to be formulated as a linear program. The training program is explained in 

detail in that chapter. (In this thesis, the term "transfer function" is used to describe the 

functional relationship between the input and output of a neuron. This interpretation is 

common in Electrical Engineering and should not be confused with the more precise definition 

used in the field of mathematics.) 

Chapter 4 discusses the implementation of the ANN and training algorithm applied to the 

STLF problem. A forecast is made for a 12-hour period using the new approach. Results 

from this forecast are compared to those obtained from a network trained with the back

propagation algorithm. 

Conclusions about the ANN, training algorithm and the forecast are presented in Chapter 

5. That chapter concludes with suggestions for future work in this area. 
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C~R2. BACKGROUND 

2.1 Introduction to Artificial Neural Networks 

The human brain contains on the order of 100 billion neurons, simple processing elements 

that give off brief electrical pulses when they are sufficiently excited. Each neuron is electro

chemically connected to about 10,000 other neurons by way of branches called axons and 

chemical-filled gaps known as synapses. The pulses from a neuron travel through these 

connections to either excite or inhibit other neurons. It is this massively interconnected 

network that allows us as humans to accomplish a myriad of tasks including controlling our 

speech and movement. 

The brain is also the site of human memory. When a child recognizes his mother's voice, 

or a senior citizen remembers her high school graduation, the mind is actually retrieving 

patterns that are stored away in the brain. But how does the brain store and retrieve 

memories? It is not done in the way that one of today's computers does so, whereby a 

discrete memory location is allocated for a bit of data, that location is assigned a value of high 

or low corresponding to the piece of information, and when asked to recall the data the value 

at the location is read and used wherever the program desires. Instead, the brain stores 

information in a distributed fashion-in its structure. It is the network of neurons, synapses 

and the specific strengths of the electrical interconnections than contain human memory. 

An extremely crude abstraction of human memory would be a matrix whose elements 

represent the strength of the electrical interconnections between different neurons. Just 

looking at this matrix we, of course, could not decipher any of the information held within it, 

but we could know which neurons were better connected electrically to other neurons and 

vice-versa. We could perform mathematical operations on parts ofthe matrix, though, and 

possibly we could interpret these results. If the matrix were for a living being, its elements 

would not be static, but instead would change as new memories are added and other 
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memories are lost (though, hopefully, not at the same rate). Looking at this process on a 

microscale, D.O. Hebb explained it well in his classic text The Organization of Behavior a 

Neuropsychological Theory "when an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A's efficiency, as one of the cells firing B, is 

increased [4, p. 62]." This is how changes in memory take place. As a person is exposed to 

events, his sensory nerves cause neurons in the brain to be excited and pulse. If this pulsing is 

frequent enough, the interconnection strength between neurons changes, and new information 

is added to the memory. 

It was this theory that prompted researchers to begin studying artificial neural networks 

-abstractions of human neural structure that can be "trained" to recognize patterns, classifY 

items and make forecasts, among other applications. These networks rarely contain more than 

1,000 neurons and, thus, are not able to generalize on the scale that the human brain works. 

The neural network is usually represented mathematically as a set of weights representing the 

interconnection strengths, along with some model or models of how the neurons behave when 

excited. Neural network research has included varying the interconnection schemes between 

neurons, altering neuron transfer functions, experimenting with mathematical techniques to 

determine the interconnection strengths which optimize the system, and determining where the 

networks are best suited for application. 

2.1.1 Artificial neurons 

A detailed model for an artificial neuron used in ANNs is shown in Figure 2.1. The inputs 

are applied to the neuron and are scaled and summed. A bias term is added to the sum which 

is then passed through the transfer function of the neuron to yield the output. The standard 

symbol for a neuron is simply a circle with the interconnections shown going into and out of 

the neuron. 
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Weighting 

Output 

Figure 2.1. A detailed model of an artificial neuron 

2.1.2 Neural network applications 

Artificial neural networks have a wide range of application. One of the first applications of 

the networks was the pattern recognition problem. In 'this type of problem, items are taken 

from a set and classified into distinct groups based upon their characteristics. In some 

instances, ANNs can outperform the classical techniques for this application. 

Neural networks can also serve as a model for human memory [7]. The Hopfield neural 

network-discussed in a later section- is one such model that is capable of recalling specific 

binary or bipolar patterns with which it has been trained. This network has also shown 

promise as a tool for optimization because of a special energy function that may be associated 

with the network's state. 

One of the most common applications for ANNs is forecasting future trends. The best 

types of problems to apply ANNs to are ones where the variables that affect the output are 

known or can be determined, while the exact functional relationships between these variables 

cannot be determined. One such example of this condition is the power system short-term 

load forecasting problem. The inability to determine these functional relationships make the 

use of traditional techniques such as regression analysis impractical for these forecasts. ANNs 
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are particularly valuable for problems that are extremely nonlinear. Neural networks are 

presently being used to forecast such things as stock market prices, and the risk associated 

with different loan applications. 

2.1.3 Artificial neural network training 

A given artificial neural network is not valuable for the applications listed above until 

certain network parameters are determined which cause the network to behave in a 

meaningful manner. This process is known as "training" the ANN. Specifically, neural 

network training involves the determination of weights for interconnections between neurons. 

The goal of the training is usually to minimize the sum of a function of output errors for a 

given set of inputs, or to ensure that the stable points of a network correspond to a set of 

training patterns. For example, training data may consist ofa set of input vectors and a set of 

output vectors, where each input pattern is associated with a single output pattern. The goal 

of the training is to have the actual output of the network be as close, in some sense, to the 

associated output pattern when a given input pattern is applied. 

2.1.4 Hopfield neural networks 

The field of artificial neural networks was popular for several years in the 1940's as 

researchers came up with several new neuron models. It was during this time also that Hebb 

published The Organization of Behavior. The field experienced intermittent periods of 

popularity and disfavor until 1982 when 1.1 Hopfield published his paper Neural networks and 

physical systems with emergent collective computational abilities [7]. This paper began the 

resurgence of interest in artificial neural networks. The Hopfield network has a single layer of 

neurons, each of which is fed back to the inputs of each of the other neurons. The neurons 

are characterized by a bipolar or binary output and a threshold transfer function. The output 

of each neuron is fed back to the input of each other neuron via weighted interconnections. 

Conditions are often imposed on these feedback connections, including symmetric weights and 
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no self-feedback. Absolute stability is guaranteed for networks having these particular 

restrictions on the weights [7]. The asynchronous network operates as follows. First, an 

initial output vector x ERn is selected and network output is held at this state. Then 

according to some probability distribution, a neuron is selected for update. If neuron i is 

selected during iteration k, its output is updated according to the following rule 

n 

X
k

+
1 = sgn( L WjjXj - I j ) 

j=l 

(2.1) 

where x is the neuron's state, wij is the weight for the interconnection to neuron i from neuron 

j, and Ii is the threshold for neuron i. The output of the remaining neurons does not change at 

this stage. The network is then checked for stability, that is, to see if any neuron from the 

network would have its output change if it were selected for update. If the network is stable, 

stop. Otherwise, select another neuron for update and repeat the process. 

The Hopfield network is trained with a set of binary or bipolar patterns. The usual goal of 

training a Hopfield network is to increase the likelihood that the network will stabilize to one 

of the training patterns during operation. Hopfield networks may also stabilize at spurious 

solutions, enter a limit cycle or wander chaotically during operation, depending on the 

restrictions placed on the weights. The most common method for training Hopfield networks 

is known as the sum of outer products algorithm. Another method uses linear programming 

to maximize the regions of convergence about the training patterns. 

2.1.5 Feedforward networks 

Feedforward networks are the most common type of ANN. The inputs are applied to the 

first layer of neurons, which usually have a linear transfer function. This input layer is 

connected to the hidden layer via weighted interconnections. Each hidden layer neuron has an 

associated transfer function, and the output of the hidden layer neurons serves as input to the 

next layer of neurons. Usually, only one hidden layer is present so this layer is directly 
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connected to the output layer by weighted interconnections. Feedforward ANNs may have 

more than one hidden layer, but this topology is rarely used. The output layer neurons may 

have either a linear or nonlinear transfer function, depending on the design of the network. 

There are no limits to the number of neurons in a given layer. A simple feedforward network 

is shown in Figure 2.2. This network has four inputs, two hidden layer neurons and one 

output. The network is fully connected, meaning that each neuron is connected to all the 

neurons in the successive layer, and a bias is connected to the hidden and output layer 

neurons. 

The most common nonlinear transfer function for a neuron is the sigmoid. Functionally 

this is expressed as 

F(x) 
1 

(2.2) 

where c is a constant. Note that as c tends to infinity the sigmoid approximates a threshold 

function. Figure 2.3 shows a graph of the sigmoid function for c=l. Other common neuron 

transfer functions include linear threshold, hyperbolic tangent, gaussian and step functions. 

The training set for a feedforward network is a set of input-output vectors. When a given 

training input pattern is applied to the input layer of the ANN, the error is some measure of 

the difference between the actual output of the network and the desired output vector. The 

interconnection weights are determined in the training process so that the output error for the 

training cases is minimized. The most common training algorithm for feedforward networks is 

a gradient technique known as back-propagation. This iterative method is a blame-assigning 

algorithm that changes a weight based on that interconnection's contribution to the error over 

the individual patterns. Each training pattern is presented several-possibly several 

thousand-times in the algorithm. Detailed discussions of the back-propagation algorithm may 

be found in any text on neural networks. 
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Figure 2.2. A feedforward artificial neural network 
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Figure 2.3. The sigmoidal curve 
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2.2 Introduction to Short-Term Load Forecasting 

Short term power system load forecasting (STLF) involves the estimation of power system 

load from a few minutes to several weeks in advance. The load forecast is used for both 

economic and system security purposes. Economic applications of forecast information 

include economic dispatch, reserve margin allocation, unit commitment, interchange 

scheduling, fuel allocation, and minor maintenance scheduling [20]. The forecast may also be 

used in powerflow and contingency analysis to determine secure operating schemes [11]. 

Power system load is affected by a highly nonlinear combination of variables that can be 

categorized by dependency on weather, periodic or seasonal factors. Temperature is the most 

important weather-related factor. Humidity and cloud cover are other weather variables that 

affect power system load. Periodic variables that affect load include daily activities such as 

work, school and entertainment. Abnormal power levels resulting from special events such as 

the Superbowl and holidays are difficult to forecast accurately since these are uncommon and 

do not display a common load profile [6]. Seasonal considerations that affect load result from 

load growth, seasonal related loads, weather changes, and the number of daylight hours. 

Short term load forecasting techniques are categorized according to how they deal with 

the different variables, particularly weather [13]. The time-series approach is a non-weather 

sensitive approach that uses historical load data for extrapolation to future load conditions. 

This method views abnormal data as bad data [1] and is also time consuming, computationally 

intensive and numerically unstable [14]. Regression models study consumer habits and 

weather behavior to derive linear models for the system load, however the linearization of the 

weather terms is unjustified [14]. The knowledge based system (KBS) approach is a rules

based method for forecasting load that attempts to convert the logic of the power system 

operator into mathematical equations for forecasting. The problem with KBS techniques is 

that they assume the presence of an expert to derive the rules from on-the-job training, and 
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conversion of the operator's logic to equations sometimes also may be impractical [15]. Other 

forecast techniques include spectral analysis, exponential smoothing, state-space techniques, 

and Kalman filtering. All of these approaches require unwieldy historical databases of three 

to ten years of data to model the seasonal and annual load variations. 

The load profiles tend to change with the time of the year. This is due to factors such as 

seasonal loads (Le., heating and cooling) and growth. ANNs deal with these seasonal 

variables in two ways. First, a given model may be retrained regularly, sometimes daily, to 

reflect the load trend. The training data in this case is selected from a time-limited set, 

assuring that the training data is always recent enough to be unaffected by seasonal variations. 

This is known as the "moving window" technique for training data selection. The other 

method for dealing with seasonal variables is the use of separate models for different times of 

the year. Each model includes variables that are pertinent only to that particular season of the 

year. 

The ANN method models the multivariate forecast problem without making complex 

dependency assumptions about the input variables, but instead relies on the selection of 

appropriate training and input data. The ANN performs what is essentially a pattern 

recognition function, based upon the historical data that is used to train the network [15]. 

With its ability to be retrained using recent historical data, the ANN is inherently updatable 

and eliminates the need for huge databases, thus the amount of data needed to train the 

network is at a minimum. The short term ANN methods reviewed do not have the ability to 

capture the seasonal and annual load growth trends that other techniques can capture. A 

proper comparison of techniques would require the ANNs to include all models incorporated 

within the classical techniques. 

The use of ANN's for STLF may be reduced to several tasks. The process begins by 

determining the length and type of the forecast to be made. Forecasts are usually daily or 
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weekly, and may estimate the hour-by-hour load or the peak load for the period, among other 

possibilities. Next, the appropriate type and quantity of training data is selected. The specific 

inputs required for a forecast vary by geography, demographics, and time of year. In general, 

a neural network that is used to forecast load for one region is not an optimal design for 

another region [11]. The amount of training data required to train the network also varies. 

With the moving window approach, it is useful to select data from several weeks prior to the 

forecast period. This width of this window is normally on the order of four weeks to prevent 

negative effects from seasonal load changes. Historical data from the same period in previous 

years may also be used, but caution must be exercised with regard to annual load growth 

which could tend to hurt results. Next, the structure of the ANN is determined. The number 

of input neurons is determined by the number of input variables, and the number of output 

neurons is determined in a similar fashion. No method exists for determining the required 

number of hidden layer neurons without experimenting. One popular method consists of 

adding neurons until no additional benefit is seen during the training period. Another 

approach "prunes" neurons that have low values on incoming and outgoing interconnections, 

because these neurons increase training time but do not playa large role in the forecast. Once 

all this has been completed, the neural network is trained with the algorithm of choice, a 

forecast is made, and the process begins again. 
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CHAPTER 3. THEORETICAL DEVELOPMENT 

This chapter begins with a general discussion about linear programming. Following this 

infonnation is a look the affine scaling algorithm, a powerful technique that is used to solve 

linear programs. Next, certain new extensions to the algorithm are explained. 

A new artificial neural network whose training problem may be fonnulated as a linear 

program is described following the information about the affine scaling routine. The chapter 

concludes by describing the fonnulation of the training problem. 

3.1 Linear Programming 

Linear programming is an optimization technique that deals with fonnulating and solving 

problems of the following type: 

subject to the constraints: 

Ax =b 

and 

Xi ~ 0, V i = 1, 2, ... , n 

(3.1) 

where c is an n-dimensional column vector representing the cost per unit element of column 

vector X, A is an m x n matrix, and b is an m-dimensional column vector. This type of 

problem fonnulation with linear costs and linear constraints occurs frequently in resource 

allocation and transportation problems where some minimum cost is desired while meeting 

certain constraints. 

In most cases, the initial problem fonnulation will include some inequality constraints of 

the fonn 

(3.2) 

that result because of the physical limitations of the problem. To deal with this, a dummy 

variable known as a slack variable is introduced into the problem. This requires the addition 
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of a column to the A matrix plus the addition of one row to the x vector. This modification 

creates the equality constraint: 
n 

l:aijXj +Si = hi 
J=1 

(3.3) 

where si is a slack variable. This form is consistent with the above standard form. A 

constraint that initially yields an equation where the left side is greater than or equal to the 

right hand side can be put into the standard form by multiplying the constraint by minus unity, 

and adding a corresponding slack variable as above. Two of the more common inequality 

constraints for LP problems require elements of x to remain below some maximum value 

Xi < ui V i = 1, 2, ... , n (3.4) 

or above some minimum value 

Xi > Ii V i = 1, 2, ... , n (3.5) 

A variable without upper or lower bounds is known as afree variable. Several methods 

are presently available to implement free variables in linear programs, most of which require 

additional variables and hence additional memory and computation time. The most simple and 

common method involves splitting the free variable into two variables, one of which 

represents the positive portion of the variable and the other the negative portion. If Xi is a 

free variable, set 

so that both ui and Vi are nonnegative. This method allows linear programs to be more 

general but at the cost of an additional variable. Another method for introducing free 

variables into a linear program uses an additional vector to keep track of the signs for the 

different variables. 

(3.6) 

Any vector xf that satisfies all the constraints imposed by the problem formulation 

including the upper bound and nonnegativity constraints is known as afeasible solution. A 

vector Xn, which fails to satisfy at least one of the constraints is called an infeasible solution. 
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The region formed by the set of all feasible solutions is known as thefeasible region. The 

feasible solution x* which minimizes the objective function ctx is the optimal solution. 

For any feasible solution x, we may set 

(3.7) 

where z is a fixed constant. The set of points satisfying this equation is a hyperplane in n

dimensional space (for a two variable problem this is a line). By changing z in a two variable 

problem, a family of parallel lines is established. 

The feasible region for the two-variable problem 

subject to: 

XI + x 2 < 7 
(3.8) 

o <XI ~ 4, 0 <x2 ~ 6 

is shown in Figure 3.1. The feasible region for the linear program is represented by the shaded 

area in the figure and the cost function is shown for various values of z. The feasible region is 

guaranteed to be convex by the problem formulation. Notice that as z changes, a line parallel 

to the previous cost function results. 

By forming a matrix B from the first m linearly independent columns of A, we may 

uniquely solve the equation 

Bx -b b - (3.9) 

where Xn is the first m variables of x. These variables are called basic variables, and are said 

to be in the basis. The remaining variables, all equal to zero, are said to be nonbasic 

variables. Letting the remaining elements of x be zero, we now have a feasible solution that 

lies on a vertex of the feasible region. This type of solution is known as a basicfeasible 

solution. It can be shown that the optimal solution ofa nondegenerate (one where no edge of 
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Figure 3. 1. The feasible region and a family of cost vectors for the program in equation 3.8 

the feasible region is parallel to the cost function) linear programming problem occurs at a 

basic feasible solution. An optimal solution for a problem of this type occurs where the cost 

function is at its minimum while the intersection of the cost function vector and the feasible 

region is nonempty. For nondegenerate problems, this is a single point. The point (1,6) is the 

optimal solution for the problem described in equation 3.8. It is not difficult to see in this 

two dimensional example that as z becomes more negative and translates through the feasible 

region, it will eventually intersect only at this vertex of the feasible region. 

3.1.1 Piecewise-linear functions and restricted basis entry 

Some functions we may wish to use in a linear program are nonlinear. Occasionally, it is 

possible to include these equations in the program by using a piecewise-linear (PWL) 

approximation to the function. A piecewise-linear approximation to a curve is shown in 

Figure 3.2. 
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Figure 3.2. A piecewise-linear approximation to a curve 

This PWL approximation contains two line segments, the first of which approximates the 

curve over the range [0,4], and the second of which is valid over [4,7]. In a linear program, 

the PWL function would be represented by two variables, Xl and x2. The variables that 

represent PWL segments are known as segment variables. Then we have the constraint that 

while the function value is determined by 

f(x) = SIXI + S2X2 

where Sj is the slope of segment i. Also note that x2 must be zero until Xl is at its maximum, 

otherwise the function is meaningless. The different LP solution algorithms deal with this 

restriction in a variety of ways. The simplex algorithm, one of the most common, 

incorporates extra logic into the routine to implement this restricted basis entry restriction. A 

means for implementing restricted basis entry for another algorithm, the affine scaling 

algorithm, will be introduced for the first time later in this thesis. 
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The technique shown here for transfonning a nonlinear function into a PWL approximation 

is taken from the fifth edition of Introduction to Operations Research by F.S. Hillier and GJ. 

Lieberman [5]. Interested readers should also see Methods and Applications of Linear 

Programming by L. Cooper and D. Steinberg [2] for a more advanced approach to this 

conversIOn. 

3.1.2 Linear programming algorithms 

Several algorithms have previously been developed to step from vertex to vertex along the 

boundary of the feasible region. The simplex algorithm, and later the revised simplex 

algorithm, begin at an initial basic feasible solution obtained as described above, and then 

proceed from basic feasible solution to basic feasible solution until the optimal solution is 

found. This mature methodology is capable of incorporating upper and lower bounds for 

variables and many other special cases. The simplex technique is guaranteed to find the 

optimal solution to the problem, but for extremely large problems it can be slow to find this 

result. Theoretically, the technique could have to iterate through every basic feasible solution 

to find the optimum. This number would be 

n! 
# Basic feasible solutions - ---

n!(n-m)! 
(3.10) 

In reality, the simplex algorithm rarely requires this many iterations. A newer algorithm for 

linear programming travels through the interior of the feasible region to find the solution. 

This interior point LP algorithm is able to solve large problems faster than the simplex 

algorithm. 

The interior point linear programming algorithm was introduced by Narendra Karmarkar at 

Bell Labs in 1984 [8]. The algorithm guarantees polynomial time solutions to linear 

programming problems. Karmarkar's algorithm differs from the simplex from the beginning in 

that it begins with an interior feasible solution rather than a basic feasible solution. It is called 
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an interior point algorithm because it does not operate on the boundary of the feasible region. 

Kannarkar's algorithm rescales the variables to place the solution in the center of a scaled 

feasible solution, allowing it to take a large step toward the optimal solution. An example of 

the path an interior point algorithm might take to find a solution is shown in Figure 3.3. 

Notice that the algorithm may take several large steps across the feasible region to approach 

the solution, which will then be followed by smaller steps as the optimal solution is neared. 

8 

7 

6 

5 

4 

3 

2 

1 

o 
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Figure 3.3. The path of an interior point algorithm for linear programming 

The affine scaling algorithm is a modified version ofKannarkar's algorithm that was 

published in 1986, and this presentation follows the one presented in the original paper [17], 

except for the discussion about nonzero lower bounding and free variables that follows from 

[18]. The affine scaling algorithm is also an interior point algorithm but it differs from 

Kannarkar's algorithm in that it has a much more simple centering scheme and uses a gradient 

technique to decide the direction to move the solution. The affine scaling algorithm begins by 

finding an initial interior feasible solution. This is normally done by adding an artificial 

variable to the A matrix by setting 
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A'= [A: b -AI] (3.11) 

where I represents the vector of all ones. The initial feasible interior solution, xo' is then the 

(n+l)-dimensional vector of all ones. Assigning a very high cost (known as the big M 

method) to the artificial variable guarantees that it will go to zero in the optimal solution. If 

we assume the initial problem has a feasible solution, the optimal solutions for the initial 

problem and the big M formulation will be the same. 

Gradient descent techniques will find an optimal solution to a problem in a reasonable 

number of iterations only if allowed to take large jumps through the feasible region. If a 

solution is pinned near a boundary then it is possible that only small steps may be taken 

towards the optimal solution. The affine scaling algorithm moves the solution away from the 

boundaries by normalizing all variables to unity. This makes sense because the feasible region 

is bounded by x ~ 0 in the original formulation, so scaling all the variables to unity places 

them equidistant from at least one boundary. The scaling is done using the equation 

- D-1 
Xo = 0 Xo (3.12) 

where Do is a matrix with the elements of the initial solution, xO' on the diagonal. Clearly, io 

is the vector of all ones. The constraint matrix and cost vector must also be scaled to reflect 

the variable changes 

A =ADo (3.13) 
and 

(3.14) 

The maximum rate of decrease of the transformed cost function would be obtained by 

moving in the negative direction of the cost vector c. This, though, would lead to an 

infeasible solution by invalidating some equality constraints. The algorithm moves instead in 

the direction of the gradient projected onto the null space of A Do. This projected gradient is 

where 
c =PC p (3.15) 
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(3.16) 

is the projection matrix. 

Next, the solution moves in the direction of -cp . The size of this move is chosen so that 

no element of Xl will become less than zero. The largest element of cp , 'Y, is used in the 

equation 

(3.17) 

to guarantee feasibility for Xl. Here 0 <a :S 1 (typically, a is about 0.9) so Xl does not lie 

on a boundary, which would occur if a = 1. Lastly, the algorithm maps back to get a new 

interior feasible solution 

(3.18) 

The algorithm is then repeated until some stopping condition is met. In abbreviated form the 

algorithm generates the sequence of points 

X
k

+
l = Xk - ~ DPDc 

'Y 
(3.19) 

The algorithm can also accommodate variables with finite upper bounds. Both the search 

direction and the step size must be changed with these additional restrictions, so 

D = diag(min(xi' ui - xJ) (3.20) 

where u is the vector of upper bounds. The step size must be chosen to maintain the 

nonnegativity constraints and to keep the variables under their respective maximums. For this 

e ·Dc 
'Y = max(max( I p , 

I Xi 

ei .Dcp » 
Ui -Xi 

(3.21) 

where ei is the ith unit vector. The rest of the algorithm remains the same as before. In many 

problems, one or several variables have a nonzero lower bound. Two simple changes in the 

algorithm change it to allow such a restriction. The lower bound changes D to 

D = diag(min(xi -Ii' Ui - xJ) (3.22) 
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where L is the vector oflower bounds. We similarly alter the equation for 'Y so 

( (
ej -Dcp ej -Dcp )) 

'Y = max max , - ~--"-

1 X. - /. u. - X. 
I 1 1 1 

(3.23) 

As in the upper bound version, the change seen in equation 3.42 alters the search direction for 

the algorithm by including the lower bound constraints while equation 3.43 guarantees that 

the step size will be small enough that it does not violate any of these constraints. 

The freedom to have negative lower bounds in the affine scaling algorithm implies that we 

may now have free variables in programs without the cost of increasing the size of the 

problem or adding additional logic. This is done by setting the limits on free variables to 

extreme values. In practice, these bounds should not be set more than a few orders of 

magnitude larger than the bounds on other variables, due to numerical stability problems that 

may result from working with numbers over too large a range. With the ability to have 

negative variables, free variables may now be incorporated into a problem by setting the upper 

and lower bounds for these variables to extreme values. This, in turn, reduces the number of 

variables in linear programs because in the standard approach variables that are not 

constrained to be nonnegative are represented as two variables. Because the time required to 

solve a linear program is in part a function of the number of variables involved, the solution 

time for a given problem is reduced with this alteration. The nonzero lower bound procedure, 

along with upper bounding, is used here to introduce a method for implementing the restricted 

basis entry algorithm. 

3.2 Restricted Basis Entry in the Affine Scaling Algorithm 

The discussion in this section is presented in terms of implementing the restricted basis 

entry algorithm for a PWL curve. The procedure, though, is a general one and may be 

implemented wherever it is called for. 
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There are several ways to incorporate the restricted basis entry procedure into the affine 

scaling algorithm. One method sets the slopes of the segments not allowed to change equal to 

zero in the constraint matrix. Because the slope is zero, the gradient for that variable is very 

near zero, and upon update the variable does not change. While this method keeps the 

variable from changing significantly, it causes violation of the equality constraints for the 

pertinent output variable. Because this method does not result in feasible solutions it is not a 

reasonable solution to the problem. 

The technique developed in this thesis implements the restricted basis entry by adjusting 

the upper and lower bounds of the variables according to some logic. A flow chart for the 

discussion in this section is shown in Figure 3.4. For the first case, where a variable Xl must 

be near its maximum, MaxI, before variable x2 may depart from its lower bound, min2, the 

upper bound on x2, Max2, is set to just above min2. This effectively sandwiches x2 and keeps 

it near its lower bound. The conditions for x2 to increase are that Xl be very near MaxI, and 

that the gradient of Xl in the previous iteration is negative (thus indicating that it would 

increase if allowed to). Upon these conditions being met, the upper bound on the "entering" 

variable x2 is set to its maximum, and Xl must then be restricted to prevent it from decreasing 

significantly. This is done by changing minI to just below the present value of the variable 

and altering the affine scaling algorithm to allow nonzero lower bounds. If at some point x2 

decreases below some minimum value, Xl must be allowed to decrease and x2 must once again 

be held near its lower bound. The conditions that indicate this situation include a positive 

gradient for Xl (thus indicating that it would decrease if allowed to) and a value less than some 

minimum for x2 . If these conditions are met, Max2 is again set to a low value, and the lower 

bound for Xl is set to its actual lower bound. 
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xl: below its maximum x2: kept small 

~ minI: set to true lower bound min2: set to true lower bound ,,-
"'" 

MaxI: set to true upper bound Max2: set just above x2 

! 
Iterate through affine scaling algorithm 

~ 
No xl very near its true upper 

bound and increasing? 

! Yes 

xl: held very near its maximum x2: free to change 
~ minI: set just below xl min2: set to true lower bound 

MaxI: set to true upper bound Max2: set to true upper bound 

! 
Iterate through affine scaling algorithm 

! 
Yes 

x2 significantly larger than its minimum? 

!NO 

Yes No 
x2 increasing? 

Figure 3.4. Flowchart for implementing restricted basis entry in the affine scaling algorithm 



26 

3.3 Behavior of the Affine Scaling Algorithm 

The affine scaling routine behaves in an interesting manner that is valuable for the training 

algorithm to be developed in Section 3.4.3. Consider the six-variable linear program for 

which the optimal solution is known [12] 

minimize 2Xl + X 2 + 3X3 - 2X4 + 10xs + 106 
X6 

x 

subject to: 

Xl + X3 - X4 + 2xs = 5 

x2 + 2x3 + 2X4 + Xs = 9 

o < Xl < 7, 0 ~ x 2 < 10, 0 <X3 < 1, 0 <x4 < 5, 0 <xs < 3 

(3.24) 

that was solved using the affine scaling algorithm. Figure 3.5 shows a plot of the variables 

through several iterations of the algorithm. In the first iteration, the artificial variable is forced 

to near zero because of its high cost, while the other variables change only slightly. Not much 

happens during iterations two through four, and then suddenly on the fifth iteration the 

solution changes dramatically. The sixth iteration sees the variables change only slightly and 

the seventh through tenth iterations accomplish little. Depending on the precision required for 

the solution, these last two iterations may have been a waste. The behavior of the variables in 

this problem is not unusual for the algorithm. 

Figure 3.6 shows a plot of the absolute error from the optimal solution over all the 

variables. The error decreases slightly in the first few iterations. Upon the fifth iteration the 

error drops off significantly with only modest improvements taking place with subsequent 

iterations as the solution is neared. For larger problems, the error may begin to drop 

significantly with the first iteration, and the rate of decrease may be less dramatic than in this 

small example, but the basic performance is similar. The big improvements in the objective 

function take place in the early iterations, and as the optimal solution is approached, the rate 

of improvement in the objective function decreases along with step size as a point of 

diminished returns for additional calculations is reached. 
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Figure 3.5. Behavior of the variables in the affine scaling algorithm. 

10 

9 

8 

~ 
7 

0 
t:: 6 tU 
tU 

5 .... 
=' 

0 
CI) 4 
~ 

3 

2 

1 

0 

0 1 2 3 4 5 6 7 8 9 10 

Iteration number 

Figure 3.6. Behavior of the error in the affine scaling algorithm 
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3.4 Neural Network Training 

Now that the affine scaling has been introduced and extended to solve a wider variety of 

problems, it is appropriate to take a look at a specific application of the extended algorithm. 

The algorithm is applied in this thesis to the problem of training an artificial neural network. 

In the remainder of this chapter is a more detailed explanation of the ANN model, 

development of the LP formulation for training the network, a method for finding an initial 

interior feasible solution for the problem, and a means for determining when to stop the 

algorithm. 

3.4.1 Neural network structure 

The artificial neural network described in this thesis is a feedforward model with the bias 

connected to each of the hidden and output layer neurons. The network is assumed to be fully 

connected. The input and output layer neurons have a linear transfer function, that is, the 

output of the neuron is the same as its input, while the hidden layer neurons have a piecewise

linear transfer function 

As mentioned earlier in this work, hidden layer neurons in feedforward networks usually 

have smooth, continuously differentiable transfer functions to accommodate the gradient 

techniques that are used to train the network. That type of transfer function is not useful for a 

linear programming formulation, because it cannot be represented explicitly in the program. 

The transfer function for the hidden-layer neurons in the network studied here is shown in 

Figure 3.7. This transfer function is a piecewise-linear function, to accommodate the 

formulation, and it has three segments. In equation form the transfer function is 

100-, for 0 ~ 0- ~.03 

S(o-) - { 0.3 + 5(0- - 0.03), for 0.03 ~ 0- < 0.05 

0.4 + 2(0- - 0.05), for 0.05 < 0- <0.35 

(3.25) 
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Figure 3.7. The transfer function used in the hidden layer neurons 

where (J is the sum of the weighted inputs and bias. This transfer function was selected 

because it is similar to the sigmoid in the first quadrant. However, there is no reason to 

believe that this PWL function is superior to others. 

3.4.2 Program formulation 

Each segment of the transfer function represents a different variable in the linear 

programming formulation. The variable x I is assigned to the segment from 0 <(J < 0.03, x2 

is for 0.03 < (J ~ 0.05, and x3 is for 0.05 ~ (J ~ 0.35. Let nsegs be the number of segments 

in the PWL curve. For an input pattern Vh oflength nin, and hidden neuronj, the segment 

variables must satisfy the relationship 
IISeS' nin 

EXjg - tj - EWjjVih = 0 (3.26) 
g =1 i =1 

where t j is the bias term for neuron j, wij is the weight from input neuron i to the hidden 

neuron, and vih is element i of the input pattern vector. Every hidden layer neuron in the 
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linear program must satisfy equation 3.26 for every pattern. This is the first of two kinds of 

functional constraints that are contained in the A matrix. 

The output Sj of hidden-layer neuron j is determined by the segment variables and the slope 

mg of each segment 
3 

Sj = I}jgmg 
g=l 

(3.27) 

The output of neuron k in the output layer is the same as the input to these neurons since 

they are linear 

and 

d 

Uk = tk + LWjkSj 
)=t 

3.4.3 Derivation of the training algorithm 

(3.28) 

(3.29) 

The back-propagation algorithm for neural network training seeks to minimize the mean

squared error (MSE) over the set of training patterns 

minimize: MSE = ~ L (1;, -on)2 
n 

(3.30) 

where Tn is the target output specified by the training data and On is the actual output. This 

particular error minimization is not practical for linear programming because of the squaring 

term. Instead, the linear program minimizes the sum of the absolute errors over the training 

patterns 

minimize: L 1T.t -On I 
n 

Because linear programming does not accommodate absolute values, each error term is 

replaced by two variables, e+ and e-, both of which are constrained to be positive. The 

resulting equality is 

(3.31) 

(3.32) 
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so equation 3.31 becomes 

mmmuze: L e: + e;: 
n 

where for output neuron k and pattern h, we have the following equality 
d 

Tkh = e:;' - e~ + tk + L WjkhSjh 
j=1 

(3.33) 

(3.34) 

where d is the number of hidden-layer neurons. 5jh is not included explicitly as a variable in 

the linear program to reduce the number of variables. Instead, from we have 

d 3 

Tkh = e:;' - e~ + tk + L L WjkhXjgmg 
j=1 g= I 

This is the second of the two types of equations included in the constraints. 

(3.35) 

A closer look at equation 3.35 reveals that it violates the linear programming assumption 

of additivity that does not allow two variables in the program to multiply each other. This 

violation occurs when the weights from the hidden layer to the output layer multiply the 

segment variables. It is not possible in a single linear program to adjust both the weights from 

the input layer to the hidden layer while at the same time adjusting the weights from the 

hidden layer to the output layer. The solution to this problem is a decomposition of the 

program from a single linear program into two linear programs. 

3.4.4 Operation of the training algorithm 

This discussion follows the diagram shown in Figure 3.8. In the first program-referred to 

as the input-hidden LP (IHLP)-the weights for the paths from the bias and the input layer 

neurons to the hidden layer neurons, as well as the bias connections to the output layer 

neurons are allowed to vary while the weights from the hidden layer to the output layer are 

held constant. The weights from the hidden to the output layers are not explicit in the IHLP 

but are implied by scaling the slopes of the segment variables, since for any constant {3, 
3 

tJS j = L tJxjgmg (3.36) 
g= I 
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This program iterates a set number of times, decreasing the absolute error between the target 

output and the actual output. If any constraints are violated (i.e., upper or lower bounds, 

etc.), the program ends and uses the most recent feasible solution to operate the network. the 

restricted basis entry procedure is also performed here to select the proper transfer function 

segment to operate on. Next the outputs from the hidden layer neurons are extracted using 

equation 3.27. This information, plus the output neuron bias terms and the error portion of 

the x vector for the IIll..P is used to establish the second linear program, known as the hidden

output LP (HOLP). This program also iterates a set number of times, or until infeasibility 

occurs. The variables representing error and output bias terms are then replaced into the x 

vector in the IIll..P and the segment slopes are scaled in that programs constraint matrix. The 

process continues until the fixed number of overall iterations, L, is reached, or until 

infeasiblity occurs. The input-hidden linear program is 

npaUnout 

minimize: I: I: e~ + e~ 
h=1 Jr.=1 

subject to the constraints 
nhid bSCS' 

TJr.h =e~ -e~ +/1<. +L LWjJr.hSj, vh=I, ... ,npats, 
j=1 g= 1 

v k = I, ... ,nout 
bSCS' nin 

L Xjgh - I j - I: WijVi = 0, V j = I, ... ,nhid, 
g=1 i=1 

V h = I, ... ,npats (3.37) 

where wjkh from the hidden layer to the output layer is held constant through the iteration. 

. The hidden-output linear program is similar to the first except the wij are held constant. 

The initial feasible solution for each iteration of this program comes directly from the first 

program every time the algorithm switches from the first program to the second. From the 
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Set number,j, of input-hidden LP iterations 
Set number, k, of hidden -output LP iterations 
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No Have k iterations 
L------~-l of hidden -output LP 
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'---------iHave L overall loops been completed? 

Figure 3.8. Flow chart for the neural network training algorithm 
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first program we get the second program 

npatsnout 

DllDlIllize: L L e~ + e~ 
h;1 k;1 

subject to the constraints 
nhid nsegs 

Tkh = e~ - e~ + tk + L L WjkhSj , V h = 1, ... ,npats, 
j=1 g; I 

V k = I, ... ,nout 

(3.38) 

The size of the matrices and vectors for the first linear program is a function of the number 

of training patterns, the number of input, hidden and output neurons, and the number of 

segments in each piecewise-linear transfer function. For each of the npats training patterns, 

we must include nhid constraints (from equation 3.23) on the hidden layer neurons and nout 

constraints (from equation 3.32) on the output neurons. Thus the number of rows in AmLP is 

Rows in AIHLP =npats (nout +nhid) (3.39) 

AllJLP has two error variables per output neuron per training pattern and each segment of 

every hidden layer neuron must be represented for all patterns. Additionally, the weights and 

biases-free variables-are each represented by a variable. The number of columns in AmLP is 

Col's in A IHLP =2 * nout * npats +nhid (I +nin +nsegs * npats) +nout (I +nhid) (3.40) 

The size of the hidden-output LP is considerably smaller than the input-hidden LP. The 

constraints that apply to the segment variables in the input-hidden LP do not apply, so the 

number of rows is detennined by 

Rows in A HOLP =npats x nout (3.41) 

while the number of columns is 

Columns in A HOLP = nout(1 + 2npats + nhid) (3.42) 
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As mentioned above, the initial feasible solution for the HOLP comes from the IHLP, and vice 

versa, once the algorithm is under way. Finding the first initial feasible solution to the IHLP, 

however, requires some additional work. 

3.4.5 Finding an initial feasible solution to the IHLP 

The method described earlier for finding an initial interior feasible solution to the linear 

program sets the initial solution to a vector of all ones for the affine scaling algorithm . 

Because the segment variables in the PWL transfer function have upper bounds less than one, 

the previously described method is not viable for this application. In this work, the weights 

and biases are chosen randomly in such a manner that the initial solution is interior feasible. 

The sum of weights and biases is less than the maximum allowable value for the first segment. 

The total number of inputs to a hidden layer node is nin+ I, which includes the input 

variables and a bias term. Keeping in mind that all the inputs have been scaled between zero 

and one, if we generate a column vector r oflength (nin+I)*nhidthat is composed of uniform 

random numbers in (0,1) and scale 
max(xl ) r 

r =-..-.:.......:....:....-
scaled nin +1 

(3.43) 

where max(xl) is the maximum value for the first PWL segment. Then the elements of this 

vector may be used as the weights and biases for the connections into the hidden layer 

neurons. The first nhid elements of this vector are used for the bias terms and the rest are for 

the inputs. For every hidden layer neuron we have an inequality of the form 

(nin +1)max(xJ ( ) 
(J < = max XI 

(nin +1) 

Setting all the other segment variables equal to a small value, 1;, Xl is 

XI = (J - I; (nsegs -I) 

(3.44) 

(3.45) 

The only variables yet to be determined are the error variables. These are extracted from the 

equation 
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Mid 

error = T -bias-L x~s 
J=1 

(3.46) 

where the output neuron bias terms are taken from a uniform distribution in (0,1). The 

variable ~g is a column vector oflength nsegs that contains the segment variables for a single 

hidden layer neuron, and s is a column vector of the slope segments. If error is greater than 

or equal to zero 
e+ =error+e 

e- = e 
(3.47) 

and vice versa if error is less than zero. This procedure is done for every output neuron for 

every training pattern. 

Once the algorithm has cycled through the HOLP, the new feasible solution for the IHLP 

comes from the second program 

3.4.6 Stopping the training algorithm 

A proof is performed in [17] showing that the affine scaling algorithm converges in the limit 

to one point and that this point is the optimal solution to the linear program. This proof 

involves what is known as dual linear programs. Simply put, the dual linear program is an LP 

that can be derived from the original problem in equation 3.1 (known as the primal linear 

program). The dual LP to that problem is 

maximize: ATb 

subject to: AT A <cT (3.48) 

where the dual vector A is a free variable [12]. The initial solution to a dual problem is an 

infeasible solution to the primal. The optimal solution of the dual problem is primal feasible 

and is the same as the optimal solution to the primal. If the dual problem is worked on at the 

same time as the primal, the distance between their respective variable vectors is a measure of 

how far away from the optimal solution the programs are. At the optimum, this distance is 

zero. The stopping rule specified in the paper by Vanderbei et al. [17] calculates this distance 
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but requires a significant amount of computation. The time required to operate on the dual 

problem may be better spent performing an additional iteration of the LP. 

The decision to stop the algorithm involves a choice between improving the solution and 

running the risk that due to numerical instability the solution will become infeasible with the 

next iteration. It is important to remember here the behavior of the affine scaling routine as 

discussed in Section 3.3, where it was shown that after several iterations, a point of 

diminishing returns is reached whereby additional iterations improve the objective function 

only slightly. It is also valuable to recall that the training algorithm is an iterative process with 

two separate LPs. Based on these facts, a heuristic stopping rule is used in this thesis where 

the overall training algorithm iterates a manually controlled, fixed number of times. This 

number is set high enough that the solution becomes infeasible (thus indicating that optimality 

had been neared in the previous iteration) at some point in the training session. This near

optimal solution is then used for operation of the network. The number of iterations of both 

the llll..P and the HOLP are kept low enough that unnecessary effort is not expended taking 

small steps toward optimality. The number of iterations for each of these LPs in each overall 

iteration is also set manually. 
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CHAPTER 4. IMPLEMENTATION AND RESULTS 

In this chapter the new artificial neural network and training algorithm and a more traditional 

ANN trained by back-propagation are applied to the short-term load forecasting problem. The 

chapter begins with the determination of the forecast period, then explains the selection and 

preprocessing of training data. Next, the training process is reviewed and forecast results are 

presented. 

4.1 Determination of Forecast Period 

Hourly load, time-of-day, day of week, wind speed and humidity data were available for a one 

year period from a Midwestern utility with a summer peaking load. It was decided that the 

forecast would be performed for the morning of a single weekday to keep the training time to a 

minimum, while adequately testing the algorithm. The precedent for using separate ANNs for 

a.m. and p.m. forecasts was established in [3]. Load profiles for both winter and summer days 

were analyzed and it was found that the winter load profile had more detail than its summer 

counterpart. It was decided that the forecast should be performed for a winter day under the 

assumption that the ANN would have no problem with a summer day's forecast if it could catch 

the minutiae of the winter load. 

4.2 Selection of Input Variables 

Several methods have been employed historically in the selection of input variables. The set of 

input variables is system dependent and also varies with the type offorecast being made.[ll]. A 

correlation analysis was done in that paper to determine the amount of historical load data 

required for a 24-hour forecast for two separate utilities. The amount of data required varied 

between the utilities but showed little seasonal variation. Some forecasters start with a large set 

of input variables to train the ANN, and then the ANN is pruned by eliminating the inputs that 

have low connection weights because the low weights indicate little relation between the variable 

and the load. Heuristics may also be used to determine some of the input variables. The 
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knowledge-based load forecasting paper [16] gives a good explanation of the heuristic selection 

of input variables. 

The amount of data selected for training the ANN reported in this thesis was kept to a 

minimum, as stated above. The forecast was to be made for a Thursday, and so the training data 

were taken from the two Thursdays that immediately preceded this day. The input variables 

included time-of-day, previous hour's load, and temperature for the forecast hour. It should be 

noted that the number of training pattems-24-and the number of network inputs-3-are about 

15% and 10% respectively of the amount that would nonnally be used to train a network. 

4.3 Preprocessing of Data 

Before training the ANN, it was necessary to preprocess the training data to help maintain the 

numerical stability of the training process. If the input and output values are scattered across a 

large range of values (i.e., the temperature may be 12 degrees while the load is 1500 megawatts) 

some of the calculations that take place in the algorithm-the inversion required in the calculation 

of the projection matrix in particular-could end up handling numbers over a much broader range. 

This can introduce errors from roundoff and the finite limits on the machine precision. In order to 

overcome this problem, the data were scaled to keep them all in a small range of values. 

There are two common practices for preprocessing time-of-day information for input to the 

ANN. The first method represents each hour by a discrete variable. For each training pattern, the 

variable for the corresponding hour is set to unity, while all the other time-of-day variables are 

held to zero. For a 12 hour forecast, 12 separate inputs to the ANN would be required. This 

one-of-n fonnat offers very good discriminatory power between different hours of the day, but at 

the cost of severely increased training time because of the additional variables. The preprocessing 

used in this thesis is a simple scaling procedure that keeps the time-of-day as a single continuous 

variable and scales the data between some minimum and maximum values. The bounds used here 

were 0.1 and 0.9, and the scaling parameters were found by solving 
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0.9 = (MAX * A)+B 

0.1 = (min * A) + B 

simultaneously, where MAX is the largest value in the historical data, and min is the smallest 

measurement in this data. The other input variables, previous hour's load and forecast hour's 

temperature were scaled in the same manner as the time-of-day input. 

4.4 Network Structure 

(4.1) 

(4.2) 

Both networks trained were three-layer, feedforward types. The input layers each had three 

neurons with linear transfer functions. The ANN trained with the new algorithm had two hidden 

layer neurons with the PWL transfer function. The more traditional network also had two hidden 

layer neurons, but these had a sigmoidal transfer function. Each network had a single output 

neuron with a linear transfer function and the biases were connected to each hidden and output 

layer neuron. 

4.5 Neural Network Training 

The new training algorithm was coded into Matlab TM. This code begins by setting up the 

pertinent matrices and vectors, and then finds an initial, interior feasible solution to the problem, 

as described in Section 3.4.5. It then performs the iterative algorithm for training the network. 

The number of overall iterations was set manually, as was the ratio of the number of iterations of 

the first linear program to the second program. The ratio of the two programs was set at 2:4, that 

is, the first LP went through two iterations before the hidden layer neuron outputs were extracted 

and the second LP began. After four iterations of the affine scaling routine on the second LP, the 

segment variables in the first LP were scaled and that LP began again. The 2:4 ratio resulted from 

a trial-and-error process that attempted to find the best solution possible without having the 

solution become infeasible. This process was set to be run three times, but while performing the 

algorithm on the first LP during the third loop, the solution became infeasible and the process 
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stopped. The weights from the previous iteration, where the solution was feasible, were used to 

build and test the network. 

The plot of overall absolute error -vs- number of iterations is shown in Figure 4.1. Note that 

in iterations 1-2 and 6-7 the error decreases significantly. These iteration numbers correspond to 

the llll..P. This program adjusted nine different weights while the HOLP adjusted only three. 

The difference in error reduction between the two LPs is probably due to this difference. The rate 

of error decrease slowed as predicted, with later iterations achieving less gain before infeasibility 

occurs. 
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Figure 4.1. Error over the set of training patterns -vs- number of iterations 

The step size parameter, ex, became progressively smaller during the algorithm to keep the 

solutions inside the feasible region. In the first LP, ex began at 0.8 and decreased by 0.02 each 

time through the entire loop. Because only two main loops were completed, this value ended up 

at 0.78. Similarly, this parameter in the second LP began at 0.9 and decreased by 0.05 with each 

full loop and ended up at 0.85. 
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The ANN trained with the back-propagation algorithm required 40,000 iterations of that 

algorithm to reach a point where error no longer decreased. Training time for the new ANN was 

8 minutes, 30 seconds. Training time for the back-propagation ANN was 2 minutes, 45 seconds. 

4.6 Results 

The accuracy of the forecasts made by each network were adequate considering the 

minimal amount of training data used. The plot comparing the forecasts with the actual load 

is shown in Figure 4.2 Average error for the PWL network trained with the LP algorithm was 

4.0%, with a peak error of8.7%, while the average error for the back-propagation ANN was 

2.6% with a peak error of 6.6%. 
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Figure 4.2. Plot comparing forecasts to actual loads 

It is interesting to note in Figure 4.2 that both forecasts performed poorly during the latter 

part of the period, specifically for hours 9-12. In fact, during this time the forecasts both 

increase slightly when the load is decreasing. The cause of this is apparent when one 

compares the load profile for the forecast day to those of the training days. This is shown in 

Figure 4.3. In both the training days the load continues to rise until hour 11, while on the 
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Figure 4.3. Training and forecast days' loads 

forecast day the load begins to decrease at hour 9. This difference reinforces the value of 

additional training data for the networks, since neither network will respond properly to a 

phenomena it has not seen before at all. 
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CHAPTER 5. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 

5.1 Conclusions 

This work presented a modification to the affine scaling interior point algorithm for linear 

programming. The extension developed in this thesis allows the restricted basis entry to be 

used by the affine routine. This is a valuable extension that will allow the technique to work 

with a wider variety of problems, especially those that incorporate piecewise-linear functions. 

Also presented in this work was an artificial neural network with hidden layer neurons having 

piecewise-linear transfer functions to facilitate the formulation of the network training 

problem as a linear program, and a training algorithm for this network that uses the modified 

affine scaling algorithm. Finally, a power syst,em short-term load forecast was performed 

using the new ANN and training algorithm. 

The restricted basis entry method is implemented by using variable upper and lower 

bounds. A variable that is not allowed to rise far from its minimum is held there by setting the 

upper bound on the variable to a value just above the lower bound thus sandwiching variable. 

A variable that is to be held near its maximum is constrained in a similar manner by adjusting 

its lower bound to a value just below the upper bound. 

The artificial neural network presented in this thesis is a feedforward type with linear 

transfer functions in both the input and output layers. The hidden layer has a piecewise-linear 

transfer function. Each segment of the PWL function may be represented as a separate 

variable in a linear program. The training of the ANN was formulated as a linear program 

with the goal of minimizing the absolute error over the training data. This training routine is 

actually drawn up as decomposed linear program. The first program is used to determine the 

weights between the input and hidden layer neurons. In this stage, the algorithm makes use of 

the new restricted basis entry approach in the affine scaling routine to step through the PWL 

segments. The outputs of the various hidden layer neurons are extracted from the first linear 



45 

program-which finds the weights for the paths between the input and hidden layer neurons

and used in a second linear program to detennine the weights for the connections between the 

,- hidden layer and the output layer. Information from this program is then extracted after 

several iterations and used in the first program. A unique scaling process is used to adjust the 

slopes of the PWL segments in the first program to simulate the weighting of connections 

from the hidden layer to the output layer. 

Finally, the network and training algorithm are used to perform a short-term load forecast. 

This type of forecast is extremely valuable to electric utilities, because it can be used to 

schedule equipment and personnel in an economic fashion. The forecast performed was for a 

12-hour period on a Thursday morning. Training data was taken from only two Thursdays 

prior to the forecast period, and consisted of temperature, time of day, and previous hour's 

load. The forecast was quite adequate considering so little data was used for training. For the 

PWL network and LP training algorithm, the average error was 4.0% and the peak error was 

8.7%. This compares with 2.6% and 6.6% respectively, for a forecast performed by a 

network with sigmoidal hidden layer transfer functions that was trained by back-propagation. 

Training time for the LP algorithm for this network was 8 minutes, 30 seconds. The back

propagation algorithm required 2 minutes, 45 seconds to converge. The need for additional 

training data was illustrated when both ANNs made some significant errors because the latter 

portion of the forecast day load profile was different from the training days' profiles. 

Convergence of the LP algorithm to a "good" solution prior to exiting the feasible region 

or failing because of numerical instability requires patience. Parameters such as step size, 

upper and lower bounds on free variables, the ratio of iterations between the two programs, 

and the number of overall iterations must be adjusted manually at present to obtain this type of 

solution. The restricted basis entry procedure presented in this thesis is operational but the 

tendency of the algorithm is to keep the solution on the first segment of the PWL function. 
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This may be overcome by keeping this segment short and keeping the limits on the upper and 

lower bounds for the output neuron bias terms small. Additionally, increasing the number of 

iterations of the first LP should force the PWL function values to increase. 

5.2 Suggestions for Future Work 

In its present state, the optimization technique presented here for training an ANN is 

powerful but requires some refinement to guarantee convergence to a solution with minimal 

error prior to the solution becoming unstable. This work should focus in part on the PWL 

transfer function used in the hidden layer neurons. There is no reason to suppose that the 

function used here is optimal. Possibly several different transfer functions should be used in 

the same network to see which ones tend to affect the solution the most. Additional work 

should be performed to determine algorithm parameters that encourage convergence of the 

program before an unstable or infeasible condition is reached. The initial feasible solution 

found in this work places the sum of the inputs to the hidden layer to a low value. The final 

solution to the training problem, though, will have sums at the hidden layer neurons spanning 

the range from near zero to near unity. With this in mind, it would make sense to start with 

the initial feasible solution distributed over a larger range. This should significantly reduce the 

number of iterations required to train the network and may help to obtain a better solution. 

Because the amount of time required to train an ANN is one of the first criteria involved in 

selecting an ANN, incorporation of sparse matrix techniques to perform the affine scaling 

algorithm must be a suggestion for future work. The constraint matrix used here can be huge, 

but for a decent sized problem much fewer than one percent of the matrix consists of nonzero 

entries. In addition, the location of the nonzero elements in the constraint matrix and the cost 

vector may easily be known because of the problem formulation. Sparse matrix techniques 

could cut the computation time by at least 90% for a reasonable sized problem without 

affecting the accuracy of the solution. 
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The application of ANNs to the short-term load forecasting problem is becoming common. 

The key elements to a good forecast are selecting the appropriate training data in proper 

amounts. The ANN used here was trained with a minimal amount of data. Other variables 

that would traditionally have been included would be additional temperature and load data, 

and day of the week data for a week-long forecast. The dew point is one nontraditional 

variable that should be investigated for use in ANN training because it is a more accurate 

measure of human discomfort than temperature. Also, temperature and load data may be 

more valuable if, in addition to being included as measurements, the hourly temperature and 

load differences are included. 
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