
Training of artificial neural networks

via interior point algorithms

by

Douglas Edward Welsh

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical Engineering and Computer Engineering
Major: Electrical Engineering

Signatures have been redacted for privacy

'niversity
J\Illes, Iowa

1993

11

This thesis is dedicated to my parents,
in recognition of the sacrifices they made
to ensure that my sisters and I received

quality educations.

1Il

TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER 1. INTRODUCTION
1.1 Artificial Neural Networks
1.2 Interior Point Linear Programming Algorithms
1.3 Power System Short-Term Load Forecasting
1.4 Contents of the Thesis

CHAPTER2. BACKGROUND
2.1 Introduction to Artificial Neural Networks

2.1.1 Artificial neurons
2.1.2 Neural network applications
2.1.3 Artificial neural network training
2.1.4 Hopfield neural networks
2.1.5 Feedforward networks

2.2 Introduction to Short-Term Load Forecasting

CHAPTER 3. THEORETICAL DEVELOPMENT
3.1 Linear Programming

3.1.1 Piecewise-linear functions and restricted basis entry
3.1.2 Linear programming algorithms

3.2 Resticted Basis Entry in the Affine Scaling Algorithm
3.3 Behavior of the Affine Scaling Algorithm
3.4 Neural Network Training

3.4.1 Neural network structure
3.4.2 Program formulation
3.4.3 Derivation of the training algorithm
3.4.4 Operation of the training algorithm
3.4.5 Finding an initial feasible solution to the IHLP
3.4.6 Stopping the training algorithm

CHAPTER 4. IMPLEMENTATION AND RESULTS
4.1 Determination of Forecast Period
4.2 Selection ofInput Variables
4.3 Preprocessing of Data
4.4 Network Structure
4.5 Neural Network Training

v

1
1
1
2
2

4
4
5
6
7
7
8
11

14
14
17
19
23
26
28
28
29
30
31
35
36

38
38
38
39
40
40

IV

CHAPTER 5. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 44
5.1 Conclusions 44
5.2 Suggestions for Future Work 46

REFERENCES 48

ACKNOWLEDGEMENTS 50

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 3.1.

Figure 3.2.
Figure 3.3.
Figure 3.4.

Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 4.1.
Figure 4.2
Figure 4.3.

v

LIST OF FIGURES

A detailed model of an artificial neuron
A feedforward artificial neural network
The sigmoidal curve
The feasible region and a family for cost vectors for the program in
Equation 3.8
A piecewise-linear approximation to a curve
The path of an interior point algorithm for linear programming
Flowchart for implementing restricted basis entry in the affine
scaling algorithm
Behavior ofthe variables in the affine scaling algorithm
Behavior of the error in the affine scaling algorithm
The transfer function used in the hidden layer neurons
Flow chart for the neural network training algorithm
Error over the set of training pattens -vs- number ofiterations
Plot comparing forecasts to actual loads
Training and forecast days' loads

6
10
10
17

18
20
25

27
27
29
33
41
42

1

CHAPTER 1. INTRODUCTION

1.1 Artificial Neural Networks

The field of artificial neural networks (ANNs) has experienced a resurgence of interest in

the last ten years. This is due in part to the use of neural networks for a variety of new

applications, including forecasting. Neural networks are ideally suited to this application

when the forecast is to be made based on the complex interactions of several variables, where

the exact functional relationships between the variables is not known [1].

The most common form of neural network training-the determining of weights for

interconnections between neurons- is known as the back-propagation algorithm. This

algorithm is suited to networks having smooth, differentiable transfer functions.

Unfortunately, back-propagation converges to only a local minimum in many instances or fails

to converge at all. The development of new training algorithms for ANNs is an active area of

research today.

1.2 Interior Point Linear Programming Algorithms

At about the same time that ANNs became popular again, the field of linear programming

experienced a major advance with the introduction ofKarmarkar's interior point algorithm [8].

This algorithm guaranteed polynomial-time solutions to large linear programs, where

traditional methods such as the simplex technique could not. The interior point algorithms

operate by shooting through the interior of the feasible region rather than moving from vertex

to vertex of this region as in the simplex approach. Subsequent refinements to the

Karmarkar's algorithm have reduced the computational complexity while at the same time

speeding convergence to the solution. One of these improved algorithms is the affine scaling

algorithm [17]. The affine scaling algorithm is guaranteed to converge to the optimal solution

for a linear program where all the variables are constrained to be nonnegative. The original

version of this algorithm operates by re-scaling the variables so they are equidistant from the

2

nonnegativity constraint boundaries, and then the solution moves in the direction of a

projected gradient.

1.3 Power System Short-Term Load Forecasting

Modem electric utilities attempt to operate in the most economic fashion possible while

offering highly reliable service to customers. The short-term load forecast (STLF) is a useful

tool for accomplishing this task. This forecast estimates the power system load in the period

from one hour to several weeks into the future [1]. With this information, the utility may

schedule their equipment and personnel to meet the load demand in a secure fashion, while

keeping costs to a minimum. Artificial neural networks are becoming popular tools for

performing load forecasts, because this technique is simple to implement while still being able

to handle the complex relationships between the many variables that affect the load.

1.4 Contents of the Thesis

Chapter 2 of this thesis furnishes background information about artificial neural networks,

beginning with their origins and progressing through their design and applications. That

chapter includes a description of an artificial neuron, as well as the Hopfield and feedforward

networks and their operation. It concludes by presenting information about the application of

ANNs to the STLF problem.

Chapter 3 contains a powerful extension to the affine scaling algorithm. The modification

uses a version of the algorithm that allows it to work with negative variables and variables

with nonzero lower bounds, which allows the algorithm to be applied to a more general class

of problems [18]. The extension to the affine scaling algorithm presented here incorporates

the restricted basis entry technique into the algorithm by altering the upper and lower bounds

on variables. This modification is useful in the linear programs where a nonlinear curve is

represented by a piecewise-linear (PWL) curve.

3

Also in Chapter 3 is the description of an artificial neural network that has a piecewise

linear transfer function in the hidden layer neurons. This type of transfer function allows the

training problem to be formulated as a linear program. The training program is explained in

detail in that chapter. (In this thesis, the term "transfer function" is used to describe the

functional relationship between the input and output of a neuron. This interpretation is

common in Electrical Engineering and should not be confused with the more precise definition

used in the field of mathematics.)

Chapter 4 discusses the implementation of the ANN and training algorithm applied to the

STLF problem. A forecast is made for a 12-hour period using the new approach. Results

from this forecast are compared to those obtained from a network trained with the back

propagation algorithm.

Conclusions about the ANN, training algorithm and the forecast are presented in Chapter

5. That chapter concludes with suggestions for future work in this area.

4

C~R2. BACKGROUND

2.1 Introduction to Artificial Neural Networks

The human brain contains on the order of 100 billion neurons, simple processing elements

that give off brief electrical pulses when they are sufficiently excited. Each neuron is electro

chemically connected to about 10,000 other neurons by way of branches called axons and

chemical-filled gaps known as synapses. The pulses from a neuron travel through these

connections to either excite or inhibit other neurons. It is this massively interconnected

network that allows us as humans to accomplish a myriad of tasks including controlling our

speech and movement.

The brain is also the site of human memory. When a child recognizes his mother's voice,

or a senior citizen remembers her high school graduation, the mind is actually retrieving

patterns that are stored away in the brain. But how does the brain store and retrieve

memories? It is not done in the way that one of today's computers does so, whereby a

discrete memory location is allocated for a bit of data, that location is assigned a value of high

or low corresponding to the piece of information, and when asked to recall the data the value

at the location is read and used wherever the program desires. Instead, the brain stores

information in a distributed fashion-in its structure. It is the network of neurons, synapses

and the specific strengths of the electrical interconnections than contain human memory.

An extremely crude abstraction of human memory would be a matrix whose elements

represent the strength of the electrical interconnections between different neurons. Just

looking at this matrix we, of course, could not decipher any of the information held within it,

but we could know which neurons were better connected electrically to other neurons and

vice-versa. We could perform mathematical operations on parts ofthe matrix, though, and

possibly we could interpret these results. If the matrix were for a living being, its elements

would not be static, but instead would change as new memories are added and other

5

memories are lost (though, hopefully, not at the same rate). Looking at this process on a

microscale, D.O. Hebb explained it well in his classic text The Organization of Behavior a

Neuropsychological Theory "when an axon of cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A's efficiency, as one of the cells firing B, is

increased [4, p. 62]." This is how changes in memory take place. As a person is exposed to

events, his sensory nerves cause neurons in the brain to be excited and pulse. If this pulsing is

frequent enough, the interconnection strength between neurons changes, and new information

is added to the memory.

It was this theory that prompted researchers to begin studying artificial neural networks

-abstractions of human neural structure that can be "trained" to recognize patterns, classifY

items and make forecasts, among other applications. These networks rarely contain more than

1,000 neurons and, thus, are not able to generalize on the scale that the human brain works.

The neural network is usually represented mathematically as a set of weights representing the

interconnection strengths, along with some model or models of how the neurons behave when

excited. Neural network research has included varying the interconnection schemes between

neurons, altering neuron transfer functions, experimenting with mathematical techniques to

determine the interconnection strengths which optimize the system, and determining where the

networks are best suited for application.

2.1.1 Artificial neurons

A detailed model for an artificial neuron used in ANNs is shown in Figure 2.1. The inputs

are applied to the neuron and are scaled and summed. A bias term is added to the sum which

is then passed through the transfer function of the neuron to yield the output. The standard

symbol for a neuron is simply a circle with the interconnections shown going into and out of

the neuron.

6

Weighting

Output

Figure 2.1. A detailed model of an artificial neuron

2.1.2 Neural network applications

Artificial neural networks have a wide range of application. One of the first applications of

the networks was the pattern recognition problem. In 'this type of problem, items are taken

from a set and classified into distinct groups based upon their characteristics. In some

instances, ANNs can outperform the classical techniques for this application.

Neural networks can also serve as a model for human memory [7]. The Hopfield neural

network-discussed in a later section- is one such model that is capable of recalling specific

binary or bipolar patterns with which it has been trained. This network has also shown

promise as a tool for optimization because of a special energy function that may be associated

with the network's state.

One of the most common applications for ANNs is forecasting future trends. The best

types of problems to apply ANNs to are ones where the variables that affect the output are

known or can be determined, while the exact functional relationships between these variables

cannot be determined. One such example of this condition is the power system short-term

load forecasting problem. The inability to determine these functional relationships make the

use of traditional techniques such as regression analysis impractical for these forecasts. ANNs

7

are particularly valuable for problems that are extremely nonlinear. Neural networks are

presently being used to forecast such things as stock market prices, and the risk associated

with different loan applications.

2.1.3 Artificial neural network training

A given artificial neural network is not valuable for the applications listed above until

certain network parameters are determined which cause the network to behave in a

meaningful manner. This process is known as "training" the ANN. Specifically, neural

network training involves the determination of weights for interconnections between neurons.

The goal of the training is usually to minimize the sum of a function of output errors for a

given set of inputs, or to ensure that the stable points of a network correspond to a set of

training patterns. For example, training data may consist ofa set of input vectors and a set of

output vectors, where each input pattern is associated with a single output pattern. The goal

of the training is to have the actual output of the network be as close, in some sense, to the

associated output pattern when a given input pattern is applied.

2.1.4 Hopfield neural networks

The field of artificial neural networks was popular for several years in the 1940's as

researchers came up with several new neuron models. It was during this time also that Hebb

published The Organization of Behavior. The field experienced intermittent periods of

popularity and disfavor until 1982 when 1.1 Hopfield published his paper Neural networks and

physical systems with emergent collective computational abilities [7]. This paper began the

resurgence of interest in artificial neural networks. The Hopfield network has a single layer of

neurons, each of which is fed back to the inputs of each of the other neurons. The neurons

are characterized by a bipolar or binary output and a threshold transfer function. The output

of each neuron is fed back to the input of each other neuron via weighted interconnections.

Conditions are often imposed on these feedback connections, including symmetric weights and

8

no self-feedback. Absolute stability is guaranteed for networks having these particular

restrictions on the weights [7]. The asynchronous network operates as follows. First, an

initial output vector x ERn is selected and network output is held at this state. Then

according to some probability distribution, a neuron is selected for update. If neuron i is

selected during iteration k, its output is updated according to the following rule

n

X
k

+
1 = sgn(L WjjXj - I j)

j=l

(2.1)

where x is the neuron's state, wij is the weight for the interconnection to neuron i from neuron

j, and Ii is the threshold for neuron i. The output of the remaining neurons does not change at

this stage. The network is then checked for stability, that is, to see if any neuron from the

network would have its output change if it were selected for update. If the network is stable,

stop. Otherwise, select another neuron for update and repeat the process.

The Hopfield network is trained with a set of binary or bipolar patterns. The usual goal of

training a Hopfield network is to increase the likelihood that the network will stabilize to one

of the training patterns during operation. Hopfield networks may also stabilize at spurious

solutions, enter a limit cycle or wander chaotically during operation, depending on the

restrictions placed on the weights. The most common method for training Hopfield networks

is known as the sum of outer products algorithm. Another method uses linear programming

to maximize the regions of convergence about the training patterns.

2.1.5 Feedforward networks

Feedforward networks are the most common type of ANN. The inputs are applied to the

first layer of neurons, which usually have a linear transfer function. This input layer is

connected to the hidden layer via weighted interconnections. Each hidden layer neuron has an

associated transfer function, and the output of the hidden layer neurons serves as input to the

next layer of neurons. Usually, only one hidden layer is present so this layer is directly

9

connected to the output layer by weighted interconnections. Feedforward ANNs may have

more than one hidden layer, but this topology is rarely used. The output layer neurons may

have either a linear or nonlinear transfer function, depending on the design of the network.

There are no limits to the number of neurons in a given layer. A simple feedforward network

is shown in Figure 2.2. This network has four inputs, two hidden layer neurons and one

output. The network is fully connected, meaning that each neuron is connected to all the

neurons in the successive layer, and a bias is connected to the hidden and output layer

neurons.

The most common nonlinear transfer function for a neuron is the sigmoid. Functionally

this is expressed as

F(x)
1

(2.2)

where c is a constant. Note that as c tends to infinity the sigmoid approximates a threshold

function. Figure 2.3 shows a graph of the sigmoid function for c=l. Other common neuron

transfer functions include linear threshold, hyperbolic tangent, gaussian and step functions.

The training set for a feedforward network is a set of input-output vectors. When a given

training input pattern is applied to the input layer of the ANN, the error is some measure of

the difference between the actual output of the network and the desired output vector. The

interconnection weights are determined in the training process so that the output error for the

training cases is minimized. The most common training algorithm for feedforward networks is

a gradient technique known as back-propagation. This iterative method is a blame-assigning

algorithm that changes a weight based on that interconnection's contribution to the error over

the individual patterns. Each training pattern is presented several-possibly several

thousand-times in the algorithm. Detailed discussions of the back-propagation algorithm may

be found in any text on neural networks.

1
0.9
O.

o.
f(x) o.

o.
o.
o.
0.1

10

Inputs

Input Layer
Bias

Output

Figure 2.2. A feedforward artificial neural network

o~~~~~~~++++~~~~~++++~~~~~~
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

X

Figure 2.3. The sigmoidal curve

11

2.2 Introduction to Short-Term Load Forecasting

Short term power system load forecasting (STLF) involves the estimation of power system

load from a few minutes to several weeks in advance. The load forecast is used for both

economic and system security purposes. Economic applications of forecast information

include economic dispatch, reserve margin allocation, unit commitment, interchange

scheduling, fuel allocation, and minor maintenance scheduling [20]. The forecast may also be

used in powerflow and contingency analysis to determine secure operating schemes [11].

Power system load is affected by a highly nonlinear combination of variables that can be

categorized by dependency on weather, periodic or seasonal factors. Temperature is the most

important weather-related factor. Humidity and cloud cover are other weather variables that

affect power system load. Periodic variables that affect load include daily activities such as

work, school and entertainment. Abnormal power levels resulting from special events such as

the Superbowl and holidays are difficult to forecast accurately since these are uncommon and

do not display a common load profile [6]. Seasonal considerations that affect load result from

load growth, seasonal related loads, weather changes, and the number of daylight hours.

Short term load forecasting techniques are categorized according to how they deal with

the different variables, particularly weather [13]. The time-series approach is a non-weather

sensitive approach that uses historical load data for extrapolation to future load conditions.

This method views abnormal data as bad data [1] and is also time consuming, computationally

intensive and numerically unstable [14]. Regression models study consumer habits and

weather behavior to derive linear models for the system load, however the linearization of the

weather terms is unjustified [14]. The knowledge based system (KBS) approach is a rules

based method for forecasting load that attempts to convert the logic of the power system

operator into mathematical equations for forecasting. The problem with KBS techniques is

that they assume the presence of an expert to derive the rules from on-the-job training, and

12

conversion of the operator's logic to equations sometimes also may be impractical [15]. Other

forecast techniques include spectral analysis, exponential smoothing, state-space techniques,

and Kalman filtering. All of these approaches require unwieldy historical databases of three

to ten years of data to model the seasonal and annual load variations.

The load profiles tend to change with the time of the year. This is due to factors such as

seasonal loads (Le., heating and cooling) and growth. ANNs deal with these seasonal

variables in two ways. First, a given model may be retrained regularly, sometimes daily, to

reflect the load trend. The training data in this case is selected from a time-limited set,

assuring that the training data is always recent enough to be unaffected by seasonal variations.

This is known as the "moving window" technique for training data selection. The other

method for dealing with seasonal variables is the use of separate models for different times of

the year. Each model includes variables that are pertinent only to that particular season of the

year.

The ANN method models the multivariate forecast problem without making complex

dependency assumptions about the input variables, but instead relies on the selection of

appropriate training and input data. The ANN performs what is essentially a pattern

recognition function, based upon the historical data that is used to train the network [15].

With its ability to be retrained using recent historical data, the ANN is inherently updatable

and eliminates the need for huge databases, thus the amount of data needed to train the

network is at a minimum. The short term ANN methods reviewed do not have the ability to

capture the seasonal and annual load growth trends that other techniques can capture. A

proper comparison of techniques would require the ANNs to include all models incorporated

within the classical techniques.

The use of ANN's for STLF may be reduced to several tasks. The process begins by

determining the length and type of the forecast to be made. Forecasts are usually daily or

13

weekly, and may estimate the hour-by-hour load or the peak load for the period, among other

possibilities. Next, the appropriate type and quantity of training data is selected. The specific

inputs required for a forecast vary by geography, demographics, and time of year. In general,

a neural network that is used to forecast load for one region is not an optimal design for

another region [11]. The amount of training data required to train the network also varies.

With the moving window approach, it is useful to select data from several weeks prior to the

forecast period. This width of this window is normally on the order of four weeks to prevent

negative effects from seasonal load changes. Historical data from the same period in previous

years may also be used, but caution must be exercised with regard to annual load growth

which could tend to hurt results. Next, the structure of the ANN is determined. The number

of input neurons is determined by the number of input variables, and the number of output

neurons is determined in a similar fashion. No method exists for determining the required

number of hidden layer neurons without experimenting. One popular method consists of

adding neurons until no additional benefit is seen during the training period. Another

approach "prunes" neurons that have low values on incoming and outgoing interconnections,

because these neurons increase training time but do not playa large role in the forecast. Once

all this has been completed, the neural network is trained with the algorithm of choice, a

forecast is made, and the process begins again.

14

CHAPTER 3. THEORETICAL DEVELOPMENT

This chapter begins with a general discussion about linear programming. Following this

infonnation is a look the affine scaling algorithm, a powerful technique that is used to solve

linear programs. Next, certain new extensions to the algorithm are explained.

A new artificial neural network whose training problem may be fonnulated as a linear

program is described following the information about the affine scaling routine. The chapter

concludes by describing the fonnulation of the training problem.

3.1 Linear Programming

Linear programming is an optimization technique that deals with fonnulating and solving

problems of the following type:

subject to the constraints:

Ax =b

and

Xi ~ 0, V i = 1, 2, ... , n

(3.1)

where c is an n-dimensional column vector representing the cost per unit element of column

vector X, A is an m x n matrix, and b is an m-dimensional column vector. This type of

problem fonnulation with linear costs and linear constraints occurs frequently in resource

allocation and transportation problems where some minimum cost is desired while meeting

certain constraints.

In most cases, the initial problem fonnulation will include some inequality constraints of

the fonn

(3.2)

that result because of the physical limitations of the problem. To deal with this, a dummy

variable known as a slack variable is introduced into the problem. This requires the addition

15

of a column to the A matrix plus the addition of one row to the x vector. This modification

creates the equality constraint:
n

l:aijXj +Si = hi
J=1

(3.3)

where si is a slack variable. This form is consistent with the above standard form. A

constraint that initially yields an equation where the left side is greater than or equal to the

right hand side can be put into the standard form by multiplying the constraint by minus unity,

and adding a corresponding slack variable as above. Two of the more common inequality

constraints for LP problems require elements of x to remain below some maximum value

Xi < ui V i = 1, 2, ... , n (3.4)

or above some minimum value

Xi > Ii V i = 1, 2, ... , n (3.5)

A variable without upper or lower bounds is known as afree variable. Several methods

are presently available to implement free variables in linear programs, most of which require

additional variables and hence additional memory and computation time. The most simple and

common method involves splitting the free variable into two variables, one of which

represents the positive portion of the variable and the other the negative portion. If Xi is a

free variable, set

so that both ui and Vi are nonnegative. This method allows linear programs to be more

general but at the cost of an additional variable. Another method for introducing free

variables into a linear program uses an additional vector to keep track of the signs for the

different variables.

(3.6)

Any vector xf that satisfies all the constraints imposed by the problem formulation

including the upper bound and nonnegativity constraints is known as afeasible solution. A

vector Xn, which fails to satisfy at least one of the constraints is called an infeasible solution.

16

The region formed by the set of all feasible solutions is known as thefeasible region. The

feasible solution x* which minimizes the objective function ctx is the optimal solution.

For any feasible solution x, we may set

(3.7)

where z is a fixed constant. The set of points satisfying this equation is a hyperplane in n

dimensional space (for a two variable problem this is a line). By changing z in a two variable

problem, a family of parallel lines is established.

The feasible region for the two-variable problem

subject to:

XI + x 2 < 7
(3.8)

o <XI ~ 4, 0 <x2 ~ 6

is shown in Figure 3.1. The feasible region for the linear program is represented by the shaded

area in the figure and the cost function is shown for various values of z. The feasible region is

guaranteed to be convex by the problem formulation. Notice that as z changes, a line parallel

to the previous cost function results.

By forming a matrix B from the first m linearly independent columns of A, we may

uniquely solve the equation

Bx -b b - (3.9)

where Xn is the first m variables of x. These variables are called basic variables, and are said

to be in the basis. The remaining variables, all equal to zero, are said to be nonbasic

variables. Letting the remaining elements of x be zero, we now have a feasible solution that

lies on a vertex of the feasible region. This type of solution is known as a basicfeasible

solution. It can be shown that the optimal solution ofa nondegenerate (one where no edge of

3

2

1

o

17

! nirection of
decreasing z

o 1 234 5 678

Figure 3. 1. The feasible region and a family of cost vectors for the program in equation 3.8

the feasible region is parallel to the cost function) linear programming problem occurs at a

basic feasible solution. An optimal solution for a problem of this type occurs where the cost

function is at its minimum while the intersection of the cost function vector and the feasible

region is nonempty. For nondegenerate problems, this is a single point. The point (1,6) is the

optimal solution for the problem described in equation 3.8. It is not difficult to see in this

two dimensional example that as z becomes more negative and translates through the feasible

region, it will eventually intersect only at this vertex of the feasible region.

3.1.1 Piecewise-linear functions and restricted basis entry

Some functions we may wish to use in a linear program are nonlinear. Occasionally, it is

possible to include these equations in the program by using a piecewise-linear (PWL)

approximation to the function. A piecewise-linear approximation to a curve is shown in

Figure 3.2.

8

7

6

5

4

f(x)

18

3 Segment 1

2

1

o
o 1 234 5 678

x

Figure 3.2. A piecewise-linear approximation to a curve

This PWL approximation contains two line segments, the first of which approximates the

curve over the range [0,4], and the second of which is valid over [4,7]. In a linear program,

the PWL function would be represented by two variables, Xl and x2. The variables that

represent PWL segments are known as segment variables. Then we have the constraint that

while the function value is determined by

f(x) = SIXI + S2X2

where Sj is the slope of segment i. Also note that x2 must be zero until Xl is at its maximum,

otherwise the function is meaningless. The different LP solution algorithms deal with this

restriction in a variety of ways. The simplex algorithm, one of the most common,

incorporates extra logic into the routine to implement this restricted basis entry restriction. A

means for implementing restricted basis entry for another algorithm, the affine scaling

algorithm, will be introduced for the first time later in this thesis.

19

The technique shown here for transfonning a nonlinear function into a PWL approximation

is taken from the fifth edition of Introduction to Operations Research by F.S. Hillier and GJ.

Lieberman [5]. Interested readers should also see Methods and Applications of Linear

Programming by L. Cooper and D. Steinberg [2] for a more advanced approach to this

conversIOn.

3.1.2 Linear programming algorithms

Several algorithms have previously been developed to step from vertex to vertex along the

boundary of the feasible region. The simplex algorithm, and later the revised simplex

algorithm, begin at an initial basic feasible solution obtained as described above, and then

proceed from basic feasible solution to basic feasible solution until the optimal solution is

found. This mature methodology is capable of incorporating upper and lower bounds for

variables and many other special cases. The simplex technique is guaranteed to find the

optimal solution to the problem, but for extremely large problems it can be slow to find this

result. Theoretically, the technique could have to iterate through every basic feasible solution

to find the optimum. This number would be

n!
Basic feasible solutions - ---

n!(n-m)!
(3.10)

In reality, the simplex algorithm rarely requires this many iterations. A newer algorithm for

linear programming travels through the interior of the feasible region to find the solution.

This interior point LP algorithm is able to solve large problems faster than the simplex

algorithm.

The interior point linear programming algorithm was introduced by Narendra Karmarkar at

Bell Labs in 1984 [8]. The algorithm guarantees polynomial time solutions to linear

programming problems. Karmarkar's algorithm differs from the simplex from the beginning in

that it begins with an interior feasible solution rather than a basic feasible solution. It is called

20

an interior point algorithm because it does not operate on the boundary of the feasible region.

Kannarkar's algorithm rescales the variables to place the solution in the center of a scaled

feasible solution, allowing it to take a large step toward the optimal solution. An example of

the path an interior point algorithm might take to find a solution is shown in Figure 3.3.

Notice that the algorithm may take several large steps across the feasible region to approach

the solution, which will then be followed by smaller steps as the optimal solution is neared.

8

7

6

5

4

3

2

1

o
o 1 2 3 4 5 678

Figure 3.3. The path of an interior point algorithm for linear programming

The affine scaling algorithm is a modified version ofKannarkar's algorithm that was

published in 1986, and this presentation follows the one presented in the original paper [17],

except for the discussion about nonzero lower bounding and free variables that follows from

[18]. The affine scaling algorithm is also an interior point algorithm but it differs from

Kannarkar's algorithm in that it has a much more simple centering scheme and uses a gradient

technique to decide the direction to move the solution. The affine scaling algorithm begins by

finding an initial interior feasible solution. This is normally done by adding an artificial

variable to the A matrix by setting

21

A'= [A: b -AI] (3.11)

where I represents the vector of all ones. The initial feasible interior solution, xo' is then the

(n+l)-dimensional vector of all ones. Assigning a very high cost (known as the big M

method) to the artificial variable guarantees that it will go to zero in the optimal solution. If

we assume the initial problem has a feasible solution, the optimal solutions for the initial

problem and the big M formulation will be the same.

Gradient descent techniques will find an optimal solution to a problem in a reasonable

number of iterations only if allowed to take large jumps through the feasible region. If a

solution is pinned near a boundary then it is possible that only small steps may be taken

towards the optimal solution. The affine scaling algorithm moves the solution away from the

boundaries by normalizing all variables to unity. This makes sense because the feasible region

is bounded by x ~ 0 in the original formulation, so scaling all the variables to unity places

them equidistant from at least one boundary. The scaling is done using the equation

- D-1
Xo = 0 Xo (3.12)

where Do is a matrix with the elements of the initial solution, xO' on the diagonal. Clearly, io

is the vector of all ones. The constraint matrix and cost vector must also be scaled to reflect

the variable changes

A =ADo (3.13)
and

(3.14)

The maximum rate of decrease of the transformed cost function would be obtained by

moving in the negative direction of the cost vector c. This, though, would lead to an

infeasible solution by invalidating some equality constraints. The algorithm moves instead in

the direction of the gradient projected onto the null space of A Do. This projected gradient is

where
c =PC p (3.15)

22

(3.16)

is the projection matrix.

Next, the solution moves in the direction of -cp . The size of this move is chosen so that

no element of Xl will become less than zero. The largest element of cp , 'Y, is used in the

equation

(3.17)

to guarantee feasibility for Xl. Here 0 <a :S 1 (typically, a is about 0.9) so Xl does not lie

on a boundary, which would occur if a = 1. Lastly, the algorithm maps back to get a new

interior feasible solution

(3.18)

The algorithm is then repeated until some stopping condition is met. In abbreviated form the

algorithm generates the sequence of points

X
k

+
l = Xk - ~ DPDc

'Y
(3.19)

The algorithm can also accommodate variables with finite upper bounds. Both the search

direction and the step size must be changed with these additional restrictions, so

D = diag(min(xi' ui - xJ) (3.20)

where u is the vector of upper bounds. The step size must be chosen to maintain the

nonnegativity constraints and to keep the variables under their respective maximums. For this

e ·Dc
'Y = max(max(I p ,

I Xi

ei .Dcp »
Ui -Xi

(3.21)

where ei is the ith unit vector. The rest of the algorithm remains the same as before. In many

problems, one or several variables have a nonzero lower bound. Two simple changes in the

algorithm change it to allow such a restriction. The lower bound changes D to

D = diag(min(xi -Ii' Ui - xJ) (3.22)

23

where L is the vector oflower bounds. We similarly alter the equation for 'Y so

((
ej -Dcp ej -Dcp))

'Y = max max , - ~--"-

1 X. - /. u. - X.
I 1 1 1

(3.23)

As in the upper bound version, the change seen in equation 3.42 alters the search direction for

the algorithm by including the lower bound constraints while equation 3.43 guarantees that

the step size will be small enough that it does not violate any of these constraints.

The freedom to have negative lower bounds in the affine scaling algorithm implies that we

may now have free variables in programs without the cost of increasing the size of the

problem or adding additional logic. This is done by setting the limits on free variables to

extreme values. In practice, these bounds should not be set more than a few orders of

magnitude larger than the bounds on other variables, due to numerical stability problems that

may result from working with numbers over too large a range. With the ability to have

negative variables, free variables may now be incorporated into a problem by setting the upper

and lower bounds for these variables to extreme values. This, in turn, reduces the number of

variables in linear programs because in the standard approach variables that are not

constrained to be nonnegative are represented as two variables. Because the time required to

solve a linear program is in part a function of the number of variables involved, the solution

time for a given problem is reduced with this alteration. The nonzero lower bound procedure,

along with upper bounding, is used here to introduce a method for implementing the restricted

basis entry algorithm.

3.2 Restricted Basis Entry in the Affine Scaling Algorithm

The discussion in this section is presented in terms of implementing the restricted basis

entry algorithm for a PWL curve. The procedure, though, is a general one and may be

implemented wherever it is called for.

24

There are several ways to incorporate the restricted basis entry procedure into the affine

scaling algorithm. One method sets the slopes of the segments not allowed to change equal to

zero in the constraint matrix. Because the slope is zero, the gradient for that variable is very

near zero, and upon update the variable does not change. While this method keeps the

variable from changing significantly, it causes violation of the equality constraints for the

pertinent output variable. Because this method does not result in feasible solutions it is not a

reasonable solution to the problem.

The technique developed in this thesis implements the restricted basis entry by adjusting

the upper and lower bounds of the variables according to some logic. A flow chart for the

discussion in this section is shown in Figure 3.4. For the first case, where a variable Xl must

be near its maximum, MaxI, before variable x2 may depart from its lower bound, min2, the

upper bound on x2, Max2, is set to just above min2. This effectively sandwiches x2 and keeps

it near its lower bound. The conditions for x2 to increase are that Xl be very near MaxI, and

that the gradient of Xl in the previous iteration is negative (thus indicating that it would

increase if allowed to). Upon these conditions being met, the upper bound on the "entering"

variable x2 is set to its maximum, and Xl must then be restricted to prevent it from decreasing

significantly. This is done by changing minI to just below the present value of the variable

and altering the affine scaling algorithm to allow nonzero lower bounds. If at some point x2

decreases below some minimum value, Xl must be allowed to decrease and x2 must once again

be held near its lower bound. The conditions that indicate this situation include a positive

gradient for Xl (thus indicating that it would decrease if allowed to) and a value less than some

minimum for x2 . If these conditions are met, Max2 is again set to a low value, and the lower

bound for Xl is set to its actual lower bound.

25

xl: below its maximum x2: kept small

~ minI: set to true lower bound min2: set to true lower bound ,,-
"'"

MaxI: set to true upper bound Max2: set just above x2

!
Iterate through affine scaling algorithm

~
No xl very near its true upper

bound and increasing?

! Yes

xl: held very near its maximum x2: free to change
~ minI: set just below xl min2: set to true lower bound

MaxI: set to true upper bound Max2: set to true upper bound

!
Iterate through affine scaling algorithm

!
Yes

x2 significantly larger than its minimum?

!NO

Yes No
x2 increasing?

Figure 3.4. Flowchart for implementing restricted basis entry in the affine scaling algorithm

26

3.3 Behavior of the Affine Scaling Algorithm

The affine scaling routine behaves in an interesting manner that is valuable for the training

algorithm to be developed in Section 3.4.3. Consider the six-variable linear program for

which the optimal solution is known [12]

minimize 2Xl + X 2 + 3X3 - 2X4 + 10xs + 106
X6

x

subject to:

Xl + X3 - X4 + 2xs = 5

x2 + 2x3 + 2X4 + Xs = 9

o < Xl < 7, 0 ~ x 2 < 10, 0 <X3 < 1, 0 <x4 < 5, 0 <xs < 3

(3.24)

that was solved using the affine scaling algorithm. Figure 3.5 shows a plot of the variables

through several iterations of the algorithm. In the first iteration, the artificial variable is forced

to near zero because of its high cost, while the other variables change only slightly. Not much

happens during iterations two through four, and then suddenly on the fifth iteration the

solution changes dramatically. The sixth iteration sees the variables change only slightly and

the seventh through tenth iterations accomplish little. Depending on the precision required for

the solution, these last two iterations may have been a waste. The behavior of the variables in

this problem is not unusual for the algorithm.

Figure 3.6 shows a plot of the absolute error from the optimal solution over all the

variables. The error decreases slightly in the first few iterations. Upon the fifth iteration the

error drops off significantly with only modest improvements taking place with subsequent

iterations as the solution is neared. For larger problems, the error may begin to drop

significantly with the first iteration, and the rate of decrease may be less dramatic than in this

small example, but the basic performance is similar. The big improvements in the objective

function take place in the early iterations, and as the optimal solution is approached, the rate

of improvement in the objective function decreases along with step size as a point of

diminished returns for additional calculations is reached.

27

7

6

5
--x1
--x2
--x3
--x4

- - - - - x5
-- - -xS

2
., _ .. --._-

1

o +---+-----+---+----+----+--~~-----+----+----+--~
o 1 2 3 4 5 6 7 8 9 10

Iteration number

Figure 3.5. Behavior of the variables in the affine scaling algorithm.

10

9

8

~
7

0
t:: 6 tU
tU

5
='

0
CI) 4
~

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10

Iteration number

Figure 3.6. Behavior of the error in the affine scaling algorithm

28

3.4 Neural Network Training

Now that the affine scaling has been introduced and extended to solve a wider variety of

problems, it is appropriate to take a look at a specific application of the extended algorithm.

The algorithm is applied in this thesis to the problem of training an artificial neural network.

In the remainder of this chapter is a more detailed explanation of the ANN model,

development of the LP formulation for training the network, a method for finding an initial

interior feasible solution for the problem, and a means for determining when to stop the

algorithm.

3.4.1 Neural network structure

The artificial neural network described in this thesis is a feedforward model with the bias

connected to each of the hidden and output layer neurons. The network is assumed to be fully

connected. The input and output layer neurons have a linear transfer function, that is, the

output of the neuron is the same as its input, while the hidden layer neurons have a piecewise

linear transfer function

As mentioned earlier in this work, hidden layer neurons in feedforward networks usually

have smooth, continuously differentiable transfer functions to accommodate the gradient

techniques that are used to train the network. That type of transfer function is not useful for a

linear programming formulation, because it cannot be represented explicitly in the program.

The transfer function for the hidden-layer neurons in the network studied here is shown in

Figure 3.7. This transfer function is a piecewise-linear function, to accommodate the

formulation, and it has three segments. In equation form the transfer function is

100-, for 0 ~ 0- ~.03

S(o-) - { 0.3 + 5(0- - 0.03), for 0.03 ~ 0- < 0.05

0.4 + 2(0- - 0.05), for 0.05 < 0- <0.35

(3.25)

0.5
"S 0.45

S 0.4
o
s:: 0.35 e
~ 0.3
: 0.25
Q)

~ 0.2
-;; 0.15

Q)

:g 0.1
.:E 0.05

29

o +----+----+----+----+----+----+----+----+----+--~
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sum of weighted inputs and biases

Figure 3.7. The transfer function used in the hidden layer neurons

where (J is the sum of the weighted inputs and bias. This transfer function was selected

because it is similar to the sigmoid in the first quadrant. However, there is no reason to

believe that this PWL function is superior to others.

3.4.2 Program formulation

Each segment of the transfer function represents a different variable in the linear

programming formulation. The variable x I is assigned to the segment from 0 <(J < 0.03, x2

is for 0.03 < (J ~ 0.05, and x3 is for 0.05 ~ (J ~ 0.35. Let nsegs be the number of segments

in the PWL curve. For an input pattern Vh oflength nin, and hidden neuronj, the segment

variables must satisfy the relationship
IISeS' nin

EXjg - tj - EWjjVih = 0 (3.26)
g =1 i =1

where t j is the bias term for neuron j, wij is the weight from input neuron i to the hidden

neuron, and vih is element i of the input pattern vector. Every hidden layer neuron in the

30

linear program must satisfy equation 3.26 for every pattern. This is the first of two kinds of

functional constraints that are contained in the A matrix.

The output Sj of hidden-layer neuron j is determined by the segment variables and the slope

mg of each segment
3

Sj = I}jgmg
g=l

(3.27)

The output of neuron k in the output layer is the same as the input to these neurons since

they are linear

and

d

Uk = tk + LWjkSj
)=t

3.4.3 Derivation of the training algorithm

(3.28)

(3.29)

The back-propagation algorithm for neural network training seeks to minimize the mean

squared error (MSE) over the set of training patterns

minimize: MSE = ~ L (1;, -on)2
n

(3.30)

where Tn is the target output specified by the training data and On is the actual output. This

particular error minimization is not practical for linear programming because of the squaring

term. Instead, the linear program minimizes the sum of the absolute errors over the training

patterns

minimize: L 1T.t -On I
n

Because linear programming does not accommodate absolute values, each error term is

replaced by two variables, e+ and e-, both of which are constrained to be positive. The

resulting equality is

(3.31)

(3.32)

31

so equation 3.31 becomes

mmmuze: L e: + e;:
n

where for output neuron k and pattern h, we have the following equality
d

Tkh = e:;' - e~ + tk + L WjkhSjh
j=1

(3.33)

(3.34)

where d is the number of hidden-layer neurons. 5jh is not included explicitly as a variable in

the linear program to reduce the number of variables. Instead, from we have

d 3

Tkh = e:;' - e~ + tk + L L WjkhXjgmg
j=1 g= I

This is the second of the two types of equations included in the constraints.

(3.35)

A closer look at equation 3.35 reveals that it violates the linear programming assumption

of additivity that does not allow two variables in the program to multiply each other. This

violation occurs when the weights from the hidden layer to the output layer multiply the

segment variables. It is not possible in a single linear program to adjust both the weights from

the input layer to the hidden layer while at the same time adjusting the weights from the

hidden layer to the output layer. The solution to this problem is a decomposition of the

program from a single linear program into two linear programs.

3.4.4 Operation of the training algorithm

This discussion follows the diagram shown in Figure 3.8. In the first program-referred to

as the input-hidden LP (IHLP)-the weights for the paths from the bias and the input layer

neurons to the hidden layer neurons, as well as the bias connections to the output layer

neurons are allowed to vary while the weights from the hidden layer to the output layer are

held constant. The weights from the hidden to the output layers are not explicit in the IHLP

but are implied by scaling the slopes of the segment variables, since for any constant {3,
3

tJS j = L tJxjgmg (3.36)
g= I

32

This program iterates a set number of times, decreasing the absolute error between the target

output and the actual output. If any constraints are violated (i.e., upper or lower bounds,

etc.), the program ends and uses the most recent feasible solution to operate the network. the

restricted basis entry procedure is also performed here to select the proper transfer function

segment to operate on. Next the outputs from the hidden layer neurons are extracted using

equation 3.27. This information, plus the output neuron bias terms and the error portion of

the x vector for the IIll..P is used to establish the second linear program, known as the hidden

output LP (HOLP). This program also iterates a set number of times, or until infeasibility

occurs. The variables representing error and output bias terms are then replaced into the x

vector in the IIll..P and the segment slopes are scaled in that programs constraint matrix. The

process continues until the fixed number of overall iterations, L, is reached, or until

infeasiblity occurs. The input-hidden linear program is

npaUnout

minimize: I: I: e~ + e~
h=1 Jr.=1

subject to the constraints
nhid bSCS'

TJr.h =e~ -e~ +/1<. +L LWjJr.hSj, vh=I, ... ,npats,
j=1 g= 1

v k = I, ... ,nout
bSCS' nin

L Xjgh - I j - I: WijVi = 0, V j = I, ... ,nhid,
g=1 i=1

V h = I, ... ,npats (3.37)

where wjkh from the hidden layer to the output layer is held constant through the iteration.

. The hidden-output linear program is similar to the first except the wij are held constant.

The initial feasible solution for each iteration of this program comes directly from the first

program every time the algorithm switches from the first program to the second. From the

33

Set number,j, of input-hidden LP iterations
Set number, k, of hidden -output LP iterations

Have constraints been violated?

No

No Have j iterations
'---------i of input-hidden LP

been completed?

Yes

Have constraints been violated?

No

No Have k iterations
L------~-l of hidden -output LP

been completed?

Yes

'---------iHave L overall loops been completed?

Figure 3.8. Flow chart for the neural network training algorithm

34

first program we get the second program

npatsnout

DllDlIllize: L L e~ + e~
h;1 k;1

subject to the constraints
nhid nsegs

Tkh = e~ - e~ + tk + L L WjkhSj , V h = 1, ... ,npats,
j=1 g; I

V k = I, ... ,nout

(3.38)

The size of the matrices and vectors for the first linear program is a function of the number

of training patterns, the number of input, hidden and output neurons, and the number of

segments in each piecewise-linear transfer function. For each of the npats training patterns,

we must include nhid constraints (from equation 3.23) on the hidden layer neurons and nout

constraints (from equation 3.32) on the output neurons. Thus the number of rows in AmLP is

Rows in AIHLP =npats (nout +nhid) (3.39)

AllJLP has two error variables per output neuron per training pattern and each segment of

every hidden layer neuron must be represented for all patterns. Additionally, the weights and

biases-free variables-are each represented by a variable. The number of columns in AmLP is

Col's in A IHLP =2 * nout * npats +nhid (I +nin +nsegs * npats) +nout (I +nhid) (3.40)

The size of the hidden-output LP is considerably smaller than the input-hidden LP. The

constraints that apply to the segment variables in the input-hidden LP do not apply, so the

number of rows is detennined by

Rows in A HOLP =npats x nout (3.41)

while the number of columns is

Columns in A HOLP = nout(1 + 2npats + nhid) (3.42)

35

As mentioned above, the initial feasible solution for the HOLP comes from the IHLP, and vice

versa, once the algorithm is under way. Finding the first initial feasible solution to the IHLP,

however, requires some additional work.

3.4.5 Finding an initial feasible solution to the IHLP

The method described earlier for finding an initial interior feasible solution to the linear

program sets the initial solution to a vector of all ones for the affine scaling algorithm .

Because the segment variables in the PWL transfer function have upper bounds less than one,

the previously described method is not viable for this application. In this work, the weights

and biases are chosen randomly in such a manner that the initial solution is interior feasible.

The sum of weights and biases is less than the maximum allowable value for the first segment.

The total number of inputs to a hidden layer node is nin+ I, which includes the input

variables and a bias term. Keeping in mind that all the inputs have been scaled between zero

and one, if we generate a column vector r oflength (nin+I)*nhidthat is composed of uniform

random numbers in (0,1) and scale
max(xl) r

r =-..-.:.......:....:....-
scaled nin +1

(3.43)

where max(xl) is the maximum value for the first PWL segment. Then the elements of this

vector may be used as the weights and biases for the connections into the hidden layer

neurons. The first nhid elements of this vector are used for the bias terms and the rest are for

the inputs. For every hidden layer neuron we have an inequality of the form

(nin +1)max(xJ ()
(J < = max XI

(nin +1)

Setting all the other segment variables equal to a small value, 1;, Xl is

XI = (J - I; (nsegs -I)

(3.44)

(3.45)

The only variables yet to be determined are the error variables. These are extracted from the

equation

36

Mid

error = T -bias-L x~s
J=1

(3.46)

where the output neuron bias terms are taken from a uniform distribution in (0,1). The

variable ~g is a column vector oflength nsegs that contains the segment variables for a single

hidden layer neuron, and s is a column vector of the slope segments. If error is greater than

or equal to zero
e+ =error+e

e- = e
(3.47)

and vice versa if error is less than zero. This procedure is done for every output neuron for

every training pattern.

Once the algorithm has cycled through the HOLP, the new feasible solution for the IHLP

comes from the second program

3.4.6 Stopping the training algorithm

A proof is performed in [17] showing that the affine scaling algorithm converges in the limit

to one point and that this point is the optimal solution to the linear program. This proof

involves what is known as dual linear programs. Simply put, the dual linear program is an LP

that can be derived from the original problem in equation 3.1 (known as the primal linear

program). The dual LP to that problem is

maximize: ATb

subject to: AT A <cT (3.48)

where the dual vector A is a free variable [12]. The initial solution to a dual problem is an

infeasible solution to the primal. The optimal solution of the dual problem is primal feasible

and is the same as the optimal solution to the primal. If the dual problem is worked on at the

same time as the primal, the distance between their respective variable vectors is a measure of

how far away from the optimal solution the programs are. At the optimum, this distance is

zero. The stopping rule specified in the paper by Vanderbei et al. [17] calculates this distance

37

but requires a significant amount of computation. The time required to operate on the dual

problem may be better spent performing an additional iteration of the LP.

The decision to stop the algorithm involves a choice between improving the solution and

running the risk that due to numerical instability the solution will become infeasible with the

next iteration. It is important to remember here the behavior of the affine scaling routine as

discussed in Section 3.3, where it was shown that after several iterations, a point of

diminishing returns is reached whereby additional iterations improve the objective function

only slightly. It is also valuable to recall that the training algorithm is an iterative process with

two separate LPs. Based on these facts, a heuristic stopping rule is used in this thesis where

the overall training algorithm iterates a manually controlled, fixed number of times. This

number is set high enough that the solution becomes infeasible (thus indicating that optimality

had been neared in the previous iteration) at some point in the training session. This near

optimal solution is then used for operation of the network. The number of iterations of both

the llll..P and the HOLP are kept low enough that unnecessary effort is not expended taking

small steps toward optimality. The number of iterations for each of these LPs in each overall

iteration is also set manually.

38

CHAPTER 4. IMPLEMENTATION AND RESULTS

In this chapter the new artificial neural network and training algorithm and a more traditional

ANN trained by back-propagation are applied to the short-term load forecasting problem. The

chapter begins with the determination of the forecast period, then explains the selection and

preprocessing of training data. Next, the training process is reviewed and forecast results are

presented.

4.1 Determination of Forecast Period

Hourly load, time-of-day, day of week, wind speed and humidity data were available for a one

year period from a Midwestern utility with a summer peaking load. It was decided that the

forecast would be performed for the morning of a single weekday to keep the training time to a

minimum, while adequately testing the algorithm. The precedent for using separate ANNs for

a.m. and p.m. forecasts was established in [3]. Load profiles for both winter and summer days

were analyzed and it was found that the winter load profile had more detail than its summer

counterpart. It was decided that the forecast should be performed for a winter day under the

assumption that the ANN would have no problem with a summer day's forecast if it could catch

the minutiae of the winter load.

4.2 Selection of Input Variables

Several methods have been employed historically in the selection of input variables. The set of

input variables is system dependent and also varies with the type offorecast being made.[ll]. A

correlation analysis was done in that paper to determine the amount of historical load data

required for a 24-hour forecast for two separate utilities. The amount of data required varied

between the utilities but showed little seasonal variation. Some forecasters start with a large set

of input variables to train the ANN, and then the ANN is pruned by eliminating the inputs that

have low connection weights because the low weights indicate little relation between the variable

and the load. Heuristics may also be used to determine some of the input variables. The

39

knowledge-based load forecasting paper [16] gives a good explanation of the heuristic selection

of input variables.

The amount of data selected for training the ANN reported in this thesis was kept to a

minimum, as stated above. The forecast was to be made for a Thursday, and so the training data

were taken from the two Thursdays that immediately preceded this day. The input variables

included time-of-day, previous hour's load, and temperature for the forecast hour. It should be

noted that the number of training pattems-24-and the number of network inputs-3-are about

15% and 10% respectively of the amount that would nonnally be used to train a network.

4.3 Preprocessing of Data

Before training the ANN, it was necessary to preprocess the training data to help maintain the

numerical stability of the training process. If the input and output values are scattered across a

large range of values (i.e., the temperature may be 12 degrees while the load is 1500 megawatts)

some of the calculations that take place in the algorithm-the inversion required in the calculation

of the projection matrix in particular-could end up handling numbers over a much broader range.

This can introduce errors from roundoff and the finite limits on the machine precision. In order to

overcome this problem, the data were scaled to keep them all in a small range of values.

There are two common practices for preprocessing time-of-day information for input to the

ANN. The first method represents each hour by a discrete variable. For each training pattern, the

variable for the corresponding hour is set to unity, while all the other time-of-day variables are

held to zero. For a 12 hour forecast, 12 separate inputs to the ANN would be required. This

one-of-n fonnat offers very good discriminatory power between different hours of the day, but at

the cost of severely increased training time because of the additional variables. The preprocessing

used in this thesis is a simple scaling procedure that keeps the time-of-day as a single continuous

variable and scales the data between some minimum and maximum values. The bounds used here

were 0.1 and 0.9, and the scaling parameters were found by solving

and

40

0.9 = (MAX * A)+B

0.1 = (min * A) + B

simultaneously, where MAX is the largest value in the historical data, and min is the smallest

measurement in this data. The other input variables, previous hour's load and forecast hour's

temperature were scaled in the same manner as the time-of-day input.

4.4 Network Structure

(4.1)

(4.2)

Both networks trained were three-layer, feedforward types. The input layers each had three

neurons with linear transfer functions. The ANN trained with the new algorithm had two hidden

layer neurons with the PWL transfer function. The more traditional network also had two hidden

layer neurons, but these had a sigmoidal transfer function. Each network had a single output

neuron with a linear transfer function and the biases were connected to each hidden and output

layer neuron.

4.5 Neural Network Training

The new training algorithm was coded into Matlab TM. This code begins by setting up the

pertinent matrices and vectors, and then finds an initial, interior feasible solution to the problem,

as described in Section 3.4.5. It then performs the iterative algorithm for training the network.

The number of overall iterations was set manually, as was the ratio of the number of iterations of

the first linear program to the second program. The ratio of the two programs was set at 2:4, that

is, the first LP went through two iterations before the hidden layer neuron outputs were extracted

and the second LP began. After four iterations of the affine scaling routine on the second LP, the

segment variables in the first LP were scaled and that LP began again. The 2:4 ratio resulted from

a trial-and-error process that attempted to find the best solution possible without having the

solution become infeasible. This process was set to be run three times, but while performing the

algorithm on the first LP during the third loop, the solution became infeasible and the process

41

stopped. The weights from the previous iteration, where the solution was feasible, were used to

build and test the network.

The plot of overall absolute error -vs- number of iterations is shown in Figure 4.1. Note that

in iterations 1-2 and 6-7 the error decreases significantly. These iteration numbers correspond to

the llll..P. This program adjusted nine different weights while the HOLP adjusted only three.

The difference in error reduction between the two LPs is probably due to this difference. The rate

of error decrease slowed as predicted, with later iterations achieving less gain before infeasibility

occurs.

10

9

8

7

6 ..
0 5

UJ

4

3

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration number

Figure 4.1. Error over the set of training patterns -vs- number of iterations

The step size parameter, ex, became progressively smaller during the algorithm to keep the

solutions inside the feasible region. In the first LP, ex began at 0.8 and decreased by 0.02 each

time through the entire loop. Because only two main loops were completed, this value ended up

at 0.78. Similarly, this parameter in the second LP began at 0.9 and decreased by 0.05 with each

full loop and ended up at 0.85.

42

The ANN trained with the back-propagation algorithm required 40,000 iterations of that

algorithm to reach a point where error no longer decreased. Training time for the new ANN was

8 minutes, 30 seconds. Training time for the back-propagation ANN was 2 minutes, 45 seconds.

4.6 Results

The accuracy of the forecasts made by each network were adequate considering the

minimal amount of training data used. The plot comparing the forecasts with the actual load

is shown in Figure 4.2 Average error for the PWL network trained with the LP algorithm was

4.0%, with a peak error of8.7%, while the average error for the back-propagation ANN was

2.6% with a peak error of 6.6%.

1600 I-Actual
1500

1400

1300

1200

1100

...... _-----

- - - - PWLILP •••••• , Back-prop

.... , .
/ .'

/ .'
/ .. '

/ .
/ .'

/ ."
,/ .'

,/ . , .

. '. --------

1000 +---~----~----~---r----+_--_+----;_--~r_--_r----+_--~

2 3 4 5 6 7 8 9 10 11 12

Figure 4.2. Plot comparing forecasts to actual loads

It is interesting to note in Figure 4.2 that both forecasts performed poorly during the latter

part of the period, specifically for hours 9-12. In fact, during this time the forecasts both

increase slightly when the load is decreasing. The cause of this is apparent when one

compares the load profile for the forecast day to those of the training days. This is shown in

Figure 4.3. In both the training days the load continues to rise until hour 11, while on the

1700

1600

1500

1400

1300

1200

llOO

43

\-- Forecast Day • • • • • •• Training Day 1 - - - - Training Day 2

... "'''

---------------~ -------------

:

....
~- -....... --

-=----.:::-------------

1000 +---~r----+----~----r----+----~----r----+-----r----+---~

2 3 4 6 7 8 9 10]) 12

Figure 4.3. Training and forecast days' loads

forecast day the load begins to decrease at hour 9. This difference reinforces the value of

additional training data for the networks, since neither network will respond properly to a

phenomena it has not seen before at all.

44

CHAPTER 5. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

5.1 Conclusions

This work presented a modification to the affine scaling interior point algorithm for linear

programming. The extension developed in this thesis allows the restricted basis entry to be

used by the affine routine. This is a valuable extension that will allow the technique to work

with a wider variety of problems, especially those that incorporate piecewise-linear functions.

Also presented in this work was an artificial neural network with hidden layer neurons having

piecewise-linear transfer functions to facilitate the formulation of the network training

problem as a linear program, and a training algorithm for this network that uses the modified

affine scaling algorithm. Finally, a power syst,em short-term load forecast was performed

using the new ANN and training algorithm.

The restricted basis entry method is implemented by using variable upper and lower

bounds. A variable that is not allowed to rise far from its minimum is held there by setting the

upper bound on the variable to a value just above the lower bound thus sandwiching variable.

A variable that is to be held near its maximum is constrained in a similar manner by adjusting

its lower bound to a value just below the upper bound.

The artificial neural network presented in this thesis is a feedforward type with linear

transfer functions in both the input and output layers. The hidden layer has a piecewise-linear

transfer function. Each segment of the PWL function may be represented as a separate

variable in a linear program. The training of the ANN was formulated as a linear program

with the goal of minimizing the absolute error over the training data. This training routine is

actually drawn up as decomposed linear program. The first program is used to determine the

weights between the input and hidden layer neurons. In this stage, the algorithm makes use of

the new restricted basis entry approach in the affine scaling routine to step through the PWL

segments. The outputs of the various hidden layer neurons are extracted from the first linear

45

program-which finds the weights for the paths between the input and hidden layer neurons

and used in a second linear program to detennine the weights for the connections between the

,- hidden layer and the output layer. Information from this program is then extracted after

several iterations and used in the first program. A unique scaling process is used to adjust the

slopes of the PWL segments in the first program to simulate the weighting of connections

from the hidden layer to the output layer.

Finally, the network and training algorithm are used to perform a short-term load forecast.

This type of forecast is extremely valuable to electric utilities, because it can be used to

schedule equipment and personnel in an economic fashion. The forecast performed was for a

12-hour period on a Thursday morning. Training data was taken from only two Thursdays

prior to the forecast period, and consisted of temperature, time of day, and previous hour's

load. The forecast was quite adequate considering so little data was used for training. For the

PWL network and LP training algorithm, the average error was 4.0% and the peak error was

8.7%. This compares with 2.6% and 6.6% respectively, for a forecast performed by a

network with sigmoidal hidden layer transfer functions that was trained by back-propagation.

Training time for the LP algorithm for this network was 8 minutes, 30 seconds. The back

propagation algorithm required 2 minutes, 45 seconds to converge. The need for additional

training data was illustrated when both ANNs made some significant errors because the latter

portion of the forecast day load profile was different from the training days' profiles.

Convergence of the LP algorithm to a "good" solution prior to exiting the feasible region

or failing because of numerical instability requires patience. Parameters such as step size,

upper and lower bounds on free variables, the ratio of iterations between the two programs,

and the number of overall iterations must be adjusted manually at present to obtain this type of

solution. The restricted basis entry procedure presented in this thesis is operational but the

tendency of the algorithm is to keep the solution on the first segment of the PWL function.

46

This may be overcome by keeping this segment short and keeping the limits on the upper and

lower bounds for the output neuron bias terms small. Additionally, increasing the number of

iterations of the first LP should force the PWL function values to increase.

5.2 Suggestions for Future Work

In its present state, the optimization technique presented here for training an ANN is

powerful but requires some refinement to guarantee convergence to a solution with minimal

error prior to the solution becoming unstable. This work should focus in part on the PWL

transfer function used in the hidden layer neurons. There is no reason to suppose that the

function used here is optimal. Possibly several different transfer functions should be used in

the same network to see which ones tend to affect the solution the most. Additional work

should be performed to determine algorithm parameters that encourage convergence of the

program before an unstable or infeasible condition is reached. The initial feasible solution

found in this work places the sum of the inputs to the hidden layer to a low value. The final

solution to the training problem, though, will have sums at the hidden layer neurons spanning

the range from near zero to near unity. With this in mind, it would make sense to start with

the initial feasible solution distributed over a larger range. This should significantly reduce the

number of iterations required to train the network and may help to obtain a better solution.

Because the amount of time required to train an ANN is one of the first criteria involved in

selecting an ANN, incorporation of sparse matrix techniques to perform the affine scaling

algorithm must be a suggestion for future work. The constraint matrix used here can be huge,

but for a decent sized problem much fewer than one percent of the matrix consists of nonzero

entries. In addition, the location of the nonzero elements in the constraint matrix and the cost

vector may easily be known because of the problem formulation. Sparse matrix techniques

could cut the computation time by at least 90% for a reasonable sized problem without

affecting the accuracy of the solution.

47

The application of ANNs to the short-term load forecasting problem is becoming common.

The key elements to a good forecast are selecting the appropriate training data in proper

amounts. The ANN used here was trained with a minimal amount of data. Other variables

that would traditionally have been included would be additional temperature and load data,

and day of the week data for a week-long forecast. The dew point is one nontraditional

variable that should be investigated for use in ANN training because it is a more accurate

measure of human discomfort than temperature. Also, temperature and load data may be

more valuable if, in addition to being included as measurements, the hourly temperature and

load differences are included.

48

REFERENCES

[1] Chen, S.T., Yu, D.C., and A.R. Moghaddamjo. "Weather Sensitive Short-Term Load
Forecasting Using Nonfully Connected Artificial Neural Network." Paper 91 SM 449-
9 PWRS presented at the IEEElPES 1991 Summer Meeting, San Diego, California,
July, 1991.

[2] Cooper, L, and Steinberg, D. Methods and Applications of Linear Programming.
Philadelphia. W.B. Saunders Company, 1974.

[3] Grady, W.M., Groce, L.A., Huebner, T.M., Lu, Q.C., and M.M. Crawford.
"Enhancement, Implementation, and Performance of an Adaptive Short-Term Load
Forecasting Algorithm." Paper 91 SM 448-1 PWRS, presented at the IEEEIPES 1991
Summer Meeting, San Diego, California, July, 1991.

[4] Hebb, D.O. The Organization of Behavior A neuropsychological Theory. New York:
John Wiley and Sons, 1949.

[5] Hillier, F.S. and G.J. Lieberman. Introduction to Operations Research. Fifth edition.
New York: McGraw Hill, 1990.

[6] Ho, K.L., Hsu, Y.Y., and Chien-Chuen Yang. "Short Term Load Forecasting using a
Multilayer Neural Network with an Adaptive Learning Algorithm." Paper 91 SM 450-7
PWRS presented at the IEEElPES 1991 Summer Meeting, San Diego, California, July,
1991.

[7] Hopfield, J.J. "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities." Proceedings of the National Academy of Science, U.S.A, 79,
(1982): 2554-2558.

[8] Karmarkar, N. "A New Polynomial-Time Algorithm for Linear Programming."
Combinatorica, 4, (1984): 373-395.

[9] Khanna, T. Foundations of Neural Networks. Reading, Massachusetts: Addison-Wesley,
1990.

[10] Kosko, B. Neural Networks and Fuzzy Systems: A Dynamical Systems Approach.
Englewood Cliffs, New Jersey: Simon and Schuster, 1991.

[11] Lu, C.N., Wu, HT., and S. Vemuri. ''Neural Network Based Short Term Load
Forecasting." Paper 92 WM 125-5 PWRS presented at the IEEElPES 1992 Winter
Meeting, New York, New York, January, 1992.

49

[12] Luenberger, D.G. Linear and Nonlinear Programming. Second edition. Reading,
Massachusetts: Addison-Wesley, 1989.

[13] Mbamalu, G.A., and M.E. El-Hawary. "Load Forecasting via Suboptimal Seasonal
Autoregressive Models and Iteratively Reweighted Least Squares Estimation." Paper 92
WM 133-9 PWRS presented at the IEEEIPES 1992 Winter Meeting, New York, New
York, January, 1992.

[14] Park, D.C., EI-Sharkawi, M.A, Marks, RJ. IT, Atlas, L.E. and MJ. Damborg. "Electric
Load Forecasting Using and Artificial Neural Network." IEEE Transactions on Power
Systems, 6, no. 2, (May, 1991),442-449.

[15] Peng, T.M., Hubele, N.F., and G.G. Karady. "Advancement in the Application of Neural
Networks for Short-Term Load Forecasting." Paper 91 SM 451-5 PWRS presented at
the IEEEIPES 1991 Summer Meeting, San Diego, California, July, 1991.

[16] Rahman, S., and O. Hazim. "A Generalized Knowledge-Based Short-Term Load
Forecasting Technique." Paper 92 WM 124-8 PWRS presented at the IEEEIPES 1992
Winter Meeting, New York, New York, January, 1992.

[17] Vanderbei, R.J, Meketon, M.S. and B.A. Freedman. "A Modification ofKarmarkar's
Linear Programming Algorithm." Algorithmica. 1, (1986): 395-407.

[18] Vanderbei, RJ. "Affine-Scaling for Linear Programs with Free Variables. "
Mathematical Programming, 43, (l989): 31-44.

[19] Watkins, D.S. Fundamentals of Matrix Computations. New York, New York: John
Wiley and Sons, 1991.

[20] Welsh, D.E., and G.B. Sheble'. "Review of Artificial Neural Network Applications to
Short-Term Power System Load Forecasting." Proceeding of the Twenty-Fourth Annual
North American Power Symposium, Reno, Nevada, October, 1992.

50

ACKNOWLEDGMENTS

I would like to thank Dr. Gerald B. Sheble' for his support and encouragement in serving

as my major professor, and Dr. John W. Lamont, and Dr. Richard K. Miller for the valuable

comments they gave me as members of my graduate committee.

The Electric Power Research Center at Iowa State University, Power Technologies, Inc.,

and the National Science Foundation also have my appreciation for financially supporting my

graduate work.

