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1 INTRODUCTION 

Many studies have shown that active suspensions can greatly improve suspen

sion performance over passive suspensions. Much of the active suspension research 

has been devoted to control theory applied to ideal systems. These ideal system 

models may not give accurate predictions of an actual system because they include 

state variables in the feedback loop that are difficult if not impossible to measure, 

and because they ignore actuator dynamics. The purpose of this study is to quan

tify the effects of several more realistic active and semi-active suspension strategies 

on ride performance. A linearized dynamic model of a vehicle is used which has as 

its seven degrees of freedom bounce, pitch, and roll of the sprung mass and the four 

vertical unsprung mass positions. Frequency response and selected time responses 

are used for evaluation of suspension performance. 

Chapter 2 reviews articles on active suspension theory and applied active sus

pensions. Chapter 3 presents the seven degree of freedom linear model and the 

optimal linear control methods that are used throughout this thesis. An ideal active 

system is presented which has full state feedback and ideal actuators. As expected, 

this system yields excellent improvements in ride, and is used throughout the the

sis to compare less ideal systems. Chapter 4 investigates the effects of removing 

difficult to measure state variables from the feedback loop and shows how recon-
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struction of the state vector from easily measured variables yields improvements 

in ride which compare well with the ideal system. Chapter 5 looks at the effects 

of hydraulic actuators, which are approximated as first and second order systems. 

Chapter 6 investigates semi-active actuators including an active damping actuator 

and an on/off damping actuator. 

All of the non-ideal systems studied result in improvements over the passive 

suspension system, but to a varying degree. As expected, none of the non-ideal 

systems result in improvements equaling those of the ideal active suspension system. 
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2 LITERATURE REVIEW 

In recent years, active and semi-active suspension systems have attracted con

siderable attention from the research community and from automotive manufactur

ers. Research in the academic community has appeared regularly in the literature, 

but deals primarily with simple ideal analytical models. Research conducted by 

automotive firms for the most part has been kept out of the literature due to pro

prietary concerns. This literature review will present some relevant theoretical 

studies, and then concentrate on the more applied literature. 

2.1 Theoretical Studies 

Thompson [1J presented an analysis of a quarter car model ,vith an active 

suspenSIOn. A performance index was defined that was a weighted sum of the 

system state variables. The algebraic Riccati equation was then solved to find 

the optimum feedback gains. Through digital simulation, this control scheme was 

shown to result in significant improvements in vibration isolation. Thompson and 

Pearce [2J extended this study to the analysis of a half car model with two active 

suspensions. This model included pitch and bounce as the state variables. Using the 

same performance index as in his earlier paper, optimal feedback gains were found. 

Again, the active suspension system resulted in significant improvement over the 
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. . 
paSSIve suspenSIOn. 

Shannan [3] conducted a study of a seven degree of freedom car model with 

a fully active suspension. This model's feedback state variables included bounce, 

pitch, roil, vertical wheel corner positions, and road height. The performance index 

was similar to the one used by Thompson [1]. Performance of the active suspension 

was judged against the passive suspension by simulation over bumps to compare ride 

and by simulation through steering and braking maneuvers to compare handling. 

It was shown that the active suspension improved ride significantly. In addition, it 

was shown that active suspension systems can affect -the handling, and that sprung 

mass motions are significantly reduced during handling maneuvers. 

2.2 Active Suspension Applications 

Although many automotive manufacturers have active research programs deal-

ing with active suspensions, very little has appeared in the literature. 

The Lotus Turbo Esprit [4] was the pioneering effort in active suspensions. The 

suspension was designed to maintain near constant ride height to take advantage of 

ground effects for racing, and still give an acceptable ride. The system consisted of 

18 transducers to measure various loads, displacements and accelerations. The sig-

nals generated were fed into a microprocessor which output signals to the hydraulic 

servo-valve which controls the actuator. This system resulted in a more comfortable 

ride than standard racing cars without sacrificing good handling. 

Toyota developed a semi-active system for the 1983 Soarer [5]. This system 

sensed speed, steering, throttle position and braking to determine which of two 

damping modes, hard or soft, would be used. The system achieved a 15% - 30% 
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decrease of squat, a 20% - 30% decrease of roll angle, a 10% - 30% decrease of nose 

dive and a 30% - 40% decrease of shift squat. 

Mitsubishi used a similar system in its 1984 Gallant, but also used variable 

springs and more sensors [6]. This system sensed speed, steering, body acceleration, 

and throttle position and switched between a hard and soft mode by changing the 

spring rate and damping rate when certain conditions were met. Variable spring 

rate was achieved by changing the volume in an air spring. Variable damping was 

achieved by switching between two different oil paths. A constant ride height was 

maintained by varying the pressure in the air springs. 

The 1987 Ford Thunderbird Turbo Coupe [7] with the Programmed Ride Con

trol option was another production automobile with a semi-active suspension. It 

utilized fast acting rotary solenoids to change damping between a ride optimized and 

a handling optimized rate. Its three manually selected modes were ride, handling, 

and automatic. In automatic mode, signals from sensors determined the mode of 

the adjustable shocks. Steer angle and velocity was measured from which lateral 

acceleration was estimated. Hard braking was determined from braking pressure. 

Acceleration was sensed whenever a high power condition existed in the engine. 

The conditions in which the device switched damping from soft to hard ride 

were these: hard braking (brake pressure greater than 400 psi), high speed (velocity 

greater than 83 mph), hard cornering (lateral acceleration greater than .35 g), and 

acceleration (engine vacuum greater than an 8 psi. boost or greater than 90% 

throttle). The performance was judged by examining the quickness of the change 

from ride to handling optimized mode. These conditions were selected so that 

changes from soft to stiff mode were fast enough during a maneuver that it appeared 
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to the driver to have been in stiff mode all along. 

2.3 Actuators 

Because actuators are an essential component of an active suspension system, 

and often are the limiting factor in the performance of the system, this section will 

give a short review of the literature covering actuator dynamics as they relate to 

active suspensions. Several different types of actuators have been suggested or used 

for active suspension systems. Two most common are variable rate springs and 

dampers, and hydraulic systems. 

Variable rate springs and dampers have been studied by several researchers 

and already exist in a limited sense on many production vehicles [5,6,7]. A semi

active system using an active damper to generate the control forces was proposed 

by Crosby and Karnopp [8]. The active (or variable) damper system uses the same 

feedback gains as the fully active suspension to determine the damping rate. The 

force was generated by the relative velocities of the attachment points. This system 

required very little external energy to implement. When the command force and 

the available force were opposite (i.e., velocity in the same direction as command 

force) the damping rate was set to the minimum value. When command force and 

the available force were in the same direction the damping was set proportional 

to the command force. This system was simulated using a one degree of freedom 

model and showed significant improvement over passive suspensions and rivaled the 

isolation possible with a fully active suspension. The limitations of such a system 

included the following: 

1. It can produce force only when a relative velocity exists across the attachment 
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points. 

2. When the force available is not in the same direction as the control force 
required, no control force is available. 

3. vVhen the force required exceeds that available through a finite damping ratio, 
the damper is locked up. 

Sharp and Hassan [9] studied the use of the active damper in vehicles by using 

a two degree of freedom quarter car model. By examining a passenger discomfort 

parameter and wheel load during digital simulation, the suspension was found to 

give substantially better ride comfort and better wheel load control for rough roads 

but only improved ride comfort for smoother roads. 

Hydraulic actuation systems have received limited attention in the literature 

dealing with active suspensions for automobiles. Sutton [10] analyzed an active 

hydraulic system for a two degree of freedom quarter car model and also experi

mentally tested its performance. 

Hydraulic systems have been studied extensively as actuators in a variety of 

active vibration isolation applications. Merritt [11] gives a summary of the advan

tages and disadvantages of hydraulic power. Those applicable to active suspensions 

are the following: 

• Advantages 

1. Large power to weight ratios are available. 

2. Long component life is possible. 

3. Hydraulic machines are not limited as electric machines are by magnetic 
saturation and electrical losses. 

4. Hydraulic actuators have a higher speed of response than electric actua
tors. 

5. Closed loop control of hydraulic actuators is relatively simple using valves 
and pumps. 
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6. Transmission of power is moderately easy with hydraulic lines and energy 
storage is accomplished with accumulators . 

• Disadvantages 

1. Hydraulic control analysis is difficult because of the nonlinear differential 
equations involved. 

2. Small allowable tolerances result in high costs of hydraulic components. 

Sherman and Lance [12] examined the use of hydraulic actuators in a POSl-

tioning system for a weapon. A linearized model was used to obtain an optimal 

feedback control loop. The dynamics of the servo-valve were neglected. The con

troller, designed using the linearized equations, was found to give good control when 

the nonlinear equations of motion were simulated. Lopez and Lance [13] examined 

the use of hydraulic actuators in an agricultural tractor to control implement depth. 

A linearized model was used to obtain a control law , but servo-valve dynamics were 

also included. Again, good control was obtained for the non-linear system simulated 

using a control law defined from the linearized approximations. 
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3 LINEAR FULL STATE FEEDBACK WITH IDEAL ACTUATORS 

This chapter examines suspension performance using a seven degree of freedom 

dynamic model as used by Shannan [3]. The control system presented in this section 

is an ideal system and is used as a measure for comparing other more feasible 

approaches. The results in this section are similar to those of Shannan, however, 

the control problem has been reformulated as a tracking problem. In addition, the 

system is examined not only in the time domain but also using two input frequency 

response plots. 

3.1 Seven Degree of Freedom Dynamic Model 

The seven degrees of freedom for the math model are the bounce, pitch and 

roll of the sprung mass, and the vertical displacements of the four unsprung masses 

as shown in Figure 3.1. The vertical tire forces acting between the unsprung mass 

and the road profile are modeled as linear springs with no damping. The suspension 

forces consist of spring forces, damper forces, and actuator forces. The passive sus

pension is retained to decrease the control effort and to provide a backup suspension 

should the active suspension fail. The model is linear, and therefore valid only for 

small deflections from equilibrium. 

The linearized equations of motion for the three sprung mass degrees of freedom 
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are 

I:t¢ 
tf~a tr~b tf~c tr~d 

(3.1) -+-----
222 2 

IyB -a~a + bH - a~c + b~d (3.2) 

~i\;/6Z Fa + Fb + ~c + ~d (3.3) 

where ~a, ... , ~d are suspenSIon forces including spnng, damping, and actuator 

forces, as defined in Appendix C. The linearized equations of motion for the four 

unsprung masses are 

where ~t1, ••• ,~t4 are vertical tire forces also defined in Appendix C. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

To facilitate computer simulation, the seven second order equations of motion 

are converted to fourteen first order differential equations. To obtain an optimum 

control, it is desired to include the road heights at the four corners as state vari-

abIes which requires using the road height velocities as input. The fourteen system 

equations and four road height equations can be represented by the matrix equation 

. - - -x = Ax + Blu + R2w (3.8) 

where .4, BI , and B2 are system matrices, x is the state vector, u is the control force 

vector representing the forces that are applied between the four unsprung masses 

and the sprung mass, and w is the road height velocity vector at each of the four 
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tires. 

iT = [ ¢ 8 ¢ 8 Z Z Zl Zl Z2 Z2 Z3 Z3 Z4 Z4 Zit Zl,. z,.j Z,.,. ] 

(3.9) 

u
T = [ Fl F2 F3 F4 ] (3.10) 

w T - [ • - Zit Zl,. z,.t z,.,. ] (3.11) 

3.2 System Optimization 

The problem of optimizing the control of a linear mechanism can be accom-

plished by finding an optimum linear constant gain matrix, K, such that 

u(t) = -Ki(t) (3.12) 

For the case of automotive ride, K wakernaak and Sivan [14] defined this type of 

problem to be a tracking problem because it is desired to have the car follow the 

contours of the road. If it is taken as a regulator problem then a change in road 

height, or in slope would result in a steady state error. Thus, the desired control 

should allow the car to follow the hills, slopes and banked tUrns without any steady 

state error. 

The method to determine an optimal control criteria is to convert this tracking 

problem to a regulator problem which can then be solved using the algebraic Riccati 

equation. New state variables are chosen which describe the vehicle position with 

respect to the road. This facilitates regulating them to zero. For this problem ¢' is 

the angle between the car and the road about the X axis, 8' is the angle between the 

car and the road about the Y axis, and z' is the vertical distance from the ground 
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to the vehicle's center of gravity, z. The references for these new state variables are 

weighted averages of the road height at the four tires. 

4>' 4> _ ~ (Zlf - zrf + ZI .. - Z .... ) 

2 tf t .. 
(3.13) 

()' (J _ ~ (Zit - ZI .. + z .. t - z .... ) 

2 a+b a+b 
(3.14) 

Z' Z _ _ b_ (Zit + z .. t) _ _ a_ (ZI .. + Zr .. ) 

a+b 2 a+b 2 
(3.15) 

If the velocity terms are assumed to be zero in a steady state condition the previous 

state velocity variables can be used. 

Unsprung mass positions are also converted from absolute to relative variables 

by using the distance from the road to the wheel as the new variable. 

Z' 1 Zl - Zit (3.16) 

, 
z2 Z2 - ZI .. (3.17) 

, 
(3.18) Z3 Z3 - Zrt 

, 
(3.19) Z4 Z4 - Zr .. 

Again the previous state velocity variables are used. 

Now, the regulator state variables, x, are related to the tracking state variables, 

X, by 

X= Dx (3.20) 

where 

X T--:[l <iJ (J 4>' (J' z' Z z~ Zl z~ Z2 z~ Z3 z~ Z4 Zit Zir Z .. f Zr .. ] 

(3.21) 
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K'I' 
u J x 

A 

Figure 3.2: Block diagram of regulator system 

and D is the linear constant transformation matrix. A new equation of motion 

using the regulator state variables can be found by substituting equation 3.20 into 

equation 3.8 yielding 

(3.22) 

or 

x = Ax + Bl U + B 2w (3.23) 

This equation is represented by the block diagram in Figure 3.2. 

The problem of finding the tracker optimal control is the same as In equa-

tion 3.12 but in terms of the new state variables. In this case 

u(t) = -K'I'x(t). (3.24) 

The feedback gain matrix, K'I' can be found using linear optimal control theory as 

described in Kwakernaak and Sivan [14]. The cost function, II, is a weighted sum 

of the square of the deviation of the state variables of a regulator system from zero. 
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Different weights are assigned to each state to achieve a desired objective. For this 

problem, the cost function is defined as 

II = ql (¢P + f),2 + Z'2) 

+ q2 (4)2 + 02 + Z2) 

+ q3 (Z? + Z~2 + Z~ + Z~2) 

+ q4 {(kf(Z~ - Z~))2 + (kr(Z~ - Z~))2 + (kf(Z~ - Z~))2 + (k,.(z~ - Z~))2} 

+ qs {(Cf(Z~ - Z~)? + (Cr(Z~ - Z~))2 + (Cf(Z~ - Z~))2 + (c,.(Z~ - Z~))2} 

+ q6 (F; + Fi + Fi + F1) 

where 

, --Za --
, --Zb --
, --Zc --
, 

:::::: zd 

' + t f ¢/ f)' Z - -a 
2 
t 

z' + ~¢/ + bf)' 
2 

z' _ t f ¢/ _ af)' 
2 

z' _ t,. ¢/ + bf)' 
2 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

The constants, ql, ... , qs, can be chosen to change the influence of a certain 

state on the control. If improved tracking is desired, then ql, the weighting of 

the chassis position with respect to the road, should be increased. If less body 

velocity is desired, then Q2, the weighting of the chassis absolute velocity should be 

increased. If wheel hop is of lesser importance, then Q3, the weighting on the wheel 

deflections can be decreased. If less body acceleration is desired then q4, qs and qs, 

the weightings of the forces transmitted to the chassis, should be increased. 

Optimization of a suspension depends upon a number of performance measures 

of vehicle ride and handling. These performance measures are rather subjective and 
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not well defined. Therefore, what is considered optimal for one application may not 

be for another, and selecting weighting factors is usually accomplished by trial and 

error. 

Having chosen a cost function, II(x(t)), the optimal control is that which min

imizes the integral of the cost function over a given time interval. 

J = lot II(x(t))dt 

This integral can also be written in the form 

J = fot{xT(t)Qx(t) + uT(t)Ru(t)}dt 

(3.30) 

(3.31 ) 

The classic solution to this problem is found by solving the algebraic Riccati 

equation, 

0= Q - PBR-1BTp + ATp + P.4 (3.32) 

with 

(3.33) 

As previously stated, good suspension performance depends upon proper selec

tion of the cost weighting coefficients in equation 3.25. These constants change the 

contribution of each grouping of state variables to the performance function which 

is to be minimized. As a constant is increased, it tends to decrease the deviation 

of its variables from a zero state. Therefore, the choice of weighting coefficients 

is a compromise. After selecting a set of weighting coefficients, the gain matrix is 

found by numerically solving the algebraic Riccati equation and the control system 

is evaluated via frequency response, root locus and simulation. In a design scenario, 

the weighting constants are then adjusted to improve the response. Several itera

tions through this procedure are often necessary to achieve a desirable feedback gain 
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matrix. The weighting constants used throughout this ·thesis are ql = 10, q2 = 7.5, 

q3 = 50, q4 = 5(10t7, qs = 5(10)-7, and q6 = 5(10t7. These were selected such 

that the contribution of each cost term is of the same order of magnitude. This 

choice gives good results in a general sense, and since there is no specific design 

objective for this thesis, these weighting coefficients are not iterated and are used 

throughout this thesis. 

3.3 Frequency Response 

The frequency response of the linear system gives a general view of the improve

ments possible with active suspensions. The input to the linear system is assumed 

to be 

The steady state response is 

x(t) = xmeiwt 

Combining equations 3.23 and 3.24 gives 

x(t) = (.4 - B1K,.)x(t) + B2W(t) 

The steady state response of this system is 

where 

H(jw) = [jwI - (A - B 1 K,.)]B2 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

and is the frequency response matrix of the system. This response to complex 

periodic inputs can also be applied to sinusoidal inputs. The k-th component of the 
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input is represented by 

(3.39) 

where (1'k is the phase lag of the k-th input. Assuming all other components are 

zero then the i-th component of the response is given by 

(3.40) 

where "pile is the phase angle of Hile(jw). A general road surface can be approximated 

by sinusoidal inputs of different phases at each of the four wheels. 

Zl/ 

Zlr 

Zr/ 

Zrr 

sin(wt + (1'1) 

sin( wt + (1'2) 

sin( wt + (1'3) 

sin(wt + (1'4) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

U sing the principle of superposition, the total response of the vehicle to these four 

inputs is the vector sum of their individual responses. 

4 

1]i,total( t) = L II Hik(jW) Ilftle sin( wt + (1'k + "pile) (3.45) 
Ie=! 

To study bounce and pitch responses, the phase angles of the front wheel inputs 

are assumed to be zero while the phase angles of the rear wheel inputs are varied 

together. The phase angles of the rear wheel inputs are related to the wavelength 

of the road, T, and the wheelbase, a + b, by 

(3.46) 

To study roll frequency response, the phase angle of the left side wheel inputs is set 

to zero while the phase angle of the right side wheels is varied together. 
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Because road height velocity is the input to this linear system, the frequency 

response will not relate road height to magnitude. If the road input for the left 

front wheel is 

Zll = sine wt + 0"1) (3.47) 

then the corresponding road height velocity is 

Zll = w sin(wt + 7r/2 + 0"1) (3.48) 

Since the magnitude of sin{wt + 0"1) and sin(wt + 7r/2 + 0"1) is the same, 

(3.49) 

In this case the i-th component of the response to the road height input is given by 

(3.50) 

Therefore, the frequency response function relating a state variable to the road 

height input, HIk(jw) , can be defined in terms of the frequency response to road 

height velocity as 

(3.51) 

Since all components of the response have the same additional phase lag, the mag

nitude of the vector sum will not be affected and its phase will be shifted by 7r /2. 

To examine the frequency response of the bounce, pitch and roll of the vehicle 

the tracking state variables are used since they give the absolute measure of bounce, 

pitch and roll. The system equation used to find· H(jw) is 

(3.52) 
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Figures 3.3 and 3.5 present the bounce and pitch angle frequency response for 

the passive system (vehicle 1). Figures 3.4 and 3.6 give the frequency response for 

the ideal active system (vehicle 2). Figures 3.7 and 3.8 present the roll frequency 

response for the passive and active systems. 

These results show that the active suspension system significantly decreases 

the magnitudes of response around the bounce, pitch and roll natural frequencies 

of the sprung mass, 1.38 Hz, 0.91 Hz, and 1.31 Hz respectively. However, there is 

limited improvement for the active suspension near the natural frequencies of the 

unsprung masses, 6.46 Hz for the front and 8.71 Hz for the rear. 

3.4 Vehicle Simulation 

This section presents the results of two simulations. The equations of mo-

tion of the vehicle model described in Section 3.1 are integrated with two different 

input road profiles, a slanted half sine wave bump and a step as shown in Fig-

ures 3.9 and 3.10. The slanted bump road profile is the same as used by Shannan [3]. 

For the vehicle traveling at 24.59 m/ sec (55 mph) this profile exci tes the roll mode of 

the sprung mass at the roll natural frequency, while also exciting pitch and bounce 

modes. The step is similar to the one used by Thompson [1] who showed that if the 

system is optimal for a unit step input at a given velocity, it will also be optimal 

for random signal inputs of a road which has as its power spectral density 

cp(w) = ell 
w2 

(3.53) 

where c is a road roughness constant and V is the vehicle velocity. This profile 

tends to excite wheel hop. 
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Figure 3.3: Bounce frequency response for varying phase angles between front and 

rea.< tires of the passive suspension (vehicle 1) 

~. 1 

FREQUENC'{ ~f: ~ INPUl llZl.~ , 

~.l 

FREQUENCY 6F ~ INPUI l~. 0 , Figure 3.4: Bounce frequency response for varying phase angles between front and 

reaT tires of the a.ctive suspension (vehi
de 

2) 
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~. 1 

10.0 , FREGUENC'{ 6r 0 
INPUI Figure 3.5: Pitch frequency response for varying phase angles between front and 

rear tires of the passive suspension (vehicle 1) 

FR l.~ EOUENC'{ OF INPUT 10.0' Figure 3.6: Pitcb frequency response for varying pbase 
angles between front and 

rear tires of the active suspension (vehicle 2) 
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0.1 

VREOUENC'f 6~ ~ INPUI 1~.0 , Figure 3.7: Roll frequency response lor varying phase angles between Ielt and 

right tires of the passive suspension (vehicle 1) 

~.l 

10.~ , 
VREOUENC'f 6~ ~ INPUI Figure 3.8: Roll frequency response lor varying phase angles between left and 

right tires of the active suspension (vehicle 2) 
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Bounce, pitch, and roll response to the slanted bump are shown in Figures 3.11, 

3.12, and 3.13 respectively for both the active and passive suspensions. Table 3.1 

lists the peak force transmitted, and the integrals of the components of the perfor

mance function, J, for the slanted bump. Figures 3.14 and 3.15 show the pitch and 

bounce responses of the vehicle to the step input. Table 3.2 lists the peak force 

transmitted, and the integrals of the components of the performance function for 

the step input. 

The simulation results show that this particular active suspension gives very 

good low frequency ride response as compared to the passive suspension. In each 

graph the peak amplitudes and residual vibrations are greatly reduced. Specifically, 

for the slanted bump, peak bounce is reduced by 38.7%, peak roll by 63.8%, and 

peak pitch by 48.1 %. Roll response settles out 66.6% faster, pitch 77.8% faster, and 
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Table 3.1: Response characteristics of the vehicle with an active suspension (vehi
cle 2) to a slanted bump input compared to that of the passive suspen
sion (vehicle 1) 

\I II vehicle 1 I vehicle 2 I % Improvement il 
Peak Force Transmitted (Newtons) I 928.98 608.03 34.55 

f~ ql (¢>'2 + 012 + Zl2)dt 

f~ q2(~2 + iJ2 + z2)dt 

f~ q3(Z~ + Z~2 + Z~2 + z~2)dt 
f~(q4FII2 + qsFjamp + q6 F;ct)dt 
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Figure 3.14: Bounce response of the vehicle with an active suspension (vehicle 2) 
to a step input compared to that of the passive suspension (vehicle 1) 
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Legend 
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Figure 3.15: Pitch response of the vehicle with an active suspension (vehicle 2) to 
a step input compared to that of the passive suspension (vehicle 1) 

Table 3.2: Response characteristics of the vehicle with an active suspension (vehi
cle 2) to a step bump input compared to that of the passive suspension 
(vehicle 1) 

II II vehicle 1 I vehicle 2 I % Improvement II 

Peak Force Transmitted (Newtons) I 2222.9 1830.0 17.68 

J~ ql(4i2 + (}'2 + Z/2)dt I .0072 .0021 70.83 I 

J~ q2( ~2 + ip + z2)dt I .2800 .0725 74.11 I 

J~ q3(Z~ + z~2 + z~ + z~2)dt .. 0607 .0526 13.34 I 
I 

J~( q4F} + qsFjamp + q6F;ct)dt 
I 

.6724 .5606 16.63 
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bounce 79.2% faster. For the step response, peak bounce overshoot is reduced by 

90.3% while peak pitch is reduced by 49.2%. The settling time for the step response 

is 90.2% faster for bounce and 85.6% faster for pitch. 

The integrals of the components of the performance function show the mean 

squared of the difference from zero of the different state variable combinations. 

The first integral in Tables 3.1 and 3.2 shows the improvement in the chassis road 

tracking. The second integral shows the improvement in chassis velocity remaining 

close to zero. The third integral gives the improvement in wheel hop. The fourth 

integral shows the improvement in total force transmitted to the chassis. All indicate 

that the active suspension gives improved performance compared to the passive 

suspenSIOn. 

Large improvements in the response of the vehicle with the active suspension 

is not surprising in light of the ideal nature of the active system. The model pre

sented in this chapter assumes that all state variables can be measured and that the 

actuators are ideal. In reality, these types of improvements can not be obtained. 

The remainder of this thesis will develop more realistic models of active systems. 

This will include assuming that some variables can not be measured, and therefore 

are not available for feedback, and introducing some limitations on the actuators. 

These more realistic systems will then be compared to the passive and ideal ac

tive systems to identify how much of the improvements shown in this chapter can 

actually be realized. 
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4 LIMITED STATE FEEDBACK 

The results of Chapter 3 show that an ideal active suspension is capable of 

giving both improved vibration isolation and improved road tracking. However, it 

is assumed that all of the state variables can be measured. Current technology limits 

the ability to measure such quantities as road height, distance from the road to the 

sprung mass, tire compression, angles of the chassis with respect to the ground, 

and the velocities of the above quantities. This chapter will study active suspension 

systems that do not depend on measurement of all of these variables. 

4.1 Road Height Removed From State Vector 

One approach to the problem of incomplete measurement is to remove un

measurable quantities from the state vector. However, since the algebraic Riccati 

solution requires the entire state vector for feedback, removal of variables from the 

state vector necessitates a change in the equations of motion. The only variables 

that could be eliminated in this manner are the road heights at the four tires. 'With 

this change in x, the new state vector is 

x
T 

= [¢' ¢ f)' iJ z' z z~ Zl z~ Z2 z~ Z3 z~ Z4] (4.1) 
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10.0 I 

Figure 4.1: Bounce frequency response for varying phase angles between front and 
rear tires of the active suspension (vehicle 3) 

The new equations of motion for the system are 

x(t) 

u(t) 

Ax(t) + Bu( t) 

-Krx(t) 

( 4.2) 

( 4.3) 

The same performance function used in Chapter 3 is used with the new equations 

of motion to find the feedback gain matrix, K r • 

The steady state frequency response of this linear system (vehicle 3) is found 

in a similar manner to that presented in the previous chapter. However, since the 

input is the actual road height, no transformation is necessary for the frequency 

response function, H(jw). Figures 4.1, 4.2, and 4.3 give the frequency response for 

this active system. 

The frequency responses for this vehicle are virtually the same as for the ve

hicle with the ideal active suspension (vehicle 2), which indicates that removing 
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Ql. 1 

FREQUENCY 6i-Ql INPUI l~. Q) , Figure 4.2: Pitch frequency response for varying phase angles between front and 

rear tires of the active suspension (vehicle 3) 

l~. ~ , 
fREOUENCY 6F Ql INPUI Figure 4.3: Roll frequenCY response for varying phase angles beW

een 

front and 

rear tires of the active suspension (vehicle 3) 
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4~--------------------------------------------------------~ 
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Figure 4.4: Bounce response of the vehicle with road height removed from the 
state variables (vehicle 3) to a slanted bump input compared to that 
of the active (vehicle 2) and passive (vehicle 1) suspensions 

road height feedback does not significantly affect the performance of the active 

suspenSIOn. 

These new equations of motion are integrated with the road profile inputs 

shown in Figures 3.9 and 3.10. The bounce, pitch and roll responses of this suspen-

sion are compared graphically to those of the fully active and passive suspensions 

in Figures 4.4, 4.5 and 4.6 for the slanted bump. The bounce and pitch responses 

were compared for the step in Figures 4.7 and 4.8. Table 4.1 lists peak force trans

mitted, and the integral of the performance function, J, for the slanted bump input. 

Table 4.2 lists the values for the step input. 

The simulation results show that this particular active suspension gives about 

the same improvement in overall ride response as the fully active suspension. In each 

graph the peak amplitudes and residual vibrations are greatly reduced. Specifically, 
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2 4 6 8 10 
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Pitch response of the vehicle with road height removed from the state 
variables (vehicle 3) to a slanted bump input compared to that of the 
active (vehicle 2) and passive (vehicle 1) suspensions 

O. 10r---------------------------------------------------~ 

III 
C 

.~ 0.05 
1J 
IU 
L -
Ql 0.00 t---
r-I 

CI 
C 
4 
r-I -0 . 05 
r-I 

o 
a: 

---- Active (vehicle 3) 
-------- Active [vehicle 2) 
---- Passive (vehicle 1) 

/\ 
\/ 

-0.10 ~~~ __ L-~~ __ ~~~ __ ~~~ __ ~~~ __ ~~ __ ~~~~ 

o 2 4 6 8 10 
Time (seconds) 

Figure 4.6: Roll response of the vehicle with road height removed from the state 
variables (vehicle 3) to a slanted bump input compared to that of the 
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Figure 4.7: Bounce response of the vehicle with road height removed from the 
state variables (vehicle 3) to a step bump compared to that of the 
active (vehicle 2) and passive (vehicle 1) suspensions 
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Table 4.1: Response characteristics of the vehicle with road height removed from 
the state vector (vehicle 3) to a slanted bump input compared to that 
of the active (vehicle 2) and passive (vehicle 1) suspensions 

% Improvement 

I vehicle 1 vehicle 3 vehicle 2 I vehicle 3 

Peak Force Transmitted (N) 928.98 645.17 34.55 31.00 

J~ ql(¢P + (}'2 + Z/2)dt .0181 .0039 79.56 78.45 

J~ q2( ¢2 + (J2 + z2)dt .9338 .1192 87.30 87.23 

J~ q3(Z~2 + Z~2 + zf + z~2)dt .0028 .0023 14.29 17.86 

J~( q4F; + qsFlamp + qsF;'ct)dt .4752 .2172 52.55 52.55 

Table 4.2: Response characteristics of the vehicle with road height removed from 
the state vector (vehicle 3) to a step input compared to that of the 
active (vehicle 2) and passive (vehicle 1) suspensions 

% Improvement I I 
vehicle 1 vehicle 3 vehicle 2 I vehicle 3 

Peak Force Transmitted (N) 2222.9 1952.2 17.68 12.18 I 

J~ ql (¢P + (}/2 + zl2 )dt .0072 .0024 70.83 66.67 

J~ q2(¢2 + (J2 + z2)dt .2800 .0740 74.11 73.57 

J/ (t2 12 t2 + 12)dt o q3 Zl + Z2 + z3 Z4 .0607 .0501 13.34 17.46 

J~(q4F; + qSFlamp + qsF;'ct)dt .6724 .5273 16.63 21.53 
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for the slanted bump, peak bounce is reduced by 37.2%, peak roll by 63.8%, and 

peak pitch by 65.4%. Roll response settles out 66.7% faster, pitch more than 77.8% 

faster, and bounce 80.0% faster. For the step response, peak bounce is reduced by 

36.7% while peak pitch is reduced by 72.1%. The settling time for the step response 

is 90.2% faster for bounce and more than 84.4% faster for pitch. 

Tables 4.1 and 4.2 show that the suspension modeled without using road height 

feedback gives very similar results as compared to the fully active suspension with 

the exception of peak force transmitted. Even this higher value of peak force has a 

significant improvement over the passive suspension. Therefore, it can be concluded 

that the performance of the suspension with road height removed from the state 

vector is improved over that of a passive system and is near that of the fully active 

system. 

4.2 Optimal Reconstruction of State Variables 

Another method of implementing the optimal control system described in 

Chapter 3 in a system with an incomplete state vector measurement is to reconstruct 

the state variables from the observed variables. An optimal observer is defined to 

be a system that reconstructs the state variables from a reduced set of observed 

variables with the minimum error from the actual state variables. The optimal 

observer formulation used in this thesis is from Kwakernaak and Sivan [14] and is 

as follows. 

The regulator system shown in Figure 3.2 with disturbance input, w(t), re

moved has system equations, 

::ic(t) = Ax(t) + Bu(t) (4.4) 
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and the optimal linear regulator control law, 

u(t) = -K1'x(t) (4.5) 

Assuming the observed variables for this system are linear combinations of the 

actual state variables, 

y(t) = Cx(t), (4.6) 

where x( t) is the n dimension vector of state variables and y( t) IS the l dimen

sion vector of measured variables (l < n). Knowing y(t), it is thus desirable to 

reconstruct the state variables such that if x( to) = x( to), then 

x(t) = x(t), (4.7) 

for all t > to where x( t) is the n dimension vector of reconstructed state variables. 

In order to find an optimal observer, its form is assumed to be a function of 

past observations. The derivatives of the reconstructed state variables are a linear 

combination of the reconstructed state variables, observed variables and control 

input variables. 

~(t) = Fx(t) + Gy(t) + Hu(t) (4.8) 

By subtracting equation 4.8 from 4.4 and including 4.6 the following differential 

equation is obtained for the error in the reconstructed state. 

x(t) - ~(t) = Ax(t) + Bu(t) - Fi(t) - GCx(t) - Hu(t) (4.9) 

Equation 4.9 can be reduced to 

x(t) - ~(t) = (A - GC)x(t) - Fx(t) - Bu(t) - Hu(t) ( 4.10) 
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Since it is desired that equation 4.7 be satisfied, then 

x(t) = i(t) (4.11) 

for all t > to must also be satisfied. Substituting equation 4.11 and 4.7 in equa

tion 4.10 yields the following equation: 

0= [CA - GC) - FJx(t) + (B - H)u(t) (4.12) 

Assuming that x(t) is independent of u(t), and solving equation 4.12 for F and H 

gIves 

F - A. - GC 

H - B 

Substituting these into equation 4.8 yields 

i(t) = (.4 - GC)x(t) + Gy(t) + Bu(t) 

To understand this expression better, it can be written as 

i(t) = Ax(t) + G(y(t) - yet)~ + Bu(t) 

(4.13) 

(4.14) 

(4.15) 

( 4.16) 

G can then be renamed Ke which is the feedback gain applied to the error between 

the observed variables, y( t), and the reconstructed observed variables, y( t). Thus 

the system equations are 

x(t) - Ax(t) + Bu(t) 

u(t) -K,.x(t) 

i(t) - Ax(t) + Ke(y(t) - yet)~ + Bu(t) 

( 4.17) 

( 4.18) 

( 4.19) 
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Figure 4.9: Block diagram of optimal observer system 
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and the system block diagram is shown in Figure 4.9. Equations 4.17, 4.18 and 

4.19 can be simplified to the matrix form 

( 
X(t)) (A -BK,. ) ( x(t) ) 

i(t) - KeG A - KeG - BK,. x(t) 
( 4.20) 

Finding Ke to optimize the observer requires a stochastic approach. Using the 

regulator equations and introducing the state excitation noise vector, Wl(t), and 

the measurement noise vector, W2( t), results in the following equations: 

x(t) 

y(t) 

Ax(t) + Bu(t) + Wl(t) 

Gx(t) + W2(t) 

( 4.21) 

( 4.22) 

The vector, [ wI( t) wf( t) ] T is assumed to be a white noise process with intensities 

( 4.23) 

such that 

V(td5(tl - t2) = E {[ Wl(td 1 [wi(t2) Wf(t2) ]T} 
w2(td 

( 4.24) 

where E is the expectation operator and O(tl - t2) is the delta function of tl - t2. If 

Wl(t) and W2(t) are uncorrelated then Vl2(t) = V21 (t) = O. Furthermore, if intensity 

is assumed constant for all t > to then the intensity matrix becomes 

( 4.25) 

Now, the problem of finding the optimum Ke becomes minimizing the mean 

square reconstruction error, 

( 4.26) 
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where 

e(t) = x(t) - x(t) ( 4.27) 

The Kalman-Bucy filter [14] minimizes the mean squared reconstruction error 

and is used in this thesis. This solution to the optimal observer problem is obtained 

by choosing for the gain matrix 

( 4.28) 

where P is the solution to the algebraic Riccati equation 

( 4.29) 

The equations of motion for the system with the optimal observer circuit and 

input noise, Wl(t), and measurement noise, W2(t), are 

x( t) 

u(t) 

y( t) 

i(t) 

Ax(t) + Bu(t) + Wl(t) 

-Krx(t) 

Cx(t) + W2(t) 

(A - KeC)x(t) + Key(t) + Bu(t) 

( 4.30) 

( 4.31) 

( 4.32) 

( 4.33) 

For the active suspension application, the observed variables are defined as the 

suspension deflections and their velocities. These were chosen because they can be 
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z' - Z' a I 

z' z' b - 2 

z' - Z' c 3 

z' Z' d - 4 

( 4.34) 

If the components of WI(t) and W2(t) are uncorrelated, the intensity matrix is 

diagonal with components being the mean squared values of each component in 

WI(t) and W2(t). Intensities are chosen as the mean squared acceleration imparted 

in the unsprung mass from a mean squared value of the road height, z;. Thus, 

Vi! = k; z; x diag [0 0 0 0 0 0 0 I/IVI; 0 1/ !vIi 0 1/ NIi 0 1/1VI1] 
( 4.35) 

The noise in each measurement is assumed to have the same mean squared value. 

( 4.36) 

Increasing the components of ViI has the effect of increasing the gams and the 

eigenvalues of the estimator system. Decreasing V22 has the same effect. This is 

desirable since the eigenvalues of the observer should be larger than those of the 

regulator so that the reconstructed state vector is corrected faster than the system is 

changing. However, the larger eigenvalues also create a need for a smaller integration 

step size which may not be possible in an actual on board microcomputer. The 
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values of z; = 6.375(10t7 and W2 2 = 1(10)-6 give a fairly good compromise between 

reconstruct ability and step size of the integration. The actual step size needed in the 

simulation is .002 seconds using a fourth order Kutta-Merson integration algorithm. 

The system equation used to find the frequency response matrix for the optimal 

observer is 

( 
~(t) ) 

i(t) ) ( 
x(t) ) ( B2 ) 
i(t) + K

e
CD2 w(t) 

( 4.37) 

where D2 is the first 14 rows and last 4 columns of D. 

Figures 4.10, 4.11 and 4.12 give the frequency response for the active system. 

These plots show an increase in response magnitude at the natural frequencies for 

bounce, pitch, and roll when compared to the ideal active suspension for all three 

modes. However, the magnitudes at these frequencies are still much reduced when 

compared with the passive suspension's results. 

Using the same feedback gain matrix, K1" and the optimal observer, the equa

tions of motion are integrated with the slanted bump and step road profile inputs 

shown in Figures 3.9 and 3.10. The bounce, pitch and roll responses of this suspen-

sion are compared to those of the active and passive suspensions in Figures 4.13, 

4.14 and 4.15 for the slanted bump. The bounce and pitch responses are compared 

for the step in Figures 4.16 and 4.17. Table 4.3 lists peak force transmitted, and the 

integrals of the components of the performance function, J, for the slanted bump 

input and Table 4.4 lists the values for the step input. 

The simulation results show that this particular active suspenSlOn with an 

optimal observer gives good low frequency ride response as compared to the passive 

suspension. However, the performance is less than that of the fully active suspension 
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10.0 , 

Figure 4.10: Bounce frequency response for varying phase angles between front and 
rear tires of the optimal observer suspension (vehicle 4) 

FR 1.0 
EOUENCY OF INPUT 10.0 I 

Figure 4.11: Pitch frequency response for varying phase angles between front and 
rear tires of the optimal observer suspension (vehicle 4) 
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Figure 4.12: Roll frequency response for varying phase angles between front and 
rear tires of the optimal observer suspension (vehicle 4) 
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Pitch response of the vehicle with an optimal observer (vehicle 4) to 
a slanted bump input compared to that of the active (vehicle 2) and 
passive (vehicle 1) suspensions 

0.10~-----------------------------------------------------~ 

In 
C 
ro 
• .-1 

"C 
ro 
L. ...... 

0.05 

QJ o. 00 I------J 
.... 
OJ 
C 
~ 

.... -0.05 

.... 
o 
a: 

--- Active (vehicle 4) 
-------- Active tvehicle 2) 
---- Passive (vehicle 1) 

- 0 . 1 0 L-....I-.-J. __ .l.-.....l--J._..I...-.....L..---I __ ..I...--L. __ L..-...1---L._J..........I-.--L_.l.-.....L..---I---J 

o 2 4 6 8 10 

Time (seconds) 

Figure 4.15: Roll response of the vehicle with an optimal observer (vehicle 4) to 
a slanted bump input compared to that of the active (vehicle 2) and 
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Table 4.3: Response characteristics of the vehicle with an optimal observer (vehicle 
4) to a slanted bump input compared to that of the active (vehicle 2) 
and passive (vehicle 1) suspensions 

% Improvement 

vehicle 1 vehicle 4 vehicle 2 vehicle 4 

Peak Force Transmitted (N) 928.98 753.14 34.55 18.93 

J~ ql(4)'2 + (j,2 + z'2)dt .0181 .0074 79.56 59.12 

J~ q2(~2 + 02 + i 2)dt .9338 .2364 87.30 74.68 

J~ q3(z~2 + Z~2 + z~ + z~2)dt .0028 .0022 14.29 21.43 

J~( q4F; + qSFJamp + q6F;ct)dt .4752 .2891 52.55 39.16 

Table 4.4: Response characteristics of the vehicle with an optimal observer (vehicle 
4) to a step input compared to that of the active (vehicle 2) and passive 
(vehicle 1) suspensions 

% Improvement 

vehicle 1 vehicle 4 vehicle 21 vehicle 4 

Peak Force Transmitted (N) 2222.9 2179.4 17.68 1.96 

J~ ql (4)'2 + (j,2 + Z,2 )dt .0072 .0038 70.83 47.22 

J~ q2( ~2 + 02 + i 2)dt .2800 .1273 74.11 54.54 

J~ q3(Z~2 + z~2 + Z;2 + z~2)dt .0607 .0475 13.34 21.75 

J~( q4F; + QSFJamp + Q6 F;ct)dt .6724 .5392 16.63 19.81 
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and the active suspension without road height in its state vector. In each graph the 

peak amplitudes and residual vibrations are reduced. Specifically, for the slanted 

bump, peak bounce is reduced by 36.2%, peak roll by 43.0%, and peak pitch by 

55.8%. Roll response settles out 38.1 % faster, pitch more than 57.8% faster, and 

bounce 60.0% faster. For the step response, peak bounce is reduced by 16.3% while 

peak pitch is reduced by 52.5%. The settling time for the step response is 70.5% 

faster for bounce and more than 66.7% faster for pitch. 

Tables 4.3 and 4.4 show that the suspension using the optimal observer results 

in significant improvement over the passive suspension yet not as good as the fully 

active suspension. It can be concluded based on these simulations that an active 

suspension using an optimal observer is capable of giving good performance com

pared to a passive suspension even when all state variables are not available to be 

measured. 
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5 HYDRAULIC ACTUATORS 

The results of Chapter 4 show that an active suspension is capable of producing 

good performance even when all the state variables cannot be measured. However, 

the previous system models assumed that the actuator could produce any force of 

any magnitude in any direction and at any frequency. This chapter will include the 

dynamics of hydraulic actuators into the system models used in previous chapters 

and examine the effects of the actuators on the performance of the systems. 

Hydraulic actuators have been used in many prototype research vehicles, but 

their practicality for production vehicles is questionable due to weight, cost, main

tenance, and power usage. Figure 5.1 presents a schematic of a hydraulic actuator 

which consists of a spool valve and piston combination. These systems are typi

cally non-linear, but some success has come from deriving control strategies from 

linearizations [12,131. The system can be modeled as a first order system if the 

electro-mechanical spool valve dynamics are left out, or as a third order system if 

they are retained. 

The response characteristics of the actuator systems vary dramatically based 

on system parameters such as supply pressure, valve coefficients, piston areas, and 

volumes. Because of this, generic models are chosen in which the system is described 

using a time constant for the first order hydraulic system, and a natural frequency 
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Figure 5.1: Servo-valve and Piston system 

and damping ratio for the second order spool-valve system. The next section will 

relate these system constants to the parameters of the hydraulic system. 

5.1 Hydraulic Equations of Motion 

Figure 5.1 presents the four way spool valve and piston combination used in 

this section. Electro-mechanical spool valve dynamics and leakage across the piston 

are neglected. The flow rates in the valve are given by 

eXI Vlp6 - PI I sign(P6 - PI) 

eX2 VIPI - Po I sign(PI - Po) 

(5.1) 

(5.2) 
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cX3Jip., - P2i sign(p-, - P2) 

cX4Jlp2 - Pol sign(p2 - Po) 

(5.3) 

(5.4) 

where for x 2: 0, Xl = X4 = X and X2 = X3 = 0; and for x < 0, Xl = X4 = 0 and 

X2 = X3 = -x. Applying continuity to the control volumes, Vl and V2, gives 

QI - Q2 - VI. 4.' 
{fPI + . PYP 

Q3 - Q4 V2 . 4.' 
j3P2 -. PYP 

rearranging these gives the differential equations for pressure, 

PI 

P2 

The force output from the piston is 

~ (QI - Q2 - ·4.PYp) 

~2 (Q3 - Q4 + ApYp) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

A linear form of these equations is made by using load pressure, PL = Pl - P2, 

and assuming x 2: O. Thus, Q2 = Q3 = O. Assuming Po = a and p., - Pl = P2 gives 

equal flow rates. 

(5.10) 

Assuming equal volumes and small changes in volume about Va = VI + V2 gives 

(5.11) 

The linearized forms of equations 5.10 and 5.11 are 

QL Ip" - PLO cXo 
- C X - PL 

2 2J2(P6 - PLO) 
( 5.12) 

2{3 . 
PL - Vo (QL - ApYp) ( 5.13) 
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The final linear equation for pressure is 

where 

2J2(p, - PLO) 

2{3 

Vo 

The transfer function between output force and spool-valve position is 

Fout _ klk3 Ap 

x S + k2k3 

(5.14) 

( 5.15) 

(5.16) 

(5.17) 

(5.18) 

Assuming a linear relationship between desired force and valve position and a steady 

state error of zero, 

(5.19) 

where 

k -~ 
U - klA.p (5.20) 

The overall transfer function for force reduces to the first order system, 

Fout 1 
Fdes = 'hS + 1 

(5.21 ) 

where the time constant is 

(5.22) 

To include servo-valve dynamics it is assumed that the transfer function for valve 

opening to force desired is second order [11,13] and 

x kv 
(5.23) 
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Substituting this into equation 5.18 and assuming zero steady state error gives 

kv = W~k2 
klAp 

The transfer function for force output compared to force desired is 

(5.24) 

(5.25) 

5.2 Effects of Actuator Dynamics on Suspension Performance 

If both hydraulic and electro-mechanical dynamics are included in a linear 

hydraulic actuator model, a third order system is obtained. As previously shown, 

the hydraulic portion is a first order system and the electro-mechanical spool valve 

is a second order system. In order to understand the effects of these components 

on the performance of the active suspensions, first and second order systems will 

be examined separately in the active model with the optimal observer. In this way, 

the sensitivity of system performance to the time constant in the first order case, 

and the natural frequency in the second order case can be studied. Because this 

model is linear, this type of analysis will give a good feel for the combined effects 

of these actuator parameters on the total system performance. This is because the 

system performance is limited primarily by the weakest link, that being either the 

hydraulics or the electro-mechanical components if in fact the actuator degrades 

the system. If the actuator has better response characteristics, i.e., higher response 

frequencies, than called upon by the control system, then the control system is the 

limiting system not the actuator. 

This section examines a generalized first order actuator and will show the 

effects of the time constant of the actuator on the active suspension performance. 
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The transfer function for a first order system is 

Fout 1 

Fdes = ThS + 1 
(5.26) 

It is assumed that the actuator system parameters are fixed and its state variables 

can not be measured, and therefore can not be used as a feedback variable. The 

first order actuator model is included in the active suspension vehicle model with 

the optimal observer as used in Chapter 4. 

Figures 5.2, 5.3, and 5.4 show frequency response plots for Th of 1, 0.1, and 

0.01 seconds. These plots show that at a time constant of 1 second, the frequency 

response is very similar to that of the passive suspension shown in Figure 3.9, and 

that at 0.01 seconds, the frequency response is nearly as good as that of the active 

suspension with the optimal observer shown in Figure 4.10. 

To demonstrate the effects of first order dynamics on suspension performance, 

the time constant of the actuators is varied from .01 to 1 seconds and the vehicle is 

simulated over the slanted bump road profile. Figure 5.5 shows the percentages of 

the improvements possible using ideal actuators in peak roll, pitch and bounce and 

Figure 5.6 shows the cost functions. 

The results of this section show that for an actuator with time constant less 

than about 0.1 seconds, the performance curves flatten out. Thus, further decreas-

ing the actuator time constant will not greatly improve performance. However, 

increasing the time constant above 0.1 seconds does dramatically decrease suspen-

sion performance. 

This section examines the influence of a general second order actuator system 

and will show the effects of the natural frequency of the actuator on the active 
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Figure 5.2: Bounce frequency response for varying phase angles between front and 
rear tires of the active suspension with a first order actuator (Th = 1) 
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Figure 5.3: Bounce frequency response for varying phase angles between front and 
rear tires of the active suspension with a first order actuator (Th = 0.1) 



f- 5 
~ 

es 3 

~ 2 
2 
~ 
~ 0 

58 

~0.1~-rnTmr-;~~1I 
FR 1. 0 

EOUENCY OF INPUT 10.0 I 

Figure 5.4: Bounce frequency response for varying phase angles between front 
and rear tires of the active suspension with a first order actuator 
(Th = 0.01) 

suspension performance. The transfer function for a second order force actuator is 

( 5.27) 

Again, it is assumed that the actuator state variables can not be used as feedback 

state variables. This actuator model is included in the active suspension vehicle 

model with the optimal observer as used in Chapter 4. 

Frequency response plots for Wn of 0.5,2, and 10 Hertz are shown in Figures 5.7, 

5.8, and 5.9. These plots show that at a natural frequency of 0.5 Hertz the frequency 

response is very similar to that of the passive suspension shown in Figure 3.9, and 

that at 10 Hertz the frequency response is nearly as good as that of the active 

suspension shown in Figure 3.10. 

The results of several simulations are examined to investigate the effects of 
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Figure 5.7: Bounce frequency response for varying phase angles between front 
and rear tires of the active suspension with a second order actuator 
(wn = 0.5) 

second order dynamics on suspension performance. The natural frequency of the 

actuators is varied from .5 to 20 Hertz with critical damping and the vehicle is 

simulated over the slanted bump road profile. The percentages of the improve-

ments possible using ideal actuators in peak roll, pitch, and bounce are shown. in 

Figure 5.10 and the cost functions are shown in Figure 5.11. 

The results of this section demonstrate the effects of actuator natural frequency 

on suspension performance. At frequencies below about 1 Hertz, the performance 

is not significantly improved over the passive suspension. Above 10 Hertz, further 

improvement is not possible. This is not surprising since the bounce, pitch and roll 

natural frequencies are at values of 1.38 Hz, 0.91 Hz, and 1.31 Hz respectively, which 

corresponds to the rapid improvement found as the actuator frequency passes these 

lower natural frequencies. Also, the front and rear wheel hop natural frequencies 
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Figure 5.8: Bounce frequency response for varying phase angles between front 
and rear tires of the active suspension with a second order actuator 
(wn = 2) 
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Figure 5.9: Bounce frequency response for varying phase angles between front 
and rear tires of the active suspension with a second order actuator 
(wn = 10) 
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are 6.46 Hz and 8.71 Hz respectively, which corresponds to the upper limit of im

provement found around 10 Hz. This would indicate as expected that the natural 

frequency of the actuator need not be significantly larger than the highest natural 

frequency of the system being controlled to obtain performance close to that of an 

ideal actuator. 



64 

6 VARIABLE DAMPING SEMI-ACTIVE ACTUATORS 

The results of Chapter 5 show that an active suspension with a hydraulic actu

ator is capable of producing significant increases in ride performance as compared 

to the passive system. This chapter will investigate semi-active actuators which use 

variable dampers to generate forces. These systems require fewer components than 

hydraulic actuators and require very little external power to operate and therefore 

seem a more feasible option for production vehicles. 

6.1 On/Off Damper 

One type of suspension in the category of semi-active suspensions is a damper 

that will remove energy from the system but not impart energy to the chassis. The 

energy imparted per unit time by a force is defined as 

Energy /time = Force· Velocity 

If the force is from a damper, 

Force = -c X Relative Velocity 

(6.1 ) 

(6.2) 

Therefore, the criterion for turning on the damper is if the energy imparted to the 

chassis is negative, or 

(-c x Relative Velocity) . Velocity < 0 (6.3) 
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Road 

Si 

Figure 6.1: Block diagram of on/off suspension system applied to a two degree of 
freedom model of a vehicle 

then the damping is switched on. Otherwise the damper is switched to a very low 

damping condition. 

This scheme requires the measurement of relative velocity of the suspension and 

the absolute velocity of the chassis attachment point, a difficult variable to measure. 

However, the control system is less complex than a fully active suspension and the 

individual suspensions are independent from one another. Figure 6.1 presents a 

block diagram of the system. 

A frequency response analysis as used previously is impossible for this system 

because of its non-linearity. Therefore, this system will be studied using two differ

ent time responses for the worse cases defined earlier, that being the slanted bump 

in Figure 3.9 and the step in Figure 3.10. 
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Figure 6.2: Bounce response of the vehicle with an on/ off suspension system (vehi
cle 5) to a slanted bump input compared to that of the passive (vehicle 
1) and active (vehicle 2) suspensions 

The seven degree of freedom vehicle model with on/off dampers with the same 

damping rate as the passive suspension is simulated over the slanted bump and step 

road profiles. Figures 6.2, 6.3 and 6.4 show the bounce, pitch and roll responses of 

the vehicle with on/off dampers (vehicle 5) to the slanted bump input compared 

with the passive and active suspensions, and Table 6.1 lists the response parameters. 

Figures 6.5 and 6.6 show the bounce and pitch responses and Table 6.2 lists the 

response parameters for the step. 

The on/off damper gives a limited improvement in peak bounce, pitch and roll 

for the case of the slanted bump, but gives a dramatic increase in performance for 

the step. Note the 40% improvement in peak force transmitted in Table 6.2 for 

the step. This great improvement is due to the high suspension velocities imparted 

during the step which give high damping forces for the passive case but which do 



*10-3 

8 

III 6 c: 
10 ..... 

4 u 
10 
L 2 
~ 

Ql 0 
r-I 
CI 

-2 c: 
<t 

.r: -4 
u 
+J -6 ..... 
a. -8 

0 

Figure 6.3: 

2 

67 

4 

--- On/off tveh1cla 5) 
•••••••• Active (vehicle 2) 
---- Paasive (vehicle 1) 

6 8 

Time (seconds) 

10 

Pitch response of the vehicle with an on/off suspension system (vehicle 
5) ·to a slanted bump input compared to that of the passive (vehicle 
1) and active (vehicle 2) suspensions 

O. 10~--------------------------------------~ 

III 
c: 
10 ..... 0.05 
u 
10 
L 
~ 

Ql 0.001----
r-I 
CI 
c: 
<t 
r-I -0.05 
r-I 
o 
a: 

o 

I 
\I 

2 4 

--- On/off (vehicle 5) 
•••••••• Active (vehicle 2) 
---- Passive (vehicle 1) 

6 8 

Time (seconds) 

10 

Figure 6.4: Roll response of the vehicle with an on/off suspension system (vehicle 
5) to a slanted bump input compared to that of the passive (vehicle 
1) and active (vehicle 2) suspensions 
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Table 6.1: Response characteristics of the vehicle with an on/off suspension system 
(vehicle 5) to a slanted bump compared to that of the active (vehicle 
2) and passive (vehicle 1) suspensions 

[[ 1 5 

% Improvement 

2 I 5 [I [[ VelUcie 

I 

I 
I 

Peak Force Transmitted (N) 928.98 822.81 I 34.55 11.43 

J~ ql (¢P + (}'2 + Zl2 )dt .0181 .0155 I 79.56 14.36 

J~ q2(1)2 + 82 + i 2)dt .9338 .7189 
I 

87.30 I 23.01 

J~ q3(Z~ + Z~2 + Z~2 + z~2)dt .0028 .0029 I 14.29 -3.57 

J~( q4F•2 + qSFJamp + Q6F;ct)dt I .4752 .4122 I 52.55 13.26 

0.10 
r- -- On/aff (vehicle 5) 
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0.08 ~ ---- Passive (vehicle 1) 

III I-
L 
QJ 0.06 r-
+J ~ 

QJ 
E 
~ 0.04 r-

QJ I-
u 
c 0.02 :-
::J 
0 
OJ - J 0.00 

I-
-0.02 I I I I 

0 2 4 6 8 10 
Time (seconds) 

Figure 6.5: Bounce response of the vehicle with an on/off suspension system (ve
hicle 5) to a step input compared to that" of the passive suspension 
(vehicle 1) 
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Figure 6.6: Pitch response of the vehicle with an on/ off suspension system (vehicle 
5) to a step input compared to that of the passive suspension (vehicle 
1) 

Table 6.2: Response characteristics of the vehicle with an on/off suspension system 
(vehicle 5) to a step input compared to that of the active (vehicle 2) 
and passive (vehicle 1) suspensions 

II 1 5 

% Improvement 

2 I 5 II II Vehicle 
I 

[ Peak Force Transmitted (N) I 2222.9 1347.5 17.68 39.98 

I J~ ql( qP + (}12 + Zl2)dt .0072 .0038 70.83 47.22 

I J~q2(~2+82+i2)dt .2800 .0705 74.11 74.82 
I J~ q3( z~ + z~2 + z~2 + Z~2 )dt .0607 .1085 13.34 -78.75 

J~( q4 F; + qSFJamp + qsF;ct)dt .6724 .6943 16.63 -3.26 
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Figure 6.7: Bounce response of the vehicle with an on/off suspension system hav
ing twice the damping (vehicle 7) to a slanted bump input compared to 
that of the passive suspensions (vehicle 1 and vehicle 6, twice damping) 

not give damping force when the on/off damper is in the system. 

Doubling the damping rate and simulating both the vehicle with the on/off 

suspension (vehicle 7) and the vehicle with the passive suspension (vehicle 6) result 

in Figures 6.7 to 6.11 and Tables 6.3 and 6.4. While in both cases, doubling the 

damping ratio reduces peak sprung mass vibration and settling time significantly, 

the passive suspension with increased damping gives a peak force 40% higher than 

the original passive suspension for the step. The on/off damper, however, decreases 

peak force transmitted by 31 % relative to the original passive system. Again, the 

step responses in Figures 6.10 and 6.11 show remarkable vibration isolation for the 

onloff damper. 

The results of this section show that in traditional passive systems, increasing 

damping rates improves the low frequency ride performance, but results in a hard 
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Figure 6.9: Roll response of the vehicle with an on/off suspension system having 
twice the damping (vehicle 7) to a slanted bump input compared to 
that of the passive suspensions (vehicle 1 and vehicle 6, twice damping) 
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Table 6.3: Response characteristics of the vehicle with an on/off suspension sys
tem having twice the damping (vehicle 7) to a slanted bump input 
compared to that of the passive suspensions (vehicle 1 and vehicle 6, 
twice damping) 

Vehicle 

Peak Force Transmitted (N) 

I~ ql(4P + 8'2 + Zl2)dt 

I~ q2(~2 + i)2 + i 2)dt 

I~ q3(z~2 + Z~2 + z~ + z~2)dt 
I~(q4Fa2 + qsFJamp + q6Fa~t)dt 

0.10 

0.08 
11) 

c.. 
w 0.06 
+I 
Q) 

E 
0.04 

Q) 

u 
c 0.02 
:J 
0 
m 

0.00 

-0.02 
a 

(\ 

f."\ 
I 

.\ , 
I 
I 
I 
I 
I 
I 
I 
I 
I 

"\ 

2 

I % Improvement 

1 6 i 7 6 I 7 
I 

928.98 897.72 I 773.52 3.36 16.73 

.0181 .0083 I .0069 54.14 1 61.88 

.9338 .5130 I .2889 45.06 69.06 

.0028 .0022 I .0024 21.42 14.29 

.4752 .3495 1 .2801 26.45 I 41.06 ! 

-- On/at't (vehicle 7) 
-------- passive (vehicle 6) 
---- Psssive (vehicle 1) 

/-.. 
.... -- ... 

4 6 8 10 

Time (seconds) 

il 
; 

Ii 
! 

Figure 6.10: Bounce response of the vehicle with an on/off suspension system hav
ing twice the damping (vehicle 7) to a step input compared to that of 
the passive suspensions (vehicle 1 and vehicle 6, twice damping) 
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Figure 6.11: Pitch response of the vehicle with an onloff suspension system having 
twice the damping (vehicle 7) to a step input compared to that of the 
passive suspensions (vehicle 1 and vehicle 6, twice damping) 

Table 6.4: Response characteristics of the vehicle with an on/off suspension system 
having twice the damping (vehicle 7) to a step input compared to that 
of the passive suspensions (vehicle 1 and vehicle 6, twice damping) 

I ! i % Improvement 

Vehicle 1 6 7 6 I 7 

Peak Force Transmitted (N) 2222.9 3132.0 1548.2 I -40.90 30.75 I 
J~ ql (¢/2 + (j/2 + Zl2 )dt I .0072 .0042 .0051 I 41.67 I 29.17 ! 

I 
\ 

J~ q2( ¢2 + 82 + i 2)dt .2800 .1931 .0374 I 31.04 I 86.64 i 
I I I 

J~ q3(Z~2 + Z~2 + Z~2 + z~2)dt .0607 .0321 .0673 47.12 I -10.87 I 
I 

J~( q4F•2 + q5 FJ .. mp + q6 F;ct)dt .6742 .8401 
I 

1.0233 -24.94 -52.19 
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or harsh ride demonstrated by the high force transmitted by vehicle 6. Therefore, 

increasing the damping is not traditionally used to improve low frequency ride. The 

on/off damper however, permits the use of increased damping rates without allowing 

high frequency inputs through the system. This is demonstrated in all simulations 

where peak transmitted force is reduced for the on/off suspension compared to 

passive systems especially for high frequency inputs. Therefore, with an on/off 

suspension, increased damping rates can be used to improve ride, without increasing 

transmitted force, and resulting in a less harsh ride than a passive suspension with 

the same increased damping rate. 

6.2 Active Damper 

An active damper, as described in Section 2.3, is capable of absorbing energy 

only. However, its output force is varied continuously by changing the damping 

rate from a value of zero to infinity. The most popular systems use a continuously 

variable orifice size in a damper. 

When using this scheme, the damping force must be zero when the force desired 

is in a direction opposite to the force available. If, however, the force desired is in 

the same direction as the force available, then the output force is equal to the force 

desired if an instantaneous damping change response is assumed. 

Again, the frequency response is not possible due to the nonlinearities of this 

system. Therefore this system will be investigated using time responses. The seven 

degree of freedom vehicle model with active dampers (vehicle 8) is simulated over 

the slanted bump and step road profiles. Figures 6.12, 6.13 and 6.14 show the 

bounce, pitch and roll responses of the on/off damper to the slanted bump input 
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Figure 6.12: Bounce response of the vehicle with an active damper (vehicle 8) 
suspension system to a slanted bump input compared to that of the 
passive (vehicle 1) and active (vehicle 2) suspensions 

compared with the passive suspension, and Table 6.S lists the response parameters. 

Figures 6.15 and 6.16 show the bounce and pitch responses and Table 6.6 lists the 

response parameters for the step. 

The simulation results show that this particular active suspenSIOn gives im-

proved low frequency ride response as compared to the passive suspension, but not 

as improved as the ideal active suspension. In each graph the peak amplitudes and 

residual vibrations are greatly reduced. Specifically, for the slanted bump, peak 

bounce is reduced by 17.3%, peak roll by 36.2%, and peak pitch by 32.7%. Roll 

response settles out 52.4% faster, pitch 71.1 % faster, and bounce 66.2% faster. For 

the step response, peak bounce overshoot is reduced by 12.5% while peak pitch is 

reduced by 52.5%. The settling time for the step response is 67.2% faster for bounce 

and 68.9% faster for pitch. 
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Figure 6.14: Roll response of the vehicle with an active damper (vehicle 8) suspen
sion system to a slanted bump input compared to that of the passive 
(vehicle 1) and active (vehicle 2) suspensions 
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Table 6.5: Response characteristics of the vehicle with an active damper (vehicle 
8) suspension system to a slanted bump input compared to that of the 
active (vehicle 2) and passive (vehicle 1) suspensions 

II 1 8 

% Improvement 

2 I 8 II Vehicle 

Peak Force Transmitted (N) 928.98 792.91 I 34.55 14.65 

J~ q1 (1)12 + ()12 + Zl2)dt .0181 .0073 I 79.56 59.67 i 
I 

J~ q2(<i>2 + ()2 + i 2)dt .9338 .2880 i 87.30 69.16 II : I. 

~t q (zl2 + zI2 + z/2 .J.... Zl2)dt .0028 .0021 i 14.29 25.00 !i 03123'4 I 

J~(q4F62 + q5FJamp + qsF;ct)dt 
I 

.4752 .2725 I 52.55 42.66 I II 

0.10 
-- Active Camper (vehicle B) 
-------- Act1ve (vehicle 2) 

0.08 ---- Passive (vehicle 1) 

III 
L 
al 0.06 
+J 
al 
E -- 0.04 

al 
u 
c: 0.02 
:J 
0 
II! 

0.00 

-0.02 
0 2 4 6 8 10 

Time (seconds) 

Figure 6.15: Bounce response of the vehicle with an active damper (vehicle 8) 
suspension system to a step input compared to that of the passive 
(vehicle 1) and active (vehicle 2) suspensions 
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Figure 6.16: Pitch response of the vehicle with an active damper (vehicle 8) suspen
sion system to a step input compared to that of the passive (vehicle 
1) and active (vehicle 2) suspensions 

Table 6.6: Response characteristics of the vehicle with an active damper (vehicle 
8) suspension system to a step compared to that of the active (vehicle 
2) and passive (vehicle 1) suspensions 

II 1 8 

% Improvement 

2 I 8 II vehlele 

Peak Force Transmitted (N) 2222.9 2237.1 17.68 -0.64 

J~ ql (¢P + ()'2 + Z,2 )dt .0072 .0040 70.83 44.44 

I 
! 
, 
I 

J~ q2(4)2 + 82 + i 2)dt .2800 .1475 74.11 47.32 i 

J~ q3(Z? + Z~2 + Z~2 + z~2)dt .0607 .0453 13.34 25.37 I 
J~(q4F; + qSFjamp + Q6 F;ct)dt .6724 .5209 16.63 22.53 ! 



79 

This section indicates that an active suspension with an active damper as its 

actuator is capable of giving significant improvement in ride over a passive suspen

sion system and has the advantage of requiring very little external power to operate. 
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7 CONCLUSIONS 

Using a linear seven degree of freedom model, this thesis examined the ride 

improvements that can be obtained using active suspension systems. Each system 

was evaluated using frequency response and/or simulation for specific worst case 

road profiles. The results are summarized below for each system studied in this 

thesis. In order to quantify the comparisons of the improvement of each suspension 

type, comparisons are made using the percent improvement in the sum of the four 

cost integrals for the slanted bump. This does not give a complete evaluation of 

each system, and therefore other important findings are also summarized. 

1. The vehicle with full state variable feedback (vehicle 2) improves the sum 
of the cost integrals 75.5%. 'While vehicle 3 gives slightly better improve
ment, the vehicle with full state feedback has the least force transmitted, 
peak bounce, peak roll, and settling times of all the vehicles which indicates 
this vehicle gives the best improvement in ride. 

2. The vehicle with road height removed from the state vector (vehicle 3) im
proves the sum of the cost integrals by 76.0%. Other measures of vehicle ride 
for this vehicle show slightly less improvement than those for vehicle 2, but 
are much improved over the other vehicles. 

3. The optimal observer used to reconstruct the state vector based on relative 
suspension deflections (vehicle 4) reduces the cost integral by 62.6% over the 
passive system. The improvement in peak vibrations and settling times is 
slightly less than that of vehicles 2 and 3, but still much improved over the 
passive system. 
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4. A linearized first order model of an hydraulic actuator included in the optimal 
observer model gives performance very similar to vehicle 4 when the time 
constant is below 0.1 seconds. A linearized second order model of an hydraulic 
actuator gives similar performance when its natural frequency is above 10 
Hertz. If the time constant is less than 0.1 seconds or the natural frequency 
of the actuator is above 10 Hertz, then the dynamics can be neglected since 
they only slightly effect the results. 

5. On/off damping (vehicle 5) gives a 19.6% improvement in cost integrals for 
baseline damping constants and a 33.8% improvement for two times the base
line damping ratio (vehicle 6). Advantages of on/off damping include the 
simplicity of the system and that the system requires very little external 
power to operate. Not shown by the slanted bump input is the ability of 
the onloff damper to remove high frequency inputs. This was demonstrated 
by the step response in which the on/off damper dramatically improved the 
ride performance compared to the passive system. 

6. The vehicle with active dampers (vehicle 8) gives a 60.1 % improvement in 
the total cost integral over the passive suspension. An advantage of active 
damping is that little external power is required to achieve ride performance 
comparing well to that of an ideal actuator. 

This thesis has demonstrated that realistic active and semi-active suspension 

systems are capable of significantly improving the ride performance of the vehicle. 

The on/off damper system and the optimal observer system with either hydraulic 

or active damping actuators are capable of producing improved suspension perfor-

mance. It remains to be seen, however, whether these are practical for produc

tion vehicles when the cost, reliability, and energy consumption of the systems are 

weighed against the improvements possible. 
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9 APPENDIX A - PARAMETERS USED IN THIS THESIS 

a - 0.945 m ql - 10 

b - 1.718m q2 - 7.5 

cJ 348 N s/m q3 - 50 

C'I' 782 N s/m q4 - 5(10t7 

I;r: - 438 kgm2 
qs = 5(10t7 

Iy - 2337 kgm2 q6 - 5(10t7 

kJ - 12480 N/m q7 - 1(10t1O 

k'l' - 15730 N/m tf - 1.512 m 

k t - 240000 N/m t'l' - 1.470 m 

lvI6 876 kg tij2 - 1(10t6 

lvII 153 kg -2 6.375(10t7 - Z'I' -

lvI2 - 85 kg 

lvI3 153 kg 

lvI4 - 85 kg 
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10 APPENDIX B - FEEDBACK GAIN MATRICES 

Feedback gain matrix for 18 state variable feedback( type-2): 

2022.396 1912.242 -2021.458 -1910.420 

-3363.783 2742.049 -3354.376 2754.662 

4744.883 4374.338 -4782.329 -4363.217 

-10900.107 8062.379 -10899.791 8139.961 

7234.908 4965.373 7273.676 4898.856 

2777.987 1576.832 2774.325 1566.049 

-3934.736 -1860.419 -722.245 1264.983 

-128.475 45.490 9.270 -27.113 

-2553.258 -5121.686 1727.217 -621.449 
Kr= 

33.799 22.884 -21.366 3.034 

-541.012 935.651 -2911.566 -1339.031 

10.244 -25.957 -11.093 43.059 

1734.301 -621.806 -2547.096 -5115.795 

-21.161 3.032 34.294 22.842 

2091.156 -2408.671 2208.658 -2270.185 

-2089.261 2410.527 -2210.080 2268.396 

2223.728 -2278.723 2108.987 -2395.426 

-2225.620 2276.866 -2107.561 2397.216 
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Feedback gain matrix for 14 state variable feedback 

(types-3, 4 and 9): 

2022.396 1912.242 -2021.458 -1910.420 

-3363.783 2742.049 -3354.376 2754.662 

4744.883 4374.338 -4782.329 -4363.217 

-10900.107 8062.379 -10899.791 8139.961 

7234.908 4965.373 7273.676 4898.856 

2777.987 1576.832 2774.325 1566.049 

-3934.736 -1860.419 -722.245 1264.983 
K .. = 

-128.475 45.490 9.270 -27.113 

-2553.258 -5121.686 1727.217 -621.449 

33.799 22.884 -21.366 3.034 

-541.012 935.651 -2911.566 -1339.031 

10.244 -25.957 -11.093 43.059 

1734.301 -621.806 -2547.096 -5115.795 

-21.161 3.032 34.294 22.842 
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Columns 1 through 4 of optimal observer feedback gain matrix for 

14 state variable feedback (types-3, 4 and 9): 

-1.630 8.501 -2.008 8.111 

0.675 -2.305 -0.921 4.028 

-0.088 1.884 -0.154 1.924 

0.046 -0.710 -0.062 0.980 

-0.086 1.470 -0.083 1.197 

-1.349 5.798 -1.200 5.500 

-0.667 3.443 -0.066 1.721 
Ke= 

-3.342 -1239.082 -1.762 6.743 

0.001 1.718 -0.692 4.206 

-1.393 7.003 -4.350 -2229.262 

-0.022 0.744 0.042 -1.189 

-0.728 0.695 1.136 -3.462 

0.007 -1.188 -0.026 1.498 

1.002 -3.434 -1.277 5.494 
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Columns 5 through 8 of optimal observer feedback gain matrix for 

14 state variable feedback (types-3, 4 and 9): 

1.630 -8.501 2.008 -8.111 

0.675 -2.305 -0.921 4.028 

0.088 -1.884 0.154 -1.924 

0.046 -0.710 -0.062 0.980 

-0.086 1.470 -0.083 1.197 

-1.349 5.798 -1.200 5.500 

-0.022 0.744 0.042 -1.189 

-0.728 0.695 1.136 -3.462 

0.007 -1.188 -0.026 1.498 

1.002 -3.434 -1.277 5.494 

-0.667 3.443 -0.066 1.721 

-3.342 -1239.082 -1.762 6.743 

0.001 1.718 -0.692 4.206 

-1.393 7.003 -4.350 -2229.262 
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11 APPENDIX C - SYSTEM EQUATIONS AND MATRICES 

Equations of motion: 

Fa FI + kf(ZI - Za) + cf(i l - Za) 

Fb F2 + k,,(Z2 - Zb) + C,,(Z2 - Zb) 

Fe - F3 + k f (z3 - Zc) + Cf(Z3 - Zc) 

Fd F4 + k,,(Z4 - Zd) + c,.(Z4 - Zd) 

Ftl kt(Zlf-ZI) 

Ft2 - kt(zl,. - Z2) 

Ft3 - kt(Z,.f - Z3) 

Ft4 - kt(z,.,. - Z4) 

if 
Za - z..l- -¢ - a() , 2 

i,. 
Zb = z + "2¢ + b() 

tf 
Zc = Z - -¢ - a() 

2 
i,. 

Zd = Z - -¢ + b() 
2 

Za = 
if . . 

.i -l- -¢ - a() , 2 
i· • 

Zb = Z + ~¢ + b() 
2 
tf . . 

Zc = Z - -¢ - a() 
2 
t· . 

Zd = .i - ~¢ + b() 
2 
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First four columns of A matrix 

-cft! - c .. t; 
21:1: 0 

-kft! - k .. t; 
21,1: 0 

0 -cfa2 
- c .. b2 

0 - k l.a2 
- k .. b2 

Iy ly 
1 0 0 0 

0 1 0 0 

0 0 0 0 

0 2{ac~ bc .. ) 
1. 0 2(ak~ bk .. ) 

1. 
0 0 0 0 

~'Ni -acf ;~~ -akf 
~ ~ 

A= 0 0 0 0 

4];/2 ~ t k ~ 1 2 2'Ji;1~ 
0 0 0 0 

-tfCf 
-M:l. -,/<1l. -Xl:l. ~ 1 . 3 

0 0 0 0 

-t C -m: iJ: -t k 
2M: ~ 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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Columns 5 through 11 of the A matrix 

0 0 t~;f tfcf t,.k,. t,.c,. -Jfkf 
2I; 2l; 2I; :r: :r: 

2akt - bk,. 2act - bc,. -ikt -lCt bk,. ~ -Ikf 
Iy Iy y y T; y y 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 1 0 0 0 0 0 

2-ki;:- k,. -c,- c,. it it k it it 2 Af8 it {If If If If If If 

0 0 0 1 0 0 0 

kf cf -kf - kt -cf 0 0 0 XI; ~ NIl 7VT; 

0 0 0 0 0 1 0 

-h; if; 0 0 -k - kt 
112 

-c 
NY: 0 

0 0 0 0 0 0 0 

kf cf 0 0 0 0 
-kf - kt 

XI; M; AI3 

0 0 0 0 0 0 0 

-It it 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
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Columns 12 through 18 of the A matrix 

-tfcI -iJkr -t.,.~ 0 0 0 0 2 z 2r;-z -IC! bk.,. be.,. 0 0 0 0 -r;; 1; y 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

-Jt it -it 0 0 0 0 
If If 

0 0 0 0 0 0 0 

0 0 0 k it 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 k if; 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 k 
if; 0 

0 0 1 0 0 0 0 

0 0 0 0 0 0 it 
0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
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The BI matrix: 

it t ~ -t 
it 2 :r 2t 

-a b -a b 
T; Ty T; Ty 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 1 1 1 
M; M; M; M; 

0 0 0 0 

-1 0 0 0 M; 

0 0 0 0 
BI = 

0 -1 0 0 
~ 

0 0 0 0 

0 0 -1 0 M; 

0 0 0 0 

0 0 0 -1 
lJ; 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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The B2 matrix: 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

B2 = 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 
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Columns 1 through 14 of the D matrix: 
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Columns 15 through 18 of the D matrix: 

0 0 0 0 

0 0 0 0 

-1 -1 1 1 
1Ij 2T,:" 1Ij 24 
-1 1 -1 1 

2(a + b) 2(a + b) 2(a + b) 2(a + b) 

-0.25 -0.25 -0.25 -0.25 

0 0 0 0 

-1 0 0 0 

0 0 0 0 

0 -1 0 0 

0 0 0 0 

0 0 -1 0 

0 0 0 0 

0 0 0 -1 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 
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Columns 1 through 7 of the C matrix: 

0 0 tf -a 1 0 -1 2 
tf 
2 -a 0 0 0 1 0 

0 0 t.,. b 1 0 0 "2" 

j b 0 0 0 1 0 
C= 

0 0 =it -a 1 0 0 

=it -a 0 0 0 1 0 

0 0 f b 1 0 0 

f b 0 0 0 1 0 

Columns 8 through 14 of the C matrix: 

0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 

0 0 -1 0 0 0 0 

0 0 0 -1 0 0 0 

0 0 0 0 -1 0 0 

0 0 0 0 0 -1 0 

0 0 0 0 0 0 -1 


