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CHAPTER 1. INTRODUCTION 

Severe challenges in the market such as shorter product life cycles, shorter re­

sponse time to market changes, increased variety and number of new products intro­

duced, and the high quality required, have forced manufacturers to look critically at 

the option of using current emerging technologies to secure a competitive edge. One 

of these technologies is the concept of flexible manufacturing systems (FMS). 

The first FMS installations began to appear in the US about 1967 [RANK 83]. 

The development and adoption of this concept have grown rapidly. FMS capabilities 

have shown promise of substantial economic advantages, e.g., reduced inventory, more 

rapid delivery of products, better quality control and less need for human intervention 

in operations. As a result, in the 1980s FMS became a national trend and several 

highly developed FMSs were installed. This is well-known as the first generation of 

manufacturing system evolution. 

Somewhat similar and yet different from conventional manufacturing systems, 

an FMS is much more complex due to its dynamic behavior and the interrelations be­

tween its various components. It is clear that traditional techniques of designing and 

analyzing conventional manufacturing systems are not applicable [WHIT 85]. The 

design analysis and the use of flexible manufacturing SY";~'-'H.S involve some intricate 

operation research problems such as general FMS design problems, FMS scheduling 



problems and FMS control problems [STEC 85]. In this study, our concern is the 

FMS design problem, i.e., determining the appropriate number of machine tools of 

each type in the system. Each of these must be accomplished as part of the design 

task. Since they all interact in complex ways, any allocation of resources for one 

manufacturing system will necessarily affect its system performance. 

To develop an appropriate FMS design solution, we need a tool which permits 

the study of the dynamic behavior of an FMS. There exist several research papers on 

modeling and evaluating an FMS quantitatively. In general, they can be classified 

into two categories - analytical (e.g., mathematical programming) and non-analytical 

(e.g., simulation) models. Instead of using the mathematical calculation, a computer 

simulation model is utilized as a design tool. Simulation models enable one to de­

scribe an FMS design and to predict its performance. In addition, simulation is able 

to calculate the same measures of system performance for hypothetical system config­

urations as are used to judge real systems. Thus, FMS designers can tryout various 

FMS configurations without actually building or controlling a system. 

Because the FMS design problems involve the complex and subtle relationships 

among many interdependent design variables as well as the randomness from the 

interarrival rate of the workparts, operation time, machine failure and repair time, 

the FMS design problem can be regarded as a discrete type stochastic combinatorial 

optimization problem. A combination of those design variables is said to be a system 

configuration. For example, Xl and X2 are the only two decision variables with respect 

to the possible number of machine centers and the buffer size, then, given a value 

of each variable, (Xb X2) is said to be a system configuration, i.e., the system is 

configurated by Xl machines and X2 buffer size. All possible system configurations 
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comprise a solution space S. The solution space grows quickly as the number of 

design variables increases. One could imagine taking a very cautious approach such an 

exhaustive search, exploring carefully each configuration and making no firm decisions 

until the whole solution space has been explored. But such an approach would 

consume more time and money than is ordinarily available for the preliminary design. 

This leads to our interest in employing a search method for finding the solutions of the 

optimization problem. The system is simulated and the performance of the design is 

estimated. This performance estimate is then used by the search method to derive a 

new design configuration. The procedure continues iteratively until the search stops. 

This iterative process is called simulation-optimization or Monte Carlo optimization 

if the problem is stochastic (see Figure 1.1). The simulated annealing and stochastic 

quasigradient methods which have recently attracted much attention are adopted as 

the search methods to be investigated. 

Simulated annealing is a randomized algorithm which searches for a globally 

optimal solution of deterministic combinatorial optimization problems. The name 

comes from an analogous procedure in statistical mechanics where the experiments 

are performed by careful annealing, i.e., first melting the material and then lower­

ing the temperature slowly to obtain the desired crystalline structures. Simulated 

annealing has seen a number of applications in large combinatorial optimization prob­

lems. However, in most applications of simulated annealing the objective function 

is assumed to be deterministic. In order to apply simulated annealing to the FMS 

design problem, certain modifications have to be made in order to compensate for 

the stochastic nature of the problem. 

Stochastic quasigradient methods (SQG) provide an alternative for solving those 
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functions where neither the functions or their gradients can be calculated analytically. 

Since direct calculation of the gradients is not possible, the alternative approach is 

to use statistical estimates of the gradients, then apply a monotonically constrained 

procedure to determine the step direction to drive the values of the decision variables 

to the optimal solution. A more detailed discussion about SQG is included in Chapter 

6. In the case of FMS design, a few modifications on SQG have been made. 

The primary effort of this research is to investigate and compare the applicability 

of simulated annealing and stochastic quasigradient methods to the improvement of 

the design of FMS. A hypothetical flexible manufacturing system is used as a testbed. 

We elected the throughput and the total cost of the system as two objective functions. 

Objective function estimates are furnished through a computer simulation model. 

Also due to the stochastic nature of the FMS, several statistical analysis procedures 

for the simulation output are included. In the study, we demonstrate how simulated 

annealing and SQG perform on the testbed and we summarize their performance in 

terms of time complexity and quality of the solutions. 
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE 

An Overview of FMS 

To cope with the increasing varieties of products and the production changes 

caused by product-mix changes and introduction of new products, flexibility and 

productivity will be required as important factors in manufacturing. The Flexible 

Manufacturing System (FMS) is a system which can meet the requirements for both 

flexibility and productivity [HUTC 79]. The" FMS concept was originally developed 

within the context of machining pieces of parts. The details on development of the 

basic concept of a flexible manufacturing system can be found in [RANK 83]. Basi­

cally, an FMS consists of computer numerically controlled machines where production 

operations are performed, linked by a material handling system, operating as an in­

tegrated system under the direction and control of a central computer. 

Unlike conventional manufacturing systems, the problems associated with flex­

ible manufacturing systems are far more difficult since it is more integrated and 

complex. These problems can be classified into four categories - planning, schedul­

ing, control, and design [STEC 85]. Numerous studies have been conducted on those 

categories [KUSI 86]. As discussed in [KUSI 86], any decision made at the design 

stage has critical impact on the system management and operations since the de­

sign which finally emerges will impose constraints on how the FMS can or should be 
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controlled. 

The design of an FMS begins with a survey of the manufacturing requirements of 

the products with a view to identifying the range of parts which should be produced 

on the FMS [KLAH 81). Then the basic design concept must be established. There 

are two basic elements of FMS design - product design and system design (Figure 2.1) 

[KUSI 86]. In designing an FMS, there is a partial ordering to some of the decisions 

that have to be made, i.e., some decisions must precede others in time. [STEC 86] 

partitions these decisions into initial specification decisions and subsequent imple­

mentation decisions. [BUZA 86] also proposed a general process for the FMS design 

problem. They categorized the FMS design process into two hierarchical stages: es­

tablishing the basic design and the detailed design. At the basic design stage the 

function, capability and number of each type of work station, the type of material 

handling system and the type of storage should be determined. At the detailed de­

sign stage it will be necessary to determine such aspects as the required accuracy of 

machines, tool changing systems, etc. Then the number of transporting devices, the 

number of pallets, and the capacity of central and local storage must be determined. 

In order to analyze and evaluate the behavior and performance of an FMS, mod­

els and performance measures for describing FMSs are needed. Moreover, models are 

useful to give the designer insight into the technical issues described above. Measures 

of performance such as utilization, system throughput, work in process, flow time, 

average queue length, return on investment and net present value are typically used 

as criteria for evaluating an FMS [SURI 85]. 

It is not likely that a single model can be used to fully describe its behavior 

since an FMS is a complex system, consisting of many interconnected components of 
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Figure 2.1: The content of FMS design 

software and hardware. In general, those models for evaluating the performance of an 

FMS could be divided into two sets: analytical and non-analytical models. Analytical 

models always address a small subset of design issues. Thus while applying analytical 

models for an FMS design, we have to decide how to structure the problem first. That 

means they require simplifying assumptions in order to solve the problems. Many 

studies on the development of analytical models of FMS have used queueing network 

theories for performance evaluation and mathematical programming or control theory 

for deriving scheduling and operating procedures. [BUZA 86] provided a sufficient 

review of the recent work on the development of analytical models. 

Beyond a certain level of detail, the mathematics of the analytical approaches 

becomes intractable. Consequently, non-analytical models such as simulation and ar­

tificial intelligence (AI) become the necessary tools. AI methods are based on expert 

simulation systems [SHAN 84]. Several applications of AI on manufacturing have 
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been addressed and published. Perhaps the most welcome technique for evaluating 

system design alternatives is computer simulation [CHEN 85]. By simulating the dy­

namic behavior of a real system with a model, and analyzing data from the model, 

the characteristics of the real system can be identified. Moreover, more detailed and 

accurate estimates of the performance of an FMS can be obtained from simulation. 

However, it takes more effort to develop a simulation model than utilizing an ana­

lytic model, and requires more analyses about the system. 1\ number of high level 

simulation languages have been developed in recent years (e.g., SIMAN, SLAM and 

GPSS) to ease the task of developing the simulation model. 

Monte Carlo Optimization 

From the practical user's point of view, [SURI85] specifically differentiates be­

tween generative (or prescriptive) models and evaluative (or descriptive) models as 

shown in Figure 2.2. Evaluative models measure the performance of a system design 

given a specific set of values for the decision variables. They can provide more in­

sights about the system performance rather than decision variables. However, it may 

take a long time to find good values for the decision variables. The main evaluative 

models can be divided into five classes: (1) static allocation models, (2) queueing 

network models, (3) simulation models, (4) perturbation models, and (5) Petri nets. 

A detailed review of evaluative models can be found in the article by [SURI 85]. 

In contrast, generative models are used to find good candidate decisions with re­

spect to the objective functions by applying optimization techniques (e.g., LP jNLP), 

i.e., using the simulation to measure the performance of the system and integrating 

the optimization techniques, the generative models can be used to search for an 
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Figure 2.2: Classification of decision aids 

optimal design. Such a process is known as Monte Carlo optimization. 

Monte Carlo optimization or stochastic optimization is an optimization method 

which involves the use of computer simulation. It is concerned with general optimiza­

tion problems under uncertainty. Several optimization techniques such as stochastic 

approximation method, simulated annealing, response surface methodology, and ge­

netic algorithms have been studied and applied. A general survey of optimization 

methods for stochastic optimization can be found in papers by [GLYN 86b] and 

[MEKE 87]. 

During recent years, applying Monte Carlo optimization to manufacturing sys­

tems design has gained a lot of attention. [SURI 87] developed a single run opti­

mization approach to maximize the throughput of closed loop asynchronous flexible 

assembly systems. [HO 79] proposed a gradient method to optimize the buffer size 

of production lines. The use of stochastic quasigradient methods (SQG) to maxi-
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mize the production rate of asynchronous flexible assembly systems and to solve the 

portfolio problem has been conducted by [LIU 88] and [GEMM 88]. [ERMO 83] has 

surveyed several variants of the SQG algorithm on many different problem types. 

He formulated problems into into four groups: general stochastic programming prob­

lems, resource problems, stochastic minimax problems and nonlinear programming 

problems and has given the specific results. 

[BULG 88] proposed a modified simulated annealing algorithm with simulation 

to optimize the buffer size in automatic assembly systems. (LAAR 92] used simu­

lated annealing to solve the job shop scheduling problem. Many papers about the 

applications of simulated annealing can be found such as the routing and location 

problems [GOLD 86], part ordering/release problem in an FMS [LEE 91], quadratic 

assignment problems [WILH 87], etc. They showed the performance of simulated 

annealing tends to be good if the parameters were "well-controlled". 
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CHAPTER 3. PROBLEM DESCRIPTION AND FORMULATION 

Hypothetical Flexible Manufacturing System 

The selected flexible manufacturing system for implementing Monte Carlo opti­

mization is shown in Figure 3.1, where the physical layout of the system is depicted. 

This model is derived from a case presented in [FUCH 88] and has been modified to 

fit our own needs. 

The components of the system are described as shown in Table 3.1. All manual 

work is performed in the setup area in which workpieces are mounted onto fixtures, 

reoriented as necessary during the machine cycle, and removed when completed. 

NC deburring machines and coordinate measuring machines are also installed for 

deburring operations and inspections. 

An additional process is needed to give pre-work for the corresponding main op­

eration as the workparts cycle through the system (e.g., it is necessary to go through 

process #1 before entering setup area). A predetermined sequence of manufacturing 

processes is assigned to each workpiece as well as AGV for transportation. 

Workparts enter the system in batches and are transported in the system accord­

ing to the following description. Parts enter the process area being processed first and 

await the availability of the required FMS components (setup area, machining center, 

inspection station, deburring station) specified on the predetermined manufacturing 
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Table 3.1: Hypothetical FMS components 

Component # Corresponding description 

1 Loading/Unloading area 
2 Process #1 
3 Process #2 
4 Process #3 
5 Process #4 
6 Setup station 
7 Machining station 
8 Deburring station 
9 Inspection station 
10 AGV maintenance area 

sequence. The first main operation for all parts requires a move to the manual setup. 

For this activity the parts claim an AGV and move to the setup area where the parts 

are put into a fixture on a pallet. At the completion of the setup operation, the parts 

move back to the process area an'd the next main operation in the predetermined 

sequence is indexed to the parts, usually the machining operation. 

The parts are processed and stay in the process area until a machining center 

IS available, and at this moment the parts claim an AGV and are transported to 

the free machining center. They remain at the machining center for the duration 

of operation time. After the machining operation, the parts again claim an AGV 

and return to the process area. At the same time, the next required operation is 

issued to the parts. The parts circulate in this way until all operations specified in 

a predetermined sequence are accomplished. At the completion of all operations the 

parts exit the system. 
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Operations Sequence 

Part A 1 - 7 - 6 -7.- 8 - 9 - 1 

PartB 1-7-8-9-1 

parte 1-7-8-6-7-8-9-1 

Figure 3.2: The operations sequence of each product 

Problem Description 

Scenario of the Hypothetical FMS 

Assume there are three different kinds of parts yielded from this system, namely 

A, Band C. Each of the parts enters the system based on the Poisson process with 

different interarrival rates and lot sizes (see Table 3.2). 

After entering the system, the workparts go through the system with an assigned 

sequence of operations (see Figure 3.2, the number represents the corresonding com­

ponent.) and require different amounts of processing time at each operation. The 

processing time at the setup station is said to be uniformly distributed over a given 

range since it is a manual operation, and the operation time at the process station 

has a gamma distribution; the others are said to be deterministic due to the high 

level of automation in the FMS. 

Workparts are transported through the system via AGVs. The AGV is regarded 

as the major device of the material handling system. Three AGV units are deployed 
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and they travel at a constant speed of 300 distance units per time unit. Shortest Path 

First (SPF) criteria is provided when an AGV is signaled to pick up two or more parts 

at the same time. The distance between each component is given in Table 3.3. 

Machine failures are also considered in our study. It is assumed that the time 

between machine failures and the time for repairing are exponentially distributed. 

Table 3.4 gives the time between machine failures and the time for repairing. 

Objectives and Methodology 

Given the hypotb,etical flexible manufacturing system and operating information 

described above, a design problem arises in determining the appropriate resource 

capacity such as: 

• Capacity for process #1, 

• Capacity for process #2, 

• Capacity for process #3, 

• Capacity for process #4, 

• The number of workers allocated at the setup area, 

• The number of machines allocated at the machining station, 

• The number of robots allocated at the deburring station, and 

• The number of tools allocated at the inspection station, 
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Table 3.2: Interarrival rate and batch size for each part type 

Part type Interarrival rate Batch size 

A 6 6 

B 4 4 

C 8 3 

Table 3.3: Distance between each component 

Component # 1 2 3 4 5 6 7 8 9 10 

1 25 25 25 25 200 300 325 150 35 
2 oa 0 0 150 250 300 150 30 
3 0 0 150 250 300 150 30 
4 0 150 250 300 150 30 
5 150 250 300 150 30 
6 200 150 310 160 
7 250 220 220 
8 470 330 
9 100 

a Indicating the distance is ignored. 
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Table 3.4: Mean of failure time and repair time for each machine 

Equipment 

Machining center 

Deburring robot 

Measuring Machine 

mean of failure time mean of repair time 

250 

303 

406 

41.0 

52.0 

34.0 

which will result in optimization of system performance. Throughput and total cost of 

the system are modeled as performance criteria and simulation-optimization method­

ology is used to solve the problem. The application of modified simulated annealing 

and SQG methods are investigated. 

Problem Formulation 

This problem is formulated as follows: 

maxF(X) or minF(X) 

s.t. X E C 

where X is a vector (Xb X2, ••• , xn) representing a system configuration, Xi rep­

resents the size of component i, i = 1, ... , n, and F(X) is a performance criteria or 

objective function for a given X, which is obtained through simulation. C represents 

a feasible set of decisions for components, and it could be the lower and upper bounds 

of the capacity of each component. 
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Throughput Optimization Model 

Several types of performance measures for evaluating FMS alternatives have been 

presented and utilized; for example, utilization, work in process, flow time, average 

queue length, net present value, system throughput, and so on. The most commonly 

used performance measure has been throughput or production rate. There exist many 

studies related to the maximization of throughput while evaluating FMS design al­

ternatives. In our study, we also utilize the system throughput as a performance 

measure and it can be defined as the number of parts produced per unit time, and 

formulated in the following. 

Production Rate (units/hour) = ( 1 / estimated cycle time in minute) x 60 

The cycle time is defined as the interval of time between two finished parts. The 

use of this measure may result in an arbitrarily large FMS design in order to achieve 

the highest system throughput. In other words, the optimal design solutions will tend 

to increase the resource capacities infinitely. However, constraints on design variables 

such as capital or plant size is always considered in the FMS design phase. Therefore, 

based upon certain constraints, system throughput can also be used to measure the 

performance of a particular FMS design. Instead of maximizing system throughput, 

economic analysis will be introduced to avoid the situation described above. 

Cost Optimization Model 

FMS encourages technological change and innovation. However, such a system 

requires extensive capital investment which is a discouraging factor in accepting FMS. 

Therefore, in order to make proper decisions, the user needs to carefully analyze the 
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cost and benefit of FMS while adopting it. 

Two categories of cost elements can be identified, tangible and intangible cost 

elements. Tangible costs are the ones that easily or with varied degrees of difficulty 

are quantifiable. Examples include the costs such as equipment, labor, and inventory. 

Intangible costs are difficult to quantify. These are the costs that are neglected 

by traditional cost-accounting methods and decision makers who are dedicated to 

using these traditional. methods. Examples include reduction in lead time, market 

flexibility, and increased learning. 

Since intangible costs are difficult to quantify and building a very accurate FMS 

cost model is not the main purpose in our study, a cost model is built which only 

includes tangible costs. This can be utilized without sacrificing the quality of the 

. investigation of our proposed approaches. 

Assuming the basic configuration of the FMS is given, the cost elements consid­

ered in our model consist of equipment costs, floor space cost, labor cost, repair cost, 

estimated balking cost, estimated work-in-process inventory holding cost, estimated 

cost of not achieving the desired utilization rate and estimated cost of not meeting 

the production goal. The first four cost elements are one-time costs. The last four 

cost elements can be referred as operational costs, which depends primarily on the na­

ture of interactions between system components. It should be noted that operational 

costs are incurred in every time period. Therefore, their impact over the horizon of 

the analysis may be significant even though the operational cost in a specific time 

period is not large. 

It is necessary for different cost elements to have a common unit of measure. For 

our model, we will use estimated total cost as a unit of measure. The equation of the 
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total cost appears as follows and appropriate systems can then be chosen based on 

minimal total cost at the required production volumes. 

Total Cost = Equipment cost + Labor cost 
+ Floor space cost + Repair cost 
+ Estimated work-in-process inventory holding cost 
+ Estimated balking cost 
+ Estimated cost of not achieving the desired utilization rate 
+ Estimated cost of not meeting production goal 

Equipment Cost All manufacturing systems require a capital investment of 

hardware of some magnitude. It includes initial cost and salvage value of equipment, 

spare parts, maintenance, installation, etc. For cost accounting purposes, this expense 

is usually created in a formal manner, often called annualized cost. 

With a certain rate of return and equipment cost, the annualized cost can be 

formed as, 

AEC = (equipment cost) X AlP 

AlP: the annualized cost factor 

The equation above defines the annualized cost of each equipment cost. For our 

cost calculation purpose, it is desirable to scale annualized cost in terms of hours. 

When dividing such cost by the annual hours, the equipment cost becomes: 

e= AEC 
Annual-hour" 

The total equipment cost depends on the number of components in the system. 

Therefore, it can be written as follows. 

EQUIPMENT = E~l ej 

ej: equipment cost of component i 
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n: the number of components 

Labor Cost This is direct labor and overhead cost of operating and maintain­

ing the equipment. In our model, this can be stated as, 

LABOR = 1 X r 

1: the number of workers needed 
r: labor hour rate 

For example, if there are three workers assigned to the setup area and the labor 

hour rate is lO($/hour), then totally 30($/hour) of the labor cost is incurred. 

Floor Space Cost It depends upon the total area of floor space needed in 

the system. The larger the system is, the more floor space is needed. The total 

needed area can be estimated by the number of resources, buffer size, system layout, 

and so on. It is assumed that system layout is given and the floor space needed is 

determined only by the capacity of the resource and buffer size. Therefore, the total 

. floor space cost is formulated as, 

FLOOR = (2:i=l SiNi + B x b) x A 

Si: floor space factor for component i (area/capacity) 
b: floor space factor for buffers( area/buffer units) 
B: Buffer size 
Ni: capacity of component i 
n: the number of components 
A: average floor space cost factor($/area) 

For example, suppose there is only one component (n=l) in the system (e.g., 

machining station) and ten buffers (B=10) is allocated, given three machines (N1=3), 

51=1.5 (i.e., each machine occupies 1.5 area units of the floor space), b=1 (i.e., each 



23 

buffer has 1 area unit of the floor space) and ,.\=5($/area), then totally a $72.50 floor 

space cost occurs. 

Repair Cost Repair cost occurs when equipment breaks down and needs to 

be fixed. The average frequency of repair during a certain time period is estimated 

and the average repair cost of each component is given. The total repair cost can be 

formulated as follows. 

ki : average frequency of repair for component i 
Ii: average repair cost per occurrence for component i 

Estimated Balking Cost Since the capacity of the storage area is limited, 

incoming orders will balk when the storage area is full (see Figure 3.1). It can be 

regarded as the cost of losing business. To determine such costs, the average number 

of orders balking and the associated cost should be known. This is written as follows. 

BALK = (average number balking) x (balking cost) 

Work-in-process Inventory Holding Cost Value is added to a product as 

it goes through each operation. It is actually the opportunity cost of money being 

tied up in the inventory because that money is not invested elsewhere. To determine 

the total in process inventory holding cost, the estimated amount of work-in-process 

inventory, the time length in the system and the holding cost factor should be known. 

The total in-process inventory holding cost can be computed as follows. 

hi: holding cost factor for part i 
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Wi: estimated in-process inventory of part i 
ti: estimated time in the system of part i 
m: the number of types of parts 

Estimated Penalty Cost of not Achieving the Desired Utilization Rate 

Efficiency of each component is considered from a managerial point of view. Simula-

tion can give good estimates of the utilization for each component in the system. If 

the estimated utilization rate of a component is less than required, the penalty cost 

of under utilization is placed in the total cost. The estimated penalty cost of not 

achieving the desired utilization rate is formulated as in the following expression. 

UNDER UTILIZATION = 2:i=1 (Uj - Uei) x !-li 

U ei: estimated utilization rate of component i 
Ui: required utilization rate of component i 
!-li: penalty cost rate of component i if under utilized 

If the estimated utilization rate is greater than the desired rate, the penalty cost 

IS zero. 

Estimated Cost of not Meeting the Production Goal Since the model 

is to minimize total cost of the system during a certain time period with a desired 

production volume rather than to maximize the production rate only, a penalty cost 

for not meeting the production goal is included in the cost model. The formulation 

is shown below 

UNDER PRODUCTION = (required throughput - estimated throughput) x 
(penalty cost of underproduction) 

It is assumed that if the estimated throughput is greater than the goal, the 

company will only produce as much as needed and no penalty cost is applied. 
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Manufacturing System Alternative 

Simulation Model 

Operating 

Cost Model 

Economic Consequence 

Figure 3.3: Schematic of the proposed cost model 
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Optimization Techniques 

Due to the dynamic behavior of an FMS, we use a simulation model to measure 

the system performance. The combination of various FMS components is said to be 

a system configuration. Practically, the possible system configurations of an FMS 

are finite. Suppose the only decision variable is Nm , the possible number of machine 

centers. Then there is Nm possible system configurations. Suppose another variable 

is included, Nq , which denotes the possible number of deburring robots. The size of 

system configuration space now grows to Nm x Nq • In general, an FMS has more 

than two components and the feasible range for each component can be large. As 

a result, the decision space of configurations can be quite large. The problem then 

becomes how to find a system configuration Hi which yields the best performance 

value for a proposed FMS from a large configuration space. The simulated annealing 

algorithm as well as SQG are selected to search for the system configuration which 

produces the best system performance. 

Input Parameters 

We have already depicted the hypothetical flexible manufacturing systems, the 

throughput optimization model and the cost model. In this section, we will discuss 

the required inputs to the model. There are two types of input parameters: system 

parameters and cost parameters. The system parameters contain the interarrival rate, 

the number of the components, the capacity of each component, the number of pallets, 

the number of AGVs, the speed of an AGV, tl:ic. processing time at each station, 

machine failure rate, the time to repair the machines and the planned production 

rate. The numerical data for these parameters are given in Table 3.2 through 3.4. 
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The cost parameters include the cost of each facility, the unit cost of floor space, 

labor rate, repair cost, inventory holding cost rate, balking cost per unit, the cost 

of under-production and the penalty rate of the under-utilized equipment. The nu­

merical values of the cost parameters are listed in Table 3.5. The cost values have 

been normalized or scaled down rather than using the large cost values. This makes 

it easier to calculate and express the total cost of the system. 
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CHAPTER 4. THE CONCEPT OF SIMULATED ANNEALING 

Introduction of Simulated Annealing 

As mentioned before, simulated annealing is one of the techniques for application 

to combinatorial types of optimization problems. It was introduced by [KIRK 83]. 

The basic idea of the simulated annealing approach was inspired from statistical 

mechanics and motivated by an analogy to the behavior of physical systems of an­

nealing in solids. In mechanics, it is concerned with "how to coerce a solid into a 

low energy state. A low energy state usually means a highly ordered state such as 

a crystal lattice. To achieve this, the material is annealed: heated to a temperature 

that allows many atomic realignments, then cooled carefully, slowly until the material 

freezes into a good solid. The simulated annealing technique uses an" analogous set 

of controlled cooling procedures for nonphysical optimization problems, to transform 

a poor solution into an optimal, or near optimal solution. 

Knowing how simulated annealing applies to optimization problems, we first 

need to understand the iterative improvement or local optimization. Iterative im­

provement is the most common framework used in heuristic methods of multivariate 

optimization. It can be seen as a special case of simulated annealing. In iterative im­

provement, one starts with the syster:n in an initial configuration Gi , then rearranges 

it until an improved configuration Gj is found. (We have to specify a method for re-
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arranging the current configuration. The set of configurations which can be obtained 

in one such step from a current configuration C is called the neighborhood of c.) Cj 

then becomes the starting point for further rearrangement. This process terminates 

when no further improvements can be found, i.e., it will be locally optimal in that 

none of its neighbors has a better configuration. 

The inherent limitation in iterative improvement is that this process may con­

verge to a local optimal solution and there is no way to escape from these unattractive 

local optima. Since iterative improvement procedures may get stuck at local optima, 

some tricks need to be found to increase the probability of getting the solutions rea­

sonably close to the unknown global optimum. Simulated annealing is an approach 

that attempts to avoid having the improvement process become entrapped in poor 

. local optima by allowing an occasional hill-climbing move. This is achieved by using 

the Metropolis procedure. 

Metropolis Procedure 

The Metropolis procedure is the heart of the simulated annealing which is per­

formed under the effects of a random number, current and next states, and tem­

perature (a special term used in simulated annealing). At each step a new state of 

the system is generated from the current state via the neighborhood function. If, for 

instance, the cost associated with the new state is lower than or equal to the cost of 

the current state, the move from current state to new state would be accepted, i.e., 

the new state becomes the current" state. On the other hand, if the cost of the new 

state is higher than the current state's, the acceptance of this move would be based 

on the comparison between a random number generated uniformly in the interval 



(0,1] and the probability, 

exp( -(Cj - Ci )/t8 ) 

where, 

Cj = cost of the new state, 

Ci = cost of the current state, 
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t8 = control parameter (temperature) at iteration s, 

s = iteration number, s = 1,2, ... 

Note exp(-(Cj - Ci )/t8 ) will be a real number between 0 and 1. (Cj - Ci ) is 

so-called uphill and Til is positive. 

For high temperatures, the uphill move has a very high likelihood of being ac­

cepted, and this acceptance probability decreases as the temperature declines. In 

addition, for a fixed temperature til small uphill moves have a higher probability of 

acceptance than do larger ones. It should be apparent at this point that simulated 

annealing is just iterative improvement done at a sequence of finite temperatures with 

the Metropolis procedure for accepting or rejecting a generated trial move instead of 

an improvement-only rule. Now, as was pointed out by Kirkpatrick et al., the two 

most important issues in implementing the simulated annealing approach are those of 

the annealing schedule and the test for equilibrium (steady-state) at each temperature 

in the foregoing algorithm. 

The annealing schedule is a less well-defined concept. It can be considered as 

the sequence of temperatures and the amount of time to reach equilibrium at each 

temperature. For different applications, there are different approaches for determin­

ing the sequence of temperatures in the annealing schedule. Those can range from 

constant ratio to various non-linear ratios. A method of establishing the cooling 
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schedule for optimal annealing was provided by (HAJE 86]. A theoretical analysis of 

amiealing schedules also can be found in [MITR 86]. In our study, the constant ratio 

method for decreasing temperatures will be used, 

ti = ti-l x p 

where, i= 1,2, .,. ,8 and 0 < p < 1. 

At each temperature, the simulation must proceed long enough for the system 

to reach the thermal equilibrium (steady state). However, there is no well-defined 

method to test for equilibrium. Based on a number of experiments in our study, a 

steady state is said to be reached after a preset number of configurations have been 

rejected consecutively or a given maximum number of iterations have occurred at 

each temperature. 

Given a schedule of temperatures, T = { tlh, ... ,tm-l,tm } with tl > t2 > .. , 

> tm - 1 > t m , the general simulated annealing algorithm can be outlined as shown in 

Figure 4.1 (adopted from [MITR 86]). 

Since the appearance of simulated annealing, it has been applied to many deter­

ministic multivariate combinatorial optimization problems in diverse areas: design 

of integrated circuits, network theory, image processing, quadratic assignment prob­

lem, graph partition problem, scheduling, and so on. It has proved to be a useful 

and reasonably general tool for deterministic combinatorial problems even though its 

efficiency is not always as great as one might hope. Unfortunately, most of the ap­

plications with simulated annealing are designed for deterministic and not stochastic 

problems. When one extends the problem range to stochastic combinatorial prob­

lems where the value of the system's configurations can only be estimated, there are 

few methods which offer any hope of solving these complex problems. [BULG 88] 
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--------------------------------------------------------------------------------------------
Begin; 
(* given the initial state jo and initial value for the parameters To*) 

X :=jo; . 
s:= OJ 
While (stopping criterion is not satisfied) 

begin 

Endj 

While (inner loop criterion is not satisfied) 
begin 

j := Generate(X); 
if (Accept( Gj , Gx , Ts)) 
X:=j; 

end; 
Ts+1 := Update(Ts); 
S := s + Ij 

endj 

Accept(Gj, Gi , T) 
begin 
(* return 1 if the cost variation passes a test, T is the control parameter*) 

.6.Ci j := Cj - Ci ; 

M' [1 ( -ACiz ) ] y:= III , exp T ; 

r := Random(O,I); 
(* Random is a function returning a random number uniformly distributed in the 
interval[O,l] *) 

if ( r :5 y) 
return(l)j 

else 
return(O); 

end; 
============================================== 

Figure 4.1: Simulated Annealing Algorithm 
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extended the application of simulated annealing to the domain of Monte Carlo opti­

mization by proposing a modified simulated annealing algorithm to optimize buffer 

sizes in automatic assembly systems. They included statistical analysis procedures 

in the evaluation of the objective function. In the following chapter we will discuss a 

modified version of simulated annealing which allows for its application to stochastic 

problems. 
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CHAPTER 5. MODIFIED SIMULATED ANNEALING 

Most of the optimization problems arising in the real world are stochastic. To 

those problems, Monte Carlo Optimization techniques are applied. One of our goals 

is to integrate an extension of the simulated annealing algorithm with discrete event 

simulation of a manufacturing system to search for an optimal system design. In 

order to integrate the simulated annealing algorithm into Monte Carlo optimization 

procedures, some modifications are necessary. 

Statistically Measuring System Performance 

The need for statistically measuring system performance is based on the obser­

vation that the output data from a simulation exhibit random variability because a 

random number is used to produce the values of the input variables. Since the nature 

of the output data is stochastic, it is necessary to have statistical analysis procedures 

for the simulated annealing algorithm. We formally state these additional procedures 

in the following sections. 

Initial Bias Deletion 

The initial conditions of the system at time 0 may influence the output data. If 

not chosen well, the specified initial conditions will have an especially deleterious ef-
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fect when attempting to estimate the steady-state performance of a simulation model. 

Several ways were developed for reducing the estimators' bias caused by unrealistic 

initial conditions. The simplest and most general technique for determining initial 

conditions is a graphical procedure. The idea here is to use a graphical approach to 

estimate the warmup period. Then we start to collect output data only after the 

warmup period is completed and continue until the simulation is terminated. 

Confidence Interval Estimate 

Consider the comparison of two alternative system designs. It is desired to have 

an interval estimate of system performance. A valid interval estimation requires 

a method to estimate the variance of the point estimator in a relatively unbiased 

fashion. However, since the sequence of output observations is not independent, 

we can not apply classical methods of statistics directly. However, if a modified 

approach such as the replication method or batch means method is used to meet the 

independence requirement, we can then use classical statistical techniques to estimate 

the variance and confidence interval. 

Batch Means Method 

The batch means method parallels the method of independent replications used 

for terminating systems. However, instead of replicating the simulation with a de­

fined initial starting condition, it divides the sequence of data from a single run into 

subsequences (or batches) of data that are approximately independent of each other. 

A batch of data then is treated as though it were an independent replication of the 

system. It is known that if the batch size is sufficiently large, successive batches 
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will be approximately independent. Therefore, classical statistical analysis can be 

performed. The idea here is to choose an appropriate batch size to obtain an in-

dependent sample and then statistical analysis is conducted to measure the system 

performance. 

Comparison of Two System Designs 

The heart of this modified version of simulated annealing is to make a compari-

son among the system designs based on whether or not the values of their objective 

functions indicate they are statistically significantly different at each iteration. To 

draw valid conclusions, we must resort to the statistical procedures for testing sig-

nificant differences. The additional testing procedures we incorporated into modified 

simulated annealing for comparing two system designs are described as follows. 

Tests Concerning Differences between Variances 

By performing an F test, we can test the equality of the variances of two normal 

samples. If it can be reasonably assumea that both variances are equal, we can 

compute a single estimate of variance S; as follows. 

S2 = (nl-l)q+(n~-l)~ 
p nl+n2-2 

where, 

SI, S2 = estimated sample variances 

nl, n2 = sample size 

This procedure pools the data from both samples. Thus, S; is known as a pooled 

variance. If our assumption of equality of variances is not reasonable, then we can 

not obtain a single estimate of variance by simply pooling the sample variances. The 
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appropriate calculation then becomes 

which is known as a separated variance. 

Tests Concerning Differences between Means 

To test the hypothesis that there is a significant difference between two designs, 

we set a confidence interval on the difference in population means of the performance 

measures JLl - JL2 . This confidence interval can be constructed from differences in 

sample means, Y 1 - Y 2, a single estimate of variance (S; or Sn derived from both 

samples and the t-value (we assume sample size is smalQ. Depending on the position 

of this confidence interval relative to zero, we conclude: 

1. There is no significant difference between two system designs if it contains zero. 

2. These two system designs are statistically different if it does not contain zero. 

The question of how to decide whether or not to accept the new system configu­

ration to be the current one when they are statistically equal arises. In this case, the 

iteration is ignored and more analyses are needed as follows. 

Metropolis Procedure with Reward Process 

Regard Sl as the current configuration. We could acquire a new configuration, 

say S2, by perturbing Sl via a specified neighborhood function. After performing the 

procedures which test whether or not Sl and S2 are statistically significantly different, 

we would have 3 different cases: 
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Case 1. S1 and S2 are significantly different and S2 is better than S1. Clearly, we 

accept S2 to be the current configuration. 

Case 2. S1 and S2 are significantly different and S2 is worse than S1. Then we apply 

the Metropolis procedure to give a certain probability for allowing acceptance 

of S2. 

Case 3. S1 and S2 are not significantly different, i.e., they are the same statistically. 

The problem occurs in Case 3. If we always eliminate S2 and keep S1, we may 

significantly increase the number of simulation replications required. In addition, 

when all the neighbors of S1 are the same as S1 statistically, the algorithm will get 

stuck at Sb never moving further (as Figure 5.1). If we always accept S2 and the 

successors of S2 are getting worse than S2 but have no significant differences (as 

Figure 5.2), the algorithm will proceed in the wrong direction undetected. Therefore, 

we present a reward process for supporting the simulated annealing algorithm in order 

to make a decision of when to accept S2 as follows: 

Step 1. Keep the current configuration St. 

Step 2. Regard S2 as current configuration (actually not) and perturb S2 to get next 

new configuration, say S3. 

Step 3. Evaluate S3 as usual. 

Step 4. Compare the performances of S2 and S3. 

Step 5. With the comparison of S2 and S3, do 
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F(x) 

SI • S2 
SI .. S3 
SI .. S4 

SI S2 S3 S4 

Time 

Figure 5.1: Unsavory situation if always accepting 51 

F(x) 
SI~ S2~ S3~ S4~ S5 

SI 
S2 

Time 

Figure 5.2: Unsavory situation if always accepting 52 
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Case 1. If 83 is significantly different from 8 2 and 83 is better than 8 2 , then 

accept the configurations 8 2 and 83 , and let 83 to be the new current 

configuration (as Figure 5.3). Return. 

Case 2. If 83 is significantly different from 8 2 and 83 is worse than 8 2 , then 

accept the configuration 82 and 8 2 becomes the current configuration, and 

perform the Metropolis procedure on 8 2 and S3 (as Figure 5.4). Return. 

Case 3. If 83 is not significantly different from 8 2 , then recall S} and compare 

83 with 81 . 

case 3a. If we find 83 is the same as or better than 8}, this indicates a 

trend that the system is improving (as Figure 5.5), so we accept S2 

to be current configuration. Since S2 is now the current configuration 

instead of 8} and we know that 8 2 and 83 are not significantly differ­

ent, we need to determine whether or not to accept 83 i.e. 8 2 becomes 

8 1 and 83 becomes 8 2 , so we go directly to step 1 of this procedure. 

case 3b. If 83 is worse than 81 , this is an indication that our system is 

worsening (as Figure 5.6), then ignore 8 2 and S3, and return to St. 

Return. 

The purpose of adding these procedures is to provide a way for simulated an­

nealing to operate in a stochastic environment. The outline for this modified version 

of simulated annealing is given in Figure 5.7. 
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F(X) Accept 52 and 53 

S3 

Time 

Figure 5.3: Policy made if S3 is better than S2 

F(X) 
Accept S2 and Metropolis step on S3 

" .... --- ........ 
" 52', , , , , , , 

I I 
\ S3 , , , 

" 

Time 

Figure 5.4: Policy made if S3 is worse than S2 
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S3 > Sl 

indicating the value is up 

,.,,'--- .......... 
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'-----' 
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Figure 5.5: System improving if S3 is better than Sl 

F(X) S3 < Sl 

indicating the value is down 
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Figure 5.6: System worsening if S3 is worse than Sl 
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Keep SI 

: computing confidence 
interval 

: comparison of two 
system designs 

\-----...! pertwb SI to S:.,J.o.---------------, 

Input: S2 
Output: CI 

Call (A) 

Keep S2 

Input: SI and S2 
Output: boolean 

Call (B) 

No 

Metropolis Step 
on 

SI and S2 

Call(C) 

Accept S2 

SI := S2 

Yes 

SI remains 

S2 removed 

No 

Figure 5.7: The framework of modified simulated annealing 
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pertUrb S2 to S3 14-------. 

Input: S3 
Output: CI 

Call (A) 

KeepS3 

Input: S2 and S3 
Output: boolean 

Call (B) 

Yes 

Accept S2 & S3 

S2:-S3 

Yes 

No 

Input: S3 and SI 
Output: boolean 

>--~ Call (B) 

Yes 

No 

Metropolis Step 

accept S2 & S3 

SI :-S3 

Yes 

No 

SI remains 

53 and S2 removed 

Accept S2 

on removeS3 

52 and S3 SI :- S2 

Figure 5.7 (Continued) 
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CHAPTER 6. STOCHASTIC QUASIGRADIENT METHOD 

Consider a one variable minimization problem such as show in Figure 6.1. Sup­

pose that Xl is the current approximation to the optimal solution X·. In order to 

approach x*, we need additional information about the function value near Xl. There­

fore, we evaluate the function value by increasing Xl by a step size 1 and then estimate 

the gradient of the function at Xl. If the gradient appears to be negative, a move of a 

certain distance to the right is made. Otherwise a move to the left is made (e.g. X2). 

We can see this process moves the current approximation to another approximation 

that is closer to the optimal point. Stochastic quasi gradient methods utilize a similar 

process. 

Introduction 

Stochastic quasigradient (SQG) is an algorithmic procedure for solving general 

stochastic constrained optimization problems with nondifferentiable, nonconvex func­

tions. These methods allow us to solve optimization problems with objective func­

tions and constraints of such a complex nature that it is impossible to formulate and 

calculate the precise values of these functions. The concept of this approach is to use 

statistical estimates for the value of the function and its derivates rather than the 

unknown exact values. 
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F(x) 

xl xl +1 x* x2+1 

Figure 6.1: Gradient method 

Consider the following minimization problem, 

minF(X) 

F(X) = Ew[J(X,w)] 

s.t. X E C 

x-axis 

X is a vector of decision variables to be optimized, C is a set of .constraints, 

and w is a random variable belonging to the appropriate probability space. The 

stochastic function F(X) can not be analytically formulated due to its complexity. 

Clearly, in this case the gradient of F(X) may not exist and can not be calculated 

by deterministic approaches. Therefore, we use simulation methods to estimate the 

expected value of f(X, w) and quasigradients which are statistical estimates of the 

gradients obtained by using finite-difference methods. We will illustrate some finite­

difference methods and the basic SQG ~lgorithm in the following sections. 
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The Algorithm 

The stochastic quasigradient algorithm moves from one feasible point to another 

as follows. 

xs+1 = TIe[XS - PsVS
] 

X, p, vERn 

where the XS is the current approximation to the optimal solution; Ps is the step 

size which determines the magnitude of the move; v' is a random step direction, i.e., 

an estimate of the gradient direction at the current point XS; s is the iteration number 

and I1e is the projection operator which keeps the x values within the constraint set 

C. 

Projection 

The projection operator keeps x within its constraints by finding the closest 

value z to x if x is out of bounds. It takes the form: 

I1e(x) = argminzeC II x - z II 

For example, if x is defined within the integer range [1,10], the projection oper­

ator will set x to 10 if x is greater than the upper bound of the range. 

Calculation of Step Direction v 

The step direction may be a statistical estimate of the gradient of the function 

F(X). We define V S as the quasigradient estimated by e such th,+ 

E(eS I XI, X2,···, XS) = FAXS) + as = V
S 
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where as -4 0 as S -4 00. In this case, v S is called stochastic quasigradient of the 

function F(X). 

There are several methods which can be used to find an estimate of the gradi-

ent such as finite-difference approximations, analogues of random search methods, 

etc. The most common method used is the finite-difference approximation. There 

are two types of finite-difference approximation method: forward finite difference 

approximation (FFD) and central finite difference approximation (CFD). 

Forward finite-difference approximation 

The FFD method can be written in the form: 

where C is the statistical estimate of the step direction of the function F(X) 

at iteration s, bsi is the step size for i-th variable, w:i and wii are random variables 

generated for interation sand ej are unit basis vectors from Rn 

Central finite-difference approximation 

The CFD method has the form: 

where the notations are the same as for the FFD method. 

Comparing these two methods, the CFD method requires twice the number of 

function value estimates than does the FFD method. However, experience indicates 

that the CFD method seems to be able to obtain more precise step directions. 
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Gradient Calculation 

Consider a n-variable problem. The estimation of gradients are performed one 

variable at a time. That is, the value of one variable is increased by an amount 

Ssi, and then the estimate of the gradient for this variable is made using FFD. The 

variable is then reset to its original value before the gradient for another variable 

is estimated. Therefore, as the number of variables increases, the number of finite 

difference gradient estimations becomes larger. For example, if central finite difference 

is applied to a 5-variable problem, then a total of 11 computations are necessary. In 

addition, with s = 50, a total of 550 computations would be made. This becomes very 

costly in terms of time required. Thus, the forward finite difference approximation 

method is utilized in our application in order to reduce the time required by about 

one half. 

Normalization of Gradients 

Sometimes it is useful to normalize the estimate of the gradient [ERMO 84]. The 

normalized version would be 

V -..£L.. 
s - 111.1 

As a result, the quasigradient only appears to be positive or negative. 

Choice of Step Size p 

We trigger the algorithm with the initial step size. If the current point is far 

away from the optimal point, we need a large step size. As the algorithm approaches 

the optimal region, a smaller step size is needed in order to converge to the solution. 

Generally speaking, there are three different methods for determining the step size 
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of each iteration: interactive selection, automatic adjusting, and pre-determined step 

size sequence. 

Interactive selection 

[ERMO 83] considered this approach as the best strategy. We change the step 

size based on examination of the changes of the function estimates at several itera­

tions. There are three different cases : 

1. When the changes appear to be too small or insignificant, we will enlarge the 

step size. 

2. When the function estimates result in random jumps, we will reduce the step 

SIze. 

3. Or when the function estimates are steadily decreasing (or increasing), we will 

not change the step size 

This method requires· an experienced user and remains somewhat of an art. The 

major disadvantage of the interactive procedure is the time needed for the user to 

operate the the program. 

A utomatic adjusting procedure 

When it is impractical to use an interactive approach, an automatic adjusting 

method can be used. This procedure uses information obtained from the previous 

iterations to determine whether or not to adjust the step size for the successive 

iterations. It consists of calculating the ratio of improvement of the function value 

to distance traveled or path length. If the ratio is less th::1n ~ preset threshold, the 

step size is modified by using P8+1 = {3P8' where {3 is a step size multiplier, usually 

(3 E (0,1) and P8+I is the step size for iteration s + 1. 
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Pre-determined step size sequence 

A pre-determined step size sequence is a special case of the automatic adjusting 

procedure. As with the cooling schedule of simulated annealing, there is no well 

defined approach for selecting the step size sequence. One is to choose the sequence 

by using the following relation: 

PII = PII-l X a 

where, s = 1,2, ... ,m. and 0 < a < 1. 

When using this procedure, we can only expect convergence to a local optimum. 

Stopping Criteria 

There is no well defined stopping criteria for the SQG method. Several possible 

practical stopping criteria include stopping after a set number of iterations, when 

the improvement in the function value is small enough, or when the step size is less 

than some minimum value. We will terminate the algorithm when a set number of 

iterations is reached or the improvement in the function value is less than a preset 

value, which ever occurs first. 

Additional Features 

Again, due to the stochastic nature of the problem, we can not neglect statistical 

analysis procedures. The additional statistical analysis procedures are similar to 

those used in simulated annealing such as, initial bias deletion, batch means method, 

confidence interval estimate and comparison of two function values. We then include 

these procedures to modify the forward finite difference approximation method as 

follows: 



Step O. Set k . 0 and keep f(X, w) 

Step 1. Estimate f(X + biei, w) 
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Step 2. If k < M (number of replications allowed) do 

2a. Compare f(X + biei,W) with f(X,w) 

2b. If statistically the same, then k := k + 1, increase bi , go to Step l. 

else, go to Step 3. 

Else go to Step 3 

Step 3. Calculate the quasigradient for Xi; k := 0; Return. 

In conclusion, with the modification of the forward finite difference approxima­

tion, the stochastic quasigradient algorithm can be pseudo-coded as Figure 6.2. 
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--------------------------------------------------------------------------------------------
Begin; 

X := jo; (given initial state) 
s := 0; (count for iteration) 
Os := 00 ;(initial step size of FFD) 
Ps := po ;(initial step size of algorithm) 
Co := f(X,w); 
While (stopping criterion is not satisfied) 

begin 

End; 

Repeat 
begin 

X = jo; (restore the original X) 
Ci := f(X + Oiei,W); 
if (NotSame(Ci , Co)) 

Vsi := Gradient( Ci,CO); (calculate gradient one at a time) 
else 

endif 
end; 

if (k :S M) 
k := k + 1 (how many times it appears to be the same) 
OJ = Oi + V (increase the step size in FFD) 

else 
k := 0; (reset to initial value) 
Vsi := Gradient(Ci, Co); 

endif 

until (all of the variables) 
X := Projection(X - Vsi Ps); 

jo := X; (keep X) 
Co := f(X,w); 
s := s + 1; (increment the iteration number) 
while (necessary) do ps := a ps-l; (change step size) 
while (necessary) do Os := f3 Os-I; (change step size in FFD) 

end; 

============================================== 

Figure 6.2: Stochastic quasigradient algorithm 
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CHAPTER 7. IMPLEMENTATION 

The application of discrete parameters Monte Carlo optimization to the FMS 

design problem was implemented. The hypothetical flexible manufacturing system 

under this study was described in Chapter 3. In the design phase, given the capacities 

of AGVs and pallets (they are assumed to be large enough to support the system), 

the design parameters which needed to be optimized are listed in Table 7.1. 

Table 7.1: A list of design parameters and corresponding variables 

Design variables Description 

Xl Capacity for process #1 
X2 Capacity for process #2 
X3 Capaci ty for process #3 
X4 Capacity for process #4 
X5 The number of workers allocated at the setup area 
X6 The number of machines allocated at the machining station 
X1 The number of robots allocated at the deburring station 
Xs The number of tools allocated at the inspection station 

A combination of these system design parameters represents a system configu-

ration. We use two different objective functions. One is to maximize the number of 

parts produced per unit time, the other is to minimize the total production cn~t. First, 

the initial bias period and appropriate batch size are determined after a number of 

pilot simulation runs are made. Secondly, both of the algorithms (modified simulated 
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annealing and SQG) are invoked by giving an initial system configuration and the 

required inputs; then the simulation is triggered to obtain the estimated values of the 

objective functions. The algorithms will be terminated when the specified stopping 

criteria are satisfied. 

Determination of Transient Period 

One of the methods to resolve the initial bias problem is to discard those ob­

servations recorded during the transient phase of the simulation. This approach ne­

cessitates selecting a truncation point t at which all the observations recorded before 

t are excluded. The outcome of the simulation is then based upon the observations 

recorded after the truncation point t. 

The simplest, most practical and probably best approach for selecting a trunca­

tion point is visual determination, i.e., selecting a truncation point from the simula­

tion response plots over the simulation time. In systems with large fluctuations in 

the response, we can improve this process by first using a moving-average approach 

to smooth the response. A moving average is constructed by calculating the arith­

metic average of the k most recent observations at each data point in the data set. 

We utilize the SIMAN Output Processor to accomplish this. The SIMAN Output 

Processor is an interactive program which operates in a post processing mode to help 

us analyze the data generated from a simulation model. It provides two types of data 

analysis - Graphics and Statistics. 

We randomly choose several system configurations for conducting graphical out­

put analysis. The plots shown in Figure 7.1 and 7.2 are created by using the Output 

Processor on a data set generated from a simulation run. 
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Figure 7.2: Smoothing the responses by using moving average with lag 15 
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Figure 7.1 shows the Time In System responses within the run time period; Fig­

ure 7.2 was obtained by using the moving average method. We use the 15 most recent 

observations to compute the moving average at each point. The size of the moving 

average was determined by experimenting with several increasing values beginning 

with 10 observations. 

We have experimented with several system configurations in order to estimate 

the truncation point t. After performing these experiments, we determined that 

1000 time units as the transient period and it is assumed that this value can be used 

regardless of the system configuration. 

Selection of an Appropriate Batch Size 

The key to making the batch method work well is to select an appropriate batch 

size. As mentioned before, if the batches are sufficiently large, the means of the two 

adjacent batches will be approximately independent, even though the observations 

at the end of batch j are correlated with the observations at the beginning of batch 

j + 1. The size of the batch required to achieve this independence is a function of the 

correlation structure for the system response since the observations are correlated 

within the run. Therefore, the most practical way to select the batch size is to 

examine a correlogram, which is a plot of the sample correlations. Again we utilize 

the Output Processor to make a correlogram. 

Figure 7.3 shows a typical correlogram generated from simulation data recorded 

for the measure of time in system for each part. As can be seen from the correlogram, 

the correlation in the data is significant for lag 1 (the distance between observations 

being compared) up to lag 5, but is relatively small for a lag of 8 or more. This 
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simply means that time in system for one part significantly influences the time in 

system for the parts that closely follow it but is less significant on parts that follow 

10 or more later in the sequence. 

Although we have used a fixed number of discrete observations per batch, the 

batch means method can also be applied to time persistent data by defining the batch 

as a fixed duration of time in which case the number of observations per batch is a 

random variable. The same analysis procedure is used in time persistent data to 

support the determination of batch size. The FILTER command helps us to gain 

the necessary information for determining the appropriate batch size as shown in 

Figure 7.4. 

Several experiments were done upon different system configurations. A 800 

time unit duration was elected to be the batch size. For each system configuration 

generated in each simulation run, we assume the appropriate batch size is constant. 

ConsequentlY1 a simulated time of 9000 time units for each simulation replication 

was selected due to the summation of 1000 time units for warmup period and 8000 

time units for 10 batches (each batch size is equal to 800 time units). 

Simulation Model 

The framework of the simulation model for the hypothetical flexible manufactur­

ing system was developed by using SIMAN - the general purpose simulation language. 

Several pilot simulation runs and modifications were conducted to ensure that the 

simulation model behaves as desired. 



:z: 
C> -.... 
rl 
ga 
8 

60 

CORRELOGRAH 
~.Q~----------------------------------~ 

• POSITIVE 
• NEGATIVE 

.:5 

-.:$ 

LAG NUMBER. 

Figure 7.3: Correlogram for time in system observations 

> FILTER, 12, TIME IN SYSTEM, T/1000, T/800: 

FILTERS SUMMARY : TIME IN SYSTEM 

INITIAL TIME TRUNCATED 1000. 

TIME SPANNED PER BATCH 800.0 

NUMBER OF BATCHES 23 

TRAILING TIME TRUNCATED 590.3 

EST.OFCOV. BETWEEN BATCHES 0.2102 

" 
Figure 7.4: Determining an appropriate batch size by using FILTER command 
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Figure 7.5: Linkage among procedures of simulated annealing 

Implementation of Modified Simulated Annealing 

After determining the truncation point and the batch size, they were included in 

the simulated annealing as a constant. The modified version of simulated annealing 

was written in Microsoft FORTRAN v4.0 and was designed to contain four main 

procedures (see Figure 7.5): 

1. Generating system configurations includes an interactive input environment for 

importing an initial configuration and the required parameters, and a subrou-

tine for determining the next configuration via a neighborhood function. 

2. Statistical analysis computes the confidence interval of the output data gene.r-

ated from the simulation r1H' .... nd makes a comparison of two system configu-

rations with a 95% significance leveL 
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3. Annealing process performs the Metropolis step, checks the equilibrium stage 

and updates the temperature based on the cooling schedule. 

4. Random number generator uniformly produces random numbers in the interval 

{O,l] by using the multiplicative linear congruential method. 

In the algorithm, the generation of the next configuration is done by fetching 

it from the set of the current configuration's neighbors. We use a random number 

to decide which neighbor of the current configuration is to be fetched. For example, 

when a generated random number is less than 0.5, it reduces the resource capacity 

by a pre-determined amount; when a generated random number is greater than 0 .. 5, 

it increases the resource capacity by a pre-determined amount. In other words the 

neighborhood function is a function of a random number. We are also given a set 

of constraints which are lower and upper bounds of resource capacity. When any 

resource capacity of the system configuration is beyond the constraints, it is pulled 

back to the feasible capacity which is nearest to the bounds. 

The Metropolis step is performed based upon the cooling schedule. When the 

system reaches the equilibrium state at a given temperature, the temperature is 

reduced via a cooling function. The cooling function that we use for updating the 

temperature parameter has the form ti = ti-l x p, 0 < p < 1. As discussed before, 

the procedure needs to proceed long enough at each temperature to let the system 

reach the equilibrium state. It is said that when a preset number of generated system 

configurations has been rejected consecutively or the total number of iterative runs 

at a temperature exceeds a specified maximum number, the system has reached the 

equilibrium state. 
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The algorithm runs iteratively. We terminate the algorithm after reaching a 

maximum number of iterations at which a very low temperature has been reached 

and where we can regard the system as frozen. 

Implementation of Stochastic Quasigradient Algorithm 

SQG was also coded with Microsoft Fortran v4.0 and can be divided into three 

parts: 

• Configuration generation procedure moves the current configuration to another 

feasible configuration according to the quasi gradients and makes an appropriate 

change to the step size if necessary. 

• Gradient calculation procedure calculates the statistical estimates of the gradient 

of the stochastic function by forward finite difference approximation. 

• Statistical analysis procedure includes the calculation of confidence intervals and 

the comparison of two system configurations with a 95% significance level. 

Given a system configuration, the move to the next configuration depends on 

the step size and quasigradients. Due to the discrete characteristics of the variables, 

quasigradients obtained from FFD method are normalized. As a result, the quasi­

gradient only appears to be 0, -1 or 1, i.e., it only indicates the direction to move. 

For example, if the quasigradient is 0, the value of the variable is not changed, or 

if the quasigradient is 1, the value of the variable is reduced while handling the 

minimization problems. 

The step size determines the amount of distance to move. Each decision variable 

has a corresponding step size. For example, if a variable represents the buffer size, 
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Figure 7.6: Linkage among procedures of SQG 

a reasonable step size corresponding to buffer size is used. Initially, the step sizes 

are large for both the algorithm and FFD. The step sizes are then reduced gradually 

by the preset sequence until the step sizes reach the minimum value allowed. In our 

case, the minimum step size allowed is 1 since the resource capacity is an integer and 

at least one. 

We define the change of the system performance as IL:~_I Fi+l-
F

;I At h 't n-l . eac 1 er-

ation, five previous runs were kept in order to calculate the change upon the system 

performance. If the change appears to be less than what we expect, the algorithm 

is terminated. Additionally, a counter is set to count the iteration number. If the 

total number of iterations is greater than the maximum iteration number allowed, 

the algorithm is terminated. 



65 

CHAPTER 8. RESULTS AND ANALYSES 

We have addressed the FMS design problem, Monte Carlo optimization method­

ology, modified simulated annealing, stochastic quasi gradient method, the develop­

ment of a simulation model, and implementation aspects in the previous chapters. As 

shown before, there are several factors that could affect the performance of simulated 

annealing such as starting point, initial control parameter, cooling schedule, neigh­

borhood function, time to reach equilibrium state at each temperature and stopping 

criteria. There are no well-defined approaches to find the preferred starting condi­

tions. Similarly, there are also many factors that could affect the results when using 

the SQG method; for example, the starting point, initial step size in the algorithm, 

initial step size in FFD, method of adjusting step sizes during the run, and stopping 

criteria. Again, SQG is also not easy to select a good starting condition. 

As a result, we have done several experiments on both methods utilizing different 

values for those factors. It was interesting to see how those factors influence the 

algorithms' behavior. However, it is not our main purpose to have a detailed analysis 

about the effects of these factors. The application and comparison of simulated 

annealing and SQG to the FMS design problem is our main concern. Based on our 

experiences, preferred starting conditions for buu: ..... mulated annealing and SQG were 

chosen from pilot experiments. They are shown as follows. 
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Simulated annealing 

starting point: (1, 1, 1, 1, 1, 1, 1, 1)1 
cooling schedule: ti = ti-l x 0.9 
stopping criteria: 25 maximum iterations allowed 

Stochastic quasigradient 

starting point :(1, 1, 1, 1, 1, 1, 1, 1) 
step size in FFD : 1.0 
adjusting step size: Si = Si-l X 0.9 
stopping criteria: 25 maximum iterations allowed 

With the starting conditions determined, a series of experiments were performed 

in order to examine the application of the simulated annealing and SQG methods and 

to make a comparison of the two methods. The results are shown in a later section. 

Discussions of a throughput optimization model and a cost optimization model are 

given in the following section. Finally, a comparison of simulated annealing and SQG 

is addressed. 

Summary of Experiment Results 

Since we have two models and two optimization methods, we categorize the ex-

periments into four classes: (1) throughput optimization with simulated annealing, 

(2) throughput optimization with SQG, (3) cost optimization with simulated anneal­

ing and (4) cost optimization with SQG. In addition, in order to examine the effects 

of random variates, the random number seeds were changed and the experiments for 

four classes were replicated. The pairs of experiments are differentiated by sample 1 

lThis expression represents the combination of the design variables or a system 
configuration. A system configuration is denoted as the form of (Xl, X2, X3, X4, xs, 
Xs, X7, X8) and the meaning of each scalar can be referred to Table 7.1; for example, 
Xl = 1 represents one tool is allocated at process # 1. 
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and sample 2, i.e., experiments in sample 1 used the same random number seed, 

similarly in sample 2. 

Throughput Optimization with Simulated Annealing 

As defined, system throughput is the number of parts produced per unit time, 

which is the reciprocal of expected cycle time for the system. Simulated annealing 

was applied at three levels of initial temperature, t = 1.0, t = 1.5 and t = 3.0. The 

results are summarized in Table 8.1. The outcome of each experiment associated with 

the different initial temperatures are plotted in Figure 8.1, 8.2 and 8.3. These give 

us a graphical view of how the algorithm responded. Figures 8.4 and 8 .. 5 combine 

the plots for all three temperatures by sample. These plots help us examine how the 

temperature parameters affect the algorithm's response. 

Due to the sophisticated interrelations between an FMS's components, there does 

not appear to be a unique optimal design. As we can see in Table 8.1 , the experiments 

generated several different good system configurations. Those configurations seem to 

have the same system throughput, approximately 12.5 (units/hr). Using different 

seeds affects the transient response of the algorithm during the run (see Figures 8.1, 

8.2 and 8.3). However, each instance reached a solution with approximately the same 

throughput. 

Observation of Figures 8.4 and 8.5 seems to indicate that a smaller initial 

temperature causes faster convergence. The faster convergence is caused by a decrease 

in the probability of uphill movement due to smaller initial temperatures. However, 

the smaller initia.l temperature increases the risk of convergence to a local optima. 
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Throughput Optimization with SQG 

SQG was applied to the same model with the same system inputs. In this class, 

we conducted experiments with three different initial step sizes, s = 1.0, s = 2.0 and 

s = 3.0. The results are summarized in Table 8.2. As with simulated annealing, 

different good system configurations were obtained and each appeared to have the 

same system throughput, approximately 12.5 (unit/hr). 

Figures 8.6 through 8.8 show the plots for the experiments associated with each 

step size. In this case, the use of different seeds did not seem to affect the performance 

of SQG and did not cause much change in the response surfaces. The effects of the 

initial step size on SQG's responses can be seen in Figures 8.9 and S.lD. In this case, 

s = 2.0 appears to be the best initial step size because it allows the algorithm to 

approach the optimal solution space more quickly. This phenomenon fits our claim 

in Chapter 5 - "when the response point is close to the near optimal solution space, 

a smaller step size is needed.". 

Cost Optimization with Simulated Annealing 

In this class, the cost optimization model was investigated. The total cost func­

tion was developed in Chapter 3, and simulated annealing was applied to solve the 

cost model. As before, three initial temperature parameters were utilized in the ex­

periments. The results associated with temperature parameters are graphically shown 

in Figures 8.11 through 8.15. A summary of the solutions are listed in Table 8.3. 

As shown in Table 8.3. several design alternatives were obtained from the dif­

ferent runs, each providing good system performance. The alternatives consistently 

gave good cost values, approximately 17.3 ($/hr). Even with diffe{ent seeds and ini-
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tial temperature parameters, simulated annealing behaved very well and converged 

to a good solution very quickly (Figures 8.11 through 8.15). 

Cost Optimization with SQG 

With the same cost model and system inputs, experiments were performed by 

using the SQG method with three initial step sizes, s = 1.0, s = 2.0 and s = 3.0. The 

following table and figures give us a clear view of experiment results in this class. 

SQG did not perform as well as simulated annealing in the cost optimization 

case (Table 8.4). The best solution of these experiments gave us a total cost value 

of 27.164 ($/hr). This value is higher than the worst solution obtained in simulated 

annealing. Moreover, the variation of the final results is quite large. The total cost 

values ranged from 27.164 to 52.032. This is an indication that SQG is not very 

reliable in this case. 

As seen in Figures 8.16, 8.17 and 8.18, SQG seemed not to converge well. With 

larger initial step sizes, s = 2.0 and s = 3.0, the responses of SQG tended to vary 

widely during the run. This implies that the initial step size was too large. This 

phenomenon also matches our claim in chapter 5 - " if the step size was too large, 

then the responses of SQG tend to move back and forth.". 

Therefore, either using a smaller initial step size or using more strict stopping 

criteria is necessary. However, the smallest step size we can have is 1.0 since resource 

capacity must be an integer value. As shown in Figure 8.16, when s = 1.0 the 

algorithm seems to converge but to a poor local optimum, approximately 38.0 ($/hr). 
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Maximize System Throughput versus Minimize Total Cost 

There are several kinds of performance measures used for evaluating the design 

and control of FMS. System throughput or production rate is the most commonly 

used one. Researchers and designers are likely to utilize throughput as an objective 

function while they analyze or design an FMS since it is simple and easy to measure. 

However, for any manufacturer to stay in business, it is more likely necessary 

to minimize the total production cost associated with the system. Consequently, the 

economic analyses of manufacturing systems became more necessary and important. 

There are two difficulties with this approach. First, it is not easy to obtain the specific 

economic parameters for a given optimization problem. Secondly, unlike traditional 

accounting methods, some cost effects of FMS are difficult to quantify. Therefore, 

in order to investigate the performance of simulated annealing and SQG on a cost 

minimization model, the simplified cost model of Chapter 3 was developed. 

By using throughput as the performance measure, the algorithms tended to 

choose larger scale systems. As we expected, the algorithms have overallocated the 

resource capacities in order to maintain the highest system throughput (see Table 8.1 

and 8.2). In the real world, this could cause very low resource utilization. We learned 

that if there are no proper constraints to bind the resource capacities, the algorithms 

could reach an unrealistic large system. This is a disadvantage associated with the 

throughput optimization model. 

By introducing total cost as the objective function, this effect can be avoided. 

As we can see in Table 8.3, the results appeared to be smaller scale systems while 

maintaining the desired throughput. This is because the cost factors on resources 

pull down the the number of resource while minimizing the total cost. By referring to 
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the cost parameters provided in Table 3.5, the more valuable resources have a smaller 

amount of capacity allocated, as we expected. 

In conclusion, selection of an appropriate performance measure is a very impor­

tant matter before designing or evaluating a particular FMS. It is really dependent 

upon the type of problem. Different performance measures result in different design 

alternatives. The tradeoff should be analyzed carefully. 

Simulated Annealing versus Stochastic Quasigradient 

The application of simulated annealing and SQG methods on FMS design prob­

lems was investigated. We have learned they are very different algorithms (Chapter 

4, 5 and 6). Simulated annealing was designed for deterministic combinatorial op­

timization problems and it has been proven that it could converge to the global 

optimum as the number of iterations approaches infinity; the SQG method was de­

signed for application to nondifferentiable performance functionals with continuous 

decision variables and the proof of convergence can be found in [ERMO 83]. As 

a result, a number of heuristic modifications on simulated annealing and SQG are 

necessary to the model (Chapter 5 and 6). 

A series of experiments were performed and a comparison of simulated annealing 

and SQG was made. The results are summarized in Table 8.5. 

In both models, simulated annealing appears to provide the best solutions. The 

SQG method worked very well in the throughput optimization model, providing 

consistent results with simulated annealing. However, it was much less effective when 

applied to the cost optimization model. The increased complexity of the response 

surface caused the poor performance of SQG. 
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Table 8.5: A comparison of simulated annealing and SQG 

Model Method Performance Measure A ve. Running Time 

Max. throughput 

Min. cost 
SA 
SQG 

(12.5922, 0.2652)b 
(12.5016, 0.1136) 

(17.4234, 0.2438)d 
(36.7039, 9.1314) 

aSimulated annealing algorithm 
b( average production rate, standard deviation) 
C( average running time, standard deviation) 
d(average total cost, standard deviation) 

(1365.17, 241.8)C 
(1621.33, 106.0) 

(1583.17,139.6) 
(357.17, 222.6) 

The above analyses only considered resulting objective function values as a mea-

sure of each method performance. However, the length of time required to run the 

particular method is also an important factor. In the system throughput optimiza­

tion model, the SQG method is clearly the most time consuming, with an average 

run of 1621.33 minutes on PC 286 (see Table 8.5). The larger run times are due to 

the modifications of the algorithm in which the step size in the FFD calculation is 

increased each time there is no statistical significance between two system configu­

rations. This increase continues until the step size is out of the feasible range. This 

modification of the FFD calculation causes a lot of extra replications to be made in 

order to find a gradient. 

Simulated annealing, however, included a reward process. This process helps the 

algorithm to reduce the number of unnecessary replications by offer!ng feedback to 
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the algorithm (see Chapter 5). As a result, the efficiency is increased and simulated 

annealing needs less time to perform than SQG. 

In contrast, in the cost optimization model simulated annealing seems to need 

more time to run than SQG. This is caused by an increase in the run length at each 

temperature needed to reach the equilibrium state. 

Summary and Conclusions 

We have demonstrated the application and comparison of modified simulated 

annealing and SQG upon FMS design. System throughput and total cost models 

were constructed as test platforms. The method that appears to be the best for our 

application in terms of time complexity and solution quality is simulated annealing. 

In the throughput optimization model, the SQG method performed as well as 

simulated annealing but less effective in the cost model since the response surface of 

the cost model is more complicated than the throughput model. 

In the study, we are involved with a discrete parameter Monte Carlo optimization 

problem. Several modifications to both methods are required since neither is explicitly 

designed for this case. However, the modified versions of simulated annealing and 

SQG appear to be reasonable and we are optimistic about the capability of either for 

analyzing optimization problems for certain complex manufacturing systems. 

Due to intricate interrelations among FMS components, a unique optimal system 

configuration is not known. As we observed, several good system configurations were 

obtained using each optimization method. More strict decision criteria and analyses 

are necessary to make a final design. 

As we expected, using system throughput as the objective function, the solutions 
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tend to be larger systems. This tendency can be prevented by using the total cost of 

the system as the performance measure. 

Using different seeds did not seem to affect the ability of convergence for either 

method. However, it does tend to have more effects on the response of simulated 

annealing rather than the SQG method. This is because randomness is utilized in 

the neighborhood function and Metropolis procedure of simulated annealing. 
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CHAPTER 9. CONCLUSIONS 

Flexible manufacturing systems are increasingly popular in many areas of man­

ufacturing. Installation of an FMS normally requires a substantial investment, and 

thus careful analysis is necessary before making a definite commitment. In the pre­

vious chapters, a simulation model and the application of two types of stochastic 

optimization methods to the FMS design problem were presented: modified simu­

lated annealing and stochastic quasigradient. In addition, two types of performance 

measures were examined. Conclusions regarding each of these areas are addressed as 

follows. 

FMS generally consist of many interrelating components and thus it is rather 

difficult to estimate their performance. Discrete event simulation provides a perfect 

tool to study and analyze FMS, especially in the design phase. The system is analyzed 

and modeled, and a computer program is written which describes the performance 

of the system as a function of one or more parameters of the design. 

If the design performance is sufficiently quantitative such that this performance 

can be represented by a real-valued function of the simulation results, then the design 

process reduces to the problem of refining the values of the design parameters to yield 

the be~i, simulated system performance. Instead of using a trial and error process, 

direct search methods of optimization to the problem are employed: specifically, 



90 

simulated annealing and SQG. The advantages are: 

1. A systematic approach is taken to the optimization of the design parameters. 

2. A computer algorithm generally runs more efficiently in terms of both time and 

resources. 

However, the suitability of application of simulated annealing and SQG is really 

dependent on the type of problem. A number of heuristic modifications on both 

methods are necessary, and due to the stochastic nature of simulation, statistical 

analysis procedures can not be excluded while evaluating the system performance. 

We have performed several experiments regarding the different types of opti­

mization algorithms and performance measures. Experimental results show that by 

integrating the simulation model with simulated annealing or SQG methods, we are 

able to design a good FMS. Our method can yield good results in acceptable compu­

tation time. However, the performance of each method is sensitive to how the user 

defines the algorithm's operating parameters. Many pilot runs have been done in 

order to obtain good operating parameters for each of the algorithms. 

In addition, when using system throughput as the objective function, we may 

design as large a system as possible in order to achieve the highest throughput. It is 

probably not necessary to have the highest throughput as long as the system can meet 

the production plan, because it could be too costly and cause a lower utilization of 

the system. The tradeoff among using different types of performance measures should 

be carefully analyzed. 

SQG was designed for application to problems in which the decision variables 

are continuous. Among the disadvantages of SQG are the following problems: 
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1. Convergence to the global optimum is not guaranteed, but rather to a local 

optimum. 

2. The final solution is dependent upon the starting point chosen. 

3. The selection of a good step size sequence is difficult. 

4. If the decision variables are discrete, it typically does not perform as well. 

Ermolievand Gaivoronski [ERMO 83] suggested that the best procedure for ap­

plication of SQG is an interactive approach. However, in most cases the interactive 

procedure is impractical due to the time required to perform as the problem increases 

in complexity. 

Simulated annealing was designed for application to deterministic problems in 

which the decision variables are discrete. Some disadvantages in its application are: 

1. The process is very slow to converge. 

2. Proofs of convergence have been given for deterministic functions. However, 

convergence has not been proven for a stochastic function. 

3. A good stopping criteria and cooling schedule have not been defined. 

In our study, simulated annealing has some advantages over the SQG method. 

These are: 

1. The starting point chosen for simulated annealing has less effect on the final 

solution. 
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2. Decision variables involved are discrete. Simulated annealing is designed specif­

ically for this situation. 

3. Simulated annealing appears to give the most consistent results in terms of 

providing the best solution. 

4. The SQG method becomes less effective as the complexity of the response 

surface increases. 

Although each of the methods presented has advantages and disadvantages when 

applied to the FMS design problem, simulated annealing appears to be the best 

method in terms of consistency of results within reasonable computation time. We 

conjecture that simulated annealing has the potential to provide good solutions of not 

only deterministic but also stochastic optimization problems, and even though SQG 

does not perform as well as does simulated annealing, it still appears to be a reason­

able technique for analyzing certain manufacturing system optimization problems. 

Finally, there still remain unknown domains of application of simulated annealing 

and SQG to the stochastic optimization problems. Opportunities for further research 

might be directed in the following areas: 

1. Inclusion of experimental design techniques in the SQG methods to improve 

the calculation of the gradients. Originally the estimation of the gradients are 

performed one variable at a time. 

2. The convergence characteristics of simulated annealing when applied to opti­

mization of stochastic systems. 
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3. The comparison to other types of optimization methods such as Response Sur­

face Methodologies or Genetic Algorithms. 

Additionally, exploring the application of Monte Carlo optimization techniques 

into other areas is also needed. 
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APPENDIX. Modified Simulated Annealing 

c 
C (* Optimizing the system throughput vith Simulated Annealing *) 
C 

SUBROUTINE EVENT(I) 
C 

GOTO (1,2,3),1 
1 CALL NEXT_CONFIGURE 

RETURN 
2 CALL ANNEALING 

RETURN 
3 CALL EVALUATE 

RETURN 
END 

C* 
C* ............................................................... . 
C* 

C 

C 

SUBROUTINE NEXT_CONFIGURE 
COMMON/A001/Kth_RUN,PROD_RATE(12)/A003/BATCH_NO, 

+MAX_ITERATION,TEMPERATURE,FACILITY(9),PRE_RESOURCE(9),UPDATE 

INTEGER FACILITY,UPDATE,PRE_RESOURCE 
REAL ROOMl 

PRINT *,'Kth-RUN # = ',Kth_RUN 
IF (Kth_RUN .EQ. 0) CALL INPUT 
IF (UPDATE .EQ. 1) THEN 

DO 15 INDEX=l,8 
RDOM1=RAND(9) 
IF (RDOMl .LT. 0.5) THEN 

FACILITY(INDEX)=PRE_RESOURCE(INDEX)-l 
ELSE 
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FACILITY (INDEX) =PRE_RESOURCE(INDEX) +1 
ENDIF 
IF (FACILITY(INDEX) .GE. 10) FACILITY(INDEX)=10 

IF (FACILITY(INDEX) .LE. 1) FACILITY(INDEX)=l 
15 CONTINUE 

DO 16 INDEX=1,8 
CALL SETMR(INDEX,FACILITY(INDEX)) 
PRINT *,FACILITY(INDEX) 

16 CONTINUE 
ENDIF 
RETURN 
END 

C* 
C* .............................................................. . 
C* 

C 

C 

C 

C 

25 

SUBROUTINE ANNEALING 
COMMON/A001/Kth_RUN,PROD_RATE(12)/A002/NEW_MEAN,OPTI_MEAN, 

+OPTI_Var,NEW_Var/A003/BATCH_NO ,MAX_ITERATION ,TEMPERATURE , 
+FACILITY(9) ,PRE_RESOURCE (9) ,UPDATE 

DIMENSION XRESOURCE(8) 
INTEGER SIGNIFICANT,UPDATE,FACILITY,PRE_RESOURCE,BATCH_NO, 

+ EQ1_STAGE,EQ2_STAGE,EQ3_STAGE,XCHANGE,XRESOURCE 
REAL OPTI_MEAN,NEW_MEAN,U,Y,T_i,CHECK_POINT,OPTI_Var, 

+ NEW_Var,TEMPERATURE,XVAR,XMEAN 

IF (Kth_RUN .EQ. 0) THEN 
UPDATE=l 
Kth_RUN=Kth_RUN+l 
RETURN 

ENDIF 

IF (SIGNIFICANT(OPTI_MEAN,NEW_MEAN,OPTI_Var,NEW_Var) .EQ. 0) 
+ THEN 

IF (XCHANGE .EQ. 0) THEN 
DO 25 INDEX=1,8 

XRESOURCE(INDEX)=PRE_RESOURCE(INDEX) 
CONTINUE 
XMEAN=OPTLMEAN 
XVAR=OPTI_VAR 

C (save S1) 



OPTI_MEAN=NEW_MEAN 
OPTI_VAR=NEW_VAR 
CALL STORING 

100 

C (exchange S2 by Sl) 
XCHANGE=l 
RETURN 

ELSE 

30 

28 

C 
C 

C 

C 

IF «SIGNIFICANT(XMEAN,NEW_MEAN,XVar,NEW_Var) .EQ. 0) 
+ .OR. (NEW_MEAN .GT. XMEAN)) THEN 

CALL OUTPT2(Kth_RUN,OPTI_MEAN) 
DO 30 INDEX=l,8 

XRESOURCE(INDEX)=PRE_RESOURCE(INDEX) 
CONTINUE 
XMEAN=OPTLMEAN 
XVAR=OPTI_VAR 
OPTI_MEAN=NEW_MEAN 
OPTLVAR=NEW_VAR 
CALL STORING 
EQ2_STAGE=EQ2_STATGE+l 
RETURN 

ELSE 
DO 28 INDEX=l,8 

FACILITY (INDEX) =PRE_RESOURCE (INDEX) 
PRE_RESOURCE(INDEX)=XRESOURCE(INDEX) 

CONTINUE 
NEW_MEAN=OPTI_MEAN 
NEW_VAR=OPTI_VAR 
OPTI_MEAN=XMEAN 
OPTI_VAR=XVAR 
GOTO 100 

ENDIF 
ENDIF 

ELSE 
IF (XCHANGE .EQ. 1) THEN 

CALL OUTPT2(Kth_RUN,OPTI_MEAN) 
EQ2_STAGE=EQ2_STAGE+l 

ENDTF 
ENDIF 
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100 EQ2_STAGE=EQ2_STATGE+l 
XCHANGE=O 
IF (NEW_MEAN .LE. OPTI_MEAN) THEN 

U=RAND(6) 
Y=ABS(NEW_HEAN-OPTI_MEAN) 
CHECK_POINT=EXP(-(Y/TEMPERATURE)) 
PRINT *,'TEMPERATURE=',TEMPERATURE· 
PRINT *,'(U,CHECK_POINT) =',U,CHECK_POINT 
IF (U .LT. CHECK_POINT) THEN 

C (* acceptance *) 
OPTI_MEAN=NEW_MEAN 
OPTLVar=NEW_Var 
CALL STORING 
CALL OUTPT2(Kth_RUN,OPTI_MEAN) 
EQ1_STAGE=0 

ELSE 
C (* rejection *) 

EQ1_STAGE=EQ1_STAGE+l 
ENDIF 

ELSE 
C (* acceptance *) 

OPTI_HEAN=NEW_MEAN 
OPTLVar=NEW_Var 
CALL STORING 
CALL OUTPT2(Kth_RUN,OPTI_MEAN) 
EQ1_STAGE=0 

END IF 
IF «EQ1_STAGE .GE. 5) .OR. (EQ2_STAGE .GE. 10)) THEN 

CALL INTERVAL(Kth_RUN,OPTI_HEAN,OPTI_Var,BATCH_NO,l) 
Kth_RUN=Kth_RUN+l 
TEMPERATURE = TEMPERATURE * 0.90 
EQ1_STAGE=O 
EQ2_STAGE=O 
UPDATE=l 

ENDIF 
IF (Kth_RUN .EQ. (MAX_ITERATION+l)) THEN 

ELSE 

CALL INTERVAL(Kth_RUN,OPTI_MEAN,OPTI_Var,BATCH_NO,3) 
CLOSE(70) 
CLOSE(71) 
CLOSE(72) 
STOP 



C* 

UPDATE=l 
RETURN 

ENDIF 
END 
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C* .............................................................. . 
C* 

C 

C 

C 

C* 

SUBROUTINE INTERVAL(SRUN,MU,XDEVIATION,BATCH,SIGN) 

INTEGER BATCH,SIGN,SRUN 
REAL MU,XDEVIATION,LOW_BoUND,UP_BOUND 

UP_BOUND=MU+1.282*SQRT(XDEVIATION)/SQRT(REAL(BATCH» 
LOW_BOUND=MU-1.282*SQRT(XDEVIATION)/SQRT(REAL(BATCH» 

IF (SIGN .EQ. 1) THEN 
CALL OUTPT1(SRUN,MU,LOW_BOUND,UP_BoUND) 

ELSEIF (SIGN .EQ. 2) THEN 
CALL OUTPTS(SRUN,MU,LoW_BoUND,UP_BoUND) 

ELSEIF (SIGN .EQ. 3) THEN 
CALL OUTPT4(UP_BoUND,MU,LoW_BoUND) 

ELSE· 
CALL OUTPT1(SRUN,MU,LOW_BOUND,UP_BOUND) 
CALL oUTPTS(SRUN,MU,LoW_BOUND,UP_BOUND) 

ENDIF 
END 

C* ............................................................... . 
C* 

C 

C 

SUBROUTINE EVALUATE 
COMMON/SIM/D(SO) ,DL(SO) ,S(SO) ,SL(SO) ,X(SO),DTNOW,TNOW, 

+ TFIN,J,NUMREP 
COMMON/A001/Kth_RUN,PROD_RATE(12)/A002/NEW_MEAN,OPTI_MEAN, 

+OPTI_Var , NEW_Var/A003/BATCH_NO ,MAX_ITERATION ,TEMPERATURE, 
+FACILITY(9) ,PRE_RESOURCE (9) ,UPDATE 

INTEGER COUNTING ,BATCH_NO ,FACILITY ,PRE_RESOURCE ,Kth_RUN , 
+ XNUM_1,XNUM_2 

REAL PROD_RATE,TOTAL_RATE,NEW_MEAN,OPTI_MEAN,NEW_Var, 
+ CYC_TIME,XTAL_1,XTAL_2 

IF (COUNTING .EQ. 0) THEN 



C 

C 

C 

C 

XTAL_l = TAVG(l) * TNUM(l) 
XNUM_l = TNUM(l) 
COUNTING=COUNTING+l 
RETURN 

END IF 

XTAL_2 = TAVG(l) * TNUM(l) 
XNUM_2 = TNUM(l) 
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PRINT *,'(XNUM_l,X_NUM2)=',XNUM_l,XNUM_2 

IF (XNUM_2 .EQ. XNUM_l) THEN 
PROD_RATE(COUNTING) = 0.0 
GOTO 110 

ELSE 
CYC_TIME = (XTAL_2 - XTAL_l)/(XNUM_2 - XNUM_l) 

ENDIF 

110 XTAL_l = XTAL_2 

C 

C 

C 

XNUM_l = XNUM_2 
TOTAL_RATE=TOTAL_RATE+PROD_RATE(COUNTING) 

IF (COUNTING .EQ. BATCH_NO) THEN 

IF (Kth_RUN .EQ. 0) THEN 
OPTI_MEAN=TOTAL_RATE/BATCH_NO 
PRINT *,OPTI_MEAN 
TOTAL_RATE = 0.0 
OPTI_Var=VARIANCE(OPTI_MEAN,BATCH_NO) 
CALL INTERVAL(Kth_RUN,OPTI_MEAN,OPTI_Var,BATCH_NO,4) 
CALL OUTPT2(Kth_RUN,OPTI_MEAN) 

ELSE 
NEW_MEAH=TOTAL_RATE/BATCH_NO 
PRINT *,OPTI_MEAN 
PRINT *,NEW_MEAN 
TOTAL_RATE = 0.0 
NEW_Var=VARIANCE(NEW_MEAN,BATCH_NO) 

ENDIF 

XTAL_l = 0.0 
XTAL_2 = 0.0 



XNUM_1 = 0 
XNUM_2 = 0 
COUNTING=O 
RETURN 

EDDIF 
COUNTING=COUNTING+1 
RETURN 
END 
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C* ............................................................... . 
C* 

C 

C 

C 

SUBROUTINE INPUT 
COMMON/A003/BATCH_NO,MAX_lTERATION,TEMPERATURE, 

+FACILITY(9),PRE_RESOURCE(9),UPDATE 

INTEGER FACILITY,BATCH_NO,MAX_lTERATION,PRE_RESOURCE 
REAL TEMPERATURE 

OPEN(UNIT=70, FILE='AGRATE.A01' ,STATUS='NEW') 
OPEN(UNIT=71, FILE='ANLOUT.A01',STATUS='NEW') 
WRlTE(71,*)' +#+++B1+++B2+++B3+++B4+++LR+++MC++++RATE+' 

PRINT *,'HELLO ! Please enter the required data by order.' 
PRINT * 
PRINT *,'(1) The initial value for setup queue ?' 
READ *,FACILITY(l) 
PRINT *,'(2) The initial value for machine queue 7' 
READ *,FACILITY(2) 
PRINT *,'(3) The initial value for deburing queue ?' 
READ *,FACILITY(3) 
PRINT *,'(4) The initial value for QC queue 7' 
READ *,FACILITY(4) 
PRINT *,'(5) The initial value for Labors 7' 
READ *,FACILITY(5) 
PRINT *,'(6) The initial value for Machine ?' 
READ *,FACILITY(6) 
PRINT *,'(7) The initial value for Deburing Robot ?' 
READ *,FACILITY(7) 
PRINT *;'(8) The initial value for CMM ?' 
READ *,FACILITY(8) 
PRINT *,'(9) The number of batches ?' 
READ *,BATCH_NO 
PRINT *,'(10) The stop condition (max # of iterations) ?' 
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READ *,MAX_ITERATION 
PRINT *,'(11) Enter the control parameter (floating-point)?' 
READ *,TEMPERATURE 
PRINT *,'Thank you for your cooperation !! ' 

DO 20 INDEX=1,8 
CALL SETMR(INDEX,FACILITY(INDEX» 
PRE_RESOURCE(INDEX)=FACILITY(INDEX) 

20 CONTINUE 

C* 

RETURN 
END 

C* .............................................................. . 
C* 

C 

C* 

SUBROUTINE OUTPT1(SRUN,MEAN_o,LOW,UP) 
REAL MEAN_o,LOW,UP 
INTEGER SRUN 

WRITE(70,*) SRUN,LOW,MEAN_o,UP 
END 

C* .........•..................................................... 
C* 

C* 

SUBROUTINE OUTPT5(SRUN,MEAN_o,LOWER,UPPER) 
REAL MEAN_o,LOWER,UPPER 
INTEGER SRUN 

WRITE(73,*) SRUN,LOWER,MEAN_o,UPPER 
END 

C* ..........................•..................................... 
C* 

C 

C 

SUBROUTINE OUTPT2(SRUN,MEAN_o) 
COMMON/A003/BATCH_NO,MAX_ITERATION,TEMPERATURE, 

+FACILITY(9)·,PRE_RESOURCE(9) ,UPDATE 

INTEGER FACILITY,SRUN,PRE_RESOURCE 
REAL MEAN_o 

WRITE(71,50) SRUN,PRE_RESOURCE(1),PRE_RESOURCE(2), 
+PRE_RESOURCE(3),PRE_RESOURCE(4),PRE_RESOURCE(5), 
+PRE_RESOURCE(6) ,PRE_RESOURCE (7) ,PRE_RESOURCE (8) ,MEAN_o 
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50 FORMAT(2X,I3,8(lX,I4),2X,F8.4) 
END 

C* 
C* ......... ' ....................................................... . 
C* 

C 

C 

SUBROUTINE OUTPT3(SRUN,MEAN_n) 
COMMON/A003/BATCH_NO,MAX_ITERATION,TEMPERATURE, 

+FACILITY(9),PRE_RESOURCE(9),UPDATE 

INTEGER FACILITY,SRUN 
REAL MEAN_n 

WRITE(72,60) SRUN,FACILITY(1),FACILITY(2),FACILITY(3), 
+FACILITY(4),FACILITY(5),FACILITY(7),FACILITY(8), 
+FACILITY(8),MEAN_n 

60 FORMAT(2X,I3,8(lX,I4),2X,F8.4) 
END 

C* 
C* .............................................................. . 
C* 

C 

C* 

SUBROUTINE OUTPT4(UBOUND,MEANS,LBOUND) 
REAL UBOUND,MEANS,LBOUND 

WRITE(71,*) 
WRITE(71,*)'+++ 951. CONFIDENCE INTERVAL +++' 
WRITE(71,*)'* UPPER-BOUND:',UBOUND 
WRITE(71,*)'* MEAN :',MEANS 
WRITE(71,*)'* LOW-BOUND :',LBOUND 
END 

C* ................................................................ . 
C* 

REAL FUNCTION VARIANCE(MEAN,SAMPLE_SIZE) 
COMMON/A001/Kth_RUN,PROD_RATE(12) 

INTEGER SAMPLE_SIZE 
REAL DIFFERENCE,MEAN,PROD_RATE 

DO 70 INDEX=l,SAMPLE_SIZE 
DIFFERENCE=DIFFERENCE+(PROD_RATE(INDEX)-MEAN) **2 

70 CONTINUE 
VARIANCE=DIFFERENCE/(SAMPLE_SIZE-l) 



C* 

DIFFERENCE=O.O 
END 
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C* .............................................................. . 
C* 

C* 

INTEGER FUNCTION F_TEST(Var_l,Var_2) 
REAL Var_l,Var_2,RATIO 

IF (Var_l .GT. Var_2) THEN 
IF (Var_2 .EQ. 0.0) THEN 

RATIO = 9.9 
ELSE 

RATIO=Var_l/Var_2 
ENDIF 

ELSEIF (Var_2 .GT. Var_l) THEN 
IF (Var_l .EQ. 0.0) THEN 

RATIO = 9.9 
ELSE 

RATIO=Var_2/Var_l 
ENDIF 

ELSE 
RATIO=1.0 

ENDIF 

IF (RATIO .GT. 2.16 ) THEN 
F_TEST=l 

ELSE 
F_TEST=O 

ENDIF 
END 

C* .............................................................. . 
C* 

INTEGER FUNCTION SIGNIFICANT(MEAN1,MEAN2,Varl,Var2) 
C (if significant = 1, then significantly different) 

INTEGER F _TEST 
REAL Varl,Var2,SEPERATE_VAR,POOL_VAR,SIGMA,CRITICAL_VALUE, 

+ MEAN1~MEAN2 

IF ( F_TEST(Varl,Var2) .EQ. 1) THEN 
SEPERATE_VAR=(Var1+Var2)/10 
SIGMA=SQRT(SEPERATE_VAR) 



C* 
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ELSE 
POOL_VAR=(Varl+Var2) *18/20 
SIGMA=SQRT(POOL_VAR)*SQRT(0.2) 

ENDIF 

CRITICAL_VALUE=1.282*SIGMA 
T_TEST=ABS(MEAN2-MEAN1) 

IF (T_TEST .GT. CRITICAL_VALUE) THEN 
SIGNIFICANT=l 

ELSE 
SIGNIFICANT=O 

ENDIF 
END 

C* .............................................................. . 
c* 

REAL FUNCTION RAND(ISTRM) 
INTEGER B2E15,B2E16,HI15,HI31,ISTRM,IZGET,IZSET,LOW15,LOWPRD, 

+ MODLUS,MULT1,MULT2,OVFLOW,ZI,ZRNG(50) 
INTEGER lRANDG,RANDST 
SAVE ZRNG 

DATA MUL11,MULT2/24112,26143/ 
DATA B2E15,B2E16,MODLUS/32768,65536,2147483647/ 
DATA ZRNG/1973272912,281629770,20006270,1280689831, 

+ 2096730329,1933576050,913566091,246780520, 
+ 1363774876,604901985,1511192140,1259851944, 
+ 824064364,150493284,242708531,75253171,1964472944, 
+ 1202299975,233217322,1911216000,726370533, 
+ 403498145,993232223,1103205531,762430696, 
+ 1922803170,1385516923,76271663,413682397,726466604, 
+ 336157058,1432650381,1120462904,595778810,877722890 
+ ,1046574445,68911991,2088367019,748545416,622401386, 
+ 2122378830,640690903,1774806513,2132545692, 
+ 2079249579,78130110,852776735,1187867272,1351423507 
+ ,1645973084/ 

ZI = ZRNG(ISTRM) 
HI15 = ZI / B2E16 
LOWPRD = (ZI - HI15 * B2E16) * MULTl 
LOW15 = LOWPRD/B2E16 



C* 

HI31 = HIlS * MULTl + LOW1S 
OVFLOW = HI31 / B2E1S 
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ZI = «(LOWPRD - LOW1S * B2E16) - MODLUs) + 
+ (HI31 - OVFLOW * B2E1S) * B2E16) + OVFLOW 

IF (ZI .LT. 0) ZI = ZI + MODLUs 
HIlS = ZI/B2E16 
LOWPRD = (ZI-HI1S * B2E16) * MULT2 
LOW1S = LOWPRD/B2E16 
HI31 = HllS*MULT2+LOW1S 
OVFLOW = HI31/B2E1S 
ZI = «(LOWPRD-LOW1S*B2E16)-MODLUs) + 

+ (HI31 - OVFLOW * B2E1S) * B2E16) + OVFLOW 
IF (ZI .LT. 0) ZI = ZI + MODLUs 
ZRNG(IsTRM) = ZI 
RAND = (2 * (ZI / 256) + 1) I 16777216.0 
RETURN 
END 

c* .............................................................. . 
C* 

SUBROUTINE STORING 
COMMON/A003/BATCH_NO,MAX_ITERATION,TEMPERATURE, 

+FACILITY(9) ,PRE_RESOURCE (9) ,UPDATE 
INTEGER INDEX,FACILITY,PRE_RESOURCE 

DO 80 INDEX=l,8 
PRE_RESOURCE(INDEX)=FACILITY(INDEX) 

80 CONTINUE 
END 


