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CHAPTER 1. INTRODUCTION 

Overview 

Studies have shown that 75% of a product's life cycle cost is determined in 

the early stages of design, and later decisions make only minor changes to the total 

cost. A concurrent design approach in which the design of product, process, and 

system may be examined simultaneously in the early design phase will significantly 

reduce life cycle cost and product design lead time (Nevins and Whitney, 1989). 

Therefore, procedures which will allow the designer to quickly evaluate the process 

aspect of a product design are needed for the implementation of concurrent design. 

The current research efforts in manufacturing process planning encompass machining 

process planning, often referred to as process planning, and assembly planning. In the 

area of machining, most of the machines and processes are well established, and thus 

machining processes can be selected by applying manufacturing knowledge to relate 

the part features to the existing processes. On the other hand, assembly planning 

techniques are not well established. Thus, it is difficult to develop a planning system 

which can automatically generate assembly plans for various types of products. This 

is also the reason that the assembly planning function has been very much experience

based and human-dependent. 

The major activities involved in assembly planning include (Nevins and Whitney, 

1989): 
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1. Establishment of an assembly sequence. 

2. Division of the product into subassemblies. 

3. Selection of an assembly method for each step. 

4. Integration of a quality control strategy. 

5. Economic analysis and choice of assembly method. 

Point 1 above shows that the derivation of valid assembly sequences from a 

design model is a major activity of assembly planning. De Fazio and Whitney (1987)" 

characterized a product as a network graph, or liaison diagram, in which the parts 

are represented by nodes and the liaisons between parts are represented by arcs. 

A complete assembly is produced if all the liaisons are properly established. All the 

geometric constraints have to be satisfied when a sequence is generated; otherwise, the 

product cannot be assembled successfully. A geometrically feasible assembly sequence 

may not be feasible when process constraints such as assembly machines, assembly 

fixtures, assembly tools, and assembly system layouts are considered. Therefore, 

because of the geometric and/or process constraints, liaison precedences exist, forcing 

some liaisons to be established before others. Unless these precedence requirements 

are followed, the assembly sequence will not lead to a complete product assembly. 

If all of the liaisons and the precedences among them can be properly identified, a' 

complete set of valid liaison assembly sequences can be generated. 

Research Objective 

One objective of this research is to develop a methodology for automatic prece

dence relationship extraction and to implement this methodology in a solid modeling 
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environment. The second objective is to generate all valid liaison assembly sequences 

based on the precedence relationships extracted. 

Assumptions 

To carry out the automatic precedence relationship extraction, this research as

sumes that a detailed product design in a solid modeling environment is available. 

The assumptions in this research are stated below: 

1. Product parts are rigid bodies which generally do not change shape during 

assembly. Deformable objects are not considered in this research. 

2. The effects of dimensional and geometric tolerances for the product design are 

not taken into account. For this reason, the part solid models represent only 

nominal sizes of part solids. 

3. Only cylindrical and planar mating faces are considered. 

4. The contacts between parts are limited to surface contacts only; line-contacts 

and point-contacts are not considered. 

5. All parts are 1-disassemblable (Woo and Dutta, 1991). A part is 1-disassemblable 

if only one single translation is needed to remove it. Rotation and sequential 

disassembly movements are not considered in this research. 

6. No process constraints are imposed on the methodology. The liaison assembly 

sequences generated from the extracted precedence relationships will represent 

all of the geometrically feasible sequences. 

7. The liaison diagram of a product design has to be in the simple-cycle structure. 

The definition of simple-cycle liaison diagrams will be discussed in Chapter 3 .• 
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Basic Approach 

In a manual design and planning environment, the assembly planner uses the 

design drawings to figure out how parts can be put together. The reasoning process 

is an interlinked activity and based mostly on the expertise of the planner. This is 

an iterative process. The planner sometimes needs to consult with the designer with 

regard to the design itself, the functionality, the assembly feasibility, and so forth. 

This can be a costly and time consuming approach, and often does not lead to a good 

candidate set of assembly sequences. 

In this research, a disassembly approach is used to derive the precedence rela

tionships in a solid modeling environment. A framework for automatic precedence 

relationship extraction and assembly sequence generation is shown in Figure 1.1. 

Implementation of this approach will significantly alleviate the problems mentioned 

above. This approach requires the following inputs: 

1. The liaison diagram of the product. 

2. The disassembly directions for each part in the product. 

3. The product design represented in a solid modeling system. 

The output is a set of precedence relationships. Based on these precedence relation

ships, all of the liaison assembly sequences can be generated. The main focus of the 

current study lies on the precedence extraction methodology. 

Organization of This Thesis 

This thesis is organized into 5 chapters. Chapter 1 is the introduction. Chapter 2 

gives a review of related research in the area of assembly sequence generation. Chap-
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Figure 1.1: Framework of automatic precedence relationship extraction and assem
bly sequence generation 

ter 3 presents the background information related to the subject and the proposed 

methodology for precedence relationship extraction. Implementation of the proposed 

methodology is discussed in Chapter 4. Finally, a summary of the research work and 

future research in assembly planning are given in Chapter 5. 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, a revlew on related research works conducted in the area of 

assembly sequence generation is given. Since the proposed methodology employs 

interference detection, a brief review on that subject is also presented. 

Assembly Sequence Generation 

As mentioned in the previous chapter, the techniques of assembly planning are 

not well established, thus it is difficuh to develop a planning system for automatic 

assembly sequence generation. A study (Nevins and Whitney, 1989) shows that gen

erating assembly sequences manually can be a tedious process with no guarantee 

that all of the good ones will be discovered. Various methods for assembly sequence 

generation have been attempted by researchers. 

Huang and Lee (1989) proposed a representation and acquisition of the prece

dence knowledge of an assembly from the viewpoint of disassembling the product. 

An assembly is described by an undirected graph called "Feature Mating Operation 

Graph" (FMOG). This assembly graph G = (V,E) consists of a finite nonempty set 

of vertices Vand a set of edges E connecting them. Two different vertices are present 

in the graph: square vertices representing components and circle vertices represent

ing feature mating operations between components. Each feature mating operation is 

represented by a Boolean variable indicating whether the operation is done or undone. 
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Extending this concept to an assembly, the state of an assembly is described by the 

conditions of all of its feature mating operations. A geometric mating graph is also 

developed to include all of the necessary geometric and topological information for 

the precedence knowledge acquisition. Then, two algorithms are developed to obtain 

the precedence knowledge from the geometric mating graph. 

Ko and Lee (1987) develbped a method which used mating conditions as the 

input and generate an assembly procedure in two steps. First, each component in 

an assembly is located at a specific vertex of a hierarchical tree. Second, an assem

bly procedure is generated from the hierarchical tree with the help of interference 

checking. Hoffman (1989) presented a technique which can take Constructive Solid 

Geometry representations of two objects along with the relative position of the two 

objects corresponding to their mated position and discover a path for extracting one 

object from the other. The reverse of this procedure forms an assembly sequence 

for the composite object. Miller and Hoffman (1989) used fasteners as the crucial 

items to determine a valid assembly sequence. Woo and Dutta (1991) proposed an" 

approach by traversing the Disassembly Tree (DT) in pre- and post-order to yield a 

sequence of minimal number of operations for disassembly and assembly respectively. 

All of the methodologies mentioned above generate only a single valid assembly 

sequence based on the product geometry. Although the sequences generated by using 

above methodologies are geometrically feasible, they could be infeasible because of 

process or other constraints, such as designer intent, facility restrictions, cost, fixtur

ing infeasibility, etc. Since only a single valid sequence is generated using the above 

methodologies, a set of "good" sequences is less likely to be found. 

Lin and Chang (1990) developed a planning methodology, which accepts the part 

and assembly boundary models as inputs, does reasoning on the model, and then 
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automatically generates feasible plans for the assembly of the product. Although this 

methodology can generate more than one valid assembly sequences, it is restricted to 

considering only one subassembly during the assembly process. In other words, two 

or more subassemblies cannot be processed in parallel. 

Homem De Mello and Sanderson (1986, 1990) used a decomposition approach 

to generate an AND/OR graph representation of all possible assembly plans by rep

resenting all the possible configurations of the assembly. Based on this approach, 

Khosla and Mattikali (1989) developed a methodology to automatically determine 

the assembly sequence from a 3-D solid modeler description of the assembly. Their 

approach consists of automatically determining a set of assembly operations, through. 

a disassembly procedure, that leads to the given assembly. In both methods, one 

starts with the completed product and systematically disassembles it by every possi

ble path. The search for every possible path is exhaustive and thus will become too 

cumbersome to use if there are more than a few parts. 

Bourjault (1984) presented a methodology for generating all assembly sequences 

algorithmically from a set of rules derived from the answers to a series of questions 

about the mating of part pairs and multiples of parts. Each question is answered 

with "yes" or "no" and can be phrased so that either (or a mix) answer calls for 

subsequent action. A modification of Bourjaults's method was presented by De Fazio 

and Whitney (1987). They represented the assembly as a network graph, where the 

parts are represented by nodes and liaisons are represented by arcs connecting the. 

related nodes. Such a network representation of assembly is called "liaison diagram" 

(see Figure 2.1). Once the product is characterized as a network of parts and 

liaisons, the user has to answer two questions for each liaison. The questions to be 

answered are as follows. For i = 1 to I, where I is total number of liaisons in a product 
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Figure 2.1: An example of liaison diagram 

design, 

Q 1) what liaisons must be done prior to doing liaison i ? 

Q2) what liaisons must be left to be done after doing liaison i? 

The questions are to be answered for each liaison. Answers are to be expressed in the 

form of a precedence relationship between liaisons or between logical combinations 

of liaisons. There are exactly 21 questions to be answered, two associated with each 

liaison. Based on the user's answers to the questions, a complete set of assembly 

sequences can be derived. Lui (1989) extended Whitney's work to construct the 

directed graph of assembly states representing all of the assembly sequences using 

these precedence relationships and the liaison diagrams. 

Both approaches (Bourjaults 1984, De Fazio and Whitney 1987) lead themselves 
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to interactive systems which rely on designer's ability to correctly answer questions. 

For simple assemblies with a small number of liaisons, these approaches work fairly 

well. However, with an increasing number of parts, the number of liaisons (and ques

tions) i~creases fairly quickly, making these approaches infeasible for m~ny products. 

The number of liaisons for a product with n parts can be n - 1 ::; 1::; (~). A product 

of only 10 components would have between 9 and 45 liaisons, and between 18 to 90 

questions to be answered. As the number of liaisons increases, it becomes difficult for 

a person to guarantee the consistency and correctness of the answers. De Fazio et al. 

(1991) proposed an approach called the "onion-skin" method for assembly sequence 

generation. The "onion-skin" concept of "peeling" parts from an assembly in layers, 

much like peeling the skin of an onion, is used to find assembly precedence. This' 

methodology also requires that a human answer questions to determine whether or 

not the product (or subassembly) can be separated into two components. Thus, it 

still requires human judgment to determine sequences. This increases the chances of 

making a judgment error. 

Since many factors can affect the selection of assembly sequence, the methodolo

gies generating only a single assembly sequence are not reasonable approaches because 

process and other constraints may make this single sequence infeasible. Thus, study 

of all possible alternatives with respect to the sequences of assembly is essential for 

automatic assembly planning. Because of the possibilities of making errors, human 

interaction in assembly sequence generation should also be reduced. 3 
Interference Detection for Part Disassembly 

When two or more separate parts are brought together in an assembly, the parts 

should not inte:sect. To provide a tool to detect design mistakes in a CAD envi-
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ronment, a static interference checking function is often embedded in solid modeling 

systems. As mentioned in the previous chapter, the approach used in this thesis is a 

disassembly approach that automatically extracts all of the precedence relationships 

between liaisons. Thus, the entire assembly has to be disassembled to determine 

precedences. This raises the need for dynamic interference detection. 

The basis principle of dynamic interference detection is to check the intersection 

between stationary objects and the trajectory of a moving object. Boyse (1979) pre

sented a computer representation for solids and surfaces and algorithms which carry 

out interference checking among objects. Objects are represented as polyhedra or as 

piecewise planar surfaces. To detect a collision between two objects, it is sufficient 

to detect a collision of an edge on one object with a face of the other or vice versa. 

W.P. Wang and K.K. Wang (1986) proposed a method for modeling swept volume 

by computing a family of critical curves, which is the boundary of the swept volume, 

from a moving solid. Roth (1982) developed a method called "Ray .casting" as the 

methodological basis for a CAD jCAM solid modeling system. In order to visualize 

and analyze the model, virtual light rays are cast as probes. This method is also 

applied in assembly planning for dynamic interference detection. Rays are cast from" 

the moving part in its moving direction. If any ray intersects with the stationary 

part, collision is detected. 

-For some types of assemblies, especially three-dimensional mechanisms, non

linear mating paths are sometimes needed to insert certain parts. Lozano-Perez (1979, 

1983) developed the configuration-space approach which is a fundamental analytical 

tool used to determine non-linear mating paths from interrelated objects. A configu

ration of a part is a set of parameters which uniquely specifies the position of every 

point on the part, and the configuration space is the set of all possible configurations. 
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In the configuration space, the problem of planning the motion of a part through 

a space of obstacles is transformed into an equivalent problem of planning the mo

tion of a point through a space of enlarged configuration-space obstacles. Finally, 

Wang (1990) presented a 3-dimensional collision avoidance algorithm for controlling 

complicated machine motions. 
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CHAPTER 3. PROPOSED METHODOLOGY 

In this chapter, a methodology for deriving the liaison precedence relationships 

for a product design which is characterized by a simple-cycle liaison diagram is de

scribed. Before the proposed methodology is presented, the background information 

related to the subject is stated first. 

Preliminaries 

. 
The related background information including liaison diagram structures, prece-

dence relationship representations, and disassembly directions is described in this 

section. 

Liaison Diagram Structures 

A liaison diagram, as shown in Figure 2.1, is an abstract representation of a 

product assembly. As mentioned in the previous chapter, a liaison diagram is used 

to represent an assembly product. The parts are represented by nodes and liaisons 

are represented by arcs connecting the related nodes. Although it may take many 

different forms, a liaison diagram may be constructed from two basic structures: 

1. Tree: A diagram T is a tree if, and only if, every two distinct nodes of Tare 

joined by a unique path (see Figure 3.1.(a)). 
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(a) (b) 

Figure 3.1: Two basic structures for liaison diagrams: (a) tree, (b) simple cycle. 

2. Simple cycle: A simple cycle is a diagram in which each node (part) is asso

ciated exactly with two arcs (liaisons) (see Figure 3.1.(b)). 

In this thesis, a methodology is developed to extract all of the precedence relationships· 

for a product design which is characterized by a simple-cycle liaison diagram. 

Precedence Relationship Representations 

A liaison precedence relationship can be expressed in a form of A -----+ B. Both 

A and B can be a single liaison or a logical combination of liaisons. Several examples 

are shown as following in which the precedence sign "---+" is read "must precede". 

L4 ---+ (Ll /\ L3) 

L4 ---+ (Ll V L3) 

(Ll /\ L3) ---+ L4 

where "/\" and "V" respectively denote the "and" and "or" operators in Boolean 

algebra. Each liaison, Li, in a precedence relationship is regarded as a Boolean 

variable indicating whether or not the liaison has been established. 
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Li=C established 

unestablished 

All of the precedence requirements must be met as the assembly process pro

gresses. This means that the following two conditions must be met: 

Condition 1: When the Boolean value of the left hand side is 0, the Boolean 

value of the right hand side must be 0 too. 

Condition 2: When the Boolean value of the left hand side is 1, the Boolean 

value of the right hand side can be either 0 or 1. 

These two conditions are demonstrated with the example, Li -+ (Lj V (Lk 1\ L[)). 

Let BLand B R be the Boolean values of the left hand side and right hand side of 

the precedence sign respectively. 

1. Assume Li = 0, Lj = 1, Lk = 0, L[ = 1 

BL = Li = 0, 

BR = Lj V (Lk 1\ L[) = 1 V (0 1\ 1) = 1 

Condition 1 is violated, so the sequence would be invalid because the precedence 

requires that Li is established before (L j) or (L k 1\ L 1) is done. 

2. Assume L· - 1 L· - 0 Lk - 1 L[ = 1 1- - , J -, -, 

BL = Li = 1, 

BR = Lj V (Lk 1\ L[) = 0 V (1 1\ 1) = 1 

Neither of the two conditions is violated, so the sequence satisfies this precedence 

relationship. 

Liaison precedence relationships can take several different forms. Two basic 

forms of precedence relationships are extracted in this thesis: 
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1. Simple form has the form of Li ---t Lj that it has only one liaison on each 

side of the precedence sign. 

2. Complex form has the form of Li ---t (Lj A Lk A ... ) that it has one liaison on 

the left, but the right hand side of the precedence sign is a Boolean combination 

of several liaisons by using "A" Boolean operator only. 

Different forms of precedence relationships can be decomposed into the two basic 

forms stated above. For example, a precedence relationship of the form (Li A L j ) 

---t Lk can be decomposed into two simple-form precedence relationships: 

Another example, Li ---t ((Lj A Lk) V L[), can be decomposed into a combination 

of a simple-form and a complex-form precedence relationships: 

Li ---t L[ 

Li ---t (Lj A Lk) 

Disassembly Directions 

In this thesis, it is assumed that the product design will include only planar 

and cylindrical faces. In order that the program be able to reason the precedence 

relationships, the disassembly directions for each liaison must be identified. Different 

procedures are employed to select the disassembly directions for these two types of 

mating faces: 

1. Cylindrical mating faces are constrained such that the disassembly directions 

must be along the cylindrical axis. Let n be the unit vector of the axis of the. 

cylindrical face. Both nand -n are the possible disassembly directions. 
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2. For planar faces, the procedure to determine the disassembly directions is based 

on the work of Chen and Woo (1992), and Dutta and Woo (1991). Suppose 

part P2 is to be disassembled from part Pl. First, the vectors of the surface 

normals to P2 's mating faces with respect to PI are determined. Note that 

the vectors always point inward towards the part to be disassembled (P2 in 

this case; see Figure 3.2.(a)). Next, the procedure maps all of the surface 

normals of the mating faces of P2 onto an unit sphere. To determine a valid 

set of disassembly directions, the following is done. For each normal vector 

generated, a hemisphere is created by making a plane cut through the center of 

the unit sphere and perpendicular to the normal vector of the mating face. The 

hemisphere consists of all portions of the unit sphere lying to the side of the 

plane cut on which the unit normal resides. One hemisphere is created for each 

normal vector. The intersection of these hemispheres represents a space of valid 

disassembly directions. The disassembly directions are obtained by generating a 

vector from the center of the unit sphere to any point in the intersection space. 

To illustrate this concept, a 2-dimensional example will be used. In the 

example, a unit circle will replace the unit sphere. In Figure 3.2.(a), nl and n2 

are the normals of the mating faces of P2 with respect to Pl. Figure 3.2.(b) 

shows nl is mapped onto the unit circle, along with the semicircle obtained by 

cutting the unit circle perpendicular to the direction of n1. This semicircle is 

indicated by a shaded area. Figure 3.2. (c) shows the entire unit circle along 

with the semicircles for both nl and n2. The intersection of the two semicircles 

(shown most shaded in the figure) represents a space of possible disassembly 

directions. To generate a disassembly direction, one simply draws a vector from 

the center of the unit circle to any point in the most shaded region. In the 
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n2 

nl nl 
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Figure 3.2: Hemisphericity of face normals 

figure, the dashed lines all represent valid disassembly directions (this can be 

verified by examining Figure 3.2.(a)). Finding the intersection of hemispheres 

in 3-dimensional cases is exactly the same as for the 2-dimensional cases. As' 

the example in Figure 3.2 shows, there can be an infinite number of disassembly 

directions. However, in the case where the hemispheres all intersect at a single 

line, there may only be one or two valid disassembly directions. These two cases 

can be described as follows: (a) the intersection contains an infinite number of 

valid disassembly directions, and (b) the intersection contains a finite number 

of valid disassembly directions. 

(a) Case (a) was illustrated in Figure 3.2, and will now be explained in more 

detail. There are five different possible intersections for a disassembly 

direction set containing an infinite number of disassembly directions: half

plane, plane segment, plane, half-space, and space segment (see Table 3.1). 

For a part containing an infinite number of possible disassembly directions, 
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Table 3.1: Equations for representing disassembly direction sets containing an infi
nite number of directions 

Equation Space region represented 

half-line = (p, n) p --------~~ n 

p 
line = (p, n, -n) -n .... .---..!:------l •• n 

half-plane = 
(po, p, n, k, b) 

plane = (po, p, n) 

plane segment = 
(po, p, n, (k, b), 

(k', b'), ..... ) 

half-space = 
(pI, n) 

n 

---pI 

p : a point on the line 

n : vector of the line 

p : a point on the line 
n : vector of the line 

po, p : points on the plane 
n : plane normal 
k : vector of an unbounded 

line ehich divides the plane 
into two unbounded regions 

b : vector perpendicular to both 
n and k and points to the 
desired plane region 

po, p : points on the plane 
n : plane normal 

region bounded by two half-planes 
(po, p, n, k, b) and (po, p, n, k', b') 

pI : unbounded surface which 
. divides Cartesian space into 

two unbounded regions 
n : normal of pI and points to the 

desired space region 

space segment = 
(pI, n), (PI' , n'), ..... ) 

region bounded by two half-spaces (pI, n) and (pI' , n') 
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Table 3.2: Primary disassembly direction selection 

Intersection Primary disassembly direction 
(Symbols used follow Figure 3.3) 

half-plane b, k, -k 
plane any vector on the plane 
plane segment e : angle between band b ,a 

- If 0° ~ e ~ 90°, select b, b', k, k' 

If 90° < e < 180°, select QJ;jL, k, k' 
half plane n and any vector on pI 
space segment e : angle between nand n' 

If 0° ~ e ~ 90° , 
select n, n', and any vector on pI and pI' 

If 90° < e < 180°, 

select ~, and any vector on pI and pI' 

aThere are two angles between two vectors, and the 
sum of these two angles is 360°. The smaller angle is 
always chosen for angle e. 

only primary disassembly directions are selected. The reason only primary 

disassembly directions are chosen is to cut down on the size of the solution 

space. Lin (1990) suggested a way to select primary disassembly directions. 

The modified procedure is presented in Table 3.2. 

(b) Case (b) will now be explained in more detail. If the intersection of the 

hemispheres is a line, the valid disassembly directions are {n, -n}, where 

n is the unit vector of the line. If the intersection of those hemispheres is 

a half-line, the disassembly direction is n, where n is the unit vector of the 

half-line. This case is illustrated in Figure 3.3. Suppose part P2 is to be 

disassembled· from part PI. In Figure 3.3, it can be seen that the three 

semicircles intersect along one direction n2 in the figure. Thus only the 

single disassembly direction n2 is valid. 
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P2 

PI Y 
01 n3 

L, n2 

(a) 

y 

n2 

(b) 

Figure 3.3: The intersection of the semicircles contains a finite number of disassem
bly directions 

Given the above approach, it is quite easy to determine the disassembly direc-

tions for each part. The assembly ·directions for a part is simply the reverse of its 

disassembly directions. 

Methodology 

For a given simple-cycle product design with lliaisons, there are I - 2 types of 

precedence relationships to be derived: 

1" Simple form 

Li ~ Lit, where i,it = 1,2, .,. ,l, and i =I it 

2. Complex form 

Li ~ (Lit 1\ Lh)' where i,it,h = 1,2, .,. ,l, and i =I it -; h 
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Li -+ (Lh A Lh A ... A Ljz_2)' where i,h ,h, ... ,jz-2 = 1,2, ... , I, and 

i:/; it :/; h :/; ... I- iz-2 

An example product design, as shown in Figure 3.4, is used to illustrate the 

methodology. Figure 3.5 shows the liaison diagram for the product and Figure 3.3 

shows the disassembly directions for each part. Since there are five parts and five 

liaisons in this product, three types of precedence relationships must be checked: 

1. Simple form 

Li -+ Lh' where i,h = 1,2,3,4,5, and i:/; h 

2. Complex form 

Li -+ (Lh A Lh)' where i,jbh = 1,2,3,4,5, and i :/; h :/; h 

Li -+ (Lit A Lh A Lh)' where i, h ,h,h = 1,2,3,4,5, and i I- h :/; h :/; h 

The methodology is described as following: 

1. To identify the simple-form precedence relationships: Li -+ Lit, where i,h = 

1,2,3,4,5, and i :/; it 

Assuming that Li and Lh are established, if Li can be disengaged by 

disassembling either part associated with Li, then Li -+ Lit does not exist; 

otherwise, Li -+ Lh exists. The liaison, Lit, on the right hand side of 

precedence sign must be maintained when Li is being disengaged. For example, 

as shown in Figure 3.5 and 3.6, the existence of L2 -+ L1 is checked. L2 can 

only be disengaged by disassembling P3. If L2 is disengaged by disassembling. 

P2 instead, L1 will be disengaged too. In terms of assembly view point rather 
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Figure 3.4: Example product with the simple-cycle liaison diagram 

Ls 

Figure 3.5: The liaison diagram of the example product shown in Figure 3.4 
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Table 3.3: Part disassembly directions associated with each liaison for the example 
product 

~ Part to be LI U L3 lA 
w.a.sembled 

PI (0.·1,0) -- -- --

P2 (0.1.0) (0,-1,0) -- --

(-1,0,0) 

P3 -- (0,1,0) (O,I,OXO,-I,O) --
(O,O,IXO,O.-I) 

(1,0,0) (I,O,OX-I,O,O) 

P4 -- -- (O,I,OXO,-I,O) (0,-1,0) 

(O,O,IXO,O,-I) (O,O,IXO,O,-I) 

(I,O,OX-I,O,O) 

P5 -- -- -- (0.1,0) 

(0,0, I XO,O,-I) 

Note: The elements in each cell are the disassembly directions expressed 

in tenDS of unit directional vectors. For example. the first cell, (0,-1,0) 

and (0.-1,0), are the feasible disassembly directions when L1 is 

disengaged by disassembling PI. 

r---
I 
I 
I L ___ 

Pl 
I I 
I I P3 

L2 
I I 

P2 r- -1 
I I 
I I 
I I 
I I 
I I 
I I LI I I 

l..5 

(-1,0.0> 

--

--

--

(1,0,0) 

I 

Figure 3.6: The subassembly consisting of liaison L1 and L2 only 
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than disassembly, we are testing that if L2 can be established by inserting P3 

in its assembly directions with Ll established. For every Li, only those Lh 

adjacent to Li need to be checked. So when checking the existence of Ll ---t Lk, 

only k = 2 and k = 5 need to be checked. The cases that k = 3 and k = 4 need 

not to be checked. For example, Ll is made of PI and P2, and L4 is made of 

P4 and P5. Both liaisons can be established separately without any difficulty, 

because they are two separate subassemblies. This is the reason that k = 3 and 

k = 4 need not to be checked with Ll. 

2. To identify the complex-form precedence relationships 

(a) Li ---t (Lh A Lh)' where i,h,h = 1,2,3,4,5, and i i- h i- h 

With Li, L h ' and L h established, if Li can be disengaged without 

disengaging L hand L h' then Li ---t (L hAL h) does not exist. Oth

erwise, it exists. When disengaging Li, the liaisons on the right hand side 

of precedence sign must always be maintained as well. For a simple-cycle 

product, this can be done by making sure that at most only one of the li

aisons on the right side of precedence sign is adjacent to Li. For example, 

when checking the existence of the relationship, L2 ---t (Ll A L3), it is 

clear that both Ll and L3 are adjacent to L2 (see Figure 3.4 and 3.5) .• 

L2 can be disengaged by disassembling either P2 or P3. No matter which 

one is disassembled, either Ll or L3 would be disengaged and the Boolean 

value of (Ll A L3) would be o. Then, L2 ---t (Ll A L3) is no longer valid. 

In addition, two conditions must be met for the liaisons on the right 

hand side of precedence sign: 

i. They must form a tree. 
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11. Exactly one liaison among them must be adjacent to Li' 

For example, when the precedence relationships between L3 and two other 

liaisons are checked, only L3 --t (L4 A L5) and L3 --t (L2 A Ll) need to· 

be checked. For L3 --t (Ll A L5)' because the parts associated with Ll 

.and L5 and the parts associated with L3 are two separate subassemblies, 

they can be constructed separately without any difficulty. Therefore, there 

is no need to check the existence of this type of precedence relationships. 

(b) Li --t (Lh A Lh A Li3)' where i,h ,h,h = 1,2,3,4,5 and i =J:. h =J:. 

h=J:.i3 

With Li, Lh' Lh' and Li3 established, if Li can be disengaged with

out disengaging any of L h' L h' and L i3' then Li --t (L hAL h A 

L i3) d~es not exist. Otherwise, this precedence relationship exists. When 

disengaging Li, the liaisons on the right hand side of the precedence sign 

cannot be disengaged either, and the heuristics presented in 2.(a) should" 

be followed as well. 

If Li --t A exists (A could be a single liaison or a logic combination of 

liaisons using "A" only), there is no need to check whether or not Li --t B 

exists, where A is a subset of B. For example, suppose that Ll --t L5 exists. 

There is no need to check if Ll --t (L5 A L4) exists. If Ll --t (L5 A L4) is 

checked, it will exist too. Because of Ll --t L5' no matter L4 is established or 

not, Ll cannot be established. However, it is incorrect that both of these two 

precedence relationships exist. Suppose that L5 = 1, and L4 = O. According 

to Ll --t (L5 A L4), the Boolean value on the right hand side is 0 (1 A 0 = 0). 

Thus, Ll can be established. But according to L1 --t L5, the Boolean value on 
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the right side is 1. That means Ll cannot be established. Then, a contradiction 

is found between these two precedence relationships. In other words, these two 

precedence relationships cannot both exist. Therefore, If Li ~ A exists, it is 

not necessary to check whether or not Li ~ B exists, where A is a subset of 

B. 

There is also no need to check if Li ~ (Lh 1\ Lh 1\ Lh 1\ Lj4) exists. In 

this case, there must be exactly two liaisons on the right side of the precedence 

sign adjacent to Li for the example product with five liaisons. This case violates 

the heuristics described in 2.(a) that exactly one liaison among the liaisons on 

the right hand side of the precedence sign must be adjacent to Li. Therefore, 

this is the reason that only 1 - 2 types of precedence relationships need to be 

derived with lliaisons in a product design. 

Liaison Disengagement 

The proposed methodology uses a disassembly approach to check the possibility 

of liaison disengagement. A liaison can be disengaged only when the associated part 

can be removed freely without colliding other parts in the disassembly directions. For 

example, as shown in Figure 3.6, if we want to check the existence of the relationship 

L2 ~ Ll by disassembling P3 in its disassembly directions, we need to check if. 

P3 will collide with PI and with P2. An algorithm using swept volume technique is 

developed to identify the possible collisions. Using this algorithm, all of the possible 

collisions can be detected between a moving object and a static object. The algorithm 

is summarized in the following: 
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1. Assuming that part PI is going to be removed at direction D and P2 is the 

static part. For each part, find the extent (minimum and maximum coordinates 

values) in x, y, and z axes, then construct a rectangular solid for each part. 

2. Check the interference between the two rectangular solids. Two cases may result 

from the test: (a) interference exists between the two solids, or (b) interference 

does not exist. 

(a) No interference is detected between the two rectangular solids 

For example, as shown in Figure 3.7, we want to know if P2 will collide 

with PI at the +x direction. Two rectangular solids are formulated for 

the two parts, and there is no interference between these two solids (see 

Figure 3.8). The following three conditions must be checked next: 

Condition 1: P2 is completely behind PI with respect to +x direction as 

shown in Figure 3.9. 

Condition 2: P2 is completely above or below PI as shown in Figure 3.10: 

Condition 3: P2 is completely on the right or left side of PI as shown in 

Figure 3.11. 

If anyone of these three conditions is satisfied, P2 will not collide with 

PI in +x direction. If none of them is satisfied (see Figure 3.8), then the 

swept volume technique described in (b) is used to test if P2 will collide 

with PI in +x direction. Creating swept volumes as solids and checking 

interferences are quite time-consuming. The three tests stated above are 

used to avoid unnecessary swept volume creations and interference check

ings. 

(b) Interference is detected between the two rectangular solids 
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~ ,-----
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FRONT SIDE 

Figure 3.7: Part P2 is to be removed at +x direction, while part PI is stationary 

TOP ISO 

FRONT SIDE 

Figure 3.8: The two rectangular solids for parts PI and P2 do not intersect each 
other 
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FRONT SIDE 

Figure 3.9: The rectangular solid for part P2 is completely behind the solid for part 

PI 

TOP ISO 

D D 
L,C D 
FRONT SIDE 

Figure 3.10: The rectangular solid for part P2 is completely above the solid for part 
PI 
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Figure 3.11: The rectangular solid for part P2 is completely on the right side of the 
soid for part PI 

As shown in Figure 3.12, we want to know whether or not PI will 

collide with P2 in +x direction. Two rectangular solids are formulated 

for the two parts (see Figure 3.13), and there is an interference between 

them. Although the two solids intersect, it does not mean the actual part 

movement will interfere each other. Further test is needed to clarify the 

possibility. This is done by translating every facet of PI in +x direction. 

The volume each facet of PI sweeps through becomes a swept solid. If 

any swept solid has an interference with P2, then PI will collide with. 

P2 when PI is removed at the +x direction. The distance at which the 

facets are translated must be large enough to cover all the potential parts 

which might be collided by moving PI, so a reasonably large value can be 

chosen arbitrarily for this distance. The procedure to create a swept solid 
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o 
TOP ISO 

PI 

FRONT SIDE 

Figure 3.12: Part PI is to be removed at +x direction, while part P2 is stationary 

is described as followed: 

1. Find the projection of every facet of PIon a plane which has a normal 

vector D (D is the disassembly direction for PI). If the projection of 

a facet is a line, the facet is ignored. 

11. For those facets which are perpendicular to direction D, extrude their 

projections from where the facets are, then go to step v (see Fig-

ure 3.14). 

lll. For those facets which are not perpendicular to direction D, additional 

care must be taken during extrusion. This is illustrated with an ex

ample of extruding a cylindrical surface in a direction perpendicular 

to the axis of the cylinder. As shown in Figure 3.15, PI is a cylin

drical surface which will be extruded in direction D, and Figure 3.15 
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Figure 3.13: The two rectangular solids for parts PI and P2 intersect each other 

shows its top view. The cylindrical face is represented by 16 facets 

and none of these facets is perpendicular to direction D. For any facet 

i as shown in Figure 3.16, its projection is extruded in direction D 

to create a swept solid and SP2 is chosen as the starting position to 

extrude the projection. 

IV. Define facet i as the cutting plane to cut the swept solid that was just 

created. Discard the solid on the right side of facet i, and the solid on 

the left side of facet i is exactly the swept solid we need. This swept 

solid is shown with a filled area in Figure 3.16. 

v. Check interferences between P2 and the swept solids. If there is any 

interference, then PI will collide with P2 in direction D. 
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Figure 3.14: Sweep facet F1 of PI in +x direction to create a swept volume for 
collision detection 

D direction Top view of PI 

Figure 3.15: Top view of PI 
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D direction -Ddirection 

Figure 3.16: Sweep facet III -x direction to create a swept volume for collision 
detection 
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CHAPTER 4. IMPLEMENTATION AND RESULTS 

This chapter presents the implementation of the methodology discussed in the 

previous chapter. A section on assembly sequence generation is also included. The 

implementation serves two purposes: 1) to validate the proposed methodology, and 

2) to demonstrate its feasibility. The general procedures of the program will be 

described. Results for the example product will be provided to validate th~ correctness 

of the methodology and the program. 

Implementation 

The proposed methodology has been implemented in the UNIX environment 

using the C programming language. The geometric assembly model was created 

using I-DEAS on a DEC5000j200 workstation. The program interfaces with the 1-. 

DEASI (SDRC, 1990) solid modeling system during execution. The I-DEAS system 

provides a static interference checking function, which was employed to implement 

the collision detection using the swept volume technique. As shown in Figure 1.1, the 

inputs of the program are: 

1. The universal files of the solid model that contain the geometric information 

describing the product design. 

1 Integrated Design Engineering Analysis Software (I-DEAS) is a software product 
of Structural Dynamics Research Corporation (SDRC), Milford, OR 45150 
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Figure 4.1: Basic structure of a universal file 

2. The liaison diagram for the product design. 

3. The disassembly directions for each part. 

These three inputs will be described in the following sections. 

Universal File Structure 

All geometric information describing the product design is retrieved from the 

universal files. The files are written in ASCII characters. Thus, a user created 
. 

program such as the one described in this thesis can directly access the information 

in a universal file. Each universal file is a sequentially formatted file with records 

having a maximum' length of 80 characters. The basic structure of a universal file is 
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shown in Figure 4.1. A universal file is divided into sections called datasets. The first 

record of each dataset is a dataset delimiter. This is a line containing a minus sign in 

column 5 and a 1 in column 6. The second record of the dataset contains the dataset 

type indicating the type of data included in the dataset, such as a transformation 

matrix, precise surface information of a part, etc. The second record is a number 

in the range 1 through 32767 right justified in columns 1 through 6. Following the 

dataset type record is the body of the dataset which contains data dependent on" 

the dataset type. The final record of the dataset contains a delimiter line containing 

a minus sign in column 5 and a 1 in column 6. Figure 4.2 shows an example of 

a type 534 dataset in the part P2 's universal file. The first row and the last row 

are the delimiters. I-DEAS uses the Constructive Solid Geometry (CSG) method 

to store a list of objects and operations required to define a part. The second row, 

dataset type 534, means this dataset contains some geometric information about part 

P2 after an operation is done on P2. An operation performed on an object can 

include: cut, join, scale, reflect, etc. If none of these operations is performed on a 

part, then there will be no type 534 dataset in its universal file. In other words, 

this part itself is a primitive. Primitives defined in I-DEAS include block, cone, 

cylinder, sphere, and tube. If a final geometry of a part comes from a series of. 

operations on a primitive, there will be at least one type 534 dataset in its universal 

file. Each operation performed on the primitive corresponds to one type 534 dataset, 

and the sequence of these datasets in the universal file corresponds to the sequence of 

operations performed on the primitive. Since only the geometric information about 

the final part geometry is needed for the program, only the last of the type 534 

datasets is retrieved. Figure 3.4 shows that P2 is constructed from a main cylinder 

via two operations. The first operation joins a smaller cylinder to the top of the main 
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cylinder .. The second operation cuts a cylinder shaped cavity out of the bottom of the. 

main cylinder. Thus, there will be two type 534 datasets, corresponding to the two 

operations in P2 's universal file. Figure 4.2 shows the second of these datasets, which 

contains the information about P2 's final geometry. The program requires only part 

of the data in a type 534 dataset. For instance, the information necessary from the 

dataset in Figure 4.2 is: 

• Record 4: Field 1-3 -+ First point of Brep bounding box. (min) 

• Record 5: Field 1-3 -+ Second point of Brep bounding box. (max) 

• Record 8: Field 1-3 -+ Rotation information (element A-C). 

• Record 9: Field 1-3 -+ Rotation information (element D-F). 

• Record 10: Field 1-3 -+ Rotation information (element G-I). 

• Record 11: Field 1-3 -+ Translation information (element J-L). 

A D G J 

B E H [( 

C F I L 

000 1 

XOLD 

YOLD 

ZOLD 

1 

XNEW 

YNEW 

ZNEW 

1 

From the list, records 4 and 5 give the coordinates of the diagonal vertices of the 

rectangular box of a part. Records 8-11 (i.e. elements A-L) are used to form a 4x4 

transformation matrix with homogeneous coordinates (Mortenson, 1985). The 

matrix is used to map a part from the origin to its final position. 

There are three types of datasets used by the program, and they are: 
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number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

---> 
---> 
---> 
---> 
---> 
---> 
---> 
---> 
---> 
---> 
---> 
---> 

-1 
534 
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-2 2 0 0 0 0 0 0 0 
-1 -1 1 1 0 0 

3.93701E-65 1.96850E-03 3.93701E-05 
-1.00000E+00 -5.00000E+00 -2.00000E+00 

3.00000E+00 O.OOOOOE+OO 2.00000E+00 
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 
1.000000000000E+OO O.OOOOOOOOOOOOE+OO 
O.OOOOOOOOOOOOE+OO 1.000000000000E+OO 
O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO 
O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO 

-1 3 
-1 

o 0 0 0 0 0 0 
o 0 
o 0 .() 

O.OOOOOOOOOOOOE+OO 
O.OOOOOOOOOOOOE+OO 
1.000000000000E+OO 
O.OOOOOOOOOOOOE+OO 

Figure 4.2: The type 534 dataset in P2 's universal file 

1. Dataset type 537 

Dataset type 537 has the same format as dataset type 534, and is retrieved by, 

the program only when dataset type 534 is not written. This occurs if a part 

itself is a primitive. Primitives have no modeling operations such as cut or join 

performed upon them. In this case, the necessary information is retrieved from 

type 537 dataset. 

2. Dataset type 534 

If a part itself is not a primitive (e.g. modeling operations are performed upon 

it), its universal file must contain at least one type 534 dataset. As mentioned 

before, only the last one needs to be retrieved. 

3. Dataset type 544 

When I-DEAS shows objects on screen, it uses Boundary Representation (BREP) 

to represent objects. The type 544 dataset contains three pieces of information 
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that will be retrieved by the program: 1) the coordinates of all the boundary 

points, 2) number of facets in the object, and 3) which points each facet is made' 

of. As mentioned in the previous chapter, facet information is needed in order 

to do collision detections. 

Internal Representation of a Liaison Diagram 

A liaison diagram is characterized as a network graph in this research. In general, 

there are two main representations of graphs: 1) adjacency matrix, and 2) adjacency 

list. Since the liaison diagrams discussed in this research are of simple-cycle structure, 

a double linked list data structure as shown in Figure 4.3 is used to represent the 

liaison diagram. Each data set is composed of three integer values. Two of the values 

represent part numbers of the two parts associated with a liaison, and the third gives 

the liaison number. As shown in Figure 4.3, the first value in each data set is the. 

part number of the first part in the liaison, the second value in the set contains the 

liaison number, and the third value in the set is the part number of the second part 

in the liaison. The leftmost set with digits (1, 1, 2) will now be used to illustrate the 

format of a data set in Figure 4.3. The middle digit, 1, is the liaison number. The 

right digit, 2, is the right part number with respect to L1 in the liaison diagram. The 

left digit, 1, is the left part number with respect to L1' The way to determine the 

left part and the right part with respect to a liaison is to imagine standing inside the 

liaison diagram (cycle) (see Figure 3.5). Look at one of the liaisons, say Li, the part 

number appearing on the right of Li will be the right digit of i, and the part number 

appearing on the left of Li will be the left digit of i. Any two liaisons adjacent to 

each other in the liaison diagram must have their respective data set adjacent as well .. 

The input file format of liaison diagram is described in the Appendix A. 
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liaison number 

Figure 4.3: Data structure representation of the liaison diagram for the example 
product 

Internal Representation of the Disassembly Directions 

A representation, as shown in Figure 4.4, similar to adjacency list is used to store 

disassembly directions. Each part is associated with a linked list consisting of all of 

the disassembly directions of the part. Each data set contains the liaison numbers of 

the two liaisons associated with a disassembly direction, along with the disassembly 

direction. The first two values in a data set are the liaison numbers involved in 

the disassembly direction. The third, fourth, and fifth values are the x, y, and z 

components of the vector of the disassembly direction. For example, the first data 

set (2, 3, 0, 1, 0) for part 3 shows that disassembly direction (9, 1, 0) is associated 

with both liaison 2 and 3. The second data set of part 3 shows that direction (-1, 0, 

0) for part 3 is associated with liaison 3 only, and so forth. For a simple-cycle liaison. 

diagram, one disassembly direction can be associated with at most two liaisons. Thus, 

when a disassembly direction is associated with only one liaison, one of the first two 

values in a data set is set to zero. The input file format of disassembly directions is 

described in the Appendix A. 
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,~ 4, 
! 1 

ITJ--j 1 I 0 I 0:0 I H 5 I 0 1-1 I 0 IoN 

ITJ--j 1 I 0 I 0 11 I 0 I H 2 I 0 I 0 1-1 IoN 

Figure 4.4: Data structure representation for the disassembly directions 

Program File of I-DEAS Software 

A program file is an external file of I-DEAS commands that can be built from 

within I-DEAS or as a text file from outside I-DEAS and executed at a later time. 

Once created, the program file can be used to instruct I-DEAS to execute the com-

mands recorded in the file. The file performs in sequence. Because the file is saved 

as a text file, it can be created by a text editor or using an~ programming language 

(C, Fortran, etc.). Program files are especially useful if you have a long sequence of 

commands that are used often. The collision detection algorithm described in the 

previous chapter was implemented using a program file to take advantage of embed

ded functions of I-DEAS software. Figure 4.5 shows an example of a simple program 

file. Every line in a program file is started by a signal character consisting of one 

letter and one space followed by a colon or two letters followed by a colon. There' 
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are several signal characters defined in I-DEAS. In this research, there are only two 

signal characters used: 

K: 
? 

Normal keyboard input 
Interactive interrupt 

As shown in Figure 4.5, the keyboard input signal (K :) is always followed by 

a command. The interactive input signal (? :) will stop the automatic execution of 

program file commands. When a program file is running, it will stop at the point 

where the (7 :) is entered and wait for user's input. After the required information 

is entered, the program file will automatically continue. In this implementation, (? 

:) is used only to pause the program file, so users do not need to input any informa

tion. Once the program file pauses, the interference checking result will be output by 

I-DEAS to the file called IN_CH.dat which has been specified by the C program. 

Then the C program continues to read IN _CH.dat in order to get the interference 

information. To continue the program file, users just need to hit 'RETURN' key in

stead of inputting any information. The details of running the program are described 

in the Appendix A. Figure 4.6 shows all of the potential collisions for all the parts 

moving in their disassembly directions. This output is used by the program to extract 

precedence relationships. 

Implementation Using the Program File 

The data structures of liaison diagrams, disassembly directions, universal files, 

and program files have been explained in the previous sections. In this section, part 

'of the program file for the example product shown in Figure 3.4 is extracted to 

explain the implementation using I-DEAS program file. Before the implementation 
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K :/CREATE 
K:BLOCK 
K : 14.000 14.000 14.000 
K :/MANAGE 
K :STORE 
K:Bl 
? : 

Figure 4.5: Simple program file 

Pt --_. (P2.-t.o.O) 

(PS. O.-t. 0) 

P2 --_. (Pt. O.-t. 0) 

(P3. 0.1.0) 

(P5. O. 1.0) 

P3 --_. (Pl.-I.O.O) 

(Pl. 0.-1. 0) 

(P2.-1. o. 0) 
(P2. 0.-1. 0) 
(P2. O. 0.1) 
(P2. O. 0.-1) 

(P5. O. 1,0) 

P4 --- (Pl. 0.-1, 0) 

(Pl.-I. O. 0) 

(P2. -1. O. 0) 

(P3.-t. 0,0) 

(PS. 0.1.0) 

PS • (PI.-I.O,O) 

(Pl. 0.1.0) 

(Pt. O. 0, 1) 

(Pt. O. O.-t) 

Note: PI --_. (P2.-I. O. 0) means PI will collide with P2 at the 

(-1. O. 0) direction 

Figure 4.6: Collisions detected for each part of the example product 
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is discussed, a further introduction to I-DEAS is needed. I-DEAS is made up of 

a number of "Families", each subdivided further into "Tasks", all executed from 

a common menu and sharing a common database. The main families are: Solid 

Modeling, Finite Element Modeling·& Analysis, System Dynamics, Test, Drafting, 

and Manufacturing. In this research, only two tasks in the Solid Modeling family 

are used: Object Modeling, and Assembly Modeling. The Object Modeling task is 

the foundation of I-DEAS, since the solid object geometry that is created here is 

shared by many other applications. This is where the initial design is created. The 

Assembly Modeling task is used to create complex systems from the objects created 
. 

in the Object Modeling task. The static interference checking function is embedded 

in this task. A model of an assembly is called a system in the Assembly Modeling 

task. In a system, a model of a part is called a component. If the same component is 

used more than once in a system, the component is not duplicated. Instead, instances 

of the component are created. An instance is simply a technique for minimizing the 

size of the database. Instead of duplicating a component, each· instance provides a 

pointer from the component to the system in which it is used. In this way, only 

one version of the component exists, even though the component is instanced many 

times in many different systems. The pointer mentioned above includes orientation 

data to describe the orientation of the instance with respect to the system. When a 

component is created in the Assembly Modeling·task, another type of pointer is also 

created. This pointer associates an object with the component. This object defines' 

the geometry of the component. Because a pointer is used, the object's geometry is 

not duplicated, no matter how many times the component is created. This pointer 

does not include orientation information, therefore the component space is coincident 

with the object space. Figure 4.7 shows the relationships for a component and its 
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Modeling 
Task 

Figure 4.7: The re~ationships for a component and its instances and object 

instances and object. For the example product discussed in this thesis, since each 

component (part) is used exactly once, each component has only one instance. 

The name of the program file generated by the C program has been specified 

as cycle.prg by the C program itself. Suppose that PI is going to be removed in 

(-1, 0, 0) direction and the collision between PI and P2 is checked. As discussed in 

the previous chapter, two rectangular solids for PI and P2 have to be constructed 

first. Then the existence of static interference between these two solids has to be 

checked. This is done in I-DEAS by a segment of cycle.prg shown in Figure 4.8. 

In this segment of the program file cycle. prg, two rectangular solids for PI and P2 

are created first in Object Modeling task. In order to do the interference checking 
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line number 

1 ---> K :/CREATE 
2 -:--> K : BLOCK 
3 ---> K : 14.000 14.000 14.000 
4 ---> K :/MANAGE_STORED 
5 ---> K : STORE 
6 ---> K : B1 
7 ---> K : 
8 ---> K :/CREATE 
9 ---> K : BLOCK 

10 ---> K : 4.000 5.000 4.000 
11 ---> K :/ORIENT 
12 ---> K : TRANSLATE 
13 ---> K 1. 000 -2.500 0.000 
14 ---> K :/MANAGE_STORED 
15 ---> K : STORE 
16 ---> K : B2 
17 ---> K : 
18 ---> K :/TASK 
19 ---> K : ASSEMBLY _110DELING 
20 ---> K :/CREATE 
21 ---> K :COI1PONENT_&_IHSTANCE 
22 ---> K : 
23 ---> K : B1 
24 ---> K : 
25 ---> K : B1 
26 ---> K 
27 ---> K : 
28 ---> K : DONE 
29 ---> K : /CREATE 
30 ---> K :COMPONENT_&_INSTANCE 
31 ---> K : 
32 ---> K : B2 
33 ---> K : 
34 ---> oK : B2 
35 ---> K : 
36 ---> K : DONE 
37 ---> K : DRAW 
38 ---> K :/LIST 
39 ---> K : CHECK_INTERFERENCE 
40 ---> K :VOLUME_COMPUTE_SW 
41 ---> K :ON 
42 ---> K : COMPONENT_CHECK 
43 ---> K : LABEL 
44 ---> K : Bl 
45 ---> K : 
46 ---> K :LIST_LAST_RESULTS 
47 ---> K :YES 
48 ---> K :IN_CH 
49 ---> K :YES 
50 ---> ? 

Figure 4.8: Part of the program file cycle. prg(line numbers and arrows do not exist 
in the program file, but are used here for clarification) 
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Table 4.1: Explanation of part of the program file cycle.prg shown in Figure 4.8 

Line Explanation for the I-DEAS commands 
number 

1-7 
The circumscribed rectangular solid for PI is created, and is 

stored in I-DEAS as Bl. 

8 -17 
The circumscribed rectangular solid for P2 is created, and is 

stored in I-DEAS as B2. 

18 -19 
Switch the task from the Object Modeling to the Assembly 

Modeling. 

20 -28 
A component is created for B 1 just constructed in Object 

Modeling task, and is named Bl. 

29 -37 
A component is created for B2 just constructed in Object 

Modeling task, and is named B2. 

Check the interference between components Bland B2, and 

38 -49 then output the interference checking result to the fIle 

IN_CH.dat 

50 Pause the program fIle cycle.prg. 

between the two solids just created, we have to switch the task from Object Modeling 

task to Assembly Modeling task, and create one component for each solid. Then 

the interference is checked between these two components and the result is output 

to the file IN_CH.dat. The details of this segment of cycle.prg are explained in· 

Figure 4.1. 

Although the objects Bl and B2 in the Object Modeling task have the same 

name as the components Bl and B2 in the Assembly Modeling task, I-DEAS regards 

these two names as different. For example, the Bl in Object Modeling task is not 

the same as the B 1 in Assembly Modeling task because these two names are defined 

in two different tasks. Since the static interference checking function is embedded in 

the Assembly Modeling task, the program must switch tasks from Object Modeling 

to Assembly Modeling when interference checking is needed. 



50 

The source code of the C program is listed-in Appendix B. 

Sequence Generation 

Based on the extracted precedence relationships, a complete set of valid assembly 

sequences can be generated. Since the proposed methodology for deriving the prece

dence relationships is based on the assumption that one liaison is disengaged at a 

time, the generated sequences based on the extracted precedence relationships will be 

valid if only one liaison is established at a time. Before (1-2) liaisons are established, 

a liaison assembly sequence is generated by choosing one liaison at a time. Every 

chosen liaison must be checked to determine if the establishment of this liaison will 

violate any of the precedence relationships. If the establishment of this liaison violates 

any of the precedence J;elationships, another unestablished liaison must be selected to 

be checked. So, when only (1- 2) liaisons are established without violating any of the 

precedence relationships, every sequence ranging from the first to the (I_2nd) liaison 

is valid. 

Once (1- 2) liaisons have been successfully established, the last two unestablished 

liaisons will be established at the same time because of the following two reasons: 1) 

all of the parts are rigid, and 2) the liaison diagram is in the simple-cycle structure. 

Therefore, additional care must be taken, and two cases need to be considered: 1) the 

(l- 2) liaisons established are made of two subassemblies, and 2) the (I - 2) liaisons 

established are made of only one subassembly. 

1. The (1 - 2) liaisons established are made of two subassemblies. 

Combining the two subassemblies will establish two liaisons, say Li and Lj' 

at the same time. In this case, Li and L j are not adjacent to each other in 

the liaison diagram. A simple-cycle example is shown in Figure 4.9 to illustrate 
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Figure 4.9: An example of simple-cycle liaison diagram 

this special case. If the following two precedence relationships exist, then the 

product cannot be assembled successfully. 

(a) Li ---+ (Ls A •.. A Lt A Lj ) 

(b) Lj ---+ (Lt A ... A Ls ALi) 

The liaisons on the right hand side of the precedence sign of the two precedence 

relationships above include all of the intermediate liaisons between Ls and Lt : 

For example, suppose L3 and L4 have been established. Now L5 is going to be 

established, but doing so will violate the precedence requirement Ll ---+ L5' 

Thus Ll has to be established before L5' With Ll, L3, and L4 established, the 

next step is to combine the two subassemblies, one made of PI and P2, and the 

other one made of P3' P4, and P5' Combining them will establish two liaisons, 

L2 and L5, at the same time. But doing so will violate the precedence require-

and the product cannot be assembled successfully. 
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2. The (I - 2) liaisons established are made of only one subassembly. 

In this case, the subassembly consists of (1- 1) parts, so the last part inserted 

to this subassembly will also establish two liaisons at the same time. The last 

two unestablished liaisons must be adjacent to each other in the liaison diagram. 

The final part can always be inserted regardless of violating any precedence 

relationship or not. 

Case 1 above explains why there is no need to check if the establishment 

of anyone of the last two liaisons will violate any precedence relationships. 

For example, after £1, £2, and £3 have been established, the last part (P5 in 

this case) inserted will establish £4 and £5 at the same time. According to the 

statement in case 1, if anyone of the following two set of precedence relationships. 

exist, the product cannot be assembled successfully (see Figure 3.5). 

(b) £4 -t (£3 1\ £2 1\ £1 1\ £5) 

£5 -t (£1 1\ £2 1\ £3 1\ £4) 

It is obvious that neither of the two sets of precedence relationships above will 

exist. Therefore, the product can always be assembled successfully in this case. 

Results 

Once the collision information is derived by the collision detection function, it is 

used as the input to the precedence relationship extraction function. The result of 

the precedence relationship extraction function for the example product is shown as 

following: 



1). L1 -+ L5 

2). L2 -+ (L1 1\ L5) 

3). L1 -+ (L2 1\ L3 1\ L4) 

4). L2 -+ (L3 1\ L4 1\ L5) 

5). L3 -+ (L4 1\ L5 1\ L1) 

6). L5 -+ (L4 1\ L3 1\ L2) 
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Note that the precedence relationships determined conform exactly with the rela-

tionships generated by hand. This gives a validation of both the program and the 

methodology. 

The set of sequences for the example product is shown in Figure 4.10. This 

graphical representation was introduced by De Fazio and Whitney (1987). Each 

block in the graph is a liaison, and the order from left to right corresponds with the 

liaison number in a ascending order. Blank blocks represent unestablished liaisons, 

the shaded blocks represent established liaisons. By traversing from one rank to the 

next through the solid lines, the final state can be reached and a valid sequence can 

be found. If a dashed line is followed, the sequence is eventually blocked and the final 

state cannot be reached. There are a total of 28 valid liaison sequences generated by 

the program: 

1). L1 -+ L2 -+L3 -+ L4 -+ L5 
2). L1 -+ L2 -+ L3 -+ L5 -+ L4 
3). L1 -+ L2 -+ L4 -+ L3 -+ L5 
4). L1 -+ L2 -+ L4 -+ L5 -+ L3 
5). L1 -+ L2 -+ L5 -+ L3 -+ L4 
6). L1 -+ L2 -+ L5 -+ L4 -+ L3 
7). L1 -+ L3 -+ L2 -+ L4 -+ L5. 
8). L1 -+ L3 -+ L2 -+ L5 -+ L4 
9). L1 -+ L4 -+ L2 -+ L3 -+ L5 
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10). Ll ----+ L4 ----+ L2 ----+ L5 ----+ L3 

11). L2 ----+ Ll ----+ L3 ----+ L4 ----+ L5 

12). L2 ----+ Ll ----+ L3 ----+ L5 ----+ L4 

13). L2 ----+ Ll ----+ L4 ----+ L3 ----+ L5 

14). L2 ----+ Ll ----+ L4 ----+ L5 ----+ L3 

15). L2 ----+ Ll ----+ L5 ----+ L3 ----+ L4 

16). L2 ----+ Ll ----+ L5 ----+ L4 ----+ L3 

17). L2 ----+ L3 ----+ Ll ----+ L4 ----+ L5 

18). L2 ----+ L3 ----+ Ll ----+ L5 ----+ L4 

19). L2 ----+ L4 ----+ Ll ----+ L3 ----+ L5 

20). L2 ----+ L4 ----+ Ll ----+ L5 ----+ L3 

21). L3 ----+ Ll ----+ L2 ----+ L4 ----+ L5 

22). L3 ----+ Ll ----+ L2 ----+ L5 ----+ L4 

23). L3 ----+ L2 ----+ Ll ----+ L4 ----+ L5 

24). L3 ----+ L2 ----+ Ll ----+ L5 ----+ L4 

25). L4 ----+ Ll ----+ L2 ----+ L3 ----+ L5 

26). L4 ----+ Ll ----+ L2 ----+ L5 ----+ L3 

27). L4 ----+ L2 ----+ Ll ----+ L3 ----+ L5 

28). L4 ----+ L2 ----+ Ll ----+ L5 ----+ L3 

Discussion 

In Figure 4.10, if only the first (1- 2) liaisons are considered within each sequence, 

all of the sequences involving solid lines, dashed lines, or both are feasible up to the 

(1- 2nd) liaison. This can be verified by examining Figure 3.4. Once state 5 with (I -

2) established liaisons is reached, the sequence cannot go beyond this state. In other 

words, the last two liaisons cannot be established. 

In order to prevent traveling from state 1 to state 2, state 3 to state 5, and state 

4 to state 5, there should be some precedence relationship that prevent both L3 and 

L4 from being established before other liaisons are established. Thus, the precedence. 

relationship should be in the following format: Li ----+ (L3 1\ L4). The precedence 
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Figure 4.10: Graphical representation of all of valid liaison assembly sequences of 
the example product 

relationships in this format mean both L3 and L4 cannot be established before some 

liaisons Li is established. Li can be found by examining Figure 4.10. If state 5 is 

reached, L2 and L5 cannot be established. Therefore, Li can be either L2 or L5' In 

other words, the following two precedence relationships are needed to eliminate the 

dashed lines in Figure 4.10: 

L2 ---+ (L3 A L4) 

L5 ---+ (L3 A L4) 

(1) 

(2) 

which are not extracted by the methodology. Precedences (1) and (2) can be combined 

into one precedence relationship: 

Precedence (3) means the Boolean value of (L3 A L4) cannot become one before 

the Boolean value of (L2 A L5) becomes one; otherwise, the product cannot be 
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assembled successfully. Verification by hand shows that this is true. However, the 

proposed methodology does not identify the existence of precedences (1) and (2). 

For example, when L2 ---+ (L3 A L4) is checked, Figure 4.11 shows that L2 can· 

be disengaged by disassembling P2, so this precedence relationship does not exist. 

This is because: A) the single liaison on the left hand side of the precedence sign is 

disengaged by disassembling one part only, and B) precedences (1) and (2) are checked 

separately. Thus, the forms for precedence relationships should not be restricted to 

the two basic forms only. Precedence (3) shows that a precedence relationship can be 

in the following general form: 

(Li A Lj A ... ) ---+ (Lx A Ly A ... ) 

There could be one or more liaisons on both sides of the precedence sign by using 

"A" Boolean operator only. For example, the followings are different versions of 

precedence relationships: 

Li ---+ Lj 

Li ---+ (Lj A ... ) 

(Lj A ... ) ---+ Li 

(Li A ... ) ---+ (Lj A ... ) 

In general, the disassembly approach should not assume removing only single part, 

or disengaging only single liaison. Subassemblies and multiple liaisons need to be 

considered as well. 

In the case above for the simple-cycle liaison diagram, the final two liaisons are 

not adjacent to each other in the liaison diagram. As mentioned in the previous 

section, another case is that the final two liaisons are adjacent to each other in the 

liaison diagram. In this case, the last part inserted will establish the final two liaisons-
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at the same time, and the following form is a possible precedence relationship for this 

case: 

which Ll, L2, ... , and L[_2 are made of one subassembly. The last part inserted will 

establish L[_1 and LOZ at the same time. First, (Ll 1\ L2 1\ ... 1\ LZ-3 1\ LZ- 2)) ----+ 

L[ has to be checked. If this precedence relationship is true, all of Ll, L2, ... , and 

L[_2 have to be established before L[ is established. Once Ll, L2, ... , and LZ-2 are 

established, there are only two liaisons (L [-I and L [) left. Then, it does not matter" 

which one of L [-I and L Z are established first because the Boolean value of the left 

hand side of the precedence sign is one already. An example shown in Figure 4.12 is 

used to illustrate this form. This is part of the example product used in the paper 

written by De Fazio and Whitney (1987). This example product is made of four parts 

which are all rotational parts, and its liaison diagram is in the simple cycle structure. 

In this example, the axis direction is the only disassembly (assembly) direction for 

these rotational parts. Following precedence relationship is true in this case: 

This precedence relationship means that either L6 or (L3 1\ L8) has to be established 

before Ll is established. If both L3 and L8 are established, the Boolean value of the 

left hand side of the precedence sign is one already. So, it does not matter Ll or L6 

is established first because these two liaisons will be established at the same time. 

If L6 is established first, then the sequence between L3' L8, and Ll can be in ariy 

order. If Ll is established first, the Boolean value of the left side of the precedence 

sign is still zero, but the Boolean value of the right side is one already. Thus, none 

of L6, L3, and L8 can be established. The three cases stated above can be verified 
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Figure 4.11: The subassembly consisting of L2, L3) and L4 

by examining Figure 4.12. Therefore, precedence (4) is another' possible precedence 

which need to be considered. 
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B G 

Figure 4.12: An example product with a simple-cycle liaison diagram 



60 

CHAPTER 5. CONCLUSION 

A product design requires a great deal of analysis and trade-offs between cost and 

quality. The designer's initial ideas often does not work as intended. Therefore, the 

designer must make modifications to the original design. As the design progresses, 

these early modifications have a large impact on the cost and direction of the design. 

Analyses and experiments must be carried out to verify the design. As the design 

gradually works its way toward acceptability, the decisions on design changes become 

more interdependent. Often, later design decisions are affected by a decision made 

previously. Thus, earlier decisions have the most influence on the later course of the 

design. 

The integrative nature of assembly seems to be a powerful force in raising the

level of integration in all aspects of early product design (Nevins and Whitney, 1989). 

Generation of all the assembly sequences in the early design stage can help designers 

in two way: 1) to evaluate the assemblability of a product, and 2) to help the designer 

search for a better assembly sequence under a set of constraints. Different assembly 

sequences have different requirements for assembly fixturing, number of orientation 

changes, convenience of access, time of assembly, and possibilities of part damage 

during part mating. The difficulty of identifying the complete set of valid assembly 

sequences increases as the product complexity and part count increase. Thus, auto

matic precedence relationship extraction for assembly sequence generation becomes 
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an important activity in the concurrent design environment and the implementation 

of an integrated manufacturing system. 

We have developed a methodology that transforms a three-dimensional product 

design characterized by a simple-cycle liaison diagram under a solid modeling environ

ment into a set of assembly precedence requirements .. This methodology provides a 

tool which will assist both product designers and manufacturing engineers to identify 

valid assembly sequences. This research would also benefit engineers in the process 

and system aspects, so· a product design can be evaluated during the early product 

design phase. 

In this study, a methodology has been developed to perform geometric reasoning. 

on the solid models of the assembly with a simple-cycle liaison diagram. Information 

concerning collision constraints is derived. This information is .used as basic data for 

precedence relationship extraction. 

So far, the proposed methodology can only ensure that the generated sequences 

are geometrically feasible up to the (1- 2nd) liaison. In this research, only two basic 

forms for precedence relationships are extracted. For the two basic forms, there is 

only one liaison on the left hand side of the precedence sign, and one or more liaisons 

on the right hand side. The results show that considering only these precedences 

cannot get the complete set of precedence relationships. Multiple liaisons on both 

sides of the precedence sign should be considered. 

Future Work 

The activities for future research work are stated in the following: 

1. Modification of proposed precedence extraction methodology by considering dis

assembling subassemblies and single part 
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2. Extend the methodology to include tree structure, and composite of simple cycles 

and trees together 

The methodology described in this thesis assumes that product design can be 

characterized by simple-cycle liaison diagram only. After the methodology is 

extended, product design of different liaison diagram structures can be evalu-. 

ated. 

3. Incorporate non-geometric constraints into the methodology 

The current methodology focuses on analyzing geometric constraints on the solid 

model of a product design. Some of the sequences generated by the methodology 

might not be feasible in reality because of some physical process constraints. To 

enhance the methodology, other factors need to be considered such as assembly 

stability, and fixturing requirements, etc. 
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APPENDIX A. USER MANUAL 

Introduction 

This program extracts liaison precedence relationships by reasoning the solid 

model of a product design in I-DEAS, and then generates all of the valid liaison 

assembly sequences. The product design must be developed in I-DEAS, and should 

be characterized by a simple-cycle liaison diagram only. The extracted precedence 

relationships and all of the valid assembly sequences can be output either on the 

screen or to the file called pre-seq.out. This manual describes the inputs to the· 

program, the program structure, and the operations of the program. 

Inputs 

The inputs to the program include: 1) the universal files containing the geometric 

information describing the product design, 2) the liaison diagram for the product 

design, and 3) the disassembly directions for each part. 

1. Users have to create the solid model for the product design by using I-DEAS, 

and generate a universal file for each part. I-DEAS provides the command to 

generate the universal files. There are five parts for the example product, and 

the universal file names with respect to each part are list below: 

(a) PI: part1.unv 
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(b) P2: part2.unv 

(c) P3: part3.unv 

(d) P4: part4.unv 

(e) P5: part5.unv 

2. The liaison diagram for the product design that contains the relationships be

tween parts and liaisons must be provided in a file called cycle.dat. The liaison 

data of the example product stored in the file cycle.dat are input as: 

112 
223 
334 
445 
551 

The first row will now be used to illustrate the format of cycle.dat. The middle 

digit, 1, is the liaison number. The right digit, 2, is the right part number with 

respect to L1 in the liaison diagram. The left digit, 1, is the left part number 

with respect to L1' The way to determine the left part and the right part with 

respect to a liaison is to imagine standing inside the liaison diagram (cycle) (see 

Figure 3.5). Look at one of the liaisons, say Li, the part number appearing on 

the right of Li will be the right digit of i, and the part number appearing on. 

the left of Li will be the left digit of i. Any two liaisons adjacent to each other 

in the liaison diagram must have their respective data row adjacent as well. 

3. The disassembly directions for each part are stored in the file parts.dat. Dis

assembly directions tell the program what the valid disassembly directions for 

each part. The parts.dat of the example product is given in the following: 

1 0 0 -1 0 5 0 -1 00 00 0 0 0 



10010 
23010 
34100 
45100 

200 -1 0 
30 -1 00 
340 -1 0 
40 -1 00 
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00000 
300-1030001 

340013400-1 
40010 40001 

3000-100000 
30 0 1 0 40 -1 00 000 0 0 
4 0 0 0 -1 0 0 0 0 0 

The selection of these disassembly directions follows the proposed methodology 

described in Chapter 3. The first row is the disassembly directions of PI, the 

second row is the disassembly directions for P2, and so forth. When the pro

gram reads these data, each group of five digits is read as one unit. Each unit 

contains the liaison numbers of the two liaisons associated with a disassembly 

direction, along with the disassembly direction. The first two values in a unit 

are the liaison numbers involved in the disassembly direction. The third, fourth, 

and fifth values are the x, y, and z components of the vector of the disassembly 

direction. For example, the first unit (2, 3, 0, 1,0) of row 3 shows that disassem

bly direction (0, 1, 0) is associated with both liaison 2 and 3. The second unit in 

rQw 3 shows that direction (-1, 0, 0) for part 3 is associated with liaison 3 only, . 
and so forth. For a simple-cycle liaison diagram, one disassembly direction can 

be associated with at most two liaisons. Thus, when a disassembly direction is 

associated with only one liaison, one of the first two values in a data set is set 

to zero. The last unit in a row consists of five zero digits. When the program 

reaches this unit, it goes to the next row. 

Program Structure 

There are six major functions in this program: 

1. liaison_diagramO: read lia:ison-diagram information. 

2. disassembly_directionO: read the disassembly directions for each part and the 

liaison that each disassembly direction is associated with. 
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3. read_unvO: retrieve the geometric information of the product design from 1-

DEAS. 

4. collisionO: detect the potential collisions. 

5. precedenceO: derive precedence relationships. 

6. sequenceO: generate all of the valid assembly sequences based on the precedence 

relationships derived. 

The functional relationships of the six major functions are shown in the following flow 

chart: 

Read 
liaison diagram Main program 

Retrieve 
geometric 

infonnation 

collisionO 

Collision 
detection 

precedence() 

generate 
precedence 

relationships 

sequenceO 

generate all 
liaison sequences 

8 

disassembly _ directionO 

Read disassembly 
directions 



70 
First, the main program retrieves all the input data it needs including: liaison 

diagram, disassembly directions, and geometric information of the product design. 

Secondly, those inputs retrieved are imported into the collision detection function. 

Once the potential collision information· is generated, it is input to the precedence. 

relationship extraction function. Based on the extracted precedence relationships, 

the 'sequence' function then generates all the valid assembly sequences. 

Operations 

The program is coded in the C programming language, and runs in the UNIX en

vironment. The source code is stored under the file name pre_seq.c. The pre..seq.c 

needs to use mathematical functions defined in math.h, so the following command 

must be used to compile the program. 

vincent% cc pre..seq.c -1m 

Where vincent% is the prompt of the window. If the executable file name is not 

specified, a.out will be the default executable file name. 

Once the proper input files have been created, the user must log into I-DEAS. 

I-DEAS interfaces with the C program, and thus I-DEAS must be running in order 

that the C program runs. Once we get into I-DEAS, I-DEAS will automatically 

create three windows: I-DEAS Graphics, I-DEAS Prompt, and I-DEAS List. I-DEAS 

Graphics is used for graphical display purpose, I-DEAS Prompt is where users input 

commands, and I-DEAS List is used to show users operational information. In order 

to run the C program, a DECterm window has to be created, and these four windows 

can be arranged in the positions as shown in the following figure. 
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I·DEAS Graphics DECterm 

vince"", 

I 1oI0d01 file II 

IPro~ file I 
I 
I 

I"""' I 

- y 

I }-x 
z 

I·DEAS Prompt I·DEAS Ust 

/I 

The. procedure for running this program is described in following steps: 

1. Input a.out in the DECterm window, and hit the 'RETURN' key. 

vincent% a.out 

Then the program will show following information on the screen: 

**************************************************************** .. .. .. .. 
AUTOMATIC PRECEDENCE RELATIONSHIP EXTRACTION FOR 

ASSEMBLY SEQUENCE GENERATION 

Output the result to a file(pre_seq.out) or sreen ? 
(1). file. 
(2). screen. 
(3). both(file and screen). 
--> (1/2/3) 3 

.. .. .. .. 

================================================================ 
.. Please start to run the program_file ==> cycle.prg. .. 
* ------------------------------------------------------------ * 
* .. Once the program file stop running, hit 'RETURN' in 

DECterrn window to resume the C program .... 
.. .. 

================================================================ 
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2. The next step is to invoke the Object Modeling ta~k under the Solid Modeling 

family in I-DEAS. Next, go to the main menu in I-DEAS Graphics window and 

select 'Model File', 'Program File', and 'Run' (see the figure in the previous 

page). Now input the program file name by typing cycle in I-DEAS Prompt 

window and hit the 'RETURN' key. 

3. After the I-DEAS program file stops running, the interference checking result 

has been output to the file called IN_CH.dat. Activate the DECterm win

dow by hitting the 'RETURN' key. This activates the C program, which then 

processes the interference checking result written to the IN_CH.dat file. 

4. After the C program stops running, the interference checking result in IN_CH.dat 

has been resolved, and the I-DEAS commands for the next step have been put 

into cycle.prg. Go to I-DEAS Prompt window and hit the 'RETURN' key, 

reactivating the I-DEAS program file. Then go to step 3, and continue this 

procedure until the C program terminates. 

The purpose of using I-DEAS is to do the interference checking, so step 3 and 4 are 
. 

repeated until all the potential collisions are examined. Once the collision detections 

are done, the C program will generate the precedence relationships and all of the valid 

liaison assembly sequences. 
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APPENDIX B. PROGRAM LIST 

/* ****************************************************************. */ 
~ ~ 
~ AuroMATIC PRECEDENCE RELATIONSHIP EXTRACTION FOR ASSEMBLY */ 
~ SEQUENCE GENERATION */ 
~ ~ 
~ HlUlg-YiTu */ 
~ ~ 
~ Department of Industrial and Manufacturing Systems Engineering */ 
~ Iowa State University of Science and Teclmology */ 
~ Ames. Iowa 50011 USA */ 
~ */ 
~ -------------------------------------------------------------------------- */ 
~ */ 
~ This program can derive the precedence relationships from a */ 
~ solid model in a CAD system called I-DEAS. and generate all the */ 
~ valid assembly sequences based on these precedence relationships. */ 
~ Following information is the inputs of this program: * / 
~ (1). Liaison diagram. */ 
~ . This infonnation is stored in the "cycle.dat" file. */ 
~ (2). Disassembly directions for each part. * / 
~ This information is stored in the "parts.dat" me. */ 
~ ~ 
~ -------------------------------------------------------------------*/ 
~ ~ 
~ Following variables are defmed before the main program: */ 
~ (1).N :Numberofliaisons. */ 
~ (2). 1m : The length of the square work plane defmed in I-DEAS. */ 
~ (3). EL: The length of the swept volume. */ 
~ ~ 
~ In collision detection function, the projection of each facet of */ 
~ every part is found, so 1m is just used to defme the size of pro- * / 
~ jection plane in I-DEAS. Once a projection is found, it has to be */ 
~ extruded to create a swept volume. So we need to detennine EL to * / 
~ be the length of the swept volume. When a different product design */ 
~ is tested. N.lm. and EL might be changed. We can simply change */ 
~ the defmed values of these variables at the beginning of the */ 
~ program and recompile the program. */ 
~ ~ 
~ ----------------------------------------------------------------- */ 
~ ~ 
~ There are nine functions in this program: */ 
~ (l).liaison_diagramO : read liaison-diagram infonnation. */ 
~ (2). disassembly_directionO : read the disassembly directions for */ 
~ each part and the liaisons that each diassembly */ 
~ direction is associated with. */ 
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,. (3). read_unvO : retrieve the geometrical information of the ., 
r product design from I-DRAS. ., 
r (4). collisionO : detect the potential collisions. ., 
,. (5). collision_storeO : store the potential collision information. ., 
,. (6). int_check_resO : read the interference checking result ., 
r generated from I-DEAS. ., 
,.. (7). N_intersection_checkO : to determine whether a moving part ., 
r will collide with a static part or not when their ., 
,.. rectangular boxes do not have intersection. ., 
,. (8). precedenceO : derive precedence relationships. ., 
,.. (9). sequenceO : generate all the sequences based on precedence ., 
r relationships. ., 
r ., ,.. ......................................................................................... ., 
#include <stdio.1t> 
#include <malloc.1t> 
#include <math.1t> 
#include <string.1t> 

#defmeN 5 
#defme 1m 20 
#defme EL 25.0 

r .. , 
,. This structure is used to store the liaison diagram ., 
,. information described as following: ., 
,~ (1) All the contact parts for each part. .. , ,! (2) The liaisons that each part is associated with. *' r .. , 
typedef struct listnodel 

( 
int Iia; 
int lpart; 
int rpart; 
struct listnodel ·right, "left; 

) NaDEl;. 

r ~ 
I'" This structure is used to store .. , 
I'" (1) All the disassembly directions for each part. *' 
1* (2) The liaison that each disassembly direction is *' 
I'" assocaited with. ., 
r ~ 
typedef struct listnode2 

( 
int asso[2]; 
float dir[3]; 
struct listnode2 ·next; 

} NODE2; 

r =================., 
1* This structure is used to store the collision ., 
I'" information. ., 
r ~ 
typedef struct listnode3 

( 
int part; 
float dd[3]; 



struct listnode3 ·next; 
) NODE3; 
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/*================., 
/* This structure is used to store precedence ., 
/* relationship information. ., 
/* ~ 
typedef struct plistnode 

( 
int liaison; 
struct plistnode ·next; 

) NODFA; 

NODEI ·liaison_diagramO; 
disassembly _directionO; 
read_unvO; 
collisionO; 
collision_storeO; 
int_check_resO; 
N_intersection_checkO; 
precedenceO; 
sequence(); 

int option; 
FILE ·output; 
NODE4 ·pr{N+l][N-I][3],·prtail[N+I][N-I][3]; 

/*=================================., /* •••• MAIN PROORAM •••• ., 
/* ~ 
mainO 
( 
char c; 
int i,j,k.rank,seq[N+I]; 

NODEI ·clist; 
NODE2 *part[N]; 
NODE3 ·colli[N], ·cltai1[N]; 

printf( .. ••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••• \n .. ); 
printfC'* *'n"); 
printf'(''* AUTOMATIC PRECEDENCE RELATIONSHIP EXTRACTION FOR *'n"); 
printf("· ASSEMBLY SEQUENCE GENERATION *'n"); 
printfC'* *'n"); 

printf( .. •••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• \n\n .. ); 

do 
( 

printf("Output the result to a file(pre_seq.out) or sreen ?-n"); 
printf("(I). flle.\n(2). screen.\n(3). both(file and screen).\n"); 

printf(" --> (112/3) .. ); 
scanf("%d",&option); 
scanf("9'oC",&c); 

if (option != I && option != 2 && option != 3) 
printfC"InPlease select I or 2 or 3 I! !\n\n"); 

else printf("'n"); 
) while (option != I && option != 2 && option != 3); 



if (option = 1 II option = 3) 
output = fopen("pre_seq.out" ,"w"); 

clist = liaison_diagramO; 
disassembly _direction(part); 

collision(part.colli,cltail); 

for (i = 1; i <= N; i++) 
for (j = 1; j <= (N-2); j++) 

for (k = 1; k <= 2; k++) 
( 
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pr[i][j][k] = prtail[i] [j][k] = malloc(sizeof(NODE4»; 
pr[i][j][kJ->liaison:: i+l; 

pr[i][j][k]->next = NUlL; 
} 

precedence(clist,part,colli); 

if (option = 1 II option = 3) 
fprintf(output,''\n\nAll the possible sequences :\n\n"); 

if (option = 2 II option = 3) 
printf(''\n\nAU the possible sequences :\n\n"); 

rank:: 1; 
sequence(rank,seq); 

if (option = 111 option = 3) 
fclose(output); 

'* -------------------------------------------- *' 
/* Input the liaision diagram *' 
1* --------------------~------------------- *' 
NODEI *liaison_diagramO 
( 

} 

FILE *stream; 
NODEI *list, *tail, *p; 

stream :: fopen("cyc1e.dat", "r"); 
list = tail = malloc(sizeof(NODEl»; 

while (! feof(stream» 
( 

} 

p = malloc(sizeof(NODEl»; 
fscanf(stream,"%d 0/'0<1 %d",&p->lia,&p->lpart,&p->rpart); 
tail->right :: p; 
p->left = tail; 
tail = p; 

fclose(stream); 
p:: list; 
list:: list->right; 
tail->right :: list; 
list->left :: tail; 
free(p); 
retum(list); 
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'* --:------------------------------------- *' 
1* Input the disassembly direction infonnation *' 
1* ---------------------------------------- *' 
disassembly _direction(node) 
NODE2 *node[N]; 
( 

} 

FILE *stream; 
char c; 
int x, y, i, j, k; 
NODE2 *p, *tail; 

stream = fopen("parts.dat", "r"); 

for (i = 0; i < N; i++) 
( 

} 

node[i] = tail = malloc(sizeof(NODE2»; 

p = malloc(sizeof(NODE2»; 
for 0 = O;j < 2;j++) 

fscanf(stream, "%d" ,&p->asso[j)); 
forO =O;j <3;j++) 

fscanf(strearn, "%C' ,&p->dir[j)); 

while (p->asso[O] != 0 II p->asso[1] != 0) 
( 

p->next = NULL; 
tail->next = p; 
tail=p; 

p = malloc(sizeof(NODE2»; 

for 0 = 0; j < 2; j++) 
fscanf(stream, "%d" ,&p->asso[j)); 

forO =O;j <3;j++) 
fscanf(stream,"%C',&p->dir[j]); 

fclose(stream); 

1* --------------------------------------- *' 
1* Check the potential collisions for each part in its *' 
1* disassembly directions. *' 
1* --------------------------------------- *' 
collision(part,colli,cltail) 
NODE2 *part[N]; 
NODE3 *colli[N), *cltail[N]; 
( 
FILE *prg; 
NODE2 *p, *r, .pp, *qq, *head, *head_pp; 

NODE3 *q,*rr; 
char TR,con,conl ,line,jump,jump 1 ,skip,stack,delete,result,ret; 
int a,b,i,j,s,t,u,kl,k2,ss,add,flag,keyl,key2,seq,code,mark, 

index,c_code2,poincno,g[3],sub[3],count[N],face_no[N), 
f-p_no[N) [50] ,p_Iabel[N)[ 50)[ 1 00] ,temp; 

float e,step,sl,s2,asl,as2,dxl,dyl,pl[40],p2[40],Dl,D2,ADl,AD2, 
diff,front,back,inner-p,length_l,length_2,cos_theta,theta, 

vectoCl[3].vector_2[3],nonnal[3],md[3],trans[3],Mt[N)[4)[4], 
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box[N][2][4].nbox[N][2] [4].box_d[2] [3].point[N] [I 00] [4]. 

npoint[N] [100][4]; 

static char codel[] =" 534"; 
static char code2[] =" 537"; 
static char code3[] =" 544"; 

for (i = 0; i < N; i++) 
count[iJ = 0; 

for (i = 0; i <N; i++) 
colli[i] = cltail[i] = malloc(sizeof(NODE3»; 

index = 0; 
e = 1.0E-5; 
for (i =0; i <5; i++) 
{ 
if (count[iJ = 0) 

read_unv(i.count.face_no.Cp_no.p_label.nbox.npoint); 

for (j = 0; j < 5; j++) 
if (i != j) 

{ 
if (count[j] = 0) 

read_unv(j.count.face_no.Cp_no.p_label.nbox.npoint); 

if (index = 0) 
( 

else 

index:;: 1; . 
prg = fopen( .. cycle.prg ..... w .. ); 

} 

( 
prg = fopen("cycle.prg"."a"); 
if (delete = 'Y') 

fprintf(prg."K :/MA'cl{ :DE'W<. :EI'nK :'n"); 

if (i 1= 0) 
fprintf(prg."K :/DE'nK :'n"); 

else if(i = 0 &&j!= I} 
fprintf(prg."K :/DE'W<. :'cl{ :(fA'nK :O'n"); 

if(i=O) 
{ 

for (s :;: 0; s < 3; s++) 
( 
if(j= I) 

box_d[O][s] :;: fabs(nbox[i][O][s] - nbox[i][I][s]); 
box_d{I][s] = fabs(nbox[j][O][s] - nbox[j][l][s]); 

if(j = 1) 
( 

fprintf(prg."K :/CR'cl{ :B'cl{ :"); 
for (t = 0; t <= 2; t++) 

fprintf(prg."% 7.3f ".box_d[O][t]); 
fprintf(prg."'n"); 
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TR='N'; 
for (t = 0; t < 3; H+) 

{ 

) 

trans[t] = (nbox[i][O][t] + nbox[i][l][tJ)/2; 
if (fabs(trans[t]) > e) 
TR='Y'; 

if(TR='Y') 
( 

) 

fprintf(prg."K :/OR'nK :TR'nK :"); 
for (t = 0; t < 3; t++) • 

fprintf(prg, "%7 .3f ".trans[t]); 
fprintf(prg. ''\n "); 

fprintf(prg,"K :/MA'nK :STO'nK :"); 
fprintf(prg,''Bl'nK :'n"); 

fprintf(prg."K :/CR'nK :B'nK :"); 
for (t = 0; t <= 2; t++) 

fprintf(prg."% 7.3f ".box_d[l][t]); 
fprintf(prg. ''\n "); 

TR='N'; 
for (t = 0; t < 3; t++) 
{ 

trans[t] = (nbox[jJ[O][t] + nbox[j][l][t))/2; 
if (fabs(trans[t)) > e) 

TR='Y'; 

if(TR='Y') 
( 

) 

fprintf(prg."K :/OR'nK :TR'nK :"); 
for (t = 0; t < 3; t++) 

fprintf(prg,"% 7 .3 f ".trans[ t]); 
fprintf(prg. "\n H); 

fprintf(prg."K :/MA'nK :STO'nK :"); 
switch (j) 
( 

) 
) 

case 1 : fprintf(prg, "B2'nK :'n"); 
break; 
case 2 : fprintf(prg. "B3'nK :'n"); 
break; 
case 3 : fprintf(prg. "B4'clC :'n"); 
break; 
case 4 : fprintf(prg,''B5'nK :'n"); 
break; 

if(i=O) , 
fprintf(prg,"K :rrA'nK :AS'n"); 

if(i = 0) 



else 

( 
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if(j = 1) 
fprintf(prg,"K :/CR\nK:cw{ :\nK :Bl\nK:\nK :Bl\nK:\nK :\nK :D\n"); 

else fprintf(prg,"K :/l\nK :A\nK :\nK :Bl\nK :\nK :\nK :D\n"); 

fprintf(prg, "K :/CR\nK :cw{ :\nK : "); 
switch (j) 
( 
case 0: fprintf(prg,"Bl\nK :\nK :Bl\nK :\nK :D\n"); 
break; 
case 1 : fprintf(prg,"B2\nK :\nK :B2\nK :\nK :D\n"); 
break; 
case 2 : fprintf(prg,"B3\nK :\nK :B3\nK :\nK :D\n"); 
break; 
case 3 : fprintf(prg,"B4'nK :\nK :B4\nK :\nK :D\n"); 
break; 
case 4 : fprintf(prg,"B5\nK :\nK :B5\nK :\nK :D\n"); 
break; 

} 
} 

( 
fprintf(prg,"K :/l\nK :A \n H); 
for (s = 0; s < 2; s++) 
( 

} 

if(s=O) 
u=i; 

else u=j; 

switch (u) 
( 
case 0 : fprintf(prg,"K :\nK :Bl\nK :\nK :\n"); 

break; 
case 1 : fprintf(prg,"K :\nK :B2\nK :\nK :\n"); 

break; 
case 2 : fprintf(prg,"K :\nK :B3\nK :\nK :\n"); 

break; 
case 3 : fprintf(prg,"K :\nK :B4'nK :\nK :\n"); 

break; 
case 4 : fprintf(prg,"K :\nK :B5\nK :\nK :\n"); 

break; 
} 

fprintf(prg,"K :D\n"); 
} 

if(i=O) 
fprintf(prg,"K :DR\n"); 

fprintf(prg,"K :/L\nK :CH\n"); 
if(i=O &&j = 1) 

fprintf(prg,"K :V\nK :On\n"); 
fprintf(prg,"K:CW{ :L\nK :"); 

switch (i) 
( 
case 0 : fprintf(prg,"Bl\n"); 

break; 
case 1 : fprintf(prg, "B2\n"); 

break; 
case 2 : fprintf(prg,"B3\n"); 



printf(" 

printf(" 

break; 
case 3 : fprintf(prg. "B4\n"); 

break; 
case 4 : fprintf(prg. "B5\n"); 

break; 
} 
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fprintf(prg."K :\nK :L\nK :Y\nK :IN_CH\nK :Y\n? :\n"); 
fclose(prg); 

if(i=O&&j= 1) 

else 

( 
printf( .. ,====================,====,,); 
printf("\n* Please start to run the program_file => cycle.prg. *\n"); 
printf("* ------------------------------------------- • "); 
printf("'n* Once the program file stop running. hit 'RETURN' in *"); 
printf(''\n* DECtenn window to resume the C program .... *\n"); 

\n"); 
scanf("%c" .&ret); 

} 

( 
printf("'======================="); 
printf("'n* Check potential collisions between P%d and P%d. • ... i+l.j+l); 
printf(''\n* ----------------------------------------- * "); 
printf(''\n* Please CONTINUE the 'I-DEAS program file'. *\n"); 
printfC'* ------------------------------------------- *"); 
printf("\n* Once the program file stop running, hit 'RETURN' in *"); 
printf(''\n* DECtenn window to resume the C program .... *\n"); 

\n"); 
scanf("%c",&ret); 

} 

inccheck_res(i.j.&result); 

if (result = 'N') 
( 
head = p = part{i]->next; 
do 
{ 

for (s = 0; s < 3; s++) 
rnd[s] = p->dir[s); 

N_intersection_check(i.j.rnd,&result,nbox); 

if(result='~) 
collisiol'l_store(i.j.cltail.rnd); 

p=p->next; 
} while (p != NULL); 

printf("\n H); 
for(u = 0; u < 5; u++) 
( 

printf("P%d: ".u+l); 
q = colli[u]->next; 
temp =0; 
while(q !=NULL) 



} 
else 

( 

>asso[O))) 

>asso[l])) 

( 

} 
} 
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if (temp != 0) 
printf(" H); 

printf("P%d --> (%5.2f,%5.2f,%5.2f)'n",q->part.q->dd[0],q->dd[I],q->dd[2]); 
q =q->next; 
temp++; 

printf('''n H); 
delete = 'N'; 

keyl = 0; 
flag = 0; 
head = p = part{i]->next; 
do 

( 
skip = 'N'; 
for (s = 0; s < 3; s++) 

md[s] = p->dir[s]; 

if (i > j) 
( 
r = pan(jJ->next; 
while (r != NULL && skip = 'N') 
( 
add = 0; 
for (t = 0; t < 3; t++) 

( 
if (md[t] = -r->dir[t]) 

add++; 

if (add =3) 
( 
if «p->asso[O] != 0) && (r->asso[O] = p->asso[O] 1/ r->asso[l] == p-

skip = 'Y'; 
else if «p->asso[l] != 0) && (r->asso[O] = p->asso[l] II r->asso[1] = p-

skip = 'Y'; 
else 
( 

rr = colli(jJ->nex1; 
while (rr != NULL) 

{ 
add = 0; 
for (1 =0; t < 3; 1++) 
( 
if (md[l] = -rr->dd[t]) 

add++; 

if (add = 3 && rr->part = i+l) 
( 

skip = 'Y'; 
q = malloc(sizeof(NODE3»; 
q->part = j + 1; 



>dd(0),q->dd[I),q->dd[2]); 

) 
) 

) 
) 

r = r->next; 

) 
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for (t = 0; t < 3; t++) 

q->dd[t) = -rr->dd[t); 
q->next = NULL; 
cltail[i]->next = q; 
cltail[i) = q; 

printf('''n''); 
for(u=O; u < 5; u++) 

( 
printf("P%d: ",u+l); 
q = rolli[u)->next; 
temp = 0; 
while (q != NULL) 
( 
if (temp != 0) 

printf(" "); 
printf(" P%d --> (%5.2f,%5.2f,%5.2f)'n",q->part,q-

q =q->next; 
temp++; 

) 
) 

printf('''n "); 
delete = 'N'· 

) . 
rr = rr->next; 

if (skip = 'N') 
( 
frr (s = 0; 5 < face_no[i); s++) 

if (md[O) != 0) 
( 

) 

seq = 0; 
sub[O) = 2; 
sub[1) = 1; 
sub[2) = 0; 

else if (md[I) != 0) 
( 

) 
else 

( 

) 

seq = 1; 
sub[O) =0; 
sub[l) = 2; 
sub[2) = 1; 

seq = 2; 
sub[O) = 0; 
sub[I) = 1; 
sub[2) = 2; 



npoint[i][a][sub[1]]) > e) 

npoint[i][a][sub[1]]) > e) 

npoint[i][a][sub[1J)) > e) 
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u=O; 
con = 'Y'; 
do 

( 
kl = p_label[i][s][u]; 
k2 = p_labeJ[i][s][u+l]; 
Dl = npoint[i][k2][sub[O]] - npoint[i][kl][sub[O]]; 
D2 = npoint[i][k2][sub[1]] - npoint[i][kl][sub[1]]; 
ADl = fabs(Dl); 
AD2 = fabs(D2); 

if(ADI >e II AD2> e) 
con='N'; 

u++; 
) while (con = 'Y'); 

line = 'Y'; 
add = 0; 
for (t = 0; t < f-p_no[i][s]; t++) 

{ 
a = p_label[i][s][t]; 

stack = 'Y'; 
if (t > 0) 
{ 

switch (seq) 
( 
caseO: 

if (fabs(pl[mark] - -npoint[i][a][sub[O]]) > e II fabs(p2[mark] -

stack = 'N'; 
break; 

case 1 : 
if (fabs(pl[mark] - npoint[i][a][sub[O))) > e 1\ fabs(p2[mark] -

stack = 'N'; 
break; 

case2: 

} 

if (fabs(pl[mark] - npoint[i][a][sub[O))) > e " fabs(p2[mark] -

stack = 'N'; 
break; 

if (t = 0 II stack = 'N') 
( 

switch (seq) 
( 
caseO: 

( 
pl[add] = -npoint[i][a][sub[O]]; 
p2[add] = npoint[i][a][sub[1]]; 

) 
break; 

case 1 : 
( 

pl[add] = npoint[i][a][sub[O]]; 



) 
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p2[add) = npoint[i)[a)[sub[1)); 

) 
break; 

case2: 

) 

( 
pl[add) = npoint[iJ[a][sub[O)); 
p2[add) = npoint[iJ[a][sub(1)); 

) 
break; 

mark = add; 
add++-; 

if (t >= (u + I) && line = 'Y') 
( 

) 
} 

b = p_label[i)[s][t-l); 
sl = npoint[i][a][sub[O)) - npoinl[i][b][sub[O)); 
s2 = npoinl[i)[a)[sub[l)) - npoint[i)[b][sub[I)]; 

asl = fabs(sl); 
as2 = fabs(s2); 

if (as 1 <e&&as2<e) 
line = 'Y'; 

else 
( 
if (AD 1 > e && AD2> e) 
( 

) 

if (aSl > e && as2 > e && «sl/s2 - Dl/D2) < e» 
line = 'Y'; 

else 
line = 'N'; 

else if (ADl > e && AD2 < e) 
( 

) 

if (as 1 >e&&as2<e) 
line = 'Y'; 

else 
line = 'N'; 

else 
( 

if(asl < e && as2> e) 
line = 'Y'; 

else 
line = 'N'; 

} 
} 

if (line = 'N') 
( 

flag++; 
if (flag == 1) 
( 

prg = fopen("cycle.prg", "a"); 
fprintf(prg,"K :/DE'cl{:'clC :(fA\nK :CG\n"); 

) 



:CG\n"); 

%d'n" ,lm,lm,-lm,-lm); 
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else 
( 

prg = fopen("cycle.prg", "a"); 
fprintf(prg,"K :/DEW{ :'nK :/MA'nK :DE'n.K :El'nK :'nK :(fA'nK 

if(i=O && 5=0 &&keyl = 0&&key2= 0) 
fprintf(prg,"K:fW\nK:K :A1'nK :SEW{:K'nK. :%d lfod'nK :%d 

switch (seq) 
( 
case 0 : fprintf(prg,"K :/W'nK :REW{ :Y2'nK :K'nK. :'n"); 
break; 

case 1 : fprintf(prg,"K:/W'nK :REW{:XZ'nK:K'nK :'n"); 
break; 

case 2 : fprintf(prg,"K :/W'nK :REW{ :XY'nK :K'nK :'n"); 
break; 

} 

fprintf(prg,"K :/CR'nK :PR'nK :K\n"); 

for (t = 0; t < add; t++) 
( 

fprintf(prg,"K :%1O.6f %1O.61'n",pl[t),p2[t]); 
if (t!= 0) 

fprintf(prg."K :F\n"); 

fprintf(prg."K :C"nK :'n"); 

a = p_label[i][s][O); 
front = npoint[i][a][sub[2]]; 
back = npoint[i][a][sub[2]]; 

switch (seq) 
( 
cascO: 
if (md[O) > 0) 

else 

for (t = 1; t < f-p_no[i][sJ; t++) 
( 

a = p_label[i][s][t); 
if (npoint[i][a][sub[21J > front) 

front = npoint[i](a][sub[2]]; 
else if (npoint[i][a][sub[2]] < back) 

back = npoint[iJ[a][sub(2)J; 

for (t = 1; t < f-p_no[i](sJ; t++) 
( 

a = p_label[i][s][t); 
if (npoint[i][a](sub[211 < front)" 

front = npoint[i](a](sub[2]]; 
else if (npoint[i](a](sub[2]] > back) 

back = npoint[iJ[a][sub[2]]; 
} 

break; 
case 1 : 



:PFl\nK :\n",back); 

:PFI\nK :\n",-back); 

:PF1\nK :\n",back); 
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if (md[1) > 0) 

else 

for (t = 1; t < f-p_no[i][s); t++) 
( 

a = p_Iabel[i][s][t); 
if (npoint[i][a][sub[2]] > front) 

front = npointli][a)fsub[2]]; 
else if (npoint[i][a][sub[2)) < back) 

back = npointli][a)fsub[2)); 

for (t = 1; t < f-p_no[i][s); t++) 
( 

a = p_Iabel[i][s][t); 
if (npoint[i][a][sub[2]] < front) 

front = npoint[i][a][sub[2]]; 
else if (npoint[i][a][sub[2)]"> back) 

back = npointli][a][sub[2]]; 
) 

break; 
case2: 

) 

if (md[2) > 0) 

else 

for (1 = I; 1 < f-p_no[i][s); 1++) 
( 

a = p_Iabel[i][s][t); 
if (npointCi)fa][sub[2]] > front) 

front = npointCi][a][sub[2]]; 
else if (npoint[i][a][sub[2]] < back) 

back = npointli][a)fsub[2]]; 

for (t = 1; t < f-p_no[i](s); t++) 
( 

a = p_Iabel[i][s][t); 
if (npoint[i][a)fsub[2]] < front) 

front = npointli][a][sub[2]]; 
else if (npoint[i][a][sub[2]) > back) 

back = npointli][a][sub[2]]; 
) 

break; 

switch (seq) 
( 
case 0 : 

fprintf(prg,"K:/W'nK :TR\nK:O 0 %6.2f\nK :/MA\nK :PR'InK :STO\nK 

break; 
case 1: 

fprintf(prg,"K:/W'nK :TR\nK:O 0 %6.2f\nK :/MA\nK :PR\nK :STO\nK 

break; 
case 2 : 

fprintf(prg,"K:/W'nK :TR'InK:O 0 %6.2f\nK :/MA'InK :PR'InK :STO\nK 

break; 
) 

fprintf(prg,"K :/DE\nK:PW( :'InK :{fA'InK :O\n"); 
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switch (seq) 
{ 
caseO: 
( 

fprintf(prg,"K :/CR\nK :E\n"); 
fprintf(prg,"K :PFl\n"); 

if (md[O] > 0) 
fprintf(prg,"K :%6.2f\n" ,EL); 

else fprintf(prg, "K :%6.2f\n" ,-EL); 

if (fabs(front - back) > e) 
{ 

for (t = 0; t < 3; t++) 
g[t] = p_Iabel[i][s][t]; 

for (t = 0; t < 3; t++) 
( 

vectocl[t] = npoint[i][g[O]][t] - npoint(i](g[l]](t]; 
vectoc2[t] = npoint[i][g[l)][t] - npoint[i][g[2)][t]; 

norma1[O) = vector_l[l] ... vector_2[2] - vectocl[2] ... 

norma1[1] = vectocl(2] ... vector_2[O] - vector_leO] ... 

norma1[2] = vector_leO] ... vector_2[1] - vectocl[l] ... 

inner-p = length_l = length_2 = 0; 

for (t = 0; t < 3; t++) 
( 

inner-p += md[t] ... norma1[t]; 
length_l += pow(md[t],2.); 
length_2 += pow(norma1[t],2.); 

length_l = sqrt(length_l}; 
length_2 = sqrt(1ength_2); 

fprintf(prg,"K :/CChtK. :PvtK :1VtK :K\n"); 
if (cos_theta> 0) 
for (t = 0; t < 3; t++) 

( 

} 
else 

fprintf(prg,"K :"); 
for (u= 0; u < 3; u++) 

fprintf(prg,"% 10.6f ",npoint(i](g[ tm u)); 
fprintf(prg, "\n"); 

for (t = 2; t >= 0; t-) 
( 

fprintf(prg,"K :"); 
for (u = 0; u <3; u++) 

fprintf(prg, "% 1 0.6f ",npoint[i)[g[ t]][ u)); 
fprintf(prg, "\n "); 
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} 

fprintf(prg, "K :J1'.n"); 
} 

:El~ :\nK :D~"); 

fprintf(prg,"K :/MA~K :STO'nK :El~ :~ :~"); 

fprintf(prg,"K :rrA~ :A~ :/CR~ :~K :~ :El~ :~ 

fprintf(prg,"K :DR~ :/lW( :A~"); 

. ~"); 

."); 

. ~"); 

switch (j) 
( 
case 0: fprintf(prg,"K :~K :Pl~K:\nK :~"); 
break; 

case 1 : fprintf(prg,"K:~ :P2'nK:~ :~"); 
break; 

case 2 : fprintf(prg,"K :~K :P3'nK :~K :~"); 
break; 

case 3 : fprintf(prg,"K :~K :P4\nK:\nK :~"); 
break; 

case 4 : fprintf(prg,"K :~ :P5'nK :~K :~"); 
break; 

} 
fprintf(prg, "K :D~"); 
fprintf(prg,"K :/L~K :CH'nK :~K :L~K :El~ :~K :L~ 

fclose(prg); 

printf("=======================;:. ===="); 
printf("'n· Please CONTINUE the 'I-DEAS program file' . 

printf(,,· ------------------------------------------------ ."); 
prinlf(,"n· Once the program file stop running, hit 'RETURN' in 

printf('''n· DECterm window to resume the C program .... 

prin~"'========================================================== 

} 
break; 

case 1 : 
( 

scanf("%c",&ret); 

int_check_res(i,j,&result); 

if (result = 'Y') 
( 

s =999; 
coIlision_store(i,j,cltail,md); 

fprintf(prg, "K :/CR~K :E\n"); 
fprintf(prg,"K :PFl~"); 

if (md[1] > 0) 
fprintf(prg,"K :%6.2f'n",-EL); 

else fprintf(prg,"K :%6.2f'n",EL); 

if (fabs(front - back) > e) 

\n"); 



vectoc2[2]; 

:El'nK :'nK :D'n"); 

{ 

) 
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fOf (t = 0; t < 3; t++) 
g[t] = p_label[i][s][t]; 

fOf (t = 0; t < 3; t++) 
{ 

vectocl[t] = npoint[i][g[O)][t] - npoint[i)[g[1)][t]; • 
vectof_2[t] = npoint(i)[g[1)][t] - npoint[i][g[2)][t]; 

nonnal[O] = vectoCl[l] * vectoC2[2] - vectof_l[2] * 

nonnal[l] = vectof_1[2] * vectof_2[0] - vectOf_l[O] * 

nonnal[2] = vectOf_l[O] * vectof_2[l] - vectof_l[l] * 

inner-p = length_l = length_2 = 0; 

fOf (t = 0; t < 3; t++) 
( 

inner-p += md[t] * nonnal[t]; 
length_l += pow(md[t],2.); 
length_2 += pow(nonnal[t],2.); 

length_l = sqrt(length_l); 
length_2 = sqrt(length_2); 

cos_theta = inner-p/(length_l * length_2); 

fprintf(prg,"K :/CO'nK:PW<::1\nK:K'nK :"); 
if (cos_theta> 0) 
for(t=O; t<3; t++) 

( 

) 
else 

fprintf(prg,"K :"); 
for (u = 0; u < 3; u++) 

fprintf(prg,"%1O.6f ",npoint[i)[g[t)][u)); 
fprintf(prg, "'n "); 

for (t = 2; t >= 0; t-) 
( 

) 

fprintf(prg,"K :"); 
for(u = 0; u < 3; u++) 

fprintf(prg,"%10.6f ",npoint[i)[g[t])[u)); 
fprintf(prg,"'n"); 

fprintf(prg,"K :P'In"); 

fprintf(prg,"K :/MA'nK :STO'nK :El'nK :'nK :'n"); 

fprintf(prg,"K :rrA'nK :AS'nK :/CR'nK :C'nK :'nK :El'nK:'nK 

fprintf(prg,"K :DR'nK :/l\nK :A'n"); 

switch (j) 
{ 



*'n"); 

*"); 

*'n"); 

91 
case 0 : fprintf(prg."K :'nK :Pl'nK :'nK :'n"); 
break; 

case 1 : fprintf(prg. "K :'nK :P2'nK :'nK :'n"); 
break; 

case 2 : fprintf(prg."K :'nK :P3'nK :'nK :'n"); 
break; 

case 3 : fprintf(prg. "K :'nK :P4'nK :'nK :'n"); 
break; 

case 4 : fprintf(prg."K :'nK :P5'nK :'nK :'n"); 
break; 

) 

fprintf(prg. "K :D\n"); 
fprintf(prg. "K :/L'nK :CH'nK :C\nK :L'nK :El'nK :'nK :L'nK 

fclose(prg); 

printf( .. ,==============:===========, .. ); 

printf( .. 

printf(''\n* Please CONTINUE the 1-DEAS program file'. 

printf("* -------------------------------------.----.----- * "); 
printf(''\n* Once the program file stop running. hit 'RETURN: in 

printfC'\n* DECterm window to resume the C program .... 

scanf("%c".&ret); 

int_check_res(i.j.&result); 

if (result = 'Y') 
( 

s =999; 
coIlision_store(i.j.cItail.md); 

\n"); 

) 
break; 

case2: 
( 

fprintf(prg."K :/CR'nK :E\n"); 
fprintf(prg."K :PFl'n"); 

if (md[2] > 0) 
fprintf(prg."K :%6.2t'n".EL); 

else fprintf(prg."K :%6.2t'n ... ·EL); 

if (fabs(front - back) > e) 
( 

for (t = 0; t < 3; t++) 
g[t] = p_Iabel[i][s][t]; 

for (t = 0; t < 3; t++) 
{ 

vectocl[t] = npoint[i][g[O]][t] - npoint[i](g[1]][t]; 
vector_2[t] = npoint(i][g(l ]][t] - npoint[i][g[2]][t]; 



vectoc2[0]; 

:EI'nK :'nK :D\n"); 

} 
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normal[O] = vectoCI[l] * vectoC2[2] - vectoCI[2] * 

normal[1] = vector_1[2] * vectoc2[0] - vectoCI[O] * 

normal[2] = vectoCI[O] * vectoc2[1] - vector_1[I] * 

inner-p = length_l = length_2 = 0; 

for (t = 0; t < 3; t++) 
( 

inner-p += md[t] * normal[t]; 
length_l += pow(md[t],2.); 
length_2 += pow(normal[t],2.); 

length_l = sqrt(length_l); 
length_2 = sqrt(length_2); 

fprintf(prg,"K :/CO'nK :i>W{ :1'ltK :K'nK :"); 
if (cos_theta> 0) 
for(t = 0; t< 3; t++) 

( 

} 
else 

fprintf(prg,"K :"); 
for (u = 0; u <3; u++) 

fprintf(prg,"%1O.6f ",npoint[i)[g[t])[u)); 
fprintf(prg, ''\11 "); 

for (t = 2; t >= 0; t-) 
( 

} 

fprintf(prg,"K :"); 
for(u= 0; u < 3; u++) 

fprintf(prg,"%10.6f ",npoint[i)[g[t])[u)); 
fprintf(prg, ''\11 H); 

fprintf(prg,"K :P'n"); 

fprintf(prg,"K :/MA'nK :STO'ru( :EI'nK :'nK :'n"); 

fprintf(prg,"K :(fA'nK :AS'nK :/CR'nK :C'nK :'nK :EI'nK :'nK 

fprintf(prg,"K :DR'nK :fl\nK :A 'n"); 

switch G> 
( 
case 0 : fprintf(prg,"K :'nK :PI'nK :'nK :'n"); 
break; 

case I : fprintf(prg,"K :'nK :P2'nK :'nK :'n"); 
break; 

case 2 : fprintf(prg,"K :'nK :P3'nK :'nK :'n"); 
break; 

case 3 : fprintf(prg,"K :'nK :P4'nK :'nK ,:'n"); 
break; 

case 4 : fprintf(prg, "K :'nK :P5'nK :'nK :'n"); 
break; 



*'n"); 

."); 

*'n"); 

>dd[2]); 

} 
} 
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fprintf(prg, HK :Iht"); 
fprintf(prg,"K :!L'nK :CHW( :C'nK :L'nK :El'nK :'nK :L'nK 

fclose(prg); 

printe(" "); 

printf(" 

} 

} 

printf('''n* Please CONTINUE the 'I-DEAS program fIle'. 

printf("* ----------------~-------------------------------- *"); 
printf('''n* Once the program file stop running, hit 'RETURN' in 

printf(,"n* DECterm window to resume the C program .... 

scanf("%c",&ret); 

inccheck_res(i,j,&result); 

if (result = 'Y') 
( 

} 
break; 

} 

s =999; 
coIIision_store(i,j,cltail,md); 

\n"); 

printf('''n "); 
for (u = 0; u <= i; u++) 
( 

} 

printf("P%d: ",u+l); 
q = coIli[u]->next; 
temp=O; 
while (q 1= NULL) 

{ 

) 

if (temp != 0) 
printf(" "); 

printf("P%d --> (%5.2f, %5.2f, %5.2f)'n" ,q->pan,q->dd[O],q->dd[l],q-

q =q->next; 
temp++; 

printf('''n "); 
delete = 'Y'; 

p= p->next; 
} while (p != NULL); 

'* ---------------------------------------------- *' 
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,. . Read the output fIle for interference checking result ., 
/* fromI-DEAS. ., ,. ----------------------------------------------- ., 
inccheckJes(i.j.result) 
int i,j; 
char ·result; 
( 

} 

ALE ·stream; 
charc; 
int s; 
static char strl[] = "Interference detected for"; 
static char str2[] = "NONE"; 

stream = fopen( .. IN_CH.dat ..... r .. ); 

c = fgetc(stream); 
s = 999; 
do 
( 
if(c=T) 

for (s = 1; s <= 24; s++) 
( 

} 

c = fgetc(stream); 
if (c != strl[s)) 
s=999; 

c = fgetc(stream); 
} wbile(!(s = 25»; 

while (c != '-') 
c = fgetc(stream); 

while (c == '-') 
c = fgetc(stream); 

for (s = 0; s < 2; s++) 
c = fgetc(stream); 

for (s = 0; s < 4; s++) 
( 

c = fgetc(stream); 
if (c != str2[s]) 

s = 999; 

if (s != 10(0) 
( 

·result = 'N'; 
printf(,"n ••••• NO interference •••• *'n .. ); 

} 
else 
( 

·result = 'Y'; 
printf(" ••••• Interference exists •••• *'n .. ); 

} 
fclose(stream); 

,. --------------------------------------------- ., 
,. Check which of the following conditions that the ., 
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,. . rectangular box of the moving part is in : ., 
,. (1). Completely above or below the rectangular box of ., 
1* the static part. ., 
1* (2). Completely on the right side or left side of the ., 
1* rectangular box of the static part. ., 
1* (3). Completely behind the rectangular box of the ., 
1* smricpart. ., 
1* (4). None of the above three conditions. ., ,. ----------------------------------------------- ., 
N_intersection_check(i,j,md,inter_f,nbox) 
int i,j; 
char ·intecf; 
float md[3],nbox[N][2J[4]; 
( 

int s,seq; 
float e,back l,front2,up I, up2,down l,down2,rightl,right2,leftl,left2; 

e = 1.0E-5; 

if (md[O] != 0) 
seq = 0; 

else if (md[1] != 0) 
seq = I; 

else 
seq = 2; 

switch (seq) 
( 
case 0 : 
if (md[O] > 0) 

( 
if (nbox[iJ[OJ[OJ > nbox[iJ[IJ[O]) 

backl = nbox[i)[I][O]; 
else backl = nbox[i][O][O]; . 

if (nbox[j][O][O] > nbox[j][I][O]) 
front2 = nbox[j][O][O]; 

else front2 = nbox[j][l][O]; 

if (backl >= frontZ II fabs(backl - frontZ) < e) 
·interj = 'N'; 

else 
( 

if (nbox[i][O][I] > nbox[i][l][l]) 
( 

else 
) 

( 

upl = nbox[i)[O][I]; 
downl = nbox[i][l][l]; 

upl = nbox[i][l][l]; 
downl = nbox[i][O][l]; 

) 

if (nbox[j][O][l] > nbox[j][l)[l]) 
( 

up2 = nbox[j][OJ[I]; 
down2 = nbox[j][l][l]; 

) 



else 

else 
{ 

up2 = nbox[j)[l](l]; 
down2 = nbox[j][O][l]; 

} 
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if (upl <= down2 II fabs(upl - down2) < e II downl >= up211 fabs(downl - up2) < e) 
·interj = 'N'; . 

else 
{ 

} 

if (nbox[i][O][2] > nbox[i][l][2]) 
( 

} 

rightl = nbox[i)[l][2); 
left I = nbox[i][O][2); 

else 
( 

} 

rightl = nbox[i][O][2); 
left I = nbox[i][l)[2); 

if (nbox[j)[O][2) > nbox[j][1)[2]) 
( 

} 

right2 = nbox[j][l)[2); 
left2 = nbox[j][O][2]; 

else 
( 

} 

right2 = nbox[j][O][2); 
left2 = nbox[j][l][2); 

if (rightl >= left2 II fabs(rightl - left2) < e IIleftl <= right2 II fabs(leftl - right2) < e) 
·inter_f = 'N'; 

else ·inter_f = 'Y'; 

} 
} 

( 
if (nbox[i][O][O) > nbox[i][l][O]) 

backl = nbox[i][O)[O); 
else backl = nbox[i][1][O]; 

if (nbox[j][O][O] > nbox[j][l)[O)) 
front2 = nbox[j][l)[O); 

else front2 = nbox[j][O)[O); 

if (backl <= Cront211 fabs(backl - Cront2) < e) 
·inter_f = 'N'; 

else 
( 

if (nbox[i][O][l] > nbox[i][1][l]) 
( 

else 

upl = nbox[i][O)[l); 
downl = nbox[i)[l][l]; 

} 



) 
} 

break; 
case I: 

upl = nbox[i](l}(l); 
downl = nbox[i](O](I); 

} 
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if (nbox[j](O][l) > nbox[j](l](l]) 
( 

else 

up2 = nbox[j](O][l); 
down2 = nbox[j][l](l); 

} . 

( 
up2 = nbox[j](I)[1); 
down2 = nbox[j][O](l); 

} 

if (upl <= down2 \I fabs(upl - down2) < e II downl >= up2 \I fabs(downl - up2) < e) 
*intecf = 'N'; 

else 
{ 

} 

if (nbox[i](O][2] > nbox[i][l][2]) 
( 

} 

rightl = nbox[i][O][2]; 
left I = nbox[iJ[IJ[2]; 

else 
( 

} 

rightl = nbox[iJ[IJ[2]; 
leftl = nbox[iJ[O][2); 

if (nbox[j][O)[2) > nbox[j][ 1 ][2]) 
{ 

} 

right2 = nbox[jJ[O][2]; 
left2 = nbox[jJ[l)[2]; 

else 
( 

} 

right2 = nbox[jJ[lJ[2); 
left2 = nbox[j][0][2); 

if (rightl <= left2 II fabs(rightl - left2) < e II left I >= right2 II fabs(1eftl - right2) < e) 
*inter3 = 'N'; 

else *intecf = 'Y'; 

if (md[l) > 0) 
( 
if (nbox[iJ[OJ[l) > nbox[i][l][l]) 

back I = nbox[i][l][l]; 
else backl = nbox[i][O][I); 

if (nbox[j][O][IJ > nbox[j][l)[l]) 
front2 = nbox[j][O][I); 

else front2 = nbox[j][IJ[IJ; 



else 
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if (backl >= front2 II fabs(backl - front2) < e) 

*inter3 = 'N'; 
else 
( 

) 
) 

if (nbox[i][O][2) > nbox[i][I](2)) 
( 

else 
) 

( 

upl == nbox[i][I](2); 
downl = nbox[i][O](2); 

upl = nbox[i][O](2); 
downl = nbox[i][I](2); 

) 

if (nboxU][O][2) > nboxU][I](2)) 
( 

else 

up2 = nboxU][I](2); 
down2 = nboxU][O](2); 

) 

( 
up2 = nboxU][O](2); 
down2 = nboxU][I](2); 

) 

if (upl >= down211 fabs(upl - down2) < e II downl <= up2 II fabs(downl - up2) < e) 
*inter_f = 'N'; 

else 
( 

) 

if (nbox[i)[O][O) > nbox[i][I)[O)) 
( . 

) 

rightl = nbox[i][O][O); 
leftl = nbox[i)[I][O); 

else 
( 

} 

right! = nbox[i][I][O); 
leftl = nbox[i][O][O); 

if (nboxU)[O][O) > nboxU][I][O)) 
( 

} 

right2 = nboxU][O][O); 
left2 = nboxU][I][O); 

else 
( 

) 

right2 = nboxU][I][O); 
left2 = nboxU][O][O); 

if (rightl <= left2 II fabs(rightl - left2) < e IIleftl >= right2 II fabs(leftl - right2) < e) 
*inter_f = 'N'; 

else *inter_f = 'Y'; 



{ 
if (nbox[iJ[OJ[l] > nbox[i]fl][l]) 

backl = nbox[i][O][I]; 
else backl = nbox[iJ[IJ[l]; 

if (nbox[j][O][l] > nbox[j][l][l]) 
frona = nbox[jJ[I][I]; 

else frona = nbox[j][OJ[I]; 
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if (backl <= front2 II fabs(backl - front2) < e) 
*intecf = 'N'; 

else 
{ 

if (nbox[i][O][2] > nbox[i)[ I ][2]) 
( 

else 
} 

( 

upl = nbox[i][I][2); 
downl = nbox[i][O][2); 

upl = nbox[i][OJ[2); 
downl = nbox[i][1][2); 

) 

if (nbox[j][OJ[21 > nbox[j)[ 1 ][2]) 
( 

else 

up2 = nbox[j][1](2); 
down2 = nbox[j][O][2); 

} 

( 
up2 = nbox[j][O][2); 
down2 = nbox[j][1][21; 

} 

if (upl >= down211 fabs(upl - down2) < e II downl <= up2 II fabs(downl - up2) < e) 
*inter3 = 'N'; 

else 
{ 
if (nbox[i][O][O] > nbox[i][I][O)) 
{ 

} 

rightl = nbox[i][I][O); 
lertI = nbox[i][O](O); 

else 
( 

} 

right I = nbox[i][O][O); 
leftl = nbox[i][I][O); 

if (nbox[j][O][O] > nbox[j][I][O]) 
{ 

} 

right2 = nbox[j][I][O]; 
left2 = nboxU][O}[O]; 

else 
{ 

righa = nbox[j][O][O]; 
lefa = nbox[j][I][O]; 
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if (rightl >= lefa II fabs(rightl - lefa) < e IIleftl <= righa II fabs(leftl - right2) < e) 
*inter_f = 'N'; 

} 
} 

break; 
case 2: 

} 
else *inter_f = 'Y'; 

if (md[2] > 0) 
. { 

if (nbox[i][0][2] > nbox[i][1][2]) 
backl = nbox[i][I][2]; 

else backl = nbox[i][0][2]; 

if (nbox[j][0][2] > nbox[j][1][2]) 
frona = nbox[j][0][2]; 

else frona = nbox[j][l][2]; 

if (backl >= frona II fabs(backl - frona) < e) 
*inter_f = 'N'; 

else 
{ 

if (nbox[iJ[O](I] > nbox[i][l](lJ) 
( 

else 
) 

( 

upl = nbox[i]{O][l]; 
downl = nbox[i][l][l]; 

upl = nbox(i](l](l); 
downl = nbox[i](O](l]; 

} 

if (nbox[j][O][I) > nbox[j][l][l)) 

else 

{ . 
up2 = nbox[j][O][I]; 
down2 = nbox[j](IJ[l]; 

} 

( 
up2 = nbox[j][l][l); 
down2 = nbox[j][O](I]; 

} 

if (upl <= down211 fabs(upl - down2) < e II downl >= up211 fabs(downl - up2) < e) 
*inter_f = 'N'; 

else 
( 
if (nbox[i][O][O] > nbox[i](I](O» 
( 

} 

rightl = nbox[i](O][O); 
left I = nbox[iJ[IJ[O); 

else 
( 

rightl = nbox[i](I][O]; 
left I = nbox[i][O](O); 



else 

} 
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if (nbox[j][O][O) > nbox[j][l][O)) 
( 

} 

right2 = nbox[j][O][O); 
left2 = nbox[j][l)[O); 

else 
( 

) 

right2 = nbox[j][l][O); 
left2 = nbox[j][O)[O); 

if (rightl <= left2 II fabs(rightl - left2) < e IIleftl >= right2 II fabs(leftl - right2) < e) 
·inteT_f = 'N'; 

else ·intecf = 'Y'; 

} 
} 

( 
if (nbox[i)[O][2) > nbox[i][1][2)) 

backl = nbox[iJ[O](2); 
else backl = nbox[i][1][2); 

if (nbox[jJ[O][2) > nbox[j][1](2» 
front2 = nbox[j][l](2); 

else frent2 = nbox[j][O](2); 

if (backl <= front2 II fabs(backl - front2) < e) 
·inter_f = 'N'; 

else 
( 

if (nbox[iJ[O][l) > nbox[i][l)[l» 
( 

else 
} 

( 

upl = nbox[i][O][l); 
downl = nbox[i][l)[l); 

upl = nbox[iJ[l)[l); 
downl = nbox[i][O)[l]; 

} 

if (nbox[j][O][1] > nbox[j)[l)[l» 
( 

else 

up2 = nbox[j][O][l]; 
down2 = nbox[j][l][l); 

} 

{ 
up2 = nbox[jJ[l][l]; 
down2 = nbox[jJ[O)[l]; 

} 

if (upl <= down211 fabs(upl - down2) < e II downl >= up211 fabs(downl - up2) < e) 
*intecf = 'N'; 

else 



) 
) 

) 
) 

break; 

) 
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if (nbox[i][O][O] > nbox(i][ 1 ][0» 
( 

) 

rightl = nbox[i][l][O]; 
left 1 = nbox[i)[O][O]; 

else 
( 

) 

right 1 = nbox[i][O][O]; 
leftl = nbox[i][l][O]; 

if (nbox[j][O][O] > nbox[j][I][O)) 
( 

) 

right2 = nbox[j][l][O]; 
left2 = nbox[jl(O][O]; 

else 
( 

) 

right2 = nbox[j][O][O]; 
left2 = nbox[j][I][O]; 

if (rightl >= left2 II fabs(rightl • left2) < e IIlefti <= right2 II fabs(leftl • right2) < e) 
*intecf = 'N'; 

else *inter_f = 'Y'; 

r ------------------------------------------ *' 
'* Retrieve the geometrical infonnation 'of the product *' 
r design from the universal files in I·DEAS. *' '* ------------------------------------------- *' 
read_unv(i.count.face_no.Cp_no.p_label.nbox.npoint) 
int i.count[N].face_no[N] .Cp_no[N] [50].p _label[N] [50] [ 100]; 
float nbox[N)[2][4].npoint[N)[100)[4]; 
( 
FILE*inf; 
char c.c2.multi[2]; 
int s.t.u.code.c_code2.point_no; 
float e.step.box[N](2][4].Mt[N][4](4].point[N][IOO][4]; 

static char codel[] =" 534"; 
static char code2[) =" 537"; 
static char code3[) =" 544"; 

count[i]++; 

switch (i) 
( 
case 0 : inf = fopen("part1.unv"."r"); 
break; 
case 1 : inf = fopen("part2.unv"."r"); 
break; 
case 2 : inf = fopen("part3.unv n

• nrn); 
break; 



) 

CJlSe 3 : inf = fopen("part4.unv","r"); 
break; 
case 4 : inf = fopen("partS.unv","r"); 
break; 

t= 0; 
c2='N'; 
code = 999; 
c = fgetc(inf); 
do 

{ 
if (c = ") 

for (t = 1; t <= 5; t++) 
( 

c = fgetc(inf); 
if (c = codel[t] && c2 = 'N') 

( 

) 

if(t= 5) 
code = 534; 
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else if (c = code2[t] && c_code2 = 0) 

} 

( 

J 

c2='Y'; 
c_code2++; 
if(t= 5) 

code = 537; 

else if (c = code3[t)) 
( 

) 

c2= 'Y'; 
if(t=5) 
code = 544; 

else 
( 

) 

c2 = 'N'; 
t= 999; 

c = fgetc(inf); 
} while (l(t = 6»; 

if (code = 53411 code = 537) 
{ 

for (t = 1; t <::: 30; t++) 
fscanf(inf, "%f" ,&step); 

for (5 = 0; 5 < 2; 5++) 
for (t = 0; t < 3; t++) 

fscanf(inf, "%f' ,&box[i][s][t)); 
box[i][O][3] = box[i][I][3] = 1; 

for (t = 1; t <= 6; t++) 
fscanf(inf, "%f',&step); 



for (5 = 0; 5 <= 3; 5++) 
for (t = 0; t <= 2; t++) 

fscanf(inf,"%f',&Mt[i) [t) (5»; 

Mt[i][3](3) = 1; 
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Mt[i][3][O) = Mt[i][3](1) = Mt[i](3][2) = 0; 

} 

multi[O) = 'N'; 
for (5 = 0; 5 < 4; 5++) 
for(t= 0; t<4; t++) 
( 

if(s = t) 
( 

if (Mt[i](s](t) 1= 1) 
( 

} 
} 

5 = t =4; 
multi[O) = 'Y'; 

else if (Mt[i][s](t) 1= 0) 
( 
s=t=4; 
multi[O) = 'Y'; 

} 

if (multi[O) = 'Y') 
{ 

for (s = 0; s < 2; 5++) 
for (t = 0; t < 4; t++) 

nbox[i](s](t) = 0; 

for (s = 0; s < 2; s++) 

else 

for (t = 0; t <= 3; t++) 
for (u = 0; u <= 3; u++) 

nbox[i][s][t) = nbox[i](s)[t) + Mt(i](t](u)*box[i](s](u); 

for (5 = 0; 5 <= 1; s++) 
for (t = 0; t <= 3; t++) 

nbox[i][s](t) = box[i](s](t); 

} while (code != 544); 

for (5 = 1; 5 <= 3; 5++) 
fscanf(inf, "%d" ,&face_no[i»; 

fscanf(inf, "%d" ,&point_no); 

for (5 = 1; 5 <= 8; 5++) 
fscanf(inf, "%f' ,&step); 

for (s = 0; s < poincno; s++) 
( 

fscanf(inf, "%f' ,&step); 
for (t = 0; t < 3; t++) 

fscanf(inf, "%f' ,&point[i](s]( t»; 
point[i](s](3) = 1; 

if (multi[O] = 'Y,) 



{ 
for (t = 0; t <= 3; t++) 

npoint[i][s][t] = 0; 

for (t = 0; t <= 3; t++) 
for (u = 0; u <=3; u++) 
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npoint[i][s][t] = npoint[i][s][t] + Mt[i)[t][u]·point[i][s)[u]; 

else 
for (t = 0; t < 3; t++) 

npoint[i][s][t] = point[i][s][t]; 

fscanf(inf, "%f' ,&step); 

for (5 = 0; 5 < face_noli]; 5++) 
{ 

for (t = 0; t < 2; t++) 
fscanf(inf,"%d",&Cp_no[i][s)); 

for (t = 0; t < Cp_no[i][s]; t++) 
( 

} 

fscanf(inf,"%d",&p_Iabel[i] [s][t)); 
p_Iabel[iJ[s ][t]--; 

} 
fclose(inf); 

} 

'* --------------------------------------------- ., '* Store the collision infonnation in the linked list ., 
1* data structure. ., ,. ------------------------------.:----------- ., 
collision_store(i,i,cltail,md) 
int i,j; 
float md[3]; 
NODE3 ·cltail[N]; 
( 

} 

int 5; 
NODE3·q; 

q = malloc(sizeof(NODE3»; 
q->part = j + 1; 
for (5 = 0; 5 < 3; 5++) 
q-><Id[s] =md[s]; 

q->next = NUll..; 
cltail[i]->next = q; 
cltail[i] = q; 

'* ----------------------------------------- *' 
,. Derive the precedence relationships based on the *' 
,. collision infromation. *' 
1* ---------------------------------- ----- *' 
precedence(list. node, colli) 
NODE1 ·list; 
NODE2 *node(N]; 
NODE3 ·colli[N]; 
( 
FILE ·inf; 



NQDEI *p, *q; 
NODE2*r, 
NODE3 *c, *cltail[N]; 
NODE4*U; 
int a, e, i, j, Ie, 5, t, X, add, md[3], dis-Part. 

pocc-p[N-l], count[N+l][N-l], liaison[N-l]; 
char repeat, collision; 

if (option = 1 II option = 3) 
( 
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fprintf( output, ''\nPrecedence Relationships :\n "); 
fprintf(output,"-----------------------------------"); 

} 
if (option = 2 II option = 3) 
( 

printf(''\nPrecedence Relationships :\n "); 
printf(" -----------------------------"); 

} 
for (i = 1; i <= N; i++) 
for G = 1; j <= (N-2); j++) 

count(i)[j] = 0; 

for (a = 1; a <= (N-2); a++) 
( 

p = list; 
do 

( 
for (i = 1; i <= 2; i++) 
( 
q=p; 
if(i= 1) 

else 

{ 
dis-part = p->lpart; 
pocc-p[O] = p->rpart; 
for (t = 1; t <= a; t++) 
( 

} 
} 

( 

q = q->right; 
liaison[t) = q->lia; 
pot_c-p[t) = q->rpart; 

dis-J>3lt = p->rpart; 
pocc-p[O] = p->lpart; 

. for(t=l;t<=a;t++) 
( 

} 
} 

q = q->left; 
liaison[t) = q->lia; 
pocc-Plt] = q->lpart; 

repeat = 'n'; 
if(a>=2) 

( 
u = pr[p->lia][I][I]->next; 
while (u != NULL && repeat = 'n') 
{ 
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for(t= I; t<= a; t++-) 

if (u->liaison = liaison[t]) 
{ 

} 

t= 999; 
repeat = 'y'; 

if (repeat = 'n') 
u =u->next; 

if (repeat = 'n') 
{ 

} 
} 

for (t = 2; t < a; t++-) 
{ 

for (5 = I; s <= count{p->lia}[I]; 5++-) 
{ 

} 

add = 0; 
u = prfp->liaJ[lJ[s]->next; 

while (u != NUU) 
{ 
for (x = 1; x <= a; x++-) 
if (u->liaison = liaison[x]) 
{ 

add++-; 
x = 999; 

u =u->next; 
} 

if(add=t) 
{ 

} 

repeat = 'y'; 
s = 999; 

if (5 = 10(0) 
t= 999; 

if (repeat = 'n') 
{ 

collision = 'y'; 
r = node[dis-part-lJ->next; 
do 
( 
if (r->asso[OJ = p->lia II r->asso[lJ = p->lia) 

( 
for (t = 0; t < 3; t++-) 
md[t] = r->dir[t); 

collision = 'n'; 
c = colli[dis-part-I)->next; 
do 
( 
if (md[OJ = c->dd[O] && md[l] = c->dd[I) && md[2J = c->dd[2J) 

{ 
for (t = 0; t <= a; t++-) 
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if (c->part == pocc-p[t)) 
{ 

t = 999; 
collision = 'y'; 

if (collision = 'n') 
c = c->next; 

} while (c 1= NULL && collision 1= 'y'); 

if (collision = 'y') 
r = r->next; 

else r = r->next; 
} while (r 1= NULL && collision == 'y'); 

if (collision == 'y' && a = 1) 
( 

} 

e= p->lia; 
u = malloc(sizeof(NODE4»; 
u->liaison =q->lia; 
u->ncxt = NUlL; 
prtail[e][a][l]->next = u; 
prtail[e][a][l] = u; 
if (option = 111 option = 3) 

fprintf(output.'''n •••• L%d --> L%d",p->lia,q->lia); 

if (option = 2 II option == 3) 
printf('''n •••• U'od -> L%d",p->lia,q->lia); 

else if (collision = 'y') 
( 

e = p->lia; 
count(e)[a]++; 

for(t = 1; t <= a; t++) 
( 

} 

u = malloc(sizeof(NODE4»; 
u->liaison = liaison[t); 
u->next = NUll; 
prtail[e][a][ count(e][a] ]->next = u; 
prtail[e][a][ count[e][a]] = u; 

if (option = 1 II option = 3) 
{ 

} 

fprintf(output.'''n •••• L9'od --> ( ",p->lia); 
for (t = 1; t< a; t++) 

fprintf(output."L%d and ".liaison[t]); 
fprintf(output, "L9'od )",liaison[a]); 

if (option = 211 option == 3) 
{ 
printf("'n •••• L9'od -> ( ",p->lia); 
for(t= 1; t< a; t++) 

printf("L%d and ".liaison[t]); 
printf("L%d r.liaison[a)); 



) 

} 

} 
) 

p = p->right; 
} while (p != list); 

109 

if (option = 1 " option = 3) 
fprintf(output.'''n-------------------------------------'n'n''); 

if (option = 2 " option = 3) 
print£('''n------------------------------------'n'n''); 

/* ----------------------------------------- */ 
1* Generate all the possible assembly sequences based */ 
/* on the precedence relationships. */ 
/* ----------------------------------------- ./ 
sequence(rank,seq) 
int rank,seq[N+l]; 
( 

int i.j.k.m.n.x.y.last.count.countl.check.temp.templ.temp2.temp3.length[3]; 
char ans.jump.quit.skip.found,change.keep_search; 

NODE4 *\1, ·w[N-l]; 

if (rank <N) 
( 

for (i = 1; i <= N; i++) 
( 

if (rank = 1) 
( 

for(j= l;j<=N;j++) 
( 

jump='n'; 
u = pr[j][I][I]->next; 
while (u 1= NULL && jump = 'n') 
( 

) 

if (i = u->liaison) 
( 
j=N; 
jump='y'; 

) 
else u = u->next; 

if (jump = 'n') 
( 

seq[rankl = i; 
rank++; 
sequence(rank.seq); 
rank--; 

) 
) 

else 
( 

skip='n'; 
for (j = 1; j <= (rank - 1); j++) 
if (i = seq[j]) 
( 



j = rank; 
skip = 'y'; 

if (skip = 'n') 
( 

seq[rank] = i; 
for G = 1; j <= N; j++) 
{ 

) 

jump='n'; 
change = 'n'; 
u = pr[j][I][I]->next; 
while (u != NUll.. && jump = 'n') 

if (i = u->liaison) 
( 

) 

jwnp= 'y'; 

for(k= I;k <rank; k++) 
ifG = seq[k)) 
( 

k=rank; 
change = 'y'; 

else u = u:>next; 

if (change = 'y') 
jump='n'; 

if Gwnp = 'y') 
j=N; 

if (jwnp = 'n') 
( 

keep_search = 'y'; 
if (rank < (N-I» 

temp3 = rank; 
else temp3 = rank - I; 

for (x = 2; x <= temp3; x++) 
( 

for(j = I;j <=N;j++) 
{ 
k=l; 
skip='n'; 
keep_search = 'y'; 
w[1] = pr[j][x][k]->next; 

while (w[1] != NUll.. && skip = 'n') 
{ 

for (m = 1; m <= (x -I); m++) 
w[m+I] = w[m]->next; 

CO\Dlt=O; 
. for(m=l;m<=x;m++) 

for (n = I; n <= rank; n++) 
{ 

if (w[m]->liaison = seq[n)) 
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} 
} 

count++; 
n=rank; 

if (count != x) 
{ 

} 

k++; 
if (Ie > 2) 
w[1]=NUU..; 
else w[1] = prij][x][kj->next; 

else 
{ 

} 
} 

skip='y'; 
keep_search = 'n'; 

for (y = 1; y < rank; y++) 
if (j = seq[y)) 
{ 

y=rank; 
keep_search = 'y'; 
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if (skip = 'y' && keep_search = 'n') 
{ 

} 

} 
} 

if (rank = (N-l» 
check=j; 

j=N; 
x = rank; 

if (keep_search = 'y') 
( 

} 

rank++; 
sequence(rank,seq); 
rank-; 

else if (rank = (N-l) 
( 

for(n= l;n<=N;n++) 
( 

found = 'n'; 
for (x = 1; x <= rank; x++) 

if (n = seq[x)) 
{ 

} 

found = 'y'; 
x=rank; 

if (found = 'n') 
( 
last = n; 
n=N; 
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temp = abs(last - seq[rank]); 
if (temp = 111 temp = (N-I» 
( 

} 

rank++; 
sequence(rank.seq); 
rank--; 

else 
( 

quit = 'n'; 
tempI = last; 
temp2 = seq[rank); 
length[l) = abs(tempI - temp2); 
length[2) = N - length[I); 

for (n = 1; n <= 2; n++) 
( 
count = 0; 
for (x = I; x <= 2; x++) 
{ 
k= 1; 
found='n'; 
u = pr[tempI][ length[xl ][k)->next; 

while (u != NUll.) 
{ 
do 
( 

} 

if (u->liaison = temp2) 
found = 'y'; 

else u = u->next; 
} while (u != NUll. && found = 'n'); 

if (found = 'y') 
u=NUU..; 

else 
{ 

k++; 
if (k > 2) 

u=NU!l.; 
else u = pr[tempI][ length[xl Hk)->next; 

} 

if (found = 'y') 
count++; 

if (count = 2) 
{ 

} 

quit = 'y'; 
n=999; 

if (quit = 'n') 
if(n= 1) 
{ 



} 
} 

} 

} 

} 
} 

) 
else 
( 

} 

113 
temp = tempI; 
tempI = lemp2; 
temp2 = temp; 

rank++; 
sequence(rank,seq); 
rank--; 

else n = 999; 
) 

else 
( 

) 
) 

for(m= 1; m<=N;m++) 
( 

ans= 'n'; 
for (n = 1; n < rank; n++) 
if (m = seq[n]) 
( 

) 

ans='y'; 
n=rank:; 

if (ans = 'n') 
{ 

seq[rank] = m; 
m=999; 

} 
} 

if (option = 1 II option = 3) 
{ 

} 

for (j = 1; j <= (N - 1); j++) 
fprintf(oulput, "Ltfod -> ",seq[j]); 

fprintf(oulput, "L%d\n",seq[N]); 

if (option = 2 II option == 3) 
{ 

} 

for (j = 1; j <= (N - 1); j++) 
printf("Ltfod __ > ",seq[j]); 

printf("L%d\n",seq[N]); 


