
Automatic precedence relationship extraction for assembly sequence

generation

by

Hung-Yi Tu

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Industrial and Manufacturing Systems Engineering
Major: Industrial Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1992

11

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

Overview ..

Research Objective

Assumptions

Basic Approach

Organization of This Thesis

CHAPTER 2. LITERATURE REVIEW .

Assembly Sequence Generation

Interference Detection for Part Disassembly

CHAPTER 3. PROPOSED METHODOLOGY

Preliminaries

Liaison Diagram Structures

Precedence Relationship Representations

Disassembly Directions

Methodology

Liaison Disengagement

CHAPTER 4. IMPLEMENTATION AND RESULTS

Implementation

Universal File Structure

1

1

2

3

4

4

6

6

10

13

13

13

14

16

21

27

36

36

37

III

Internal Representation of a Liaison Diagram

Internal Representation of the Disassembly Directions .

Program File of I-DEAS Software

Implementation Using the Program File

Sequence Generation

Results

Discussion

CHAPTER 5. CONCLUSION

Future Work

BIBLIOGRAPHY .

APPENDIX A. USER MANUAL

Introduction .

Inputs

Program Structure

Operations

APPENDIX B. PROGRAM LIST

41

42

43

44

50

.12

.54

60

61

63

66

66

66

68

70

73

IV

LIST OF TABLES

Table 3.1: Equations for representing disassembly direction sets contain-

ing an infinite number of directions .. 19

Table 3.2: Primary disassembly direction selection 20

Table 3.3: Part disassembly directions associated with each liaison for

the example product. .. 24

Table 4.1: Explanation of part of the program file cycle.prg shown in

Figure 4.8 49'

v

LIST OF FIGURES

Figure 1.1: Framework of automatic precedence relationship extraction
.

and assembly sequence generation 5

Figure 2.1: An example of liaison diagram . . 9

Figure 3.1: Two basic structures for liaison diagrams: (a) tree, (b) simple

cycle 14

Figure 3.2: Hemisphericity of face normals 18

Figure 3.3: The intersection of the semicircles contains a finite number of

disassembly directions. 21

Figure 3.4: Example product with the simple-cycle liaison diagram 23

Figure 3.5: The liaison diagram of the example product shown in Figure 3.4 23

Figure 3.6: The subassembly consisting of liaison L1 and L2 only 24

Figure 3.7: Part P2 is to be removed at +x direction, while part PI is

stationary

Figure 3.8: The two rectangular solids for parts PI and P2 do not intersect

each other

Figure 3.9: The rectangular solid for part P2 is completely behind the

solid for part PI

29

29

30

VI

Figure 3.10: The rectangular solid for part P2 is completely above the solid

for part PI .. 30

Figure 3.11: The rectangular solid for part P2 is completely on the right

side of the soi~ for part PI 31

Figure 3.12: Part PI is to be removed at +x direction, while part P2 is

stationary 32

Figure 3.13: The two rectangular solids for parts PI and P2 intersect each

other .. 33

Figure 3.14: Sweep facet Fl of PI in +x direction to create a swept volume

for collision detection

Figure 3.15: Top view of PI ...

Figure 3.16: Sweep facet i in -x direction to create a swept volume for

. collision detection .

Figure 4.1: Basic structure of a universal file .

Figure 4.2: The type 534 dataset in P2 's universal file.

Figure 4.3: Data structure representation of the liaison diagram for the

34

34

35

37

40

example product .. 42

Figure 4.4: Data structure representation for the disassembly directions. 43

Figure 4.5: Simple program file . 45

Figure 4.6: Collisions detected for each part of the example product 45

Figure 4.7: The relationships for a component and its instances and object 47

Figure 4.8: Part of the program file cycle. prg (line numbers and arrows

do not exist in the program file, ~ut are used here for clarifi-

cation)

Figure 4.9: An example of simple-cycle liaison diagram

48

51

VII

Figure 4.10: Graphical representation of all'of valid liaison assembly se-

quences of the example product 55

Figure 4.11: The subassembly consisting of L2, L3, and L4 58

Figure 4.12: An example product with a simple-cycle liaison diagram. 59

1

CHAPTER 1. INTRODUCTION

Overview

Studies have shown that 75% of a product's life cycle cost is determined in

the early stages of design, and later decisions make only minor changes to the total

cost. A concurrent design approach in which the design of product, process, and

system may be examined simultaneously in the early design phase will significantly

reduce life cycle cost and product design lead time (Nevins and Whitney, 1989).

Therefore, procedures which will allow the designer to quickly evaluate the process

aspect of a product design are needed for the implementation of concurrent design.

The current research efforts in manufacturing process planning encompass machining

process planning, often referred to as process planning, and assembly planning. In the

area of machining, most of the machines and processes are well established, and thus

machining processes can be selected by applying manufacturing knowledge to relate

the part features to the existing processes. On the other hand, assembly planning

techniques are not well established. Thus, it is difficult to develop a planning system

which can automatically generate assembly plans for various types of products. This

is also the reason that the assembly planning function has been very much experience

based and human-dependent.

The major activities involved in assembly planning include (Nevins and Whitney,

1989):

2

1. Establishment of an assembly sequence.

2. Division of the product into subassemblies.

3. Selection of an assembly method for each step.

4. Integration of a quality control strategy.

5. Economic analysis and choice of assembly method.

Point 1 above shows that the derivation of valid assembly sequences from a

design model is a major activity of assembly planning. De Fazio and Whitney (1987)"

characterized a product as a network graph, or liaison diagram, in which the parts

are represented by nodes and the liaisons between parts are represented by arcs.

A complete assembly is produced if all the liaisons are properly established. All the

geometric constraints have to be satisfied when a sequence is generated; otherwise, the

product cannot be assembled successfully. A geometrically feasible assembly sequence

may not be feasible when process constraints such as assembly machines, assembly

fixtures, assembly tools, and assembly system layouts are considered. Therefore,

because of the geometric and/or process constraints, liaison precedences exist, forcing

some liaisons to be established before others. Unless these precedence requirements

are followed, the assembly sequence will not lead to a complete product assembly.

If all of the liaisons and the precedences among them can be properly identified, a'

complete set of valid liaison assembly sequences can be generated.

Research Objective

One objective of this research is to develop a methodology for automatic prece

dence relationship extraction and to implement this methodology in a solid modeling

3

environment. The second objective is to generate all valid liaison assembly sequences

based on the precedence relationships extracted.

Assumptions

To carry out the automatic precedence relationship extraction, this research as

sumes that a detailed product design in a solid modeling environment is available.

The assumptions in this research are stated below:

1. Product parts are rigid bodies which generally do not change shape during

assembly. Deformable objects are not considered in this research.

2. The effects of dimensional and geometric tolerances for the product design are

not taken into account. For this reason, the part solid models represent only

nominal sizes of part solids.

3. Only cylindrical and planar mating faces are considered.

4. The contacts between parts are limited to surface contacts only; line-contacts

and point-contacts are not considered.

5. All parts are 1-disassemblable (Woo and Dutta, 1991). A part is 1-disassemblable

if only one single translation is needed to remove it. Rotation and sequential

disassembly movements are not considered in this research.

6. No process constraints are imposed on the methodology. The liaison assembly

sequences generated from the extracted precedence relationships will represent

all of the geometrically feasible sequences.

7. The liaison diagram of a product design has to be in the simple-cycle structure.

The definition of simple-cycle liaison diagrams will be discussed in Chapter 3 .•

4

Basic Approach

In a manual design and planning environment, the assembly planner uses the

design drawings to figure out how parts can be put together. The reasoning process

is an interlinked activity and based mostly on the expertise of the planner. This is

an iterative process. The planner sometimes needs to consult with the designer with

regard to the design itself, the functionality, the assembly feasibility, and so forth.

This can be a costly and time consuming approach, and often does not lead to a good

candidate set of assembly sequences.

In this research, a disassembly approach is used to derive the precedence rela

tionships in a solid modeling environment. A framework for automatic precedence

relationship extraction and assembly sequence generation is shown in Figure 1.1.

Implementation of this approach will significantly alleviate the problems mentioned

above. This approach requires the following inputs:

1. The liaison diagram of the product.

2. The disassembly directions for each part in the product.

3. The product design represented in a solid modeling system.

The output is a set of precedence relationships. Based on these precedence relation

ships, all of the liaison assembly sequences can be generated. The main focus of the

current study lies on the precedence extraction methodology.

Organization of This Thesis

This thesis is organized into 5 chapters. Chapter 1 is the introduction. Chapter 2

gives a review of related research in the area of assembly sequence generation. Chap-

5
Input :

~ diagram
Output 1: Output 2 :

I DB~=b~1 Precedence I ~eeedeoce I I Aosembly I ... extraction _
directions methodology

relationships sequences

@J models

Figure 1.1: Framework of automatic precedence relationship extraction and assem
bly sequence generation

ter 3 presents the background information related to the subject and the proposed

methodology for precedence relationship extraction. Implementation of the proposed

methodology is discussed in Chapter 4. Finally, a summary of the research work and

future research in assembly planning are given in Chapter 5.

6

CHAPTER 2. LITERATURE REVIEW

In this chapter, a revlew on related research works conducted in the area of

assembly sequence generation is given. Since the proposed methodology employs

interference detection, a brief review on that subject is also presented.

Assembly Sequence Generation

As mentioned in the previous chapter, the techniques of assembly planning are

not well established, thus it is difficuh to develop a planning system for automatic

assembly sequence generation. A study (Nevins and Whitney, 1989) shows that gen

erating assembly sequences manually can be a tedious process with no guarantee

that all of the good ones will be discovered. Various methods for assembly sequence

generation have been attempted by researchers.

Huang and Lee (1989) proposed a representation and acquisition of the prece

dence knowledge of an assembly from the viewpoint of disassembling the product.

An assembly is described by an undirected graph called "Feature Mating Operation

Graph" (FMOG). This assembly graph G = (V,E) consists of a finite nonempty set

of vertices Vand a set of edges E connecting them. Two different vertices are present

in the graph: square vertices representing components and circle vertices represent

ing feature mating operations between components. Each feature mating operation is

represented by a Boolean variable indicating whether the operation is done or undone.

7

Extending this concept to an assembly, the state of an assembly is described by the

conditions of all of its feature mating operations. A geometric mating graph is also

developed to include all of the necessary geometric and topological information for

the precedence knowledge acquisition. Then, two algorithms are developed to obtain

the precedence knowledge from the geometric mating graph.

Ko and Lee (1987) develbped a method which used mating conditions as the

input and generate an assembly procedure in two steps. First, each component in

an assembly is located at a specific vertex of a hierarchical tree. Second, an assem

bly procedure is generated from the hierarchical tree with the help of interference

checking. Hoffman (1989) presented a technique which can take Constructive Solid

Geometry representations of two objects along with the relative position of the two

objects corresponding to their mated position and discover a path for extracting one

object from the other. The reverse of this procedure forms an assembly sequence

for the composite object. Miller and Hoffman (1989) used fasteners as the crucial

items to determine a valid assembly sequence. Woo and Dutta (1991) proposed an"

approach by traversing the Disassembly Tree (DT) in pre- and post-order to yield a

sequence of minimal number of operations for disassembly and assembly respectively.

All of the methodologies mentioned above generate only a single valid assembly

sequence based on the product geometry. Although the sequences generated by using

above methodologies are geometrically feasible, they could be infeasible because of

process or other constraints, such as designer intent, facility restrictions, cost, fixtur

ing infeasibility, etc. Since only a single valid sequence is generated using the above

methodologies, a set of "good" sequences is less likely to be found.

Lin and Chang (1990) developed a planning methodology, which accepts the part

and assembly boundary models as inputs, does reasoning on the model, and then

8
automatically generates feasible plans for the assembly of the product. Although this

methodology can generate more than one valid assembly sequences, it is restricted to

considering only one subassembly during the assembly process. In other words, two

or more subassemblies cannot be processed in parallel.

Homem De Mello and Sanderson (1986, 1990) used a decomposition approach

to generate an AND/OR graph representation of all possible assembly plans by rep

resenting all the possible configurations of the assembly. Based on this approach,

Khosla and Mattikali (1989) developed a methodology to automatically determine

the assembly sequence from a 3-D solid modeler description of the assembly. Their

approach consists of automatically determining a set of assembly operations, through.

a disassembly procedure, that leads to the given assembly. In both methods, one

starts with the completed product and systematically disassembles it by every possi

ble path. The search for every possible path is exhaustive and thus will become too

cumbersome to use if there are more than a few parts.

Bourjault (1984) presented a methodology for generating all assembly sequences

algorithmically from a set of rules derived from the answers to a series of questions

about the mating of part pairs and multiples of parts. Each question is answered

with "yes" or "no" and can be phrased so that either (or a mix) answer calls for

subsequent action. A modification of Bourjaults's method was presented by De Fazio

and Whitney (1987). They represented the assembly as a network graph, where the

parts are represented by nodes and liaisons are represented by arcs connecting the.

related nodes. Such a network representation of assembly is called "liaison diagram"

(see Figure 2.1). Once the product is characterized as a network of parts and

liaisons, the user has to answer two questions for each liaison. The questions to be

answered are as follows. For i = 1 to I, where I is total number of liaisons in a product

9

Figure 2.1: An example of liaison diagram

design,

Q 1) what liaisons must be done prior to doing liaison i ?

Q2) what liaisons must be left to be done after doing liaison i?

The questions are to be answered for each liaison. Answers are to be expressed in the

form of a precedence relationship between liaisons or between logical combinations

of liaisons. There are exactly 21 questions to be answered, two associated with each

liaison. Based on the user's answers to the questions, a complete set of assembly

sequences can be derived. Lui (1989) extended Whitney's work to construct the

directed graph of assembly states representing all of the assembly sequences using

these precedence relationships and the liaison diagrams.

Both approaches (Bourjaults 1984, De Fazio and Whitney 1987) lead themselves

10
to interactive systems which rely on designer's ability to correctly answer questions.

For simple assemblies with a small number of liaisons, these approaches work fairly

well. However, with an increasing number of parts, the number of liaisons (and ques

tions) i~creases fairly quickly, making these approaches infeasible for m~ny products.

The number of liaisons for a product with n parts can be n - 1 ::; 1::; (~). A product

of only 10 components would have between 9 and 45 liaisons, and between 18 to 90

questions to be answered. As the number of liaisons increases, it becomes difficult for

a person to guarantee the consistency and correctness of the answers. De Fazio et al.

(1991) proposed an approach called the "onion-skin" method for assembly sequence

generation. The "onion-skin" concept of "peeling" parts from an assembly in layers,

much like peeling the skin of an onion, is used to find assembly precedence. This'

methodology also requires that a human answer questions to determine whether or

not the product (or subassembly) can be separated into two components. Thus, it

still requires human judgment to determine sequences. This increases the chances of

making a judgment error.

Since many factors can affect the selection of assembly sequence, the methodolo

gies generating only a single assembly sequence are not reasonable approaches because

process and other constraints may make this single sequence infeasible. Thus, study

of all possible alternatives with respect to the sequences of assembly is essential for

automatic assembly planning. Because of the possibilities of making errors, human

interaction in assembly sequence generation should also be reduced. 3
Interference Detection for Part Disassembly

When two or more separate parts are brought together in an assembly, the parts

should not inte:sect. To provide a tool to detect design mistakes in a CAD envi-

11

ronment, a static interference checking function is often embedded in solid modeling

systems. As mentioned in the previous chapter, the approach used in this thesis is a

disassembly approach that automatically extracts all of the precedence relationships

between liaisons. Thus, the entire assembly has to be disassembled to determine

precedences. This raises the need for dynamic interference detection.

The basis principle of dynamic interference detection is to check the intersection

between stationary objects and the trajectory of a moving object. Boyse (1979) pre

sented a computer representation for solids and surfaces and algorithms which carry

out interference checking among objects. Objects are represented as polyhedra or as

piecewise planar surfaces. To detect a collision between two objects, it is sufficient

to detect a collision of an edge on one object with a face of the other or vice versa.

W.P. Wang and K.K. Wang (1986) proposed a method for modeling swept volume

by computing a family of critical curves, which is the boundary of the swept volume,

from a moving solid. Roth (1982) developed a method called "Ray .casting" as the

methodological basis for a CAD jCAM solid modeling system. In order to visualize

and analyze the model, virtual light rays are cast as probes. This method is also

applied in assembly planning for dynamic interference detection. Rays are cast from"

the moving part in its moving direction. If any ray intersects with the stationary

part, collision is detected.

-For some types of assemblies, especially three-dimensional mechanisms, non

linear mating paths are sometimes needed to insert certain parts. Lozano-Perez (1979,

1983) developed the configuration-space approach which is a fundamental analytical

tool used to determine non-linear mating paths from interrelated objects. A configu

ration of a part is a set of parameters which uniquely specifies the position of every

point on the part, and the configuration space is the set of all possible configurations.

12

In the configuration space, the problem of planning the motion of a part through

a space of obstacles is transformed into an equivalent problem of planning the mo

tion of a point through a space of enlarged configuration-space obstacles. Finally,

Wang (1990) presented a 3-dimensional collision avoidance algorithm for controlling

complicated machine motions.

13

CHAPTER 3. PROPOSED METHODOLOGY

In this chapter, a methodology for deriving the liaison precedence relationships

for a product design which is characterized by a simple-cycle liaison diagram is de

scribed. Before the proposed methodology is presented, the background information

related to the subject is stated first.

Preliminaries

.
The related background information including liaison diagram structures, prece-

dence relationship representations, and disassembly directions is described in this

section.

Liaison Diagram Structures

A liaison diagram, as shown in Figure 2.1, is an abstract representation of a

product assembly. As mentioned in the previous chapter, a liaison diagram is used

to represent an assembly product. The parts are represented by nodes and liaisons

are represented by arcs connecting the related nodes. Although it may take many

different forms, a liaison diagram may be constructed from two basic structures:

1. Tree: A diagram T is a tree if, and only if, every two distinct nodes of Tare

joined by a unique path (see Figure 3.1.(a)).

14

(a) (b)

Figure 3.1: Two basic structures for liaison diagrams: (a) tree, (b) simple cycle.

2. Simple cycle: A simple cycle is a diagram in which each node (part) is asso

ciated exactly with two arcs (liaisons) (see Figure 3.1.(b)).

In this thesis, a methodology is developed to extract all of the precedence relationships·

for a product design which is characterized by a simple-cycle liaison diagram.

Precedence Relationship Representations

A liaison precedence relationship can be expressed in a form of A -----+ B. Both

A and B can be a single liaison or a logical combination of liaisons. Several examples

are shown as following in which the precedence sign "---+" is read "must precede".

L4 ---+ (Ll /\ L3)

L4 ---+ (Ll V L3)

(Ll /\ L3) ---+ L4

where "/\" and "V" respectively denote the "and" and "or" operators in Boolean

algebra. Each liaison, Li, in a precedence relationship is regarded as a Boolean

variable indicating whether or not the liaison has been established.

15

Li=C established

unestablished

All of the precedence requirements must be met as the assembly process pro

gresses. This means that the following two conditions must be met:

Condition 1: When the Boolean value of the left hand side is 0, the Boolean

value of the right hand side must be 0 too.

Condition 2: When the Boolean value of the left hand side is 1, the Boolean

value of the right hand side can be either 0 or 1.

These two conditions are demonstrated with the example, Li -+ (Lj V (Lk 1\ L[)).

Let BLand B R be the Boolean values of the left hand side and right hand side of

the precedence sign respectively.

1. Assume Li = 0, Lj = 1, Lk = 0, L[= 1

BL = Li = 0,

BR = Lj V (Lk 1\ L[) = 1 V (0 1\ 1) = 1

Condition 1 is violated, so the sequence would be invalid because the precedence

requires that Li is established before (L j) or (L k 1\ L 1) is done.

2. Assume L· - 1 L· - 0 Lk - 1 L[= 1 1- - , J -, -,

BL = Li = 1,

BR = Lj V (Lk 1\ L[) = 0 V (1 1\ 1) = 1

Neither of the two conditions is violated, so the sequence satisfies this precedence

relationship.

Liaison precedence relationships can take several different forms. Two basic

forms of precedence relationships are extracted in this thesis:

16

1. Simple form has the form of Li ---t Lj that it has only one liaison on each

side of the precedence sign.

2. Complex form has the form of Li ---t (Lj A Lk A ...) that it has one liaison on

the left, but the right hand side of the precedence sign is a Boolean combination

of several liaisons by using "A" Boolean operator only.

Different forms of precedence relationships can be decomposed into the two basic

forms stated above. For example, a precedence relationship of the form (Li A L j)

---t Lk can be decomposed into two simple-form precedence relationships:

Another example, Li ---t ((Lj A Lk) V L[), can be decomposed into a combination

of a simple-form and a complex-form precedence relationships:

Li ---t L[

Li ---t (Lj A Lk)

Disassembly Directions

In this thesis, it is assumed that the product design will include only planar

and cylindrical faces. In order that the program be able to reason the precedence

relationships, the disassembly directions for each liaison must be identified. Different

procedures are employed to select the disassembly directions for these two types of

mating faces:

1. Cylindrical mating faces are constrained such that the disassembly directions

must be along the cylindrical axis. Let n be the unit vector of the axis of the.

cylindrical face. Both nand -n are the possible disassembly directions.

17

2. For planar faces, the procedure to determine the disassembly directions is based

on the work of Chen and Woo (1992), and Dutta and Woo (1991). Suppose

part P2 is to be disassembled from part Pl. First, the vectors of the surface

normals to P2 's mating faces with respect to PI are determined. Note that

the vectors always point inward towards the part to be disassembled (P2 in

this case; see Figure 3.2.(a)). Next, the procedure maps all of the surface

normals of the mating faces of P2 onto an unit sphere. To determine a valid

set of disassembly directions, the following is done. For each normal vector

generated, a hemisphere is created by making a plane cut through the center of

the unit sphere and perpendicular to the normal vector of the mating face. The

hemisphere consists of all portions of the unit sphere lying to the side of the

plane cut on which the unit normal resides. One hemisphere is created for each

normal vector. The intersection of these hemispheres represents a space of valid

disassembly directions. The disassembly directions are obtained by generating a

vector from the center of the unit sphere to any point in the intersection space.

To illustrate this concept, a 2-dimensional example will be used. In the

example, a unit circle will replace the unit sphere. In Figure 3.2.(a), nl and n2

are the normals of the mating faces of P2 with respect to Pl. Figure 3.2.(b)

shows nl is mapped onto the unit circle, along with the semicircle obtained by

cutting the unit circle perpendicular to the direction of n1. This semicircle is

indicated by a shaded area. Figure 3.2. (c) shows the entire unit circle along

with the semicircles for both nl and n2. The intersection of the two semicircles

(shown most shaded in the figure) represents a space of possible disassembly

directions. To generate a disassembly direction, one simply draws a vector from

the center of the unit circle to any point in the most shaded region. In the

18
P2 y

nl L PI x

(a)

n2

nl nl

(b) (c)

Figure 3.2: Hemisphericity of face normals

figure, the dashed lines all represent valid disassembly directions (this can be

verified by examining Figure 3.2.(a)). Finding the intersection of hemispheres

in 3-dimensional cases is exactly the same as for the 2-dimensional cases. As'

the example in Figure 3.2 shows, there can be an infinite number of disassembly

directions. However, in the case where the hemispheres all intersect at a single

line, there may only be one or two valid disassembly directions. These two cases

can be described as follows: (a) the intersection contains an infinite number of

valid disassembly directions, and (b) the intersection contains a finite number

of valid disassembly directions.

(a) Case (a) was illustrated in Figure 3.2, and will now be explained in more

detail. There are five different possible intersections for a disassembly

direction set containing an infinite number of disassembly directions: half

plane, plane segment, plane, half-space, and space segment (see Table 3.1).

For a part containing an infinite number of possible disassembly directions,

19

Table 3.1: Equations for representing disassembly direction sets containing an infi
nite number of directions

Equation Space region represented

half-line = (p, n) p --------~~ n

p
line = (p, n, -n) -n---..!:------l •• n

half-plane =
(po, p, n, k, b)

plane = (po, p, n)

plane segment =
(po, p, n, (k, b),

(k', b'),)

half-space =
(pI, n)

n

---pI

p : a point on the line

n : vector of the line

p : a point on the line
n : vector of the line

po, p : points on the plane
n : plane normal
k : vector of an unbounded

line ehich divides the plane
into two unbounded regions

b : vector perpendicular to both
n and k and points to the
desired plane region

po, p : points on the plane
n : plane normal

region bounded by two half-planes
(po, p, n, k, b) and (po, p, n, k', b')

pI : unbounded surface which
. divides Cartesian space into

two unbounded regions
n : normal of pI and points to the

desired space region

space segment =
(pI, n), (PI' , n'),)

region bounded by two half-spaces (pI, n) and (pI' , n')

20

Table 3.2: Primary disassembly direction selection

Intersection Primary disassembly direction
(Symbols used follow Figure 3.3)

half-plane b, k, -k
plane any vector on the plane
plane segment e : angle between band b ,a

- If 0° ~ e ~ 90°, select b, b', k, k'

If 90° < e < 180°, select QJ;jL, k, k'
half plane n and any vector on pI
space segment e : angle between nand n'

If 0° ~ e ~ 90° ,
select n, n', and any vector on pI and pI'

If 90° < e < 180°,

select ~, and any vector on pI and pI'

aThere are two angles between two vectors, and the
sum of these two angles is 360°. The smaller angle is
always chosen for angle e.

only primary disassembly directions are selected. The reason only primary

disassembly directions are chosen is to cut down on the size of the solution

space. Lin (1990) suggested a way to select primary disassembly directions.

The modified procedure is presented in Table 3.2.

(b) Case (b) will now be explained in more detail. If the intersection of the

hemispheres is a line, the valid disassembly directions are {n, -n}, where

n is the unit vector of the line. If the intersection of those hemispheres is

a half-line, the disassembly direction is n, where n is the unit vector of the

half-line. This case is illustrated in Figure 3.3. Suppose part P2 is to be

disassembled· from part PI. In Figure 3.3, it can be seen that the three

semicircles intersect along one direction n2 in the figure. Thus only the

single disassembly direction n2 is valid.

21

P2

PI Y
01 n3

L, n2

(a)

y

n2

(b)

Figure 3.3: The intersection of the semicircles contains a finite number of disassem
bly directions

Given the above approach, it is quite easy to determine the disassembly direc-

tions for each part. The assembly ·directions for a part is simply the reverse of its

disassembly directions.

Methodology

For a given simple-cycle product design with lliaisons, there are I - 2 types of

precedence relationships to be derived:

1" Simple form

Li ~ Lit, where i,it = 1,2, .,. ,l, and i =I it

2. Complex form

Li ~ (Lit 1\ Lh)' where i,it,h = 1,2, .,. ,l, and i =I it -; h

22

Li -+ (Lh A Lh A ... A Ljz_2)' where i,h ,h, ... ,jz-2 = 1,2, ... , I, and

i:/; it :/; h :/; ... I- iz-2

An example product design, as shown in Figure 3.4, is used to illustrate the

methodology. Figure 3.5 shows the liaison diagram for the product and Figure 3.3

shows the disassembly directions for each part. Since there are five parts and five

liaisons in this product, three types of precedence relationships must be checked:

1. Simple form

Li -+ Lh' where i,h = 1,2,3,4,5, and i:/; h

2. Complex form

Li -+ (Lh A Lh)' where i,jbh = 1,2,3,4,5, and i :/; h :/; h

Li -+ (Lit A Lh A Lh)' where i, h ,h,h = 1,2,3,4,5, and i I- h :/; h :/; h

The methodology is described as following:

1. To identify the simple-form precedence relationships: Li -+ Lit, where i,h =

1,2,3,4,5, and i :/; it

Assuming that Li and Lh are established, if Li can be disengaged by

disassembling either part associated with Li, then Li -+ Lit does not exist;

otherwise, Li -+ Lh exists. The liaison, Lit, on the right hand side of

precedence sign must be maintained when Li is being disengaged. For example,

as shown in Figure 3.5 and 3.6, the existence of L2 -+ L1 is checked. L2 can

only be disengaged by disassembling P3. If L2 is disengaged by disassembling.

P2 instead, L1 will be disengaged too. In terms of assembly view point rather

23

... --.-------r
,'''', I

, \ I

1\ ~:)) 1
' _.::::. _____ .L

TOP ISO

.-- L5
r P5 L 4

P 4

Pl
P3

L2 L3
P2

f ~ t I I Ll
rh
I I

FRONT SIDE

Figure 3.4: Example product with the simple-cycle liaison diagram

Ls

Figure 3.5: The liaison diagram of the example product shown in Figure 3.4

24

Table 3.3: Part disassembly directions associated with each liaison for the example
product

~ Part to be LI U L3 lA
w.a.sembled

PI (0.·1,0) -- -- --

P2 (0.1.0) (0,-1,0) -- --

(-1,0,0)

P3 -- (0,1,0) (O,I,OXO,-I,O) --
(O,O,IXO,O.-I)

(1,0,0) (I,O,OX-I,O,O)

P4 -- -- (O,I,OXO,-I,O) (0,-1,0)

(O,O,IXO,O,-I) (O,O,IXO,O,-I)

(I,O,OX-I,O,O)

P5 -- -- -- (0.1,0)

(0,0, I XO,O,-I)

Note: The elements in each cell are the disassembly directions expressed

in tenDS of unit directional vectors. For example. the first cell, (0,-1,0)

and (0.-1,0), are the feasible disassembly directions when L1 is

disengaged by disassembling PI.

r---
I
I
I L ___

Pl
I I
I I P3

L2
I I

P2 r- -1
I I
I I
I I
I I
I I
I I LI I I

l..5

(-1,0.0>

--

--

--

(1,0,0)

I

Figure 3.6: The subassembly consisting of liaison L1 and L2 only

25

than disassembly, we are testing that if L2 can be established by inserting P3

in its assembly directions with Ll established. For every Li, only those Lh

adjacent to Li need to be checked. So when checking the existence of Ll ---t Lk,

only k = 2 and k = 5 need to be checked. The cases that k = 3 and k = 4 need

not to be checked. For example, Ll is made of PI and P2, and L4 is made of

P4 and P5. Both liaisons can be established separately without any difficulty,

because they are two separate subassemblies. This is the reason that k = 3 and

k = 4 need not to be checked with Ll.

2. To identify the complex-form precedence relationships

(a) Li ---t (Lh A Lh)' where i,h,h = 1,2,3,4,5, and i i- h i- h

With Li, L h ' and L h established, if Li can be disengaged without

disengaging L hand L h' then Li ---t (L hAL h) does not exist. Oth

erwise, it exists. When disengaging Li, the liaisons on the right hand side

of precedence sign must always be maintained as well. For a simple-cycle

product, this can be done by making sure that at most only one of the li

aisons on the right side of precedence sign is adjacent to Li. For example,

when checking the existence of the relationship, L2 ---t (Ll A L3), it is

clear that both Ll and L3 are adjacent to L2 (see Figure 3.4 and 3.5) .•

L2 can be disengaged by disassembling either P2 or P3. No matter which

one is disassembled, either Ll or L3 would be disengaged and the Boolean

value of (Ll A L3) would be o. Then, L2 ---t (Ll A L3) is no longer valid.

In addition, two conditions must be met for the liaisons on the right

hand side of precedence sign:

i. They must form a tree.

26
11. Exactly one liaison among them must be adjacent to Li'

For example, when the precedence relationships between L3 and two other

liaisons are checked, only L3 --t (L4 A L5) and L3 --t (L2 A Ll) need to·

be checked. For L3 --t (Ll A L5)' because the parts associated with Ll

.and L5 and the parts associated with L3 are two separate subassemblies,

they can be constructed separately without any difficulty. Therefore, there

is no need to check the existence of this type of precedence relationships.

(b) Li --t (Lh A Lh A Li3)' where i,h ,h,h = 1,2,3,4,5 and i =J:. h =J:.

h=J:.i3

With Li, Lh' Lh' and Li3 established, if Li can be disengaged with

out disengaging any of L h' L h' and L i3' then Li --t (L hAL h A

L i3) d~es not exist. Otherwise, this precedence relationship exists. When

disengaging Li, the liaisons on the right hand side of the precedence sign

cannot be disengaged either, and the heuristics presented in 2.(a) should"

be followed as well.

If Li --t A exists (A could be a single liaison or a logic combination of

liaisons using "A" only), there is no need to check whether or not Li --t B

exists, where A is a subset of B. For example, suppose that Ll --t L5 exists.

There is no need to check if Ll --t (L5 A L4) exists. If Ll --t (L5 A L4) is

checked, it will exist too. Because of Ll --t L5' no matter L4 is established or

not, Ll cannot be established. However, it is incorrect that both of these two

precedence relationships exist. Suppose that L5 = 1, and L4 = O. According

to Ll --t (L5 A L4), the Boolean value on the right hand side is 0 (1 A 0 = 0).

Thus, Ll can be established. But according to L1 --t L5, the Boolean value on

27

the right side is 1. That means Ll cannot be established. Then, a contradiction

is found between these two precedence relationships. In other words, these two

precedence relationships cannot both exist. Therefore, If Li ~ A exists, it is

not necessary to check whether or not Li ~ B exists, where A is a subset of

B.

There is also no need to check if Li ~ (Lh 1\ Lh 1\ Lh 1\ Lj4) exists. In

this case, there must be exactly two liaisons on the right side of the precedence

sign adjacent to Li for the example product with five liaisons. This case violates

the heuristics described in 2.(a) that exactly one liaison among the liaisons on

the right hand side of the precedence sign must be adjacent to Li. Therefore,

this is the reason that only 1 - 2 types of precedence relationships need to be

derived with lliaisons in a product design.

Liaison Disengagement

The proposed methodology uses a disassembly approach to check the possibility

of liaison disengagement. A liaison can be disengaged only when the associated part

can be removed freely without colliding other parts in the disassembly directions. For

example, as shown in Figure 3.6, if we want to check the existence of the relationship

L2 ~ Ll by disassembling P3 in its disassembly directions, we need to check if.

P3 will collide with PI and with P2. An algorithm using swept volume technique is

developed to identify the possible collisions. Using this algorithm, all of the possible

collisions can be detected between a moving object and a static object. The algorithm

is summarized in the following:

28

1. Assuming that part PI is going to be removed at direction D and P2 is the

static part. For each part, find the extent (minimum and maximum coordinates

values) in x, y, and z axes, then construct a rectangular solid for each part.

2. Check the interference between the two rectangular solids. Two cases may result

from the test: (a) interference exists between the two solids, or (b) interference

does not exist.

(a) No interference is detected between the two rectangular solids

For example, as shown in Figure 3.7, we want to know if P2 will collide

with PI at the +x direction. Two rectangular solids are formulated for

the two parts, and there is no interference between these two solids (see

Figure 3.8). The following three conditions must be checked next:

Condition 1: P2 is completely behind PI with respect to +x direction as

shown in Figure 3.9.

Condition 2: P2 is completely above or below PI as shown in Figure 3.10:

Condition 3: P2 is completely on the right or left side of PI as shown in

Figure 3.11.

If anyone of these three conditions is satisfied, P2 will not collide with

PI in +x direction. If none of them is satisfied (see Figure 3.8), then the

swept volume technique described in (b) is used to test if P2 will collide

with PI in +x direction. Creating swept volumes as solids and checking

interferences are quite time-consuming. The three tests stated above are

used to avoid unnecessary swept volume creations and interference check

ings.

(b) Interference is detected between the two rectangular solids

29

TOP ISO

~ ,-----
L _____ _

FRONT SIDE

Figure 3.7: Part P2 is to be removed at +x direction, while part PI is stationary

TOP ISO

FRONT SIDE

Figure 3.8: The two rectangular solids for parts PI and P2 do not intersect each
other

30

FRONT SIDE

Figure 3.9: The rectangular solid for part P2 is completely behind the solid for part

PI

TOP ISO

D D
L,C D
FRONT SIDE

Figure 3.10: The rectangular solid for part P2 is completely above the solid for part
PI

31

D
TOP ISO

i l! , I

I i I

I I

,RONT SIDE

Figure 3.11: The rectangular solid for part P2 is completely on the right side of the
soid for part PI

As shown in Figure 3.12, we want to know whether or not PI will

collide with P2 in +x direction. Two rectangular solids are formulated

for the two parts (see Figure 3.13), and there is an interference between

them. Although the two solids intersect, it does not mean the actual part

movement will interfere each other. Further test is needed to clarify the

possibility. This is done by translating every facet of PI in +x direction.

The volume each facet of PI sweeps through becomes a swept solid. If

any swept solid has an interference with P2, then PI will collide with.

P2 when PI is removed at the +x direction. The distance at which the

facets are translated must be large enough to cover all the potential parts

which might be collided by moving PI, so a reasonably large value can be

chosen arbitrarily for this distance. The procedure to create a swept solid

32

o
TOP ISO

PI

FRONT SIDE

Figure 3.12: Part PI is to be removed at +x direction, while part P2 is stationary

is described as followed:

1. Find the projection of every facet of PIon a plane which has a normal

vector D (D is the disassembly direction for PI). If the projection of

a facet is a line, the facet is ignored.

11. For those facets which are perpendicular to direction D, extrude their

projections from where the facets are, then go to step v (see Fig-

ure 3.14).

lll. For those facets which are not perpendicular to direction D, additional

care must be taken during extrusion. This is illustrated with an ex

ample of extruding a cylindrical surface in a direction perpendicular

to the axis of the cylinder. As shown in Figure 3.15, PI is a cylin

drical surface which will be extruded in direction D, and Figure 3.15

,...------.., , ,
I ,

: : , , , ,
L ______ J

TOP.

PI

,------., , , , ,
: P2 : , , , ,
L ______ .J

FRONT

33

[SO

SIDE

r------l
! l L ______ .J

Figure 3.13: The two rectangular solids for parts PI and P2 intersect each other

shows its top view. The cylindrical face is represented by 16 facets

and none of these facets is perpendicular to direction D. For any facet

i as shown in Figure 3.16, its projection is extruded in direction D

to create a swept solid and SP2 is chosen as the starting position to

extrude the projection.

IV. Define facet i as the cutting plane to cut the swept solid that was just

created. Discard the solid on the right side of facet i, and the solid on

the left side of facet i is exactly the swept solid we need. This swept

solid is shown with a filled area in Figure 3.16.

v. Check interferences between P2 and the swept solids. If there is any

interference, then PI will collide with P2 in direction D.

34

TOP [SD

V- FI

El

PI

r--r-' '--r-' , , , , , , , ,
: P2: ' , , ,
: : ' , , ,

I y

Lx FRDNT SIDE

Figure 3.14: Sweep facet F1 of PI in +x direction to create a swept volume for
collision detection

D direction Top view of PI

Figure 3.15: Top view of PI

35

D direction -Ddirection

Figure 3.16: Sweep facet III -x direction to create a swept volume for collision
detection

36

CHAPTER 4. IMPLEMENTATION AND RESULTS

This chapter presents the implementation of the methodology discussed in the

previous chapter. A section on assembly sequence generation is also included. The

implementation serves two purposes: 1) to validate the proposed methodology, and

2) to demonstrate its feasibility. The general procedures of the program will be

described. Results for the example product will be provided to validate th~ correctness

of the methodology and the program.

Implementation

The proposed methodology has been implemented in the UNIX environment

using the C programming language. The geometric assembly model was created

using I-DEAS on a DEC5000j200 workstation. The program interfaces with the 1-.

DEASI (SDRC, 1990) solid modeling system during execution. The I-DEAS system

provides a static interference checking function, which was employed to implement

the collision detection using the swept volume technique. As shown in Figure 1.1, the

inputs of the program are:

1. The universal files of the solid model that contain the geometric information

describing the product design.

1 Integrated Design Engineering Analysis Software (I-DEAS) is a software product
of Structural Dynamics Research Corporation (SDRC), Milford, OR 45150

• • •
-1
-1 - dataset delimiter

XXX - dataset type

~} '-'~,
-1 - dataset delimiter
-1

XXX

n
-1
-1

XXX n
-1
-1

XXX

• • •

37

Figure 4.1: Basic structure of a universal file

2. The liaison diagram for the product design.

3. The disassembly directions for each part.

These three inputs will be described in the following sections.

Universal File Structure

All geometric information describing the product design is retrieved from the

universal files. The files are written in ASCII characters. Thus, a user created
.

program such as the one described in this thesis can directly access the information

in a universal file. Each universal file is a sequentially formatted file with records

having a maximum' length of 80 characters. The basic structure of a universal file is

38

shown in Figure 4.1. A universal file is divided into sections called datasets. The first

record of each dataset is a dataset delimiter. This is a line containing a minus sign in

column 5 and a 1 in column 6. The second record of the dataset contains the dataset

type indicating the type of data included in the dataset, such as a transformation

matrix, precise surface information of a part, etc. The second record is a number

in the range 1 through 32767 right justified in columns 1 through 6. Following the

dataset type record is the body of the dataset which contains data dependent on"

the dataset type. The final record of the dataset contains a delimiter line containing

a minus sign in column 5 and a 1 in column 6. Figure 4.2 shows an example of

a type 534 dataset in the part P2 's universal file. The first row and the last row

are the delimiters. I-DEAS uses the Constructive Solid Geometry (CSG) method

to store a list of objects and operations required to define a part. The second row,

dataset type 534, means this dataset contains some geometric information about part

P2 after an operation is done on P2. An operation performed on an object can

include: cut, join, scale, reflect, etc. If none of these operations is performed on a

part, then there will be no type 534 dataset in its universal file. In other words,

this part itself is a primitive. Primitives defined in I-DEAS include block, cone,

cylinder, sphere, and tube. If a final geometry of a part comes from a series of.

operations on a primitive, there will be at least one type 534 dataset in its universal

file. Each operation performed on the primitive corresponds to one type 534 dataset,

and the sequence of these datasets in the universal file corresponds to the sequence of

operations performed on the primitive. Since only the geometric information about

the final part geometry is needed for the program, only the last of the type 534

datasets is retrieved. Figure 3.4 shows that P2 is constructed from a main cylinder

via two operations. The first operation joins a smaller cylinder to the top of the main

39

cylinder .. The second operation cuts a cylinder shaped cavity out of the bottom of the.

main cylinder. Thus, there will be two type 534 datasets, corresponding to the two

operations in P2 's universal file. Figure 4.2 shows the second of these datasets, which

contains the information about P2 's final geometry. The program requires only part

of the data in a type 534 dataset. For instance, the information necessary from the

dataset in Figure 4.2 is:

• Record 4: Field 1-3 -+ First point of Brep bounding box. (min)

• Record 5: Field 1-3 -+ Second point of Brep bounding box. (max)

• Record 8: Field 1-3 -+ Rotation information (element A-C).

• Record 9: Field 1-3 -+ Rotation information (element D-F).

• Record 10: Field 1-3 -+ Rotation information (element G-I).

• Record 11: Field 1-3 -+ Translation information (element J-L).

A D G J

B E H [(

C F I L

000 1

XOLD

YOLD

ZOLD

1

XNEW

YNEW

ZNEW

1

From the list, records 4 and 5 give the coordinates of the diagonal vertices of the

rectangular box of a part. Records 8-11 (i.e. elements A-L) are used to form a 4x4

transformation matrix with homogeneous coordinates (Mortenson, 1985). The

matrix is used to map a part from the origin to its final position.

There are three types of datasets used by the program, and they are:

record
number

1
2
3
4
5
6
7
8
9

10
11
12

--->
--->
--->
--->
--->
--->
--->
--->
--->
--->
--->
--->

-1
534

40

-2 2 0 0 0 0 0 0 0
-1 -1 1 1 0 0

3.93701E-65 1.96850E-03 3.93701E-05
-1.00000E+00 -5.00000E+00 -2.00000E+00

3.00000E+00 O.OOOOOE+OO 2.00000E+00
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO
1.000000000000E+OO O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO 1.000000000000E+OO
O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO O.OOOOOOOOOOOOE+OO

-1 3
-1

o 0 0 0 0 0 0
o 0
o 0 .()

O.OOOOOOOOOOOOE+OO
O.OOOOOOOOOOOOE+OO
1.000000000000E+OO
O.OOOOOOOOOOOOE+OO

Figure 4.2: The type 534 dataset in P2 's universal file

1. Dataset type 537

Dataset type 537 has the same format as dataset type 534, and is retrieved by,

the program only when dataset type 534 is not written. This occurs if a part

itself is a primitive. Primitives have no modeling operations such as cut or join

performed upon them. In this case, the necessary information is retrieved from

type 537 dataset.

2. Dataset type 534

If a part itself is not a primitive (e.g. modeling operations are performed upon

it), its universal file must contain at least one type 534 dataset. As mentioned

before, only the last one needs to be retrieved.

3. Dataset type 544

When I-DEAS shows objects on screen, it uses Boundary Representation (BREP)

to represent objects. The type 544 dataset contains three pieces of information

41

that will be retrieved by the program: 1) the coordinates of all the boundary

points, 2) number of facets in the object, and 3) which points each facet is made'

of. As mentioned in the previous chapter, facet information is needed in order

to do collision detections.

Internal Representation of a Liaison Diagram

A liaison diagram is characterized as a network graph in this research. In general,

there are two main representations of graphs: 1) adjacency matrix, and 2) adjacency

list. Since the liaison diagrams discussed in this research are of simple-cycle structure,

a double linked list data structure as shown in Figure 4.3 is used to represent the

liaison diagram. Each data set is composed of three integer values. Two of the values

represent part numbers of the two parts associated with a liaison, and the third gives

the liaison number. As shown in Figure 4.3, the first value in each data set is the.

part number of the first part in the liaison, the second value in the set contains the

liaison number, and the third value in the set is the part number of the second part

in the liaison. The leftmost set with digits (1, 1, 2) will now be used to illustrate the

format of a data set in Figure 4.3. The middle digit, 1, is the liaison number. The

right digit, 2, is the right part number with respect to L1 in the liaison diagram. The

left digit, 1, is the left part number with respect to L1' The way to determine the

left part and the right part with respect to a liaison is to imagine standing inside the

liaison diagram (cycle) (see Figure 3.5). Look at one of the liaisons, say Li, the part

number appearing on the right of Li will be the right digit of i, and the part number

appearing on the left of Li will be the left digit of i. Any two liaisons adjacent to

each other in the liaison diagram must have their respective data set adjacent as well ..

The input file format of liaison diagram is described in the Appendix A.

42

liaison number

Figure 4.3: Data structure representation of the liaison diagram for the example
product

Internal Representation of the Disassembly Directions

A representation, as shown in Figure 4.4, similar to adjacency list is used to store

disassembly directions. Each part is associated with a linked list consisting of all of

the disassembly directions of the part. Each data set contains the liaison numbers of

the two liaisons associated with a disassembly direction, along with the disassembly

direction. The first two values in a data set are the liaison numbers involved in

the disassembly direction. The third, fourth, and fifth values are the x, y, and z

components of the vector of the disassembly direction. For example, the first data

set (2, 3, 0, 1, 0) for part 3 shows that disassembly direction (9, 1, 0) is associated

with both liaison 2 and 3. The second data set of part 3 shows that direction (-1, 0,

0) for part 3 is associated with liaison 3 only, and so forth. For a simple-cycle liaison.

diagram, one disassembly direction can be associated with at most two liaisons. Thus,

when a disassembly direction is associated with only one liaison, one of the first two

values in a data set is set to zero. The input file format of disassembly directions is

described in the Appendix A.

Part 1

Part 2

numbers

x.y.z components
of a disassembly

43

,~ 4,
! 1

ITJ--j 1 I 0 I 0:0 I H 5 I 0 1-1 I 0 IoN

ITJ--j 1 I 0 I 0 11 I 0 I H 2 I 0 I 0 1-1 IoN

Figure 4.4: Data structure representation for the disassembly directions

Program File of I-DEAS Software

A program file is an external file of I-DEAS commands that can be built from

within I-DEAS or as a text file from outside I-DEAS and executed at a later time.

Once created, the program file can be used to instruct I-DEAS to execute the com-

mands recorded in the file. The file performs in sequence. Because the file is saved

as a text file, it can be created by a text editor or using an~ programming language

(C, Fortran, etc.). Program files are especially useful if you have a long sequence of

commands that are used often. The collision detection algorithm described in the

previous chapter was implemented using a program file to take advantage of embed

ded functions of I-DEAS software. Figure 4.5 shows an example of a simple program

file. Every line in a program file is started by a signal character consisting of one

letter and one space followed by a colon or two letters followed by a colon. There'

44
are several signal characters defined in I-DEAS. In this research, there are only two

signal characters used:

K:
?

Normal keyboard input
Interactive interrupt

As shown in Figure 4.5, the keyboard input signal (K :) is always followed by

a command. The interactive input signal (? :) will stop the automatic execution of

program file commands. When a program file is running, it will stop at the point

where the (7 :) is entered and wait for user's input. After the required information

is entered, the program file will automatically continue. In this implementation, (?

:) is used only to pause the program file, so users do not need to input any informa

tion. Once the program file pauses, the interference checking result will be output by

I-DEAS to the file called IN_CH.dat which has been specified by the C program.

Then the C program continues to read IN _CH.dat in order to get the interference

information. To continue the program file, users just need to hit 'RETURN' key in

stead of inputting any information. The details of running the program are described

in the Appendix A. Figure 4.6 shows all of the potential collisions for all the parts

moving in their disassembly directions. This output is used by the program to extract

precedence relationships.

Implementation Using the Program File

The data structures of liaison diagrams, disassembly directions, universal files,

and program files have been explained in the previous sections. In this section, part

'of the program file for the example product shown in Figure 3.4 is extracted to

explain the implementation using I-DEAS program file. Before the implementation

45

K :/CREATE
K:BLOCK
K : 14.000 14.000 14.000
K :/MANAGE
K :STORE
K:Bl
? :

Figure 4.5: Simple program file

Pt --_. (P2.-t.o.O)

(PS. O.-t. 0)

P2 --_. (Pt. O.-t. 0)

(P3. 0.1.0)

(P5. O. 1.0)

P3 --_. (Pl.-I.O.O)

(Pl. 0.-1. 0)

(P2.-1. o. 0)
(P2. 0.-1. 0)
(P2. O. 0.1)
(P2. O. 0.-1)

(P5. O. 1,0)

P4 --- (Pl. 0.-1, 0)

(Pl.-I. O. 0)

(P2. -1. O. 0)

(P3.-t. 0,0)

(PS. 0.1.0)

PS • (PI.-I.O,O)

(Pl. 0.1.0)

(Pt. O. 0, 1)

(Pt. O. O.-t)

Note: PI --_. (P2.-I. O. 0) means PI will collide with P2 at the

(-1. O. 0) direction

Figure 4.6: Collisions detected for each part of the example product

46
is discussed, a further introduction to I-DEAS is needed. I-DEAS is made up of

a number of "Families", each subdivided further into "Tasks", all executed from

a common menu and sharing a common database. The main families are: Solid

Modeling, Finite Element Modeling·& Analysis, System Dynamics, Test, Drafting,

and Manufacturing. In this research, only two tasks in the Solid Modeling family

are used: Object Modeling, and Assembly Modeling. The Object Modeling task is

the foundation of I-DEAS, since the solid object geometry that is created here is

shared by many other applications. This is where the initial design is created. The

Assembly Modeling task is used to create complex systems from the objects created
.

in the Object Modeling task. The static interference checking function is embedded

in this task. A model of an assembly is called a system in the Assembly Modeling

task. In a system, a model of a part is called a component. If the same component is

used more than once in a system, the component is not duplicated. Instead, instances

of the component are created. An instance is simply a technique for minimizing the

size of the database. Instead of duplicating a component, each· instance provides a

pointer from the component to the system in which it is used. In this way, only

one version of the component exists, even though the component is instanced many

times in many different systems. The pointer mentioned above includes orientation

data to describe the orientation of the instance with respect to the system. When a

component is created in the Assembly Modeling·task, another type of pointer is also

created. This pointer associates an object with the component. This object defines'

the geometry of the component. Because a pointer is used, the object's geometry is

not duplicated, no matter how many times the component is created. This pointer

does not include orientation information, therefore the component space is coincident

with the object space. Figure 4.7 shows the relationships for a component and its

each of these

pointers has
orientation data

this pointer has no

orientation data

47
1--
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~--~-------------l\--------;t-------- ____ J

Assembly

Modeling

Task

Object

Modeling
Task

Figure 4.7: The re~ationships for a component and its instances and object

instances and object. For the example product discussed in this thesis, since each

component (part) is used exactly once, each component has only one instance.

The name of the program file generated by the C program has been specified

as cycle.prg by the C program itself. Suppose that PI is going to be removed in

(-1, 0, 0) direction and the collision between PI and P2 is checked. As discussed in

the previous chapter, two rectangular solids for PI and P2 have to be constructed

first. Then the existence of static interference between these two solids has to be

checked. This is done in I-DEAS by a segment of cycle.prg shown in Figure 4.8.

In this segment of the program file cycle. prg, two rectangular solids for PI and P2

are created first in Object Modeling task. In order to do the interference checking

48

line number

1 ---> K :/CREATE
2 -:--> K : BLOCK
3 ---> K : 14.000 14.000 14.000
4 ---> K :/MANAGE_STORED
5 ---> K : STORE
6 ---> K : B1
7 ---> K :
8 ---> K :/CREATE
9 ---> K : BLOCK

10 ---> K : 4.000 5.000 4.000
11 ---> K :/ORIENT
12 ---> K : TRANSLATE
13 ---> K 1. 000 -2.500 0.000
14 ---> K :/MANAGE_STORED
15 ---> K : STORE
16 ---> K : B2
17 ---> K :
18 ---> K :/TASK
19 ---> K : ASSEMBLY _110DELING
20 ---> K :/CREATE
21 ---> K :COI1PONENT_&_IHSTANCE
22 ---> K :
23 ---> K : B1
24 ---> K :
25 ---> K : B1
26 ---> K
27 ---> K :
28 ---> K : DONE
29 ---> K : /CREATE
30 ---> K :COMPONENT_&_INSTANCE
31 ---> K :
32 ---> K : B2
33 ---> K :
34 ---> oK : B2
35 ---> K :
36 ---> K : DONE
37 ---> K : DRAW
38 ---> K :/LIST
39 ---> K : CHECK_INTERFERENCE
40 ---> K :VOLUME_COMPUTE_SW
41 ---> K :ON
42 ---> K : COMPONENT_CHECK
43 ---> K : LABEL
44 ---> K : Bl
45 ---> K :
46 ---> K :LIST_LAST_RESULTS
47 ---> K :YES
48 ---> K :IN_CH
49 ---> K :YES
50 ---> ?

Figure 4.8: Part of the program file cycle. prg(line numbers and arrows do not exist
in the program file, but are used here for clarification)

49

Table 4.1: Explanation of part of the program file cycle.prg shown in Figure 4.8

Line Explanation for the I-DEAS commands
number

1-7
The circumscribed rectangular solid for PI is created, and is

stored in I-DEAS as Bl.

8 -17
The circumscribed rectangular solid for P2 is created, and is

stored in I-DEAS as B2.

18 -19
Switch the task from the Object Modeling to the Assembly

Modeling.

20 -28
A component is created for B 1 just constructed in Object

Modeling task, and is named Bl.

29 -37
A component is created for B2 just constructed in Object

Modeling task, and is named B2.

Check the interference between components Bland B2, and

38 -49 then output the interference checking result to the fIle

IN_CH.dat

50 Pause the program fIle cycle.prg.

between the two solids just created, we have to switch the task from Object Modeling

task to Assembly Modeling task, and create one component for each solid. Then

the interference is checked between these two components and the result is output

to the file IN_CH.dat. The details of this segment of cycle.prg are explained in·

Figure 4.1.

Although the objects Bl and B2 in the Object Modeling task have the same

name as the components Bl and B2 in the Assembly Modeling task, I-DEAS regards

these two names as different. For example, the Bl in Object Modeling task is not

the same as the B 1 in Assembly Modeling task because these two names are defined

in two different tasks. Since the static interference checking function is embedded in

the Assembly Modeling task, the program must switch tasks from Object Modeling

to Assembly Modeling when interference checking is needed.

50

The source code of the C program is listed-in Appendix B.

Sequence Generation

Based on the extracted precedence relationships, a complete set of valid assembly

sequences can be generated. Since the proposed methodology for deriving the prece

dence relationships is based on the assumption that one liaison is disengaged at a

time, the generated sequences based on the extracted precedence relationships will be

valid if only one liaison is established at a time. Before (1-2) liaisons are established,

a liaison assembly sequence is generated by choosing one liaison at a time. Every

chosen liaison must be checked to determine if the establishment of this liaison will

violate any of the precedence relationships. If the establishment of this liaison violates

any of the precedence J;elationships, another unestablished liaison must be selected to

be checked. So, when only (1- 2) liaisons are established without violating any of the

precedence relationships, every sequence ranging from the first to the (I_2nd) liaison

is valid.

Once (1- 2) liaisons have been successfully established, the last two unestablished

liaisons will be established at the same time because of the following two reasons: 1)

all of the parts are rigid, and 2) the liaison diagram is in the simple-cycle structure.

Therefore, additional care must be taken, and two cases need to be considered: 1) the

(l- 2) liaisons established are made of two subassemblies, and 2) the (I - 2) liaisons

established are made of only one subassembly.

1. The (1 - 2) liaisons established are made of two subassemblies.

Combining the two subassemblies will establish two liaisons, say Li and Lj'

at the same time. In this case, Li and L j are not adjacent to each other in

the liaison diagram. A simple-cycle example is shown in Figure 4.9 to illustrate

51
--------- ..

'

,
",

',---------,'

Figure 4.9: An example of simple-cycle liaison diagram

this special case. If the following two precedence relationships exist, then the

product cannot be assembled successfully.

(a) Li ---+ (Ls A •.. A Lt A Lj)

(b) Lj ---+ (Lt A ... A Ls ALi)

The liaisons on the right hand side of the precedence sign of the two precedence

relationships above include all of the intermediate liaisons between Ls and Lt :

For example, suppose L3 and L4 have been established. Now L5 is going to be

established, but doing so will violate the precedence requirement Ll ---+ L5'

Thus Ll has to be established before L5' With Ll, L3, and L4 established, the

next step is to combine the two subassemblies, one made of PI and P2, and the

other one made of P3' P4, and P5' Combining them will establish two liaisons,

L2 and L5, at the same time. But doing so will violate the precedence require-

and the product cannot be assembled successfully.

52
2. The (I - 2) liaisons established are made of only one subassembly.

In this case, the subassembly consists of (1- 1) parts, so the last part inserted

to this subassembly will also establish two liaisons at the same time. The last

two unestablished liaisons must be adjacent to each other in the liaison diagram.

The final part can always be inserted regardless of violating any precedence

relationship or not.

Case 1 above explains why there is no need to check if the establishment

of anyone of the last two liaisons will violate any precedence relationships.

For example, after £1, £2, and £3 have been established, the last part (P5 in

this case) inserted will establish £4 and £5 at the same time. According to the

statement in case 1, if anyone of the following two set of precedence relationships.

exist, the product cannot be assembled successfully (see Figure 3.5).

(b) £4 -t (£3 1\ £2 1\ £1 1\ £5)

£5 -t (£1 1\ £2 1\ £3 1\ £4)

It is obvious that neither of the two sets of precedence relationships above will

exist. Therefore, the product can always be assembled successfully in this case.

Results

Once the collision information is derived by the collision detection function, it is

used as the input to the precedence relationship extraction function. The result of

the precedence relationship extraction function for the example product is shown as

following:

1). L1 -+ L5

2). L2 -+ (L1 1\ L5)

3). L1 -+ (L2 1\ L3 1\ L4)

4). L2 -+ (L3 1\ L4 1\ L5)

5). L3 -+ (L4 1\ L5 1\ L1)

6). L5 -+ (L4 1\ L3 1\ L2)

53

Note that the precedence relationships determined conform exactly with the rela-

tionships generated by hand. This gives a validation of both the program and the

methodology.

The set of sequences for the example product is shown in Figure 4.10. This

graphical representation was introduced by De Fazio and Whitney (1987). Each

block in the graph is a liaison, and the order from left to right corresponds with the

liaison number in a ascending order. Blank blocks represent unestablished liaisons,

the shaded blocks represent established liaisons. By traversing from one rank to the

next through the solid lines, the final state can be reached and a valid sequence can

be found. If a dashed line is followed, the sequence is eventually blocked and the final

state cannot be reached. There are a total of 28 valid liaison sequences generated by

the program:

1). L1 -+ L2 -+L3 -+ L4 -+ L5
2). L1 -+ L2 -+ L3 -+ L5 -+ L4
3). L1 -+ L2 -+ L4 -+ L3 -+ L5
4). L1 -+ L2 -+ L4 -+ L5 -+ L3
5). L1 -+ L2 -+ L5 -+ L3 -+ L4
6). L1 -+ L2 -+ L5 -+ L4 -+ L3
7). L1 -+ L3 -+ L2 -+ L4 -+ L5.
8). L1 -+ L3 -+ L2 -+ L5 -+ L4
9). L1 -+ L4 -+ L2 -+ L3 -+ L5

54

10). Ll ----+ L4 ----+ L2 ----+ L5 ----+ L3

11). L2 ----+ Ll ----+ L3 ----+ L4 ----+ L5

12). L2 ----+ Ll ----+ L3 ----+ L5 ----+ L4

13). L2 ----+ Ll ----+ L4 ----+ L3 ----+ L5

14). L2 ----+ Ll ----+ L4 ----+ L5 ----+ L3

15). L2 ----+ Ll ----+ L5 ----+ L3 ----+ L4

16). L2 ----+ Ll ----+ L5 ----+ L4 ----+ L3

17). L2 ----+ L3 ----+ Ll ----+ L4 ----+ L5

18). L2 ----+ L3 ----+ Ll ----+ L5 ----+ L4

19). L2 ----+ L4 ----+ Ll ----+ L3 ----+ L5

20). L2 ----+ L4 ----+ Ll ----+ L5 ----+ L3

21). L3 ----+ Ll ----+ L2 ----+ L4 ----+ L5

22). L3 ----+ Ll ----+ L2 ----+ L5 ----+ L4

23). L3 ----+ L2 ----+ Ll ----+ L4 ----+ L5

24). L3 ----+ L2 ----+ Ll ----+ L5 ----+ L4

25). L4 ----+ Ll ----+ L2 ----+ L3 ----+ L5

26). L4 ----+ Ll ----+ L2 ----+ L5 ----+ L3

27). L4 ----+ L2 ----+ Ll ----+ L3 ----+ L5

28). L4 ----+ L2 ----+ Ll ----+ L5 ----+ L3

Discussion

In Figure 4.10, if only the first (1- 2) liaisons are considered within each sequence,

all of the sequences involving solid lines, dashed lines, or both are feasible up to the

(1- 2nd) liaison. This can be verified by examining Figure 3.4. Once state 5 with (I -

2) established liaisons is reached, the sequence cannot go beyond this state. In other

words, the last two liaisons cannot be established.

In order to prevent traveling from state 1 to state 2, state 3 to state 5, and state

4 to state 5, there should be some precedence relationship that prevent both L3 and

L4 from being established before other liaisons are established. Thus, the precedence.

relationship should be in the following format: Li ----+ (L3 1\ L4). The precedence

55

Figure 4.10: Graphical representation of all of valid liaison assembly sequences of
the example product

relationships in this format mean both L3 and L4 cannot be established before some

liaisons Li is established. Li can be found by examining Figure 4.10. If state 5 is

reached, L2 and L5 cannot be established. Therefore, Li can be either L2 or L5' In

other words, the following two precedence relationships are needed to eliminate the

dashed lines in Figure 4.10:

L2 ---+ (L3 A L4)

L5 ---+ (L3 A L4)

(1)

(2)

which are not extracted by the methodology. Precedences (1) and (2) can be combined

into one precedence relationship:

Precedence (3) means the Boolean value of (L3 A L4) cannot become one before

the Boolean value of (L2 A L5) becomes one; otherwise, the product cannot be

56

assembled successfully. Verification by hand shows that this is true. However, the

proposed methodology does not identify the existence of precedences (1) and (2).

For example, when L2 ---+ (L3 A L4) is checked, Figure 4.11 shows that L2 can·

be disengaged by disassembling P2, so this precedence relationship does not exist.

This is because: A) the single liaison on the left hand side of the precedence sign is

disengaged by disassembling one part only, and B) precedences (1) and (2) are checked

separately. Thus, the forms for precedence relationships should not be restricted to

the two basic forms only. Precedence (3) shows that a precedence relationship can be

in the following general form:

(Li A Lj A ...) ---+ (Lx A Ly A ...)

There could be one or more liaisons on both sides of the precedence sign by using

"A" Boolean operator only. For example, the followings are different versions of

precedence relationships:

Li ---+ Lj

Li ---+ (Lj A ...)

(Lj A ...) ---+ Li

(Li A ...) ---+ (Lj A ...)

In general, the disassembly approach should not assume removing only single part,

or disengaging only single liaison. Subassemblies and multiple liaisons need to be

considered as well.

In the case above for the simple-cycle liaison diagram, the final two liaisons are

not adjacent to each other in the liaison diagram. As mentioned in the previous

section, another case is that the final two liaisons are adjacent to each other in the

liaison diagram. In this case, the last part inserted will establish the final two liaisons-

57

at the same time, and the following form is a possible precedence relationship for this

case:

which Ll, L2, ... , and L[_2 are made of one subassembly. The last part inserted will

establish L[_1 and LOZ at the same time. First, (Ll 1\ L2 1\ ... 1\ LZ-3 1\ LZ- 2)) ----+

L[has to be checked. If this precedence relationship is true, all of Ll, L2, ... , and

L[_2 have to be established before L[is established. Once Ll, L2, ... , and LZ-2 are

established, there are only two liaisons (L [-I and L [) left. Then, it does not matter"

which one of L [-I and L Z are established first because the Boolean value of the left

hand side of the precedence sign is one already. An example shown in Figure 4.12 is

used to illustrate this form. This is part of the example product used in the paper

written by De Fazio and Whitney (1987). This example product is made of four parts

which are all rotational parts, and its liaison diagram is in the simple cycle structure.

In this example, the axis direction is the only disassembly (assembly) direction for

these rotational parts. Following precedence relationship is true in this case:

This precedence relationship means that either L6 or (L3 1\ L8) has to be established

before Ll is established. If both L3 and L8 are established, the Boolean value of the

left hand side of the precedence sign is one already. So, it does not matter Ll or L6

is established first because these two liaisons will be established at the same time.

If L6 is established first, then the sequence between L3' L8, and Ll can be in ariy

order. If Ll is established first, the Boolean value of the left side of the precedence

sign is still zero, but the Boolean value of the right side is one already. Thus, none

of L6, L3, and L8 can be established. The three cases stated above can be verified

58

C P5

L4

P4

, , , , P3 , , , ,
L2

L3

:-- -i P2 , , , , , , , , , I
I ,
: , ,
I ,

Figure 4.11: The subassembly consisting of L2, L3) and L4

by examining Figure 4.12. Therefore, precedence (4) is another' possible precedence

which need to be considered.

59

B G

Figure 4.12: An example product with a simple-cycle liaison diagram

60

CHAPTER 5. CONCLUSION

A product design requires a great deal of analysis and trade-offs between cost and

quality. The designer's initial ideas often does not work as intended. Therefore, the

designer must make modifications to the original design. As the design progresses,

these early modifications have a large impact on the cost and direction of the design.

Analyses and experiments must be carried out to verify the design. As the design

gradually works its way toward acceptability, the decisions on design changes become

more interdependent. Often, later design decisions are affected by a decision made

previously. Thus, earlier decisions have the most influence on the later course of the

design.

The integrative nature of assembly seems to be a powerful force in raising the

level of integration in all aspects of early product design (Nevins and Whitney, 1989).

Generation of all the assembly sequences in the early design stage can help designers

in two way: 1) to evaluate the assemblability of a product, and 2) to help the designer

search for a better assembly sequence under a set of constraints. Different assembly

sequences have different requirements for assembly fixturing, number of orientation

changes, convenience of access, time of assembly, and possibilities of part damage

during part mating. The difficulty of identifying the complete set of valid assembly

sequences increases as the product complexity and part count increase. Thus, auto

matic precedence relationship extraction for assembly sequence generation becomes

61

an important activity in the concurrent design environment and the implementation

of an integrated manufacturing system.

We have developed a methodology that transforms a three-dimensional product

design characterized by a simple-cycle liaison diagram under a solid modeling environ

ment into a set of assembly precedence requirements .. This methodology provides a

tool which will assist both product designers and manufacturing engineers to identify

valid assembly sequences. This research would also benefit engineers in the process

and system aspects, so· a product design can be evaluated during the early product

design phase.

In this study, a methodology has been developed to perform geometric reasoning.

on the solid models of the assembly with a simple-cycle liaison diagram. Information

concerning collision constraints is derived. This information is .used as basic data for

precedence relationship extraction.

So far, the proposed methodology can only ensure that the generated sequences

are geometrically feasible up to the (1- 2nd) liaison. In this research, only two basic

forms for precedence relationships are extracted. For the two basic forms, there is

only one liaison on the left hand side of the precedence sign, and one or more liaisons

on the right hand side. The results show that considering only these precedences

cannot get the complete set of precedence relationships. Multiple liaisons on both

sides of the precedence sign should be considered.

Future Work

The activities for future research work are stated in the following:

1. Modification of proposed precedence extraction methodology by considering dis

assembling subassemblies and single part

62

2. Extend the methodology to include tree structure, and composite of simple cycles

and trees together

The methodology described in this thesis assumes that product design can be

characterized by simple-cycle liaison diagram only. After the methodology is

extended, product design of different liaison diagram structures can be evalu-.

ated.

3. Incorporate non-geometric constraints into the methodology

The current methodology focuses on analyzing geometric constraints on the solid

model of a product design. Some of the sequences generated by the methodology

might not be feasible in reality because of some physical process constraints. To

enhance the methodology, other factors need to be considered such as assembly

stability, and fixturing requirements, etc.

63

BIBLIOGRAPHY

Bourjault, A., Contribution a une approche methodologique de Fassemblage .
automatise: Elaboration automatique des sequences operatiores. Thesis to
obtain Grade de Docteur es Sciences Physiques at L'Universite de
Franche-Comte, Nov. 1984.

Boyse, John W., Interference Detection Among Solids and Surfaces.
Communication of the ACM, 22(1), 1979, 3-9.

Chang,T.C., Wysk, R.A., and Wang, H.P., Computer-Aided Manufacturing,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

Chen, 1.1. and Woo, T.C., Computational Geometry on the Sphere with
Applications to Automated Machining. ASME Journal of Mechanical Design,
114(2), 1992, 288-295

De Fazio, Thomas L. and Whitney, D.E., Simplified Generation of All Mechanical
Assembly Sequences. IEEE Journal of Robotics and Automation, RA-3(6),
1987, 640-658.

Hoffman, Richard, Automated Assembly in a CSG Domain. IEEE International
Conference on Robotics and Automation., 1, 1989, 210-215.

Romem de Mello, L.S. and Sanderson, A.C., AND/OR Graph Representation of
Assembly Plans. AAAS-86 Proc. of the Fifth Nat 'I Conf. on Artificial
Intelligence, August 11-15, 1986, Philadelphia, PA.

Romem de Mello, L.S. and Sanderson, A.C., AND/OR Graph Representation of
Assembly Plans. IEEE Transactions on Robotics and Automation, April, 1990,
6(2), 188-199.

Romem de Mello, L.S. and Sanderson, A.C., Assembly Sequence Planning. Artificial
Intelligence Magazine, Spring, 1990, 62-81.

64
Huang, Y.F. and Lee, C.S.G., Precedence Knowledge in Feature Mating Operation

Assembly Planning. 1989 Proc. of IEEE International Conf. on Robotics (3

Automation, 1, 1989, 216-221.

I-DEAS : Version 5, User's Guide. Structural Dynamics Research Corporation,
Milford, Ohio, 1990.

Khosla, Pradeep k. and Mattikali, Raju, Determining the Assembly Sequence from
a 3-D Model. Journal of Mechanical Working Technology, 20, 1989, 153-162.

Ko, Heedong and Lee, Kunwoo, Automatic Assembling Procedure Generation from
Mating Conditions. Computer-Aided Design, 19, 1987, 3-10.

Lin, Alan C., Automatic Assembly Planning for Three-Dimensional Mechanical
Products. PhD dissertation, Purdue University, West lafayette, Indiana, 1990.

Lin, Alan C. and Chang, T.C., Automated Assembly Planning for 3-Dimensional
Mechanical Products. Proceedings of NSF Design and manufacturing Systems
Conf., Austin TX, Jan. 1990.

Lozano-Perez, T. and Wesley, M.A., An Algorithm for Planning Collision-Free
Paths Among Polyhedral Obstacles. Communications of the ACM, 22(10),
1979, 560-570.

Lozano-Perez, T., Spatial Planning: A Configuration Space Approach. IEEE
Transactions on Computers, C-32(1), 1983, 108-120.

Lui, M.M., Generation and Evaluation of Mechanical Assembly Sequences Using the
Liaison-Sequence Method. Master's thesis, Dept. of Mech. Eng., MIT, May,
1988. Also Report CSDL-T-990, The Charles Stark Draper Lab.

Miller, Joseph M. and Hoffman, Richard L., Automatic Assembly Planning with
Fasteners. 1989 Proc. of IEEE International Conf. on Robotics (3 Automation,
1, 1989,69-74.

Mortenson, Michael E., Geometric Modeling, John Wiley & Sons, Inc., New York,
NY, 1985.

Nevins, J.L. and Whitney, D.E., Concurrent Design of Product and Processes,
McGraw-Hill, Inc., New York, NY, 1989.

Roth, Scott D., Ray Casting for Modeling Solids. Computer Graphics and Image
Processing, 18, 1982, 109-144.

65

Wang, W.P. and Wang, K.K., Geometric Modeling for Swept Volume of Moving
Solids. IEEE Comput. Graph. (3 Appl., 6(12), 1986, 8-17.

Wang, W.P., Three-Dimensional Collision Avoidance in Production Automation.
Computer in Industry, 1990, 169-174.

Whitney, D.E., De Fazio, T.L., Gustavson, R.E., Graves, S.C., Baldwin, D.F.,
Jastrzebski, M.J., Milner, J.M., Tung, K.K., and Whipple, R.W., Tools for
Strategic Product Design. Proc. of the 1991 NSF Design and Manufacturing
Systems Conference, Jan. 9-11, 1991, 1179-1186.

W~o, T.C. and Dutta, D., Automatic Disassembly and Total Ordering in Three
Dimensions. Trans. of the ASME, Journal of Engineering for Industry, 113,
1991, 207-213.

66

APPENDIX A. USER MANUAL

Introduction

This program extracts liaison precedence relationships by reasoning the solid

model of a product design in I-DEAS, and then generates all of the valid liaison

assembly sequences. The product design must be developed in I-DEAS, and should

be characterized by a simple-cycle liaison diagram only. The extracted precedence

relationships and all of the valid assembly sequences can be output either on the

screen or to the file called pre-seq.out. This manual describes the inputs to the·

program, the program structure, and the operations of the program.

Inputs

The inputs to the program include: 1) the universal files containing the geometric

information describing the product design, 2) the liaison diagram for the product

design, and 3) the disassembly directions for each part.

1. Users have to create the solid model for the product design by using I-DEAS,

and generate a universal file for each part. I-DEAS provides the command to

generate the universal files. There are five parts for the example product, and

the universal file names with respect to each part are list below:

(a) PI: part1.unv

67

(b) P2: part2.unv

(c) P3: part3.unv

(d) P4: part4.unv

(e) P5: part5.unv

2. The liaison diagram for the product design that contains the relationships be

tween parts and liaisons must be provided in a file called cycle.dat. The liaison

data of the example product stored in the file cycle.dat are input as:

112
223
334
445
551

The first row will now be used to illustrate the format of cycle.dat. The middle

digit, 1, is the liaison number. The right digit, 2, is the right part number with

respect to L1 in the liaison diagram. The left digit, 1, is the left part number

with respect to L1' The way to determine the left part and the right part with

respect to a liaison is to imagine standing inside the liaison diagram (cycle) (see

Figure 3.5). Look at one of the liaisons, say Li, the part number appearing on

the right of Li will be the right digit of i, and the part number appearing on.

the left of Li will be the left digit of i. Any two liaisons adjacent to each other

in the liaison diagram must have their respective data row adjacent as well.

3. The disassembly directions for each part are stored in the file parts.dat. Dis

assembly directions tell the program what the valid disassembly directions for

each part. The parts.dat of the example product is given in the following:

1 0 0 -1 0 5 0 -1 00 00 0 0 0

10010
23010
34100
45100

200 -1 0
30 -1 00
340 -1 0
40 -1 00

68
00000
300-1030001

340013400-1
40010 40001

3000-100000
30 0 1 0 40 -1 00 000 0 0
4 0 0 0 -1 0 0 0 0 0

The selection of these disassembly directions follows the proposed methodology

described in Chapter 3. The first row is the disassembly directions of PI, the

second row is the disassembly directions for P2, and so forth. When the pro

gram reads these data, each group of five digits is read as one unit. Each unit

contains the liaison numbers of the two liaisons associated with a disassembly

direction, along with the disassembly direction. The first two values in a unit

are the liaison numbers involved in the disassembly direction. The third, fourth,

and fifth values are the x, y, and z components of the vector of the disassembly

direction. For example, the first unit (2, 3, 0, 1,0) of row 3 shows that disassem

bly direction (0, 1, 0) is associated with both liaison 2 and 3. The second unit in

rQw 3 shows that direction (-1, 0, 0) for part 3 is associated with liaison 3 only, .
and so forth. For a simple-cycle liaison diagram, one disassembly direction can

be associated with at most two liaisons. Thus, when a disassembly direction is

associated with only one liaison, one of the first two values in a data set is set

to zero. The last unit in a row consists of five zero digits. When the program

reaches this unit, it goes to the next row.

Program Structure

There are six major functions in this program:

1. liaison_diagramO: read lia:ison-diagram information.

2. disassembly_directionO: read the disassembly directions for each part and the

liaison that each disassembly direction is associated with.

69

3. read_unvO: retrieve the geometric information of the product design from 1-

DEAS.

4. collisionO: detect the potential collisions.

5. precedenceO: derive precedence relationships.

6. sequenceO: generate all of the valid assembly sequences based on the precedence

relationships derived.

The functional relationships of the six major functions are shown in the following flow

chart:

Read
liaison diagram Main program

Retrieve
geometric

infonnation

collisionO

Collision
detection

precedence()

generate
precedence

relationships

sequenceO

generate all
liaison sequences

8

disassembly _ directionO

Read disassembly
directions

70
First, the main program retrieves all the input data it needs including: liaison

diagram, disassembly directions, and geometric information of the product design.

Secondly, those inputs retrieved are imported into the collision detection function.

Once the potential collision information· is generated, it is input to the precedence.

relationship extraction function. Based on the extracted precedence relationships,

the 'sequence' function then generates all the valid assembly sequences.

Operations

The program is coded in the C programming language, and runs in the UNIX en

vironment. The source code is stored under the file name pre_seq.c. The pre..seq.c

needs to use mathematical functions defined in math.h, so the following command

must be used to compile the program.

vincent% cc pre..seq.c -1m

Where vincent% is the prompt of the window. If the executable file name is not

specified, a.out will be the default executable file name.

Once the proper input files have been created, the user must log into I-DEAS.

I-DEAS interfaces with the C program, and thus I-DEAS must be running in order

that the C program runs. Once we get into I-DEAS, I-DEAS will automatically

create three windows: I-DEAS Graphics, I-DEAS Prompt, and I-DEAS List. I-DEAS

Graphics is used for graphical display purpose, I-DEAS Prompt is where users input

commands, and I-DEAS List is used to show users operational information. In order

to run the C program, a DECterm window has to be created, and these four windows

can be arranged in the positions as shown in the following figure.

71

I·DEAS Graphics DECterm

vince"",

I 1oI0d01 file II

IPro~ file I
I
I

I"""' I

- y

I }-x
z

I·DEAS Prompt I·DEAS Ust

/I

The. procedure for running this program is described in following steps:

1. Input a.out in the DECterm window, and hit the 'RETURN' key.

vincent% a.out

Then the program will show following information on the screen:

**
AUTOMATIC PRECEDENCE RELATIONSHIP EXTRACTION FOR

ASSEMBLY SEQUENCE GENERATION

Output the result to a file(pre_seq.out) or sreen ?
(1). file.
(2). screen.
(3). both(file and screen).
--> (1/2/3) 3

..

==
.. Please start to run the program_file ==> cycle.prg. ..
* -- *
* .. Once the program file stop running, hit 'RETURN' in

DECterrn window to resume the C program
.. ..

==

72
2. The next step is to invoke the Object Modeling ta~k under the Solid Modeling

family in I-DEAS. Next, go to the main menu in I-DEAS Graphics window and

select 'Model File', 'Program File', and 'Run' (see the figure in the previous

page). Now input the program file name by typing cycle in I-DEAS Prompt

window and hit the 'RETURN' key.

3. After the I-DEAS program file stops running, the interference checking result

has been output to the file called IN_CH.dat. Activate the DECterm win

dow by hitting the 'RETURN' key. This activates the C program, which then

processes the interference checking result written to the IN_CH.dat file.

4. After the C program stops running, the interference checking result in IN_CH.dat

has been resolved, and the I-DEAS commands for the next step have been put

into cycle.prg. Go to I-DEAS Prompt window and hit the 'RETURN' key,

reactivating the I-DEAS program file. Then go to step 3, and continue this

procedure until the C program terminates.

The purpose of using I-DEAS is to do the interference checking, so step 3 and 4 are
.

repeated until all the potential collisions are examined. Once the collision detections

are done, the C program will generate the precedence relationships and all of the valid

liaison assembly sequences.

73

APPENDIX B. PROGRAM LIST

/* **. */
~ ~
~ AuroMATIC PRECEDENCE RELATIONSHIP EXTRACTION FOR ASSEMBLY */
~ SEQUENCE GENERATION */
~ ~
~ HlUlg-YiTu */
~ ~
~ Department of Industrial and Manufacturing Systems Engineering */
~ Iowa State University of Science and Teclmology */
~ Ames. Iowa 50011 USA */
~ */
~ -- */
~ */
~ This program can derive the precedence relationships from a */
~ solid model in a CAD system called I-DEAS. and generate all the */
~ valid assembly sequences based on these precedence relationships. */
~ Following information is the inputs of this program: * /
~ (1). Liaison diagram. */
~ . This infonnation is stored in the "cycle.dat" file. */
~ (2). Disassembly directions for each part. * /
~ This information is stored in the "parts.dat" me. */
~ ~
~ ---*/
~ ~
~ Following variables are defmed before the main program: */
~ (1).N :Numberofliaisons. */
~ (2). 1m : The length of the square work plane defmed in I-DEAS. */
~ (3). EL: The length of the swept volume. */
~ ~
~ In collision detection function, the projection of each facet of */
~ every part is found, so 1m is just used to defme the size of pro- * /
~ jection plane in I-DEAS. Once a projection is found, it has to be */
~ extruded to create a swept volume. So we need to detennine EL to * /
~ be the length of the swept volume. When a different product design */
~ is tested. N.lm. and EL might be changed. We can simply change */
~ the defmed values of these variables at the beginning of the */
~ program and recompile the program. */
~ ~
~ --- */
~ ~
~ There are nine functions in this program: */
~ (l).liaison_diagramO : read liaison-diagram infonnation. */
~ (2). disassembly_directionO : read the disassembly directions for */
~ each part and the liaisons that each diassembly */
~ direction is associated with. */

74
,. (3). read_unvO : retrieve the geometrical information of the .,
r product design from I-DRAS. .,
r (4). collisionO : detect the potential collisions. .,
,. (5). collision_storeO : store the potential collision information. .,
,. (6). int_check_resO : read the interference checking result .,
r generated from I-DEAS. .,
,.. (7). N_intersection_checkO : to determine whether a moving part .,
r will collide with a static part or not when their .,
,.. rectangular boxes do not have intersection. .,
,. (8). precedenceO : derive precedence relationships. .,
,.. (9). sequenceO : generate all the sequences based on precedence .,
r relationships. .,
r ., ,..,
#include <stdio.1t>
#include <malloc.1t>
#include <math.1t>
#include <string.1t>

#defmeN 5
#defme 1m 20
#defme EL 25.0

r .. ,
,. This structure is used to store the liaison diagram .,
,. information described as following: .,
,~ (1) All the contact parts for each part. .. , ,! (2) The liaisons that each part is associated with. *' r .. ,
typedef struct listnodel

(
int Iia;
int lpart;
int rpart;
struct listnodel ·right, "left;

) NaDEl;.

r ~
I'" This structure is used to store .. ,
I'" (1) All the disassembly directions for each part. *'
1* (2) The liaison that each disassembly direction is *'
I'" assocaited with. .,
r ~
typedef struct listnode2

(
int asso[2];
float dir[3];
struct listnode2 ·next;

} NODE2;

r =================.,
1* This structure is used to store the collision .,
I'" information. .,
r ~
typedef struct listnode3

(
int part;
float dd[3];

struct listnode3 ·next;
) NODE3;

75

/*================.,
/* This structure is used to store precedence .,
/* relationship information. .,
/* ~
typedef struct plistnode

(
int liaison;
struct plistnode ·next;

) NODFA;

NODEI ·liaison_diagramO;
disassembly _directionO;
read_unvO;
collisionO;
collision_storeO;
int_check_resO;
N_intersection_checkO;
precedenceO;
sequence();

int option;
FILE ·output;
NODE4 ·pr{N+l][N-I][3],·prtail[N+I][N-I][3];

/*=================================., /* •••• MAIN PROORAM •••• .,
/* ~
mainO
(
char c;
int i,j,k.rank,seq[N+I];

NODEI ·clist;
NODE2 *part[N];
NODE3 ·colli[N], ·cltai1[N];

printf(.. ••• ••••••••••••••••• \n ..);
printfC'* *'n");
printf'(''* AUTOMATIC PRECEDENCE RELATIONSHIP EXTRACTION FOR *'n");
printf("· ASSEMBLY SEQUENCE GENERATION *'n");
printfC'* *'n");

printf(.. •• •••••••••••••••••• \n\n ..);

do
(

printf("Output the result to a file(pre_seq.out) or sreen ?-n");
printf("(I). flle.\n(2). screen.\n(3). both(file and screen).\n");

printf(" --> (112/3) ..);
scanf("%d",&option);
scanf("9'oC",&c);

if (option != I && option != 2 && option != 3)
printfC"InPlease select I or 2 or 3 I! !\n\n");

else printf("'n");
) while (option != I && option != 2 && option != 3);

if (option = 1 II option = 3)
output = fopen("pre_seq.out" ,"w");

clist = liaison_diagramO;
disassembly _direction(part);

collision(part.colli,cltail);

for (i = 1; i <= N; i++)
for (j = 1; j <= (N-2); j++)

for (k = 1; k <= 2; k++)
(

76

pr[i][j][k] = prtail[i] [j][k] = malloc(sizeof(NODE4»;
pr[i][j][kJ->liaison:: i+l;

pr[i][j][k]->next = NUlL;
}

precedence(clist,part,colli);

if (option = 1 II option = 3)
fprintf(output,''\n\nAll the possible sequences :\n\n");

if (option = 2 II option = 3)
printf(''\n\nAU the possible sequences :\n\n");

rank:: 1;
sequence(rank,seq);

if (option = 111 option = 3)
fclose(output);

'* -- *'
/* Input the liaision diagram *'
1* --------------------~------------------- *'
NODEI *liaison_diagramO
(

}

FILE *stream;
NODEI *list, *tail, *p;

stream :: fopen("cyc1e.dat", "r");
list = tail = malloc(sizeof(NODEl»;

while (! feof(stream»
(

}

p = malloc(sizeof(NODEl»;
fscanf(stream,"%d 0/'0<1 %d",&p->lia,&p->lpart,&p->rpart);
tail->right :: p;
p->left = tail;
tail = p;

fclose(stream);
p:: list;
list:: list->right;
tail->right :: list;
list->left :: tail;
free(p);
retum(list);

77

'* --:------------------------------------- *'
1* Input the disassembly direction infonnation *'
1* -- *'
disassembly _direction(node)
NODE2 *node[N];
(

}

FILE *stream;
char c;
int x, y, i, j, k;
NODE2 *p, *tail;

stream = fopen("parts.dat", "r");

for (i = 0; i < N; i++)
(

}

node[i] = tail = malloc(sizeof(NODE2»;

p = malloc(sizeof(NODE2»;
for 0 = O;j < 2;j++)

fscanf(stream, "%d" ,&p->asso[j));
forO =O;j <3;j++)

fscanf(strearn, "%C' ,&p->dir[j));

while (p->asso[O] != 0 II p->asso[1] != 0)
(

p->next = NULL;
tail->next = p;
tail=p;

p = malloc(sizeof(NODE2»;

for 0 = 0; j < 2; j++)
fscanf(stream, "%d" ,&p->asso[j));

forO =O;j <3;j++)
fscanf(stream,"%C',&p->dir[j]);

fclose(stream);

1* --------------------------------------- *'
1* Check the potential collisions for each part in its *'
1* disassembly directions. *'
1* --------------------------------------- *'
collision(part,colli,cltail)
NODE2 *part[N];
NODE3 *colli[N), *cltail[N];
(
FILE *prg;
NODE2 *p, *r, .pp, *qq, *head, *head_pp;

NODE3 *q,*rr;
char TR,con,conl ,line,jump,jump 1 ,skip,stack,delete,result,ret;
int a,b,i,j,s,t,u,kl,k2,ss,add,flag,keyl,key2,seq,code,mark,

index,c_code2,poincno,g[3],sub[3],count[N],face_no[N),
f-p_no[N) [50] ,p_Iabel[N)[50)[1 00] ,temp;

float e,step,sl,s2,asl,as2,dxl,dyl,pl[40],p2[40],Dl,D2,ADl,AD2,
diff,front,back,inner-p,length_l,length_2,cos_theta,theta,

vectoCl[3].vector_2[3],nonnal[3],md[3],trans[3],Mt[N)[4)[4],

78
box[N][2][4].nbox[N][2] [4].box_d[2] [3].point[N] [I 00] [4].

npoint[N] [100][4];

static char codel[] =" 534";
static char code2[] =" 537";
static char code3[] =" 544";

for (i = 0; i < N; i++)
count[iJ = 0;

for (i = 0; i <N; i++)
colli[i] = cltail[i] = malloc(sizeof(NODE3»;

index = 0;
e = 1.0E-5;
for (i =0; i <5; i++)
{
if (count[iJ = 0)

read_unv(i.count.face_no.Cp_no.p_label.nbox.npoint);

for (j = 0; j < 5; j++)
if (i != j)

{
if (count[j] = 0)

read_unv(j.count.face_no.Cp_no.p_label.nbox.npoint);

if (index = 0)
(

else

index:;: 1; .
prg = fopen(.. cycle.prg w ..);

}

(
prg = fopen("cycle.prg"."a");
if (delete = 'Y')

fprintf(prg."K :/MA'cl{ :DE'W<. :EI'nK :'n");

if (i 1= 0)
fprintf(prg."K :/DE'nK :'n");

else if(i = 0 &&j!= I}
fprintf(prg."K :/DE'W<. :'cl{ :(fA'nK :O'n");

if(i=O)
{

for (s :;: 0; s < 3; s++)
(
if(j= I)

box_d[O][s] :;: fabs(nbox[i][O][s] - nbox[i][I][s]);
box_d{I][s] = fabs(nbox[j][O][s] - nbox[j][l][s]);

if(j = 1)
(

fprintf(prg."K :/CR'cl{ :B'cl{ :");
for (t = 0; t <= 2; t++)

fprintf(prg."% 7.3f ".box_d[O][t]);
fprintf(prg."'n");

79
TR='N';
for (t = 0; t < 3; H+)

{

)

trans[t] = (nbox[i][O][t] + nbox[i][l][tJ)/2;
if (fabs(trans[t]) > e)
TR='Y';

if(TR='Y')
(

)

fprintf(prg."K :/OR'nK :TR'nK :");
for (t = 0; t < 3; t++) •

fprintf(prg, "%7 .3f ".trans[t]);
fprintf(prg. ''\n ");

fprintf(prg,"K :/MA'nK :STO'nK :");
fprintf(prg,''Bl'nK :'n");

fprintf(prg."K :/CR'nK :B'nK :");
for (t = 0; t <= 2; t++)

fprintf(prg."% 7.3f ".box_d[l][t]);
fprintf(prg. ''\n ");

TR='N';
for (t = 0; t < 3; t++)
{

trans[t] = (nbox[jJ[O][t] + nbox[j][l][t))/2;
if (fabs(trans[t)) > e)

TR='Y';

if(TR='Y')
(

)

fprintf(prg."K :/OR'nK :TR'nK :");
for (t = 0; t < 3; t++)

fprintf(prg,"% 7 .3 f ".trans[t]);
fprintf(prg. "\n H);

fprintf(prg."K :/MA'nK :STO'nK :");
switch (j)
(

)
)

case 1 : fprintf(prg, "B2'nK :'n");
break;
case 2 : fprintf(prg. "B3'nK :'n");
break;
case 3 : fprintf(prg. "B4'clC :'n");
break;
case 4 : fprintf(prg,''B5'nK :'n");
break;

if(i=O) ,
fprintf(prg,"K :rrA'nK :AS'n");

if(i = 0)

else

(

80

if(j = 1)
fprintf(prg,"K :/CR\nK:cw{ :\nK :Bl\nK:\nK :Bl\nK:\nK :\nK :D\n");

else fprintf(prg,"K :/l\nK :A\nK :\nK :Bl\nK :\nK :\nK :D\n");

fprintf(prg, "K :/CR\nK :cw{ :\nK : ");
switch (j)
(
case 0: fprintf(prg,"Bl\nK :\nK :Bl\nK :\nK :D\n");
break;
case 1 : fprintf(prg,"B2\nK :\nK :B2\nK :\nK :D\n");
break;
case 2 : fprintf(prg,"B3\nK :\nK :B3\nK :\nK :D\n");
break;
case 3 : fprintf(prg,"B4'nK :\nK :B4\nK :\nK :D\n");
break;
case 4 : fprintf(prg,"B5\nK :\nK :B5\nK :\nK :D\n");
break;

}
}

(
fprintf(prg,"K :/l\nK :A \n H);
for (s = 0; s < 2; s++)
(

}

if(s=O)
u=i;

else u=j;

switch (u)
(
case 0 : fprintf(prg,"K :\nK :Bl\nK :\nK :\n");

break;
case 1 : fprintf(prg,"K :\nK :B2\nK :\nK :\n");

break;
case 2 : fprintf(prg,"K :\nK :B3\nK :\nK :\n");

break;
case 3 : fprintf(prg,"K :\nK :B4'nK :\nK :\n");

break;
case 4 : fprintf(prg,"K :\nK :B5\nK :\nK :\n");

break;
}

fprintf(prg,"K :D\n");
}

if(i=O)
fprintf(prg,"K :DR\n");

fprintf(prg,"K :/L\nK :CH\n");
if(i=O &&j = 1)

fprintf(prg,"K :V\nK :On\n");
fprintf(prg,"K:CW{ :L\nK :");

switch (i)
(
case 0 : fprintf(prg,"Bl\n");

break;
case 1 : fprintf(prg, "B2\n");

break;
case 2 : fprintf(prg,"B3\n");

printf("

printf("

break;
case 3 : fprintf(prg. "B4\n");

break;
case 4 : fprintf(prg. "B5\n");

break;
}

81

fprintf(prg."K :\nK :L\nK :Y\nK :IN_CH\nK :Y\n? :\n");
fclose(prg);

if(i=O&&j= 1)

else

(
printf(.. ,====================,====,,);
printf("\n* Please start to run the program_file => cycle.prg. *\n");
printf("* --- • ");
printf("'n* Once the program file stop running. hit 'RETURN' in *");
printf(''\n* DECtenn window to resume the C program *\n");

\n");
scanf("%c" .&ret);

}

(
printf("'=======================");
printf("'n* Check potential collisions between P%d and P%d. • ... i+l.j+l);
printf(''\n* --- * ");
printf(''\n* Please CONTINUE the 'I-DEAS program file'. *\n");
printfC'* --- *");
printf("\n* Once the program file stop running, hit 'RETURN' in *");
printf(''\n* DECtenn window to resume the C program *\n");

\n");
scanf("%c",&ret);

}

inccheck_res(i.j.&result);

if (result = 'N')
(
head = p = part{i]->next;
do
{

for (s = 0; s < 3; s++)
rnd[s] = p->dir[s);

N_intersection_check(i.j.rnd,&result,nbox);

if(result='~)
collisiol'l_store(i.j.cltail.rnd);

p=p->next;
} while (p != NULL);

printf("\n H);
for(u = 0; u < 5; u++)
(

printf("P%d: ".u+l);
q = colli[u]->next;
temp =0;
while(q !=NULL)

}
else

(

>asso[O)))

>asso[l]))

(

}
}

82

if (temp != 0)
printf(" H);

printf("P%d --> (%5.2f,%5.2f,%5.2f)'n",q->part.q->dd[0],q->dd[I],q->dd[2]);
q =q->next;
temp++;

printf('''n H);
delete = 'N';

keyl = 0;
flag = 0;
head = p = part{i]->next;
do

(
skip = 'N';
for (s = 0; s < 3; s++)

md[s] = p->dir[s];

if (i > j)
(
r = pan(jJ->next;
while (r != NULL && skip = 'N')
(
add = 0;
for (t = 0; t < 3; t++)

(
if (md[t] = -r->dir[t])

add++;

if (add =3)
(
if «p->asso[O] != 0) && (r->asso[O] = p->asso[O] 1/ r->asso[l] == p-

skip = 'Y';
else if «p->asso[l] != 0) && (r->asso[O] = p->asso[l] II r->asso[1] = p-

skip = 'Y';
else
(

rr = colli(jJ->nex1;
while (rr != NULL)

{
add = 0;
for (1 =0; t < 3; 1++)
(
if (md[l] = -rr->dd[t])

add++;

if (add = 3 && rr->part = i+l)
(

skip = 'Y';
q = malloc(sizeof(NODE3»;
q->part = j + 1;

>dd(0),q->dd[I),q->dd[2]);

)
)

)
)

r = r->next;

)

83
for (t = 0; t < 3; t++)

q->dd[t) = -rr->dd[t);
q->next = NULL;
cltail[i]->next = q;
cltail[i) = q;

printf('''n'');
for(u=O; u < 5; u++)

(
printf("P%d: ",u+l);
q = rolli[u)->next;
temp = 0;
while (q != NULL)
(
if (temp != 0)

printf(" ");
printf(" P%d --> (%5.2f,%5.2f,%5.2f)'n",q->part,q-

q =q->next;
temp++;

)
)

printf('''n ");
delete = 'N'·

) .
rr = rr->next;

if (skip = 'N')
(
frr (s = 0; 5 < face_no[i); s++)

if (md[O) != 0)
(

)

seq = 0;
sub[O) = 2;
sub[1) = 1;
sub[2) = 0;

else if (md[I) != 0)
(

)
else

(

)

seq = 1;
sub[O) =0;
sub[l) = 2;
sub[2) = 1;

seq = 2;
sub[O) = 0;
sub[I) = 1;
sub[2) = 2;

npoint[i][a][sub[1]]) > e)

npoint[i][a][sub[1]]) > e)

npoint[i][a][sub[1J)) > e)

84

u=O;
con = 'Y';
do

(
kl = p_label[i][s][u];
k2 = p_labeJ[i][s][u+l];
Dl = npoint[i][k2][sub[O]] - npoint[i][kl][sub[O]];
D2 = npoint[i][k2][sub[1]] - npoint[i][kl][sub[1]];
ADl = fabs(Dl);
AD2 = fabs(D2);

if(ADI >e II AD2> e)
con='N';

u++;
) while (con = 'Y');

line = 'Y';
add = 0;
for (t = 0; t < f-p_no[i][s]; t++)

{
a = p_label[i][s][t];

stack = 'Y';
if (t > 0)
{

switch (seq)
(
caseO:

if (fabs(pl[mark] - -npoint[i][a][sub[O]]) > e II fabs(p2[mark] -

stack = 'N';
break;

case 1 :
if (fabs(pl[mark] - npoint[i][a][sub[O))) > e 1\ fabs(p2[mark] -

stack = 'N';
break;

case2:

}

if (fabs(pl[mark] - npoint[i][a][sub[O))) > e " fabs(p2[mark] -

stack = 'N';
break;

if (t = 0 II stack = 'N')
(

switch (seq)
(
caseO:

(
pl[add] = -npoint[i][a][sub[O]];
p2[add] = npoint[i][a][sub[1]];

)
break;

case 1 :
(

pl[add] = npoint[i][a][sub[O]];

)

85
p2[add) = npoint[i)[a)[sub[1));

)
break;

case2:

)

(
pl[add) = npoint[iJ[a][sub[O));
p2[add) = npoint[iJ[a][sub(1));

)
break;

mark = add;
add++-;

if (t >= (u + I) && line = 'Y')
(

)
}

b = p_label[i)[s][t-l);
sl = npoint[i][a][sub[O)) - npoinl[i][b][sub[O));
s2 = npoinl[i)[a)[sub[l)) - npoint[i)[b][sub[I)];

asl = fabs(sl);
as2 = fabs(s2);

if (as 1 <e&&as2<e)
line = 'Y';

else
(
if (AD 1 > e && AD2> e)
(

)

if (aSl > e && as2 > e && «sl/s2 - Dl/D2) < e»
line = 'Y';

else
line = 'N';

else if (ADl > e && AD2 < e)
(

)

if (as 1 >e&&as2<e)
line = 'Y';

else
line = 'N';

else
(

if(asl < e && as2> e)
line = 'Y';

else
line = 'N';

}
}

if (line = 'N')
(

flag++;
if (flag == 1)
(

prg = fopen("cycle.prg", "a");
fprintf(prg,"K :/DE'cl{:'clC :(fA\nK :CG\n");

)

:CG\n");

%d'n" ,lm,lm,-lm,-lm);

86
else
(

prg = fopen("cycle.prg", "a");
fprintf(prg,"K :/DEW{ :'nK :/MA'nK :DE'n.K :El'nK :'nK :(fA'nK

if(i=O && 5=0 &&keyl = 0&&key2= 0)
fprintf(prg,"K:fW\nK:K :A1'nK :SEW{:K'nK. :%d lfod'nK :%d

switch (seq)
(
case 0 : fprintf(prg,"K :/W'nK :REW{ :Y2'nK :K'nK. :'n");
break;

case 1 : fprintf(prg,"K:/W'nK :REW{:XZ'nK:K'nK :'n");
break;

case 2 : fprintf(prg,"K :/W'nK :REW{ :XY'nK :K'nK :'n");
break;

}

fprintf(prg,"K :/CR'nK :PR'nK :K\n");

for (t = 0; t < add; t++)
(

fprintf(prg,"K :%1O.6f %1O.61'n",pl[t),p2[t]);
if (t!= 0)

fprintf(prg."K :F\n");

fprintf(prg."K :C"nK :'n");

a = p_label[i][s][O);
front = npoint[i][a][sub[2]];
back = npoint[i][a][sub[2]];

switch (seq)
(
cascO:
if (md[O) > 0)

else

for (t = 1; t < f-p_no[i][sJ; t++)
(

a = p_label[i][s][t);
if (npoint[i][a][sub[21J > front)

front = npoint[i](a][sub[2]];
else if (npoint[i][a][sub[2]] < back)

back = npoint[iJ[a][sub(2)J;

for (t = 1; t < f-p_no[i](sJ; t++)
(

a = p_label[i][s][t);
if (npoint[i][a](sub[211 < front)"

front = npoint[i](a](sub[2]];
else if (npoint[i](a](sub[2]] > back)

back = npoint[iJ[a][sub[2]];
}

break;
case 1 :

:PFl\nK :\n",back);

:PFI\nK :\n",-back);

:PF1\nK :\n",back);

87
if (md[1) > 0)

else

for (t = 1; t < f-p_no[i][s); t++)
(

a = p_Iabel[i][s][t);
if (npoint[i][a][sub[2]] > front)

front = npointli][a)fsub[2]];
else if (npoint[i][a][sub[2)) < back)

back = npointli][a)fsub[2));

for (t = 1; t < f-p_no[i][s); t++)
(

a = p_Iabel[i][s][t);
if (npoint[i][a][sub[2]] < front)

front = npoint[i][a][sub[2]];
else if (npoint[i][a][sub[2)]"> back)

back = npointli][a][sub[2]];
)

break;
case2:

)

if (md[2) > 0)

else

for (1 = I; 1 < f-p_no[i][s); 1++)
(

a = p_Iabel[i][s][t);
if (npointCi)fa][sub[2]] > front)

front = npointCi][a][sub[2]];
else if (npoint[i][a][sub[2]] < back)

back = npointli][a)fsub[2]];

for (t = 1; t < f-p_no[i](s); t++)
(

a = p_Iabel[i][s][t);
if (npoint[i][a)fsub[2]] < front)

front = npointli][a][sub[2]];
else if (npoint[i][a][sub[2]) > back)

back = npointli][a][sub[2]];
)

break;

switch (seq)
(
case 0 :

fprintf(prg,"K:/W'nK :TR\nK:O 0 %6.2f\nK :/MA\nK :PR'InK :STO\nK

break;
case 1:

fprintf(prg,"K:/W'nK :TR\nK:O 0 %6.2f\nK :/MA\nK :PR\nK :STO\nK

break;
case 2 :

fprintf(prg,"K:/W'nK :TR'InK:O 0 %6.2f\nK :/MA'InK :PR'InK :STO\nK

break;
)

fprintf(prg,"K :/DE\nK:PW(:'InK :{fA'InK :O\n");

88
switch (seq)
{
caseO:
(

fprintf(prg,"K :/CR\nK :E\n");
fprintf(prg,"K :PFl\n");

if (md[O] > 0)
fprintf(prg,"K :%6.2f\n" ,EL);

else fprintf(prg, "K :%6.2f\n" ,-EL);

if (fabs(front - back) > e)
{

for (t = 0; t < 3; t++)
g[t] = p_Iabel[i][s][t];

for (t = 0; t < 3; t++)
(

vectocl[t] = npoint[i][g[O]][t] - npoint(i](g[l]](t];
vectoc2[t] = npoint[i][g[l)][t] - npoint[i][g[2)][t];

norma1[O) = vector_l[l] ... vector_2[2] - vectocl[2] ...

norma1[1] = vectocl(2] ... vector_2[O] - vector_leO] ...

norma1[2] = vector_leO] ... vector_2[1] - vectocl[l] ...

inner-p = length_l = length_2 = 0;

for (t = 0; t < 3; t++)
(

inner-p += md[t] ... norma1[t];
length_l += pow(md[t],2.);
length_2 += pow(norma1[t],2.);

length_l = sqrt(length_l};
length_2 = sqrt(1ength_2);

fprintf(prg,"K :/CChtK. :PvtK :1VtK :K\n");
if (cos_theta> 0)
for (t = 0; t < 3; t++)

(

}
else

fprintf(prg,"K :");
for (u= 0; u < 3; u++)

fprintf(prg,"% 10.6f ",npoint(i](g[tm u));
fprintf(prg, "\n");

for (t = 2; t >= 0; t-)
(

fprintf(prg,"K :");
for (u = 0; u <3; u++)

fprintf(prg, "% 1 0.6f ",npoint[i)[g[t]][u));
fprintf(prg, "\n ");

89
}

fprintf(prg, "K :J1'.n");
}

:El~ :\nK :D~");

fprintf(prg,"K :/MA~K :STO'nK :El~ :~ :~");

fprintf(prg,"K :rrA~ :A~ :/CR~ :~K :~ :El~ :~

fprintf(prg,"K :DR~ :/lW(:A~");

. ~");

.");

. ~");

switch (j)
(
case 0: fprintf(prg,"K :~K :Pl~K:\nK :~");
break;

case 1 : fprintf(prg,"K:~ :P2'nK:~ :~");
break;

case 2 : fprintf(prg,"K :~K :P3'nK :~K :~");
break;

case 3 : fprintf(prg,"K :~K :P4\nK:\nK :~");
break;

case 4 : fprintf(prg,"K :~ :P5'nK :~K :~");
break;

}
fprintf(prg, "K :D~");
fprintf(prg,"K :/L~K :CH'nK :~K :L~K :El~ :~K :L~

fclose(prg);

printf("=======================;:. ====");
printf("'n· Please CONTINUE the 'I-DEAS program file' .

printf(,,· -- .");
prinlf(,"n· Once the program file stop running, hit 'RETURN' in

printf('''n· DECterm window to resume the C program

prin~"'==

}
break;

case 1 :
(

scanf("%c",&ret);

int_check_res(i,j,&result);

if (result = 'Y')
(

s =999;
coIlision_store(i,j,cltail,md);

fprintf(prg, "K :/CR~K :E\n");
fprintf(prg,"K :PFl~");

if (md[1] > 0)
fprintf(prg,"K :%6.2f'n",-EL);

else fprintf(prg,"K :%6.2f'n",EL);

if (fabs(front - back) > e)

\n");

vectoc2[2];

:El'nK :'nK :D'n");

{

)

90

fOf (t = 0; t < 3; t++)
g[t] = p_label[i][s][t];

fOf (t = 0; t < 3; t++)
{

vectocl[t] = npoint[i][g[O)][t] - npoint[i)[g[1)][t]; •
vectof_2[t] = npoint(i)[g[1)][t] - npoint[i][g[2)][t];

nonnal[O] = vectoCl[l] * vectoC2[2] - vectof_l[2] *

nonnal[l] = vectof_1[2] * vectof_2[0] - vectOf_l[O] *

nonnal[2] = vectOf_l[O] * vectof_2[l] - vectof_l[l] *

inner-p = length_l = length_2 = 0;

fOf (t = 0; t < 3; t++)
(

inner-p += md[t] * nonnal[t];
length_l += pow(md[t],2.);
length_2 += pow(nonnal[t],2.);

length_l = sqrt(length_l);
length_2 = sqrt(length_2);

cos_theta = inner-p/(length_l * length_2);

fprintf(prg,"K :/CO'nK:PW<::1\nK:K'nK :");
if (cos_theta> 0)
for(t=O; t<3; t++)

(

)
else

fprintf(prg,"K :");
for (u = 0; u < 3; u++)

fprintf(prg,"%1O.6f ",npoint[i)[g[t)][u));
fprintf(prg, "'n ");

for (t = 2; t >= 0; t-)
(

)

fprintf(prg,"K :");
for(u = 0; u < 3; u++)

fprintf(prg,"%10.6f ",npoint[i)[g[t])[u));
fprintf(prg,"'n");

fprintf(prg,"K :P'In");

fprintf(prg,"K :/MA'nK :STO'nK :El'nK :'nK :'n");

fprintf(prg,"K :rrA'nK :AS'nK :/CR'nK :C'nK :'nK :El'nK:'nK

fprintf(prg,"K :DR'nK :/l\nK :A'n");

switch (j)
{

*'n");

*");

*'n");

91
case 0 : fprintf(prg."K :'nK :Pl'nK :'nK :'n");
break;

case 1 : fprintf(prg. "K :'nK :P2'nK :'nK :'n");
break;

case 2 : fprintf(prg."K :'nK :P3'nK :'nK :'n");
break;

case 3 : fprintf(prg. "K :'nK :P4'nK :'nK :'n");
break;

case 4 : fprintf(prg."K :'nK :P5'nK :'nK :'n");
break;

)

fprintf(prg. "K :D\n");
fprintf(prg. "K :/L'nK :CH'nK :C\nK :L'nK :El'nK :'nK :L'nK

fclose(prg);

printf(.. ,==============:===========, ..);

printf(..

printf(''\n* Please CONTINUE the 1-DEAS program file'.

printf("* -------------------------------------.----.----- * ");
printf(''\n* Once the program file stop running. hit 'RETURN: in

printfC'\n* DECterm window to resume the C program

scanf("%c".&ret);

int_check_res(i.j.&result);

if (result = 'Y')
(

s =999;
coIlision_store(i.j.cItail.md);

\n");

)
break;

case2:
(

fprintf(prg."K :/CR'nK :E\n");
fprintf(prg."K :PFl'n");

if (md[2] > 0)
fprintf(prg."K :%6.2t'n".EL);

else fprintf(prg."K :%6.2t'n ... ·EL);

if (fabs(front - back) > e)
(

for (t = 0; t < 3; t++)
g[t] = p_Iabel[i][s][t];

for (t = 0; t < 3; t++)
{

vectocl[t] = npoint[i][g[O]][t] - npoint[i](g[1]][t];
vector_2[t] = npoint(i][g(l]][t] - npoint[i][g[2]][t];

vectoc2[0];

:EI'nK :'nK :D\n");

}

92
normal[O] = vectoCI[l] * vectoC2[2] - vectoCI[2] *

normal[1] = vector_1[2] * vectoc2[0] - vectoCI[O] *

normal[2] = vectoCI[O] * vectoc2[1] - vector_1[I] *

inner-p = length_l = length_2 = 0;

for (t = 0; t < 3; t++)
(

inner-p += md[t] * normal[t];
length_l += pow(md[t],2.);
length_2 += pow(normal[t],2.);

length_l = sqrt(length_l);
length_2 = sqrt(length_2);

fprintf(prg,"K :/CO'nK :i>W{ :1'ltK :K'nK :");
if (cos_theta> 0)
for(t = 0; t< 3; t++)

(

}
else

fprintf(prg,"K :");
for (u = 0; u <3; u++)

fprintf(prg,"%1O.6f ",npoint[i)[g[t])[u));
fprintf(prg, ''\11 ");

for (t = 2; t >= 0; t-)
(

}

fprintf(prg,"K :");
for(u= 0; u < 3; u++)

fprintf(prg,"%10.6f ",npoint[i)[g[t])[u));
fprintf(prg, ''\11 H);

fprintf(prg,"K :P'n");

fprintf(prg,"K :/MA'nK :STO'ru(:EI'nK :'nK :'n");

fprintf(prg,"K :(fA'nK :AS'nK :/CR'nK :C'nK :'nK :EI'nK :'nK

fprintf(prg,"K :DR'nK :fl\nK :A 'n");

switch G>
(
case 0 : fprintf(prg,"K :'nK :PI'nK :'nK :'n");
break;

case I : fprintf(prg,"K :'nK :P2'nK :'nK :'n");
break;

case 2 : fprintf(prg,"K :'nK :P3'nK :'nK :'n");
break;

case 3 : fprintf(prg,"K :'nK :P4'nK :'nK ,:'n");
break;

case 4 : fprintf(prg, "K :'nK :P5'nK :'nK :'n");
break;

*'n");

.");

*'n");

>dd[2]);

}
}

93

fprintf(prg, HK :Iht");
fprintf(prg,"K :!L'nK :CHW(:C'nK :L'nK :El'nK :'nK :L'nK

fclose(prg);

printe(" ");

printf("

}

}

printf('''n* Please CONTINUE the 'I-DEAS program fIle'.

printf("* ----------------~-------------------------------- *");
printf('''n* Once the program file stop running, hit 'RETURN' in

printf(,"n* DECterm window to resume the C program

scanf("%c",&ret);

inccheck_res(i,j,&result);

if (result = 'Y')
(

}
break;

}

s =999;
coIIision_store(i,j,cltail,md);

\n");

printf('''n ");
for (u = 0; u <= i; u++)
(

}

printf("P%d: ",u+l);
q = coIli[u]->next;
temp=O;
while (q 1= NULL)

{

)

if (temp != 0)
printf(" ");

printf("P%d --> (%5.2f, %5.2f, %5.2f)'n" ,q->pan,q->dd[O],q->dd[l],q-

q =q->next;
temp++;

printf('''n ");
delete = 'Y';

p= p->next;
} while (p != NULL);

'* -- *'

94
,. . Read the output fIle for interference checking result .,
/* fromI-DEAS. ., ,. --- .,
inccheckJes(i.j.result)
int i,j;
char ·result;
(

}

ALE ·stream;
charc;
int s;
static char strl[] = "Interference detected for";
static char str2[] = "NONE";

stream = fopen(.. IN_CH.dat r ..);

c = fgetc(stream);
s = 999;
do
(
if(c=T)

for (s = 1; s <= 24; s++)
(

}

c = fgetc(stream);
if (c != strl[s))
s=999;

c = fgetc(stream);
} wbile(!(s = 25»;

while (c != '-')
c = fgetc(stream);

while (c == '-')
c = fgetc(stream);

for (s = 0; s < 2; s++)
c = fgetc(stream);

for (s = 0; s < 4; s++)
(

c = fgetc(stream);
if (c != str2[s])

s = 999;

if (s != 10(0)
(

·result = 'N';
printf(,"n ••••• NO interference •••• *'n ..);

}
else
(

·result = 'Y';
printf(" ••••• Interference exists •••• *'n ..);

}
fclose(stream);

,. --- .,
,. Check which of the following conditions that the .,

95
,. . rectangular box of the moving part is in : .,
,. (1). Completely above or below the rectangular box of .,
1* the static part. .,
1* (2). Completely on the right side or left side of the .,
1* rectangular box of the static part. .,
1* (3). Completely behind the rectangular box of the .,
1* smricpart. .,
1* (4). None of the above three conditions. ., ,. --- .,
N_intersection_check(i,j,md,inter_f,nbox)
int i,j;
char ·intecf;
float md[3],nbox[N][2J[4];
(

int s,seq;
float e,back l,front2,up I, up2,down l,down2,rightl,right2,leftl,left2;

e = 1.0E-5;

if (md[O] != 0)
seq = 0;

else if (md[1] != 0)
seq = I;

else
seq = 2;

switch (seq)
(
case 0 :
if (md[O] > 0)

(
if (nbox[iJ[OJ[OJ > nbox[iJ[IJ[O])

backl = nbox[i)[I][O];
else backl = nbox[i][O][O]; .

if (nbox[j][O][O] > nbox[j][I][O])
front2 = nbox[j][O][O];

else front2 = nbox[j][l][O];

if (backl >= frontZ II fabs(backl - frontZ) < e)
·interj = 'N';

else
(

if (nbox[i][O][I] > nbox[i][l][l])
(

else
)

(

upl = nbox[i)[O][I];
downl = nbox[i][l][l];

upl = nbox[i][l][l];
downl = nbox[i][O][l];

)

if (nbox[j][O][l] > nbox[j][l)[l])
(

up2 = nbox[j][OJ[I];
down2 = nbox[j][l][l];

)

else

else
{

up2 = nbox[j)[l](l];
down2 = nbox[j][O][l];

}

96

if (upl <= down2 II fabs(upl - down2) < e II downl >= up211 fabs(downl - up2) < e)
·interj = 'N'; .

else
{

}

if (nbox[i][O][2] > nbox[i][l][2])
(

}

rightl = nbox[i)[l][2);
left I = nbox[i][O][2);

else
(

}

rightl = nbox[i][O][2);
left I = nbox[i][l)[2);

if (nbox[j)[O][2) > nbox[j][1)[2])
(

}

right2 = nbox[j][l)[2);
left2 = nbox[j][O][2];

else
(

}

right2 = nbox[j][O][2);
left2 = nbox[j][l][2);

if (rightl >= left2 II fabs(rightl - left2) < e IIleftl <= right2 II fabs(leftl - right2) < e)
·inter_f = 'N';

else ·inter_f = 'Y';

}
}

(
if (nbox[i][O][O) > nbox[i][l][O])

backl = nbox[i][O)[O);
else backl = nbox[i][1][O];

if (nbox[j][O][O] > nbox[j][l)[O))
front2 = nbox[j][l)[O);

else front2 = nbox[j][O)[O);

if (backl <= Cront211 fabs(backl - Cront2) < e)
·inter_f = 'N';

else
(

if (nbox[i][O][l] > nbox[i][1][l])
(

else

upl = nbox[i][O)[l);
downl = nbox[i)[l][l];

}

)
}

break;
case I:

upl = nbox[i](l}(l);
downl = nbox[i](O](I);

}

97

if (nbox[j](O][l) > nbox[j](l](l])
(

else

up2 = nbox[j](O][l);
down2 = nbox[j]l;

} .

(
up2 = nbox[j](I)[1);
down2 = nbox[j][O](l);

}

if (upl <= down2 \I fabs(upl - down2) < e II downl >= up2 \I fabs(downl - up2) < e)
*intecf = 'N';

else
{

}

if (nbox[i](O][2] > nbox[i][l][2])
(

}

rightl = nbox[i][O][2];
left I = nbox[iJ[IJ[2];

else
(

}

rightl = nbox[iJ[IJ[2];
leftl = nbox[iJ[O][2);

if (nbox[j][O)[2) > nbox[j][1][2])
{

}

right2 = nbox[jJ[O][2];
left2 = nbox[jJ[l)[2];

else
(

}

right2 = nbox[jJ[lJ[2);
left2 = nbox[j][0][2);

if (rightl <= left2 II fabs(rightl - left2) < e II left I >= right2 II fabs(1eftl - right2) < e)
*inter3 = 'N';

else *intecf = 'Y';

if (md[l) > 0)
(
if (nbox[iJ[OJ[l) > nbox[i][l][l])

back I = nbox[i][l][l];
else backl = nbox[i][O][I);

if (nbox[j][O][IJ > nbox[j][l)[l])
front2 = nbox[j][O][I);

else front2 = nbox[j][IJ[IJ;

else

98
if (backl >= front2 II fabs(backl - front2) < e)

*inter3 = 'N';
else
(

)
)

if (nbox[i][O][2) > nbox[i][I](2))
(

else
)

(

upl == nbox[i][I](2);
downl = nbox[i][O](2);

upl = nbox[i][O](2);
downl = nbox[i][I](2);

)

if (nboxU][O][2) > nboxU][I](2))
(

else

up2 = nboxU][I](2);
down2 = nboxU][O](2);

)

(
up2 = nboxU][O](2);
down2 = nboxU][I](2);

)

if (upl >= down211 fabs(upl - down2) < e II downl <= up2 II fabs(downl - up2) < e)
*inter_f = 'N';

else
(

)

if (nbox[i)[O][O) > nbox[i][I)[O))
(.

)

rightl = nbox[i][O][O);
leftl = nbox[i)[I][O);

else
(

}

right! = nbox[i][I][O);
leftl = nbox[i][O][O);

if (nboxU)[O][O) > nboxU][I][O))
(

}

right2 = nboxU][O][O);
left2 = nboxU][I][O);

else
(

)

right2 = nboxU][I][O);
left2 = nboxU][O][O);

if (rightl <= left2 II fabs(rightl - left2) < e IIleftl >= right2 II fabs(leftl - right2) < e)
*inter_f = 'N';

else *inter_f = 'Y';

{
if (nbox[iJ[OJ[l] > nbox[i]fl][l])

backl = nbox[i][O][I];
else backl = nbox[iJ[IJ[l];

if (nbox[j][O][l] > nbox[j][l][l])
frona = nbox[jJ[I][I];

else frona = nbox[j][OJ[I];

99

if (backl <= front2 II fabs(backl - front2) < e)
*intecf = 'N';

else
{

if (nbox[i][O][2] > nbox[i)[I][2])
(

else
}

(

upl = nbox[i][I][2);
downl = nbox[i][O][2);

upl = nbox[i][OJ[2);
downl = nbox[i][1][2);

)

if (nbox[j][OJ[21 > nbox[j)[1][2])
(

else

up2 = nbox[j][1](2);
down2 = nbox[j][O][2);

}

(
up2 = nbox[j][O][2);
down2 = nbox[j][1][21;

}

if (upl >= down211 fabs(upl - down2) < e II downl <= up2 II fabs(downl - up2) < e)
*inter3 = 'N';

else
{
if (nbox[i][O][O] > nbox[i][I][O))
{

}

rightl = nbox[i][I][O);
lertI = nbox[i]O;

else
(

}

right I = nbox[i][O][O);
leftl = nbox[i][I][O);

if (nbox[j][O][O] > nbox[j][I][O])
{

}

right2 = nbox[j][I][O];
left2 = nboxU][O}[O];

else
{

righa = nbox[j][O][O];
lefa = nbox[j][I][O];

100

if (rightl >= lefa II fabs(rightl - lefa) < e IIleftl <= righa II fabs(leftl - right2) < e)
*inter_f = 'N';

}
}

break;
case 2:

}
else *inter_f = 'Y';

if (md[2] > 0)
. {

if (nbox[i][0][2] > nbox[i][1][2])
backl = nbox[i][I][2];

else backl = nbox[i][0][2];

if (nbox[j][0][2] > nbox[j][1][2])
frona = nbox[j][0][2];

else frona = nbox[j][l][2];

if (backl >= frona II fabs(backl - frona) < e)
*inter_f = 'N';

else
{

if (nbox[iJ[O](I] > nbox[i][l](lJ)
(

else
)

(

upl = nbox[i]{O][l];
downl = nbox[i][l][l];

upl = nbox(i](l](l);
downl = nbox[i](O](l];

}

if (nbox[j][O][I) > nbox[j][l][l))

else

{ .
up2 = nbox[j][O][I];
down2 = nbox[j](IJ[l];

}

(
up2 = nbox[j][l][l);
down2 = nbox[j][O](I];

}

if (upl <= down211 fabs(upl - down2) < e II downl >= up211 fabs(downl - up2) < e)
*inter_f = 'N';

else
(
if (nbox[i][O][O] > nbox[i](I](O»
(

}

rightl = nbox[i](O][O);
left I = nbox[iJ[IJ[O);

else
(

rightl = nbox[i](I][O];
left I = nbox[i]O;

else

}

101

if (nbox[j][O][O) > nbox[j][l][O))
(

}

right2 = nbox[j][O][O);
left2 = nbox[j][l)[O);

else
(

)

right2 = nbox[j][l][O);
left2 = nbox[j][O)[O);

if (rightl <= left2 II fabs(rightl - left2) < e IIleftl >= right2 II fabs(leftl - right2) < e)
·inteT_f = 'N';

else ·intecf = 'Y';

}
}

(
if (nbox[i)[O][2) > nbox[i][1][2))

backl = nbox[iJ[O](2);
else backl = nbox[i][1][2);

if (nbox[jJ[O][2) > nbox[j][1](2»
front2 = nbox[j][l](2);

else frent2 = nbox[j][O](2);

if (backl <= front2 II fabs(backl - front2) < e)
·inter_f = 'N';

else
(

if (nbox[iJ[O][l) > nbox[i][l)[l»
(

else
}

(

upl = nbox[i][O][l);
downl = nbox[i][l)[l);

upl = nbox[iJ[l)[l);
downl = nbox[i][O)[l];

}

if (nbox[j][O][1] > nbox[j)[l)[l»
(

else

up2 = nbox[j][O][l];
down2 = nbox[j][l][l);

}

{
up2 = nbox[jJ[l][l];
down2 = nbox[jJ[O)[l];

}

if (upl <= down211 fabs(upl - down2) < e II downl >= up211 fabs(downl - up2) < e)
*intecf = 'N';

else

)
)

)
)

break;

)

102
if (nbox[i][O][O] > nbox(i][1][0»
(

)

rightl = nbox[i][l][O];
left 1 = nbox[i)[O][O];

else
(

)

right 1 = nbox[i][O][O];
leftl = nbox[i][l][O];

if (nbox[j][O][O] > nbox[j][I][O))
(

)

right2 = nbox[j][l][O];
left2 = nbox[jl(O][O];

else
(

)

right2 = nbox[j][O][O];
left2 = nbox[j][I][O];

if (rightl >= left2 II fabs(rightl • left2) < e IIlefti <= right2 II fabs(leftl • right2) < e)
*intecf = 'N';

else *inter_f = 'Y';

r -- *'
'* Retrieve the geometrical infonnation 'of the product *'
r design from the universal files in I·DEAS. *' '* --- *'
read_unv(i.count.face_no.Cp_no.p_label.nbox.npoint)
int i.count[N].face_no[N] .Cp_no[N] [50].p _label[N] [50] [100];
float nbox[N)[2][4].npoint[N)[100)[4];
(
FILE*inf;
char c.c2.multi[2];
int s.t.u.code.c_code2.point_no;
float e.step.box[N](2][4].Mt[N][4](4].point[N][IOO][4];

static char codel[] =" 534";
static char code2[) =" 537";
static char code3[) =" 544";

count[i]++;

switch (i)
(
case 0 : inf = fopen("part1.unv"."r");
break;
case 1 : inf = fopen("part2.unv"."r");
break;
case 2 : inf = fopen("part3.unv n

• nrn);
break;

)

CJlSe 3 : inf = fopen("part4.unv","r");
break;
case 4 : inf = fopen("partS.unv","r");
break;

t= 0;
c2='N';
code = 999;
c = fgetc(inf);
do

{
if (c = ")

for (t = 1; t <= 5; t++)
(

c = fgetc(inf);
if (c = codel[t] && c2 = 'N')

(

)

if(t= 5)
code = 534;

103

else if (c = code2[t] && c_code2 = 0)

}

(

J

c2='Y';
c_code2++;
if(t= 5)

code = 537;

else if (c = code3[t))
(

)

c2= 'Y';
if(t=5)
code = 544;

else
(

)

c2 = 'N';
t= 999;

c = fgetc(inf);
} while (l(t = 6»;

if (code = 53411 code = 537)
{

for (t = 1; t <::: 30; t++)
fscanf(inf, "%f" ,&step);

for (5 = 0; 5 < 2; 5++)
for (t = 0; t < 3; t++)

fscanf(inf, "%f' ,&box[i][s][t));
box[i][O][3] = box[i][I][3] = 1;

for (t = 1; t <= 6; t++)
fscanf(inf, "%f',&step);

for (5 = 0; 5 <= 3; 5++)
for (t = 0; t <= 2; t++)

fscanf(inf,"%f',&Mt[i) [t) (5»;

Mt[i]3 = 1;

104

Mt[i][3][O) = Mt[i][3](1) = Mt[i](3][2) = 0;

}

multi[O) = 'N';
for (5 = 0; 5 < 4; 5++)
for(t= 0; t<4; t++)
(

if(s = t)
(

if (Mt[i](s](t) 1= 1)
(

}
}

5 = t =4;
multi[O) = 'Y';

else if (Mt[i][s](t) 1= 0)
(
s=t=4;
multi[O) = 'Y';

}

if (multi[O) = 'Y')
{

for (s = 0; s < 2; 5++)
for (t = 0; t < 4; t++)

nbox[i](s](t) = 0;

for (s = 0; s < 2; s++)

else

for (t = 0; t <= 3; t++)
for (u = 0; u <= 3; u++)

nbox[i][s][t) = nbox[i](s)[t) + Mt(i](t](u)*box[i](s](u);

for (5 = 0; 5 <= 1; s++)
for (t = 0; t <= 3; t++)

nbox[i][s](t) = box[i](s](t);

} while (code != 544);

for (5 = 1; 5 <= 3; 5++)
fscanf(inf, "%d" ,&face_no[i»;

fscanf(inf, "%d" ,&point_no);

for (5 = 1; 5 <= 8; 5++)
fscanf(inf, "%f' ,&step);

for (s = 0; s < poincno; s++)
(

fscanf(inf, "%f' ,&step);
for (t = 0; t < 3; t++)

fscanf(inf, "%f' ,&point[i](s](t»;
point[i](s](3) = 1;

if (multi[O] = 'Y,)

{
for (t = 0; t <= 3; t++)

npoint[i][s][t] = 0;

for (t = 0; t <= 3; t++)
for (u = 0; u <=3; u++)

105

npoint[i][s][t] = npoint[i][s][t] + Mt[i)[t][u]·point[i][s)[u];

else
for (t = 0; t < 3; t++)

npoint[i][s][t] = point[i][s][t];

fscanf(inf, "%f' ,&step);

for (5 = 0; 5 < face_noli]; 5++)
{

for (t = 0; t < 2; t++)
fscanf(inf,"%d",&Cp_no[i][s));

for (t = 0; t < Cp_no[i][s]; t++)
(

}

fscanf(inf,"%d",&p_Iabel[i] [s][t));
p_Iabel[iJ[s][t]--;

}
fclose(inf);

}

'* --- ., '* Store the collision infonnation in the linked list .,
1* data structure. ., ,. ------------------------------.:----------- .,
collision_store(i,i,cltail,md)
int i,j;
float md[3];
NODE3 ·cltail[N];
(

}

int 5;
NODE3·q;

q = malloc(sizeof(NODE3»;
q->part = j + 1;
for (5 = 0; 5 < 3; 5++)
q-><Id[s] =md[s];

q->next = NUll..;
cltail[i]->next = q;
cltail[i] = q;

'* --- *'
,. Derive the precedence relationships based on the *'
,. collision infromation. *'
1* ---------------------------------- ----- *'
precedence(list. node, colli)
NODE1 ·list;
NODE2 *node(N];
NODE3 ·colli[N];
(
FILE ·inf;

NQDEI *p, *q;
NODE2*r,
NODE3 *c, *cltail[N];
NODE4*U;
int a, e, i, j, Ie, 5, t, X, add, md[3], dis-Part.

pocc-p[N-l], count[N+l][N-l], liaison[N-l];
char repeat, collision;

if (option = 1 II option = 3)
(

106

fprintf(output, ''\nPrecedence Relationships :\n ");
fprintf(output,"-----------------------------------");

}
if (option = 2 II option = 3)
(

printf(''\nPrecedence Relationships :\n ");
printf(" -----------------------------");

}
for (i = 1; i <= N; i++)
for G = 1; j <= (N-2); j++)

count(i)[j] = 0;

for (a = 1; a <= (N-2); a++)
(

p = list;
do

(
for (i = 1; i <= 2; i++)
(
q=p;
if(i= 1)

else

{
dis-part = p->lpart;
pocc-p[O] = p->rpart;
for (t = 1; t <= a; t++)
(

}
}

(

q = q->right;
liaison[t) = q->lia;
pot_c-p[t) = q->rpart;

dis-J>3lt = p->rpart;
pocc-p[O] = p->lpart;

. for(t=l;t<=a;t++)
(

}
}

q = q->left;
liaison[t) = q->lia;
pocc-Plt] = q->lpart;

repeat = 'n';
if(a>=2)

(
u = pr[p->lia][I][I]->next;
while (u != NULL && repeat = 'n')
{

107
for(t= I; t<= a; t++-)

if (u->liaison = liaison[t])
{

}

t= 999;
repeat = 'y';

if (repeat = 'n')
u =u->next;

if (repeat = 'n')
{

}
}

for (t = 2; t < a; t++-)
{

for (5 = I; s <= count{p->lia}[I]; 5++-)
{

}

add = 0;
u = prfp->liaJ[lJ[s]->next;

while (u != NUU)
{
for (x = 1; x <= a; x++-)
if (u->liaison = liaison[x])
{

add++-;
x = 999;

u =u->next;
}

if(add=t)
{

}

repeat = 'y';
s = 999;

if (5 = 10(0)
t= 999;

if (repeat = 'n')
{

collision = 'y';
r = node[dis-part-lJ->next;
do
(
if (r->asso[OJ = p->lia II r->asso[lJ = p->lia)

(
for (t = 0; t < 3; t++-)
md[t] = r->dir[t);

collision = 'n';
c = colli[dis-part-I)->next;
do
(
if (md[OJ = c->dd[O] && md[l] = c->dd[I) && md[2J = c->dd[2J)

{
for (t = 0; t <= a; t++-)

108
if (c->part == pocc-p[t))
{

t = 999;
collision = 'y';

if (collision = 'n')
c = c->next;

} while (c 1= NULL && collision 1= 'y');

if (collision = 'y')
r = r->next;

else r = r->next;
} while (r 1= NULL && collision == 'y');

if (collision == 'y' && a = 1)
(

}

e= p->lia;
u = malloc(sizeof(NODE4»;
u->liaison =q->lia;
u->ncxt = NUlL;
prtail[e][a][l]->next = u;
prtail[e][a][l] = u;
if (option = 111 option = 3)

fprintf(output.'''n •••• L%d --> L%d",p->lia,q->lia);

if (option = 2 II option == 3)
printf('''n •••• U'od -> L%d",p->lia,q->lia);

else if (collision = 'y')
(

e = p->lia;
count(e)[a]++;

for(t = 1; t <= a; t++)
(

}

u = malloc(sizeof(NODE4»;
u->liaison = liaison[t);
u->next = NUll;
prtail[e][a][count(e][a]]->next = u;
prtail[e][a][count[e][a]] = u;

if (option = 1 II option = 3)
{

}

fprintf(output.'''n •••• L9'od --> (",p->lia);
for (t = 1; t< a; t++)

fprintf(output."L%d and ".liaison[t]);
fprintf(output, "L9'od)",liaison[a]);

if (option = 211 option == 3)
{
printf("'n •••• L9'od -> (",p->lia);
for(t= 1; t< a; t++)

printf("L%d and ".liaison[t]);
printf("L%d r.liaison[a));

)

}

}
)

p = p->right;
} while (p != list);

109

if (option = 1 " option = 3)
fprintf(output.'''n-------------------------------------'n'n'');

if (option = 2 " option = 3)
print£('''n------------------------------------'n'n'');

/* --- */
1* Generate all the possible assembly sequences based */
/* on the precedence relationships. */
/* --- ./
sequence(rank,seq)
int rank,seq[N+l];
(

int i.j.k.m.n.x.y.last.count.countl.check.temp.templ.temp2.temp3.length[3];
char ans.jump.quit.skip.found,change.keep_search;

NODE4 *\1, ·w[N-l];

if (rank <N)
(

for (i = 1; i <= N; i++)
(

if (rank = 1)
(

for(j= l;j<=N;j++)
(

jump='n';
u = pr[j][I][I]->next;
while (u 1= NULL && jump = 'n')
(

)

if (i = u->liaison)
(
j=N;
jump='y';

)
else u = u->next;

if (jump = 'n')
(

seq[rankl = i;
rank++;
sequence(rank.seq);
rank--;

)
)

else
(

skip='n';
for (j = 1; j <= (rank - 1); j++)
if (i = seq[j])
(

j = rank;
skip = 'y';

if (skip = 'n')
(

seq[rank] = i;
for G = 1; j <= N; j++)
{

)

jump='n';
change = 'n';
u = pr[j][I][I]->next;
while (u != NUll.. && jump = 'n')

if (i = u->liaison)
(

)

jwnp= 'y';

for(k= I;k <rank; k++)
ifG = seq[k))
(

k=rank;
change = 'y';

else u = u:>next;

if (change = 'y')
jump='n';

if Gwnp = 'y')
j=N;

if (jwnp = 'n')
(

keep_search = 'y';
if (rank < (N-I»

temp3 = rank;
else temp3 = rank - I;

for (x = 2; x <= temp3; x++)
(

for(j = I;j <=N;j++)
{
k=l;
skip='n';
keep_search = 'y';
w[1] = pr[j][x][k]->next;

while (w[1] != NUll.. && skip = 'n')
{

for (m = 1; m <= (x -I); m++)
w[m+I] = w[m]->next;

CO\Dlt=O;
. for(m=l;m<=x;m++)

for (n = I; n <= rank; n++)
{

if (w[m]->liaison = seq[n))

110

}
}

count++;
n=rank;

if (count != x)
{

}

k++;
if (Ie > 2)
w[1]=NUU..;
else w[1] = prij][x][kj->next;

else
{

}
}

skip='y';
keep_search = 'n';

for (y = 1; y < rank; y++)
if (j = seq[y))
{

y=rank;
keep_search = 'y';

111

if (skip = 'y' && keep_search = 'n')
{

}

}
}

if (rank = (N-l»
check=j;

j=N;
x = rank;

if (keep_search = 'y')
(

}

rank++;
sequence(rank,seq);
rank-;

else if (rank = (N-l)
(

for(n= l;n<=N;n++)
(

found = 'n';
for (x = 1; x <= rank; x++)

if (n = seq[x))
{

}

found = 'y';
x=rank;

if (found = 'n')
(
last = n;
n=N;

112

temp = abs(last - seq[rank]);
if (temp = 111 temp = (N-I»
(

}

rank++;
sequence(rank.seq);
rank--;

else
(

quit = 'n';
tempI = last;
temp2 = seq[rank);
length[l) = abs(tempI - temp2);
length[2) = N - length[I);

for (n = 1; n <= 2; n++)
(
count = 0;
for (x = I; x <= 2; x++)
{
k= 1;
found='n';
u = pr[tempI][length[xl][k)->next;

while (u != NUll.)
{
do
(

}

if (u->liaison = temp2)
found = 'y';

else u = u->next;
} while (u != NUll. && found = 'n');

if (found = 'y')
u=NUU..;

else
{

k++;
if (k > 2)

u=NU!l.;
else u = pr[tempI][length[xl Hk)->next;

}

if (found = 'y')
count++;

if (count = 2)
{

}

quit = 'y';
n=999;

if (quit = 'n')
if(n= 1)
{

}
}

}

}

}
}

)
else
(

}

113
temp = tempI;
tempI = lemp2;
temp2 = temp;

rank++;
sequence(rank,seq);
rank--;

else n = 999;
)

else
(

)
)

for(m= 1; m<=N;m++)
(

ans= 'n';
for (n = 1; n < rank; n++)
if (m = seq[n])
(

)

ans='y';
n=rank:;

if (ans = 'n')
{

seq[rank] = m;
m=999;

}
}

if (option = 1 II option = 3)
{

}

for (j = 1; j <= (N - 1); j++)
fprintf(oulput, "Ltfod -> ",seq[j]);

fprintf(oulput, "L%d\n",seq[N]);

if (option = 2 II option == 3)
{

}

for (j = 1; j <= (N - 1); j++)
printf("Ltfod __ > ",seq[j]);

printf("L%d\n",seq[N]);

