
_:£5 ?I 
/ 9 j'3 
f7~& 

c; ..7 

Computer controlled 

blood sampling system 

by 

Mark William Tschopp 

A Thesis Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE 

Interdepartmental Program: Biomedical Engineering 
Major: Biomedical Engineering 

Signatures have been redacted for privacy 

Iowa State University 
Ames, Iowa 

1993 

/ 



ii 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST OF TABLES 

ACKNOWLEDGEMENTS 

INTRODUCTION 

LITERATURE REVIEW 

MATERIALS AND METHODS 

Hardware 

Software 

OPERATION 

RESULTS 

CONCLUSION 

REFERENCES 

APPENDIX A 

APPENDIXB 

CCBSS PROGRAM LISTING 

COMPUTER CONTROLLED BLOOD 
SAMPLING SYSTEM USER'S MANUAL 

Ill 

IV 

v 

1 

2 

4 

4 

22 

30 

42 

45 

46 

47 

120 



iii 

LIST OF FIGURES 

Figure 1 Schematic of the CCBSS 4 

Figure 2 Right front view of the CCBSS 6 

Figure 3 Front view of the CCBSS 8 

Figure 4 Tube placement using three catheters per pig 10 

Figure 5 Tube placement using one catheter per pig 10 

Figure 6 The vacutainer rack 12 

Figure 7 The hypodermic needle and waste flask 15 

Figure 8 XY-18 table 16 

Figure 9 Z-2 table 16 

Figure 10 Valve conections 19 

Figure 11 The solenoid valves 21 

Figure 12 Voltage drop board circuit diagram and 
connections 23 

Figure 13 Electronic housing showing voltage 
drop board and relay board 25 

Figure 14 Flow chart of the computer program 27 

Figure 15 Valves showing the wait state 34 

Figure 16 Valves showing the waste and sample states 34 

Figure 17 Valves showing the saline push to completely 
fill the vacutainer 35 

Figure 18 Valves showing a flush of the lines on the pig 
side of the valves 36 

Figure 19 Valves showing a flush of the lines on the needle 
side of the valves 36 



IV 

LIST OF TABLES 

Table 1 Hardware List 

Table 2 Drop Down Menu Options 

Table 3 Sampling Procedure 

Table 4 Outline of Complete Sampling Cycle 

9 

31 

38 

41 



v 

ACKNOWLEDGEMENTS 

William Robertson is responsible for designing and acquiring the Computer 

Controlled Blood Sampling System hardware. I would like to thank Bill for all his help 

throughout the project. When I refer to we in the text, I am refering to Bill and me. I would 

also like to acknowledge Kyle Holland's design of the voltage drop circuitry and his 

electronic help with the project. And I would like to thank Lyle Kesl for his help doing the 

cutdowns and preparing the dogs for testing. 



INTRODUCTION 

The Computer Controlled Blood Sampling System (CCBSS) was developed to 

eliminate the need for a researcher to be present when blood samples are taken from a pig. 

Merck, a pharmaceutical company, had the need for such a device and was willing to provide 

a grant for the development. This system will allow the researcher to set the appropriate 

sampling times, administer a test drug to a pig, and then do other work or leave for home 

while the system takes blood samples automatically. After the sponsor changed its 

requirements several times and new designs were drawn up, the present design was chosen 

and the necessary materials were purchased to assemble the system. Basic language was 

selected to develop the software based on the fact that the library routines included with the 

stepper motors were written in Basic. Software had to be written for the user interface, 

control of a hypodermic needle mounted to XY and Z tables, and to control valves which 

direct the blood flow. 

The purpose for developing the CCBSS was to eliminate human intervention once the 

catheters have been inserted and a test drug administered to the pig. The situation requires 

that the pig(s) be confined to a very small pen to decrease the risk of having a catheter pulled 

out by the pig. Merck made several system requirement changes during the design phase. 

The current system was designed for two situations. The first situation uses three catheters 

in each pig, two venous and one arterial, with the ability to sample from two pigs. The 

second situation can sample from four pigs with one venous catheter in each pig. The system 

does not require that the maximum number of pigs be used in any given sampling cycle. The 

researcher can use the system for any number of pigs up to the maximum by entering the 

appropriate sampling times or lack of sampling times, indicating where no pig is present. 



2 

LITERATURE REVIEW 

Robotic, closed tube processing devices are only now becoming available in 

laboratories [l]. Very few automatic blood sampling systems have been documented; no 

papers were found on a stationary blood sampling device that samples without human 

involvement after the initial set up. 

The automatic blood sampling systems that have been developed have been designed 

for use with unrestrained animals. These devices have been used to sample from ducks and 

hens [2], Weddell seals [3], and greyhounds [4]. Each of these devices used a different 

method to collect and store the sampled blood. Scheid and Slama stored the sampled blood 

in a sampling catheter by simply kinking it, using a spring-loaded hinge which was operated 

by a magnet and activated by remote control [2]. Hill's multiple-sample collector collected 

blood from seals in amputated 20 ml syringes containing their rubber plungers from which the 

handles had been removed [3]. Schmalzried et al. constructed their own blood collection 

receptacles using a latex balloon within a 20 ml plastic syringe, and evacuating the tube [ 4]. 

These three systems were able to collect relatively few blood samples during a single testing 

session. Scheid and Slama's device was able to collect only one sample per testing session, 

Hill's, nine samples, and Schmalzried et. al. , eight samples. 

Glass evacuated blood-drawing tubes have been the standard device for obtaining 

blood from patients for clinical laboratory testing since the 1950s [ 1]. A vacutainer will pull 

in just enough blood to fill itself As the vacutainer fills with blood, the vacuum disappears, 

and it is impossible to overfill it, even when the blood is under relatively high pressure. This 

allows a precise blood sample to be taken very easily and quickly. Vacutainers can also be 

purchased in a variety of sizes and diameters, which allows for various sample volumes. 

Stepper motors afford simple means for controlled remote positioning of many 

devices. They are used in clocks, elapsed time indicators, pen drives for plotting curves, 



3 

indexing control, drivers for watt-hour meters, and many other applications [5]. A stepper 

motor is a special type of motor that lends itself to precise positioning under digital computer 

control (6]. The MD-2 Dual Stepper Motor Package from Arrick Robotics provides all of 

the components necessary to operate stepper motors from an IBM style personal computer 

including electronics, power supply, motor cables, software, and documentation. To provide 

three axis positioning, an 18 inch XY table and a 2 inch Z table are also available from Arrick 

Robotics, designed to be used with the MD-2 Dual Stepper Motor System. 



4 

MATERIALS AND METHODS 

Hardware 

A schematic of the system is shown in Figure 1 and photographs of the complete 

system are shown in Figures 2 and 3. Table 1 contains a list of all the hardware components 

that were used to develop the CCBSS. It was decided to store the blood in vacutainers 

pretreated with EDT A, an anticoagulant. Vacutainers allow a sample of a given amount of 

blood to be drawn easily and accurately. The vacuum will draw just enough blood to fill the 

tube. Our contact at Merck told us that the maximum number of samples that would be 

taken during any particular testing session was 72. We decided to construct a rack capable of 

•• 
PC T z 

I 
a 
x 

s 
1 

Electronic 
housing 

Saline support 
rod 

+------ X-axis ---

Figure 1 Schematic of the CCBSS 

-Y-axis-+ 



Figure 2 Right front view of the CCBSS 



9 



Figure 3 Front view of the CCBSS 



8 



Table 1 Hardware List 

IBM compatible personal computer (PC) (386) 
with Monitor, Keyboard, and Mouse 

Second parallel card 
CyberResearch, Inc. Digital 1/0 board 

2 Parallel cables 
I Ribbon cable ( 14 line) 

Arrick Robotics: 
XY-18 table 

9 

Z-2 table and BR-2 rig.ht angle mounting bracket for vertical mounting of the Z-2 
2 MD-2 Dual Stepper Motor Systems 

includes stepper motors and 3 motor cables 

Stand approximately 29.S"W X 22''D X 29.75"H 
w/ aluminum bottom and saline support rod 

I 00 Tube Plexiglas vacutainer rack, large diameter vacutainers 
100 Tube Plexiglas vacutainer rack, medium diameter vacutainers 

Erlenmeyer Oask w/ vacuum port and stopper assembly 
Stopper assembly: large rubber stopper w/ hole, 

syringe barrel, 
silicon septum 

Reciprocating pump 
functions as compressor and vacuum pump 

Electronic housing containing: 
5 and 12 volt power supply w/ fan 
CyberResearch, Inc. Relay board w/ 8 relays 
Voltage drop board 

Mounted on the rear: 

( Gast, model OOA) 

1 six inlet Teflon PTFE solenoid manifold valve (Cole Parmer, CP# 0 1367 - 83 ) 
2 three-way Teflon PTFE solenoid valves ( Cole Parmer, CP# 0 1367 - 72 ) 

Pressure cuff for saline bags 
3 Liter and 1 Liter 

Hypodermic needle (16 gauge) and mounting bracket 

Hypodermic needle fork 

Teflon tubing and fittings 

Polyether catheters with Luer locks 

rv line set 

Silastic tubing 



10 

holding 100 vacutainers, a 10 hole by 10 hole rack. The extra holes allow for future changes 

in the number of samples and allow the researcher to easily differentiate between samples 

from different pigs. When the system is set to use three catheters per pig, two pigs 

maximum, the vacutainer rack is divided as shown in Figure 4, with pig #1 samples being 

toward the inside of the stand. In this mode, the blood sample from catheter one is stored in 

every third vacutainer, starting with tube #1. Samples from catheter two are stored in tubes 

#2, 5, 8, 11 , etc. Figure 5 shows how the vacutainers are divided between pigs when the 

system is set for sampling using one catheter per pig and a maximum of four pigs. Figure 6 

shows a photograph of the rack. The original vacutainer rack was milled to hold 7 ml or 15 

ml large diameter vacutainers. A second vacutainer rack was constructed with the top piece 

of Plexiglas milled with smaller diameter holes to allow the researcher to also use medium 

diameter vacutainers. The vacutainer rack is held in position by two pins, the racks can be 

easily interchanged by lifting one rack off the pins and replacing it with the other vacutainer 

rack. A hypodermic needle, shown in Figure 7, is required to penetrate the rubber top of the 

vacutainer and supply the blood path. The hypodermic needle needed to be movable 

r,..110 

••••••••• •••••••••• •••••••••• 0000•••••• 
0000000000 •••••••••• •••••••••• •••••••••• 0000•••••• 

000000000 

Tub• • ll 

• Plcll 

• Plc*l 

D N'otU••4 

Figure 4 Tube placement using three 
catheters per pig 

• ••••••••• 00000000•• • ••••••••• 00000000•• 
@@)@)@@®®®@© 
00000000@® •••••••@•• 0000000099 
0000000000 
0000000000 

• Plc•l 

• Pic*l 

CTI PlclJ 

II l'llN 

D N•t Uud 

Figure 5 Tube placement using one 
catheter per pig 



Figure 6 The vacutainer rack 





13 

movable to each vacutainer and the Erlenmeyer waste flask. The waste flask, shown in 

Figure 7, provides a storage container for waste saline and blood that is flushed out of the 

lines during sampling. The plastic waste flask is equipped with a vacuum port. A vacuum 

pump is attached to the waste flask vacuum port using a section of Silastic tubing. The 

vacuum pulls the blood and saline through the lines and into the waste flask. The waste flask 

also uses a syringe barrel, containing a silicon septum, within a large rubber stopper. The 

syringe barrel, above the silicon septum, can then be filled with Novosan to rinse the needle 

every time the needle pierces the silicon septum. The silicon septum was used because it is 

capable of receiving many more needle piercings before deteriorating, than a vacutainer 

stopper. The task of moving the hypodermic needle was accomplished by mounting the 

hypodermic needle on XY and Z tables controlled by stepper motors. 

The XY-18 and Z-2 tables were purchased from Arrick Robotics along with two MD-

2 Dual Stepper Motor Systems. The motor drivers are connected to the IBM compatible 

personal computer via two parallel cables, one for each motor driver. A second parallel 

board was purchased and installed in the PC for this purpose. Each motor driver is capable 

of controlling two motors. The manufacturer, Arrick Robotics, does not have a triple stepper 

motor driver available, so we were forced to purchase two dual stepper motor drivers. This 

gives us the ability to control four motors, but we are only using three. Each stepper motor 

is connected to a motor driver via a motor cable, supplied with the motor drivers. The motor 

cable also carries the limit switch signal, which is used to move the motor to the "home" 

position. The dual stepper motor drivers should be connected to the PC so that the motor 

driver connected to the original parallel port (left as viewed from rear of PC) is also 

connected to the X axis (left to right movement) stepper motor via motor 1 motor cable and 

to the Z axis (vertical movement) stepper motor via motor 2 motor cable. The other motor 



Figure 7 The hypodermic needle and waste flask 





16 

driver should be connected to the installed (right) parallel port with motor 1 motor cable 

connected to the Y axis (front to back movement) stepper motor. 

The XY-18 table is shown in Figure 8 and the Z-2 table is shown in Figure 9. The Z-

2 table was mounted to the XY-18 table using the BR-2 bracket, allowing for motion in all 

Figure 8 XY-18 table. From Arrick 
Robotics advertising flyer 

.. 
I 

Figure 9 Z-2 table. From Arrick 
Robotics advertising flyer 



17 

three coordinate directions. During initial testing of the system, the X axis was found to bind 

and require a push to start moving. This was not acceptable; the tables could never bind; 

they must always move exactly as expected ifthe system is going to require no human 

involvement during sampling. Eventually, the bronze bearings were bored 1/1 OOOth of an 

inch, and the steel shafts were aligned using a large caliper. This eliminated the binding and 

then all axes could be precisely controlled without failure. 

A stand, approximately 29.5" wide by 22" deep by 29.75" high, was manufactured 

from square steel tube to invert the XY and Z tables. The XY table frame was mounted to 

the stand upside down using four bolts to invert the XY and Z tables. A hypodermic needle 

was mounted to a bracket, which was then mounted to the Z table. The hypodermic needle 

could now be moved about above the vacutainers, vacutainer rack, and waste flask. A fork 

was mounted to the Z table frame so that the hypodermic needle can pass through the fork 

opening when it is driven into a vacutainer or the waste flask. When the needle is removed 

from the vacutainer (or waste flask), the fork keeps the vacutainer (or waste flask) from 

rising with the needle keeping it in its proper position. 

The stand was manufactured with an adjustable saline support rod and an aluminum 

bottom was attached to the stand. We then placed pins in the aluminum bottom to locate the 

vacutainer rack and the flask rack in the proper positions. The flask rack was positioned so 

that the flask opening was centered below the hypodermic needle when both axes of the XY 

table were in the "home" position. The "home" position of a table is that position which 

results when the table is moved and triggers the limit switch and then the table is moved in 

the opposite direction only enough to deactivate the limit switch. 

The vacutainer rack was located such that the rightmost column of holes in the 

vacutainer rack is centered under the hypodermic needle when the X axis of the XY table is 



18 

in the "home" position. Extreme care was taken to assure that the vacutainer rack was 

positioned square with the XY table. This allowed for the development of two equations for 

positioning the hypodermic needle above any of the vacutainers and eliminated the need to 

find the location of each vacutainer by trial and error and then store the values for future 

reference. Each vacutainer center is located 170 motor steps, in the X or Y direction, from 

the center of the vacutainer adjacent to it. The following equations were used to position the 

hypodermic needle based on the tube number: 

COLUMN (X axis) = ((tube - 1) mod 10) * 170 

ROW (Y axis) = 1070 + ((tube- 1) \ 10) * 170 

where tube 1 is in row 1, column 1 (innermost, rightmost tube), tube 2 is in row 1, column 2, 

tube 11 is in row 2, column 1, etc., shown in Figure 4. The tube number is determined by the 

number of catheters per pig being used, the pig number, the catheter being sampled from, and 

which sampling sequence is being taken (1-12). 

The saline support rod described earlier was included in the design to provide a place 

to hang a saline bag within a pressurized cuff The saline is needed to flush the catheters, 

valves, and Teflon tubing after each sample is taken. This procedure will keep blood from 

different pigs from mixing and also keep the catheters patent (free from clotting). The 

pressurized cuff is required to push the saline through the catheters, valves, and tubing, 

especially when samples are being taken from an artery. The pressurized cuff must be able to 

push the saline against the arterial pressure, 150 mm Hg seemed to be appropriate when the 

system was tested. The pressure for the cuff is supplied by the compressor function of the 

reciprocating pump. 

Several valves are necessary to control the flow of blood and saline. A six inlet, one 

outlet, Teflon PTFE solenoid manifold valve (Cole Parmer CP# 01367 - 83) and two three-

way Teflon PTFE solenoid valves (Cole Parmer CP# 01367 - 72) were purchased from Cole 



19 

Parmer. The inlets of the six inlet valve are labeled 1 through 6, starting with 1 in the upper 

right (1 o'clock position) and increasing clockwise: 2 is the right inlet, 3 the lower right, 4 the 

lower left, 5 the left, and 6 the upper left. When one catheter per pig is being used, catheters 

1 through 4 should be connected to pig #1 through pig #4, respectively, if the pig is present. 

Catheters 5 and 6 are never used in this mode. When sampling using three catheters per pig, 

catheters 1 through 3 should be used in pig # 1, and catheters 4 through 6 are used to sample 

from pig # 2. These valves are connected as shown in Figure 10, and Figure 11 shows a 

Six inlet valve 

To Saline 

Pig#l 
--------~( Catheter 1 ) 

Figure 10 Valve connections 

Hypodermic y 
needle I 



Figure 11 The solenoid valves 



21 



22 

photograph of the valves. Solid state relays are required to control each of the valves, eight 

total. A relay board with eight relay sockets, eight relays, an VO board and a ribbon cable 

were purchased from CyberResearch, Inc. The VO board was installed in the IBM 

compatible PC. The ribbon cable is used to connect the VO board with the relay board. 

It was recommended by the valve manufacturer that the voltage to the valves be 

decreased from 12 volts if the valves were to remain open for more than two minutes, to 

avoid overheating. We decided that this was a good idea and constructed a voltage drop 

board, the circuit diagram is shown in Figure 12. There are eight identical circuits on the 

board, one for each relay I valve combination. The function of this board is to supply a valve 

with the voltage required to open the valve, 12 volts, when the relay first switches on for 

approximately one second. After this time, the voltage is decreased to approximately 3.8 

volts, which is enough to keep the valve open without the risk of overheating. 

An electronic housing equipped with a 5 and 12 volt power supply and cooling fan 

was purchased to mount the relay and voltage drop boards. A photograph of the inside of 

the electronic housing is shown in Figure 13. The valves were mounted to a piece of 

Plexiglas which was then attached to the rear of the electronic housing. The 12 volt power 

supply voltage sourcing the relays was measured to be only 11.04 volts. This 11.04 volts 

was decreased to 9 .21 volts across the voltage drop circuitry before reaching the valves. It 

was discovered that 9 .21 volts was not enough to open some of the valves, a voltage closer 

to 12 volts was required. It was necessary to load the 5 volt source with a 10 n, 25 watt 

resistor for the power supply to source 12.40 volts to the relays and 10.6 volts to the valves, 

enough to reliably open the valves. 

Software 

The accompanying software from Arrick Robotics to control the stepper motors was 

written in Basic. Basic was chosen based on this. An important consideration for this 



TO VALVES 

1' 
1800 

IN4001 ;&: 

I 
D 

IN4148 

RELAY 

+12V 

Figure 12 Voltage drop board circuit diagram and connections 

2.2µF 

470KO 

+SV 

I Voltage 
Drop 

I Board 

I Relay 

1
Board 

J 



Figure 13 Electronic housing showing voltage 
drop board and relay board 





26 

project's software was that it should be as user friendly as possible. The assumption was 

made that the researchers who would be using this application had little computer experience. 

The decision to use Visual Basic for MS-DOS was made after reviewing the Visual Basic 

Programmer's Guide [7] . Visual Basic provides the programmer with the ability to create 

screen forms very easily and quickly. The form design tool is object oriented and allows the 

programmer to place text fields, command buttons, labels, etc. on the screen form to create a 

user interface very easily. This eliminates the need to write the code to create these features, 

only the code that executes based on using the features needs to be written (event-driven 

programming). Menu bars and windows can be created just as easily using Visual Basic. 

These features allow the programmer to create a user interface that is simple to use even for 

the novice computer user. Some knowledge of Windows based software is helpful to know 

how to click and double click objects, chose menus and options, etc., but this knowledge can 

be acquired through some experimentation with the application. 

A flow chart of the computer program is shown in Figure 14. The program is divided 

into three modules, each of which contains several sub procedures. Declaration of sub 

procedures, variables, arrays, etc. are included at the module level. The CMNDLG.BAS and 

CMNDLGF.FRM modules are provided with Visual Basic; these modules were used to 

acquire the necessary file information needed to save and retrieve sample times from a data 

file. The software provided by Arrick Robotics to control the stepper motors is contained 

within the take_ sample procedure. 

Visual Basic executes certain procedures automatically when a specific event occurs. 

For example, when the menu option New (CtlName = rnnu_new) is chosen by the user, by 

clicking on it, Visual Basic automatically performs the sub procedure rnnu _new_ click if it is 

present. The sub procedure form _load is performed automatically when the program is run; 

this allows the programmer to set initial screen parameters, variables, or perform any 



27 

- modebuilon -Options 
,--r------r--~....,..----.---Run--, DUplay drop down Chqe button label 

'how appropriate pig 
time 'qua:re' 

square 

times after the 
user has verified 
Uli3 choice 

N 

Save the cunent 
camp !in g times in 
a da1a file named 
b the user 

Assign entered time 
to the proper variable 

menu wilh Show Clock 
& Check Times options 

Display drop down menu 
with Start Sampling. Prime, 
& Shut Down option' 

Display drop down 
menu with New, Open, 
Save, & Exit opliom 

Oet u'ei' ' 
Response 

• Start 
amp ling 

- Check •Show 
Times Wait 

Retrive sampling times 
from a d.\14 file choun 

Display I hide 
syslem clock 
to user screen 

Times 

by the user 

Control the solenoid 
valves to flush the 
needle catheler and 
then each of the six 

End the application inlet cathelers 
a!Ur giving the user 
a last opportuni1y to 
save sampling limes Verify that limes Control the solenoid 

End 

meet sysum 
requirements 

valves to push 'aline 
through each of the six 
inlet caiheteu to remove 
air ft om the line c 

y 

Verify Lhat limes 
meet sy'lem 
requirement. 

Display I hide 
wait limes table 
to user screen 

Figure 14 Flow chart of the computer program 



28 

~-------------iDisplay message Display message 

Display sampling 
initialed time to 
users sere en 

two_hog ~ - - - - - -
.-----"--------. 
Determine which nmple 
is to be taken next. and 
wait for the appropriete 
ti.me to oe eu.· 

Control the three stepper 
motors and solenoid valves 
lo take the appropriate sample 
in lhe proper vacutainet' 

-1 four_hog 

Determine which sample 
is to be taken next and 
wait for the appropriete 
ti.me to oecuc 

Control the three stepper 
motors and solenoid valves 
to lake lbe appropriate sample 
in lhe proper vac:utainer 

y 

Figure 14 (continued) 



29 

important initialization procedures, such as initializing the 110 board. The CCBSS program 

listing can be found in Appendix A. The compiled assembly language program provided with 

the 1/0 board was used to create a . QLB file to be used by the Visual Basic program. The 

autoexec.bat file on the PC was modified to run the CCBSS application automatically when 

the PC is turned on. If the program is exited, the user will be in Visual Basic. To run the 

application from this point, the user can select start from the run drop down menu. If the 

user is in DOS, the application can be restarted by typing "sampling" and hitting Enter. When 

an executable version ( .EXE file) of the application was created and run, the stepper motors 

simply buzzed without moving. It is believed that this problem is due to the faster compiled 

version switching the stepper motor phase windings on and off too fast, not allowing the 

motor enough time to tum. 



30 

OPERATION 

Once all the cables have been properly connected, the IBM compatible PC should be 

turned on first. Then both stepper motor drivers, the switch on the front of the electronic 

housing, and the reciprocating pump can be turned on. The CCBSS application will appear 

showing the user interface screen. Initially, the screen shows four rows of twelve squares 

each, labeled pig #1 through pig #4. The sampling times are to be entered in these squares. 

In order to enter a time in a particular square, move the mouse pointer to that square and 

click on it. The cursor will appear in the square for the user to enter a sampling time. The 

Tab key can also be used to move from square to square while entering sampling times. The 

sampling times are entered as the number of minutes after sampling is started that the sample 

should be taken. If a sample is to be taken an hour and a half after sampling starts, for 

example, 90 should be entered in the appropriate square. Fractions of minutes may be 

included in expressing the sampling time, for instance, 24.5 could be entered. No squares 

should be left blank between sampling times in any particular row. There is a command 

button located toward the top of the screen at all times, which allows the user to switch 

between modes using one catheter or three catheters. When the application is set to sample 

using one catheter per pig, the initial setting, all four pigs are listed on the screen and the 

button is labeled "2 pigs w I 3 catheters". By clicking the button, the user can switch to 

sample using three catheters in each pig. When in three catheters mode, only pig # 1 and pig 

#2 are listed on the screen, and the button label changes to "4 pigs w I 1 catheter" . 

A menu bar is located at the top of the screen with three selections: File, Run, and 

Options. A drop down menu will show several options when each of these selections are 

clicked. Table 2 shows all of the options in each of the drop down menus. The File selection 

drop down menu contains the options: New, Open, Save, and Exit. The New option clears 

the current times for all pigs; all squares will be shown blank. A warning window appears 



Table 2 Drop Down Menu Options 

File drop down menu 
New 
Open 
Save 
Exit 

Options drop down menu 
Show Clock 
Check Times 
Show Wait Times 

Run drop down menu 
Start Sampling 
Prime 
Shut Down 

31 

before clearing to verify that the user wants to erase the current sampling times. The Save 

option stores the current sampling times in a data file on disk. A window appears to request 

the file name and path as well as the drive, C or A (internal or 3. 5 inch floppy drive, 

respectively). The Open option allows the user to retrieve previously saved sampling times 

from disk. A window requesting the file, path, and drive will also appear for this option. The 

Open and Save options allow the user to enter a set of frequently used sampling times only 

once, save the times, and then retrieve them whenever the times are to be used again. The 

Exit option stops the application and returns the user to Visual Basic. Before exiting the 

application, a warning window appears giving the user a last chance to save any sampling 

times that are currently entered. 

The Options drop down menu contains three choices: Show Clock, Check Times, and 

Show Wait Times. The PC system clock is shown in the upper right of the screen. The user 

can chose not to display the clock by clicking on the Show Clock drop down menu option. 



32 

The dot to the left of the show clock option will disappear as will the time on the screen 

form. The clock can be displayed in the same manner if it has been previously hidden. The 

time on the screen form and the dot to the left of the Show Clock option both reappear when 

the Show Clock option is clicked at this point. The system clock can be changed by exiting 

the application, exiting Visual Basic, typing "time" at the system prompt, and then entering 

the new time in the same format as the current time, shown on the screen. 

The Check Times option allows the user to verify that the current sampling times 

meet the system requirements. When sampling using one catheter per pig, every sampling 

time must be at least 2 minutes apart from every other sampling time. This 2 minutes allows 

enough time to take a sample and be ready to take the next sample. When the system is set 

to take samples using three catheters per pig, sampling times are required to be at least 6 

minutes apart. In this mode, three blood samples are taken during each sampling sequence, 

thus the minimum amount ohime between sampling sequences is tripled. If the sampling 

times meet the system requirements, a message is displayed in a window indicating the 

approval of sampling times. The user should click on the OK button within the window after 

the message has been read. If the sampling times do not meet the system requirements, a 

message is displayed to the user in a window to indicate that times must be altered before 

sampling can begin. Included in the message is a suggestion as to which pigs and columns 

the user should examine to correct the problem. 

When the system is set to sample using three catheters per pig, the sampling times for 

pig #3 and pig #4 are not displayed and are not used during sampling. But if sampling times 

have been entered for pig #3 and pig #4, the times must meet the requirement of being at 

least 6 minutes apart from all other times, even though they are not used. The best advice is 

to leave the times of pig #3 and pig #4 blank when sampling using three catheters. The Show 

Wait Times option will be discussed after the sampling operations have been described. 



33 

The options in the Run drop down menu are Start Sampling, Prime, and Shut Down. 

The Start Sampling option, when clicked, executes the Check Times routine to verify that the 

sampling times meet system requirements before sampling begins. When the sampling times 

meet system requirements and the user clicks the OK button, the time that sampling began is 

displayed on the screen above the current time. From this point on, the program waits for the 

next sampling time to occur. The sampling times cannot be changed after the start sampling 

option has been selected. 

When a sampling time occurs, the user interface is removed from the screen and the 

hypodermic needle is moved to a position above the waste flask and is driven down through 

the silicon septum. All stepper motors are powered down (motors' phases are turned off) 

after they are run, keeping the motors and dual stepper motor drivers cool. At this time, the 

valves are changed from being all closed, the wait state, Figure 15, to the waste state, where 

the two three-way valves are both open and one inlet of the six-inlet valve is open, Figure 16. 

Blood is represented by light shading and saline by dark shading in these valve diagrams. The 

vacuum line attached to the waste flask pulls blood from the pig through the catheter 

attached to the open inlet of the six-inlet valve and removes the saline from the lines, 

replacing it with blood. Then, the open inlet of the six-inlet valve is closed and the 

hypodermic needle is removed from the waste flask. The hypodermic needle is then moved 

to a position above the correct vacutainer, which is determined by the number of catheters 

per pig being used, the pig number, the catheter being sampled from, and which sampling 

sequence is being taken (1-12). The hypodermic needle is driven through the vacutainer 

stopper at this time and the same inlet of the six-inlet valve is reopened, the sample state, 

shown in Figure 16. The vacutainer pulls the blood through the lines and almost fills the 

vacutainer with blood. Three-way valve A is then closed and the pressure from the saline 

forces some of the blood in the line into the vacutainer to fill it to an appropriate level, shown 



34 

Saline 

Pig 

Figure 15 Valves showing the wait state 

i 

Figure 16 Valves showing the waste and sample states 



35 

Figure 17 Valves showing the saline push to completely fill the vacutainer 

in Figure 17. At this point, three-way valve Bis closed, three-way valve A is opened, and the 

open inlet of the six-inlet valve remains open. The pressure on the saline bag forces saline 

through the lines and valves as shown in Figure 18, to flush the blood in the lines on the pig 

side of the valves back into the pig. While the pig side lines are being flushed, the 

hypodermic needle is removed from the vacutainer, returned to a position above the waste 

flask, and driven through the silicon septum of the waste flask stopper assembly. The open 

inlet of the six-inlet valve is then closed, three-way valve A is closed, and three-way valve B 

is opened, causing saline to flush the blood in the lines on the needle side of the valves into 

the waste flask, shown in Figure 19. 

All valves are then closed; the hypodermic needle remains in the waste flask. The six-



36 

Figure 18 Valves showing a flush of the lines on the pig side of the valves 

Figure 19 Valves showing a flush of the lines on the needle side of the valves 



37 

inlet valve, regrettably, is not a zero dead space valve; some residual blood can remain in the 

valve. To remove this blood and avoid damaging the valves, all six inlets are opened, as are 

both three-way valves. Blood from each pig or saline from a container is drawn about half-

way through each catheter, three-way valve A is closed, all inlets of the six inlet valve are 

closed, and the needle side lines are flushed. Three-way valve A is then opened, three-way 

valve B is closed, and each inlet of the six inlet valve is opened one at a time to flush the 

blood or saline in the catheters back into the pig or saline container. All inlets and valves are 

then closed and the hypodermic needle is removed from the waste flask. Because of this 

routine to remove any residual blood from the six-inlet valve, six catheters must always be 

connected to the six-inlet valve and any unused catheters should be placed in a container of 

saline. The sampling procedure is summarized in Table 3. 

The third option in the Options drop down menu, Show Wait Times, allows the user 

to modify the time delays for drawing waste, flushing back into the pig, and the pull and push 

times for cleaning out the six inlet valve. When the Show Wait Times option is selected, a 

table of delay times will appear below the rows of sampling times, and a dot will appear next 

to Show Wait Times menu option. If the table of delay times is currently shown on the user 

screen, selecting Show Wait Times will remove the table from the screen and remove the dot 

next to the menu option. The four delay times mentioned above can be set individually for 

each of the six catheters. The waste time delay is the time that the hypodermic needle 

remains in the waste flask at the beginning of sampling when blood and saline are pulled 

through the catheter. The flush time delay is the amount of time that saline is pushed back 

into the pig after the needle has been moved from a vacutainer to the waste flask. The pull 

time delay is the time in which blood is drawn into each of the catheters to agitate the six inlet 



38 

Table 3 Sampling Procedure 

Remove user interface from the screen 

Move needle to home position and drive into waste flask 

Open both three-way valves and one of the six inlets 

Wait (variable) to remove saline and fi ll lines with blood 

Close the open inlet 

Remove the needle from waste flask, move above the correct vacutainer, and drive into vacutainer 

Reopen inlet 

Wait for vacutainer to draw blood sample 

Close three-way valve A 

Wait to push extra blood into vacutainer 

Open three-way valve A, close three-way valve B 

Remove the needle from vacutainer, move to home position, and drive needle into waste flask 

Wait (variable) to flush blood out of lines on the pig side of valves 

Close open inlet, close three-way valve A, open three-way valve B 

Wait to flush blood out of lines on the needle side of valves 

Open both three-way valves and all inlets 

Wait (variable) to draw blood or saline partially up all six catheters 

Close three-way valve A and all inlets 

Wait to flush out lines on the needle side of valves 

Close three-way valve B, open three-way valve A, and open each of the six inlets one at a time (Wait, 
variable, for each catheter to flush back into the pig) 

Close aJl valves 

Remove needle from waste flask 



39 

valve, and the push time delay is the time that saline is then pushed through each of the six 

catheters to force the blood back into the pig(s). 

The catheter sizes used, the blood vessels (arteries or veins) used, and the pigs' blood 

pressure are all possible factors that may require the user to adjust the delay times. A small 

catheter will not allow as much fluid as a larger catheter to flow through in a given amount of 

time at a given pressure. This decrease in fluid flow requires the blood and saline to be 

drawn and flushed for a longer period of time for the same volume of fluid to pass through. 

When sampling from an artery or a pig with high blood pressure, less time is needed to draw 

blood, but more time is needed to push blood and saline back into the pig because of the 

increased pressure. The user should try catheters of various sizes in various sampling 

arrangements to become familiar with the time delay changes that may be required in 

situations that vary from the usual. However, when the delay times are lengthened, the 

Check Times routine will no longer be accurate. The user must check the time duration of an 

individual sample and make sure that an appropriate amount of time is allowed between 

samples, so that one sample procedure ends before the next begins. 

The second option in the Run drop down menu is Prime. This routine should be 

performed before any catheters are connected to the pigs. The Prime routine flushes saline 

through the six catheters connected to the six inlet valve to remove any air and fill the lines 

with saline. It is suggested that all six catheters be placed in a large container of saline and 

then choose the Prime option. Three-way valve A is opened and then each of the inlets of the 

six inlet valve are opened, one at a time. The pressurized saline bag then forces saline through 

all six of the catheters for approximately 5 seconds each. All of the valves are then closed. 

At this point, the catheters can be connected to the pigs; any unused catheters should remain 

in the saline container as described earlier. 



40 

In the Run drop down menu, the third option is Shut Down. This routine should be 

performed when sampling is completed. The valves need to be flushed with sterile water to 

remove the saline from the valves. It is possible for the salt to precipitate out of the saline if 

the saline remains in the valves for an extended period of time. The salt can then damage the 

valve diaphragm causing the valve to leak and require a replacement. Before this option is 

chosen, the catheter connected to the saline bag should be placed in a bag of sterile water, 

which is within the one liter pressure cuff, and the compressor air line should be changed 

from the three liter cuff to the one liter cuff. The catheters from the six inlets of the six inlet 

valve and the catheter to the hypodermic needle should be placed into a container to collect 

the waste sterile water. When the shut down option is chosen, the sterile water is pushed 

through the needle catheter by opening three-way valve B. The six inlets of the six inlet valve 

are then flushed one at a time by opening three-way valve A and each of the six inlets of the 

six inlet valve in succession. The flushing of these seven catheters is repeated four times. All 

the valves are closed, the valves and lines should be free of saline and blood, and the PC, dual 

stepper motor drivers, reciprocating pump, and electronic housing may be turned off. Table 

4 contains an outline of the complete sampling cycle. 



41 

Table 4 Outline of Complete Sampling Cycle 

I . Follow hardware setup procedures 

II . Prime the six inlet catheters 

III. Choose one or three catheters per pig 

IV. Modify sampling wait time delays if necessary 

V. Enter sampling times 

VI. Check sampling times, correct if necessary 

VII. Insert catheters in pigs, leave unused catheters in saline container 

VIII. Start Sampling 

IX. Inject drug when appropriate 

X. Wait for sampling cycle to complete 

XI. Remove catheters from pigs and hypodermic needle and place in a waste 

container 

XII . Connect sterile water in place of saline 

XIII. Perform Shut Down procedure 



42 

RESULTS 

The CCBSS is capable of taking samples from two pigs with two catheters each, as 

well as the two modes of operation that the system was designed for, one catheter per pig 

and three catheters per pig. Sampling from two pigs, using two catheters in each pig, can be 

accomplished in either one catheter per pig mode or three catheters per pig mode. The most 

efficient method, saving time and vacutainers, is to use the one catheter per pig mode. Use 

pig #I and pig #2 on the user screen to set the sampling times for catheter #I and catheter 

#2, respectively, for one pig. Then use pig #3 and pig #4 user screen sampling times to 

sample from a second pig, catheter #1 and catheter #2, respectively. In most situations, it 

would be desirable that for each pig #1 sampling time, a pig #2 sampling time is two minutes 

later, and that for each pig #3 sampling time, a pig #4 sampling time is two minutes later than 

that time. In this way, the two samples from a single pig would be taken so that the second 

sample is taken immediately after the first. If connected properly, blood samples taken using 

pig # 1 sampling times (pig 1, catheter 1) will be stored in the vacutainers for pig # 1. Pig 1, 

catheter 2 samples will be taken in pig #2 vacutainers, pig 2, catheter 1 samples in pig #3 

vacutainers, and pig 2, catheter 2 samples in pig #4 vacutainers. 

The system was first tested using a beaker of dog blood. The flushing and sampling 

periods were adjusted to allow enough time to perform the function without wasting excess 

time, saline, or blood. During this testing, it was discovered that some residual blood was left 

in the six inlet valve. Therefore, the additional flushing routine, described in the Operations 

section, was developed and implemented. After using this routine, no residual blood was 

seen leaving the six inlet valve during the next sample. Six small flasks were partially filled 

with dog blood heated to approximately 3 7° C to simulate the six different sources when 

three catheters per pig are used in two pigs. Confident that the system was operating 

properly, we proceeded to test the system using live animals. 



43 

A 70 pound greyhound was used to test the system; a catheter was placed in both 

femoral veins and both jugular veins to simulate four pigs with one catheter each. Sections of 

the procedure were video taped, and the complete procedure progressed relatively smoothly. 

A timing change was made to account for the dog being at the same height as the valves and 

the venous pressure. A Swans Ganz catheter was used to see if the system would operate 

correctly with a smaller lumen catheter. It was discovered that much more time is needed to 

draw and push blood through this smaller catheter. A new option was developed to allow the 

user to adjust the timing for each catheter depending on catheter size and blood vessel 

pressure. 

The Show Wait Times option was added, which shows a table of wait times on the 

bottom of the user screen, allowing the user to modify the sampling procedure for each 

catheter. The user can change the amount of time that waste is pulled, the catheter flush 

time, and the pull and push times during the six inlet valve flush. A smaller catheter will 

require longer times for each of the parameters. The blood volume rate through a smaller 

catheter is lower and thus requires more time for the same amount of blood or saline to pass 

through it. If a catheter is placed in an artery, the two blood pull times should be decreased 

and the two push or flush times increased. The higher pressure of the artery makes the blood 

flow out of the animal much faster, thus requiring less time for the pull operations. But the 

increased pressure of the artery also makes it more difficult to push blood and saline back 

into the animal, thus requiring more time for blood push operations. 

A second 70 pound greyhound was used to test the adjustable wait time delays. The 

time delays could be changed so that a Swans Ganz catheter would sample and flush 

correctly, but the time delays were approximately three times as long as the time delays for 

the catheters normally used. A few of the blood samples from the first greyhound were 

tested for hemolysis and seen to hemolysize. The hypodermic needle size was changed from 



44 

18 gauge to 16 gauge during the second greyhound testing to try to remedy this problem. 

The extra blood push into the vacutainer using the saline pressure was also removed to try to 

eliminate any hemolysis. Changing the size of the needle seemed to reduce the hemolysis to 

an acceptable level, so the extra blood push remains as part of the sampling procedure. 

We discovered several operational concerns while testing the system that deserve to 

be mentioned. Some vacuum grease should be used when connecting the catheters and 

fittings, this will help seal the connections and provide an airtight system. Use a relatively 

large Erlenmeyer flask partially filled with saline to prime the system, this same container can 

then hold any unused catheters. All the catheters can be placed in the same container when 

sampling is finished and the shut down routine flushes the system with sterile water. The 

silicon septum that is used in the waste flask stopper assembly should be replaced every few 

sampling cycles. This will prevent any vacuum leaks due to the deterioration of the silicon 

septum from repeated penetration by the hypodermic needle. One concern that has risen is 

the possibility of power failure . In this situation, the valves will all be closed and the 

hypodermic needle will remain in its current position. It is not possible for the pig to bleed to 

death, but the catheters and valves may be clotted in the event of a power failure when a 

blood sample is being taken. A back-up power generator may help to solve this problem. 

A user's manual was created for the CCBSS to be given to Merck with the system. A 

copy of the CCBSS User's Manual is in Appendix B. The CCBSS User's Manual provides 

step-by-step instructions to set up and connect the various hardware components. The 

CCBSS User's Manual also contains a section on using the application which explains how 

and when the application's menu options can be used. An outline of the complete sampling 

procedure is also included in the CCBSS User's Manual, which can be used for quick 

reference or as a check list to make sure procedures are followed correctly. Some 

suggestions are provided to get the best operational results from the system. 



45 

CONCLUSION 

An automatic blood sampling system was developed to take samples from pigs 

without human intervention after initial set up. The CCBSS was designed for two modes of 

operation, three catheters per pig, two pigs maximum, and one catheter per pig, four pigs 

maximum. An IBM compatible PC was used to provide a simple user interface capable of 

acquiring sampling times. When the user starts the sampling routine, the PC controls the 

opening and closing of the solenoid valves to control blood flow. The stepper motors, thus 

the position of the hypodermic needle, are also controlled by the PC during sampling. 

The CCBSS was adjusted to operate correctly when tested using small flasks of dog 

blood and two greyhounds. A user's manual was written for the CCBSS for the researchers 

at Merck to reference and use as necessary in the future. Some modifications that could be 

made to the CCBSS if future versions of the system are developed are listed below. An XY 

table could be constructed so that the shafts are more precisely parallel using linear bearings 

to reduce friction. A vacutainer rack with twelve columns of holes may help the researcher 

separate and remember which vacutainers contain samples from which pig and catheter. With 

twelve columns, in one catheter per pig mode, all samples from a single pig would be located 

in a single row of vacutainers. In three catheters per pig mode, three rows of vacutainers for 

each pig would be necessary and samples from catheter one and four would always be 

located in columns 1, 4, 7, or 10. Valves with zero dead space could be used in place of the 

six-inlet valve, such as the new pinch valves, or a new valve configuration could be designed 

using only three-way valves. Use of a power supply designed for other purposes, such as the 

computer power supply used in this version of the CCBSS, should be avoided to obtain the 

expected voltages. 



46 

REFERENCES 

[1] B.M. Hill, R.H. Laessig, D.D. Koch and D.J. Hassemer, Comparison of plastic vs. 

glass evacuated serum separator (SST) blood-drawing tubes for common clinical 

chemistry determinations. Clin. Chem. 38 (1992) 1474-1478 

[2] P . Scheid and H. Slama, Remote-controlled device for sampling blood in unrestrained 

animals. Pflugers Arch. 356 (1975) 373-376 

[3] R.D. Hill, Microcomputer monitor and blood sampler for free diving Weddell seals. 

J. Appl. Physiol. 61 (1986) 1570-1576 

[4] R.T. Schmalzried, P.W. Toll, J.J. Devore and M.R. Fedde, Microcontroller-based 

system for collecting anaerobic blood samples from a running greyhound. Comput. 

Methods Programs Biomed. 37 (1992) 183-190 

[5] C.G. Veinott and J.E. Martin, Stepper Motors. Fractional and subfractional 

horsepower electric motors. Fourth Edition (1986) 302-3 16 McGraw-Hill, New 

York 

[6] MD-2 Dual Stepper Motor System User's Guide. Revision B (1991) Arrick Robotics, 

Hurst, TX 

[7] Visual Basic Programmer's Guide. (1992) Microsoft Corporation, Redmond, WA 



47 

APPENDIX A 

CCBSS PROGRAM LISTING 



DECLARE SUB valve flush 0 
DECLARE SUB mnu save click 0 - -

48 

DECLARE SUB FileSave (FileName AS STRTNG, PathName AS STRING, Defaultfa.'t AS 
STRING, DialogTitle AS STRING, ForeColor AS INTEGER, BackColor AS INTEGER, Flags AS 
INTEGER, cancel AS INTEGER) 
DECLARE SUB FileOpen (FileName AS STRING, PathName AS STRING, DefaultExt AS 
STRING, Dialog Title AS STRING, ForcColor AS INTEGER, BackColor AS INTEGER, Flags AS 
INTEGER, cancel AS INTEGER) 
DECLARE SUB chk_time (min_delay AS INTEGER, ok AS INTEGER) 
DECLARE SUB timerl_timer 0 
DECLARE SUB md2 init 0 
DECLARE SUB take_sample (tube AS INTEGER, valve AS INTEGER) 
DECLARE SUB four_hog 0 
DECLARE SUB two_hog 0 
DECLARE SUB CIODIO (MD AS INTEGER, BYVAL ARR AS INTEGER, FAS INTEGER) 

DIM Do/o(IO} 
COMMON SHARED Do/o() 

DIM SHARED cancel AS INTEGER 
DIM SHARED FileName AS STRING 
DIM SHARED PathName AS STRING 
DIM SHARED BACKLASHo/o(6) 
DIM SHARED CHECK.KEY$(6) 
DIM SHARED CHECK.SWITCH$(6) 
DIM SHARED CURRENT.POSITION&(6) 
DIM SHARED DIRECTION$(6) 
DIM SHARED MD2.LAST.DIRECTION$(6) 
DIM SHARED MD2.LAST.PATTERN%(6) 
DIM SHARED MD2.PA TTERNo/o(8) 
DIM SHARED MD2.NEW.PA TTERNo/o(8) 
DIM SHARED POWER.DOWN$(6) 
DIM SHARED SPEEDo/o(6) 
DIM SHARED STEPS.TO.MOVE&(6) 
DIM SHARED step.type$(6) 
DIM SHARED SWITCH$(6) 
DIM SHARED T ARGET.POSITTON&(6) 



49 

SUB chk_time (min_delay AS INTEGER, ok AS INTEGER) 

' Procedure verifys that all times entered in the sampling 
' times squares are at least min_delay minutes apart from 
' every other time. ok is passed back to the calling 
'procedure to indicate the result of the checking routine. 
'(ok=l times approved, ok=O times must be changed before 
' sampling can begin.) 

FOR i = OTO 11 
FORj =O TOll 

IF i < j THEN IF ((VAL(textl(i) .text) + min_delay) > VAL(textlG).text) AND 
V AL(textl(i).text) <> 0 AND V AL(textl(j).text) <> 0) OR (V AL(textl(i).text) = 0 AND 
V AL(textl(i + l).text) <> 0) THEN response% = MSGBOX("The current times do not meet system 
requirements. Sampling cannot begin until times are modified . Please examine pig # l , columns " + 
STR$(i + l) +"and"+ STR$(j + 1), 0, "Warning"): ok = 0: IF response%= l THEN GOTO done 

IF ((VAL(textl(i).text) + min_delay) > VAL(text2(j).text) AND (VAL(textl(i) .text) -
min_delay) < VAL(text2(j).text)) AND VAL(text l(i).text) <> 0 AND VAL(text2(j) .text) <> 0 THEN 
response% = MSGBOX("The current times do not meet system requirements . Sampling cannot begin 
until times are modified. Please examine pig # l and pig #2, columns " + STR$(i + 1) + " and " + 
STR$(j + l ), 0, "Warning"): ok = 0: IF response%= l THEN GOTO done 

IF ((V AL(textl (i) .text) + min_delay) > V AL(text3(j).text) AND (V AL(textl (i).text) -
min_delay) < VAL(text3(j).text)) AND VAL(textl(i) .text) <> 0 AND VAL(text3(j).text) <> 0 THEN 
response% = MSGBOX("The current times do not meet system requirements . Sampling cannot begin 
until times are modified. Please examine pig #1 and pig #3, columns"+ STR$(i + 1) +" and" + 
STR$(j + l), 0, "Warning"): ok = 0: IF response%= l THEN GOTO done 

IF ((V AL(textl(i) .text) + min_delay) > V AL(text4(j).text) AND (V AL(textl(i).text) -
min_delay) < VAL(text4(j).text)) AND VAL(textl(i).text) <> 0 AND VAL(text4(j).text) <> 0 THEN 
response% = MSGBOX("The current times do not meet system requirements. Sampling cannot begin 
until times are modified. Please examine pig #1 and pig #4, columns"+ STR$(i + I) +" and"+ 
STR$(j + l), 0, "Warning"): ok = 0: IF response%= 1 THEN GOTO done 

IF i < j THEN IF ((V AL(tex't2(i).text) + min_delay) > V AL(text2(j).text) AND 
V AL(text2(i) .text) <> 0 AND V AL(text2(j).text) <> 0) OR (V AL(text2(i) .tcxt) = 0 AND 
VAL(text2(i + !).text) <> 0) THEN response%= MSGBOX("The current times do not meet system 
requirements. Sampling cannot begin until times are modified. Please examine pig #2, columns " + 
STR$(i + 1) +"and"+ STR$(j + 1), 0, "Warning"): ok = 0: IF response%= 1 THEN GOTO done 

IF ((VAL(text2(i).text) + rnin_delay) > VAL(text3(j).text) AND (VAL(text2(i).text) -
min_delay) < V AL(text3(j) .text)) AND V AL(text2(i).text) <> 0 AND V AL(text3(j).text) <> 0 THEN 
response% = MSGBOX("The current times do not meet system requirements. Sampling cannot begin 
until times are modified. Please examine pig #2 and pig #3 , columns"+ STR$(i + 1) +" and" + 
STR$(j + l), 0, "Warning"): ok = 0 : IF response%= l THEN GOTO done 

IF ((V AL(text2(i).text) + min_delay) > V AL(text4(j).tex1.) AND (V AL(text2(i) .text) -
rnin_delay) < V AL(text4(j).text)) AND VAL(text2(i) .text) <> 0 AND VAL(text4(j).text) <> 0 THEN 
response% = MSGBOX("The current times do not meet system requirements . Sampling cannot begin 



50 

until times are modified. Please examine pig #2 and pig #4, columns"+ STR$(i + l) +"and"+ 
STR$(j + 1), 0, "Warning"): ok = 0 : IF response%= l THEN GOTO done 

IF i < j THEN IF ((V AL(text3(i) .text) + min_delay) > V AL(text3(j) .text) AND 
V AL(text3(i).text) <> 0 AND V AL(text3(j).text) <> 0) OR (V AL(text3(i).text) = 0 AND 
VAL(text3(i + l).text) <> 0) THEN response%= MSGBOX("The current times do not meet system 
requirements. Sampling cannot begin until times are modified. Please examine pig #3, columns " + 
STR$(i + l} +"and"+ STR$(j + I), 0, "Warning"): ok = 0: IF response%= l THEN GOTO done 

IF ((V AL(text3(i).text) + rnin_delay) > V AL(text4(j).text) AND (VAL(text3(i).text) -
rnin_delay) < VAL(text4(j).text)) AND V AL(text3(i) .text) <> 0 AND V AL(text4(j).text) <> 0 THEN 
response% = MSGBOX("The current times do not meet system requirements . Sampling cannot begin 
until times are modified. Please examine pig #3 and pig #4, columns"+ STR$(i + l) + "and" + 
STR$(j + 1), 0, "Warning"): ok = 0: IF response% = l THEN GOTO done 

IF i < j THEN IF ((V AL(text4(i) .text) + rnin_delay) > VAL(text4(j).text) AND 
V AL(text4(i).text) <> 0 AND V AL(text4(j).text) <> 0) OR (V AL(text4(i).text) = 0 AND 
V AL(text4(i + l) .text) <> 0) THEN response%= MSGBOX("The current times do not meet system 
requirements. Sampling cannot begin until times are modified. Please examine pig #4, columns " + 
STR$(i + l) +" and " + STR$(j + 1), 0, 'Warning"): ok = 0: IF response%= l THEN GOTO done 

NEXTj 
NEXTi 
response%= MSGBOX("The current times meet system requirements .", 1, "Approved") 
IF response% = l THEN ok = l : GOTO done 

done: 

END SUB 



51 

SUB commandl_click O 

' Switch between one catheter per pig and three catheters per 
'pig modes. Change button label and display appropriate 
' pig time squares. 

label3 .visible = NOT label3 .visible 
labe14.visible = NOT label4 .visible 
FOR i = 0 TO 11 

text3(i) .visible = NOT text3(i) .visible 
text4(i) .visible = NOT text4(i) .visible 

NEXTi 
IF label3 .visible = -1 THEN command I.caption = "2 Pigs w/ 3 catheters" ELSE command I.caption 

= "4 Pigs w/ l catheter" 
END SUB 



52 

SUB form_load () 

'Set colors, background pattern. Place dot next to Show 
' Clock menu option. Initialize the 1/0 board, turn all 
'relays off (close all valves) . 

screen.controlpanel(4) = 4 
screen.controlpanel(9) = 9 
screen.controlpanel(l 6) = 12 
screen.controlpane1(7) = 206 
screen.controlpanel(5) = 0 
mnu clock. checked = - I 

F%= 0 
MD%=0 
D%(0) = &H380 
Do/o(l) = 2 
Do/o(2) = 1 

'declare error flag as 'O' 
'set MODE 

'1/0 ADDRESS OF DIO XX 

CALL CIODIO(MD%, V ARPTR(Do/o(O)), F%) 

MD%= 55 
Do/o(O) = 0 'PORT A OUTPUT 
Do/o(l) = 0 'PORT B OUTPUT 
Do/o(2) = 0 'PORT C LOWER AS OUTPUT 
Do/o(3) = O 'PORT C UPPER AS OUTPUT 
Do/o(4) = l 'FIRST 8255 AT BASE + 0 -> BASE + 3 
CALL CIODIO(MD%, VARPTR(Do/o(O)), F%) 

MD%= 58 
Do/o(O) = 1 
Do/o(l) = 255 
Do/o(2) = 1 
CALL CIODIO(MD%, V ARPTR(Do/o(O)), F%) 

mnu mod wait.checked = 0 
labe18.visible = false 
label9.visible = false 
label IO.visible = false 
label I I.visible = false 
label 12. visible = false 
FORi = OTO 5 

waste(i).visible = false 
flush(i).visible = false 
pull(i).visible = false 
push(i).visible = false 



NEXTi 

FOR i = OTO 5 
waste(i) .tex:t = "27" 
flush(i) .text = "1.5" 
pull(i).text = "2. 7" 
push(i).tex:t = "3" 

NEXTi 

END SUB 

53 



54 

SUB four_ hog 0 

' Used when sampling is started in one catheter per pig mode. 
' Determines which sample is to be taken next and waits for the 
' appropriate time to occur before calling the take_sample 
' procedure. 

DIM dstart AS STRING 
currentl = 0: current2 = 0: current3 = 0: current4 = 0 
tstart = VAL(MID$(TIME$, l, 2)) * 60 + VAL(M1D$(TIME$, 4, 2)) + VAL(MID$(TIME$, 7, 

2)) I 60 
dstart = DA TE$ 

IF VAL(textl(currentl).text) = 0 THEN textl(currentl).text = "9999": textl(currentl).visible = 0 
IF VAL(text2(current2).text) = 0 THEN text2(current2).text = "9999": text2(current2).visible = 0 
IF V AL(text3(current3).text) = 0 THEN text3(current3).text = "9999": text3(current3).visible = 0 
IF V AL(text4(current4) .text) = 0 THEN text4(current4).text = "9999": text4(current4).visible = 0 

DO Wl-IlLE VAL(textl(currentl).text) <> 9999 OR VAL(text2(current2).text) <> 9999 OR 
V AL(text3(current3).text) <> 9999 ORV AL(text4(current4).text) <> 9999 

IF VAL(textl(currentl) .text) < VAL(text2(current2).text) AND VAL(textl(currentl).text) < 
VAL(text3(current3).text) AND V AL(textl (currentl).text) < V AL(text4(current4).text) THEN 

waittime = V AL(textl(currentl).te"''t): tube% = current I + I: valve% = 0: currentl = current! + 
I: IF VAL(textl(currentl).text) = 0 THEN textl(currentl).text = "9999": textl(currentl).visible = 0 

ELSEIF VAL(text2(current2).text) < VAL( text I (currentl).text) AND V AL(text2(current2).text) < 
V AL(text3(current3).text) AND V AL(text2(current2).text) < V AL(text4(current4).text) THEN 

waittime = V AL(text2(current2).text): tube% = current2 + 21 : valve% = I : current2 = current2 
+ I : IF V AL(text2(current2).text) = 0 THEN text2(current2).text = "9999": text2(current2).visible = 
0 

ELSEIF V AL(text3(current3).text) < V AL(textl(currentl) .text) AND V AL(text3(current3) .text) < 
V AL(text2(current2).text) AND V AL(text3(current3).text) < V AL(text4(current4).text) THEN 

waitt.ime = V AL(text3(current3).text): tube%= current3 + 41 : valve%= 2: current3 = current3 
+ l : IF VAL(text3(current3).text) = 0 THEN text3(current3).text = "9999": text3(current3).visible = 
0 

ELSEIF V AL(text4(current4).text) < VAL(textl(currentl) .text) AND V AL(text4(current4).text) < 
VAL(text2(current2).text) AND V AL(text4(currcnt4).text) < V AL(text3(current3).text) THEN 

waittime = V AL(text4(current4).text): tube%= current4 + 61 : valve% = 3: current4 = current4 
+ l : IF VAL(text4(current4).text) = 0 THEN text4(current4).text = "9999": text4(current4).visible = 
0 

END IF 

DO 
IF DA TE$ <> dstart THEN tstart = tstart - 1440: dstart = DA TE$ 
CALL timer 1 timer 



55 

LOOP WHILE VAL(MID$(TIME$, I, 2)) * 60 + V AL(MID$(TIME$, 4, 2)) + 
VAL(MID$(TIME$, 7, 2)) I 60 < tstart + waittime 

screen.HIDE 

CALL take_sample(tube%, valve%) 
screen.SHOW 

LOOP 
FOR i = 0 TO 11 

IF textl(i) .visible = 0 THEN textl(i).text = '"': textl(i).visible = -1 
IF text2(i) .visible = 0 THEN text2(i).text = "": text2(i).visible = -1 
IF text3(i).visible = 0 THEN text3(i).text = 1111

: text3(i).visible = -1 
IF text4(i).visible = 0 THEN text4(i).text = 1111

: text4(i).visible = -1 
NEXTi 

END SUB 



56 

SUB mnu check times click O - - -

' Initiates procedure to check times with appropriate minimum 
' time between samples. 

DIM ok AS INTEGER 
IF label3 .visible = -1 TIIEN CALL chk time(2, ok) ELSE CALL chk time(6, ok) - -

END SUB 



57 

SUB mnu_clock_click 0 

' Display I Hide clock 

label6.visible = NOT labe16.visible 
mnu_clock.checkcd = NOT mnu_clock.checked 

END SUB 



58 

SUB mnu_exit_click 0 

' Have user verify that they want to exit the application and 
' give them the opportunity to save the current sampling times . 

response% = MSGBOX("Exiting Application. Unsaved data will be lost. Exit without saving 
data.", 515, "Warning") 

lF response% = 6 THEN END 
IF response% = 7 THEN CALL mnu_save_click: IF NOT cancel THEN END 

END SUB 



SUB mnu_mod_wait_click O 

mnu_mod_wait.checked = -1 
label8 .visible =NOT label8 .visible 
label9.visible =NOT label9 .visible 
labellO.visible = NOT label JO.visible 
labell l.visible =NOT labell l.visible 
labell2.visible = NOT labell2 .visible 
FORi = OTO 5 

waste(i).visible = NOT waste(i).visible 
flush(i) .visible = NOT flush(i) .visible 
pull(i).visible = NOT pull(i).visible 
push(i).visible = NOT push(i) .visible 

NEXTi 

END SUB 

59 



60 

SUB nmu_new_click O 

' Clear the current sampling times after the user has 
' verified this choice. 

FORi = OTO 11 
textl(i).text = '"' 
text2(i).text = 1111 

text3(i).text = 1111 

text4(i).text = 1111 

NEXTi 
END SUB 



61 

SUB mnu_open_click () 

' Retrieve sampling times from a data file chosen by the 
'user. Then display these times in the squares on the 
' user interface screen. 

DIM Flags AS lNTEGER 
DIM DefaultExt AS STRING 
DIM DialogTitle AS STRING 
DialogTitle = "Open Data File" 
DefaultExt ="*.DAT" 
CALL FileOpen(FileName, PathName, DefaultExt, DialogTitle, 3, 0, Flags, cancel) 
lF NOT cancel THEN 

OPEN PathName + "\" + FileName FOR INPUT AS I 
FOR i = 0 TO 11 

INPUT #I , temp$ 
te"''tl(i).text = temp$ 
INPUT # 1, temp$ 
text2(i) .text = temp$ 
INPUT # I, temp$ 
text3(i).text = temp$ 
INPUT # 1, temp$ 
text4(i).text = temp$ 

NEXTi 
CLOSE #l 

END IF 
END SUB 



62 

SUB mnu_prime_click O 

' Controls solenoid valves to prime the system. Each of 
' the six inlet catheters connected to the six inJet valve 
'are flushed in order (l through 6). This removes air 
' from the lines and fills them with saline. 

response% = MSGBOX("Prime will push saJine out all six inlets of the six inlet valve to remove 
any air and fill the catheters with saline. Collect excess saline. The Prime routine should be performed 
before the catheters are placed in the pigs .", 257, "Warning") 

IF response% = 2 THEN GOTO fini 

FOR valve = 0 TO 5 
M0% = 58 
0 %(0) = 1 
0 %(1) = 191 - 2 I\ valve 
0 %(2) = 1 
CALL CIODIO(MD%, V ARPTR(0%(0)), F%) 
FOR i = 1 TO 20000: NEXT i 
NEXT valve 

M0% = 58 
0 %(0) = l 
0 %( 1) = 255 
0 %(2) = I 
CALL CIOOIO(MO%, V ARPTR(D%(0)), F%) 

fini : 
END SUB 



63 

SUB mnu save click O - -

' Save the current sampling times in a data fi le named 
' by the user. 

DIM Flags AS INTEGER 
DIM DefaultExt AS STRING 
DIM DialogTitle AS STRING 
Dialog Title = "Save Data File" 
DefaultExt = "*.DAT" 
CALL FileSave(FileName, PathName, DefaultExt, DialogTitle, 3, 0, Flags, cancel) 
TF NOT cancel THEN 

OPEN PathName + "\" + FileName FOR OUTPUT AS I 
FOR i = 0 TO 11 

WRITE # 1, teA'tl(i) .text 
WRITE #I , text2(i) .text 
WRITE # 1, text3(i) .text 
WRITE #I , text4(i) .text 

NEXTi 
CLOSE # I 

END IF 
END SUB 



64 

SUB mnu_shut_click () 

' Controls solenoid valves to flush the system. The needle 
' catheter is flushed first and then each of the six inlet 
'catheters connected to the six inlet valve are flushed 
' in order (I through 6). This process is repeated 4 times. 

response%= MSGBOX("Make sure deionized water is connected (instead of saline) and catheters 
are in a waste container. All six inlets of the six inlet valve and the catheter connected to the needle 
will be flushed .", 257, "Warning") 

IF response% = 2 TIIEN GOTO cane 

FORj = 1TO4 
MD%=58 
0%(0) = 1 
Oo/o( l) = 127 
0 %(2) = 1 
CALL CIODIO(MD%, V ARPTR(0%(0)), F%) 
FOR i = l TO 70000: NEXT i 

FOR valve = 0 TO 5 
MD%=58 
Oo/o(O) = l 
0%(1) = 191 - 2 " valve 
0%(2) = 1 
CALL CIOOIO(MD%, V ARPTR(0%(0)), F%) 
FOR i = 1 TO 70000: NEXT i 
NEXT valve 

MD%= 58 
0%(0) = 1 
0%(1) = 255 
0 %(2) = l 
CALL CIODIO(MO%, V ARPTR(0%(0)), F%) 

NEXTj 

cane: 
END SUB 



65 

SUB mnu_start_click () 

' Call chk_time to verify that sampling times meet system 
' requirements. If so, print the current time (sampling 
' intiated) to the user screen and call the appropriate 
' procedure (depending on the mode of operation chosen). 

DIM temp_tim AS STRING 
DIM hours AS INTEGER 
DIM ok AS INTEGER 

IF label3 .visible = -1 THEN CALL chk_tirne(2, ok) ELSE CALL chk_time(6, ok) 
IF ok = 1 THEN 

temp_tim = TlME$ 
hours = V AL(ternp_tim) 
IF hours > 12 THEN MID$(tcmp_tim, 1, 2) = STR$(hours - 12) 

label7.caption ="Sampling initiated: " + temp_tim 
labe17.visible = -I 
IF label3 .visible = -1 THEN CALL four_hog ELSE CALL two_hog 

END IF 
label7.visible = 0 

END SUB 



66 

SUB take_sample (tube AS INTEGER, valve AS TNTEGER) 

' Controls the three stepper motors and the solenoid 
' valves to take the appropriate blood sample in the 
'proper vacutainer. Procedure contains the routines 
' provided by Arrick Robotics to control the stepper 
'motors. 

'Initialize ports 
IF init = l THEN GOTO start 

FOR MOTOR% = 3 TO 5 
GOSUB md2.init 

NEXT MOTOR% 
init = 1 

'Move all motors to the home position. Z axis first. 
start: 

move.action$ = "P" 
MOTOR% = 4 
SPEED%(MOTOR%) = 300 
POWER.DOWN$(MOTOR%) = "Y" 
CHECK.KEY$(MOTOR%) = "N" 
GOSUB md2.home 
MOTOR% =3 
SPEED%(MOTOR%) = 400 
POWER.DOWN$(MOTOR%) = "Y" 
CHECK.KEY$(MOTOR%) = "N" 
GOSUB md2.home 
MOTOR%=5 
SPEED%(MOTOR%) = 300 
POWER.DOWN$(MOTOR%) = "N" 
CHECK.KEY$(MOTOR%) = "N" 
GOSUB md2.home 
MOTOR%=5 
TARGET.POSITION&(MOTOR%) = I 
POWER.DOWN$(MOTOR%) = "Y" 
GOSUB md2.move 

' Drive needle into waste flask . 
MOTOR%= 4 
TARGET.POSITION&(MOTOR%) = 1500 
GOSUB md2.move 

' Open both three-way valves and the appropriate inlet 
'of the six inlet valve. 



MD%= 58 
D%(0) = l 
Do/o( l) = 63 - 2 /\ valve 
Do/o(2) = l 

67 

CALL CIODIO(MD%, V ARPTR(Do/o(O)), F%) 

'Wait to pull blood through the lines and valves. 
begin = VAL(MID$(TIME$, 4, 2)) • 60 + VAL(MID$(TIME$, 7, 2)) 
DO 
LOOP Wl-IlLE V AL(MID$(TIME$, 4, 2)) • 60 + V AL(MID$(TIME$, 7, 2)) < begin + 

VAL(waste(valve) .text) 

' Close open inlet of the six inlet valve. 
MD%= 58 
D%(0) = 1 
Do/o(l) = 63 
Do/o(2) = 1 
CALL CIODIO(MD%, V ARPTR(Do/o(O)), F%) 

' Remove needle from waste flask . 
MOTOR%= 4 
GOSUB md.2 .home 

' Move needle to a position above the proper vacutainer. 
MOTOR%=3 
TARGET.POSITTON&(MOTOR%) = ((tube - I) MOD IO)• 170 
GOSUB md2.move 
MOTOR%= 5 
TARGET.POSITION&(MOTOR%) = 1070 + ((tube - I) \ 10) • 170 
POWER.DOWN$(MOTOR%) = ''Y" 
GOSUB md.2 .move 

' Drive needle into the proper vacutainer. 
MOTOR%= 4 
TARGET.POSITION&(MOTOR%) = 1500 
GOSUB md2 .move 

' Reopen the previously opened and then closed inlet of 
' the six inlet valve. 

MD% = 58 
Do/o(O) = 1 
Do/o( l) = 63 - 2 /\ valve 
Do/o(2) = 1 
CALL CIODIO(MD%, V ARPTR(Do/o(O)), F%) 



' Wait to fill the vacutainer with blood. 
FOR i = l TO 140000: NEXT i 

' Close three-way valve A 
MD%= 58 
Do/o(O) = l 
Do/o(l) = 127 - 2 A valve 
Do/o(2) = l 

68 

CALL CIODIO(MD%, V ARPTR(D%(0)), F%) 

' Wait to fill the vacutainer using a push of saline. 
FOR i = l TO 40000: NEXT i 

' Open three-way valve A and close three-way valve B to 
' flush blood and saline back into the pig. 

MD%= 58 
0 %(0) = l 
0 %(1) = 191 - 2 A valve 
0%(2) = l 
CALL CIODIO(MD%, V ARPTR(D%(0)), F%) 

' Remove needle from the vacutainer. 
MOTOR%= 4 
GOSUB md2.home 

' Move the needle to the home position, above the waste 
I flask. 

MOTOR%=3 
GOSUB md2.home 
MOTOR%= 5 
POWER.DOWN$(MOTOR%) = "N" 
GOSUB md2.home 
MOTOR% =5 
TARGET.POSITION&(MOTOR%) = I 
POWER.DOWN$(MOTOR%) = "Y" 
GOSUB md2.move 

' Drive the needle into the waste flask. 
MOTOR%= 4 
TARGET.POSITION&(MOTOR%) = 1500 
GOSUB md2.move 

' Wait to flush the lines on the pig side of the valves. 
begin = VAL(MID$(TIME$, 4, 2)) * 60 + VAL(MID$(TIME$, 7, 2)) 
DO 



69 

LOOP WIBLE VAL(M1D$(flME$, 4, 2)) * 60 + VAL(MID$(TIME$, 7, 2)) < begin + 
V AL(tlush(valve) .text) 

' Close three-way valve A, close all inlets of the six 
' inlet valve and open three-way valve B. 

M0%= 58 
0 %(0) = 1 
0 %( 1) = 127 
D%(2) = 1 
CALL CIOOIO(MD%, V ARPTR(D%(0)), F%) 

'Wait to flush the lines on the needle side of the valves . 
FOR i = l TO 70000: NEXT i 

' Close all valves. 
MD% = 58 
Oo/o(O) = l 
Do/o( l) = 255 
Oo/o(2) = 1 
CALL CIODIO(MD%, V ARPTR(Oo/o(O)), F%) 

CALL valve flush 

' Remove needle from waste flask. 
MOTOR%= 4 
GOSUB md2.home 

GOTO finish 

'**************** MD-2 INITIALIZATION ***************** 

'DESCRIPTION: 
' USE AT BEGINNING OF PROGRAM TO INITIALIZE VARIABLES AND PORTS. 
' PORTS ARE NOT INITIALIZED IF MOTOR%=0. 

'VARIABLES RECEIVED: 
' MOTOR%= 1 - 6, 12, 34 OR 56. 

'VARlABLES RETURNED: 
' ALL LISTED BELOW WITH DEFAULT VALUES. 

md2.init: 

'SET PORT ADDRESSES. 
MD2.ADDR. 12% = &H3BC 'MOTOR 1 & 2 



70 

MD2.ADDR.34% = &H378 'MOTOR 3 & 4 
MD2.ADDR.56% = &H278 'MOTOR 5 & 6 

'FIND PORTS. 
OUT MD2.ADDR.12%, &HAA 
OUT MD2.ADDR.34%, &HAA 
OUT MD2.ADDR.56%, &HAA 
IF INP(MD2.ADDR.12%) = &HAA THEN PORT. l2$ = "Y" ELSE PORT.12$ = "N" 
IF INP(MD2.ADDR.34%) = &HAA THEN PORT.34$ = "Y" ELSE PORT.34$ = "N" 
IF INP(MD2.ADDR.56%) = &HAA THEN PORT.56$ = "Y" ELSE PORT.56$ = "N" 

'TURN OFF ALL PHASES OF ALL MOTORS. 
OUT MD2.ADDR.12%, &HFF 
OUT MD2.ADDR.34%, &HFF 
OUT MD2.ADDR.56%, &HFF 

'SET PARAMETER DEFAULTS. 
move.action$ = "P" 
MD2.BACKLASH$ = "Y" 
FOR MD2.1% = 0 TO 6 

BACKLASHo/o(MD2.1%) = 0 
CHECK.KEY$(MD2.1%) = "Y" 
CHECK.SW1TCH$(MD2.1%) = ''N" 
CURRENT.POSITION&(MD2.1%) = 0 
DIRECTION$(MD2.1%) = "F" 
MD2.LAST.DIRECTION$(MD2.1%) = "F" 
MD2.LAST.PA TIERN%(MD2.I%) = &HE 
POWER.DOWN$(MD2.1%) = "N" 
SPEED%(MD2.I%) = 1000 
STEPS.TO.MOVE&(MD2.1%) = 0 
step.type$(MD2.1%) = "H" 
SWITCH$(MD2.1%) = "N" 
TARGET.POSITION&(MD2.1%) = 0 

NEXT MD2.1% 

'TURN ON MOTOR DRIVER AND SET PHASES OF MOTOR% TO LAST PATIERN. 
TF ONLY ONE MOTOR SELECTED THEN THE OTHER MOTOR AT THAT PORT IS LEFT 
'OFF. THIS ROUTINE CAN BE USED SEPERATE FROM MD2.INIT WHEN VARIABLES 
'MUST BE INITIALIZED BUT MOTORS TO BE USED ARE NOT KNOWN. 

MD2.0N: 
IF MOTOR% = 1 THEN 

OUT MD2.ADDR.12%, ((INP(MD2.ADDR.12%) AND &HFO) OR 
MD2.LAST.PATIERNo/o(l)) 

OUT MD2.ADDR.12% + 2, &RED 
END IF 



71 

IF MOTOR%= 2 TI-lEN 
OUT MD2.ADDR.12%, ((INP(MD2.ADDR.12%) AND &HF) OR 

(MD2.LAST.PATTERNo/o(2) * &HlO)) 
OUT MD2.ADDR.12% + 2, &HED 

END IF 
IF MOTOR%= 3 THEN 

OUT MD2.ADDR.34%, ((INP(MD2.ADDR.34%) AND &HFO) OR 
MD2.LAST.PA TTERNo/o(3)) 

OUT MD2.ADDR.34% + 2, &HED 
END IF 
IF MOTOR%= 4 TI-lEN 

OUT MD2.ADDR.34%, ((INP(MD2.ADDR.34%) AND &HF) OR 
(MD2.LAST.PATTERNo/o(4) * &HlO)) 

OUT MD2.ADDR.34% + 2, &HED 
END lf 
IF MOTOR%= 5 THEN 

OUT MD2.ADDR.56%, ((INP(MD2.ADDR.56%) AND &HFO) OR 
MD2.LAST.PA TTERNo/o(5)) 

OUT MD2.ADDR.56% + 2, &HED 
END IF 
IF MOTOR%= 6 THEN 

OUT MD2.ADDR.56%, ((INP(MD2.ADDR.56%) AND &HF) OR 
(MD2.LAST.PATTERNo/o(6) * &HlO)) 

OUT MD2.ADDR.56% + 2, &HED 
ENDIF 
IF MOTOR%= 12 TI-lEN 

OUT MD2.ADDR.12%, ((MD2.LAST.PATTERNo/o(2) * &HlO) OR 
MD2.LAST.PA TTERNo/o( I)) 

OUT MD2.ADDR. l2% + 2, &HED 
END IF 
IF MOTOR%= 34 THEN 

OUT MD2.ADDR.34%, ((MD2.LAST.PATTERNo/o(4) * &HlO) OR 
MD2.LAST.PA TTERNo/o(3)) 

OUT MD2.ADDR.34% + 2, &HED 
END IF 
IF MOTOR%= 56 TI-lEN 

OUT MD2.ADDR.56%, ((MD2.LAST.PATTERNo/o(6) * &HIO) OR 
MD2.LAST.PA TTERNo/o(5)) 

OUT MD2.ADDR.56% + 2, &HED 
END IF 

'************** READ MD-2 SWITCHES ************* 

'DESCRIPTION: 
' RETURNS SWITCH STATUS IN SWITCH$(MOTOR%) VARIABLES. 



72 

'VARIABLES RECEIVED: 
I NONE 

'VARIABLES RETURNED: 
I SWITCH$(MOTOR%) 
I 

MD2.SWITCH: 
IF (INP(MD2.ADDR.12% + l) AND &H20) = 0 THEN 

SWITCH$( 1) = "Y" 
ELSE 

SWITCH$( I) = "N" 
END IF 

IF (INP(MD2.ADDR.12% + l) AND &HlO) = 0 THEN 
SWITCH$(2) = "Y" 

ELSE 
SWITCH$(2) = "N" 

ENDIF 

IF (INP(MD2.ADDR.34% + 1) AND &H20) = 0 THEN 
SWITCH$(3) = "Y" 

ELSE 
SWITCH$(3) = "N" 

END IF 

IF (INP(MD2.ADDR.34% + 1) AND &HIO) = 0 THEN 
SWITCH$(4) = "Y" 

ELSE 
SWITCH$( 4) = "N" 

END IF 

IF (INP(MD2.ADDR.56% + l) AND &H20) = 0 THEN 
SWITCH$(5) = "Y" 

ELSE 
SWITCH$(5) = "N" 

END IF 

IF (INP(MD2.ADDR.56% + l) AND &HIO) = 0 THEN 
SWITCH$(6) = "Y" 

ELSE 
SWITCH$(6) = "N" 

END IF 

RETURN 



73 

'************* RESET PARALLEL PRINTER PORT ••••••••••••••• 

'DESCRIPTION: 
' RETURN THE PARALLEL PRINTER PORT TO ITS PREVIOUS STATUS. 

'VARIABLES RECEIVED: 
' MOTOR% = 1 - 6, 12, 34 OR 56. 
I 

'VARIABLES RETURNED: 
I NONE 

MD2.RESET: 
'STB PIN OFF(HIGH), ALF PIN OFF(HIGH), 
'SEL PIN ON(LOW), IRQ DISABLED, 
'INIT PIN ON(LOW). 
IF (MOTOR%= 1) OR (MOTOR%= 2) OR (MOTOR%= 12) THEN 

OUT MD2.ADDR.12% + 2, &H8: OUT MD2.ADDR.12%, &HFF 
ENDIF 

IF (MOTOR% = 3) OR (MOTOR% = 4) OR (MOTOR%= 34) THEN 
OUT MD2.ADDR.34% + 2, &H8: OUT MD2.ADDR.34%, &HFF 

END IF 

IF (MOTOR%= 5) OR (MOTOR%= 6) OR (MOTOR% = 56) THEN 
OUT MD2.ADDR.56% + 2, &H8: OUT MD2.ADDR.56%, &HFF 

END IF 

'DELAY. 
MD2.I = TIMER: DO: LOOP UNTIL TIMER > MD2.I + .2 

'TURN INIT PIN OFF(HIGH). 
IF (MOTOR% = 1) OR (MOTOR%= 2) OR (MOTOR%= 12) THEN 

OUT MD2.ADDR. l 2% + 2, &HC 
END IF 

IF (MOTOR%= 3) OR (MOTOR% = 4) OR (MOTOR% = 34) THEN 
OUT MD2.ADDR.34% + 2, &HC 

END IF 

IF (MOTOR% = 5) OR (MOTOR%= 6) OR (MOTOR% = 56) THEN 
OUT MD2.ADDR.56% + 2, &HC 

END IF 



74 

RETURN 

'**** ****************** MD-2 HOME *********************** 
'DESCRIPTION: 
' PERFORMS THE FOLLOWING HOME POSITIONING SEQUENCE: 

I . MOVE SELECTED MOTOR(S) REVERSE UNTIL THE SWITCH IS ACTIVATED. 
2. MOVE FORWARD UNTIL THE SWITCH IS DEACTIVATED. 
3. SET CURRENT POSITION V ARIABLE(S) TO 0. 

'VARIABLES RECEIVED: 
I MOTOR%= I - 6, 12, 34 OR 56. 
I ALL MOTOR p ARAMETERS. 

'VARIABLES RETURNED: 
I RETURN.STATUS$ O=OK, K=STOPED BY KEYPRESS. 
' CURRENT.POSITION&(MOTOR%) SET TO ZERO. INVALID WHEN MOVEMENT 
I STOPPED BY KEYPRESS. 

md2.home: 

'SET MOTOR NUMBERS AND DO HOME FUNCTION. 
IF MOTOR%= l THEN 

MD2.HOME.FIRST.MOTOR% = 1: MD2.HOME.SECOND.MOTOR% = 0 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

IF MOTOR%= 2 THEN 
MD2.HOME.FIRST.MOTOR% = 2: MD2.HOME.SECOND.MOTOR% = 0 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

IF MOTOR%= 3 THEN 
MD2.HOME.FIRST.MOTOR% = 3: MD2.HOME.SECOND.MOTOR% = 0 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

IF MOTOR%= 4 THEN 
MD2.HOME.FIRST.MOTOR% = 4: MD2.HOME.SECOND.MOTOR% = 0 
GOSUB MD2.HOME.WORK 
RETURN 



75 

END IF 

IF MOTOR%= 5 TIIEN 
MD2.HOME.FIRST.MOTOR% = 5: MD2.HOME.SECOND.MOTOR% = 0 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

IF MOTOR%= 6 TIIEN 
MD2.HOME.FIRST.MOTOR% = 6: MD2.HOME.SECOND.MOTOR% = 0 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

IF MOTOR% = 12 THEN 
MD2.HOME.FIRST.MOTOR% = 1: MD2.HOME.SECOND.MOTOR% = 2 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

IF MOTOR% = 34 THEN 
MD2.HOME.FIRST.MOTOR% = 3: MD2.HOME.SECOND.MOTOR% = 4 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

IF MOTOR%= 56 THEN 
MD2.HOME.FIRST.MOTOR% = 5: MD2.HOME.SECOND.MOTOR% = 6 
GOSUB MD2.HOME.WORK 
RETURN 

END IF 

RETURN 

'******** DO THE HOME SEQUENCE FOR THE SELECTED MOTOR(S) ******* 
I 

MD2.HOME.WORK: 
'SAVE VARIABLES. 
MD2.MOTOR.SA VE% = MOTOR% 
MD2.MOVE.ACTION.SA VE$ = move.action$ 
MD2.CHECK.SWITCH.SA VE1$ = CHECK.SWITCH$(MD2.HOME.FIRST.MOTOR%) 
MD2.CHECK.SWITCH.SA VE2$ = CHECK.SWITCH$(MD2.HOME.SECOND.MOTOR%) 
MD2.DIRECTION.SA VE1$ = DIRECTION$(MD2.HOME.FIRST.MOTOR%) 
MD2.DIRECTION.SA VE2$ = DIRECTION$(MD2.HOME.SECOND.MOTOR%) 



76 

MD2.STEPS.TO.MOVE.SA VE I & = STEPS.TO.MOVE&(MD2.HOME.FIRST.MOTOR%) 
MD2.STEPS.TO.MOVE.SA VE2& = STEPS.TO.MOVE&(MD2.HOME.SECOND.MOTOR%) 

'DISABLE BACKLASH COMPENSATION DURING HOME SEQUENCE. 
MD2.BACKLASH$ = "N" 

'TURN ON SWITCH CHECKING. 
CHECK.SWITCH$(MD2.HOME.FIRST.MOTOR%) = "Y" 
CHECK.SWITCH$(MD2.HOME.SECOND.MOTOR%) = "Y" 

'MOVE REVERSE CONTINOUSLY UNTIL SWITCH IS PRESSED. 
move.action$ = "C" 
DIRECTION$(MD2.HOME.FIRST.MOTOR%) = "R" 
DIRECTION$(MD2.HOME.SECOND.MOTOR%) = "R" 
GOSUB md2.move 
IF RETURN.STATUS$ = "K" THEN GOTO MD2.HOME.WORK.DONE 

'TURN OFF SWITCH CHECKING. 
CHECK.SWITCH$(MD2.HOME.FIRST.MOTOR%) = "N" 
CHECK.SWITCH$(MD2.HOME.SECOND.MOTOR%) = ''N" 

'MOVE FIRST MOTOR FORWARD UNTIL SWITCH IS OFF. 
IF MD2.HOME.FIRST.MOTOR% <> 0 THEN 

DO: 
move.action$ = "S" 
DIRECTION$(MD2.HOME.FIRST.MOTOR%) = "F" 
STEPS.TO.MOVE&(MD2.HOME.FIRST.MOTOR%) = 1 
MOTOR%= MD2.HOME.FIRST.MOTOR% 
GOSUB md2.move 
IF RETURN.STATUS$= "K" THEN GOTO MD2.HOME.WORK.DONE 
GOSUB MD2.SWITCH 

LOOP WHILE SWITCH$(MD2.HOME.FIRST.MOTOR%) = "Y" 
END IF 

'MOVE SECOND MOTOR FORWARD UNTIL SWITCH IS OFF. 
IF MD2.HOME.SECOND.MOTOR% <> 0 THEN 

DO: 
move.action$ = "S" 
DIRECTION$(MD2.HOME.SECOND.MOTOR%) = "F" 
STEPS.TO.MOVE&(MD2.HOME.SECOND.MOTOR%) = 1 
MOTOR%= MD2.HOME.SECOND.MOTOR% 
GOSUB md2.move 
IF RETURN.STATUS$ = "K" THEN GOTO MD2.HOME.WORK.DONE 
GOSUB MD2.SWITCH 

LOOP WHILE SWITCH$(MD2.HOME.SECOND.MOTOR%) = "Y" 



77 

END IF 

MD2.HOME.WORK.DONE: 
'SET CURRENT POSITION TO 0 - HOME 
CURRENT.POSITION&(MD2.HOME.FIRST.MOTOR%) = 0 
CURRENT.POSmON&(MD2.HOME.SECOND.MOTOR%) = 0 

'RESTORE VARIABLES. 
MOTOR% = MD2.MOTOR.SA VE% 
move.action$ = MD2.MOVE.ACTION.SAVE$ 
CHECK.SWITCH$(MD2.HOME.FIRST.MOTOR %) = MD2.CHECK.SWITCH.SA VE l $ 
CHECK.SWITCH$(MD2.HOME.SECOND.MOTOR%) = MD2.CHECK.SWITCH.SA VE2$ 
DIRECTION$(MD2.HOME.FIRST.MOTOR%) = MD2.DIRECTION.SA VEl$ 
DIRECTION$(MD2.HOME.SECOND.MOTOR%) = MD2.DIRECTION.SA VE2$ 
STEPS.TO.MOVE&(MD2.HOME.FIRST.MOTOR%) = MD2.STEPS.TO.MOVE.SA VEl& 
STEPS.TO.MOVE&(MD2.HOME.SECOND.MOTOR%) = MD2.STEPS.TO.MOVE.SA VE2& 

'TURN BACKLASH COMPENSATION BACK ON. 
MD2.BACKLASH$ = "Y" 
RETURN 

'********************** MD-2 MOVE *********************** 

'DESCRIPTION: 
' USED TO MOVE MOTOR(S). CAN MOVE MOTOR(S) l ,2,3,4,5,6 OR 
' I & 2, 3 & 4 OR 5 & 6. WHEN MOVING 2 MOTORS USES THE SPEED 
I v ARIABLE THAT IS SLOWEST. 

'VARIABLES RECEIVED: 
BACKLASHo/o(MOTOR%) BACKLASH COMPENSATION (# OF STEPS) 
CHECK.KEY$(MOTOR%) CHECK FOR KEYSTROKE, Y=YES,N=NO 
CHECK.SWITCH$(MOTOR%) CHECK FOR SWITCH, Y=YES,N=NO 
DIRECTION$(MOTOR%) F=FORWARD, R=REVERSE 
MOVE.ACTION$ P=TO A POSITION, S=# STEPS, C=CONTINOUSLY 
MOTOR% MOTOR NUMBER l-6, 12,34,56 
POWER.DOWN$(MOTOR%) POWER DOWN WHEN DONE Y=YES,N=NO 
SPEEDo/o(MOTOR%) MOTOR SPEED 0- 32000, O=FASTEST 
STEPS.TO.MOVE&(MOTOR%) # OF STEPS TO MOVE MOTOR 
STEP.TYPE$(MOTOR%) S=SINGLE, D=DOUBLE, H=HALF 
TARGET.POSITION&(MOTOR%) TARGET POSITION RELATIVE TO HOME 

'VARIABLES RETURNED: 
I RETURN.STATUS$ O=OK, K=STOPED BY KEYPRESS, S=STOPED BY SWITCH 



78 

I CURRENT.POSITION&(MOTOR%) #OF STEPS FROM HOME, +=FORWARD, -
=REVERSE 

md2 .move: 
'SET UP VARIABLES FOR MOVE.LOOP BASED ON MOTOR #. 
'SET SPEED TO SLOWEST MOTOR WHEN MOVING 2 MOTORS. 
IF MOTOR% = I THEN 

MD2.ADDRESS% = MD2.ADDR.12%: MD2.KEYPRESS$ = CHECK.KEY$( I) 
MD2.DELAY% = SPEEDo/o(l): MD2.FIRST.MOTOR% = 1: MD2.SECOND.MOTOR% = 0 
GOTOMD2.SC 

END IF 

IF MOTOR%= 2 THEN 
MD2.ADDRESS% = MD2.ADDR.12%: MD2.KEYPRESS$ = CHECK.KEY$(2) 
MD2.DELAY% = SPEEDo/o(2): MD2.FIRST.MOTOR% = 0: MD2.SECOND.MOTOR% = 2 
GOTOMD2.SC 

END IF 

IF MOTOR%= 3 THEN 
MD2.ADDRESS% = MD2.ADDR.34%: MD2.KEYPRESS$ = CHECK.KEY$(3) 
MD2.DELAY% = SPEEDo/o(3): MD2.FIRST.MOTOR% = 3: MD2.SECOND .MOTOR% = 0 
GOTOMD2.SC 

END IF 

IF MOTOR% = 4 THEN 
MD2.ADDRESS% = MD2.ADDR.34%: MD2.KEYPRESS$ = CHECK.KEY$(4) 
MD2.DELAY% = SPEEDo/o(4) : MD2.FIRST.MOTOR% = 0: MD2.SECOND.MOTOR% = 4 
GOTOMD2.SC 

END IF 

IF MOTOR% = 5 THEN 
MD2.ADDRESS% = MD2.ADDR.56%: MD2.KEYPRESS$ = CHECK.KEY$(5) 
MD2.DELAY% = SPEEDo/o(5): MD2.FIRST.MOTOR% = 5: MD2.SECOND.MOTOR% = 0 
GOTO MD2.SC 

END IF 

IF MOTOR%= 6 THEN 
MD2.ADDRESS% = MD2.ADDR.56%: MD2.KEYPRESS$ = CHECK.KEY$(6) 
MD2.DELAY% = SPEEDo/o(6): MD2.FIRST.MOTOR% = 0: MD2.SECOND.MOTOR% = 6 
GOTOMD2.SC 

END IF 

IF MOTOR%= 12 THEN 
MD2.ADDRESS% = MD2.ADDR.1 2%: MD2.KEYPRESS$ = CHECK.KEY$(!) 



79 

MD2.FIRST.MOTOR% = 1: MD2.SECOND.MOTOR% = 2 
IF SPEED%( 1) > SPEEDo/o(2) THEN 

MD2.DELAY% = SPEEDo/o(l) 
ELSE 

MD2.DELA Y% = SPEEDo/o(2) 
END IF 
GOTO MD2.SC 

END IF 

IF MOTOR%= 34 THEN 
MD2.ADDRESS% = MD2.ADDR.34%: MD2.KEYPRESS$ = CHECK.KEY$(3) 
MD2.FIRST.MOTOR% = 3: MD2.SECOND.MOTOR% = 4 
IF SPEEDo/o(3) > SPEEDo/o(4) THEN 

MD2.DELAY% = SPEEDo/o(3) 
ELSE 

MD2.DELAY% = SPEEDo/o(4) 
END IF 
GOTO MD2.SC 

END IF 

IF MOTOR%= 56 THEN 
MD2.ADDRESS% = MD2.ADDR.56% : MD2.KEYPRESS$ = CHECK.KEY$(5) 
MD2.FIRST.MOTOR% = 5: MD2.SECOND.MOTOR% = 6 
IF SPEEDo/o(5) > SPEEDo/o(6) THEN 

MD2.DELAY% = SPEEDo/o(5) 
ELSE 

MD2.DELA Y% = SPEEDo/o(6) 
END IF 
GOTO MD2.SC 

END IF 

'INVALID MOTOR. 
RETURN 

MD2.SC: 
'SET SWITCH CHECKING. 
IF MD2.FIRST.MOTOR% = 0 THEN 

MD2.SW1TCH.1$ = "N" 
ELSE 

MD2.SW1TCH.1$ = CHECK.SWITCH$(MD2.FIRST.MOTOR%) 
END IF 

IF MD2.SECOND.MOTOR% = 0 THEN 
MD2.SWITCH.2$ = "N" 

ELSE 



80 

MD2.SWITCH.2$ = CHECK.SWITCH$(MD2.SECOND.MOTOR%) 
ENDIF 

'SET POWER DOWN WHEN DONE. 
IF MD2.FIRST.MOTOR% = 0 THEN 

MD2.POWER.DOWN.1$ = "N" 
ELSE 

MD2.POWER.DOWN.1$ = POWER.DOWN$(MD2.FIRST.MOTOR%) 
END IF 

IF MD2.SECOND.MOTOR% = 0 THEN 
MD2.POWER.DOWN.2$ = "N" 

ELSE 
MD2.POWER.DOWN.2$ = POWER.DOWN$(MD2.SECOND.MOTOR%) 

ENDIF 

'SET STEP COUNT FOR 'CONTINOUS' MOVEMENT. 
IF move.action$ = "C" THEN 

IF MD2.FIRST.MOTOR% = 0 THEN MD2.STEPS. l& = 0 ELSE MD2.STEPS. l& = 8 
IF MD2.SECOND.MOTOR% = 0 THEN MD2.STEPS.2& = 0 ELSE MD2.STEPS.2& = 8 

ENDIF 

'SET STEP COUNT FOR 'STEP COUNT' MOVEMENT. 
IF move.action$= "S" THEN 

IF MD2.FIRST.MOTOR% = 0 THEN 
MD2.STEPS.l& = O 

ELSE 
MD2.STEPS. l& = STEPS.TO.MOVE&(MD2.FIRST.MOTOR%) 

END IF 
IF MD2.SECOND.MOTOR% = 0 THEN 

MD2.STEPS.2& = 0 
ELSE 

MD2.STEPS.2& = STEPS.TO.MOVE&(MD2.SECOND.MOTOR%) 
END IF 

END IF 

'SET STEP COUNT AND DIRECTION FOR 'POSITION' MOVEMENT. 
IF move.action$ = "P" THEN 

IF MD2.FIRST.MOTOR% = 0 THEN 
MD2.STEPS. l& = 0 

ELSE 
MD2.STEPS. l& = T ARGET.POSITION&(MD2.FIRST.MOTOR%) -

CURRENT.POSITION&(MD2.FIRST.MOTOR%) 
IF MD2.STEPS.1& < O THEN 

MD2.STEPS.l& = MD2.STEPS .l& * -1 



81 

DIRECTION$(MD2.FIRST.MOTOR%) = "R" 
ELSE 

DIRECTION$(MD2.FIRST.MOTOR%) = "F" 
END IF 

END IF 
IF MD2.SECOND.MOTOR% = 0 THEN 

MD2.STEPS.2& = 0 
ELSE 

MD2.STEPS.2& = TARGET.POSITION&(MD2.SECOND.MOTOR%) -
CURRENT.POSITION&(MD2.SECOND.MOTOR%) 

IF MD2.STEPS.2& < 0 THEN 
MD2.STEPS.2& = MD2.STEPS.2& • -1 
DIRECTION$(MD2.SECOND.MOTOR%) = "R" 

ELSE 
DIRECTION$(MD2.SECOND.MOTOR%) = "F" 

END IF 
END IF 

ENDIF 

'ADJUST FOR BACKLASH. 
'ZERO BACKLASH FOR POSITION ADJUSTMENT AFTER MOVE. 
MD2.BACKLASH.ADJ. l % = 0 : MD2.BACKLASH.ADJ.2% = 0 
'ONLY ADJUST IF TURNED ON. 
IF MD2.BACKLASH$ = "Y" THEN 

'DONT ADJUST IF STEP COUNT IS 0. 
IF MD2.STEPS. l& <> 0 THEN 

'ADD BACKLASH IF DIRECTION HAS CHANGED. 
IF DIRECTION$(MD2.FIRST.MOTOR%) <> 

MD2.LAST.DIRECTION$(MD2.FIRST.MOTOR%) THEN 
MD2.STEPS. l& = MD2.STEPS. l& + BACKLASH%(MD2.FIRST.MOTOR%) 
'SA VE FOR CURRENT POSITION ADJUSTMENT AFTER MOVE. 
MD2.BACKLASH.ADJ. l % = BACKLASHo/o(MD2.FIRST.MOTOR%) 

END IF 
END IF 
'DO THE SAME FOR THE SECOND MOTOR. 
IF MD2.STEPS.2& <> O THEN 

IF DIRECTION$(MD2.SECOND.MOTOR%) <> 
MD2.LAST.DIRECTION$(MD2.SECOND.MOTOR%) THEN 

MD2.STEPS.2& = MD2.STEPS.2& + BACKLASHo/o(MD2.SECOND.MOTOR%) 
MD2.BACKLASH.ADJ. 2% = BACKLASHo/o(MD2.SECOND.MOTOR%) 

END IF 
END IF 

END IF 

'ADJUST LAST DIRECTION EVEN IF NO BACKLASH COMPENSATION. 



82 

IF MD2.STEPS. l& <> O THEN 
MD2.LAST.DIRECTION$(MD2.FIRST.MOTOR%) = 

DIRECTION$(MD2.FIRST.MOTOR%) 
END IF 
IF MD2.STEPS.2& <> 0 THEN 

MD2.LAST.DIRECTION$(MD2.SECOND.MOTOR%) = 
DIRECT10N$(MD2.SECOND.MOTOR%) 

END IF 

'CREATE STEP PATTERNS. 
MD2.STEP.TYPE$ = step.type$(MD2.SECOND.MOTOR%) 
MD2.MOTOR% = MD2.SECOND.MOTOR% 
GOSUB MD2.GET.PATTERN 

'PUT PATTERN TN HlGH NIBBLE. 
FOR MD2.1% = l TO 8 

MD2.NEW.PATTERN%(MD2.1%) = MD2.PATTERNo/o(MD2.1%) * &HlO 
NEXTMD2.1% 
MD2.STEP.TYPE$ = step.type$(MD2.FIRST.MOTOR%) 
MD2.MOTOR% = MD2.FIRST.MOTOR% 
GOSUB MD2.GET.PATTERN 

'PUT PATTERN TN LOW NIBBLE. 
FOR MD2.1% = l TO 8 

MD2.NEW.PA TTERNo/o(MD2.1%) = MD2.NEW.PA TTERNo/o(MD2.I%) OR 
MD2.PA TTERNo/o(MD2.I%) 

NEXT MD2 .1% 

'PUT NEW FOUND PATTERN TN MD2.PATTERN. 1%-MD2.PATTERN.8% 
'SINCE NON-ARRAY VARIABLES ARE FASTER. 
MD2.PATTERN.1% = MD2.NEW.PATTERNo/o( l): MD2.PATTERN.2%= 

MD2.NEW.PA TTERNo/o(2) 
MD2.PATTERN.3% = MD2.NEW.PATTERNo/o(3): MD2.PATTERN.4% = 

MD2.NEW .PA TTERNo/o( 4) 
MD2.PATTERN.5% = MD2.NEW.PATTERNo/o(5): MD2.PATTERN.6% = 

MD2.NEW.PA TTERNo/o(6) 
MD2.PATTERN.7% = MD2.NEW.PATTERNo/o(7): MD2.PATTERN.8% = 

MD2.NEW.PA TTERNo/o(8) 

'MOVE THE MOTORS! 
GOSUB MD2.MOVE.LOOP 

'ADJUST POSITION VALVES. 
'DONT ADJUST IF CONTINIOUS MOVE ACTION. 
IF move.action$ = "C" THEN RETURN 



83 

'ONLY ADJUST IF MOVED. 
IF MD2.FIRST.MOTOR% <> 0 THEN 

'IF WENT FORWARD THEN ADD FfNAL COUNT, SUBTRACT BACKLASH. 
IF DIRECTION$(MD2.FIRST.MOTOR%) = "F" THEN 

CURRENT.POSITION&(MD2.FIRST.MOTOR%) = 
(CURRENT.POSITION&(MD2.FIRST.MOTOR%) + MD2.COMPLETE. l&) -
MD2.BACKLASH.ADJ. l % 

END IF 
'IF WENT REVERSE THEN SUBTRACT FINAL COUNT, ADD BACKLASH. 
IF DIRECTION$(MD2.FIRST.MOTOR%) = "R" THEN 

CURRENT.POSITION&(MD2.FlRST.MOTOR%) = 
(CURRENT.POSITION&(MD2.FIRST.MOTOR%) - MD2.COMPLETE. l&) + 
MD2.BACKLASH.ADJ. l % 

END IF 
END IF 
'DO THE SAME FOR MOTOR 2 
fF MD2.SECOND.MOTOR% <> 0 THEN 

IF DIRECTION$(MD2.SECOND.MOTOR%) = "F" THEN 
CURRENT.POSITION&(MD2.SECOND.MOTOR%) = 

(CURRENT.POSITION&(MD2.SECOND.MOTOR%) + MD2.COMPLETE.2&) -
MD2.BACKLASH.ADJ.2% 

END IF 
IF DIRECTION$(MD2.SECOND.MOTOR%) = "R" THEN 

CURRENT.POSITION&(MD2.SECOND.MOTOR%) = 
(CURRENT.POSITION&(MD2.SECOND.MOTOR%) - MD2.COMPLETE.2&) + 
MD2.BACKLASH.ADJ .2% 

END IF 
END IF 
RETURN 

MD2.GET.PATIERN: 
'GET STEP PA TIERN BASED ON STEP TYPE. 
IF MD2.MOTOR% = 0 THEN 

FOR i = 1TO 8 
MD2.P A TIERNo/o(i) = &HF 

NEXTi 
RETURN 

END IF 
IF MD2.STEP.TYPE$ = "H" THEN 

MD2.PATIERNo/o{ l) = &HE: MD2.PATTERNo/o(2) = &HC 
MD2.PATIERNo/o(3) = &HD: MD2.PATTERNo/o(4) = &H9 
MD2.PATIERNo/o(5) = &HB: MD2.PATTERN%(6) = &H3 
MD2.PATTERN%(7) = &H7: MD2.PATTERN%(8) = &H6 

END IF 
IF MD2.STEP.TYPE$ = "S" THEN 



84 

MD2.PATIERN%(l) = &HE: MD2.PA1TERNo/o(2) = &HD 
MD2.PAITERNo/o(3) = &HB: MD2.PAITERNo/o(4) = &H7 
MD2.PA ITERNo/o(5) = &HE: MD2.PA 1TERNo/o(6) = &HD 
MD2.PAITERNo/o(7) = &HB: MD2.PAITERNo/o(8) = &H7 

END IF 
IF MD2.STEP.TYPE$ = "D" THEN 

MD2.PAITERNo/o( l) = &HC: MD2.PAITERNo/o(2) = &H9 
MD2.PAITERNo/o(3) = &H3: MD2.PAITERN%(4) = &H6 
MD2.PAITERNo/o(5) = &HC: MD2.PAITERN%(6) = &H9 
MD2.PAITERNo/o(7) = &H3: MD2.PAITERNo/o(8) = &H6 

END IF 

'ADJUST FOR CORRECT DIRECTION. 
IF DIRECTION$(MD2.MOTOR%) = "F" THEN 

SWAP MD2.PAITERNo/o(l), MD2.PAITERN%(8) 
SWAP MD2.PAITERNo/o(2), MD2.PAITERN%(7) 
SWAP MD2.PAITERNo/o(3), MD2.PAITERN%(6) 
SWAP MD2.PAITERN%(4), MD2.PAITERN%(5) 

END IF 

'ADJUST FOR CORRECT STARTTNG PAITERN. 
'MD2.ROTATE% = #OF TIMES TO ROTATE PAITERN. 
IF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERN%(l) THEN 

MD2.ROTATE% = l 
IF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERNo/o(2) THEN 

MD2.ROTA TE% = 2 
IF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERN%(3) THEN 

MD2.ROTATE% = 3 
lF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERNo/o(4) THEN 

MD2.ROT A TE% = 4 
lF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERNo/o(5) THEN 

MD2.ROTA TE% = 5 
IF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERNo/o(6) THEN 

MD2.ROTATE% = 6 
IF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERNo/o(7) THEN 

MD2.ROTATE% = 7 
IF MD2.LAST.PAITERNo/o(MD2.MOTOR%) = MD2.PAITERN%(8) THEN 

MD2.ROTATE% = 8 
IF MD2.LAST.PA ITERNo/o(MD2. MOTOR%) = 0 THEN MD2.ROT ATE%= 8 
FOR MD2.J% = I TO MD2.ROTA TE% 

MD2.PAITERN% = MD2.PAITERNo/o( l} 
MD2.PAITERNo/o( l} = MD2.PAITERNo/o(2): MD2.PAITERN%(2) = MD2.PAITERNo/o(3) 
MD2.PAITERNo/o(3) = MD2.PAITERN%(4): MD2.PAITERNo/o(4) = MD2.PAITERNo/o(5) 
MD2.PAITERNo/o(5) = MD2.PAITERN%(6): MD2.PAITERNo/o(6) = MD2.PAITERN%(7) 
MD2.PAITERNo/o(7) = MD2.PAITERN%(8): MD2.PATTERNo/o(8) = MD2.PAITERN% 



NEXTMD2.1% 
RETURN 

85 

'******************* MD-2 MOVE LOOP ******************* 

'DESCRIPTION: 
I THIS ROUTINE IS NEEDED BY MD2.MOVE ONLY. 
' FAST MOVE LOOP THAT OUTPUTS STEP PATTERNS, COUNTS 
I STEPS, CHECKS SWITCHES AND KEYBOARD. 
I 

'VARIABLES RECEIVED: 
I MD2.ADDRESS% DRIVER ADDRESS 
I MD2.DELA Y% DELA y BETWEEN STEPS, O=F AST 
I MD2.KEYPRESS$ CHECK FOR KEY PRESSED, Y=YES, N=NO 
' MD2.STEPS.l& # OF STEPS TO MOVE FOR FIRST MOTOR, O=NONE 
' MD2.STEPS.2& # OF STEPS TO MOVE FOR SECOND MOTOR, O=NONE 
' MD2.SWITCH.1$ CHECK FOR SWITCHES, Y=YES, N=NO 
' MD2.SWITCH.2$ CHECK FOR SWITCHES, Y=YES, N=NO 
I MD2.PATTERN. l% - MD2.PATTERN.8% STEP PATTERNS 
' MD2.POWER.DOWN.1$ POWER DOWN WHEN DONE, Y=YES, N=NO 
' MD2.POWER.DOWN .2$ POWER DOWN WHEN DONE, Y=YES, N=NO 

'VARIABLES RETURNED: 
I RETURN.STATUS$ 
I MD2.COMPLETE. l& 
I MD2.COMPLETE.2& 

MD2.MOVE.LOOP: 

O=OK, K=STOPED BY KEYPRESS, S=STOPED BY SWITCH 
# OF STEPS COMPLETED ON FIRST MOTOR 
# OF STEPS COMPLETED ON SECOND MOTOR 

MD2.DONE.1$ = "N": MD2.DONE.2$ = "N" 
MD2.COMPLETE. l & = MD2.STEPS. l &: MD2.COMPLETE.2& = MD2.STEPS.2& 
RETURN .STATUS$ = "O" 

'CHECK FOR SPACE BAR TO EMERGENCY STOP MOTORS. 
MLl : IF MD2.KEYPRESS$ = "N" THEN GOTO ML2 

IF INKEY$ =" "THEN RETURN.STATUS$ = "K": GOSUB MD2.STOP. l : GOSUB 
MD2.STOP.2 

'STEP # 1. 
'CHECK SWITCHES. 
IF MD2.SWITCH.1$ = "Y" THEN IF (INP(MD2.ADDRESS% + 1) AND &H20) = 0 THEN 

RETURN.STATUS$ = "S": GOSUB MD2.STOP.l 



86 

IF MD2.SWITCH.2$ = "Y" THEN IF (INP(MD2.ADDRESS% + I) AND &HlO) = 0 THEN 
RETURN.STATUS$ = "S": GOSUB MD2.STOP.2 
ML2: 'CHECK & UPDATE STEP COUNTS. 

IF MD2.STEPS.l& = 0 THEN GOSUB MD2.STOP.l 
MD2.STEPS. l& = MD2.STEPS.l&- l 
IF MD2.STEPS.2& = 0 THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& = MD2.STEPS.2& - l 
'OUTPUT THE STEP PATTERN. 
OUT MD2.ADDRESS%, MD2.PA TTERN .1 % 
'DO DELAY LOOP FOR SPEED CONTROL. 
IF MD2.DELA Y% = 0 THEN GOTO ML4 
MD2.I% = MD2.DELA Y% 

ML3: MD2.I% = MD2.I% - 1 
IF MD2.1% <> 0 THEN GOTO ML3 

'ADD TO STEP COUNT FOR CONTINOUS MOVEMENT. 
ML4: IF move.action$ = "C" THEN MD2.STEPS. l& = MD2.STEPS. l & + 8: MD2.STEPS.2& = 
MD2.STEPS.2& + 8 

'STEP #2. 
IF MD2.SWITCH.1$ = "Y" THEN IF (INP(MD2.ADDRESS% + l) AND &H20) = 0 THEN 

RETURN.STATUS$ = "S": GOSUB MD2.STOP.l 
IF MD2.SWITCH.2$ = "Y" THEN IF (INP(MD2.ADDRESS% + I) AND &HIO) = 0 THEN 

RETURN.STATUS$ = "S": GOSUB MD2.STOP.2 
IF MD2.STEPS. l& = 0 THEN GOSUB MD2.STOP. l 
MD2.STEPS. l& = MD2.STEPS.l&- l 
IF MD2.STEPS.2& = 0 THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& = MD2.STEPS.2& - I 
OUT MD2.ADDRESS%, MD2.PATTERN.2% 
IF MD2.DELA Y% = 0 THEN GOTO ML6 
MD2.1% = MD2.DELA Y% 

ML5: MD2.1% = MD2.1% - l 
IF MD2.I% <> 0 THEN GOTO ML5 

'STEP #3. 
ML6: IF MD2.SWITCH.1$ = "Y" THEN IF (INP(MD2.ADDRESS% + 1) AND &H20) = 0 
THEN RETURN.STATUS$ = "S": GOSUB MD2.STOP.l 

IF MD2.SWITCH.2$ = ''Y" THEN IF (INP(MD2.ADDRESS% + I) AND &HIO) = 0 THEN 
RETURN.STATUS$ = "S": GOSUB MD2.STOP.2 

IF MD2.STEPS. l& = 0 THEN GOSUB MD2.STOP. l 
MD2.STEPS.l& = MD2.STEPS. l&- I 
IF MD2.STEPS.2& = 0 THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& = MD2.STEPS.2& - I 
OUT MD2.ADDRESS%, MD2.PATTERN.3% 
IF MD2.DELAY% = 0 THEN GOTO ML8 



MD2.1% == MD2.DELAY% 
ML7: MD2.1% == MD2.I%- I 

IF MD2.1% <> O THEN GOTO ML 7 

'STEP #4. 

87 

ML8: IF MD2.SWITCH.1$ == "Y" THEN IF (INP(MD2.ADDRESS% + 1) AND &H20) == 0 
THEN RETURN.STATUS$ == "S": GOSUB MD2.STOP.l 

IF MD2.SWITCH.2$ = "Y" THEN IF (INP(MD2.ADDRESS% + 1) AND &HIO) == 0 THEN 
RETURN.STATUS$ == "S": GOSUB MD2.STOP.2 

IF MD2.STEPS.l& == 0 THEN GOSUB MD2.STOP. l 
MD2.STEPS.l& = MD2.STEPS. l&- 1 
IF MD2.STEPS.2& = 0 THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& = MD2.STEPS.2& - l 
OUT MD2.ADDRESS%, MD2.PATTERN.4% 
IF MD2.DELAY% == 0 THEN GOTO MLIO 
MD2.1% == MD2.DELA Y% 

ML9: MD2.1% == MD2.1% - 1 
IF MD2.1% <> 0 THEN GOTO ML9 

'STEP #5 . 
MLlO: IF MD2.SWITCH.1$ == "Y" THEN IF (INP(MD2.ADDRESS% + I) AND &H20) == 0 
THEN RETURN.STATUS$ == "S": GOSUB MD2.STOP.l 

IF MD2.SWITCH.2$ == "Y" THEN IF (INP(MD2.ADDRESS% + 1) AND &HlO) = O THEN 
RETURN.STATUS$ = "S": GOSUB MD2.STOP.2 

IF MD2.STEPS. l& = 0 THEN GOSUB MD2.STOP. l 
MD2.STEPS. l&=MD2.STEPS .I&- l 
IF MD2.STEPS.2& = 0 THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& == MD2.STEPS.2& - 1 
OUT MD2.ADDRESS%, MD2.PA TTERN.5% 
IF MD2.DELAY% == 0 THEN GOTO ML1 2 
MD2.1% = MD2.DELA Y% 

MLl 1: MD2.1% == MD2.1% - 1 
IF MD2.1% <> 0 THEN GOTO MLI 1 

'STEP #6 . 
ML 12: IF MD2.SWITCH.1 $ = "Y" THEN IF (INP(MD2.ADDRESS% + l) AND &H20) = 0 
THEN RETURN.STATUS$ == "S": GOSUB MD2.STOP.l 

IF MD2.SWITCH.2$ == "Y" THEN IF (INP(MD2.ADDRESS% + 1) AND &HlO) == 0 THEN 
RETURN.STATUS$ == "S": GOSUB MD2.STOP.2 

IF MD2.STEPS. l& == 0 THEN GOSUB MD2.STOP. l 
MD2.STEPS. l& == MD2.STEPS. l&- 1 
IF MD2.STEPS.2& == 0 THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& == MD2.STEPS.2& - l 
OUT MD2.ADDRESS%, MD2.PATTERN.6% 
IF MD2.DELAY%= 0 THEN GOTO ML14 



MD2.1% = MD2.DELA Y% 
ML13: MD2.I% = MD2.1% - l 

IF MD2.I% <> 0 THEN GOTO ML 13 

'BOTH MOTORS DONE? 

88 

ML14: IF MD2.DONE. l$ = "Y" AND MD2.DONE.2$ = "Y" THEN RETURN 

'STEP #7. 
IF MD2.SW1TCH.1$ = ''Y" THEN IF (INP(MD2.ADDRESS% + l) AND &H20) = 0 THEN 

RETURN.STATUS$ = "S": GOSUB MD2.STOP. l 
IF MD2.SW1TCH.2$ = ''Y" THEN IF (INP(MD2.ADDRESS% + 1) AND &H l 0) = 0 THEN 

RETURN.STATUS$ = "S": GOSUB MD2.STOP.2 
lF MD2.STEPS. l& = 0 THEN GOSUB MD2.STOP. l 
MD2.STEPS. l& = MD2.STEPS. l&- l 
IF MD2.STEPS.2& = O THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& = MD2.STEPS.2& - I 
OUT MD2.ADDRESS%, MD2.PATTERN.7% 
IF MD2.DELAY%= O THEN GOTO ML16 
MD2.1% = MD2.DELAY% 

MLl5: MD2.1% = MD2.1% - l 
IF MD2.I% <> 0 THEN GOTO MLl 5 

'STEP #8 . 
ML 16: IF MD2.SWITCH. l$ = "Y" THEN IF (INP(MD2.ADDRESS% + l) AND &H20) = 0 
THEN RETURN.STATUS$ = "S": GOSUB MD2.STOP. l 

IF MD2.SW1TCH.2$ = "Y" THEN IF (INP(MD2.ADDRESS% + l ) AND &Hl O) = 0 THEN 
RETURN.STATUS$ = "S": GOSUB MD2.STOP.2 

IF MD2.STEPS. l& = O THEN GOSUB MD2.STOP. l 
MD2.STEPS.1& = MD2.STEPS.I&- l 
IF MD2.STEPS.2& = 0 THEN GOSUB MD2.STOP.2 
MD2.STEPS.2& = MD2.STEPS.2& - l 
OUT MD2.ADDRESS%, MD2.PA TTERN .8% 
IF MD2.DELAY% = 0 THEN GOTO MLI 
MD2.1% = MD2.DELAY% 

ML! 7: MD2.1% = MD2.1% - I 
IF MD2.1% <> 0 THEN GOTO ML 17 

GOTO MLI 

'MOTOR # l DONE. 
MD2.STOP. I : 

IF MD2.DONE.l$ = "Y" THEN RETURN 
IF (INP(MD2.ADDRESS%) AND &HF) <> &HF THEN 

MD2.LAST.PATTERN%(MD2.FIRST.MOTOR%) = INP(MD2.ADDRESS%) AND &HF 
'TURN POWER OFF MOTOR I? 



89 

IF MD2.POWER.DOWN.1$ = "Y" THEN 
MD2.PA TIERN. l % = MD2.PA TIERN .1 % OR &HF 
MD2.PATIERN.2% = MD2.PATIERN.2% OR &HF 
MD2.PATIERN.3% = MD2.PATIERN.3% OR &HF 
MD2.PATIERN.4% = MD2.PATIERN.4% OR &HF 
MD2.PATIERN.5% = MD2.PATIERN.5% OR &HF 
MD2.PATIERN.6% = MD2.PATIERN.6% OR &HF 
MD2.PATIERN.7% = MD2.PATIERN.7% OR &HF 
MD2.PATIERN.8% = MD2.PATIERN.8% OR &HF 

ELSE 
'SET CURRENT MOTOR 1 PATIERN IN ALL MD2.PATIERN%'S. 

MD2.TEMP% = (INP(MD2.ADDRESS%) AND &HF) 
MD2.PATIERN.1%= ((MD2.PATIERN.1% AND &HFO) OR MD2.TEMP%) 
MD2.PATIERN.2% = ((MD2.PATIERN.2% AND &HFO) OR MD2.TEMP%) 
MD2.PATIERN.3% = ((MD2.PATIERN.3% AND &HFO) OR MD2.TEMP%) 
MD2.PATIERN.4% = ((MD2.PATIERN.4% AND &HFO) OR MD2.TEMP%) 
MD2.PATIERN.5% = ((MD2.PATIERN.5% AND &HFO) OR MD2.TEMP%) 
MD2.PA TIE RN .6% = ((MD2.PA TIERN .6% AND &HFO) OR MD2.TEMP%) 
MD2.PATIERN.7% = ((MD2.PATIERN.7% AND &HFO) OR MD2.TEMP%) 
MD2.PATIERN.8%= ((MD2.PATIERN.8% AND &HFO) OR MD2.TEMP%) 

END IF 
MD2.DONE.1$ = "Y": MD2.SW1TCH.1$ = "N": MD2.COMPLETE.1& = 

MD2.COMPLETE. l&-MD2.STEPS.l& 
RETURN 

'MOTOR# 2 DONE. 
MD2.STOP.2: 

IF MD2.DONE.2$ = "Y" THEN RETURN 
IF (INP(MD2.ADDRESS%) AND &HFO) <> &HFO THEN 

MD2.LAST.PATIERNo/o(MD2.SECOND.MOTOR%) = (INP(MD2.ADDRESS%) AND &HFO) I 
&HlO 

'TURN POWER OFF MOTOR 2? 
IF MD2.POWER.DOWN.2$ = "Y" THEN 

MD2.PATIERN.1% = MD2.PATIERN.1% OR &HFO 
MD2.PATIERN.2% = MD2.PATIERN.2% OR &HFO 
MD2.PATIERN.3%= MD2.PATIERN.3% OR &HFO 
MD2.PATIERN.4% = MD2.PATIERN.4% OR &HFO 
MD2.PATIERN.5% = MD2.PATIERN.5% OR &HFO 
MD2.PATIERN.6% = MD2.PATIERN.6% OR &HFO 
MD2.PATIERN.7% = MD2.PATIERN.7% OR &HFO 
MD2.PATIERN.8% = MD2.PATIERN.8% OR &HFO 

ELSE 
MD2.TEMP% = (INP(MD2.ADDRESS%) AND &HFO) 
MD2.PA TIERN .1 % = ((MD2.PA TIERN. I% AND &HF) OR MD2.TEMP%) 
MD2.PATIERN.2% = ((MD2.PATIERN.2% AND &HF) OR MD2.TEMP%) 



90 

MD2.PATIERN.3% = ((MD2.PATIERN.3% AND &HF) OR MD2.TEMP%) 
MD2.PATTERN.4% = ((MD2.PATIERN.4% AND &HF) OR MD2.TEMP%) 
MD2.PA TIERN .5% = ((MD2.PA TIERN .5% AND &HF) OR MD2.TEMP%) 
MD2.PATIERN.6% = ((MD2.PATTERN.6% AND &HF) OR MD2.TEMP%) 
MD2.PATTERN.7% = ((MD2.PATIERN.7% AND &HF) OR MD2.TEMP%) 
MD2.PA TIERN .8% = ((MD2.PA TIERN .8% AND &HF) OR MD2.TEMP%) 

END IF 
MD2.DONE.2$ = "Y": MD2.SWITCH.2$ = "N": MD2.COMPLETE.2& = 

MD2.COMPLETE.2& - MD2.STEPS.2& 
RETURN 

END 
finish : 
END SUB 



91 

SUB timer l _timer 0 

' Keep the clock displayed on the user interface screen 
'current. Convert 24 hour system clock to 12 hour clock. 

DIM temp _tim AS STRING 
DIM hours AS INTEGER 
temp_tim = TIME$ 
hours = VAL(temp_tim) 
IF hours > 12 THEN MID$(temp_tim, 1, 2) = STR$(hours - 12) 
label6.caption = "Time: "+ temp_tim 

END SUB 



92 

SUB two_hog O 

' Used when sampling is started in three catheters per pig mode. 
' Determines whjch sample is to be taken next and waits for the 
'appropriate time to occur before calling the take_sample 
' procedure. 

DIM dstart AS STRING 
current} = 0 : current2 = 0 
tstart = VAL(MID${TIME$, 1, 2)) * 60 + VAL(MID$(T1ME$, 4, 2)) + VAL(MID$(TIME$, 7, 

2)) I 60 
dstart = DATE$ 

DO WHILE VAL(textl{currentl).text) <> 0 OR VAL(text2(current2).text) <> 0 
IF {VAL(textl(currentl).text) < VAL(text2(currcnt2).text) AND VAL(tcxtl(currentl).text) <> 0) 

ORV AL(text2(current2).text) = 0 THEN 
waittime = VAL(textl{currentl).text) : tube% = current I * 3 + l: valve% = 0: current I = 

current! + 1 
ELSE waittime = V AL(text2(current2).text): tube% = 51 + currcnt2 * 3: valve%= 3: currcnt2 = 

current2 + l 
END IF 

DO 
IF DA TE$ <> dstart THEN tstart = tstart - 1440: dstart = DA TE$ 
CALL timer 1 timer 

LOOP WHILE V AL(MJD$(T1ME$, 1, 2)) * 60 + V AL(MJD$(TIME$, 4, 2)) + 
V AL(MID${TIME$, 7, 2)) I 60 < tstart + waittime 

screen.lllDE 

CALL take_sample(tube%, valve%) 

tube% = tube% + I 
valve% = valve% + l 
CALL take sample(tube%, valve%) 

tube%= tube%+ 1 
valve%= valve%+ 1 
CALL take_sample(tube%, valve%) 

screen.SHOW 
LOOP 

END SUB 



93 

SUB valve flush() 

' Procedure removes any residual blood left in the six 
' inlet valve. 

' Open all valves and all inlets. Allow blood or saline 
' to draw partially into each catheter. 

MD%=58 
Do/o(O) = 1 
Do/o( l ) = 0 
Do/o(2) = 1 
CALL CIODIO(MO%, V ARPTR(Oo/o(O)), F%) 

begin = VAL(MID$(TIME$, 4, 2)) • 60 + VAL(MID$(TJME$, 7, 2)) 
10 total= O 

FORi = OTO 5 
IF V AL(MID$(TIME$, 4, 2)) • 60 + V AL(MID$(TIME$, 7, 2)) > begin + V AL(pull(i) .text) 

THEN total = total + 2 " i 
NEXTi 

MD%= 58 
D%(0) = l 
Do/o( l) = total 
Do/o(2) = I 
CALL CIODIO(MD%, V ARPTR(Oo/o(O)), F%) 

IF total <> 63 THEN GOTO l 0 

'Close three-way valve A. Wait to flu sh the lines on the 
'needle side of the valves . 

MD%=58 
D%(0) = l 
0 %( 1) = 64 
0 %(2) = l 
CALL CIOOIO(MO%, V ARPTR(Oo/o(O)), F%) 
FOR i = 1 TO 40000: NEXT i 

'Close three-way valve B, open three-way valve A, then 
' open each of the six inlets one at a time to flush the 
' blood or saline back into the pig or saline container. 

FOR valve = 0 TO 5 
M0%=58 
Oo/o(O) = l 
Oo/o( l ) = 19 1 - 2 " valve 



94 

D%(2) = I 
CALL CIODIO(MD%, V ARPTR(Do/o(O)), Fo/o) 
begin = VAL(MID$(flME$, 4, 2)) * 60 + VAL(MID$(TIME$, 7, 2)) 
DO 
LOOP WHlLE VAL(MID$(TIME$, 4, 2)) * 60 + VAL(MID$(TIME$, 7, 2)) < begin + 

V AL(push(valve).text) 
NEXT valve 

' Close all valves. 
MD%= 58 
Do/o(O) = I 
Do/o( l) = 255 
Do/o(2) = I 
CALL CIODIO(MD%, V ARPTR(Do/o(O)), Fo/o) 

END SUB 



95 

' Visual Basic for MS-DOS Common Dialog Toolkit 

'The Common Dialog Toolkit (CMNDLG.BAS and CMNDLGF.FRM) 
' provides support for the following dialogs: 
' FileOpen 

FileSave 
FilePrint 
FindText 
Change Text 
Color Palette 
About 

' Support for each dialog is provided via procedures with 
' these same names that create the corresponding dialog 
'and return user input to your program. These procedures 
' only provide the user interface and return user input. 
' They do not actually carry out the corresponding actions 
' such as opening the file . Detailed descriptions of 
' these procedures are contained in the comment headers 
' above each. 

'Special routines to preload (CmnDlgRegister) and unload 
' (CmnDlgClose) the common dialog form for better 
' performance (loaded forms display faster than unloaded 
'forms) are also provided. These routines are optional 
' however as the common dialog form will automatically load 
' and unload each time you invoke a common dialog. Preloading 
' the common dialog form will make common dialog access 
' faster but will require more memory. 
' 
' All common dialogs are created from the same form (CMNDLGF.FRM). 
'The necessary controls for each dialog are children of 
'a container picture box for the dialog. Thus the 
' form (CMNDLGF.FRM) contains a picture box with 
' appropriate controls for common dialog listed above. 
' When a particular common dialog is created and displayed, 
' the container picture box for that dialog is made visible 
' (thus all controls on that picture box become visible) 
' and the form is centered and sized to match the 
' container picture box. 

' To use these common dialogs in your programs, include 
'CMNDLG.BAS and CMNDLGF.FRM in your program or use the 



96 

'supplied library (CMNDLG.LlB, CMNDLGA.LIB - AJtMath version 
' for Professional Edition only) and Quick library (CMNDLG.QLB) 
' and call the appropriate procedure to invoke the dialog 
'you need. 

' Copyright (C) 1982- J 992 Microsoft Corporation 

'You have a royalty-free right to use, modify, reproduce 
' and distribute the sample applications and toolkits provided with 
' Visual Basic for MS-DOS (and/or any modified version) 
' in any way you find useful, provided that you agree that 
' Microsoft has no warranty, obligations or liabiHty for 
'any of the sample applications or toolkits . 
' 

' Include file containing declarations for called procedures . 
'$INCLUDE: 'CMNDLG.BI' 

CONST FALSE = 0 
CONST TRUE = NOT FALSE 



97 

' Click event procedure for Open/Save dialog Cancel button. 
' Makes dialog invisible to return control to FileOpen or FileSave 
' procedure (dialog was shown modaJly). 
' 
SUB cmdOpenCancel_Click 0 

txtOpenFile.SETFOCUS 
Visible = FALSE 

END SUB 



98 

'Click event procedure for Open/Save dialog OK button. 
' Determines whether user has selected a file or whether 
'path and pattern need to be changed. 
I 

SUB cmdOpenOK_ CLick 0 
'Set up error handling for directory/drive change errors . 
ON LOCAL ERROR GOTO OKError 

cmdOpenOK.SETFOCUS 
needed. 

' Set focus to button, so focus can be reset to edit field if 

' Update Directory listbox path if user single 
' clicked or used arrow keys in Directory listbox 
' (only double click automatically changes path). 
dirOpenList.Path = dirOpenList.List(dirOpenList.Listindex) 

' If edit field filename does not match File listbox filename 
'then assign edit field value to File listbox filename 
' and let it determine if path or pattern need to be 
I changed. 
IF filOpenList.FileName <> txtOpenFile.Text THEN 

OldPattern$ = filOpenList.Pattern ' Save old pattern. 

' Let File listbox control determine if path 
' or pattern or filename needs to be updated. 
' Path Change event will be triggered if path needs 
' updating, PatternChange event will be triggered if 
'pattern needs updating, and DblClick event will 
' be triggered if a valid filename has been given. 
filOpenList.FileName = txtOpenFile.Text 

'If a valid filename was not given (dialog is 
' still visible to user after DblClick event), 
'then update the edit field appropriately. 
IF Visible = TRUE THEN 

' If no pattern change was indicated then either 
' a new filename was specified for Save dialog 
' or file was not found for Open dialog. 
IF (INSTR(txtOpenFile.Text, "*") + INSTR(txtOpenFile.Text, "?") < 1) THEN 

IF INSTR(Tag, "SA VE") THEN 
CALL filOpenList_ DblClick 

ELSE 
MSGBOX "File not found", 0, Caption 
filOpenList.Pattern = OldPattem$ ' Restore old File listbox search pattern. 
txtOpenFile.SETFOCUS 



99 

END IF 
' Pattern change was indicated so just update 
' textbox with pattern. 
ELSE 

txtOpenFile.Text = filOpenList.Pattern 
txtOpenFile. SETFOCUS 

END IF 
END IF 

'File has been selected by user so close dialog 
' and return control to FileOpen or FileSave routine. 
ELSE 

CALL filOpenList_DblClick 
END IF 

OKErrorReturn: 
EXIT SUB 

' Drive/Path error handling routine. 
OKError: 

MSGBOX ERROR$, 0, Caption 
txtOpenFile. SETFOCUS 
RESUME OKErrorReturn 

END SUB 

' Display error message. 
' Set focus to edit field so error can be fixed . 

' Exit procedure. 



100 

' Change event procedure for Open/Save dialog Directory listbox. 
' Updates the File listbox path to reflect 
' the directory change. 
I 

SUB dirOpenList_ Change 0 
' Set up error handling for path errors. 
ON LOCAL ERROR GOTO DirChangeError 

' Update file listbox path. 
filOpenList .Path = dirOpenList.Path 

' Display new path to the user. 
lblOpenPath.Caption = dirOpenList.Path 

' Update text box with search pattern. 
txtOpenFile.Text = filOpenList.Pattem 

DirChangeErrorRetum: 
EXIT SUB 

'Path change error handling routine. 
DirChangeError: 

MSGBOX ERROR$, 0, Caption 
txtOpenFile.SETFOCUS 
RESUME DirChangeErrorRetum 

END SUB 

' Display error message. 
' Set focus to edit field so error can be fixed. 

' Exit procedure. 



101 

' Change event procedure for Open/Save dialog Drive listbox. 
' Updates the Directory listbox path to reflect 
' the drive change. 

SUB drvOpenList_ Change O 
' Set up error handling for path errors. 
ON LOCAL ERROR GOTO DriveChangeError 

' Update Dir listbox path. 
dirOpenList.Path = drvOpenList.Drive 

DriveChangeErrorReturn: 
EXIT SUB 

' Path change error handling routine. 
DriveChangeError: 

MSGBOX ERROR$, 0, Caption 
drvOpenList.Drive = dirOpenList.Path 
RESUME DriveChangeErrorReturn 

END SUB 

' Display error message. 
'Reset drive. 

' Exit procedure. 



102 

'Click event procedure for Open/Save dialog File listbox. 
' Selects the file and updates the edit field . 
I 

SUB filOpenList_ Click 0 
txtOpenFile.Text = filOpenList.FileName 

END SUB 



103 

' Double Click event procedure for Open/Save dialog File listbox. 
' File has been selected by the user so make dialog 
' invisible to return control to FileOpen or FileSave 
' procedure (dialog was shown modally) . 
I 

SUB fi!OpenList_Db!Click 0 
txtOpenFile.SETFOCUS 
Visible = FALSE 
cmdOpenCancel.Tag = "FALSE" 

END SUB 



104 

' PathChange event procedure for Open/Save dialog File listbox. 
' Updates the Drive listbox drive and Directory 
' listbox path to reflect the change. 

SUB filOpenList_PathChange 0 
' Set up error handling for path errors. 
ON LOCAL ERROR GOTO FileChangeError 

' Update drive and path. 
drvOpenList.Drive = filOpenList.Path 
dirOpenList.Path = filOpenList.Path 

FileChangeErrorRetum: 
EXIT SUB 

' Path change error handling routine. 
FileChangeError: 

MSGBOX ERROR$, 0, Caption ' Display error message. 
drvOpenList.Drive = dirOpenList .Path 'Reset drive. 
fi10penList.Path = dirOpenList.Path 'Reset path. 
RESUME FileChangeErrorRetum ' Exit procedure. 

END SUB 



105 

' PattemChange event procedure for Open/Save dialog File listbox. 
' Uppercases search pattern for subsequent display 
I in edit field. 

SUB filOpenList_PatternChange O 
fi!OpenList.Pattem = UCASE$(filOpenList.Pattem) 

END SUB 



106 

' GotFocus event procedure for OpenFile textbox. 
' Selects all textbox text when textbox receives focus 
'(for easier replacement of text). 

SUB txtOpenFile_GotFocus O 
txtOpenFile.SelStart = 0 
txtOpenFile.SelLength = LEN(txtOpenFile.Text) 

END SUB 

' Visual Basic for MS-DOS Common Dialog Toolkit 

'The Common Dialog Toolkit (CMNDLG.BAS and CMNDLGF.FRM) 
' provides support for the following dialogs: 
' FileOpen 

FileSave 
FilePrint 
FindText 
Change Text 
Color Palette 
About 

' Support for each dialog is provided via procedures with 
' these same names that create the corresponding dialog 
' and return user input to your program. These procedures 
' only provide the user interface and return user input. 
' They do not actually carry out the corresponding actions 
' such as opening the fi le. Detailed descriptions of 
' these procedures are contained in the comment headers 
' above each. 

' Special routines to preload (CmnDlgRegister) and unload 
'(CmnDlgClose) the common dialog form for better 
' performance (loaded forms display faster than unloaded 
' forms) are also provided. These routines are optional 
' however as the common dialog form will automatically load 
' and unload each time you invoke a common dialog. Preloading 
' the common dialog form will make common dialog access 
'faster but will require more memory. 
I 

'All common dialogs are created from the same form (CMNDLGF.FRM). 
' The necessary controls for each dialog are children of 
' a container picture box for the dialog. Thus the 
' form (CMNDLGF.FRM) contains a picture box with 
' appropriate controls for common dialog listed above. 
' When a particular common dialog is created and displayed, 



107 

' the container picture box for that dialog is made visible 
' (thus all controls on that picture box become visible) 
' and the form is centered and sized to match the 
' container picture box. 
I 

'To use these common dialogs in your programs, include 
'CMNDLG.BAS and CMNDLGF.FRM in your program or use the 
' supplied library (CMNDLG.LIB, CMNDLGA.LIB - AltMath version 
'for Professional Edition only) and Quick Library (CMNDLG.QLB) 
' and call the appropriate procedure to invoke the dialog 
'you need. 

'Copyright (C) 1982-1992 Microsoft Corporation 
I 

' You have a royalty-free right to use, modify, reproduce 
' and distribute the sample applications and toolkits provided with 
' Visual Basic for MS-DOS (and/or any modified version) 
' in any way you find useful, provided that you agree that 
' Microsoft has no warranty, obligations or liability for 
' any of the sample applications or toolkits . 
I 

'Include file containing declarations for called procedures. 
'$INCLUDE: 'CMNDLG.Bl' 

' Common dialog form 
'$FORM frmCmnDlg 

CONST FALSE = 0 
CONST TRUE =NOT FALSE 

'Sample usage of the common dialogs. This code is 
'only executed if CMNDLG.BAS is the start-up file. 
' Parameter information for each common dialog 
' routine is contained in the header comments for 
' the routine. 

' Set desktop attributes for demonstration. 
SCREEN.Contro1Panel(l6) = 5 
SCREEN.Contro1Panel(5) = I 



108 

' Load and register common dialog form before using it 
' to obtain better performance (loaded forms display faster 
'than unloaded forms). Form will remain loaded (but 
' invisible) until this routine is called again to 
' unload it. Thus, all common dialog usage in your 
' program will be faster. Keeping the form loaded 
'requires more memory, however, than loading and 
' unloading it each time a common dialog is used. 
' 
CmnDlgRegister Success% 

IF NOT Success% TIIEN END 

' Displays Open dialog. 
' Returns filename and pathname for open operation. 
' 
FileOpen FileName$, PathName$, "", '"', 0, 7, Flags%, Cancel% 

' Displays Save dialog. 
' Returns filename and pathname for save operation. 
' 
FileSave FileName$, PathName$, "*.TXT", "My Save Dialog", 0, 7, Flags%, Cancel% 

' Unload common dialog form (if you have preloaded it for 
'better performance) so program will terminate, 
' otherwise common dialog form will remain loaded but 
' invisible. 

CmnDlgClose 



109 

' Unloads common dialog form (if you have preloaded it for 
' better performance) so program will terminate, 
' otherwise common dialog form will remain loaded but 
' invisible. This routine should be called if 
' CmnDlgRegister was used to preload the form. If 
' CmnDlgRegister was not used, the form will be unloaded 
' after each use. 

SUB CmnDlgClose 0 
UNLOAD fnnCmnDlg 

END SUB 
' Unload form. 



110 

' CmnDlgRegister common dialog support routine 

' Loads and registers common dialog form before using it 
' to obtain better performance (loaded forms display faster 
'than unloaded forms) . Form will remain loaded (but 
' invisible) until this routine is called again to 
' unload it. Thus, all common dialog usage in your 
'program will be faster (form is not loaded and unload 
'each time a common dialog is invoked). Keeping the 
'form loaded requires more memory, however, than loading 
'and unloading it each time a common dialog is used. 

' Use of thjs routine is optional since the common dialog 
' form does not need to be loaded before it is used (each 
'common dialog routine will load the form is it is not 
' loaded) . 

' Parameters: 
' Success - returns TRUE (-1) if the load or unload 

attempt was successful, otherwise returns 
FALSE (0). 

SUB CmnDlgRegister (Success AS INTEGER) 
' Set up error handling. 
ON LOCAL ERROR GOTO RegisterError 

LOAD frmCmnDlg ' Load form. 
frmCmnDlg.Tag = "H" ' Set flag for keeping form loaded after 

' each common dialog usage. 

Success = TRUE 
EXIT SUB 

' Option error handling routine. 
' Trap errors that occur when preloading dialog. 
Register Error: 

SELECT CASE ERR 
CASE 7: 

MSG BOX "Out of memory. 
Success = FALSE 
EXIT SUB 

CASE ELSE 

'Out of memory. 
Can't load Common Dialogs.", 0, "Common Dialog" 

MSGBOX ERROR$ + ". Can't load Common Dialogs.", 0, "Common Dialog" 
Success = FALSE 
EXIT SUB 



END SELECT 
END SUB 

111 



112 

' FileOpen common dialog support routine 

' Displays Open dialog which allows users to select a 
' file from disk. This procedure only provides 
' the user interface and returns user input. It does 
'not actually carry out the corresponding action . 

'Parameters: 
FileName - returns the name (without path) of the 

file the user wants to open. To supply 
default filename in dialog, assign default 
to FileName then pass it to this procedure. 

PathName - returns the path (without filename) of 
the file the user wants to open. To supply 
default path in dialog, assign default to 
PathName then pass it to this procedure. 
Note, only pass a valid drive and path. Do 
not include a filename or file pattern. 

DefaultExt - sets the default search pattern for the 
File Listbox. Default pattern when DefaultExt 
is null is "*. *". To specify a different 
search pattern (i .e. "*.BAS"), assign new 
value to DefaultExt then pass it to this 
procedure. 

DialogTitle - sets the dialog title. Default title 
when DialogTitle is null is "Open". To 
specify a different title (i .e. "Open My File"), 
assign new value to Dialog Title then pass it to 
this procedure. 

ForeColor - sets the dialog foreground color. Does not affect 
SCREEN.ControlPanel color settings. 

BackColor - sets the dialog background color. Does not affect 
SCREEN.ControlPanel color settings . 

Flags - unused. Use this to customize dialog action if needed. 
Cancel - returns whether or not user pressed the dialog's Cancel 

button. True (-1) means the user cancelled the dialog. 

SUB FileOpen (FileName AS STRING, PathName AS STRING, DefaultExt AS STRING, 
DialogTitle AS STRING, ForeColor AS INTEGER, BackColor AS INTEGER, Flags AS INTEGER, 
Cancel AS INTEGER) 

' Set up error handling for option validation. 
ON LOCAL ERROR GOTO FileOpenError 

' Set form caption. 
IF DialogTitle = ""THEN 



frmCmnDlg.Caption = "Open" 
ELSE 

frmCmnDlg.Caption = DialogTitle 
END IF 

' Determine search pattern for file listbox. 

113 

IF DefaultExt <> "" 1HEN 
frmCmnDlg.filOpenList.Pattem = DefaultExt 

ELSE 
frmCmnDlg.filOpenList.Pattern = "*. *" 

END IF 

'Determine default path. 
IF PathName <> "" 1HEN 

' Set drive and path for file-system controls. 
'Set Directory listbox path. If PathName is different 
' than current path, PathChange event will be triggered 
' which updates Drive listbox drive and File listbox path. 
frmCmnDlg.dirOpenList.Path = PathName 

END IF 
' Display current path to the user. 
frmCmnD lg. lb I OpenPath. Caption = frmCmnD lg.fil OpenList. Path 

' Determine default filename to display in edit field. 
IF FileName <> "" THEN 

frmCmnDlg.txtOpenFile.Text = UCASE$(FileName) 
ELSE 

frmCmnD lg. txtOpenFile. Text = frmCmnD lg . fil OpenList.Pattem 
END IF 

' Set default and cancel command buttons. 
frmCmnDlg.cmdOpenOK.Default = TRUE 
frmCmnDlg.cmdOpenCancel.Cancel = TRUE 

' Size and position Open/Save container. 
frmCmnDlg.pctFileOpen.BorderStyle = 0 
frmCmnDlg.pctFileOpen.visible = TRUE 

' Size and center dialog. 
frmCmnDlg.MOVE frmCmnDlg.Left, frmCmnDlg.Top, frmCmnDlg.pctFileOpen.Width + 2, 

frmCmnDlg.pctFileOpen.Height + 2 
frmCmnDlg.MOVE (SCREEN.Width - frrnCmnDlg.Width) \ 2, ((SCREEN.Height -

frmCmnDlg.Height) \ 2) - 2 

' Set dialog colors. 



114 

frmCmnDlg.ForeColor = ForeColor 
frmCmnDlg.BackColor = BackColor 
frmCmnDlg.pctFileOpen.ForeColor = ForeColor 
frmCmnDlg.pctFileOpen.BackColor = BackColor 
frmCmnDlg.lblOpenFile.ForeColor = ForeColor 
frmCmnDlg.lblOpenFile.BackColor = BackColor 
frmCmnDlg.txtOpenFile.ForeColor = ForeColor 
frmCmnDlg.txtOpenFile.BackColor = BackColor 
frmCmnDlg.lblOpenPath.ForeColor = ForeColor 
frmCmnDlg.lblOpenPath.BackColor = BackColor 
frmCmnDlg.filOpenList.ForeColor = ForeColor 
frmCmnDlg.fiJOpenList.BackColor = BackColor 
fnnCmnDlg.drvOpenList.ForeColor = ForeColor 
frmCmnDlg.drvOpenList.BackColor = BackColor 
frmCmnDlg.dirOpenList.ForeColor = ForeColor 
frmCrnnDlg.dirOpenList.BackColor = BackColor 
frmCrnnDlg.cmdOpenOK.BackColor = BackColor 
frmCmnDlg.cmdOpenCancel .BackColor = BackColor 

'Display dialog modally. 
frmCmnDlg.SHOW l 

' Determine if user canceled dialog. 
IF frmCmnDlg.cmdOpenCancel.Tag <> "FALSE" THEN 

Cancel = TRUE 
' If not, return FileName and PathName. 
ELSE 

Cancel= FALSE 
FileName = frmCmnDlg.txtOpenFile.Tcxt 
PathName = frmCmnDlg.filOpenList.Path 
fnnCmnDlg.cmdOpenCancel.Tag = "" 

END IF 

' Hide or unload dialog and return control to user's program. 
'(Hide if user chose to preload form for perfonnance.) 
IF LEFT$(frmCmnDlg.Tag, I) = "H" THEN 

frmCmnDlg.pctFileOpen.visible = FALSE 
fnnCmnDlg.lflDE 

ELSE 
UNLOAD fnnCmnDlg 

END IF 

EXIT SUB 

' Option error handling routine. 



115 

' Ignore errors here and let dialog's controls 
' handle the errors. 
FileOpenError: 

SELECT CASE ERR 
CASE 7: 

MSG BOX "Out of memory. 
Cancel = TRUE 
EXIT SUB 

CASE ELSE 
RESUME NEXT 

END SELECT 
END SUB 

' Out of memory. 
Can't load dialog.", 0, "FileOpen" 



116 

' FileSave common dialog support routine 

' Displays Save dialog which allows users to specify 
' filename for subsequent file save operation. 
' This procedure only provides the user interface and 
' returns user input. It does not actually carry out 
' the corresponding action. 
I 

' Parameters: 
FileName - returns the name (without path) of the 

file for the save operation. To supply 
default filename in dialog, assign default 
to FileName then pass it to this procedure. 

PathName - returns the path (without filename) of 
the file for the save operation. To supply 
default path in dialog, assign default to 
PathName then pass it to this procedure. 
Note, only pass a valid drive and path. Do 
not include a filename or file pattern. 

DefaultExt - sets the default search pattern for the 
File Listbox. Default pattern when DefaultExt 
is null is"* .*". To specify a different 
search pattern (i.e. "*.BAS"), assign new 
value to DefaultExt then pass it to this 
procedure. 

DialogTitle - sets the dialog title. Default title 
when DialogTitle is null is "Save As". To 
specify a different title (i .e. "Save My File"), 
assign new value to DialogTitle then pass it to 
this procedure. 

ForeColor - sets the dialog foreground color. Does not affect 
SCREEN.ControlPanel color settings. 

BackColor - sets the dialog background color. Does not affect 
SCREEN.ControlPanel color settings. 

Flags - unused. Use this to customize dialog action if needed. 
Cancel - returns whether or not user pressed the dialog's Cancel 

button. True (-1) means the user cancelled the dialog. 

SUB FileSave (FileName AS STRING, PathName AS STRING, DefaultExt AS STRING, 
DialogTitle AS STRING, ForeColor AS INTEGER, BackColor AS TNTEGER, Flags AS TNTEGER, 
Cancel AS TNTEGER) 

' Set up error handling for option validation. 
ON LOCAL ERROR GOTO FileSaveError 

' Set form caption. 



IF DialogTitle = "" THEN 
frmCmnDlg.Caption ="Save As" 

ELSE 
frmCmnDlg.Caption = DialogTitle 

END IF 

117 

frmCmnDlg.Tag = frmCmnDlg.Tag +"SA VE" 
procedure. 

'Determine search pattern for file listbox. 
IF DefaultExt <> "" THEN 

frmCmnDlg.filOpenList .Pattern = DefaultExt 
ELSE 

frmCmnDlg.filOpenList.Pattern = "*. *" 
END IF 

' Determine default path. 
IF PathName <> '"' THEN 

'If the path ends with a backslash, remove it. 
IF RIGHT$(PathName, l) ="\"THEN 

' Set form tag for common unload 

PathName = LEFT$(PathName, LEN(PathName) - l) 
END IF 
' Set drive and path for file-system controls. 

' Set File listbox path. If PathName is different 
' than current path, PathChange event will be triggered 
' which updates Drive listbox drive and Directory listbox path. 
frmCmnDlg.fi lOpenList.Path = PathName 

END IF 
'Display current path to the user. 
frmCrnnDlg.IblOpenPath.Caption = frmCmnDlg.filOpenList.Path 

' Determine default filename to display in edit field. 
IF FileName <> '"' THEN 

frmCmnDlg.txtOpenFile.Text = UCASE$(FileName) 
ELSE 

frmCmnDlg.txtOpenFile.Text = frmCrnnDlg.filOpenList.Pattem 
END IF 

'Set default and cancel command buttons. 
frmCmnDlg.cmdOpenOK.Default =TRUE 
frmCmnDlg.cmdOpenCancel.Cancel =TRUE 

'Size and position Open/Save container. 
frmCmnDlg.pctFileOpen.BorderStyle = 0 
frmCrnnDlg.pctFileOpen.visible = TRUE 



118 

' Size and center dialog. 
frmCmnDlg.MOVE frmCmnDlg.Left, frmCmnDlg.Top, frmCmnDlg.pctFileOpen.Width + 2, 

frmCmnDlg.pctFileOpen.Height + 2 
frmCmnDlg.MOVE (SCREEN.Width - frmCmnDlg.Width) \ 2, ((SCREEN.Height -

frmCmnDlg.Height) \ 2) - 2 

' Set dialog colors. 
frmCmnDlg.ForeColor = ForeColor 
frmCmnDlg.BackColor = BackColor 
frmCmnDlg.pctFileOpen.ForeColor = ForeColor 
frmCmnDlg.pctFileOpen.BackColor = BackColor 
frmCmnDlg.lblOpenFile.ForeColor = ForeColor 
frmCmnDlg.lblOpenFile.BackColor = BackColor 
frmCmnDlg.txtOpenFile.ForeColor = ForeColor 
frmCmnDlg.txtOpenFile.BackColor = BackColor 
frmCmnDlg.lblOpenPath.ForeColor = ForeColor 
frmCmnDlg.lblOpenPath.BackColor = BackColor 
frmCmnDlg.filOpenList.ForeColor = ForeColor 
frmCmnDlg.filOpenList.BackColor = BackColor 
frmCmnDlg.drvOpenList.ForeColor = ForeColor 
frmCmnDlg.drvOpenList.BackColor = BackColor 
frmCmnDlg.dirOpenList.ForeColor = ForeColor 
frmCmnDlg.dirOpenList.BackColor = BackColor 
frmCmnDlg.cmdOpenOK.BackColor = BackColor 
frmCmnDlg.cmdOpenCancel.BackColor = BackColor 

' Display dialog modally. 
frmCmnDlg.SHOW 1 

' Determine if user canceled dialog. 
IF frmCmnDlg.cmdOpenCancel.Tag <> "FALSE" THEN 

Cancel = TRUE 
'If not, return FileName and PathName. 
ELSE 

Cancel= FALSE 
FileName = frmCmnDlg.txtOpenFile.Text 
PathName = frmCmnDlg.filOpenList.Path 
frmCmnDlg.cmdOpenCancel.Tag = "" 

END IF 

' Hide or unload dialog and return control to user's program. 
'(Hide if user chose to preload form for performance.) 
IF LEFT$(frmCmnDlg.Tag, 1) = "H" THEN 

frmCmnDlg.pctFileOpen. visible = FALSE 



frmCmnD lg. 1-llD E 
frmCmnDlg .Tag = "H" 

ELSE 
UNLOAD frmCmnDlg 

END IF 

EXIT SUB 

' Option error handling routine. 

119 

'Reset tag. 

' Ignore errors here and let dialog's controls 
'handle the errors. 
FileSaveError: 

SELECT CASE ERR 
CASE 7: 

MSGBOX "Out of memory. 
Cancel = TRUE 
EXIT SUB 

CASE ELSE 
RESUME NEXT 

END SELECT 
END SUB 

'Out of memory. 
Can't load dialog.", 0, "FileSave" 



120 

Appendix B 

Computer Controlled Blood Sampling 

System User's Manual 



121 

c s 
c s 

B 
Computer Controlled 

Blood Sampling 
System 

User's Manual 



122 

The Computer Controlled Blood Sampling System (CCBSS) User's Manual should be 

used to set up and connect the several pieces of hardware. The Introduction gives some 

background information about why the system was developed and how it can be used. A 

section covering the details of using the CCBSS program follows the Hardware Setup. An 

outline of the procedures follows the section on using the application, along with some 

helpful suggestions. 

Introduction 

The CCBSS was developed to eliminate the need for a researcher to be present when 

blood samples are taken from a pig. This system will allow the researcher to set the 

appropriate sampling times, administer a test drug to a pig, and then do other work or leave 

for home while the system takes blood samples automatically. The situation requires that the 

pig(s) be confined to a very small pen to decrease the risk of having a catheter pulled out by 

the pig. The system was designed for two situations. The first situation uses three catheters 

in each pig, two venous and one arterial, with the ability to sample from two pigs. The 

second situation can sample from four pigs with one venous catheter in each pig. The system 

does not require that the maximum number of pigs be used in any given sampling cycle. The 

researcher can use the system for any number of pigs up to the maximum by entering the 

appropriate sampling times or lack of sampling times, indicating where no pig is present. A 

schematic of the system is shown in figure 1. Table 1 contains a list of all the hardware 

components that were used to develop the CCBSS. 



•• • PC 
I 
a 
x 
1 
s 
1 

123 

Saline support 
rod 

Vacutainer llJIJUOUOOlJOll 
rack L__1 

Figure I Schematic of the CCBSS 

Hardware Setup 

-Y-axis-

The stand should be placed on relatively level surface, the adjustable feet allow the 

user to level the stand further . If the XY and Z tables have been removed from the stand, the 

Z table and bracket should be mounted to the XY table frame, which should be remounted to 

the stand, perfectly square with the stand. Four bolts are used to hold the XY and Z tables 

upside down to the stand. The flask rack, a one inch thick plastic square with a circular hole, 

should be placed on the pins toward the rear of the aluminum bottom of the stand. The size 

of vacutainer to be used, large or medium diameter, needs to be determined. The proper 



Table I Hardware List 

IBM compatible personal computer (PC) (386) 
with Monitor, Keyboard, and Mouse 

Second parallel card 
CyberResearch, Inc. Digital I/O board 

2 Parallel cables 
1 Ribbon cable (14 line) 

Arrick Robotics: 
XY-18 table 

124 

Z-2 table and BR-2 right angle mounting bracket for vertical mounting of the Z-2 
2 MD-2 Dual Stepper Motor Systems 

includes stepper motors and 3 motor cables 

Stand approximately 29.5"W X 22"D X 29.75"H 
w/ aluminum bottom and saline support rod 

I 00 Tube Plexiglas vacutainer rack, large diameter vacutainers 
l 00 Tube Plexiglas vacutainer rack, medium diameter vacutainers 

Erlenmeyer flask w/ vacuum port and stopper assembly 
Stopper assembly: large rubber stopper w/ hole, 

syringe barrel, 
silicon septum 

Reciprocating pump 
functions as compressor and vacuum pump 

Electronic housing containing: 
5 and 12 volt power supply w/ fan 
CyberResearch, Inc. Relay board w/ 8 relays 
Voltage drop board 

Mounted on U1e rear: 

( Gast, model DOA) 

I six inlet Teflon PTFE solenoid manifold valve (Cole Parmer, CP# 01367 - 83) 
2 three-way Teflon PTFE solenoid valves (Cole Parmer, CP# 01367 - 72) 

Pressure cuff for saline bags 
3 Liter and I Liter 

Hypodennic needle (16 gauge) and mounting bracket 

Hypodennic needle fork 

Teflon tubing and fittings 

Polyether catheters wiU1 Luer locks 

rv line set 

Silastic tubing 



125 

vacutainer rack can then be placed on the pins toward the front of the stand. When the 

system is set to use three catheters per pig, two pigs maximum, the vacutainer rack is divided 

as shown in figure 2, with pig #1 samples being toward the inside of the stand. Figure 3 

shows how the vacutainers are divided between pigs when the system is set for sampling 

using one catheter per pig and a maximum of four pigs. The vacutainer rack can then be 

filled appropriately with vacutainers. 

Tubtl'l ~Ill 

••••••• •••••••••• •••••••••• 0000•••••• 
0000000000 •••••••••• •••••••••• •••••••••• 0000•••••• 

000000000 

Tub.Il l 

• Plsll 

• fltll 

D NotUH4 

Figure 2 Tube placement using three 
catheters per pig 

• ••••••••• 00000000•• • ••••••••• 00000000•• 
®®®®@@@®@® 
00000000@@ • ••••••••• 0000000088 
0000000000 
0000000000 

• l'lc•l 

• fla'2 

BJ 119.IO 

11111 119"' 

D N•tUHd 

Figure 3 Tube placement using one 
catheter per pig 

The electronic housing and both dual stepper motor drivers can be placed on top of 

the stand, the under side of the XY table. One of the two motor drivers' motor 1 port should 

be connected to the X axis stepper motor (left to right movement) using one of the motor 

cables. The motor 2 port of the same motor driver should be connected to the Z axis stepper 

motor (vertical movement) via a second motor cable. This motor driver can then be 

connected to the IBM compatible personal computer's (PC) original parallel port 

(left as viewed from the rear of the PC) via a parallel cable. The second dual stepper motor 

driver motor 1 port should be connected to the Y axis stepper motor (front to back 



126 

movement) using another motor cable. This motor driver can then be connected to the 

installed parallel port (right) using a second parallel cable. The relay board within the 

electronic housing, at the bottom, should be connected to the I/O board installed in the PC 

using the 14 line ribbon cable. The electronic housing and both dual stepper motor drivers 

power cords can then be connected and plugged into a wall outlet. 

The valves are mounted on the rear of the electronic housing and should be connected 

with Teflon tubing and connectors as shown in figure 4. The IV line set, which connects to 

the saline bag should be connected to the top of the T-connector between the two three-way 

valves. Six catheters should be connected to the six inlets of the six inlet valve. The catheter 

Six inlet valve 

4 

To Saline 

Pig #l 
-------~(Catheter 1 ) 

Figure 4 Valve connections 

Hypodermic Q 
needle I 



127 

to lead to the hypodermic needle should be connected to three-way valve B. The hypodermic 

needle should be mounted to the Z table using the mounting bracket. The hypodermic needle 

fork should be mounted to the Z table frame if it is not presently mounted. The free end of 

the catheter leading to the hypodermic needle can then be connected to the hypodermic 

needle. 

The saline support rod should be adjusted to a height to hold the three liter pressure 

cuff above the stand. A saline bag should be placed in the pressure cuff and hung on the 

saline bag hook. The pressure cuff and saline bag can then be hung on the saline support rod. 

The IV line set should be inserted into the saline bag's drain port. The air line of the pressure 

cuff can now be connected to the compressor of the reciprocating pump using a length of 

Silastic tubing, and the stop cock turned to allow inflation. 

The waste flask stopper-tube assembly consists of a silicon septum, a syringe barrel, 

and a large rubber stopper with a hole. The silicon septum should be placed in the syringe 

barrel, toward the top, and the syringe barrel should be inserted through the large stopper 

hole. This stopper assembly should be placed in the waste flask, which can then be set in the 

flask rack. The hole in the large rubber stopper is not precisely centered, so the waste flask 

should be rotated to center the silicon septum below the hypodermic needle, when the X and 

Y axes are in the "home" position. The "home" position of a table is that position which 

results when the table is moved and triggers the limit switch and then the table is moved in 

the opposite direction only enough to deactivate the limit switch. A length of Silastic tubing 

should be connected from the waste flask vacuum port to the vacuum pump of the 

reciprocating pump. 

The computer monitor should be connected to the PC using the monitor cable and the 

monitor power cord should also be connected to the PC. The computer mouse and keyboard 

should be connected to the appropriate ports, see the computer manuals if necessary. The 



128 

PC power cord should be connected to the PC and plugged into a wall outlet. A container 

should be partially filled with saline to finish the set up procedures. At this point, the system 

is ready for use. 

Using the Application 

Once all the setup procedures are completed, the IBM compatible PC should be 

turned on first. Then both stepper motor drivers, the switch on the front of the electronic 

housing, and the reciprocating pump can be turned on. The CCBSS application will appear 

showing the user interface screen. Initially, the screen shows four rows of twelve squares 

each, labeled pig #1 through pig #4. The sampling times are to be entered in these squares. 

In order to enter a time in a particular square, move the mouse pointer to that square and 

click on it. The cursor will appear in the square for the user to enter a sampling time. The 

Tab key can also be used to move from square to square while entering sampling times. The 

sampling times are entered as the number of minutes after sampling is started that the sample 

should be taken. If a sample is to be taken an hour and a half after sampling starts, for 

example, 90 should be entered in the appropriate square. Fractions of minutes may be 

included in expressing the sampling time, for instance, 24.5 could be entered. 

The decision to use three catheters per pig, maximum of two pigs, or one catheter per 

pig, maximum of four pigs, needs to be made. There is a command button located toward 

the top of the screen at all times, which allows the user to switch between modes using one 

catheter or three catheters. When the application is set to sample using one catheter per pig, 

the initial setting, all four pigs are listed on the screen, and the button is labeled "2 pigs w I 3 

catheters". By clicking the button, the user can switch to sample using three catheters in each 

pig. When in three catheters mode, only pig # 1 and pig #2 are listed on the screen, and the 



129 

button label changes to "4 pigs w I 1 catheter". The sampling times of pig #3 and pig #4 are 

not cleared when the mode is changed to sample from two pigs, the application simply does 

not use this information. 

A menu bar is located at the top of the screen with three selections: File, Run, and 

Options. Several menu options will be displayed in a drop down menu upon clicking one of 

the menu bar selections. Sample times can be saved, retrieved, and cleared using the menu 

options. Menu options also allow the user to prime the system, modify delay times, take 

samples, shut down the system, hide I display the clock, and verify that sample times meet 

system requirements. The File selection drop down menu contains the options: New, Open, 

Save, and Exit. The New option clears the current times for all pigs; all squares will be 

shown blank. A warning window appears before clearing to verify that the user wants to 

erase the current sampling times. The Save option stores the current sampling times in a data 

file on disk. A window appears to request the file name and path as well as the drive (hard or 

3.5 inch floppy drive). The Open option allows the user to retrieve previously saved 

sampling times from disk. A window requesting the file, path, and drive will also appear for 

this option. The Open and Save options allow the user to enter a set of frequently used 

sampling times only once, save the times, and then retrieve them whenever the times are to be 

used again. The Exit option stops the application and returns the user to the system prompt. 

Before exiting the application, a warning window appears giving the user a last chance to 

save any sampling times that are currently entered. 

The computer's system clock is also displayed on the opening screen, in the upper 

right corner. The clock can be hidden by clicking the menu bar selection Option and then 

clicking on the menu option Show Clock. When hidden, the clock can be displayed by 

following the same procedure used to hide. The drop down menu will display a dot next to 

the Show Clock menu option when the clock is being displayed. The system clock can be 



130 

changed by exiting the application, typing "time" at the system prompt, and then entering the 

new time in the same format as the current time, shown on the screen. 

The second menu option in the Options drop down menu is the Check Times option, 

which allows the user to verify that the current sampling times meet the system requirements. 

When sampling using one catheter per pig, every sampling time must be at least 2 minutes 

apart from every other sampling time. This 2 minutes allows enough time to take a sample 

and be ready to take the next sample. When the system is set to take samples using three 

catheters per pig, sampling times are required to be at least 6 minutes apart. In this mode, 

three blood samples are taken during each sampling sequence, thus the minimum amount of 

time between sampling sequences is tripled. If the sampling times meet the system 

requirements, a message is displayed in a window indicating the approval of sampling times. 

The user should click on the OK button within the window once the message has been read. 

If the sampling times do not meet the system requirements, a message is displayed to the user 

in a window to indicate that times must be altered before sampling can begin. Included in the 

message is a suggestion as to which pigs and columns the user should examine to correct the 

problem. 

When the system is set to sample using three catheters per pig, the sampling times for 

pig #3 and pig #4 are not displayed and are not used during sampling. But if sampling times 

have been entered for pig #3 and pig #4, the times must meet the requirement of being at 

least 6 minutes apart from all other times, even though they are not used. The best advice is 

to leave the times of pig #3 and pig #4 blank when sampling using three catheters. 

The third option in the Options drop down menu, Show Wait Times, allows the user 

to modify the time delays for drawing waste, flushing back into the pig, and the pull and push 

times for cleaning out the six inlet valve. When the Show Wait Times option is selected, a 

table of delay times will appear below the rows of sampling times and a dot will appear next 



131 

to Show Wait Times menu option. If the table of delay times is currently shown on the user 

screen, selecting Show Wait Times will remove the table from the screen and remove the dot 

next to the menu option. The four delay times mentioned above can be set individually for 

each of the six catheters. The waste time delay is the time that the hypodermic needle 

remains in the waste flask at the beginning of sampling when blood and saline are pulled 

through the catheter. The flush time delay is the amount of time that saline is pushed back 

into the pig after the needle has been moved from a vacutainer to the waste flask. The pull 

time delay is the time in which blood is drawn into each of the catheters to agitate the six inlet 

valve and the push time delay is the time that saline is then pushed through each of the six 

catheters to force the blood back into the pig(s). 

The catheter sizes used, the blood vessels (arteries or veins) used, and the pigs' blood 

pressure are all possible factors that may require the user to adjust the delay times. A small 

catheter will not allow as much fluid as a larger catheter to flow through in a given amount of 

time at a given pressure. This decrease in fluid flow requires the blood and saline to be 

drawn and flushed for a longer period of time for the same volume of fluid to pass through. 

When sampling from an artery or a pig with high blood pressure, less time is needed to draw 

blood, but more time is needed to push blood and saline back into the pig because of the 

increased pressure. The user should try catheters of various sizes in various sampling 

arrangements to become familiar with the time delay changes that may be required in 

situations that vary from the usual. However, when the delay times are lengthened, the 

Check Times routine will no longer be accurate. The user must check the time duration of an 

individual sample and make sure that an appropriate amount of time is allowed between 

samples, so that one sample procedure ends before the next begins. 

The options in the Run drop down menu are Start Sampling, Prime, and Shut Down. 

The Start Sampling option, when clicked, executes the Check Times routine to verify that the 



132 

sampling times meet system requirements before sampling begins. When the sampling times 

meet system requirements and the user clicks the OK button, the time that sampling began is 

displayed on the screen above the current time. From this point on, the program waits for the 

next sampling time to occur. The sampling times cannot be changed after the start sampling 

option has been selected. 

The second option in the Run drop down menu is Prime. This routine should be 

performed before any catheters are connected to the pigs. The Prime routine flushes saline 

through the six catheters connected to the six inlet valve to remove any air and fill the lines 

with saline. I suggest placing all six catheters in a large container of saline and then choosing 

the Prime option. At this point, the catheters can be connected to the pigs. Any unused 

catheters should remain in the saline container, the saline is used in a routine used to remove 

any residual blood from the six-inlet valve. 

In the Run drop down menu, the third option is Shut Down. This routine should be 

performed when sampling is completed. The valves need to be flushed with sterile water to 

remove the saline from the valves. It is possible for the salt to precipitate out of the saline if 

the saline remains in the valves for an extended period of time. The salt can then damage the 

valve diaphragm causing the valve to leak and require a replacement. Before this option is 

chosen, the IV line set connected to the saline bag should be placed in a bag of sterile water, 

which is within the one liter pressure cuff, and the compressor air line should be changed 

from the three liter cuff to the one liter cuff The catheters from the six inlets of the six inlet 

valve and the catheter to the hypodermic needle should be placed into a container to collect 

the waste sterile water. When the Shut Down option is selected, each of the seven catheters 

is flushed four times. AJI the valves are closed, the valves and lines should be free of saline 

and blood, and the PC, dual stepper motor drivers, reciprocating pump, and electronic 

housing may be turned off 



133 

The CCBSS is capable of taking samples from two pigs with two catheters each, as 

well as the two modes of operation that the system was designed for, one catheter per pig 

and three catheters per pig. Sampling from two pigs, using two catheters in each pig, can be 

accomplished in either one catheter per pig mode or three catheters per pig mode. The most 

efficient method, saving time and vacutainers, is to use the one catheter per pig mode. Use 

pig #1 and pig #2 on the user screen to set the sampling times for catheter #1 and catheter 

#2, respectively, for one pig. Then use pig #3 and pig #4 user screen sampling times to 

sample from a second pig, catheter #1 and catheter #2, respectively. In most situations, it 

would be desirable that for each pig # 1 sampling time, a pig #2 sampling time is two minutes 

later, and that for each pig #3 sampling time, a pig #4 sampling time is two minutes later than 

that time. In this way, the two samples from a single pig would be taken so that the second 

sample is taken immediately after the first. If connected properly, blood samples taken using 

pig # 1 sampling times (pig 1, catheter 1) will be stored in the vacutainers for pig # 1. Pig 1, 

catheter 2 samples will be taken in pig #2 vacutainers, pig 2, catheter 1 samples in pig #3 

vacutainers, and pig 2, catheter 2 samples in pig #4 vacutainers. 



134 

Outline of Complete Sampling Cycle 

I. Follow hardware setup procedures 

II. Prime the six inlet catheters 

ill. Choose one or three catheters per pig 

IV. Modify sampling wait time delays if necessary 

V. Enter sampling times 

VI. Check sampling times, correct if necessary 

VII. Insert catheters in pigs, leave unused catheters in saline container 

VIII. Start Sampling 

IX. Inject drug when appropriate 

X. Wait for sampling to complete 

XI. Remove catheters from pigs and hypodermic needle and place in a waste 

container 

XII. Connect sterile water in place of saline 

XIII. Perform Shut Down procedure 



135 

Suggestions 

Use some vacuum grease when connecting the catheters and fittings, this will help 

seal the connections and provide an airtight system. 

Use a relatively large Erlenmeyer flask partially filled with saline to prime the system, 

this same container can then hold any unused catheters. All the catheters can be placed in the 

same container when sampling is finished and the shut down routine flushes the system with 

sterile water. 

The silicon septum that is used in the waste flask stopper assembly should be replaced 

every few sampling cycles. This will prevent any vacuum leaks due to the deterioration of the 

silicon septum from repeated penetration by the hypodermic needle. 




