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INTRODUCTION 

History and Motivation 

The purpose of this investigation is to calculate the electronic 

structure of hep lutetium, whose low temperature ground state is 

paramagnetic, thus providing a prototypical paramagnetic Fermi su r face 

for the trivalent rare earth metals. Results obtained from the SO- LAPW 

(Linearized Augmented Plane Wave-including Spin -Orbit coupling) 1 method 

are compared with new de Haas - van Alphen (dHvA) measurements of the 

Fermi surface of lutetium 2 , as well as susceptibility3 , specific 

heat 4 - 5 ,and form factor' measurements. 

The number and quality of band structure calculations for the rare 

earths have been steadily increasing since the first non-self-

consistent, non - relativistic, and non-spin-polarized calculation for Gd 

by Dimmock and Freeman' in 1964. Spurring this growth in the number of 

calculations is the wealth of experimental data which is becoming 

increasingly available, due both to new methods of crystal purification 

and to more sensitive experimental apparatus. Continuing refinement of 

band structure techniques, as well as a steady increase in available 

computational power, have provided the tools to produce band structure 

calculations wh ich are both qualitatively and quantitatively in 

agreement with experiment. The early band structure calculations for the 

rare earths, beginning with the work of Dimmock, Freeman, and Watson in 

1964, as well as the first fully relativistic but non - self - consistent 

Re lativistic Augmented Plane wave (RAPW ) ca lculations of Keeton and 
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Loucks in 1965 (see the review by Freeman 8 
), gave reasonably good 

agreement with the sparse experimental data then available. The 

available data were mainly from meas urements such as neutron scattering 

and positron annihilation , which were less affected by impurities than 

more sensit ive techniques for mapping the Fermi surface and measuring 

e lectronic properties, s uch as dHvA and magnetoresistance experiments. 

The most noticeable effect s of relativity were the lowering of the s-

bands relative to the d-bands, and the removal of most of the band 

crossings and degeneracies by the inclusion of spin orbit coupling. The 

correctness of these changes in the band s tructure, and hence in the 

Fermi surface, which were introduced by relativity, could not be 

assessed unti l more sensitive measurements could be performed on purer 

samples. 

These ear ly ca l cu lations showed that the rare earths were 

definitely not free electron- like, and, in fact, exhi bited band 

structures simi liar to those of t he transition meta ls where the d - bands 

figure p r ominently. The f -bands were usually ignored i n these 

ca l culations, mainly because i t was uncertain whether the f-electrons 

could be adequate ly treated in t erms of a band picture at a ll, due to 

their strong interactions. When an attempt was made to treat the 4f-

bands realistically, their position re l ative to the Fermi l evel was 

found to be extremely sensitive to the chosen potential. Most available 

experiments for placing the 4f-bands, such as photoemission, s t ill leave 

doubt as to t he certainty of that placement. Additionally, since there 

was no ready way to treat these strong exchange and corre lation effects 
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accurately, a standard average exchange approximation of the Slater 

alpha=l form was generally used. The end result of using a strongly 

attractive interaction like this was t o force the f -bands to lie well 

below the va l ence bands, since the f - bands are very localized, resulting 

in a larger exchange - correlation cont ribution than for the valence 

bands . Thus, the influence of the f - electrons on the valence bands, and 

hence upon the Fermi surface, was omitted . This was further rat iona lized 

by stating that the 4f- electrons were generally well isolated and 

localized, and should not be considered as valence bands. However , even 

though correlation is less important than exchange by a factor of 5- 500 

in non - r are earth atomic systems', and both are fairly well treated by 

an average exchange correlation potential , this is not t r ue of systems 

with f - electrons. In general, f-electrons tend to be very strongly spin 

correlated, with both exchange and corre l ation effects being very 

important --often more important than some relativistic effects. This 

leads to an exaggeration of the inaccuracies introduced by the various 

local density exchange - corre l ation potential approximations . Since the 

4f-electrons are highly spin correlated , spin polarized calcu lations are 

a realis t ic way of treating the open 4f - shell rare earths. The first 

spin-polarized band calculation, performed by Harmon and Freeman 10 on Gd 

within the Local Spin Density (LSD) app roximation, gave results which 

are in fair agreement with dHvA experiments 11 - 13 and which lend hope for 

future work. It is possible that the inclusion of relativistic effects 

in the LSD formalisrn 14 will improve results. Since lutetium has a full 

4f-shell, it avoids the need t o consider this problem, allowing us to 



4 

focus attention on other aspects of the calculation. 

Ideal ly, from a band structure point of view, all the electrons 

should be treated equivalently, in a self-consistent manner . Often, 

when a more rigorous physically accurate type of exchange- correlation 

potential is used, as discussed in Chapter 2, the actual placement of 

the £-bands becomes uns table in terms of self- consistency. We have found 

in the case of of lutetium, which has a closed 4f-shell ( thus avoiding 

many of the problems involved in treating an open shell system where 

there are strong spin - dependent intra- atomic interactions among the £-

electrons ), when iterating to self - consistency, using a cur r ently 

accepted exchange-correlation potential, that the 4f-bands tend to rise 

to the Fermi level . However, we have found that the actual location of 

the 4f- bands r e lat ive t o the valence bands and the Fermi level seems to 

have little affect on the general features of the Fermi surface of 

lutetium, as long as the 4f - bands are not allowed to inters ect the Fermi 

surface. This wil l not be true i n other rare earths with partially 

filled 4f-shells, since, in a band pict ure, with narrow, highly 

localized 4f- bands , any partially filled 4f-bands by necessity l ie near 

the Fermi level. A good example of this i s cerium, in which the 4f-bands 

a r e located at the Fermi level, and are very much a factor in 

determining cerium' s unique pr operties. It has a l so been hypothesized 

that lanthanum is superconducting, while isoelectronic yt trium and 

scandium are not, because the f - bands lie very close to, but above the 

Fermi energy in lanthanum , and the f -bands are involved in the 

enhancement of the electron - phonon pairing mechanism 15 . 
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Out line of Ca l culation 

In the fi rst chapter, the SO-LAPW method is derived and discussed. 

The SO-LAPW method is a linearized, r elativistic extension of the 

Augmented Plane Wave (APW) method of Slater 16 , which provides a way of 

inc luding the dominant non-spin-orbit relativist i c effects as wel l as 

effici ently and accurately approximating spin -orbit coupling, while 

requiring much less computational effort than the fu ll RAPW method of 

Loucks 17 . Choices of exchange~ correlation potentials are examined, and 

the Hedin- Lundqvist potential, formulated within t he Local Density (LD) 

approximation, is described. The effects of changes in the strength of 

the exchange-corre lation potential are also discussed. The problems 

i nherent in treating the 4f -bands, including their tendency to r ise 

toward the Fermi leve l dur ing a self-consistent ca l cu lation, and their 

sensitivity to the choice of the band center energy parameter are also 

discussed . Next, the limitations of the muffin - tin (MT ) potential 

approx imat ion are analyzed and evidence of the need for a genera l 

potential is presented. Finally, the theor y of calcu lating the static q-

dependent susceptibi l i ty and t he induced neutron magnetic form factor is 

presented. In chapte r two , the calculated band structure , density of 

states , s usceptibility , Fermi s urface , dHvA orbits including angu lar 

dependence, 

and form factor ar e presented. These results ar e compared to t he 

experimental results and the results of previous non -self - consistent 

RAPW calculations by Keeton and Loucks 18 - 1 ' and by Stassis et al. 6 , in 

which t he alpha=! exchange correlation potential was used, thus keeping 
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the 4f- bands below the valence bands and avoiding interaction effects . 

Conclusions and directions for future work are summarized in chapter 

three. Details of the various calculations are contained in the Appendix . 
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THE CALCULATIONAL METHODS 

The APW and LAPW Methods 

In considering the APW Method and its extensions, it should be kept 

in mind that several assumptions, which are commonly made to simplify 

the general p roblem of solving Schroedinger's equation in a solid, can 

have adverse effects upon the resultant band structure . First , we make 

use of the Born- Oppenhe imer approximat ion , which allows separation of 

the treatment o f the e lectrons and ions, i.e ., ignoring the elect ron -

phonon int e r action. One resul t of this approximation is a calculated 

density of states at the Fermi l evel which is too low when compared with 

the low temperature linear term in specific heat measurements. This 

requires the inclusion of an electron - phonon enhancement factor t o make 

up the difference. Secondl y , we assume that t he electrons move in an 

effective Coulomb or Hartree field, i.e., as a first approximation we 

ignore correlations bet ween electrons and assume they are approximate l y 

independent. However, some effort is made t o include exchange and 

corr elation effects in a combined exchange- correlation potentia l , as 

will be discussed later. Treating the exchange potential exactly, as in 

the Hartree- Fock method, results in a nonlocal expression. The usual 

simplif i cat ion involves reducing the nonlocal problem to a local one via 
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some formulation of the Local Density Approximation ( LDA ) or the Local 

Spin Density Approximation (LSD), depending on whether the calculation 

is spin - polarized or not, which will be discussed in section three of 

this chapter. 

It is quite remarkable that it is at all possible to calculate a 

realistic band structure , in light of the gross approximations that must 

be made in order to deal with a highly corre lated and inhomogenous 

system of 10 23 electrons. The reason that it is possible to handle this 

potential Pandora's Box is the fortuitous fact that we are actually 

dealing with a system of quasiparticles, i.e., particles which consist 

of an electron and its exchange - correlation hole. These quasiparticles 

are electrically neutral and behave in an approximately independent 

manner. Thus, working in terms of the quasiparticles allows us to reduce 

a many body problem to a single body problem with some justification, as 

well as allowing us to achieve reasonably good results. 

The APW method is a way of solving the Schroedinger (or Dirac) 

equation variationally, which was suggested by John C. Slater 16 in 1937, 

as an easier way to calculate the electronic structure of solids than 

the only other procedure then available, the cellular method. The APW 

method overcame the difficulties of satisfying periodic boundary 

conditions inherent in the cellular method. However, AP~ calculations 

were not particularly feasible until the early 1960s because of the 

large amount of computation involved. 
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The essence of the APW method involves the partitioning of the unit 

cel l into two separately treated regions, a spherical region around each 

ion, and the remaining interstitial region . A further simplification 

generally used is the Muffin-Tin (MT) approximation, first suggested by 

Slater20 in 1935, in which the potential i s assumed to be spherically 

symmetric inside the MT spheres around each ion, and equal to a 

constant, which can be set equal to zero by shifting the energy, in the 

interstitial region . One then proceeds to solve Schroedinger's equation 

by use of the variational principle. We will arrive at our final 

solution by means of minimizing the energy in a variational express ion , 

so we require a variational function: 

¢=EC. X. 
i 1 1 

where the X. a re the APW basis functions. The solution of 
1 

( 1) 

Schroedinger's equation inside the sphere for a given MT potential is 

given by a product of spherical harmonics and radial functions which 

satisfy the radial part of Schroedinger 's equat ion. In the interstitial 

region, the solutions are the so lutions to Schroedinger's equation with 

ze ro potential, which are plane waves. Thus, we use a dual 

representation for our variational function . Inside the MT sphere, we 

take the atomic - like solutions: 

x ( E) = E A Ym R (E) 
lm l l 

l,m 
In the interstitial region we take plane waves: 

( ik• r ) X = e - -

Thus, the basis functions for the variational expression are 

(2) 

(3) 
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augmented plane waves, and hence the name of the method. One generally 

matches the values of the two sets of variational functions at the MT 

boundary by means of a Rayleigh expans ion of the plane waves in terms of 

spherical harmonics which determines the coefficients A . One should 
tm 

note that the derivatives of the functions are allowed to be 

discontinous at the 1T boundary. ext, we form a variational expression 

for the energy in terms of ¢, and then minimize the energy with respect 

to the expansion coefficients C., which results in a determinental l. 

equation to be solved: 

det l M(E) .. I = det l H(E) .. + S(E) .. - E • D(E) .. I = 0 (4) 
l.J l.J l.J l.J 

where H is the MT Hamiltonian, S is a surface term which represents 

the contribution to the kinetic energy from the remaining discontinuity 

in the slope of the variational function at the MT boundary, and D is an 

overlap matrix. This is a less convenient form of secular equation to 

solve than the standard eigenvalue - eigenvector type problem. The 

solution is more difficult since i t requires searching the determinant 

as a function of energy to find its zeros, due to the implicit 

dependence of the APW functions thems elves inside the MT spheres upon 

the energy. Furthermore , the secular equation for the determinant 

contains singularities. 

The LAPW method was developed by Andersen 21 and Koelling and 

Arbman 2 2 to help remove these problems. In the LAPW method, one 

proceeds i n essentially the same manner as in the APw method, except for 

the inclusion of an energy derivative in the radial equations, i.e., one 
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expands Rt in a Taylor series about some energy parameter E
0

. The basis 

functions inside the MT then look like: 

x = [ A R + B dR / dE ] t° im t tm t l 
(5) 

\ , m 

Then, one uses the additional variational freedom included by 

the derivative term to match both the functions and their derivatives at 

the MT boundary, which eliminates the surface terms in the variational 

expression for the energy. Furthermore, the energy can now remain fixed 

within a fairly wide region, rather than requiring the search of the 

determinant for zeroes over a range of energies. Some care is still 

required in choosing the energy parameter E , particularly for states of 
0 

higher angular momentum, which tend to be more localized 23
. The beauty 

of the LAPW method is that it allows one to obtain the eigenvalues in a 

single matrix diagonalization with only a minimal increase in the effort 

needed to set up the matrix. 

The RAPW and SO-LAPW Methods 

In 1965, Terry Loucks 17 extended the AP~ method by including 

relativity, thus creating the RAPW method. In the RAPW method, the 

procedure is to solve the Dirac equation using a muffin - tin potential. 

There are two main reasons for wanting to avoid the use of this full 

formalism. First, the exchange interaction between valence electrons is 
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usually larger than the spin-orbit contribution. It is particularly 

important in the case o f open 4f - shells. Thus, it is reasonable to keep 

spin as a good quant um number to facilitate the handling of the exchange 

interaction, while still t aking the spin - orbit interaction into account 

in some reasonable way . In the case of lutet ium , the exchange 

interact ion is still large but not as important, since the 4f - shell is 

full. Secondly, since both spin states are included, the resulting 

matr ix to be diagona l ized has dimensions twice as large as the 

corresponding non- relativistic matrix and becomes complex as well, which 

increases the computational time required by nearly an order of 

magnitude. However, in the SO- LAPW method , even though true self-

consistency requires t he inclusion of all re l ativistic effects i n every 

iteration, it should be noted that the inclus i on of spin - orbit coupling 

does not change the charge density very much. Hence, one can solve this 

complex, expanded matrix only once, during the final iteration, rather 

than during every iteration, as in the RAPW method, and still get good 

results. In addition, one can include the spin -orbit interaction within 

only a small number of bands of interest, which substantially decreases 

the size of the matrix t o be diagonalized. 

The essence o f the SO - LAPW method is t he implementation of the 

Koelling- Harmon 24 technique for the variational solution of the Dirac 

equation , in terms of the LAPW formalism previously described, while 

including pure spin basis functions in the large component of the 

wavefunction. To see where the approximation enters the calculation, 
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first recall the total Hamiltonian of the system: 

H = c a • E + Ce - l)mc 2 + V(£) 

where the energies are measured relative to the rest mass 

energies. The solution inside the MT sphere is of the form: 

where : 

~ = Kµ 
-i F 

x Kµ = i C(11j;µ-m , m) 
m 

K = l 

K = ( l 

o = r • o r 

j 

+ 1 ) J j 

G x K Kµ 

0 x K r Kµ 

yµ-m x 
l m 

= l t 

= l + t 

with F and G s a tisfying the radial equations: 
K K 

dF / dr = ( 1/c)(V-E) G + ((K-1) / r )F K K K 
dG / dr = - ((K+l )/r)G + 

K K 

where M = m + ( 1/ 2c 2 )(E-V) 

2McF 
K 

If we now let P = rG and Q = rF the radial equations K K K K 
become: 

dP / dr = ( - K/ r ) P + 2McQ K K K 
dQ / dr = ( 1/ c) (V- E)P + (K/ r)Q K K K 

Now, if we wr ite out the above two equations for the two possible 

values of K, K=t and K=- 1-l , and then add and subtract appropriate 

(6 ) 

( 7) 

(8) 

(9) 

(10 ) 

(11) 
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combinations, we arrive at the following set of differential equations: 

dt / dr - + /r = 2Mcf + 1(1 +1 )0+ /(2t+l)r 1 1 1 1 
df /dr - f / r = (V -E ) t /c - t(t+l)of /(2t+l ) t t t t 

do+ / dr = (2t+l )+ / r + 2Mcor 1 1 1 

where the fol lowing average and difference function definit ions 

were used: 

(2t+l ) +1 - t pt + ( t+l) p-1 - 1 

c21+1) r 1 - 1 Qt+ Ct+l ) 0_1_1 

o+t - P_t-1 

Of t - 0 -t - l 

p 
1 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

For convenience let + and r go to P and Q and drop the t subscript. 

Now, the approximation consists of assuming that the derivative of the 

difference in the large component of the wavefunction is very small, 

i.e ., assume : 

doP/dr :: o (20) 

Then: 

oQ :: - (2 t+l )P/ (2Mcr ) (2 1) 

Subs t ituting this result into equation ( 13) , we have 

dQ/dr + Q/r = (V-E )P/c + t(t+l)P/(2Mcr 2
) (22) 

And, if we assume OP = 0 as well, we have 24 : 

dP / dr - P/ r = 2McQ (23) 

dQ/ dr + Q/ r = ( (V -E )/c + t ( t+l) /( 2Mcr 2
) ] p ( 24 ) 

And our former solution+ inside the MT sphere becomes: Kµ 
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= l/ r (25) 

The net result of this approximation is to give a pure spin function 

in the l arge component, although there is still a mixture of spin in the 

small component. A good further approximation 2
• is to neglect the small 

component. 

Now, if we want to develop the LAPW method in this context, we 

include the first energy derivative : 

dP / dE Ym x 'l 'l s 

d4> / dE = l / r ( 26 ) 

where dP/ dE and dQ/ dE satisfy the energy derivative version of the 

radial equations: 

d 2 P/ dEdr - (l / r)dP/ dE = 2McdQ/ dE + Q/ c (27) 

d 2 Q/ dEdr + (l/ r )dQ/ dE=['L('l+l )/ 2Mcr 2 + (V- E)/ c]dP/ dE - P/ c (28) 

where higher order terms have be en neglected in both of the above 

equations. The required normalization condition is: 
R 

01 dr (P dP/ dE + Q dQ/ dE ) = 0 ( 29 ) 

Then: 



where: 

and : 

H d¢/ dE = E d¢ / dE + 

16 

+ Hso d¢ / dE 
1 

Hso d¢/ dE = (1/2Mcr) 2 dV/ dr (dP/dE - P/4Mc 2 
) -1 

= 
0 

(30) 

The general procedure from this point is to temporarily ignor e the 

matrix elements of H~0 and H~0 , thereby including most of t he 

relativistic effects in the ite rations to self -consis tency, then include 

the spin -orbit effects in the final iteration . One performs a standard 

variational procedure t o arrive at a secular equation of the form: 

H c = E S c 

H HS~ 6 + Hso 
n's' ,ns = I I I n ,n s ,s n s ,ns where: 

and: s ' ' = Ss~ 6 I n s , ns n ,n s ,s 
where sr stands for semirelativistic. The total spin -orbit matrix 

elements are then expressible as: 

where: 

and: 

Hso = 41T 
n ' s' ,ns I 

1 ,m,m 

I 

- Ym (k , ) Ym ck ) 
1 n 1 n 

(31) 

( 32) 



17 

~ o 
R P 2 ( 1/ 2Mc ) 2 ( l / r) (dV/ dr) = 0J dr 

\ 

~l 
R P dP / dE (l/2Mc) 2 (l/r) (dV/ dr ) = 0J dr 

\ \ 

~2 
R (dP /dE) 2 (l/2Mc) 2 (l/r) (dV / dr) = 0J dr 

\ 

and: 

AA = A (k) A (k , ) 
1 n \ n 

AB = A (k , ) B (k ) + B (k , ) A (k ) \ n \ n \ n l n 

BB = B (k ,) B (k ) \ n \ n 

One then solves the secular equation using Hsr and Ss r to obtain 

self- consistent solut i ons with coefficients and energies Csr and n 

sr h b set·. E .. Then, using t e new asis 
J 

¢ L csr(E~r) 
js = n n J P(k s;r) n 

sr 
E. 

J 
< max 

E . 
J 

one solves a second secular equation including the previously 

so so neglected spin - o r b it matrix elements H0 and H1 to get the 

relativistic results including approximate spin-orbit effects. 

The Exchange - Cor r elation Potential 

(33) 

In order t o make the self- consistent independent electron equations 

easier to solve, some approximation must be made for the non l ocal 

exchange contributions. The earliest attempts to take exchange and 

correlation effects into account in band calculations , i.e., to include 

some many- body effects in the singl e body equations, were based upon 
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Thomas -Fermi type local density app roximations, where the exchange 

correlation potential is assumed to be a function of the local charge 

density. The best known approximation of this type is Slater's 

statistical exchange p 1 / 3 potential 25 which was originally of the 

form: 

V ( r) = - (3/2n) (3n 2 p(r)) 1 / 3 
xc 

However, Gaspar 26 and later Kohn and Sham27 , rederived Slater's 

exchange potential with a coefficient two thirds as large: 

V k ( r ) = 2/3 V ( r ) g s xc 

(34 ) 

(35) 

Then Slater and Johnson 21
, and soon many other s, began using the so 

called Slater Xa approach, where: 

(36) 

where a is usually between 2/3 and 1, and is of ten chosen such that the 

resultant atomic ground state energy is precisely the energy obtained 

from the Hartree-Fock method. However, it should be noted that the 

atomic system differs considerably from the solid, mainly in that the 

atom has a large low-density region. The Xa method is mainly a high-

density appr oximation, which is correc t ed for the low -density atomic 

regions by the adjustment of a. Hence, the best choice of a for the atom 

is probably not the best choice for the solid, which does not have a 

large low-density region. Furthermore, the Hartree- Fock method does not 

include Coulombic correlation, but only Pauli (like spin ) correlation. 

In addition, this is still a crude method, which allows adjustment o f a 

without regard for the physics. 
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A better and more physical approximation with no adjustable 

parameters is that of Hedin and Lundqvist 2 9 

v ( r) = e(r ) v k (r) xc g s (37) 

This formulation is based upon the theorems of Hohenberg and Kohn 30
, 

which exploit the aforementioned concept of a system of nearly 

independent quasiparticles. These two theorems, which form the basis of 

all density- functional theories, show that for an inhomogenous, 

interacting electron gas, e.g., the electrons in a solid, the ground 

state properties such as bulk modulus, wavefunctions, etc . , are unique 

functionals of the electronic density, and that the total energy of the 

system is a minimum for the correct density. Here, the e function is 

essentially an extrapolation between high- and low-density results for 

an interacting electron gas, where the results can be more easily and 

accurately calculated. In fact, the Hedin - Lundqvist results are exact 

in the limit of high- and low- densities . 

In this calculation, the Hedin-Lundqvist exchange - correlat ion 

potential was used, in the hope that it would help stabilize the 

position of the 4f -bands . However, it has been observed, that exchange-

correlation approximations based upon the local density- functional 

approach generally treat localized bands incorrectly. The more localized 

a band is, the more likely that its calculated energy will be too high 

relative to the Fermi level 31 . In the case of transition metal d -bands, 

this error is on the order of 1 eV or less. However, with f - bands, which 

are ext remely localized, the error could be much greater and could be 
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the major source of inst:ability in the f -bands of lut:et:ium. Much work 

has been done in attempt ing to develop local -density or average -density-

type appr oaches that t reat these localized and highly corre l ated bands 

more accurately 32
, but a successful application to solid syst:ems has yet 

to be presented. 

The Muffin-Tin Approximation 

Insofar as the potential is concerned, one has a choice of 

essentially three different levels of approximation for use in band 

struct:ure calculations. First, one can use a muffin - tin (MT) 

approximat:ion as previously described, which in fact: most rare earth 

calculations have used, with fair results. The more detailed Fermi 

surface studies by dHvA and magnetoresistance methods are beginning to 

show the need for better pot:ential approximations . The second choice is 

the Warped MT (WMT) approximation 12 ' 33 - 35 , which allows the interstit:ial 

potential to vary, rather than remain constant. This has been used for 

rare earth systems and can account for a 5 to 10 mRy difference in the 

band energies 3 6
. The third and most difficult opt:ion is the general 

potential 3 ~ - 37 , in which one includes nonspherical contributions inside 

the MT sphere, as well as WMT effects in the interstitial region. This 

method has been used on fee and bee transition metals 3 8
-

4 0
, and has, in 
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general, resulted in changes in the band energies of 5-15 mRy from their 

MT values. 

The Susceptibility 

We are concerned with the relationship between the magnetic 

ordering wave vectors of the heavy rare earths and certain general 

features of the Fermi surface. If we apply a spatially varying magnetic 

field t o a metal, and assume that the response o f the electron gas in 

the solid is linear, we find that the relationship between the field and 

the response of t he magnetic moments in the sol id is governed by the 

general ized susceptibil ity : 

H(g+Q) = r X(g+Q' ,g+Q) B(g+§ ' ) ( 38) 
G' 

We will use the standard result 41 , and ignore temperature and 

frequency dependence: 

X(g) = r, I Hnn,(g.~) I fn (~)[ l - fn (~+g )] / [En , (~+g) -En (~)] 
n,n ,k 

(39) 

We make the further app r oximation that the matrix elements M , are nn 
constant, and then convert the sum into an integral over the Brillouin 

zone. The integral is performed by the tetrahedron method 42
, in which 

the irreducible piece of the Brillouin zone is divided into a la rge 

number of small tetrahedra , inside each of ~hich the integral is 

performed analytically by the use of linear interpolation, in which we 
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calculate the energy at each of the four corners of the tetrahedra, and 

assume that the Fermi surface intersects the tetrahedra in a flat plane. 

The relationship between the susceptibility and a general ordering 

vector Q comes from the proportionality of the susceptibility to the 

negative of the magnetic interaction energy. Thus, the maximum in the 

susceptibility corresponds t o the minimum in the energy, and hence 

corresponds to the wave vector Q which stabilizes the magnetic ordering. 

In the case of lutetium, which is paramagnetic, the experimental Q must 

be determined from extrapolations of measurements on dilute a lloys of 

lutetium and other magnetic rare earths. Finally, one additional 

result, which serves as a check on the consistency of the theoretical 

results, is the required limiting behavior of the susceptibility, in the 

case of constant matrix elements: 

Limit X(q )= (1/2) N(Ef) 
q-->O 

where N(Ef) is the density of states at the Fermi level. 

The Form Factor 

(40) 

To the extent that the spin contribution is dominant, the induced 

neutron magnetic form factor of a metal allows a good test of the 

quality of the important wavefunctions at the Fermi level ~hich are 

generated in a band structure calculation. The form factor is the 
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Fourier transform of the magnet ization density and consists of both 

spin and orbital contributions . Generally, the spin part tends to 

dominate the total f o rm factor. In fact, the atomic spin form factor, by 

itself, is often in ve ry good agreement with experimental r esults. For a 

ferromagnetic system, the spin magnetization density is the difference 

between the spin up and the spin down densities. In paramagnetic 

systems, which exhibit on ly a ve r y small induced magnetic moment, even 

at high applied fields, the spin density is taken as the density of the 

spin up states at the Fermi level which have corresponding unoccupied 

spin down states . Then , the spin density is given by: 

p(r ) = C E 
n 

J 
E=Ef 

(dA (k) / IVE (k)i) ITl 2 
n n 

( 41 ) 

where the integral is over energies at the Fermi level only. The spin 

form factor is 4 3
: 

( - i~ • r ) F (G) = fd 3 rp ( r ) e ~ -spin - ( 42 ) 

The calculational details are discussed in the Appendix. 
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RESULTS AND COMPARISON WITH EXPERIMENT 

Until recently, a detailed, experimentally- determined Fermi surface 

for lutetium has been lacking, mainly due to the extremely pure samples 

required, which were not readily available. The chemically similar 

valence of the 4f rare earth metals as well as their tendency to absorb 

small impurities makes separation and purification difficult. However, 

the development of zone refining and electrotransport techniques in the 

last ten years has resulted in increasingly pure rare earth samples. In 

the first section , results of this calculation are compared with results 

of an early RAPW calculation by Keeton and Loucks 1 • -
19

. In section two, 

the theoretical and experimental Fermi surfaces are compared . 

Susceptibility calculations are compared with experiment in section 

three. Section four compares the calculated density of states with 

specific heat measurements. In section five, the calculated form factor 

is compared with experimental results and with a previous, non-self-

consistent RAPW fo r m factor calculation. 

RAPW vs. SO-LAPW Results 

As shown in Figures 1 and 2. the band structure of this calculation 

is very similar to the RAPW band structure of Keeton and Loucks. Since 

Keeton and Loucks used the Slater a=l exchange , their 4f - bands ended up 

below the valence bands and are not shown. The 4f-band placement shown 

for this SO - LAP~ calculation is not certain. The results shown, which 

will be referred to as the results of potential one ( POTl), are the 

result of a series of iterations in which the Fermi energy had 
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of the 4f - bands, the results seem to indicate that the 4f -bands are well 

below the Fermi level. However, even though one might therefore expect 

the Fermi surface of Keeton and Loucks to be quite similar to the Fermi 

surface of this calculation, it should be kept in mind that an a=l 

exchange generally has the effect of narrowing the d -bands and producing 

a relative d-s shift, in addition to pulling down the 4f- bands, which 

could change the Fermi surface significantly, as will be discussed in 

the next section. Furthermore, it has been noticed that a non-self-

consistent calculation performed with a strong exchange - correlation 

potential, such as the Slater a=l, usually produces bands near the Fermi 

energy which are quite similar to the results of self - consistent 

calculations using a weaker, e.g., a=2/3-type of potential . However, the 

wavefunctions, and hence the form factor, are much more sensitive to 

self - consistency and the chosen potential than are the energy bands, as 

will be discussed in section five . 

The Fermi Surface 

One of the most precise tools available for accurately examining 

the Fermi surface of metals is the dHvA effect, which is based upon the 

fact that the orbits of the band electrons become quantized Landau 

orbits in the presence of a strong magnetic field. As the field strength 

is changed, the orbits with energies near the Fermi energy move through 

the Fermi level, resulting in the population or depopulation of certain 

orbits in a discontinous, quantized fashion. The result is an 

oscillation in the magnetic moment of the metal, which is periodic in 
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the inverse of the magnetic field strength. This frequency is 

proporional to the extremal cross-sectional area of the Fermi surface 

perpendicular to the field direction. Thus, measuring frequency as a 

function of field direction produces a graph of orbital areas as a 

function of field direction, which provides a detailed map of the 

extremal areas of the Fermi surface. 

An early attempt at mapping the Fermi surface of lutetium via dHvA 

orbits by Hoekstra and Phillips 45 , using a sample with a resistivity 

ratio ( p(300K)/ p (4.2K) of 60 and pulsed fields of up t o 200 kilogauss, 

resulted in the discovery of only one orbit. However, a recent study by 

Johansen, Crabtree, and Schmidt 2
, using a lutetium sample with a 

resistivity ratio of 100, as well as a new experimental apparatus which 

allowed them to reach a higher field-to-temperature ratio ( field 150kg, 

temperature .3K) than Hoekstra and Phillips, resulted in the discovery 

of eight distinct orbits . Unfortunately, a small misalignment problem 

may have affected some of the results of Johansen et al . , particularly 

around the H point. Hoekstra and Phillips found only a single orbit 

around the H point, while Johansen et al. found two orbits. The RAPW 

calculation of Keeton and Loucks predicts two orbits in this region, but 

not the same two as were found by experiment, which show a different 

angular dependence. This calculation predicts three distinct orbits at 

this point . These calculational differences are illustrated in the 

folded out Fermi surfaces of Figures 3 and 4 

In the RAPW Fermi surface, the electron sheet ( inner surface ) along 

the HK direction is cylindrical, which means that it can support only 
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FIGURE 3 . Folded out Fermi Surface of Lu . This Calculation. 
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FIGURE 4. Folded out Fermi Surface of Lu. Keeton and Loucks . 
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one extremal orbit. However, the SO-LAPW electron surface exhibits both 

a neck and a belly, i.e. , both a minimum and a maximum area, which will 

suppor t two extremal orbits. Both calculations show a second cylinder 

due to the hole sheet, which will support one orbit, which was not found 

experimentally by Johansen et al. The second main difference between 

the RAPW and SO- LAPW results is the lack of a "nose" in the f-K-H -A 

plane of the RAPW hole surface . This nose does not appear to make any 

noticeable change in the extremal orbits. The other six orbits agree 

reasonably well with theory and, we believe, fully map out the remainder 

of the Fermi surface, insofar as extremal orbits are concerned. 

Shown in Figures 5 and 6 are full zone and irreducible wedge models 

of the Fermi surface consisting of hole and electron sheets, due to the 

third and fourth bands crossing the Fermi level. The nine predicted 

extremal orbits, five on the electron sheet and four on the hole sheet, 

are marked on the irreducible wedge model. The shapes of t he nine 

orbits are shown in Figure 7. Table 1 contains the extremal orbit areas 

found experimentally by Hoekstra and Phillips and by Johansen, Crabtree, 

and Schmidt, as well as the theoretical areas determined by this 

calculation, for the two different potentials. It should be noted that 

the two different potentials with different placements of the 4f-bands 

give quite similar results. Also included in Table 1 are the areas 

estimated from the folded out Fermi surface of Keeton and Loucks (Figure 

4 ) by Johansen et al., as well as the the semirelativistic (fully 

relativistic without spin-orbit coupling) results of this calculation. 

The semirelativistic (SR) results show that, except for splitting the 
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a. 

b. 

FIGURE 5. Fermi surface of Lu. a:Electron sheet. b:Hole sheet. 
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FIGURE 6 . Fermi surface of Lu. a:Electron sheet. b:Hole sheet . 
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degeneracy of bands three and four on t he AHL plane thus giving rise to 

three orbits around the H point rather than one, the inc lusion of spin-

orbit coupling really didn't affect the larger orbits , i.e., the gross 

features of the Fermi surface. 

The areas from this calculation are in generally good agreement 

with experiment, except for the s mall a and 5 orbits around the H point. 

As can be seen from the experimental angular dependence measurements of 

these orbits in Figures 8 and 9, some odd behavior is in evidence, 

possibly due to the misalignment problem mentioned earlier. An 

interest ing and previously unreport ed theoretical result is the shape of 

the Fermi surface aro~nd the H point, shown i n Figure 10, which explains 

the branchi ng together of the a and 5 orbits seen in Figures 8 and 9. 

With the magnetic field along the HK direction, two d istinct orbits are 

observed on the electr on sheet. As the field is tilted, the larger belly 

orbit decreases in area, whil e the smaller neck orbit increases in area. 

Eventually, when the field is tilted about 25 degrees from the c - axis, 

the two orbits become degenerate, forming one larger orbit. It is 

believed that the single orbit found by Hoekstra and Phillips 

corresponds to the a orbit. Thei r orbit disappeared at a field tilt of 

22 degrees, which i s consis t ent with the results one wou ld expect f rom a 

less pure sample. The 5 orbit has a larger area, and the two orbits do 

not merge until the field is ti lted approximately 25 degrees. 

Additionally, both the t heoretical and experimental a reas and masses of 

the a orbit are in good agreement. 

The correct angular dependence of the Johansen et al. orbits is 
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TABLE 1. Orbital Areas 

ORBIT AREA (a.u.) 2 

EXPl EXP2 POTl POT2 POT(SR) LOUCKS 
a .012 .010 .019 .023 -1:-1:";':* .021 
8 .017 ""*"":":.': .023 .1~.1-.L.J.. -/:-;,':;':* 1':;': ... ':"i'-: 

8' .. ·:..,':;':* ..,·:-.,':..,':* .036 .035 .028 -.':-;":·/:* 

3' .095 -;,':-;,':;':* .10 .11 .10 .10 
cS .45 ;':;':-;,':* . 43 .43 .42 .46 
n .114 ;':-1:;':-;,1: .097 .096 .099 .08 
8 .30 ... ·:-;':;':-..': .31 .31 .31 .34 
E .030 -.':-..':;':-;': . 048 .050 .053 .045 
l; .085 -.·:..,':".':* .094 .092 .09 .11 

EXPl Experimental results of Johanson et al. 
EXP2 Experimental results of Hoekstra & Phillips. 

given by the calculated band structure, as seen in Figures 11 and 12, 

although the magnitudes of the small orbits disagree. Note also the 

prediction of a e' orbit, which is unobserved experimentally, although 

yttrium46
, which is isoelectronic with lutetium and which exhibits a 

similar a-8 type branching in the angular dependence of its dHvA 

frequencies, has an experimentally observed orbit corresponding to the 

predicted 8' orbit. It should also be noted that a small shift i n the 

Fermi level can make a substantial difference in the areas of the small 

orbits. In fact, a Fermi level shift of 5 mRy results in areas of .0144, 

.0154, and .0318 for the a, e. and e' orbits, which are more in line 

with the experimental areas. 

We feel that the remaining disagreement between theoretical and 

experimental areas is mainly due to the MT approximation, rather than a 
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lack of self-consistency or poor placement of the £-bands. As a first 

approximation to the use of a more general potential, a warped 

(interstitial) potential from scandium was used for one additional 

iteration beginning with potential one, in place of the constant 

interstitial potential used in the MT approximation. This can be 

justified on the grounds that scandium is isoelectronic with lutetium, 

and the effort was made in order to see in which direction the inc lusion 

of warping would move the energy bands. It was found that the resulting 

shift was in the correct direction, i.e., the Fermi surface was changed 

in such a way as to move the theoretical areas closer to the 

experimental areas . 

Included in Table 2 are the experimentally observed and the 

calculated masses for the various orbits. The calculated masses are 

generally much smaller than the experimentally measured masses, 

suggesting a large electron-phonon mass enhancement, which is to be 

expected, as will be discussed in section four. 

The Susceptibility 

Another interesting feature of the Fermi surface of lutetium is the 

nesting of the two surfaces (i.e., the hole and electron sheets) due to 

the two bands which cross the Fermi level. Of particular interest is the 

"webbing" feature 19 seen in the LH~1K plane, as shown in Figure 13, 

which is bel ieved to determine the magnetic ordering wave vector Q in 

the heavy rare earth metals. For lutetium, Q was determined to be .53n/ c 

by W.E. Evenson 47
, who extrapolated the experimental results of W.C. 
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TABLE 2. Effective Masses 

ORBIT MASS(m*/mo) 

EXPl 
EXP2 

ex 
6 
6' 
i 
6 
n 
a 
£ 
c; 

EXPl EXP2 POTl 
.42 .38 . 38 
. 9 "l:"k"'#':-..': .65 

.. ~ ... !:** "'*''* 74 
-.·:-.':*•': a::-.·:-.':* - 1. 3 
-.': -!:··."':·-.~ -::-.·:~': - 3.9 

3.0 -.':-.·: ... ·:··:: 1. 7 
-.·:*-:': -.': -.·:,,·: .. /: ... ·-. 2.2 

1. 7 -.'n'n':* - . 86 
2.6 -.':-.':-!:··:: -1. 3 

Experimental r esults of Johansen e t al. 
Experimental results of Hoekst ra & Phillips . 

POT2 
. 42 

-J:-::-1:.._i: 

.68 
- 1. 3 
- 3.9 

1. 7 
2 . 2 

- .86 
- 1. 3 

Koeh ler 3 for Tb-Lu alloys. Theoretically, the value of Q is determined 

from the maximum in the interband contribution to the suceptibility 

curve along the z direction, as shown in Figure 14. We take only the 

interband part because the webb ing feature is caused by the interaction 

of the separate electron and hole su r faces due to the i ntersection o f 

bands three and four with the Fe rmi level. The va lue found in this 

calcula tion is approximately 1.8 a.u ~ 1 = .54n/c a.u ~ 1 • However, the 

shape and broadness of the peak are not understood, and possibly 

indicat e the need for improved calculations, i.e., calculations in which 

the matrix elements a r e not assumed constant. Keeton and Loucks 

origina lly estimated Q t o be about .45n/ c from t heir band structure 1 ', 

but a later, more detailed calculation by Evenson and Liu 48
, using the 

energy bands of Keeton and Loucks , gave a value of . 54n/ c . However , 
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Evenson and Liu used the root sampling method to perform their k - space 

integrals, resulting in a large scatter in their computed susceptibility 

curve, which could have introduced substantial uncertainty into their 

results . 

The Specific Heat and Density of States 

The theoretical density of states is shown in Figure 15. The value 

of the density of states at the Fermi level, N(Ef) , is 23.54 

States / Rydberg -Atom, which agrees with the result of 23.59 

States/Rydberg- Atom obtained from the q = 0 limit of the susceptibility 

calcu l ation . Taylor et al. 4
, determined from specific heat measurements 

that the value of gamma , the coefficient of the low temperature linear 

term in the expression for the specific heat, is 8.3 ± . 08 mJ/ mole - deg 

K, or N(Ef) = 48.8 ± . 5 States / Rydberg -Atom. Thome et al . 5 , found gamma 

= 8.194 mJ/ mole-deg K, implying that N(Ef) = 48 . 2 States/Rydberg-Atom, 

which is consistent with their purer sample. 

Since this calculation ignores the electron-phonon interaction, it 

was expected that the ca lculated N(Ef) would be substantia l ly lower than 

the measured gamma value. The difference is generally described i n 

terms of an enhancement factor, A , which is empirically given by : 

N(Ef)exp = ( 1 + A ) , ( Ef)theory 

There are also contributions to the enhancement factor from the 

electron - electron interactions and from spin fluctuations. These 

contributions are generally assumed to be mu ch smaller than the 

electron- phonon contribution, but recent theoretical 49 and 
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FIGURE 13. Webbing Feature in LHMK plane. 
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experimental 50 - 51 work suggests that this may not be the case for 

transition and rare earth metals and their compounds . In general, the 

theoretical determination of A is not yet very accurate, with estimates 

within about 25% of the correct values for transition meta ls 52
-

53
. More 

accura t e calcu lations than this generally use quite a bit of 

experimental data in their calculations 15 1 54 . A is measured by 

tunneling experiments for superconducting elements, and there is no A 

value yet for lutetium. Values of 2. to .4 for the electron -phonon 

contribution have been reported for lutetium 5 s- 56 • Our calculation, 

together with the data of Taylor et al., imply an empirica l A of 1.07, 

while the data of Thome et al., i mply a A of 1.05 fo r lutetium. 

Empirical r esu lts for the A value of lutetium, as we ll as for scandium, 

yttrium, and lanthanum, which are isoelectronic with lutetium, as 

dete rmined from the difference of experimental l y measured gamma values 

and theoret ica lly determined N(Ef) values, are compared with some 

experimental and theoretical results in Table 3. It should be obse rved 

that the results of this calculation are in line with those fo r the 

other materials, wh ich are electron ically simi lar. 

As shown in the work of Thome et al., the addition of impurities 

such as hydrogen tended to inc rease the observed value of gamma until 

the hydrogen concentration reached 1.5 atomic percent, when the value of 

gamma started to decr ease again. Thome et al. and Gschneidner et al. 64 

suggest that this is due to the occurrence of hydrogen t unneling between 

equivalent interstitial sites in the presence of oxygen . The effect of 

this tunneling is to cont r ibute a low temperature linear term to t he 
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TABLE 3 . Enhancement Factors 

MATERIAL LAMBDA REFERENCES 

Lu 1. 05 --> 1. 07 (a) 
.89 - - > .91 (b) 

La 1. 15 (c) 
1.4 (c) 

. 77 --> .84 (d) 

y .74 (e) 
1. 15 (f) 

.28 --> .38 (g) 

.55 --> .67 (c) 

Sc .98 (f) 
1. 25 (h) 

.49 - - > .64 (g) 
.81 (c) 

(a) Results of this calculation compared with ref. 4 & 5. 
(b) Resu lts of ref. 19 compared with ref. 4 & 5. 
( c ) Results of ref. 54 assuming fee or bee structure . 
(d ) Experimental results of refs. 57 & 58. 
(e) Results of ref. 59 compared with ref. 4 
(f) Results of ref. 60 compared with ref. 61. 
(g) Results of ref. 52. 
(h) Results of ref. 49 compared with ref. 62. 

speci fic heat. This explanation is more reasonable than interpret ing the 

desi t y of states in a rigid band manner , which wou ld suggest that the 

hydrogen added electrons, causing the Fermi level to move upward, thus 

increasing N(Ef). However , the addition of hydrogen may not add 

electrons. In fact, the interstitial impurities pr obably reduce the 

electron concentration, due to the electronegative nature of the 

impurities relative to the electropositive nature of lutetium. 
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Furthermore, it should be noted that in the the case of LaH2, YH2, and 

ScH2, charge tended to be transferred to the hydrogen 63
, although one 

should not arbitrarily extrapolate results for dihydrides to systems 

which are essentially pure metals with small amounts of hydrogen 

impurities. Several earlier specific heat measurements, referenced by 

Thome et al, which involved less pure samples of lutetium, produced much 

higher gamma values, in line with the results of Thome et al. 

This electron-phonon enhancement factor also applies to band 

masses which are calculated while ignoring the electron-phonon 

interaction. As can be seen in Table 2, an enhancement on the order of 

1.0 would bring the theoretical masses of the larger orbits more in 

line with the experimentally observed masses . 

The Magnetic Form Factor 

The wavefunctions produced in a band structure calculation are much 

more sensitive to small changes in the potential than are the energy 

bands. For that reason, the magnetic form factor is a good test of the 

theoretical results. The results of a neutron magnetic fo rm factor 

measurement by Stassis et al., are shown in Figure 16, along with their 

calculated spin and orbital atomic form factors and non-self-consistent 

RAPW spin form factor 6
. The experimental results presented here have 

already had the diamagnetic contribution, as calculated by the Stassis 

diamagnetic form factor 65
, subtracted out. It should be noted that the 

atomic form factor does not agree with experiment, unlike the case with 

the transition metals located toward the right side of the periodic 
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table. This can be understood in light of the fact that, for 

par amagnetic systems, the form factor reflects the character of the 

wavefunctions at the Fermi level. As shown in Figure 17, for a Fermi 

energy near the bottom of the d - bands, one has a bonding type state, 

with a charge density which is spread out towards the nearest neighbors, 

and is much more expanded than in the atomic case. As one progressively 

fills the d shell, the Fermi level moves upward toward the antibonding 

type states at the top of the d- bands, which have much mor e contracted 

charge densities and are hence much more atomic- like. Thus, solids with 

nearly filled d- bands should have form factors which can be fairly 

closely approximated by the atomic results. 

It should be noted that the measured form factor of Stassis et al. 

falls off more rapidly than the atomic form factor, which agrees with 

expectations due to the expanded d wavefunctions and the large amount of 

s - p type character at t he Fermi level. The resu l ts of the spin- only RAPW 

calculat ion of Stassis et al., are in extremely good agreement with 

experiment, implying that there is no significant orbital contribution. 

However, anisotropy in the susceptibility measurement 66 s uggests that 

there should be a large orbital contribution, possibly on the order of 

40 - 60%. This discrepancy was part of the motivation for this se lf -

consistent calculation. The results of this calculation are also shown 

i n Figure 16 , and are in almost as good agreemen t with experiment as the 

RAPW results . The res ults of this calculation, using Hedin - Lundqvist 

exchange, are lower than the a=l RAPW results at the first few 

reflections. However, at the higher reflections, it appears that the 
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anisotropy observed in the susceptibility measurements starts to come 

into play. The main cause of this anisotropy is the asphericity of the 

spin density . It has been suggested by Gupta and Freeman67
-

61
, that, in 

the case of scandium, another cause is interference, through the Fourier 

transform, of the inner and outer parts of the magnetization density. 

However, we have not found this to be a contributing factor in the case 

of lutetium. Since the asphericity is so sensitive to the potential, the 

MT approximation may be responsible for the theoretical results becoming 

larger than the experimental results at higher reflections. 

We calculated the unenhanced Pauli spin susceptibility, which is 

given in terms of the density of states at the Fermi level by µp 2 N(Ef), 

and came up with a value of 56xl0- 6 emu/ mole . The total susceptibility, 

as determined by Spedding and Croat, is 189xl0- 6 emu/ mole, which 

suggests that the ratio of orbital to spin contributions should be 

roughly two to one, implying a gyromagnetic ratio of about 1.2. 

Unfortunately, the gyromagnetic ratio has not been measured for 

lutetium, as it could be in principle by an Einstein- de Haas experiment. 

Although a large exchange enhancement could decrease the required 

orbital contribution, as in scandium, it is not believed that there will 

be an exchange enhancement much bigger than 2.0 in lutetium. The reason 

for this is the general trend observed as one goes from the 3d to the 4d 

to the 5d elements , in which the spatial extent of the d -orbitals 

increases. As the orbitals become more extended, less exchange 

enhancement is observed. This is evident from t he work of Moruzzi et 

al. 31
, which only dealt with elements through atomic number 49, but 
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which illustrated the trend . They found theoretically that t he 

enhancement of scandium, a 3d metal, was about 40 percent larger than 

for yttrium, a 4d metal . Since both scandium and yttrium are 

isoelectronic with lutetium, this should be indicative of the trend. 

The calculation of the form factor involves an expansion of the 

charge density inside each MT sphere in terms of a series of lattice 

harmonics, which are constructed with the symmetry of the lattice. Each 

expansion t erm is characterized by its angular momentum quantum numbers , 

L and M. The charge density can be broken down into these different L 

and M contributions, which is often helpful in illustrating the physics. 

In Figure 18, the various Ll1 contributions to the charge density inside 

the MT sphere are graphically represented. The spherically symmetric 

(L=O,M=O) part dominates, with the aspherical 1=3 component contributing 

most of the remainder of the charge density. This L=3 component is 

mainly from the interaction of the d ( 50 - 70 ~ ) and the p ( 25-35% ) 

bands, as there is very little f character present in the wavefunctions 

at the Fermi l evel . The large amount of p-type charge is evident from 

the sharp rise in the spherical density at the ~T radius. Since the 

Fermi level is near the bottom of the d- bands, one would expect the d -

only contribution to have the appearance of the bonding type orbita l, as 

shown in Figure 17. 

In Table 4, t he various theoretical and experimenta l form factors 

are tabulated. The column labeled spherical contains the fo rm factor 

which results if only the spherical pa r t of the charge density inside 

the MT is included , but including the aspherical components from the 
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interstitial region. It can be seen that a substantial part of the form 

factor is due to nonspherical terms, and that the assumption of 

spherical symmetry inherent in the MT approximation probably has a 

detrimental effect on the results. Additionally, it has been found that 

the wavefunctions and form facto r are sensitive to the interst itial 

potent ial in the rare earths 3 ', sugges t ing that W~T effects could modify 

the form factor results. 

TABLE 4 . The eutron Magnetic Form Factor 

SIN( 8) FORM FACTOR 
A. 

THIS SPIN ORBIT. 
EXP RAPW C.ALC. ATOMIC ATOMIC SPHER . 

0 . 0 l. 00 l. 00 
0.1648 .278 .254 .235 .28 .48 .16 
0.1801 .145 .114 .094 .23 .43 .072 
0.1870 .006 .013 - .0 17 .21 .41 .01 
0.244 .057 .064 .061 .068 . 25 .035 
0.285 .079 .036 .056 .017 . 17 . 040 
0.360 .044 .028 .049 -. 022 . 08 .004 
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DISCUSSION AND CONCLUSIONS 

This investigation has shown that the SO-LAPW method, within the 

limitations of the local density ( Hedin- Lundqvist) and MT 

app roximations, is capable of producing a fully relativistic 

bandstructure and associated electronic properties of hep lutetium which 

are in good agreement with experimental results, while requir i ng less 

computational effort than an RAPW calculation. It has been found that, 

f or lutetium, the absolute placement of the 4f -bands is not as important 

as previously thought, insofar as energy -band related properties are 

concerned. Although the 4f p lacement is extremely sensitive to the 

actual potential used, the actual shape and size of the Fermi surface 

were not appreciably changed by the movement of the 4f-bands within a 

fairly wide r egion . Furthermore, it is felt that t he maj ority of the 

charge er r or still existing after the last iteration was due to the 

"bouncing around" of the 4f-levels, and that, in fact, a good 

approximation of self - consistency had been reached. The angular 

dependence of the theoretical dHvA orbits was in good agreement with 

experiment, demonstrating that the s hape of the theoretical Fermi 

surface was in good agreement with the experimental Fermi surface . The 

main discrepancy between theoretical and experimental results was in the 

areas of the small orbits , which are very sensitive to small changes in 

the Fe rm i surface . It is felt that it will be necessary to use a more 

general potential to bring the small orbital areas into line with 

experiment . Furthermore, it is not believed that a better exchange -

correlat ion potential will have as much of an effect on the Fermi 
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surface of lutetium as will an improvement on the MT approximation . A 

better exchange-correlation potential, perhaps a l ong the lines of the 

Self- Interaction- Corrected Average Density Approximation (SIC - ADA) 

formulation of density-functional theory32
, will be necessary to t r eat 

the 4f- bands realistically, especially in other rare earth metals with 

open 4f - shells. A better treatment of exchange and correlation will 

probably be required for the generation of accurate wavefunctions. 

Furthermore, since the Fermi energy is near the bottom of the d-bands, 

the error in the placement of the d-bands, due to the inaccuracies of 

the LDA, should not be very large . 

This magnetic form factor calculation, using Hedin - Lundqvist 

exchange - correlation and with some degree of self - consistency, showed 

anomalously good agreement wi t h experiment in light of the expected 

large orbital contribution, which was neglected. With the expected 

40 - 60% orbital contribution, as estimated from from the susceptibility 

measurements and the atomic calculations, the spin only form factor 

should have disagreed substantially with experiment. Possibly , the 

exchange enhancement is larger than expected. We have shown that the 

surprisingly good agreement with experiment obtained by Stassis et al., 

was not entirely due to their use of wavefunctions from a non - self -

consistent calcul ation. It appears that it will be necessary to perform 

the calculation with a more genera l potential , due to the large 

aspherical contributions . which are sensitive to the interstitial 

potential . In any event, an actual calculation of the orbital 

contribution to the form factor , along the lines of the Oh et al. 
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calculation for chromiuro 43
, would be extremely helpful in assessing the 

actual orbital contribution in the solid. In addition, Einstein- de Haas 

experiments to measure the gyromagnetic ratio would shed some light on 

the actual breakdown of the spin and orbital contributions to the form 

factor. 
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APPENDIX CALCULATIONAL DETAILS 

Lutetium occurs i n the hep structure with symmet r y g r oup D6h. I t 

has an a tomic number of 71 , with a va l ence of 5d 1 6s 2 4f 14
, and two atoms 

per unit cell. We have used experimentally determined lattice 

constan t s 69 of a=b= 6.61990 a.u. and c= 10.48968 a.u. , which produce a 

unit cell volume of 398.10 (a.u.) 3 
• Since we are working within the APW 

framework, we must decide how large to make the MT spheres around each 

ion. Generally, in the homonuclear case, where both spheres are taken 

to be the same size, one makes them as large as possible without 

overlapp ing. We chose an MT radius of 3.17988 a.u., which results in a 

sphere volume of 134.6855 (a.u.) 3 
• Thus, 67.7% of the cell volume is 

wi thin the two spheres. We use a standard logarithmic mesh for 

calcu lational purposes , which makes the spacing between mesh points 

smaller in the inner regions of each sphere, where the charge density is 

varying more rapidly. Fo r a given mesh point I, the radius is given by : 

where: 

R(I) = RN -:: EXP[ ( I - 1 ) ,., DX J 

RN= RNOT -:: EXP[ (I -Rl ) -:: DX ] = .00011968 a.u. 

DX = 1/32 = .03125 

Rl = 421 

RNOT = 60 

The MT radius (RMT) is defined in t erms of a mesh point JRI, i.e., 

R~T=R(JRI). In this case , JRI = 327, which gives the previously 

mentioned value for RMT. ~e further define RKM, which limits the number 

of reciprocal lattice vectors, i.e., basis functions to be included in 

the sums. Only those vectors are included, which, at each k- point , 
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satisfy: 

I ~ + ~ I < RKM/ RMT 

We use a value of RKM = 7, which generally results in 70 -80 basis 

vectors, and a convergence of approximately 1 mRy for the one-electron 

eigenvalues. In the sums ove r angular momentum states, we i nclude t erms 

up to 1=12, which provides good convergence. 

Due to the high symmetry of the hep unit cell, we can perform our 

calculations within an irreducible wedge of the cell, which is 1/ 24 of 

the entire cell vol ume, as shown i n Figure 19. The rest of the cell can 

be reproduced by the symmetry operations of the lattice. We used 27 k-

points within the irreducible wedge f or our iterations , which were 

chosen by d ividing the irreducib l e wedge into 27 smaller wedges, and 

then taking the k -point at the center o f mass of each wedge. Each k-

point was equally weighted in the calcul ations . An earlier test 

consisted of a series of iterations using 64 k-points, both with and 

without st rengthened exchange, which did not noticeably change 

convergence o r improve the 4f situation . 

During the 27 point iterations towards sel f- cons i stency , we used 

an overall energy parameter of .4 Rydbergs. We set the l=l energy 

parameter at 1.2 Rydbergs to prevent the generation of spur ious 6p-bands 

which could influence the 4f - bands. The 1=3 parameter had to be adjusted 

very carefully t o the center of the f - bands for each iteration. Since 

the 4f's had a bandwidth of less than 10 mRy, it was necessary to check 

the change in 4f position each time for a f ew k- points and t hen adjust 

the new 1=3 energy before continuing the iterations . During the 



64 

L H 
<ooor> 

r 

K 

A 

H 

L 

FIGURE 19. One half hep Unit Cell and Irreducible Wedge 



65 

iterations, charge tended to move from the interstitial regions into the 

spheres. During the final iteration, the charge within each sphere was 

70.0150 electrons. 

Once we had arrived at our final potential, our final iteration 

consis ted of using 142 k-points both inside the wedge and along high 

symmetry lines. This final iteration included spin-orbit coupling, and 

the resultant 20 eigenvalues per k-point were fit using a 60 function 

Fourier series consisting of symmetrized plane waves, with each band fit 

separately. The RMS fitting fitting error was less than 2 mRy for the 

two bands which define the Fermi surface and was generally less than 1 

mRy for the remaining bands. The bands shown in Figure 1 were generated 

using these coefficients. As can be seen in that Figure, there is a 

splitting of the bands along the LA direction, where, by symmetry, the 

bands should be degenerate. This is caused by an inadequacy in the 

Fourier series fit. These fitting coefficients were then used to 

produce a high resolution density of states via the tetrahedron method, 

as well as the band structure along high symmetry lines. The 

coefficients were also used in our orbit tracing program to produce the 

orbits and angular dependencies shown earlier. The orbit tracing routine 

was tested on a cylindrical Fermi surface and was found accurate to at 

least 4 decimal places, which is probably more accurate than our 

convergence and fitting errors warrant. The bands generated by the 

Fourier series fit generally matched the bands from the first principle 

calculation well, except around the H point . It was necessary to 

generate 282 first principle points in the region around the H point and 
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perform another 60 func t ion fit in order to correctly bring out the 

details of the Fermi surface in that area. 

The susceptibility curve was generated by the constant matrix 

element tetrahedron method ment ioned earlier, using 1536 s mall 

tetrahedra within the irreducible wedge. This number of small tetrahedra 

is quite sufficient, as the agreement of the q=O limit with the density 

of states illustrates. Most of the error in the calculation will be due 

to the assumption of constant matrix elements. 

The form factor was calcula t ed as fo l lows . First, the irreducible 

zone was divided into 1536 small tetrahedra. Then, k - points were 

generated for each tetrahedron which contained a piece of the Fermi 

surface, along with an appropriate weight, given by t he area of the 

small piece of the Fermi surface divided by the gradient of the energy. 

The resultant 680 k -points were used to generate wavefunctions a t the 

Fermi level using the SO - LAPW method. However, due to inaccuracies in 

the Fourier series fi t, etc . , only 561 wavefunctions, which had 

corresponding eigenvalues within 15 mRy of the Fermi energy were used. 

These wavefunctions were then summed with the correct weights to produce 

a charge density, which was then used to produce t he final spin only 

form fac tor. 



67 

REFERENCES 

1 . A. H. MacDonald, W. E. Pickett, and D. D. Koelling, J. Phys . C: 
Sol . State Phys. , 11, 2675 (1980) . 

2. W. R. Johansen, G. W. Crabtree, and F. A. Schmidt, J. Appl. 
Phys . , 53, 2041 (1982). 

3 . W. C. Koehler, J. Appl. Phys., 36, 1078 (1965) . 

4. W. A. Taylor, M. B. Levy, and F. H. Spedding, J. Phys. F : Metal 
Phys.,~. 2293 (1978). 

5. D. K. Thome, K. A. Gschneidner, Jr., G. S. Mowry, and J. F. 
Smith, Sol. St . Comm., 25, 297 ( 1978). 

6. C. Stassis, G. R. Kline, C.-K. Loong , and B. N. Harmon, Sol. St. 
Comm., 23, 159 (1977). 

7 . J. 0. Dimmack and A. J. Freeman, Phys. Rev. Lett., 13, 750 
(1964). 

8. A. J. Freeman, in Magnetic Properties of Rare Earth Metals, 
edited by R.J. Elliot (Plenum Press, New York, 1972), p. 245. 

9. B. Y. Tong and L. J. Sham, Phys. Rev., 144, 1 (1966) . 

10. B. N. Harmon and A. J. Freeman, Phys. Rev., BlO, 1979 ( 1974). 

11. R. C. Young and J. F. Hulbert, Phys . Lett., 47A, 367 ( 1974). 

12. J. E. Schirber, F . A. Schmidt, B. N. Harmon, and D. D. Koelling, 
Phys. Rev. Lett., 36, 448 ( 1976 ). 

13. R. C. Young, R. G. Jordan, and D. W. Jones , Phys. Rev. Lett., 31, 
1473 (1973). 

14. Allan H. MacDonald, Ph.D. thes is, unpublished, University of 
Toronto, Toronto, Ontario, Canada, 1978. 

15. \arren E. Pickett , A. J. Freeman, and D. D. Koelling, Phys . 
Rev., B22, 2695 (1980). 

16. J. c. Slater, Phys . Re\·., 51, 846 (1937). 

17. T. L. Loucks, Phys. Rev., 139, a1333 (1965). 

18. s. c. Keeton and T. L. Loucks, Phys . Rev., 146, 429 (1966). 

19. s. c. Keeton and T. L. Loucks, Phys. Rev., 168, 672 (1968). 



68 

20. J. C. Slater and H. M. Kruttner, Phys. Rev., 47, 559 (1935) . 

21. 0. Krogh Andersen, Phys. Rev., Bl2, 3060 (1975). 

22. D. D. Koelling and G. 0. Arbman, J. Phys . F: Metal Phys., ~. 2041 
(1975). 

23. 0 . K. Andersen, Sol. St. Comm., 13, 133 (1973). 

24. D. D. Koelling and B. N. Harmon, J. Phys. C: Sol. St. Phys., 10, 
3107 (1977). 

25. J. C. Slater, Phys. Rev., 81, 385 (195 1). 

26. R. Gaspar, Acta Phys. Acad. Sci. Hung.,~. 263 (1954). 

27. W. Kohn and L. J. Sham, Phys. Rev., 140, All33 (1965). 

28. J.C. Slater and K. H. Johnson, Phys. Rev . , BS, 844 (1972), and 
references therein. 

29. L. Hedin and B. I. Lundqvist, J. Phys. C: Sol. State Phys.,~. 
2064 (1971). 

30. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964). 

31. V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated 
Electronic Properties of Meta l s (Pergammon , New York, 1978). 

32. L.A . Cole and B. N. Harmon, J. Appl. Phys . , 52, 2149 (1981) , and 
references therein. 

33. D. D. Koelling, A. J. Freeman, and F. M. Mueller, Phys. Rev., Bl, 
1318 (1970). 

34. P. D. DeCicco, Phys. Rev., 153, 931 (1967). 

35 . D. D. Koelling, Phys. Rev., 188, 1049 ( 1969). 

36. B. N. Harmon, Ph.D. thesis, unpublished, Northwestern University , 
Evanston, Illinois, 1973. 

37. A. R. Williams and J. Marya , J. Phys. C, z, 37 (197 4) . 

38. Nairn Elyashar, Ph.D. thesis, unpublished, Universi ty of Illinois, 
Chicago, Illinois, 1975. 

39. L. Kleinman and R. Shurtleff , Phys. Rev., 188, 1111 ( 1969 ) . 

40. L. Kleinman and R. Shurtleff, Phys. Rev., B4, 3284 (1971). 



69 

41. Ryogo Kubo, J . Appl. Phys., 36, 1078 (1957). 

42 . J . Rath and A. J . Freeman, Phys. Rev . , Bll , 2109 ( 1975). 

43 . K. H. Oh, B. N. Harmon, S . H. Liu, and S . K. Sinha, Phys. Rev . , 
B14, 1283 (1976). 

44. Steven P. Kowalczyk, Ph . D. thesis, unpub l ished, Lawrence Berkeley 
Lab Report Number 4319, 1976 . 

45 . J. A. Hoekstra and R. A. Ph illips, Phys. Rev., A4, 4184 (1971). 

46. P. G. Mattocks and R. C. Young, J. Phys . F : Metal Phys., ~' 1417 
(1978). 

47. W. E. Evenson Ph .D . thesis, unpub l ished, Iowa State Univers i ty, 
Ames, Iowa , 1968. 

48. W. E. Evenson and S. H. Liu, Phys. Rev. Lett . ,~. 482 ( 1968) . 

49 . Shashika l a G. Das, Phys. Rev., 813, 3978 (1976). 

50. K. Ikeda and K. A. Gschneidner , J r ., Phys. Rev. Lett., 45 , 1341 
(1980). 

51 . G. W. Crabtree , D. H. Dye , D. P. Karim, D. D. Koel l ing, and J. B. 
Ketterson, Phys. Rev. Lett., 42, 390 (1979 ). 

52. D. A. Papaconstantopoulos, L. C. Boyer, B. M. Klein, A. R. 
Williams, V. L. Moruzzi , and J . F. Janak, Phys . Rev., 815, 4221 
(1977) . 

53. R. Evans, G. D. Gaspari, and B. L. Gyor ffy, J. Phys. F: Metal 
Phys.,~. 39 ( 1973). 

54 . Warren E. Pickett, Physica, 1118 , 1 (198 1). 

55. K. H. Bennemann, and J. W. Gar land, in Superconductivity ind-
and f - band Metals -1971, edited by D.H. Douglas, AIP Conference 
Proceedings Number 4 , 103 (1971) . 

56. J . J. Hopf i eld, Physica, 55 , 41 (1971). 

57. H. Wuehl, A. Eichler, and J. Wittig, Phys. Rev. Lett. , 31, 1393 
(1973). 

58. L. F. Lou, and w. J. Tomasch, Phys. Rev. Lett., 29 , 858 ( 1972). 

59 . T. L. Loucks, Phys. Rev., 144, 504 (1966). 



70 

60 . G. S. Fleming, and T . L. Loucks, Phys. Rev., 173, 685 (1968). 

61 . S . L. Altmann, and C. J. Bradley , Proc. Phys . Soc. (London), 92, 
764 (1967) . 

62. G. S. Knapp, and R. W. Jones, Phys. Rev . , B6, 176 (1972). 

63. D. J. Peterman and B. N. Harmon, Phys. Rev., B20, 5313 (1979) , 
and references therein. 

64. Karl A. Gschneidne r, Jr., H. Gnugesser, and K. Neumaier , Physica, 
1088, 1007 ( 1981). 

65. C. Stassis, Phys. Rev . Lett., 24, 1415 (1970). 

66. F. H. Spedding and J. J. Croat, J . Chem. Phys. , 59, 2451 (19 73) . 

67. Raju P. Gupta and A. J. Freeman, Phys . Rev. Lett . , 36, 613 
( 1976). 

68. A. J. Freeman, Proc. of the Conference on Neut r on Scattering, ~ . 
592 ( 1976 ) . 

69. W. B. Pearson, A Handbook of Lattice Spacings and Structures of 
Al loys (Pe rgammon , New York, 1958). 



71 

ACKNOWLEDGEMENTS 

I would like to thank Dr. Bruce Harmon for suggesting the thesis 

topic, as well as his continued encouragement and advice, which 

contributed greatly to the enjoyment of my stay in Iowa. I would also 

like to thank Dr. Dale Koelling for his hospitality and advice, as well 

as for supplying a large amount of the computer code needed for the 

completion of this thesis project. I am indebted to Bill Johansen, 

George Crabtree, and Fred Schmidt for their prepublication data on the 

dHvA effect in lutetium. Finally, I· would like to thank my friends, who 

have given much moral support and often helpful advice during the course 

of my graduate work. I would like to dedicate this thesis to my mother 

and father, who have continously had faith in me, and who have helped me 

in so many ways over the years. 


