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ABSTRACT 

Two-dimensional time series and random field models are among the most common classes 

of statistical image models. Textural patterns in images are important image descriptors used for 

classification of image data. and for synthesis of realistic looking images in computer simulations. 

!It this thesis. the use of a new subclass of Markov random fields (MRFs), called partially ordered 

Markov models (POMMs), as models of texture is explored. A new fourth order POMM is created ---- - .-~ -'--.--'-... ~.-

for texture analysis, and used for texture synthesis and classification. POMMs offer advantages over 

...... -- ---- ------
general MRFs, one of which is the POMMs capability to express exactly the joint distrib~tion ... This -- - --~----------.-. --_ .. --_._._--

property, among others, is exploited in the efforts presented here. Texture classification is achieved 
- . .------_._-.- -"_.- - ~- .. -- - - - ---"-'---'-'-'---~--~'--- ...... -------_ .. - '-- .. " .-'--"-'--

by using the POMM model parameters as features and adopting.a. statisticaLMRE modelJoLthe 
-------- _._-

~g~rocess,uAJemplateJdentificatioI1-probleJILllSing-morphology-neural-networks-(MNN)-is.-also 

described. ------
A method for generating samples from the POMM using an independent. identically distributed 

array of random variables is described that simulates textures in reasonable computation time. A wide 

variety of binary and gray scale textures are generated using the POMM, including homogenous and 

heterogeneous textures. The problem of parameter estimation is examined for noise-free image data 

and real. natural scenes. and a hypothesis test proposed to evaluate the accuracy of the estimates 

for the fourth order POMM. It is observed that the POMM model can perform well when fitting 

homogenous textures. 

A supervised segmentation algorithm employing a maximum a posteriori (MAP) criterion using 

simulated annealing (SA) is proposed to segment textured image data assuming an underlying POMM. 

Simulated annealing is used to train the train the weights of a morphology neural network 

(MNN), a nonlinear type of artificial neural network (ANN). The problem of morphology template 

identification using MNNs is addressed. and the application of SA to train MNNs for template 

identification is presented. 
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The POMM proposed in this thesis has potential applications in modeling of noisy images. image 

restoration. nonhomogeneous texture modeling. as well as in other nonimaging related fields. 
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1. INTRODUCTION 

Image processing is the branch of science that deals with the analysis and processing of images 

for the purposes of image enhancement, restoration, segmentation, and classification. Processing of 

digital images involves procedures that are usually expressed in algorithmic form. In most cases, the 

end result desired after the processing is the segmented image where each section or object in the 

picture is "recognized." Thus, the ultimate aim in a large number of image processing applications is to 

extract important features from image data. from which a description. interpretation. or understanding 

of the scene can be provided by the image processing system. These classified images are used in 

geographical mapping, tracking of earth's resources, stellar object recognition in images from deep 

space-probe missions. detection of tumors and other diseases in medical images. and automated target 

recognition in military warfare. to name a few applications. 

Common teclmiques for image segmentation and classification include thresholding, filtering, and 

pattern recognition classification techniques utilizing structural and transfonn features. Regions in the 

image can also be described by their textural characteristics. One approach to texture classification 

assumes an underlying model for the regions in the image and then the image is classified based on 

the model. The work in this thesis is concerned with texture models. Stochastic models of texture 

assume the texture to have an underlying statistical distribution [1]. ARMA models, time series 

models, random mosaic models [2], and Markov models [3] are commonly used stochastic models. 

Markov random field models (MRFs) have been used as probabilistic models of digital image 

textures where a textured region is viewed as a finite sample of a two-dimensional random process 

describable by its statistical parameters. MRFs can be considered to be multidimensional generaliza

tions of Markov chains, and are defined in terms of conditional probabilities associated with spatial 

neighborhoods. In this thesis, a newly-developed statistical model called partially ordered Markov 

models (POMMs) [4], is used for texture analysis. POMMs are a generalization of the well-known 
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Markov mesh models (MMMs) [5]. The POMMs are based on the concept of partial orders. The fea-

sibility of Markov models and POMMs as models of texture. as well as the theoretical underpinnings 

of partially ordered Markov models are discussed in the thesis. 

Choice of the number of parameters in the POMM to model the images and a specific form of 

expression of the neighborhood conditional probabilities are crucial factors in the texture analysis 

problem. A fourth order POMM using the auto-binomial distribution for the conditional probabilities 

is proposed.& advantage of Markov models and POMMs for texture analysis as compared to other 

structural and statistical techniques is that they also have an as~ociated generative procedure. Textures 

may be synthesized that correspond uniquely to a set of model parameters')Flinn's algorithm. an 

iterative procedure. has been used for synthesis of textures corresponding to a set of parameters. 

The idea of generating similar looking unique textures given a set of parameters may be used 

for the inverse problem. that is. the problem of texture classification. This involves estimation of the 

parameters of each texture followed by texture classification using the texture parameters features. 

A maximum likelihood estimation (MLE) assuming the proposed POMM model for the textures is 

discussed. Owing to the mathematical tractability of expressing the joint distribution for the POMM 

model, the MLE problem is simplified. The accuracy of the method of parameter estimation is tested 

on synthesized textures whose parameters are already known. Also. a hypothesis test is developed 

for testing the accuracy of the parameter estimates. 

Another important question is which method is to be used for the classification of an image having 

a variety of textures. Here. a Bayesian approach is adapted to compute the maximum a posteriori 

(MAP) estimate of the segmented (labelled) image given the original. unknown image. The essence of 

the approach to classification is simulated annealing. a stochastic relaxation algorithm which generates 

a sequence of images that converges in an appropriate sense to the MAP estimate. This sequence 

evolves by local changes in pixel gray levels in the labelled image. The algorithm is highly parallel 

and exploits the equivalence between Gibbs distributions and Markov random fields. The theory 
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behind simulated annealing and the "cooling schedule" that guarantees convergence is discussed, and 

the segmentation results on real images are presented. Also, the application of simulated annealing 

as a learning rule for morphology neural networks is investigated, and results of this method for 

image-template identification problems are presented. 

This thesis is organized as follows. Chapter 2 gives an overview of classical texture analysis 

techniques. In Chapter 3, Markov models and the more specific subclasses of POMMs and MMMs 

for texture analysis are discussed. The theory of POMMs and partial orders are given in Chapter 

4. In Chapter 5, a new fourth order POMM model is presented and texture synthesis and parameter 

estimation techniques are detailed, followed by results of texture synthesis, and parameter estimation 

of natural images using the POMM. The texture segmentation problem is solved using simulated 

annealing. In Chapter 6, the theory of simulated annealing and the application of this algorithm to 

the problem of texture segmentation and training of a morphological neural network is described. 
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2. TEXTURES: AN OVERVIEW 

Image classification maps different regions or segments into one of several objects. each identified 

by a label. This is achieved through image feature extraction. followed by classification. Important 

image features include edges and object boundaries. shape features. moments. and textures. Image 

features are discussed in more detail below. Also. an introduction to texture is followed by a 

discussion of a selected number of approaches to texture description and segmentation. 

2.1. Image Features for Classification 

Common edge detectors include the Sobel. Roberts. and Laplacian operators [6}. The application 

of the edge operator is followed by boundary linking. using. for example. such techniques as dynamic 

programming. graph search. and the Hough transform [7]. It is known that gradient masks perform 

poorly in the presence of noise [8]. but averaging. low-pass filtering. or least squares edge filtering 

techniques can yield some reduction in noise effects. A better alternative is a stochastic gradient 

operator whose filter weights are estimated using the best linear mean square method [8]. Object 

boundaries can also be represented by chain-codes. Fourier descriptors. and autoregressive models 

[9]. The objects may then be classified using geometrical features such as perimeter. area. etc. or 

other moment-based features such as center of mass and eccentricity. Quad-trees [10] and run-length 

codes are other types of approaches to region representation in binary images. Template matching 

and morphological transforms of thinning. opening. closing. skeletonizing. maxmin. and medial-axis 

transforms [11] are useful in extracting predefined shapes in images. These methods are useful for 

analysis of images with objects that have sharp. well defined edges. and often fail when the region 

or object boundaries are not prominent. 

2.2. Texture: Definition 

Many portions of images of natural scenes are devoid of sharp intensity differences over large 

areas. In these cases. the scene can often be characterized as exhibiting a consistent textural structure. 
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Texture is observed in the structural patterns of surfaces of objects such as wood. grain. sand. grass 

and cloth. Image texture measurements can thus be used to segment images where the scenes are 

described by regional properties rather than edge properties. Texture is an important characteristic 

for the analysis of many types of images. from multispectral scanner images obtained from aircraft or 

satellite platforms. to microscopic images of cell cultures or tissue samples. Despite its importance and 

prevalence in image data. a formal approach or precise definition of texture does not exist. Textures 

are used to describe regions in images based on the fineness. coarseness and regularity of structure. 

or its randomness •. , or lack of structure. Hawkins [12] has provided a more detailed description of 

texture by emphasizing three main aspects of texture patterns. namely: (1) A "local order" that is 

repeated over a region which is large in comparison to the size of the order, (2) the "order" consists 

of nonrandom or partially random arrangement of the elementary parts that make up the texture; and 

(3) the parts are roughly uniform entities of nearly the same size having approximately the same 

dimensions everywhere within the textured region. 

G _A texture .. ~a~ be, described by two basic characteristics. The first characteristic is concerned 

with the gray level primitives or local properties constituting the image texture. and the second 
.. .. 

characteristic is concerned with the spatial organization of the gray level primitives. The basic ---------.-

texture element which is repeated to form the texture is called a texel. for texture element. Gray 

--------------------------
level primitives are regions with gray level properties. The gray level primitive can be described in 

terms of gray level properties. such as the average value. or the minimum and maximum values of its 

regions. A region is a maximally connected set of pixels having a specific gray level property. The 

gray level region can be evaluated in terms of its area and shape. The gray level primitive includes 

both its gray level properties and gray level region properties. 

An image texture is described by the number and types of its primitives and their spatial 

organization or layout. The spatial organization may be random. or it may have a pairwise dependence 

of one primitive on a neighboring primitive. or it may have a dependence of n primitives at a 
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time. The dependence may be structural. probabilistic. or functional. such as a linear dependence. 

Image texture may be qualitatively evaluated as having one or more of the properties of fineness. 

coarseness. smoothness. granulation. lineation. or as being mottled. irregular. or hummocky. Each 

of these qualities translates into a property of the gray level primitives and the spatial interaction 

between them. 

When the gray level primitives are small in size and the spatial interaction between gray level 

primitives is constrained to be very local. the resulting texture is a microtexture. When the gray 

level primitives have their own distinct shape and regular organization on a more global scale. the 

texture is called a macrotexture. This illustrates the point that any texture cannot be analyzed without 

a frame of reference in which a gray level primitive is stated or implied. For any textural surface. 

examination at a large scale gives a smooth and texture less effect to the surface. Then. as resolution 

increases. the surface appears as a fine texture and then a coarse one. For multiple-scale textural 

surfaces. the cycle of smooth. fine. and coarse may repeat. 

Gray level and textural pattern elements are related to each other. When a small area of an 

image has little variation of gray level primitives. the dominant property of that area is gray level. 

When the small area has a wide variation of gray level primitives. the dominant property is texture. 

Crucial in this distinction are the size of the small area patch. the relative sizes and types of gray 

level primitives. and the number and placement or arrangement of the distinguishable primitives. As 

the number of distinguishable gray level primitives increases within an area. the texture property will 

predominate. When the spatial pattern in the gray primitives is random and the gray level variation 

is wide. a fine texture results. As the spatial pattern becomes more definite and the gray level regions 

involve more number of pixels. a coarser texture results. 

Texture is therefore characterized by the gray level primitive properties as well as the spatial 

interrelationships between them. This implies that texture is actually a two-layered structure. where 

the first layer characterizes the local properties of gray level primitives. and the second layer specifies 
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the organization among the gray level primitives. 

There are two main approaches to the problem of texture classification: 

1. FEATURE BASED APPROACH: features unique to each texture class are extracted to classify 

regions in the image; 

2. MODEL BASED APPROACH: the texture is described by a mathematical model which is then 

used for texture synthesis and classification according to model parameters. This approach is in 

general both descriptive and generative. 

2.3. Feature Based Approach to Texture 

An image feature is a distinguishing attribute of an image. Natural features are defined by 

the visual appearance of an image, while other so-called artificial features result from mathematical 

manipulations of images. These features are useful to isolate regions with a common property or 

similar texture in an image. Features used for texture classification may be subdivided into three 

types: (1) structural, (2) statistical, and (3) spectral or transform methods. 

2.3.1. Structural Techniques 

In this model, we view the texture to be composed of primitive. regular structures such as 

circles, squares, blocks, or other geometrical entities called texels.1jhe texture is then described by 

the arrangement of these primitives relative to each other [1], [13]. This method is based on the 

concept of relational descriptors. 

Textural edgeness can also be used as a feature for classification. In [14], the authors have used 

edgeness per unit area as a feature. The authors use the Robert's gradient operator to compute the 

average gradient in a subimage. An extension of this idea was used in [15] as a textural measure for 

pulmonary disease identification, where the gradient is a function of the inter-pixel distance . 

.<s The structural approach to texture analysis works well on textures with well defined edges and 

prominent primitive structures. p 
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2.3.2. Transform Techniques 

Digital transfonn coefficients can indicate the degree of correspondence between two gray level 

patterns or two textures in an image. If a basis pattern is used as a "template" to detect a similar region 

in an image, then image detection can be perfonned simply by examining the values of the transfonn 

coefficients. For example, analysis of the Fourier spectrum of a region gives infonnation about the 

spatial structure of a texture, since the degree of texture coarseness is proportional to its spatial period. 

Regions with fine textures have greater energies at higher frequencies, and vice versa. Hence energies 

at different frequencies may be used as features. The spectral intensity can be examined in specific 

regions using a horizontal or vertical slit, a ring or a sector to isolate certain image features [16]. 

'fr Transfonns other than the Fourier have been used for texture analysis. Kirvida [17] compared 

the fast Fourier, Hadamard and Slant transfonns for identifying textural features on aerial images. 

However, experiments have shown [12] that there is a considerable overlap of regions of distinctly 

different natural textures such as urban. rural, and woodland regions extracted from aerial images, 

and hence spectral techniques fail in this case. In general, features based on Fourier power spectra 

have been shown to perfonn more poorly than features based on first order statistics of spatial gray 

level differences [18] or on second order co-occurence statistics [19]. 

The shortcomings of this approach are due to the fact that these procedures are not invariant. 

even under a monotonic transfonnation of gray level or spatial changes in the period and phase of 

texture pattern repetitions. ~f 

2.3.3. Statistical Techniques 

Most images of natural scenes are generally random and lack specific structure or order. Textures 

that are random in nature are well suited for statistical characterization. Statistical texture analysis 

(computes features at each point in a texture image using local infonnation, and derives a set of 
.'. 

statistics from the distributions of the local features. The local feature is defined as a combination 

of gray values at specified positions (pixels) relative to each point in the image. According to the 
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number of pixels which define the local feature, statistics are classified into first-order, second-order, 

and higher-order statistics. Statistics give various measures of texture properties and are not limited 

to binary images. Statistics of such local geometrical features as edge, peak and valley, and spots 

or blobs give measures of specific texture properties. 

2.3.3.1. First Order Statistics 

The most basic of all texture features is a measure of the image gray level distribution, commonly 

called the gray level histogram. The measures formulated as quantitative shape description of a first 

order histogram are: mean. standard deviation. skewness. kurtosis. energy. and entropy. When the 

problem is to classify texture images. the images are usually normalized to have the same mean 

and standard deviation because these statistics are affected by the image input conditions. Entropy 

measures the spread in gray values in a texture. In [20]. the authors have used the Kolmogorov

Smimov (KS) test as a similarity measure for comparison of the cumulative distribution functions of 

observed images and the reference data to classify aerial images. 

First order features are not always sufficient for classification of real data. This is due to the fact 

that visually differentiable textures may have a similar gray level histogram. Histograms thus do not 

cany any information about the spatial interrelationships between pixels. 

2.3.3.2. Second Order Statistics 

Second order histogram features can be incorporated into a gray level co-occurence matrix. which 

is based on the definition of the joint probability distribution of pairs of pixels separated by a fixed 

distance and angle. This tectmique of using gray level spatial dependencies is called the spatial gray 

level dependence method (SGLDM). If an image region contains fine texture. the two-dimensional 

histogram of pixel pairs will tend to be uniform. and for coarse textures. the histogram values will be 

skewed towards the diagonal of the histogram. Haralick [21] obtained 84% correct classification on 

terrain classes using 14 features from the gray level co-occurence matrix that included angular second 

moment. contrast. and correlation. Since the properties used in [21] are redundant. the authors in [22] 



10 

proposed the use of the Karhunen-Loeve expansion to extract optimal properties from the full property 

set. and hence reduce the dimension of the feature space. Dyer et. al [23] computed co-occurence 

features for local properties. such as edge strength maxima and edge direction relationships. 

In [18] and [24], the authors used a gray level variant of the co-occurence matrix. called the gray 

level difference method (GLDM). that uses the probability of contrast or difference of gray values 

occurring in a given spatial relationship. as a textural measure. The probability of a smaller contrast 

for a coarse texture will be much higher than for a fine texture. Galloway [25] used gray level run 

length statistics to measure texture. This measure. called the gray level run length method (GLRLM). 

is computable from the co-occurence matrix. 

A thorough comparison of the SGLDM. GLRLM. GLDM. and a power spectral approach (PSM) 

[18] using transform features was carried out by Harlow et al .• and they concluded that the SGLDM 

performed most efficiently and that the PSM was the least powerful of the four techniques. The 

power of the gray level co-occurence approach is that it characterizes the spatial interrelationships of 

the gray levels in a textural pattern and is invariant under monotonic gray level transformations. Its 

weakness is that it does not capture the shape aspects of the gray level primitives. Hence. it is not 

likely to work well for textures composed of large area primitives. Also. it cannot capture the spatial 

relationships between primitives that are greater in area than one pixel. 

A texture is related to the spatial size of the gray level primitives in an image. Gray level 

primitives of larger size are indicative of coarse textures. while gray level primitives of smaller size 

indicate finer textures. The autocorrelation/unction is a feature that can describe the size of the gray 

level primitives. Since the gray level primitives are spatially periodic. the autocorrelation function 

also drops and rises accordingly. A region of coarse texture exhibits a higher correlation for a fixed 

shift than a finer texture. Thus texture coarseness is proportional to the spread of the autocorrelation 

function. First and second order autocorrelation spread measures have been proposed in [26]. 

Ashjari [27] has proposed a measure of texture based upon the singular value decomposition of a 
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texture sample. After extraction of the singular values of the images. the lower order singular values 

were used as features for classification. This approach is also a transform method. since it involves 

mapping of the texture features to a new feature space. 

In the textural energy approach [28]. the image is first convolved with a series of kernels called 

the Laws operators. Then each convolved image is processed with a nonlinear operator to determine 

th~ total textural energy in the neighborhood of each pixel. The biggest drawback of this approach 

is the possibility of significant errors along texture boundaries. Unser [29] and Ade [30] suggest the 

use of discrete orthogonal transforms such as the discrete sine or discrete cosine transform applied 

to each pixels' neighborhood as an alternative to the Laws operator. 

The co-occurence matrix model. power spectral method. and the autocorrelation matrix are all. 

theoretically. the same subset of second-order statistics. Each of these can be derived mathematically 

from the other. Higher order statistics do not necessarily give better results in texture discrimination 

than lower order statistics. It has been conjectured by lulesz [31] that textures having the same first 

and second order distributions but different third-order. and presumably higher order distributions. 

cannot be visually discriminated. Even though Pratt [32] has provided two examples to the contrary. 

lulesz's theory has been found to hold in most cases. and hence most of the current research on 

texture analysis does not use higher order statistics than second order statistics. 

2.4. Model Based Approach 

All of the methods discussed so far employ feature extraction from geometrical or statistical 

information contained within the texture. followed by classification. Another. more recent. approach 

is to assume an underlying model for the texture. The major problems to be considered in the 

statistical model based approach for texture analysis are: 

1. Choice of the model depending on the class of textures to be analyzed. 

2. Order of the chosen model in terms of the number of parameters. 

3. Estimation of the model parameters. 
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4. Synthetic generation of an image obeying the fitted model. 

5. Method of comparison of the properties of the generated textures with natural textures. 

6. A segmentation technique to classify an image consisting of various textures. 

Mosaic models. fractals. autoregressive models. and Markov models are the most common 

approaches to texture classification. Mosaic models [2] have been used to model textures with a 

patchy appearance. This model has a two-level mechanism: one level divides the plane into a set of 

non-overlapping regions. and the other level colors the individual regions. However. little work has 

been done on estimation of the model parameters. and hence no algorithm exists to synthesize real 

textures using the mosaic models. Another texture synthesis technique using second order spatial 

averages of the texture field [33] has been developed. This algorithm increases in complexity with 

an increase in the number of gray levels. Mandelbrot [34] has used fractals. a set of functions 

characterized by non-integer fractal dimensions. to describe patterns in the natural world. The fractal 

pattern is a self-similar pattern. even in a statistical sense. which has an infinitely recursive texture. 

The two more important models. autoregressive models and Markov models. are discussed separately 

in the next two sections. 

2.4.1. Autoregression Model Approach 

In the field of signal processing. time series analysis is a well known method for prediction 

of a one-dimensional signal from the past signal values. This method has been extended to image 

processing by extending the concept of one-dimensional space to two-dimensional space [35]. The 

linear dependence that one pixel of an image has on another can be stated clearly and can be 

represented by the autocorrelation function. This linear dependence is exploited by the autoregression 

model for textures. 

The autoregressive (AR) model provides a way to use linear estimates of a pixel's gray value. 

given the gray values in a neighborhood containing it. in order to characterize texture. For coarse 

textures. all the coefficients will be similar. For fine textures. the coefficients will vary widely. A 
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one dimensional AR model was used in [36] to synthesize streaky vertical textures. Two-dimensional 

noncausal autoregressive (NCAR) [37] models have been used for texture synthesis. Given a natural 

texture, the parameters of the best fitting NCAR models, chosen using the consistent decision rule, 

are determined using a maximum likelihood method. More recently, autore!tressjye moving average 
, ----.. 

(A,RMA) mQg~~for images using a neural network approach [38] has been developed, and a recursive 

least squares (RLS) method used to extract model coefficients. 

The power of the autoregressive linear estimator approach is that it is easy to use the estimator 

in a mode that synthesizes textures from any initial linear estimator. In this sense, the autoregressive 

approach is sufficient to capture everything about a texture. Its weakness is that it is poor at 

representing textures consisting of anything but microtextures. 

2.4.2. Markov Model Approach 

A more recent and successful addition to the list of texture classification techniques are Markov 

models and Gibbs distributions. A Markov random field (MRF) model for texture assumes that the 

texture field is stochastic, and satisfies a certain conditional independence assumption. 

Iulesz [1], [31], and laterYokoyoma [39] utilized Markov chain state methods to create stochastic 

texture arrays independently and dependently along rows of the image array. MRFs, a two-

dimensional analogue of Markov chains, and Gibbs distributions [40] use clique potentials to describe 

spatial interrelationships [41]. They have been extensively used, not only for texture synthesis [3], 

[42], but also for texture classification [3], [43]. The advantage of this approach is that a degree of 

randomness can be described very easily, while still being able to characterize structural properties 

in textures. Higher orders are used to describe relationships between pixels that are not spatially 

close to each other. 

In the following chapters, we discuss a MRF called a partially ordered Markov model, and its 

application to texture analysis. 
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3. MRFs, POMMs AND MMMs 

Markov random fields (MRFs), partially ordered Markov models (POMMs), and Markov mesh 

models (MMMs) are all stochastic models. An introduction to stochastic models and methods for 

texture analysis is given below. The use of Markov chains in time series analysis is important. 

Markov chains and the basic notations used in this thesis are discussed in this section, followed by 

a discussion of MRfs and Gibbs distributions (GO) in the next section. The chapter ends with the 

theory of ~Ms, its relation to the MRF, and a discussion of the POMM models developed by 

other authors. 

3.1. Stochastic Models 

}t A discrete stochastic field is an array of random variables that are randomly distributed in 

amplitude, and governed by some underlying joint probability density !111--By controlling the 

generating probability density, a particular realization can approximate natural textures surprisingly 

well. ~ 

A good model for texture generation is to assume an array of independent, identically distributed 

random variables W(j,k) that is passed through a linear or nonlinear spatial operator O() to produce a 

stochastic texture array F(j,k) as shown in Fig. l. Texture fields with specified statistical properties 

can be obtained by controlling the form of the generating probability P(W) and the spatial operator. 

Faugeras [26] tried a technique to invert this model to estimate its parameters. The texture field is 

first decorrelated by a whitening filter, designed from the knowledge of the autocorrelation function. 

The whitened field is used as an estimate of the generating process. 

W(j.kl ------1.1'-__ 0_;---. F(j.kl 

Figure l. Stochastic texture modeling 
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MRFs can be used as another approach to two-dimensional analysis of data characterized by 

conditional probabilities. In order to understand MRFs and MMMs. a brief introduction to Markov 

chains is given below. 

3.2. Markov Chains 

Markov chains are used to model a sequence of random variables (r.v.s) where the r.v.s are 

correlated to each other. Given a set of possible outcomes {Al •• ·h,A3,A .. , ... }, which are finite or 

infinite in number. each r.v. '{II has an associated probability PI.: == P(AII = k). If the events occur 

in a sequence. and they are independent. their joint distribution can be written as 

If the r.v.s are correlated. however. expression of the joint distribution becomes very difficult. Markov 

chains assume that the outcome of a r.v. depend on certain preceding r.v.s. In a one-dimensional first 

order Markov chain. the generalization is that the outcome of any trial depends only on the outcome 

of the directly preceding trial. The outcome of the r.v. All = I..~ is no longer associated with a fixed 

probability PI,:, but to every pair (Am = j, ..1'11 = k) there corresponds a conditional probability Pj/.: 

of a transition from state Am = j to state All = k. The conditional probability for a r.v. All given 

the preceding (n-J) r. v.s is given as 

P(AII = klAII_l = j,AII_2, ... ,.40) = P(AII = kl·4,,_1 = j) 

for a first-order Markov chain. and the joint distribution of the r.v.s is 

P( all A;) = II P( .4;jAi_ Il. 
I 

For an m-th order Markov chain. the conditional probability of a r.v. is given as 

P(A"IAII_I. ..1 11 -2, .. , A II - m, .. , ..10) = P(AIIIAII_I. ..1,,-2 •..• A II - m) leads to 
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and the joint distribution of the r.v.s can be written as 

P(all Ail = II P(Ai!Ai-l,Ai-2, .. ,Ai-m). 
I 

These Markov chains are called stationary or time-homogenous Markov chains since the transition 

probabilities are independent of the location of the r.v.s in the sequence. 

Notation. Throughout the rest of the thesis, capital letters are used to denote r.v.s and the 

corresponding lower case represents a realization of the r. v. The notation P( all) is used to represent 

the probability of the r.v. A" taking the value a", or P(A" = a,,). 

3.3. MRFs and GD 

The use of MRF methods and processing techniques based on these models has increased 

considerably over the past several years. The pioneering work on MRFs done by Dobrushin [45], 

Wong [46], and Woods [44] involve extending the Markovian property in one dimension to higher 

dimensions. MRFs can be used as probabilistic models of digital image texture, where a textured 

region is viewed as a finite sample of a two-dimensional random process describable by its statistical 

parameters. MRFs have been used in a variety of applications: stochastic relaxation [42], models for 

texture [47J, and others [3J. In some cases, the models used are adequate for the special processing 

desired; in others, simplifying approximations are done on the models to make them suitable for the 

desired processing. However, it was only after the MRF-GD equivalence was discovered [48] that 

the full power of the MRF began to be exploited and used in image processing applications. Due to 

this reason, the theory of MRFs and GDs is discussed below. 

3.3.1. MRFs: Definition and Theory 

The basic definitions pertaining to MRFs and its limitations as models of textures and images in 

image processing are discussed here. An image is viewed as random field on a finite two-dimensional 

lattice array X of random variables (r.v.s) on Z x Z, where Z is the set of integers. Typically X 
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is an .Af x N array and hence, we can write, X = ({i,)) : 1 ~ i ~ .Al, 1 ~ ) ~ N} where (iJ) is 

a lattice point or a pixel location. 

The MRF assumes a neighborhood system IJ for X consisting of a collection of neighborhoods 

lJij C X for each pixel in the lattice X: 

IJ = {f/ij : (i,j) EX, '1ij eX}. 

The neighborhood system 11 must satisfy 

1. 

2. If (k,l) Ellij. then (i,)) Ell"" for all (i,)) E X 

Then, an MRF with respect to the neighborhood system 1/ is defined in terms of a random field 

A = {Aij}(i,j)EX' which is a MRF with respect to 'I iff: 

P(Aij = aijlA. \ {Aij}) = P(AijiAu = au, (k, 1) E '/ij) fur all (-i,)) EX. (1) 

A crucial choice in image modeling is the choice of a neighborhood system. Commonly used 

1 2 3 h ones are 11 ,'I ,1/ ,..... w ere 

1. 'l = {rJlj } is the set of four neighborhood pixels around (iJ) for every (i,)) E X; 

2. 112 = {rilj } is the set of 8 neighboring pixels around (i j) for every (i, j) E X; 

3. and so forth for all,P ,114 ,IP, ..... 

In general, rim is called the m-th order neighborhood system. The set of neighborhood pixels for the 

first, second, third and fourth order neighborhoods are shown in Fig. 2. 
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Figure 2. Neighbors of A.ij : (a) first order, (b) second order, 

Cc) third order, and (d) fourth order Markov random field. 
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A MRF is characterized by the conditional probabilities or the local characteristics of the random 

field. This concept is intuitively appealing, because in most image processing applications it is natural 

to expect an image value at a pixel to be correlated to, or be dependent on, spatially close neighbors. 

Also, for highly correlated data, a higher order neighborhood model may be chosen. Despite the 

natural fit of the Markov model for natural images, some difficulties encountered while describing 

the conditional probabilities are: 

1. Unavailability of the joint distribution from the local characteristics 

2. Consistency difficulties due to lack of definition of a random field or equivalently, the joint 

distribution 

3. A noncausal nature that shows a lack of direction in the model 

4. Processing complications due to lack of causality and unavailability of the joint distribution. 

Most of these drawbacks are overcome when the MRF-GD compatibility is considered. 
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3.3.2. Gibbs Distribution 

The Gibbs distribution (GO) was first used to model interactions between molecules in ferromag-

netic materials by Ising. In addition, GDs have been used in lattice gas models, agricultural studies by 

Besag [40J. neural modeling and artificial intelligence [49J, social and economic modeling, optimal 

VLSI design. and image processing applications [42]. 

A GO is defined in tenns of cliques associated with the lattice-neighborhood system pair (X, '/). 

A clique is denoted by c and is defined as: 

1. c ~ X 

2. For (i,j) =1= (J..:,I). (i,j) E (.' and (1..:,1) E c implies that (i,j) E '/1.:/. 

The clique types of a 1J2 neighborhood system is shown in Fig. 3. Then the Gibbs distribution 

O[I]B9JcPEP 
93Ebc8ffi 

Figure 3. Second order cliques of a Gibbs distribution. 

or the Gibbs random field (GRF) can be defined as: If there exists a random field A. = {A.ij} (i.j)EX 

with U = {Uij}(i,i)EX' a single realization of A., and 0.4. the set of all possible realizations of A., 

then A. is a GRF with respect to the neighborhood system 1/ iff its joint distribution is of the fonn: 

( 
t 1 U(a) P.'1.=u)=-e- , 

Z 

U(u) = 'L l~(u), 
r.EC 

Z = 'L e-U(a). 

aEO,\ 

(2a) 

(2b) 

(2c) 
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Here, C is the set of all cliques. l'~(a) is the potential associated with clique c, U(a) is the energy 

function, and Z is the partition function or a nonnalizing constant. This tenninology appears to have 

come from statistical physics wherein such measures are "equilibrium states" for physical systems 

such as ferromagnets. The V;, ( a) functions represent contributions to the total energy from external 

fields (singleton cliques), pair interactions (doubletons), and so on for higher order neighborhood 

systems. 

The particular fonn of expressions for the GO has the physical interpretation that the smaller 

the energy of the realization U(a), the more likely is the realization or P(A. = a). Frequently, a 

"temperature" tenn, T, divides the energy tenn in equation 2(a), that controls the "peaking" in the 

distribution. A low energy state can be attained when T is low. Geman and Geman [42] use an 

"annealing schedule" for image segmentation and restoration whereby T is decreased slowly to allow 

convergence to a low energy state. 

The GD is essentially an exponential distribution. However, depending on the choice of the 

clique potential functions l'~( a), a variety of random fields, both discrete and continuous, can be 

expressed as a GD. 

The main interest in GO stems from the one-one correspondence between MRFs and GOs that 

was provided by [40J, [50J. The Hammersley-Clifford theorem [51J. {50J states that a probability 

distribution defines a MRF with respect to a neighborhood system '/ iff it is a GO with cliques 

associated with 1/. Then the local conditional distribution of an MRF can be readily obtained from 

the corresponding GO as: 

(3) 

This equality between MRFs and GO makes the MRF models accessible in two or higher dimensional 

applications. Most of the drawbacks of the MRF detailed earlier are overcome by this equality. The 

main advantages resulting from the equivalence are: 
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1. The joint distribution can be expressed in terms of local characteristics 

2. The joint distribution can be written in terms of the model parameters 

3. Due to the derivation of the GD from physics, physical interpretation is possible. 

3.3.2.1. Commonly used Gibbs Distribution. 

The class of GDs presented in the previous section contains a wide class of exponential 

distributions. A class of GDs called auto-models are commonly used that have only single pixel 

and pair cliques, with the potential functions of the higher order cliques assumed to be zero. Here 

the form of the energy function U is 

U(a) = L Grur + 

where Gr and GrJrl are arbitrary functions. The commonly used auto-models are: 

1. Auto-logistic model which has been used in binary random variables (r.v.s) and binary images 

[52), [47), [53). The energy function is of the form 

U(U) = L O'.rUr + L ,!3rJ:rl u :rJ U;rl' 

reX :r J .:rl eX·:rl e'lz J 

2. Auto-normal model where the distributions have the form of the joint Gaussian distribution, i.e. 

the set of r.v.s, {u} E A. are jointly gaussian distributed. This model was used in [53] for 

texture modeling. 

3. Auto-binomial model which has been used by Cross and Jain [3] as texture models. The 

assumption is that each r.v. is conditionally binomially distributed with the binomial parameters 

determined by the values of the neighboring pixels. 

4. Auto-Poisson and auto-exponential models introduced by Besag [40] where each r.v. is re-

spectively Poisson and exponentially distributed, with the parameter values specified by the 

neighboring r.v.s. 
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5. Multi-level logistic model that uses a gray level difference count to define the clique potentials 

as follows: 

GAUr) = Urn if U r = m, \:Ix E X 

This model is an extension of the auto-logistic model to the gray level case. The parameters 

,3rJr3 are spatial interaction parameters that affect the energy function based on the gray value 

difference. A simplifying assumption is that the random field is homogenous. In such a case, 

the parameters ,BTJrl are independent of the pixel locations Xl and X2 on the lattice X. Thus, 

for a 1/ system, the parameters are specified as {31, ,(h} and for at,2 system, the parameters 

are {a.., ,(h, .33, ,34 }. This model is one of the more popular ones and has been used for texture 

segmentation [43], and texture synthesis using the Gibbs sampler [42]. 

3.4. Markov Mesh Models 

Markov mesh models (MMMs) [5] are a subclass of MRFs that introduce the concept of causality 

in two-dimensions while retaining the Markovian property of neighborhood dependence. Although 

the definition of a neighborhood set of a MMM is more constrained than that of a MRF. it allows the 

expression of the joint probability of a set of r.v.s in terms of conditional probabilities in a closed form 

expression. MMMs are based on the concept of partial orders that is discussed in the next chapter. 

MMMs can ,be considered to be a 2-D generalization of Markov chains, As given in section 2 

in this chapter, for an n-th order Markov chain, the assumption is that 

P{all ud = IT P{u,,·IU"·_I,UI.:_2, ...• Uk_Il). 

". 

leads to (4a) 

(4b) 

(4c) 

We shall see that the corresponding equations for the MMM can be expressed in a similar form. 
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The definition of the Markov mesh model proposed by Abend to classify binary patterns [5] 

is as follows: 

1. Let A. be the set of r.v.s in the JI x N lattice X, and let Uij denote the r.v. at location (i,D. 

2. Let Xij be the i x j array of r.v.s satisfying Xij = {Uhk : 1 ~ It ~ i und 1 ~ k ~ j} 

3. Let Zij be the array satisfying Zij = {Uhk : It < i or k < j} as shown in Fig. 4(a) below. 

The set Zij corresponds to the set of r.v.s that "precede" or "occur before" ..iij. The MMM given 

by Abend assumes that the probability of Aij conditional on Zij is equal to the probability of A.ij 

conditional on a set of neighboring pixels close to Aij and contained in the array Zij, or, 

P(UijIZij) = P(uijl~Vij), 

where Nij C Xij \ {Uij}. 

For a third order Markov mesh as given by Abend [5], the assumption that 

P(uijIZij) = P(uijlui-1.j,Ui-1.j-l,Ui.j-J) 

P(uijla \ {Uij}) = P (Uijl U~~:~~l Ui-1.j 

Ui+1.j-l Ui+1.j 

P(a) = II P(Uij I Ui-1.j,Ui-1.j-l, ui.j-d, 

(i.j) 

leads to 

Ui_1. j+l) 
Ui.j+1 and 

Ui+1.j+l 

(5) 

(6a) 

(6b) 

(6c) 

with appropriate modifications on the boundaries. Here, Zij is the set of r.v.s in the shaded region 

in Fig. 4(a), and the set of adjacent neighbors Nij = {Ui-1.j,Ui-1.j-l,Ui.j-l} is depicted in Fig. 

4(b). Thus we see that the neighborhood assumptions Eq. 4(a) and Eq. 6(a) in the respective models 

(a) 

Qj.j j.j Q j -1 j 

Q. '1 IJ-
~l 

(b) 

Figure 4. (a) The set Zij. (b) The adjacent neighbors of Uij. 
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lead to results that are similar in fonn: compare Eq. 4(b) with Eq. 6(b), and Eq.4(c) with Eq. 6(c). 

Also, a more important observation is that the neighborhood assumption of Eq. 6(a) leading to the 

dependence as shown in Eq. 6(b) shows the equivalence of the MMM to the MRF; this is not obvious 

from the expression of the conditional probabilities. The model exhibits an indirect dependence of 

a pixel on all 8 neighboring pixels around it, that are both "causal" and "non-causal," and thus 

matches the MRF in tenns of spatial dependence. Also. the joint distribution can be expressed 

as a multiplicative product. thus making the computation of the joint probability more tractable as 

compared to a MRF. Other choices of the neighborhood system have been given in [5]. 

Several other researchers have used other types of MRFs that are similar in idea or concept 

to the MMMs. Some of these methods fall under the more general category of partially ordered 

Markov models (POMMs.) Devijver [54] has used the third order MMM developed by Abend for 

image segmentation and restoration by using a detenninistic relaxation technique for noise removal. 

In [55], Lacroix has addressed the problem of pixel labeling under the assumption that the image 

can be represented by a second order MMM, and presented results for noise removal in binary 

images. Qian and Titterington [56] have used multi-dimensional Markov chains as texture models 

in which each row is regarded as a random vector. The multi-dimensional Markov chain model 

assumes that the distribution of the current row conditionally on all previous rows depends only 

on a number of past. neighboring rows, assuming the topmost row to be the first row. Goutsias 

[57] has studied the equivalence between mutually compatible Gibbs random field (MCGRF) and 

Markov meshes, and used the MCGRF for texture synthesis. In order to obtain a recursive fonn 

for the Gauss-Markov random fields (GMRFs). Moura [58] has used a canonical representation for 

the GMRFs based on the inverse of the covariance matrix. Similar work has been done by others 

[59]. The theoretical concepts underlying partial orders and its relation to Markov models is still 

being investigated by several researchers [60], [61]. The next chapter introduces the theory of partial 

orders and its relationship to Markov mesh models. 
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4. PARTIAL ORDERS AND PARTIALLY 
ORDERED MARKOV MODELS 

Partially ordered Markov models (POMMs) and Markov mesh models (MMMs) are based on 

the concept of partial orders. As has been shown [60]. MMMs are a special type of POMMs, and 

thus MMMs have an underlying partial order as well. The concept of partial orders is introduced 

in Section 4.1, along with the definitions and tenninology. Section 4.2 describes the relationship 

between POMMs and partial orders. 

4.1. Partial Orders 

The Markov mesh model [5] was fonnulated to incorporate the concept of ordering in 2-<limen-

sions. Abend et al. suggested the use of space-filling curves as shown in Fig. 5 in an attempt to 

use Markov chains in 2-<limensions. However. it is easy to see that sites that are spatially close 

1 I 
L -.J t ---.: 

I I 
L 

""l 
I I 

(a) (b) (c) 

Figure 5. A space filling curve. (a) First iteration. (b) Second iteration. (c) Third iteration. 

on the grid may not be sequentially close along the path. This sequential ordering is a total order 

on the set of pixel locations. 

Total order. Let X be a set and let 'R be a subset of X x X. that is, 'R describes a binary 

relation on X. If (:1.', Y) E 'R we write :1.:'Ry.: The relation 'R is called a total order for X if 

1. x'Ry, y'R:; :::::} x'Rz (transitivity) 
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2. for any pair of elements ;J.:, y E X such that x f. y, then xRy or yRx, or if ;J.: = y, then ;J.:Rx, 

that is, (x, x) E '!l (law of trichotomy) 

Partial order. T:: set of elements X with a binary relation -< is said to have a partial order with 

respect to -< if the following hold:~-

1. x -< x V x E X (reflexivity) 

2. x -< y, y -< ,: ~ x -< z (transitivity) 

3. If x -< y and y -< x then x = y (anti-symmetry). 

In--the· second definition, (X, -<) is called a partially ordered set, or a poset] Note that the main 

difference between a total and a partial order is that in a poset, e is not. necessary that every two 

elements be relate~, that is, the law of trichotomy is not necessarily satisfied. A fznite poset is a poset 

(X, -<) where the cardinality of the set X is finite, that is, 1 X 1< cx:JThe poset used by Abend et 

al. (unknowingly) in their definition of MM:M was the following: Let 

X = {(i,j) : 1 ~ i ~ 111, 1 ~ j ~ N}, 

and let (i,j), (It, k) be two sites. Define the binary relation -< on X by 
. , 

J 
(i,j) -< (h,k) {::}i ~ It and If~ k. 

(7) 

(8) 

That is, (i,j) -< (It, k) if and only if i ~ It and j ~ k, provided that (i,j) f:. (It, k), or if and only if 

(i, j) = (It, k). This relation satisfies the condition for a partial order of the set X. In this poset the 

set of sites unrelated to (iJ) is the set Iij consisting of the two shaded blocks as shown in Fig. 6. 

, 
'\ 

'
0 ... '''' 

L 

y. 
IJ 
~ 

i \:. \ 
....::' 

Figure 6. Set of sites Iij unrelated to (iJ) under the partial order in Eq. 8. 
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In image processing. an image may be viewed as an array of r.v.s A = {Urk} with a finite 

indexing set X = {Xk : 1 ~ k ~ ..:V}. This may be expressed as A". == Ark' and is used for the rest 

of the thesis for notational convenience. We abuse notation and say that r.v. Ak is related to random 

variable Ai under the binary relation ~ if and only if index X". is related to index Xi under the binary 

relation~. Then the partially ordered set of r.v.s (A,~) implies that if Ak ~ Ai. then index :J.~k is 

related to index Xi under ~. that is. Xk ~ Xi. 

Since partial orders are closely related to directed graphs, a brief introduction to graphs is given 

here. A graph [62] is a pair (l·~ E). where V = {Vi}~~I denotes a finite set of vertices or nodes, and 

E = {{Vi, Vi}} is a (possibly empty) set of unordered pairs of distinct vertices of V; E is called the 

set of edges. An edge {-Vi, Vi} (or {Vj,Vi}) connects the two vertices Vi and Vi with a line segment. 

A directed graph, or digraph, is a graph whose edge set consists of ordered pairs (Vi, Vi). Thus. the 

edge (Vi,Vj) is distinct fro~ the edge (Vi, v;), one. both. or neither of which may be in the edge 
. '-

'-

set E. The direction of the edge (Vi, Vj) is from vertex Vi to vertex Vj. and is represented by an 

arrow with its tail on Vi and its arrow head on Vj. A cycle in a directed graph is a sequence of 

distinct vertices, VI, V2, ••• ,Vk = VI. except for VI and Vk which are the same ('Vk = 'VI). and where 

(Vi, Vi+t) is a directed edge in the digraph (F, E), ;=I, ... ,k-i. An acyclic digraph is a digraph that 

has no cycles in it. The correspondence between a finite poset (X, ~) and its unique digraph is given 

after introducing several definitions. 

Let (X, ~) be a fini te poset. 

Definition 1. For any D E X the cone of B is the set 

cone D = {C EX: C ~ D}. 

Definition 2. The closure of cone B is the set of r.v.s 

coHeD = {C EX: C ~ D} = {D} UconeD. 

BG:x 
c...O\.\.Q. &-:: ~CE::X. c.~j 

1-· V; l-----r' ' 
_---....l 

.. .•. t 

As in Abend et al.'s model, if we define Xii == {(ll, k) : 1 ~ It ~ i, 1 ~ k ~ j}, then we have 

cone A.ii = Xij \ {Aii} and coile A.ii = Xii. This is portrayed in Fig. 7. 
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cone Ajj 

.................................................. N •••• ' ......... __ ••• ; ~ ......................................................................... J. 

(a) (b) (c) 

Figure 7. (a) The subarray Xii' (b) The set cone Aii' (c) The set cone Aii . 

Definition 3. Elements B and C in X, with n ::/: C, are said to be adjacent if either 

1. C ~ n and there is no other element D such that C ~ D ~ il; or 

2. C ~ n and there is no other element E such that C ~ E ~ il 

For example, in Abend et aI. 's model, .4ii is adjacent to Ai.j-l but not to Ai.i-2. as shown in Fig. 

8. 

Definition 4. For any n E X, the adjacent lower neighbors of B are the elements adjacent to B 

A .. A .. A .. 
IJ- 'J- IJ 

Figure 8. Adjacency relationships in Abend's third order model. 

and less than B. Formally, 

adj-< n = {C : C ~ n and n is adjacent to C}. 

In Abend et aI.'s third order model, 



29 

Definition 5. The closure of adj -< n is the set adj -< n == {n} U adj -< n. 

Definition 6. For any element n E X the dilation of B with respect to the partial order is the set 

dil n = u 
{Z:BEadj"Z} 

In Abend et al. 's third order example. we have 

which is exactly the eight nearest neighbors of Aij plus itself. 

Definition 7. The set dil* n is the set 

dil*n = [dil n]\{n}. 

Ai-I.j 

Aij 

A i+1.j 

(9) 

Definition 8. An element B is called a minimal element if there is no other element C satisfying C 

~ B, and a maximal element if there is no other element D satisfying D >- B. The set of minimal 

elements is denoted by Xmin, while Xma:T is the set of maximal elements in X. In Abend et al. 's 

model, the set of minimal elements is A.min = {An}, while A.mar = {AUN}. 

Definition 9. For a subset ReX the cover of R is the set of elements of X not in R whose adjacent 

lower neighborhood lies entirely in R: 

cover R = {Z rt R : adj-<Z c R}. 

For example, in Abend et al. 's third order model, 

The unique relation between a poset (X, ~) and a digraph can then be described as follows. Let 

X = {x}, ... ,xn } and let adj-<:L: denote the set of lower adjacent neighbors for each x EX. The 
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set of vertices of the digraph is the set X, and the edges D = {dij} of the digraph are constructed 

as follows: dij is a directed edge from Xi to Xj if and only if :.ri E udj-<.xj. 

Since acyclic digraphs and posets are one and the same, the notation and definitions are used 

interchangeabl y. 

Another way of defining a partial order on a set is to state all the relationships udj-<.x for all 

elements x in the set X, and determine if the induced digraph is acyclic. The third order example 

of Abend et al.'s specifies a partial order by defining udj-<.Aij = {Ai-1.j,Ai-1.j-I,Ai,j-l} for all 

(i,j) sites in the array (except on the boundary). The resulting digraph from such an induced poset 

must be checked for cycles; in Abend's case such a valid partially ordered set of sites exists. 

Definition 10. A unique sequence of nonempty cover sets can be described in the following 

way. Let LO = Xmin, and recursively define Li = cover (iO LI.:). These sets are the level sets for 
1..,=0 

X. The level sets for Abend et al. 's third order model are given in Fig. 9. 

=- Cb~ l LV) If' i' t A, 

LO ~/ . 

( L P U L) ~ 
, " '" - CDl... ' -

" 
\ 

.~' 

lI[ ... • 

(a) 

Figure 9. The level sets for Abend et al. 's third order model. 

The following properties of level sets will be needed later. The notation X is used to define a 

finite poset, and Li is to denote the i-th level set, as in Definition 10. 

4.2. Partially Ordered Markov Models 

The definition of partial orders in the previous section has laid the theoretical foundations for the 

development of POMMs. The formal definition of POMMs and the theoretical probabilistic results 
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that describe POMMs are presented in this section. 

As in the previous section, the po set of r.v.s (A, -<) implies that if AI.: -< Ai, then index XI.: is 

related to index Xi under -<, that is, :/':1.: -< Xi. It is assumed that the poset A does not have any 

singleton points, that is, points corresponding to independent r.v.s in a statistical sense. 

Definition. A partially ordered Markov model (POMM) is defined as follows. Let B E A where 

(A, -<) is a finite poset of r.v.s. The set of r.v.s not related to B is denoted by 

1'B = {C : Band C a1'e not 1·elated}. 

Then the random field A is called a partially ordered Markov model (POMM) if for any subset 

~ P(Dlcone D,UBl = P(DI~dj~1J). (10) 

This must hold true for any n E A satisfying B ¢ L~. If n E L~, then cone n = ~, and 

P(BI~) = P(B). . . 

The properties of POMMs can be summarized in the two theorems presented below. The proofs 

of these theorems are given in [61]. 

Theorem 1. Let (A, -<) be a POMM, and Z be a subset of unrelated elements in A, that is, 

Z = {Zl' Z2, .. , ZI.:} where the Zili are pairwise unrelated under -<. Then 

P(colleZj = P(L~). II P( Cludj-(C). (11) 

CElm'If'Z)\L~ 

'This theorem states that the marginal probability of a subset of r.v.s that are not related can be 

expressed as a product of the local conditional probabilities. The corollary that follows from this 

theorem that is of interest to us is: 

Corollary 1. Let (A, -<) be a POMM, and Z be the set of maximal elements in A, that is, 

Z = Ama:r. Then, the joint probability of all the r.v.s in A is 

P(..1) = P{LO). [ II P(ClUdj-(C)] . 
{C:CE.4\LO} 

(12) 
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Corollary 1 gives us a closed-fonn expression for the joint probabilities of all r.v.S in tenns of its 

conditional probabilities. 

Theorem 2 states that the conditional probability of one r.v. B conditioned on the remaining r.v.s 

in the image depends only on the r.v.s in the set dil+ D: 

Theorem 2. Let (04,-<) be a POMM, D E A, and let QB = {C E A: n E adj~C}. Then the 

probability of B conditioned on the rest of the image is 

IT P( Cladj-(C) 

P(DIA \ {D}) = P(DldW D) = CeQy • (13) 

L [ IT P( Cladj~c)l 
All ]I() .•.• iblp. f"fJ/uP. .• ()f B CeQH 

These theorems can be used to derive the conditional probabilities and joint distributions of a set 

of r. v.s satisfying a given partial order. and have been used to derive the partials and joint distributions 

of the fourth order POMM developed in the next chapter for texture modeling. 
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5. POMM FOR TEXTURE MODELING 

In the previous two chapters, the theory of MMMs and the more general class of POMMs was 

discussed. The feasibility of using the POMMs to model images, in comparison with a MRF, is 

summed up below: 

1. In a POMM, the joint distribution can be expressed as a product of the conditionals due to the 

algebraic structure of the POMMs induced by the partial order. 

2. In POMMs, the lack of the partition function makes the computation of the joint distribution 

much easier. 

3. Due to 1. and 2., the POMM is better suited to computer implementation of stochastic 

optimization procedures. 

In this chapter, a fourth order POMM is introduced for modeling of textures. The specific order 

of the POMM and the model for the distribution of the conditionals of the r.v.s is presented in Section 

1. A texture synthesis process is described in Section 2. The texture synthesis results for binary, four 

and sixteen gray level images are presented in Section 3. Section 4 deals with the inverse problem 

of estimating the parameters of unknown images. Results of parameter estimation on synthetic and 

natural images are given in Section 5, as well as the results of a statistical test to test the validity 

of some of the estimates. 

5.1. A Fourth-Order POMM for Textures 

In choosing a POMM, we would like one that can model a relatively wide variety of textures. 

Since directionality is an important characteristic of textures, a fairly good model would be one that 

could represent a dependence or pixel interactions in the four principal directions of north, northwest, 

west, and southwest. Also, equally important, the chosen model should have a dependence that 

exhibits a partial order so that the full power of the POMM properties can be applied. Lacroix 
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[55] and Devijver [54] have outlined labeling methods for second and third-order MMMs similar 

to the one proposed by Abend [5]. They each used a third-order MMM. for image restoration and 

segmentation respectively. 

The third-order MMM used in [5] and [54] has a direct dependence on the north. northwest. and 

west neighboring pixels of a pixel. This, however. does not have the additional dependence in the 

southwest direction. and hence it is possible that the parameters in this third order-model could not 

capture the orientation in the texture in the southwest direction. A fourth-order POMM is suggested 

here that perhaps can intuitively capture the directionality in textures in a broader context than the 

third-order MMM model. If the value at a pixel conditional on "previous values" (relative to the 

partial order -<) is conditioned on only the pixels values at the north. northwest. west. and southwest 

locations near the pixel. 

then the value of the r.v. at location OJ) conditioned on the rest of the image is 

Ui-2.j Ui-2.j+1 

Ui-1.j-1 Ui-1.j 

P(uijlX \ {Uij}) = P(uijl'/ij) = P uijl Ui.j-1 

Ui+1.j-1 (Ji+1.j 

Ui+2.j-1 Ui+2.j 

The configurations of the sets Nij and'/ij are shown below in Fig. to. 

Ui-1.j+1 

Ui.j+1 

(Ji+1.j+I 

Note that the general assumption for a MMM given by Abend et al. [5] is 

(14) 

(15) 

(16) 

where Zij is the set of r.v.s as described in Eq. 4(a). and Uij is any subset of Xij. where Xij is 

the -i x j subarray of r.v.s as given in Section 3.4. It is important. therefore. to note that the fourth 

order POMM as given in Fig. 100c) and (d) includes the pixel ..1i+1.j-1. which is not in the subarray 

Xij, and therefore this POMM is not a MMM. 
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Ve ;;\ I.J 
1\ J 

(a) (b) 

Ie .)\ I.J 
\. .J 

(c) (d) 

Figure to. Configurations of (a) Nij and (b) flij for Abend's 

model, and (c) Nij and (d) '1ij for fourth-order POMM model. 

5.1.1. Auto-binomial Model for POMM 

A number of distributions for the MRF models were discussed in Chapter 3. They include: 

the auto-logistic model, exponential model, Poisson model, multilevel logistic model. and the auto-

binomial model. The multilevel logistic model has been used in a number of MRF applications 

[43], [42]. 

The auto-binomial model, suggested by [40], was successfully used by Cross and Jain [3] for 

texture analysis. The auto-binomial model assumes that the value at a pixel conditioned on its 

neighbors is binomially distributed. with the model parameter value % depending on the neighboring 

pixel values. For the fourth order POMM proposed here. the spatial interaction between pixels in 

terms of conditional probabilities is given by 

P( ··1 :I., .. ) - G-1C 11;, (1 _ .. )G-I-II;, h al) ~'I) - 11;,liij q,) , were (l7a) 

eT;, 
qij = and 

1 + eT;, 
(l7b) 
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Tij = 0' + ,!3Ui-1.j + ,Ui-1.j-l + bUi.j_l + €Ui+1.j-l. (17c) 

Through the value of Tin Eq. 17(c), it is proposed that this distribution can describe the nonlinear 

interrelationships between neighboring pixels effectively as compared to the multilevel logistic model, 

which uses the clique potentials to measure the gray value difference COWlt in the neighborhood of 

a pixel to compute the conditional probabilities. See Fig. 11 for a pictorial representation of the 

locations of the parameters in Eq. 17. 

H~t .=-~. 
Figure 11. Location of parameters for the fourth order POMM model 

The proposed fourth-order POMM model is characterized by its parameters. each of which 

corresponds to one of the four particular directions of north. northeast, west, and southwest. Each 

parameter indicates the degree of orientation in the direction to which it corresponds. The larger a 

parameter value, the greater the orientation in that direction for a certain texture. With the addition of 

a constant parameter. 0', this set of five parameters together controls the size and directionality of the 

clusters in adjacent pixels, qualities which are basic to texture description. Due to the recursive fonn 

of the model. the effects in each neighborhood are carried over to the surroWlding neighborhoods. 

resulting in a global effect on the whole image. 

5.2. Simulation of a POMM Random Field 

The generation of realistic texture is an important area from both theoretical and practical 

viewpoints. Several techniques for the generation of realistic looking images have been proposed in 

the literature [63], [64], [65]. In order to generate textures that are the visual representation of the 

POMM random fields, a procedure is needed that yields a sample from a POMM random field with 

a given set of parameters. A number of stochastic and deterministic procedures have been used for 

generation of MRF samples. Since POMMs are a subclass of MRFs. all techniques used for MRF 
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simulation should also apply to POMM models. Hence. several commonly used techniques for MRF 

simulations are discussed below, and a particular method chosen for the POMM generation problem. 

One possible approach to generating a desired joint distribution would be to investigate all 

possible configurations. For an Al x N size image having L gray levels. there would be LMxN 

possibilities, a large number for even a small image, and hence such a direct search is ruled out 

One method used in [66] for texture synthesis is based on simulation methods that investigated 

propenies of two and three-dimensional Ising lattice systems [67]. Two other well-known methods 

exist for generation of realizations from MRFs or GOs. namely the "spin-flip algorithm" and the 

"exchange algorithm." Both of these algorithms are based on the Metropolis algorithm [68]. Since the 

Metropolis algorithm is fundamental to these two approaches. the theory of the Metropolis algorithm 

is discussed next. 

The Metropolis algorithm, a probabilistic method, was invented to study the equilibrium 

propenies of very large systems of identical, interacting components in physical systems. Let 

w represent a particular site configuration in a physical system, and let 0 denote all possible 

configurations so that w E O. If the system is in equilibrium with its surroundings, then the 

probability of w is given by 

~-il\'~(w) 

r.(w) = 2: ~-il\'~(w)' 
w 

where l-~(w) is the potential energy of w. and ,8 = 1/ kT, k is the Boltzmann's constant. and T is the 

absolute temperature. This expression for the equilibrium is similar in form to the GO. A sampling 

theorem has been proved in [68] which ensures that the equilibrium state can be attained from any 

initial state. Briefly, the Metropolis algorithm is 

1. Given the state of the system at "time" t. say X(t), choose another configuration S' (t) by changing 

one variable in the system 

2. ( ~ r) lI'(.y(t») 
Compute the energy change uV' = V' .\:(t) - .\:(t) and q = lI'(X(t» 
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3. If q>l. then next state of the system is .Y(t). i.e .• X(t + 1) = .Y(t); otherwise. X(t + 1) = .Y(t) 

with probability q. 

This algorithm involves Markov chains with state space n [42]. The goal of the algorithm is 

convergence to an irreducible. aperiodic chain with equilibrium measure 7i. This approach is very 

well suited to MRFs and its subclasses. since it involves ratios of probabilities of random fields that 

differ in value at a maximum of two or fewer r.v.s in the field. For a MRF. this reduces to calculations 

of neighborhood joint probabilities. and hence the computational burden is decreased enonnously. 

excepting the detennination of the nonnalizing constant. 

The problem of MRF synthesis and the synthesis of MRF subsets can be posed as a probabilistic 

relaxation problem. where the probability peA) of an image A is cast as the equilibrium distribution 

of an irreducible. aperiodic Markov chain {A.( t), t = 1. 2. 3, 4, , .. }. A realization A is obtained by 

visiting each state of the chain infinitely often. Let A( t - 1) be the state of the chain at time (t-

1), and ..1.( t) be the state at time t. The image A( t) is the same as A( t - 1) except for the gray 

values at two locations. Then, the evolution of the chain to the eqUilibrium state is independent of 

the initial state, provided an infinite number of transitions have been carried out [42], and so that 

P(A) = lim P(.4(t) = AIA(O) = Ao) for an arbitrary Ao. The two commonly used techniques for 
. t .... 'X; 

MRF simulation, the "spin-flip algorithm" and the "exchange algorithm," are variations of the above 

method, and differ from each other in the way in which the transitions are carried out. 

The "spin-flip" technique, also known as the Gibbs sampler, was developed by Geman and 

Geman [42] to obtain samples from the GO. In this method, a pixel is chosen at random or in a 

detenninistic manner. The value of the pixel .4ij is changed to another random gray value, Aij. The 

new value • .:iij is chosen based on the conditional distribution at location (ij) given its neighbors. 

The pixel visiting mechanisms can be random or detenninistic, such as a raster scan, the important 

point being that each pixel should be visited infinitely often. The major drawback of this method in 

implementation is the long convergence time. 
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Another algorithm for texture synthesis is the "exchange algorithm" or Ainn's algorithm [52J, 

also used by Cross and Jain [3J. In this algorithm, a distribution of gray values is chosen for the 

image, and the pixel values in the image are initialized randomly according to the distribution. This 

distribution remains fixed for the duration of the algorithm. Two pixels are chosen at random and 

their gray values are exchanged if they are different. If the resulting new configuration X is more 

probable than the old one A, the new configuration, A, is retained; otherwise, .4 is retained with a 

probability,' = ~~~? This algorithm is guaranteed to converge to a configuration that maximizes 

the joint probability [69J. A major drawback of this algorithm is that the distribution of gray values in 

the image remains fixed, due to the fact that new configurations are generated simply by exchanging 

pixel values. Thus, care must be taken to choose a "good" gray level distribution. But, it is due to 

this reason that the convergence to the joint distribution may be faster, since the search space for the 

algorithm then becomes smaller. Ainn's algorithm was used here for texture synthesis, employing 

the fourth-order POMM model, and is outlined below. 

S.2.1. Flinn's Algorithm for Fourth-Order POMM Model Synthesis 

1. Set the iteration number 1 to zero, 1=0, and generate the initial image ..1.(0) using a predefined 

distribution for the gray values in the image. 

2. Generate a new image .4(t) by interchanging two randomly chosen pixel values aij and ahh 

3. 

where aij = au in A( t). 

P(A(t) ) 
Compute ,. = P(A(t»' 

4. The new image AU + 1) is chosen as 

Set 1=1+1. 

{ 

.4(t) 
.4(t+1)= .4(t) 

A(t) 

if r > 1 
if r > pE U[0,1]. 
ot herwi I;e 

5. Go back to step 2 and repeat until a "convergence" criterion is satisfied. 
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In the above algorithm, the ratio of the probabilities I' = ~~~~:~? for the POMM model reduces 

to the ratio of only a few terms, due to Corollary 1 in Chapter 4. The ratio r for the fourth-order 

POMM model introduced earlier can be expressed as 

l' = P(A) = nn P(uijlui-1.j, Ui-1.j -l,Ui.j-l,Ui+1.j-d. 
P(A.) .. P(uijlui-1.j,Ui-1.j-J,Ui.j-J,Ui+1.j-l) 

) I 

It can also be written in more compact notation in the following form 

P(.4) g~P(uijINij) 
r----

- P(.4) - I1 I1 P(uijINij) ' 
) , 

where the configuration N ij is shown in Fig. 1O(c). Since the image .4 is the same as the image 

A. with the gray values interchanged at locations (ij) and (h,k), the ratio of the joint distributions 

reduces to a product of the terms that involve the pixel values at locations (iJ) and (h,k). Thus, if it 

is assumed that Uij = m and Uhk = n, then Uij = 11 and Uhk = m, and r reduces to 

(18) 

where Pr.(Uij) = P(uijINij). Thus, the ratio involves only at most ten terms each in the numerator 

and denominator, and hence huge numerical calculations are avoided. 

5.3. Texture Synthesis Results 

This section presents results of using POMM models for texture synthesis. The textures that 

have been generated use the auto-binomial distribution and include both binary and gray-valued 

textures generated with Ainn's spin-exchange algorithm [52]. The images obtained are very similar 

in appearance to those appearing in (56], [571, and (31, and are presented below. 

The binomial model for the conditional probability of G gray levels 0, ... , G-l, is given by 

P( I :\~) (G -1) a· (1 )G-l-a. "T Uij l\'ij = q IJ - q IJ, q = " T 
Uij 1 + e 

(19) 
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where 

T = 0' + ,BUi_1.j + ')'Ui-1.j-1 + bUi.j_l + Wi+1.j-1 (20) 

is a combination of the values in the neighborhood of Uij for the fourth order POMM model. The 

spatial arrangement of parameters is shown in Fig. 12. When G = 2 as for binary images, Eq. 

(19) reduces to 

~ t±fjj~ a = constant -
• 

"'" ( .. ) • IJ 
./ 

(a) (b) (c) 

Figure 12. POMM models used for texture synthesis. (a) Fourth-order POMM 

model with parameter locations; (b) Abend's model; (c) second-order model. 

Using Flinn's algorithm, 400,000 to 800,000 iterations were performed to generate texture data. 

where one iteration is one calculation of a possible exchange. No stopping criterion exists for the 

Flinn's algorithm, as it requires, in theory, infinite iterations. Thus, after observing the exchange 

rates at periodic intervals, the algorithm was terminated when the rate of exchanges stabilized to a 

low value. For 64x64 binary images, the exchanges decreased after 400,000 to 800,000 iterations; 

so all the binary textures were generated using 400,000 iterations. In calculating the ratio 

P( {Ui} 'If"") / P( { Ui} r.urr) , (21) 

the expression for the joint probability of the POMM model as given in Chapter 4, Section 4.2 was 

used. Here, LO = {un}. and Nij is given in Fig. 12(a). As only two values which are different are 

exchanged, most of the terms in Eq. (21) cancel except those containing either of the two different 
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r.v.s considered for the exchange. Depending on the spatial relation of the two r.v.s being exchanged, 

Eq. 21 reduces to a ratio of 6 to 10 tenns for the model in Fig. 12(a), 4 to 8 tenns for Abend's 

model in Fig. 12(b), and 3 to 6 tenns for the model in Fig. 12(c). For each texture simulated in 

Figs. 13 through 20, there were an equal number of pixels assigned to each gray value. Thus, for 

example, half the pixels for the binary case had value 0 and the remaining half had value 1. 

In the results that follow, all textures were generated using one of the three partial orders given in 

Fig. 12. The gray values were unifonnly distributed, and Flinn's algorithm was used to generate the 

textures. The values for the parameters accompany each texture alongside. Unless otherwise notated, 

the value of the constant (.\' is 0.2 and is omitted from the diagram. After further investigation. it was 

found that the model in Fig. 12(c) can be subsumed by the model in Fig. 12(a) by setting ,8 = {) = 

O. TIlls allowed easier implementation of more textures, and this is why only a few of the textures 

are generated with the partial order of Fig. 12(c). 

The results for the binary texture synthesis are presented next. Abend's third-order model has 

been used for the images in Fig. 13, the second-order POMM model as shown in Fig. 12(c) is used 

for the images in Fig. 14, and the fourth-order POMM for all the remaining images. The values for 

the parameters are given in the diagram to the left of each texture. 

6.0 6.0 

6.~+ 

(a) (b) (c) 

Figure 13. Binary textures generated using Abend's model. 
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(a) (b) (c) 

Figure 14. Binary images generated using POMM model shown in Fig. 12(c). 
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1.7 1.7 
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o 2.5 
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Figure 15. Binary images generated using fourth order POMM model. 

(c) 

(0 

In all the texture synthesis results shown in Figs. 13, 14, and 15, the images were assumed to 

have bordering pixels with gray values zero. This resulted in the fonnation of black regions at the 

borders. Another reasonable assumption would be to wrap the values in a toroidal manner around 

the boundaries. Using this different boundary condition, more textures were synthesized, and these 

results are shown in Fig. 16. 

It is also possible to generate textures using parameters that vary spatially. For example, replacing 
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the value T in Eq. (20) by 

(i+j) Ci+j) (-i+j) (i+j) 
T = 0: + ,8 128 Ui-1.j + 1 128 Ui-1.j-l + {; 128 Ui.j-l + € 128 Ui+1.j-l (22) 

introduces a dependency on location of the pixel as the values iJ are different for each pixel in 

the image. The POMM models using spatially varying parameters are called heterogeneous models. 

OthelWise, the models are called homogeneous. For example, the models that generated the images 

in Figs. 13-16 are homogeneous models . 

. ... . 
I 

1.1 1.1·· ... 

1.1~· 
1.1/ 

8.0 
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Figure 16. Binary textures generated using the previously described procedure. 
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Figure 16. (continued) 
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In Fig. 17, binary textures were generated using the POMM model of 12(a) but with T as in 

Eq. (22). This is a heterogeneous POMM model. Note how the characteristic of the texture changes 

from the upper left-hand comer to the lower right-hand comer, as suggested by the specific spatial 

dependence in Eq. (22). Eq. (22) was used in all the heterogeneous textures shown in Figs. 17, 

19, and 20, for different values of G. 

In Fig. 18, textures with the four gray values 0, 1,2,3, were generated, using the homogeneous 

model in Fig. 12(a), with a binomial distribution, G = 4, equally distributed gray values, and Flinn's 
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Figure 17. Binary textures generated using the heterogeneous POMM model. 

iterative algoritllln. In Fig. 19. textures with four gray levels and spatially varying neighborhood 

parameters were generated. The formula for T was the same as in Eq. (22). using Fig. 12(a). 

In Figs. 20. 21. and 22 textures with the sixteen gray values 0 through 15 were generated. In 

Fig. 20 are textures generated using a heterogeneous POMM model and Eq. (22). Fig. 21 displays 

textures generated with an homogeneous POMM model; the parameters are given to the left of the 

respective texture. Texture synthesis of sixteen gray level textures having a gray level distribution 

different from a uniform distribution was tried. The textures displayed in Fig. 22 were generated using 

the probability distribution for the gray levels as given in Table 1. Note also the effect that simply 

changing the parameter (X can have on the resulting texture. In Fig. 22(a) n = -0.2. while in Fig. 

22(b). n = -2.8. In both cases. the model in Fig. 12(a) was used as the underlying partial order. 
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Figure 18. Textures generated using the homogeneous model for G = 4. 
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Figure 19. Textures generated using the heterogeneous POMM model for G = 4. 
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Figure 20. Textures generated using a heterogeneous POMM model for G = 16. 
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Figure 21. Textures generated using an homogeneous POMM model for G = 16. 
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Figure 22. Textures generated using 16 gray levels having distributions as in Table 1. 
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Table 1. Probability of occurrence for the 16 gray levels in Fig. 22. 

Gray Level Probability Gray Level Probability 

0 0.0258789 8 0.0924683 

1 0.0689087 9 0.0525513 

2 0.0551758 10 0.0653687 

3 0.0704956 11 0.0789795 

4 0.0605469 12 0.0588989 

5 0.0574341 13 0.0770264 

6 0.0613403 14 0.0600586 

7 0.0703735 15 0.0444946 

As can be seen. using even a simple POMM model as in Fig. 12(a). many different types 

of textures are possible to synthesize. The results obtained include most images obtained by other 

authors [56]. [57]. and [3] using a MRF model. and some other images not generated in the surveyed 

literature. This does not imply that other models could not generate these other textures. however. 

These results show that this particular fourth order model is sufficient for simulation of a variety of 

textures. In the next section. the inverse problem of parameter estimation from sample textures is 

discussed. followed by results of parameter estimation of synthetic and natural textures. 

5.4. Parameter Estimation of Textures 

A crucial factor in the choice of a POMM texture model is the order of the neighborhood. Once 

the order of the neighborhood for the POMM model is specified. the texture field is characterized 

by a set of parameters under stationarity assumptions. In order to use the POMM model for texture 

classification. it is necessary that the model parameters be estimated. if they are already not known. 

In applications to real data. a reasonable assumption is that only a single instance of a texture class is 

available. Hence. a good. efficient parameter estimation procedure is desired that will yield accurate 

estimates from perhaps only one sample. 
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A general parameter estimation problem may be expressed in the following fonn: Given a set of 

samples A = {AI. ..12, ..13 , ••• , A,,} from a distribution that is characterized by a set of parameters ,,;.,, 

the goal is to find an estimate for the parameters J" such that it is the "best" of all possible values. 

The likelihood function for the set of samples is L(tf.,) = f{A.},A.2, ... ,A."li')' "Best" in this case 

means an estimate that is based on some optimality criterion, and that can be implemented reliably 

and within reasonable computation time. Three of the most commonly used paranteter estimation 

techniques are: Moment-based paranteter estimation, Bayesian estimation, and maximum-likelihood 

(ML) estimation. These three estimation techniques are discussed briefly below. 

Moment-based parameter estimation estimates the parameters by computing the moments of 

the likelihood function in tenns of the model paranteters. The set of equations may then be solved 

to obtain the estimates. A drawback of the MRF is that the moments usually cannot be expressed in 

closed fonn. At present, no work has been done on detennining the moments for the POMM models. 

Thus, this method cannot currently be applied for parameter estimation of POMM models. 

Bayesian parameter estimation assumes a prior distribution P{ i') for the set of model pa-

rameters. Then, given a set of samples, A, a "best" estimate in the Bayesian sense (for a 0-1 loss 

function) would be a value J, such that 

P(Z,IA) = Ill:xP(~[,IA), or, equivalently, 

In most cases, a prior knowledge of the parameters is unavailable. The Bayesian technique also fails 

to be suitable for our purposes. 

Maximum likelihood (ML) estimation chooses the estimate J, such that the likelihood for the 

set of observations is maximized, 

L(J,) = llla'{L(~'). 
t;,t 
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The maximum likelihood estimator (MLE) of any set of samples has three "desirable" statistical 

properties. due to which this method is widely used in most estimation problems. The properties 

of the ML estimator are: 

1. Consistent estimator: E (-0) - 'lb. 

2. Minimum variance estimator: The MLE has the minimum variance of all possible estimates as 

given by the Cramer-Rao Inequality. 

In many cases. the likelihood function may be unwieldy due to exponential terms. Then the log 

likelihood. L( fjJ) = In L(lb). may be used instead. since one is a monotonically increasing function 

of the other. 

In the case of the POMMs. the parameter estimation procedure becomes greatly simplified as 

compared to the MRF due to the tractability of the likelihood function of the POMMs. A simple 

maximum likelihood estimation that would yield estimates with "desired" properties would suffice 

for any POMM model. For the sake of completeness. however. a brief overview of the estimation 

techniques for MRF models is given below. 

Some of the parameter estimation procedures used for MRFs are: maximum-likelihood estimation 

[70]. the "coding method" [41]. [3]. and the maximum pseudo-likelihood (MPL) estimation [71]. 

For the multi-level logistic (MLL) field. the estimate is not readily accessible. because of the 

unmanageable normalizing constant which makes the expression for the joint distribution very 

unwieldy. The Younes' stochastic gradient algorithm (SGA) [72] was used in [73] to yield the 

maximum likelihood (ML) estimate. Won and Derin [73]. however, concluded that this technique 

is not accurate for region-type realizations. For the Gaussian Markov random fields (GMRF). the 

parameter space is limited due to the restriction of positive-definiteness on the covariance matrix. 

In this case. the normal equations can be solved to yield the maximum likelihood. However, since 

a GMRF exists on an infinite lattice, it is not suited for discrete images. The maximum pseudo

likelihood (MPL) estimate has been used as an alternative to the ML estimate for various classes of 



52 

GRFs. The pseudo-likelihood (PL) is the product of the local conditional probabilities over all sites 

in the image. i.e. if the set of model parameters are ,,:.,. then the PL is 

Q(.4 = altJ') = II P(a .• IIJ.H 11,), 
.• eX 

where 'f.. is the neighborhood of a .• in context of the MRF. The MPL estimate has been observed to be 

numerically close to the maximum-likelihood (ML) estimates for the "simple" Auto-normal case [74]. 

Another method is a coding or "coloring" of pixels in the image such that similar "colored" sites 

are not in the neighborhood of each other. thus partitioning the lattice into a disjoint set of points. 

Then a conditional ML estimation of similar colored sites can be computed. where the conditional 

likelihood is a product of the conditionals. A major drawback of this method is that the estimation 

is carried out on fewer samples for a given order of the MRF. as the larger the order. the smaller the 

number of samples [40]. [3]. This reduction in sample size may result in poorer estimates. 

5.4.1. ML Estimation for Fourth-Order POMM 

The ML problem for this case can be expressed as a simple optimization problem where a 

.~ = [a ,3 1- '6 ~]' is needed such that L(~) = lll;xL(,b). where L(':") = II II P(aijINij,6), 
) 1 

and a is a single image. or a realization of the texture. Since the conditional probabilities for the 

fourth-order POMM are given as 

P(a"l V··,j,) = G-1C . q?i'(1 _q .. )G-I-lli, 
I) • 'J' . a., IJ IJ 

eTi, 
qi' = ) 1 + eTi, 

Tij = U + ,3ai-1.j + ')'ai-1.j-l + fJai.j_l + €ai+1.j-I. 

) 1 

L(6) = L L (In G-1Cai, + aij IneTi, - aij In (1 + eTi,) - (G - 1 - Uij) In (l + eT;,)] , 
j 

which reduces to 

L( 11,) = L L [In G-
1Cai, + uijT;j - (G - 1 - Uij) In (1 + eTi,)]. 

j 

(24) 
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The log-likelihood function in Eq. 24 can be optimized by applying any reasonable optimization 

routine. Simulated annealing has been proven to give good results when used for optimization. 

However, good convergence may be obtained only if a proper "cooling" schedule is used. Since this 

problem is not very complex, we instead investigated a gradient descent method, choosing initial 

estimates unifonnly and randomly in a "reasonable" parameter space, and updating the values by 

(25) 

A crucial factor is the choice of the step size). in Eq. 25, that may be scalar, a vector or a variable. 

A poor choice of ). results in the algorithm getting stuck at a local optimum. 

Due to the tendency of the gradient descent method to converge to a local minimum, we used a 

variation of this algorithm called the Newton-Raphson method [75]. The derivation of the Newton-

Raphson is as follows: The maximization problem can also be written as solving the equation 

~~~ = 0 = yCtf.,), where [. is the negative of the log likelihood. By Taylor's expansion theorem, 

(26) 

neglecting the higher order terms. By solving Eq. 26 for the desired set of parameters 'Ii'1 given the 

initial set of parametersu'o, convergence can be obtained by iterating in the following manner 

, , y( 1:bo) 
'll'l = 'Wo - --, - , or , , 9'( lPO) 

" 1 [at)] 
'll'l = 'Il'o - _ --, , or , , [;PLO] all' 

ar:-'~ Ir:-'=~:'o ' I~'=~:'o 

, , [n-1] [at.] 
1l'1 = '!l'o - ali, 

Ir:-'=r:-'o 
In a more general form, the change in parameters at iteration I can be written as 

d'+1) = 'Ii,(l) - [n(1)] -1 [o[~] , .. ow 
. I~·=ti-,(I) 

(27) 

where n(l) is the matrix whose (ij)th element is (02
[. lod'ioU'i) , ' andU'i 

I~·=~:·fl) 
and ,~, i are, 

respectively, the ith and jth elements ofu,. 
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5.4.2. Hypothesis Testing of Estimates 

Problems of statistical inference are divided into problems of estimation and tests of hypothesis. 

The main difference between the two kinds of problems is that. in problems of estimation. we must 

determine the value of a parameter. or the values of several parameters. from a possible continuum 

of alternatives. whereas in tests of hypothesis. we must decide whether to accept or reject a specific 

value. or a set of specific values of a parameter. or those of several parameters. 

Common values used as estimates are the sample mean. Y. and the sample variance. 52. 

_ 1 11 

Y = - ~li. and 
n~ 

i=I 
11 

52 = 1 ~ (Y; _ Y). 
(1/ - 1) ~ 

l=1 

These estimates are referred to as point estimates. The statistic Y is commonly used as an estimate 

of the mean. /l. of the popUlation. or as a measure of a parameter estimate when several estimates 

are available. 

Since estimators are random variables. one of the key problems of estimation is to study their 

sampling distributions. Various statistical properties of estimators can thus be used to decide which 

estimator is most appropriate in a given situation. and whether an estimator is within "acceptable" 

~ ~ 

limits. In interval estimation. possible intervals or ranges of the estimateslh <ti' <ti'2 are used to 

appraise the size of the error by associating a coverage probability with the interval. 

These methods of analysis of estimates can be translated into the language of statistical tests of 

hypothesis. Most tests of statistical hypothesis concern the parameters of a distribution. A statistical 

hypothesis is defined as an assertion or conjecture about the distribution of one or more random 

variables. If a statistical hypothesis asserts a single distribution. it is referred to as a simple hypothesis; 

if not, it is referred to as a composite hypothesis. A good example of a simple hypothesis is the 

application of a test to determine the simple hypothesis. Ho. that the parameter of a set of samples 

from a distribution has a value 0 = 00• against the alternative hypothesis. HI. 0 f 00. The alternative 
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hypothesis could also be 0 = 01• 0 > 00. or 0 < 00. Given a set of data. a method may be formulated 

to compute the value of a test statistic based on which possible values of the test statistic may be 

divided into an acceptance region for Ho and a rejection region for Ho. 

In our case, we would like to test the null hypothesis Ho: t' = '1;"0 against the alternative 

hypothesis HI: ti' =I- '1/.'0. Since it appears reasonable to accept the null hypothesis when the point 

estimate;; of ti' is close to t,o. and to reject it when;; is much larger or smaller than t,o. it would be 

logical to let the rejection region or the critical region consist of both tails of the sampling distribution 

of our test statistic;;. A representative two-tailed test for an estimate of t' is shown in Fig. 23. The 

probability distribution of the estimate ;Z; needs to be known in order to apply the hypothesis test. 

REJECT H o REJECTH 
o 

Figure 23. Two tailed test for an estimate. 

The following property of the estimated mean of random. identically distributed samples has been 

used. If}'i, 1'2, .. , 1~, are independent. identically distributed r.v.S from an infinite population with 
n n 

mean J1. and variance u 2• then Y = ~ E Ii is called the sample mean. and 52 = (n~1) E (Ii - Y) 
i=1 i=1 

is called the sample variance. We then have E (y) = J1. and FaT" (Y) = ~,~, The central limit 

theorem states that the limiting distribution of 

Y-J1. 
Z = r.: ali n ..... ex:: 

u/v n 
(28) 
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is the standard nonnal distribution. The central limit theorem also states that the convergence to 

a nonnal distribution holds true for random samples from nonnonnal populations provided that the 

number of samples. n. is sufficiently large; that is. TI ~ 30. Since (7 is unknown. and the sample 

standard deviation S is a consistent estimator of (7. the value for S may be substituted for the value (7. 

The knowledge of the distribution may be used for interval estimation and hypothesis testing. 

An interval estimate of tj.' is of the fonn ;;1 < ,6 < ;;2. Then. P(;;1 < 'Ii' < Jh) = 1 - n for 

some specified probability (1 - n). For a specified value of (1 - n). the interval;;;l < 'Ii' < ;;;2 is 

referred to as a (1 - n) 100% confidence interval for 6. The quantity (1 - n) is called the degree of 

confidence. and the endpoints ;;1 and Jh are called the lower and upper confidence limits. respectively. 

The values of the estimates falling outside the confidence intervals fall in the critical region. and are 

the values of a null hypothesis that would be rejected. 

For a nonnal distribution with mean J.L and variance (72. the critical region of size n for the 

two-tailed test with the simple hypothesis. Ho: J.L = J.Lo and the two sided alternative hypothesis HI: 

J.L i= J.Lo can be written as 

where Zo:/2 can be obtained from the standard nonnal tables. Then if 

the null hypothesis. Ho: J.L = J.Lo is accepted; otherwise. it is rejected. The critical region is shown 

below in Fig. 24. 
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Figure 24. Confidence interval test for nonnal distribution. 

By virtue of the central limit theorem, the method above may be used even for nonnonnal 

samples although in that case the convergence can be quite a bit slower. Then, for any set of random 

samples, the null hypothesis, Ho: JL = JLO can be accepted if 

\y - JLol ~ Zrt/2 ~. 
vfl. 

If the variance (72 of the distribution is not available, then the interval can be written as 

\1' - JLo\ ~ Zrt/2 5n. (29) 

A 95% confidence interval with a corresponding value of (l' = 0.05 is commonly used. The 

corresponding value of Zrt/2 is 1.96. 

For hypothesis testing of the feasibility of the estimates of the fourth-order POMM model, the 

problem can be fonnulated as follows: Given a set of images ..11 , .·k .. , ..111 representative of a single 

texture with an ideal set of parameters, 6n = [(\'n, ,8(1, ,'(I, b(l, En]', suppose their corresponding 

- I! 

estimates are t/.,},ti'2, .. ,ti'l! and the mean of the estimates 'Ii, = L:6j. The null hypothesis Ho: 
j=l 

til = 'ti'(I is accepted ift/.ln is within a 95% confidence interval about 'iiI, or 
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where S is the standard deviation of the estimates and n is large (we chose n = lOO below.) The 

critical region is then 

and is shown below in Fig. 25. 
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o 

,-,. S d 
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1f.'a ~ 1f.' + ZO.025 r.:' 

yrt 

ACCEPTf\ RElEcr~ 

Figure 25. Confidence interval test for parameter estimates. 

(30) 

The hypothesis test of the estimates could be used for two purposes. First, one could evaluate 

whether the POMM is suitable for textured images; and secondly, one could give an idea of the 

suitability of specific POMM models to be used for different classes and types of textures. We use 

the hypothesis test for testing the validity of the estimates in the next section. 
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5.5. Parameter Estimation Results 

In this section, the parameter estimation results on both synthetic and natural images are presented. 

The method for computing the estimates of the parameters was maximum likelihood estimation, 

explained in the previous section. To search the parameter space. two different methods were used: 

gradient descent and the Newton-Raphson algorithm. In all cases, convergence to the estimates 

via the Newton-Raphson method was faster than and as equally accurate as those found using the 

gradient descent method. 

In order to test the validity of the results. the synthetic images generated in Section 5.3 were 

used. as their parameters are already known. The fourth-order POMM model shown in Fig. 26 was 

used. The results obtained on the estimation of synthetic binary images generated in Section 5.3 are 

shown below in Table 2. The actual parameter values are given first. followed by the corresponding 

estimated parameters. 

Figure 26. Parameters of the fourth-order POMM that describe the textures. 

In order to evaluate the "goodness" of the estimates. the hypothesis test proposed in the previous 

section was tried on a set of binary textures with the same parameters. A series of 100 synthetic 

images were generated using the parameters shown in Fig. 16(j) with different initial images. The 

ML estimates. 'i'l, '~'2, ...• thoo, of each of these images was calculated using the Newton-Raphson 

method. The plot of the estimates of each parameter n, ,8, " 6, and € is shown below in Fig. 27. 

The sample mean 'i, and the sample variance S of the estimates were computed as 

_ 1 100 

t:,:' = - ~ti.,. and 
100~ ,I' 

i=l 

1 100 
s2 = - ~ (rf.,. _ti,)2 

99~·1 , , 
;=1 
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Table 2. Parameter estimation of synthetic binary images. 

AcrUAL PARAMETERS ESTIMATED PARAMETERS Corresponding 
image 

,8 {) ~ 

n I E: n ,8 " {) E: 

0.2 0 3.1 0 3.1 -3.14 -0.12 3.36 -0.07 3.26 Fig. 16(h) 

0.2 2.6 2.6 2.6 2.6 -4.02 2.93 1.17 1.84 2.3 Fig. 16(b) 

0.2 1.1 1.1 1.1 1.1 -2.81 1.61 1.33 1.4 1.46 Fig. 16(a) 

0.2 0.7 0.7 0.7 0.7 -1.61 0.87 0.83 0.73 0.83 Fig. 16(m) 

0.2 -2.7 2.7 -2.7 2.7 0.21 -1.8 2.52 -2.7 1.63 Fig. 16(k) 

0.2 -0.8 1.5 1.5 0 -1.08 -0.67 1.48 1.43 -0.09 Fig. 16(q) 

0.2 -8.7 5.7 5.7 0 0.55 -11.4 5.4 7.88 -0.49 Fig. 16(0) 

0.2 2.4 -2.4 2.4 -2.4 0.35 2.3 -2.78 2.45 -2.5 Fig. 16(r) 

0.2 -1.0 2.6 -0.6 -1.0 0.12 -1.07 2.45 -0.57 -0.99 Fig. 16(f) 

0.2 1.6 1.0 1.0 2.3 -0.82 1.5 -1.0 -1.17 2.39 Fig. 16(d) 

0.2 2.6 -1.6 -1.3 1.2 -0.37 2.69 -1.63 -1.26 0.97 Fig. 16(e) 

0.2 -1.8 1.1 -1.8 1.1 0.46 -1.79 1.31 -1.71 0.98 Fig. 16(p) 

and the results are shown below in Table 3. The synthetic images generated with the actual parameters 

and sample mean are shown in Fig. 28. The 95% confidence interval test with (1= 0.05 was carried 

out on the sample mean ·i,. For this value of n. the confidence region isi'a ~ ,;.. +::0.025 ko and 

li'a ~ t;" - ';;0.025 ko. Substituting ':0.025 = 1.96 ~ 2. we get the confidence region for the 95% 

confidence interval test to be 

,-;- S d 
U' ~u'+2 x -- an 
. a "..;: . v'100 

, -;- 2 S 
'C'a ~U' - x --. 
. r. v'100 

The actual parameter values and their confidence intervals are shown in Table 3. Note that none 
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Table 3. Estimated parameters and confidence intervals. 

Parameters Actual Estimated Variance of Confidence interval limits 

parameter parameter estimated 
Lower limit Upper limit 

values values (mean) parameters 

U' -0.2 1.473 0.04 1.43 1.51 

,8 3.2 2.986 0.0475 2.94 3.00 

" 5.0 -4.636 0.0382 -4.68 -4.60 

{) 3.2 3.06 0.052 3.01 3.11 

E 5.0 -4.536 0.0372 -4.58 -4.50 

-5.0 3.2 -4.63 2.98 

'\..+ 3.2 -,. 0.2 

-5.<V 

'\..+ 3.05_ 1.47 

-4.5/ 

(a) (b) 

Figure 28. (a) Original synthetic image (b) Image from mean of the estimates. 

of the parameter estimates are within the acceptable limits. An image generated with the estimated 

sample mean shown in Fig. 28(b) is, however, observed to be visually similar to an image generated 

using the actual parameter values shown in 28(a). 

A possible reason for the failure of the hypothesis test is the fact that the gray level distribution 

of the generated images is a uniform distribution, whereas the underlying conditional distribution 

of the conditional probability of each r.v. is a binomial distn'bution which would lead to a highly 

nonuniform marginal distribution of pixel values. This "fitting" of binomially distributed r. v.s to an 

uniformly distributed image may lead to unpredictable results. A possible solution would be use a 

binomial distribution for the gray levels in the image. Since in the expression for the conditional 
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probability of a r.v., 

Iij = 0' + /3Ui-Lj + 'fUi-Lj-l + [,Ui.j-l + ~Ui+Lj-L 

only the parameter 0' does not represent a dependence on neighboring pixels, and hence could 

be used to detennine an approximation to the gray level distribution in the image. Given a 

set of parameters, the gray level distribution in the image could be approximated by assuming 

,8 = 1 = [, = ~ = 0, and then the probability of each possible gray value for the specified value 

0', or P( Uij = m) = IF;:", IT/. = 0,1, .. , G - 1, can be computed. Thus, the initial image may be 

generated by assuming the initial image to be composed of independent, identically distributed (i.i.d) 

r.v.s, each having a gray value with a probability P(Uij = nt) = {~:", m = 0,1, .. , G - l. 

In order to test this technique, a series of 100 binary images was synthesized with a value of 

0' = -0.2, with a corresponding gray level distribution of P( Uij = 0) = 0.55, and P( Uij = 1) = 0.45. 

The other parameter values chosen are shown below in Fig. 29(a) and Table 4. The ML estimates 

were computed and a hypothesis test carried out on these estimates similar to the technique discussed 

previously. The sample mean. variance, and the 95% confidence intervals are given in Table 4. 

The hypothesis test results were much better as compared to the results obtained when using a 

unifonn distributed binary image as shown previously in Fig. 3. All the estimates. especially the 

parameters n, /3, and [, were closer to the 95% confidence intervals as compared to the method 

in Table 3, even though they still were not within the 95% confidence limits. A synthetic image 

was generated with the mean of the estimates shown in Table 4. with a gray level distribution 

P(Uij = 0) = 0.4, and P(Uij = 1) = 0.6, corresponding to 0' = 0.42. Due to the difference in gray 

level distributions between the texture generated using the actual parameters with 0' = -0.2 and the 

texture generated using the estimated parameters with 0' = 0.42, the two textures shown in Fig. 29(a) 

and (b) are visually different from each other. However the image generated with the sample mean 
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Table 4. Estimated parameters and confidence intelVals. 

Parameters Actual 
parameter 
values 

n -0.2 

/3 3.2 

'"'f 5.0 

6 3.2 

€ 5.0 

-5.0 3.2 --==-.1.=..10_ 

3.2 ~+ 
-5.0/ 
a=-O.2 

(a) 

Estimated 
parameter 
values (mean) 

0.418 

3.147 

-4.686 

3.033 

-4.734 

(b) 

Variance of 
estimated 
parameters 

0.03 

0.0331 

0.0289 

0.032 

0.0349 

Confidence intelVal limits 

Lower limit 

0.38 

3.1 

-4.72 

2.99 

-4.77 

-4.69 3.15 

3.03~+ 
-4.7-/ 

a= 0.42 

Upper limit 

0.45 

3.18 

-4.65 

3.07 

-4.70 

(c) 

Figure 29. (a) Original synthetic image, (b) Image from sample mean with 

distribution for 0= 0.42, (c) Image from sample mean with distribution for 0= -0.2. 

with distribution for 0= -0.2 shown in Fig. 29(c) is visually close to the original image. The plot 

of the parameter estimates are shown in Fig. 30. 

Since the method discussed previously yields synthetic estimated images that are not visually 

close to the original images due to the difference in their gray level distributions, an alternative 

solution to the problem of estimation is given next. Given an image, a value for n may be 

found that satisfies the gray level distribution of the image. After estimating n in this manner, 

the remaining parameters ,8, " (;t, and € may be estimated by the method of maximum likelihood. 

This technique yields a synthetic estimated image that has the same gray level distribution as the 

original image. We tried this approach on the same set of images used in the previous technique with 

n = -0.2 corresponding to the distribution P(Ujj = 0) = 0.55, and P(Ujj = 1) = 0.45. In effect, 
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Figure 30_ Histogram of the estimates of Fig. 29(a). (a) n (b) /3 (c) ,. (d) 6 (e) E. 
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we assigned (\ = -0.2 corresponding to the gray level distribution, and then estimated the other 

POMM parameters. However, it should be noted that the problem of a fixed gray level distribution 

still exists since the Flinn's algorithm is used to generate the synthetic images. The actual parameters, 

the sample mean and variance of the estimates, and the 95% confidence intervals are given in Table 

5. The estimates are better than the estimates obtained from the uniform distributed images presented 

in Table 3, but not as good as the results obtained in Table 4. A sample image with the actual 

parameters and the synthetic image generated from the corresponding estimates is shown in Fig. 31. 

The plot of the parameter estimates are shown in Fig. 32. 

Table 5. Estimated parameters and confidence intervals. 

Parameters Actual Estimated Variance of Confidence interval limits 
parameter parameter estimated Lower limit Upper limit 
values values (mean) parameters 

n -0.2 -0.2 0 -0.2 -0.2 

,3 3.2 2.887 0.0729 2.83 2.94 

I 5.0 -4.338 0.0625 -4.4 -4.28 

6 3.2 2.776 0.0676 2.73 2.83 

€ 5.0 -4.386 0.0630 -4.44 -4.34 

-5.0 3.2 -4.33 2.89 

"'. 3.2 - -0.2 

-5.0/ "'. 2.78_ -0.2 

-4.3 V 

(a) (b) 

Figure 31. (a) Original synthetic image (b) Image from mean of the estimates. 
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Figure 32. Histogram of the estimates of Fig. 31(a). (a) n (b) /3 (c) 'Y (d) 6 (e) f. 

Further investigation needs to be done on the effects of imposing a fixed gray level distribution 

in the texture synthesis process. A better texture synthesis technique can be fonnulated that does 

not restrict the gray level distribution. 

Next. the estimation algorithm was tested on sixteen gray level synthetic images from Section 

5.5 with known parameters. The results are shown below in Fig. 34 and 33. For each set of images. 

the original images are on the left. and the estimated images on the right. with the corresponding 

parameters shown at the left of each image. Unless specified. the value of the constant n = 0.2. 
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Figure 33. Synthetic 64x64 image and its corresponding regenerated image estimates on the right. 
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Parameter estimation was also perfonned on natural Brodatz textures [76]. It was observed that 

the MLE parameter estimation gave better results when the sample size was larger, or equivalently, 

when the image size was bigger. The estimation results on the Brodatz textures of a cloud, water, 

tree, grain, and corle are shown below. Fig. 35 displays results for image data of size 64x64, while 

Fig. 36 displays results for image data of size 128x128. 

0.4 0.09 

\... 0.2 _ -2.8 
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0.001/ 
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(b) 

(d) 

Figure 34. Synthetic 256x256 image and its corresponding regenerated image on the right. 
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Figure 35. 64x64 Brodatz image. and the regenerated synthetic texture from estimated parameters. 
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Figure 36. 128x128 Brodatz texture. and the regenerated synthetic texture from estimated parameters. 
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(i) Brodatz cork image 

Figure 36. (continued) 

The ML parameter estimates gave good visual results on several of the natural textures, with 

some of the synthesized images visually close to the original textures. Also, note that estimates were 

closer for binary images as compared to the sixteen gray level images. A possible reason may be 

due to the fact that the likelihood function for the gray level case involves a more complex search 

space than for the binary case. The statistical analysis of the parameter estimates for the binary 
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image showed that the estimates were not within "acceptable" limits. and that a proper choice of (\' 

gives better estimates as shown in Table 5. So far. analysis of images generated using the binomial 

marginal to compute the gray level distribution have given the best results as shown in Table 4. 

More investigation needs to be done on the role of the parameter (\' in the POMM model. and its 

influence on the gray level distribution in the image. More important. a texture synthesis technique 

that does not limit the gray level distribution needs to be fonnulated. A better parameter estimation 

technique needs to be applied for this particular model. Since the likelihood function is not complex. 

this POMM model may be used with other. more efficient. estimation techniques. 

In the next chapter. the problem of texture segmentation is investigated. where the parameter 

values of individual textures have been estimated in advance using ML estimation. The estimated 

parameters provide an initial segmentation of the unknown image. Then a maximum a posteriori 

technique is applied to obtain "better" segmentation according to a Bayesian criterion. 



73 

6. SIMULATED ANNEALING FOR TEXTURE 
SEGMENTATION AND TEMPLATE IDENTIFICATION 

In the previous chapter, a parameter estimation technique was used to estimate the parameters 

of natural images modeled by a fourth-order POMM. When an image consists of several textures, 

region classification cannot be obtained merely by knowledge of the representative texture parameters. 

Regions must first be identified and then subjected to a classification process. In this chapter, the 

problem of texture segmentation is viewed as a maximum a posteriori (MAP) problem that may be 

solved iteratively by simulated annealing. The theory and background of simulated annealing as an 

optimization technique is given in Section 6.1. In Section 6.2, a texture segmentation technique using 

simulated annealing is detailed, and the results obtained on the segmentation of natural images is 

presented in Section 6.3. Section 6.4 presents the simulated annealing optimization procedure as a 

learning rule for a morphology neural network (MNN), a relatively new neural network. Results of 

applying the MNN to solve a template identification problem are given. 

6.1. Simulated Annealing: Theory and Applications 

An optimization problem is concerned with finding a good or even the best configuration or 

parameter set from a large set of feasible options. When the configurations are elements from a very 

large but finite set, the respective problem is called a combinatorial problem. Simulated annealing is 

a probabilistic algorithm for approximately solving large combinatorial optimization problems. All 

optimization problems have an associated cost function that must be maximized or minimized. The 

cost function is a function of many variables and represents the quantitative "goodness," with respect 

to a certain criteria, of the set to be optimized. 

Iterative improvement is a well known heuristic method for solving combinatorial optimization 

problems. The algoritlun starts with the system in a given state, and a corresponding cost, and 

iteratively proceeds to new states that have lower costs. The inherent limitation of the iterative 
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improvement algorithm is that it usually gets stuck in a local optimum. It is therefore not suited 

for complex optimization problems. 

Simulated annealing is an optimization teclmique that allows "cost increasing" changes in the 

state of the system, thereby enabling the algorithm to jump out of local optima. Simulated annealing 

(SA) [77] is a simulation of the physical process of annealing whereby a solid is slowly cooled 

starting at a high temperature so that its molecular structure becomes "frozen" at a "minimum energy 

configuration." The basic idea in this process of stochastic relaxation or statistical cooling is to change 

provisionally a single randomly selected part of the system at a time. If this change results in a lower 

global system energy or "cost," then the change is accepted as the new state. If the change results in 

an increase in global energy, then this change is accepted with a probability p given by 

~ =11 
P = e J' = e 1' • 

lbis is known as the Metropolis acceptance criterion [78]. The quantity M= E"~ _£Old = D..g= 

g~W _gold is the change in energy or "cost" and T is the temperature. The acceptance of deteriorations 

or possibly higher costs in the system prevents the system from getting stuck in a local minimum. As 

the process proceeds, the temperature value is decremented so that probabilities for accepting system 

deteriorations becomes smaller until the probability approaches zero. 

The simulated annealing algorithm was designed to find an optimal solution to a continuous 

system of states. By making appropriate modifications to the problem statement, a discrete version 

of this algorithm can be obtained which can be applied to combinatorial optimization problems [79J. 

The algorithm can be mathematically described as the generation of a sequence of homogenous 

Markov chains [78]. Since the theory of homogenous Markov chains is well established, it is possible 

to analyze the convergence of this algorithm by studying the Markov chain describing the process. 

It has been proven [80] that if the "cooling schedule" or decrements in temperature is "properly" 

implemented, and the system transitions are done an infinite number of times, then the algorithm 

converges with uniform probability to the set of globally optimum states. Equivalently, the stationary 
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distribution of the Markov chain describing the process is given as 

if wE Ropt 

otherwise ' 

where Ck is the temperature or control parameter that varies with the number of iterations. Note that 

the simulated annealing algorithm converges with probability 1 to a globally optimal configuration if 

the series of values of the control parameter or temperature converges to 0 and if the Markov chains 

generated at each value of the control parameter are of infinite length. 

In the next two sections, a version of the simulated annealing algorithm is used for texture 

segmentation using a maximum a posteriori criterion. and to train a MNN model for template 

identi fication. 

6.2. Texture Segmentation Using Simulated Annealing 

Image segmentation is the partitioning of an image into a set of non-overlapping regions. The 

purpose of image segmentation is to decompose an image into parts that are meaningful with respect 

to a particular application. General segmentation procedures tend to obey the following rules [81]: 

(1) Regions in the image should be uniform and homogenous with respect to certain properties; (2) 

region interiors should be simple. without many holes; (3) region boundaries should be simple and 

not ragged. When the image is represented by multiple properties. the basic approach for extracting 

regions with similar properties should. more or less. be achieved by computing the multiple properties 

at each pixel or a "selected region" in the image. mapping every pixel or "selected region" to the 

multidimensional space and classifying the pixels or "selected regions" and finally labeling each 

pixel or "selected region" accordingly [82]. The crucial factors in this process are the properties to 

be used for classification. 

A number of segmentation algorithms were developed in [81] to segment images by using 

neighboring average gray values. However. many complex images. including most natural images, 

cannot be segmented merely by average gray values. Just as single textures can be modeled 
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stochastically, images consisting of various textures may also be represented by a model. When 

the individual textures in the images cover large regions. and do not contain holes. then the image 

regions can be modeled by a Gibbs distribution [43], [70], [83] which include prior contextual 

infonnation. The contextual infonnation of neighborhood pixels is important since spatially close 

pixels are likely to belong to the same region or texture. Once the region distribution is modeled 

effectively, a good segmentation algorithm should be selected. A variety of MRF based segmentation 

algorithms have been proposed in the literature. including using a maximum a posteriori criterion that 

is solved by simulated annealing [42], [43]. iterated conditional modes (ICM) [41], and maximum 

marginal probability (MPM) [41] using a Gibbs Sampler [42]. These methods differ in the details of 

the type of prior model. in the model for noise corrupting the true image, in the type of optimization 

algorithm. and in the details of the algorithms themselves. Choices for the model for the region 

distributions and the individual textures are dictated by the problem at hand. The multi-level logistic 

model (MLL) has been found to be a good model for region distributions when using labelled images 

[43], since it considers differences in neighboring gray values or "pixel labels" to compute the 

probabilities. In the previous chapters the fourth-order POMM model was shown to model individual 

textures effectively. In this section. a hierarchal MRF model is proposed. The Gibbs distribution is 

used to model the region distributions and the fourth-order POMM with a binomial distribution is 

used for modeling the textures within the regions. 

A brief description of the Gibbs distribution is given below, followed by details of the specific 

MLL model used to model the regions. Readers are referred to Chapter 3 for more details on 

the Gibbs distribution. The simulated annealing algorithm used to obtain the MAP estimate of an 

unknown image comprised of various textures with known parameters is outlined. Results on real 

and synthetic images are presented. 
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6.2.1. Hierarchical Image Model and Problem Formulation 

6.2.1.1. Gibbs Random Field with a MU for Region Distribution. 

The Gibbs distribution with a MLL model was used for image restoration in [42] and for 

image segmentation in [83]. [84]. For our purposes. we assume that the regions in the image 

have reasonable sizes. smooth boundaries. and no isolated small holes. The joint distribution of the 

region is represented by a Gibbs distribution (GD) of the fonn: 

P(X) = ~e:L~p(-U(X)). 
Z 

U(X) = I: V;,(:L~), 
r.EC 

Z = I: exp( -U(X)). 
x 

Here Z is the partition function, U(X) is the energy function that is the summation of the potential 

function v;,(x) over all possible cliques c E C, and X is the segmented image. 

The MLL model is a particular type of Gibbs random field model that has been studied in [42]. In 

order to define the energy functions of the MLL model. the cliques associated with a neighborhood 

system fl. and the potential functions associated with the cliques need to be defined. It has been 

proved experimentally in [83] that second-order neighborhood systems. ,,2. are very flexible and 

powerful. and adequate to represent many region distributions [43]. The cliques of a second order 

neighborhood are shown in Fig. 37. 

Figure 37. Oiques of a second order neighborhood system. The marked cell is location (ij). 
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For more details on cliques and potential functions. the reader is referred to Chapter 3. Potentials 

need to be assigned for each possible configuration. The idea is that cliques with the same gray levels 

should have a low potential. and cliques with different gray values have a high potential. The objective 

is to obtain a region configuration with a low potential. This effectively means that regions of very 

small sizes are not acceptable. The potentials assigned to some possible region configurations in the 

labelled image is shown in Fig. 38. 

x X X X X X X X 

X 0 X X 0 X X X X X X X 

X X X X X X X X 

X- Region I 

0- Region II 

(a) (b) 

Figure 38. Region configurations with (a) high potential (b) low potential. 

The models most commonly used for GDs are the pairwise interaction models. where only cliques 

of first and second order exist. or equivalently. the potential functions of cliques greater than second 

order are zero. The potential functions commonly used in literature [83]. [84] are shown below: 

• For single pixel cliques: l~{ x.~} = ek for x.~ = k where ek is a function of k 

For 2 pixel cliques: l~{ :J.:.~} = {d-d if all pixels in clique are equal 
otherwise 

• For cliques with more than 2 pixels: l~{x.~} = 0 

Since the Gibbs random field and the MRF are equivalent. the conditional probability of the 

region distribution can be written as: 

exp (- 2: V;,(x.~ = i)) 
P( "\.. -:1 ) - __ ~r._.:.~-=.Er._. ----_l.., - t '1.~ - £-1 ' 

~ e:J.:p (- 2: V;,(x.~ = j)) 
)=0 r.:.~Er. 

(31) 

where '1.~ is a neighborhood of x.~. The summation in the exponent is over all cliques containing s. 

A crucial factor is the choice of value for d for the two-pixel cliques. A Jarger value for d 

creates more clumping. while a negative value for d causes neighboring pixels to have different gray 
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levels or a "repulsion" effect. When d=O, the pixels in the clique have no interdependence. The ek's 

control the proportion of pixels at each gray level. Since no prior knowledge exists of the regions 

in the image, typically ek = 0 for the single pixel cliques. 

6.2.1.2. POMM Model For Textures. 

Here, it is assumed that the texture inside the regions are homogenous and relatively large. 

The fourth-order POMM with a binomial distribution, proposed in Chapter 5 is used to model the 

textures. See Eq. 17 in Chapter 5, for a description. 

6.2.2. Segmentation Using MAP Criterion 

Bayesian modeling is a popular technique for formulating estimation and pattern classification 

problems [85]. A Bayesian model is a statistical description of an estimation problem which consists 

of two separate components. The first component, the prior model. P(X) , is a probabilistic prior 

description of the system. The second component. the sensor model. P(AIX). is a description of the 

stochastic processes that relate the original. unknown state X to the sampled input image or sensor 

values A. These two probabilistic models can be combined to obtain a posterior model. P(XI.4), 

which is a probabilistic description of the current estimate of X given the data A. The posterior model 

can be obtained by using Bayes Rule 

P{ ''"II) = P(AIX)P(X) 
.1. .'1 P{A.)' 

Bayesian modeling is used to compute the maximum a posteriori (MAP) estimate [42], a value of 

X which maximizes the conditional probability P(XI.4), or in calculating the maximum marginal 

probability that minimizes the expected proportion of misclassified pixels [41 J. 

Here. the segmentation problem is formulated as a maximum a posteriori problem. where some 

representative textures are available, from which the parameters have been estimated. If X is the 

segmented. labelled image, A is the original image. let there be i=I,2, ... .L possible regions with 

respective parameters 'th. Pixel .\mll = i labels pixel .4mll as belonging to texture i. 



80 

Given the original image, A, the problem is to find a segmented image X·. such that: P(."C 1.4) = 

~txP(XI.4). By Bayes rule we have P(XI.4) = P(.4~~;:;(X). and the probability of image A. peA). 

is a constant independent of changes in X. Thus we need to find an X· such that 

Here image X is modelled by a Gibbs distribution. 

P(X) = Zl exp(-U.·dX)) , 
x 

where P(.4IX) is a Gibbs distribution of the fonn 

Here. ZA(X) is the partition function, 

Z.4(X) = l:::e-WA (.4IX». 

A 

Then the joint conditional probability is written as 

The maximization of this product requires a large amount of computations. because Z.4 (X) needs 

computation of the exponentials of U.4(.4IX) over all A. while the U.-t(.4IX) themselves are functions 

of X. This results in a huge number of computations. Since the criterion function P( X 1.4) is nonlinear. 

it is extremely difficult to find the optimum solution X· by any conventional method. Thus an iterative 

procedure that does not involve computation of the partition function ZA(X) is needed. A approach 

that requires computation of ratio of probabilities such as simulated annealing or ICM is adequate. 

The following properties of MRFs involving computation of ratios of probabilities have been 

proven in [43] that state that under certain conditions. computation of the partition function Z.4(X) 

is avoided. The segmented image. X. and the observed image, A. are represented as vectors for 
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notational convenience. X = {Xl, X 2 , ..... XM} and A. = { ... h, ..... A.u}. If one pixel XI.: in X 

is changed. and the new image is denoted as Jt = {X}, X 2, ••• X;: .. , Xu }. then the ratio of the 

conditional probabilities for the changed and original images and the ratio of the joint pdf of the 

region distribution for the changed and original images can be written in the form: 

p(.4I~Y) _ p( .4kIA.}, ., ... 1,.·-I,A.k+1, .• A.u, Xl, .. ,~~., .. , Xu) 

P(A.IX) - P(.·hIA.}, .,A.k-bA.k+b ., A.u, Xl," X".,., Xu) 

p(~Y) P(~~IXl' .. ,Xk-bXk+b .. ,Xu) 

P(X) = P(XkIXt, .. ,Xk-l,Xk+b"'XU)· 

(32) 

This form does not involve the normalizing constant. and hence is more efficient for calculations. 

Since we assume A to be a realization of a POMM. and X is modeled by a MRF due to the GD-MRF 

equivalence. the ratio of p(.YIA.) and P(XIA.) reduces to a ratio of the product of local conditional 

probabilities of the chosen pixel X k • Thus 

p(.4IS)p(~y) p(.4kIN".,~~.)p(~16k) 
P( .4IX)P( X) = P( A.k INk, X, .. )P( Xk 16k) 

(33) 

where Nk = adj-<A.h is the causal neighborhood of A.". for the fourth-order POMM. and 6k is the 

neighborhood of Xk for the second order MRF. The configurations of N,,· and 6k are shown below 

in Fig. 39. Since only a ratio of the product of two terms are involved. the maximization can be 

implemented iteratively by using a simulated annealing approach as follows. 

(a) (b) 

Figure 39. Neighborhood systems (a) NI.: == adj-<A.". for fourth-order POMM. 

and (b) 61.: for second order MRF, represented by the shaded regions. 
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6.2.3. Simulated Annealing (SA) for Texture Segmentation 

1. Given image A, obtain an initial segmented image X(O), and set iteration number, 11=0. 

2. Assign an initial "temperature" or control parameter as: Til = IIl(g\II)' where Co and C l are 

predetermined constants. 

3. Choose a pixel at site k, X~"), in the segmented image X(II), and update its value through a 

predetermined procedure, either randomly or by selecting a pixel value from a neighborhood of 

the pixel. The new label of the pixel is .. yt). 

4. Compute 

P(.·hINI"'.~')p( £.1(\) 
p = ( . ., , ) liT .. 

P(Adi\, .. , .XI..)P(.\:d6k) 

If 1 '1."(11) V(II) the . '1."(11) V(II) ·th b b'l' p > ,.1.k = .1.1.' ,0 rwlse .1.k = .1.k WI pro a I Ity p. 

5. Go back to step 3 and repeat until image A is scanned once. 

6. Increment 11=11+1, decrease temperature Til as given in step 2, and repeat steps 3,4 and 5 until 

The advantages offered by using SA to compute the MAP estimates are: 

1. Iterative computation of the local conditional probabilities is required, thus avoiding large 

numerical computations; 

2. Multi-site updating is possible when multiple processors are available. 

The crucial factors affecting the algorithm are: 

1. A method for the initial segmentation; 

2. Value of d for potential function. which should not be too large or too small; 

3. Order in which sites are updated. Visiting sites in sequential order might result in unwanted 

global effects and loss of compactness of segments; 

4. Cooling schedule. and values of Co and Ct that determine the initial temperature To; 

5. Stopping criterion. 
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If the initial segmentation is a good approximation of the actual region distribution. then the cooling 

schedule. or the number of iterations at each temperature and the choice of the final temperature 

do not affect the final results. However. the neighborhood size used to classify each pixel and the 

magnitude of the potentials, i.e., the value d, assigned to each possible configuration, can affect the 

final results as shown below. 

6.2.4. Initial Segmentation 

The speed of convergence of the SA algorithm to the MAP estimate depends largely on the 

initial labeled image X(O). Hence. a crucial factor in this algorithm is the method chosen to 

compute the initial segmented image X(O). One method to label a pixel k in the image X as j 

is, if P(AJ.·INk; 'Ij.'i) = ma..xP(Al.·INl..; '';\) , where Nk is the neighborhood udj-<uJ,: of r.v. Al.. for an A , 
that satisfies a fourth-order POMM. and U'i is the set of parameters corresponding to texture i that has 

been predetennined from available texture samples. However, since a neighborhood criterion may 

be insufficient to yield good results, an alternate method is to use the joint local pseudo-likelihood to 

label the pixels. The joint local pseudo-likelihood is defined as .l(i) = n P(A .• IN.;'Ij.,;), i=1, ... ,L, 
.• eB 

where B is a set of pixels chosen by the user. If 1(k) is the largest among 1(i), i=1, ... ,L, then all 

pixels in B are assigned to texture k. 

The above method of joint local likelihood as suggested in [43] may result in a blocky segmented 

image, which may not be accurate at the texture boundaries, and may not be compact. An 

alternative way to use local neighborhood infonnation to segment the image is to compute the 

joint local pseudo-likelihood for a certain neighborhood around each pixel as follows: .lm.n(i) = 

n P(A..~IN.;'Ij.'d,i=1, ... ,L, where }~.n is a neighborhood around Am .n • Then X'\?~l = kif 
.• eY", ... 

The next section presents results of applying simulated annealing to segment natural images, 

using various neighborhood configurations for the joint local pseudo-likelihood to obtain the initial 

image X(O). 
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6.3. Texture Segmentation Results 

Three sets of natural images were used to test the segmentation algorithm. In each case, two of the 

Brodatz images of size 128x128 were combined into a single 128x128 image by selecting their border 

at random. Images I and II contain Brodatz cloud and water images, and image III contains Brodatz 

tree and water textures, with the borders at different, randomly chosen pixel locations. For each 

segmented image, the texture border is shown as a sequence of black pixels. The above segmentation 

algorithm using SA to compute the MAP estimate was applied with different neighborhood sizes and 

magnitudes of the clique potential functions. In all cases the method of pixel updating in the SA 

algorithm was as follows: the updated pixel value was chosen at random from the set of all possible 

labels. It is mentioned in [43] that a faster convergence is obtained if the candidate pixel values are 

chosen from a set of all values appearing in the neighborhood of a pixel. Such a technique has not 

been implemented here, since the final result of the simulated annealing algorithm is not affected 

by the method chosen for updating the pixel labels. However, since the performance of the initial 

segmentation does affect the final results, various neighborhood configurations for computing the 

joint local likelihoods have been tested. 

6.3.1. Initial Texture Segmentation Results. 

The initial texture segmentation results using the method outlined in Section 6.2 to obtain 

the initial labelled image X(O) is presented here. Various neighborhood configurations were used 

to compute the joint local likelihood at each instance, to estimate experimentally the size of the 

"optimum" neighborhood for initial segmentation. In all the results shown below, square shaped 

neighborhoods. l~,n around each pixel (m,n) was used to compute the joint local pseudo-likelihood 

as follows: .Tm,n(i) = IT P(A~IN,; th), i=1, ... ,L, where 1~'1.11 is a neighborhood around Am,n' 
.,eY

m
,.. ' . 

Then pixel (m,n) is labelled as X~'>n = k: if .Tm.n( k) = Ill~,{ .Tm.nO). A different neighborhood size 
. . I ,. 

Il~,nl was used in each case. 



:.-

(a) Image I: Combined Brodatz cloud and 
water images. 
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(b) Initial segmented image I by using local 
joint probability with neighborhood size 2x2. 

(c) Initial segmented image I by using local (d) Initial segmented image I by using local 
joint probability with neighborhood size 16x16. joint probability with neighborhood size 24x24. 

(e) Initial segmented image I by using local joint probability with neighborhood size 32x32. 

(f) Image II: Combined Brodatz water and 
cloud images. 

6' ..• 

(g) Initial segmented image II by using local 
joint probability with neighborhood size 16x16. 

Figure 40. Initial segmentation of the Brodatz images. 



(h) Image III: Combined Brodatz tree and 
water textures. 
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(i) Initial segmented image III by using local 
joint probability with neighborhood size 16x16. 

Figure 40. (continued) 

A neighborhood of size 16x16 for computing the joint local likelihood seems to yield good results 

among all the configurations, especially at the borders between textures. Also, the classification is 

better for homogenous looking textures as for image III shown in Fig. 40(i), where misclassification 

occurs only near the borders. Note that the initial segmentation results are not very good for the 

heterogeneous cloud textures in images I and II, shown in Fig. 4O(b), (d), (e) and (g). 

6.3.2. Final Segmentation Results. 

After initial segmentation, simulated annealing (SA) was used to obtain a MAP estimate of 

images I and II using various values for the final temperature Tr., and clique potential d. The value 

of Tr. controls the number of iterations of the SA algorithm, and the clique potential d controls the 

degree of clumping of similar gray values, and thus indirectly the size of textured regions in the 

segmented image. The parameter values of the SA algorithm were varied to observe the results on 

the MAP estimates. 

It is observed that a value of d=1.0 yields the best segmentation results by using a neighborhood 

of size 16x16 for initial segmentation. The worst results are obtained by using a neighborhood of size 

2x2, followed by a MAP segmentation with a clique potential d=2.5 as shown in Fig. 41(c). This 

shows that a larger value of the clique potential d causes more clumping in the segmented image. 
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(a) Final segmented image after 257 iterations (b) Final segmented image after 257 iterations 
on image in Fig. 40(c). Final temperature Tf'. = on image in Fig. 40(c). Final temperature Tf'. = 
0.18, clique potential d= 1.0. 0.18, clique potential d= 2.5. 

(c) Final segmented image after 257 iterations 
on image in Fig. 40(b). Final temperature Tf'.= 
0.18, clique potential d =2.5. 

(d) Final segmented image after 257 iterations 
on image in Fig. 40(c). Final temperature Tf'.= 
0.18, clique potential d =1.5. 

Figure 41. Final segmentation results obtained by 

application of simulated annealing with different parameters. 

6.3.3. Modified Simulated Annealing Algorithm I 

Pixel updating by scanning the image in a orderly manner as suggested earlier for the SA 

algorithm might result in unwanted global effects on the entire image, as compared to a random 

updating of sites. An alternative method for the updating is suggested here. One way to avoid 

such a snowball effect on the segmentation procedure would be to scan the whole image, store the 

interchanges as given by the simulated annealing algorithm discussed previously, and then change or 

update the pixel labels after one scan through the whole image. The results of applying this method 

on image I is shown below in Fig. 42. 



(a) Final segmented image after 85 iterations 
on image in Fig. 4O(b). Final temperature Tc= 
0.225, clique potential, d= 1.0. 

88 

(b) Initial image segmentation using 
neighborhood of size 6x6 to compute joint local 
likelihood. Final temperature Tc= 0.215 ( 100 
iterations or scans through image ), clique 
potential. d= 1.0. 

(c) Final segmented image after 100 iterations on image in Fig. 40(e). Final temperature T= 
0.215, clique potential, d= 2.0. 

Figure 42. Modified SA algorithm technique I. 

This modified annealing algorithm results in more misclassified pixels than the original SA 

algorithm discussed earlier in Section 6.2.3. Even though this method is observed to give better 

results at texture borders as in Fig. 42(a). misclassification occurs at sites within the texture regions 

in Fig. 42(a), (b), and (c) resulting in patchy labelled images with a number of holes within the texture 

regions. Thus, this method does not offer any definite advantages over the original SA algorithm. 
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6.3.4. Modified Simulated Annealing Algorithm II 

The SA algorithm suggested in Section 6.2.3 involves changes in pixel labels even when 

the labelled image X(II) at iteration n is "close" to the MAP estimate X·. This results in slow 

convergence. An alternative procedure to speed up the convergence to the MAP estimate would be 

to update a pixel label only if an extra precondition is satisfied. In step 4 of the original SA algorithm 

given previously, a pixel X" may be updated only if at least one pixel Xl' in the neighborhood, .:.111.: 

of Xk is different from Xk. That is, Xk is updated only if Xk =1= Xl" where Xl' E AII.:. The results 

of applying this algorithm to the image in Fig. 40(c) are shown in Fig. 43. In Fig. 43(b), the 

pixels are updated only after one scan through the entire image, similar to the modified simulated 

annealing algorithm discussed previously. 

(a) Final segmented image after 257 iterations 
on image in Fig. 40(c) with All..- = 6 x 6, final 
temperature 0.18, Clique potential, d= 1.0. 

(b) Final segmented image after 257 iterations 
on image in Fig. 4O(c), AI,... = 8 x 8, update 
segmented image after I scan through whole 
image. Final temperature 0.18, clique potential, 
d= 2.5. 

Figure 43. Modified SA algorithm technique II. 

The image in Fig. 43(a) is similar to the one obtained by applying the original SA algorithm 

in Fig. 41(b), showing that this method gives the same results with a faster convergence rate. 

The image in Fig. 43(b) obtained by a combination of the two modified SA algorithms proposed 

here has a number of misclassified pixels in the texture regions, showing that the first modified SA 

algorithm in Section 6.3.3 does not have any potential applications in this segmentation technique. 
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The second modified SA algorithm suggested in Section 6.3.4. however. could be used to obtain 

faster convergence as compared to the original SA algoritlun. 

The segmentation technique using simulated annealing gave good. though not perfect results 

for the combined Brodatz images. A possible solution to obtain better results would be to fit a 

degradation model to the observed data. Z. and use a MAP technique on the perfect textured image 

and the segmented image given the observation. That is. if Y is the perfect textured image that has 

been degraded to observed image Z. and X is the segmented image. then we have to find a x* and 

y* such that: 

Another disadvantage of the method suggested here is that the parameters of the representative textures 

should be known a priori. An unsupervised technique that involves parameter estimation from blocks 

in the given image and then using a clustering algorithm to find the representative parameters could be 

used. The performance of this technique on complex image data needs to be analyzed in further detail. 

6.4. Simulated annealing as a Learning Rule for Morphology Neural Networks 

The area of artificial neural networks (ANNs) has seen a large increase in activity since the 1980s. 

both in the theoretical and applications arena. Used mainly as a pattern recognition technique. ANNs 

have been applied to such diverse areas as robot control. forecasting in management and business. 

electric power systems. and image processing. ANNs have provided solutions to practical problems 

that are ill-posed and ill-conditioned. as well as to problems that have incomplete or ambiguous data. 

Here, a morphology neural network. a new type of artificial neural network, is presented. and applied 

to an image processing problem. Due to space limitations it is assumed that the reader is familiar 

with classical neural networks. For a good introduction. see [86]. 

Classical neural nets calculate the output at each node as given below. where Wji is the weight 

from the lower node i to the upper node j, ai is the lower neuron value at node i. and Cj is the 
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upper neural value at node j. There are N nodes in the lower layer. The function f is the nonlinear 

activation function. 

N 

Cj = f(L ujwjd (34) 
j=1 

By replacing the algebraic operations of addition and multiplication with other operations, 

additional neural networks can be obtained that combine information in different ways [87]. Replacing 

the multiplication in Eq. 34 with addition, and the summation sign with a maximum operator, V, 

we have: 

(
V ) 

Cj = f V Uj + Wjj • 

1=1 

(35) 

Neural networks of this type are called morphology neural networks (MNN) [88], as this 

particular operation mimics a morphological image processing operation called dilation. Mathematical 

morphology is a nonlinear methodology for image processing which uses a template representing the 

shape of the object to be manipulated in the image. A dilation is exactly Eq. 35 where the weights 

{Wji} represent a shift invariant nonlinear transformation. For more information on mathematical 

morphology, consult [89]. While morphology operations can be emulated by classical neural 

networks [90], the morphology neural network is a network which directly emulates algebraically 

the morphology image transformations. 

The image processing problem tackled here is one of transformation identification: given the 

input image a, and the dilated output b transformed by an ideal template {Wji} as in Eq. (35), we 

wish to approximate the template values by determining a set of weights producing b. An example 

of the dilation process is given in Fig. 44. The template t is an invariant template. The image 

is row-ordered as a vector, scanning from the top left-hand value to tlIe bottom right-hand value. 

This particular MNN model has one input layer, one output layer. and limited interconnections. The 
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network is trained using a set of gray valued images and the computed (dilated) output is compared 

with the desired output obtained by dilating the input image with the ideal template. The weights of 

the MNN are then modified by using simulated annealing as a learning rule. 

The 4-step SA algorithm for training of the MNN model is given below [91]: 

1. Initialize the control parameter Co and choose an initial state of values for the weights {Wji}. 

2. One weight value Wji is chosen at random and changed by adding a constant ±k to it. k~ O. We 

used k=1. Call this set of weights w. Then the new cost value g(w) is calculated using this 

new weight value. and the cost difference. ~g. between the previous set of weights wOld. and 

the weights with the new value. W. is calculated. If b.g =g(w)_g(wold) < O. thenw becomes 

the new set of weights w"~w. otherwise w becomes the new set of weights with probability p = 

e ~ (Metropolis Criterion). This last step is achieved by arbitrarily choosing ,BE [0.1] uniformly 

and randomly. and if ,B<. p. then w1IeW _·w: otherwise if ,8> p. then ~W _ wold. 

3. Repeat step 2 h number of times at each temperature. Ck; see [79]. [80] for details. 

4. Decrement temperature Ck [78] and go back to steps 2 & 3 until the stop criterion is satisfied. 

The stop criterion is a constant. Ef. chosen by the user. 

OUTPUT IMAGE 

bl b2 b3 b4 b5 b6 b7 b8 b9 

000 
INPUT IMAGE a TEMPLATE t 

1 2 3 

4 5 6 

7 g 9 

00 
a1 a2 a3 84 as 86 87 a8 a9 

INPUT IMAGE 

Figure 44. (a) Input image a. template t. and mapping operation to a morphological neural net. 
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A crucial choice is the choice of the cost function which is to be minimized. The goal is to 

iteratively compute a set of weights {Wji} so that given a set of training pairs {ai, di } ~1' the weights 

W satisfy a i ISZI w = d i , i = 1, ..... , JI. For our application, possible cost functions are: 

l. yew) = L[afQlw-d] (36a) 

2. y( w) = L la fQl w - dl (36b) 

3. yew) = L I(a fQl w)2 _ d211/2 (36c) 

4. yew) = L L\~o(d - a ISZI w) + Ax>o(a IS2I w - d)] (36d) 

5. yew) = L [x~o(alS2l w - d) + AX>o(d - alS2J w)). (36e) 

The choice of parameters for the simulated annealing algorithm applied to this problem are discussed 

next. 

The initial value Co of the cooling control parameter should be large enough so that initially all 

configurations are accepted with equal probabilities. The value of Co is chosen as: 

Co = fJ V AYo~r' 
ull. 

where s is a fixed state of the system (in this case a particular set of values assigned to all weights, 

{Wji(S)} , fJ is a fixed constant, and Rs is the subset of all possible states of the system that are 

detennined by allowing exactly one weight value Wji to change by its permissible amount. In any 

case, if {wij(.'i)}~~=l is the fixed state, then 

} iV ( R = {{w oo(r) : 0 • w oo(r) = woo ,.'I) except at one 
'o~ )1 1,)=1')1, )1 

location (1ft, 1t), where Wmn ( 1') = 'Wmn (S) ± k} . 

An alternate method has been proposed in [79] to compute the initial parameter, Co. 

The rule for decrementing the control parameter is given by 
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where CTIe is the standard deviation in cost values in the k-th Markov chain. Alternatively, the control 

parameter can be decreased by a constant factor of 0.8-0.9 [79}, as long as the Markov chains are 

long enough to allow the system to arrive at a stationary distribution. 

The finite chain length lie may be set at the maximum vector length of all possible states, 

It.: = V {vecto-r length 0/ {Wj;(S)};:=l}' 
.~ 

The set of weights can be viewed as a vector in N2 dimensional Euclidean space. 

One choice of value for the stopping criterion is a value Ef satisfying E f < ~~~) - :0 , where 
nut - 0 

g(CIe ) is the cost at temperature Cle at iteration k, go is the optimal cost for the entire system, and 

gimt is the cost for the initial values chosen for {wjd. 

Simulation results. The proposed technique was implemented on a computer and tested on 16 

x 16 and 64 x 64 images. A set of training data. i.e., input images a and their corresponding desired 

outputs d generated by the desired template, was used to train the neural network. The sum of absolute 

differences between computed output and desired output in Eq. 36(b) was used as a cost function. 

The values of the five parameters used were chosen from the range: 

Initial temperature, Co= 30 - 300 

2 ~ p ~ 10 

1500 ~ l,.~ ~ 2500 

c - c. 
k+l - (t+Ck lll(I+")/3.928) 

It was observed that almost similar results were obtained when the parameter values were within 

these ranges. 

The weights of the neural network, which correspond to the template weights, were randomized 

uniformly to integers in the interval [0,255}, and the network was trained on a set of ten 64 x 64 

images. The desired templates used were the two shown in Fig. 45. The network converged to the 

correct set of weights for these templates after 5- 7 changes in temperature, corresponding to 12500 
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- 17500 iterations or changes in state. as compared to 4.7233 xl021 iterations which an exhaustive 

search through all possible states would have taken. See Fig. 46 for the output images resulting 

from applying learned and ideal template weights shown in Fig. 4S(a). The algorithm was found 

to perform better as compared with the iterative improvement method both in terms of effectivity, 

or the quality of solution returned by the algorithm, and the efficiency, that is the computation time 

taken by the algorithm. 

TEMPLATE 1 TEMPLATE 2 

Figure 45. Original templates used for dilation. Neural 

net weights converged to exact weights after training. 

Figure 46. (a) Input image dilated with initial random weights; (b) Output after 2000 

iterations; (c) after 6000 iterations; (d) after 10000 iterations, i.e., weights converged. 

The network converged to the correct template when only a single 64 x 64 image was used as 

training data. but the convergence time was longer with 8-9 changes in temperature. as compared to 

5-7 changes in temperature when ten training data sets were used. 

To further test the efficacy of the algorithm. the desired template weights were chosen at random 

and the network was trained on a set of training data of 10 64 x 64 images. The random weights 

chosen are shown in Fig. 47(a). 
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Figure 47. Random template. (a) Original template weights; (b) trained neural net weights. 

The minimum cost obtained after 40 changes in temperature was 17.88. at which point the 

algorithm was tenninated as the stopping criterion was not yet satisfied. The corresponding neural 

net weights are as shown in Fig. 47(b). 

It is observed that the higher-valued template weights corresponded exactly with the neural net 

weights. whereas the smaller valued neural net weights did not converge to the correct values. This 

is probably due to the fact that higher template weights will influence the output images more than 

the smaller values due to the operation of maximum. hence not much infonnation was available in 

the training data regarding the lower valued weights. The computed weights were tested on a 64 

x 64 array cloud data and compared with the perfectly dilated output as shown in Fig. 48(a) and 

48(b). The results are shown in Table 6 below . 

. Figure 48. Dilated cloud image: (a) Ideal output. (b) 

input image dilated with trained neural net weights 
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Table 6. Results of template learning. 

Gray level range of image 

Template Number of Average Minimum Maximum Column 3 as 
Number pixels out of absolute difl gray value gray value percentage of 
( Figure 4096 in which between ideal gray level 
Number) the ideal dilation and range 

dilation and N.N dilation 
N.N dilation 
differ 

Fig. 45(a) 0 0 0 255 0% 

Fig. 45(b) 0 0 0 255 0% 

Fig 47(a) ( 868 1.351 132 2675 0.06755 % 
tested on 
cloud data) 

The training algorithm for the MNN was found to give computationally good solutions, even 

for random templates, in reasonably good CPU time. The weights converged exactly to the nicely 

symmetric ideal templates in Fig. 45, and very close in the random template trial, Fig. 47. These 

are excellent results. The training may possibly be made more efficient by a different choice of 

cost functions or an alternate cooling schedule for the annealing algorithm. A modified armealing 

algorithm has been suggested for accelerated solutions. Applying the training for translation variant 

templates is also promising. The approach is flexible and may be applied to other MNN problems. The 

results could also be extended to multilayer morphology networks to solve more complex mapping 

problems, for example, in texture identification using templates. 

This effort was also presented as a paper at the second Midwest Electro-Technology Conference, 

April 1993 in Ames, Iowa. 
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7. CONCLUSIONS AND FUTURE RESEARCH 

7.1. Conclusions 

In this research. a statistical model-based approach using a new class of models. POMMs. 

has been described for texture synthesis and image segmentation. The advantages of the POMMs 

as compared to other model-based approaches are the factorability of the joint distributions into a 

product of conditionals. and a lack of the partition function that makes the computation of the joint 

distribution much easier. 

A new fourth order POMM has been developed and used for texture synthesis of binary. four. 

and sixteen gray level images. The parameters that describe the POMM model control the strength 

and direction of clustering of gray values in the image, and together can model a number of spatial 

dependencies. The Ainn's algorithm yields a sample from the POMM distribution in reasonable time 

with a reduction in computational complexity. as compared to generating a sample from a MRF. The 

synthesized images look very similar to those generated in [3]. [92]. and [93]. using other Markov 

random field approaches. Spatially varying textures have also been generated using spatially varying 

parameters. 

The model has been found to give good results when applied to the inverse problem. that is. 

the estimation of parameters representing unknown textures that are assumed to have an underlying 

POMM. The synthetic images generated from the ML estimates of natural Brodatz textures were 

visually close to their natural counterparts in three out of five cases. One attractive feature of the 

POMM model is the feasibility of using a gradient descent approach for ML parameter estimation 

due to the product form of the joint distribution of the r.v.s. The parameter estimation problem is 

further simplified since only five parameters are involved for the fourth order POMM. thus reducing 

the search space for the ML problem. 
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An image composed of several textures is modeled by a MLL MRF model. with the third and 

higher order clique pairs assumed to be zero. The underlying individual textures within the image are 

modeled by a fourth order POMM, each having a unique set of parameters. The images are segmented 

by a MAP criterion using simulated annealing to obtain the MAP estimates. One advantage of using 

SA for optimization is that it can be implemented in parallel to speed up the convergence. This 

segmentation teclmique was observed to give good segmentation results on Brodatz images. The 

segmentation results were better for images composed of homogenous textures. 

The advantages of the fourth order POMM model as models of texture are summed up below. 

1. The model parameters are sufficient to generate a variety of random and structured textures. 

This offers a definite advantage over feature-based approaches that can be used merely for 

classification. The model parameters control the directionality, sharpness, and coarseness in the 

image. 

2. The local spatial interactions enforced by the POMM parameters create a global effect on the 

entire image. 

3. Realistic looking patterns can be generated with the fourth order POMM model. 

4. The parameter estimation procedure is simplified as compared to an MRF where a coding of 

disjoint sets of pixels is required; this results in a reduction in sample size and a loss of efficiency 

in estimation. 

S. The MAP problem is simplified since the joint distribution can be written as a product of the 

conditional probabilities. 

6. A hypothesis test on the parameter estimates of the POMM is proposed that can be used to test 

the feasibility of the estimates. 

The POMM model and the segmentation algorithm proposed have the following drawbacks. 

1. Large images are required to obtain good estimates. 

2. All theoretical properties of POMMs are not known at present. 
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3. The segmentation algorithm proposed is a supervised technique. that is. the actual parameters of 

the representative textures needs to be known in advance. 

7.2. Future Research 

As a result of the investigation of the POMMs in this thesis. several questions leading to future 

research areas have arisen. The questions and suggested solutions are presented below. 

The focus of this research was on the application of a new fourth order POMM as a texture model. 

Even though this model was found to be sufficient for modeling most textures. it is most probably not 

a comprehensive one that can simulate all natural textures. The issue of model selection is crucial 

to the successful application of POMMs. Are there other POMMs. specifically. other partial orders 

on Z x Z. that might provide "better" solutions to the inverse (classification or parameter) problem? 

How can one pick a "better" model? Could a nonlinear system describe a set of models. and use the 

data to optimize a system cost function to select the best-fitting POMM? The use of the co-occurence 

matrix of the data might be of some use in defining such a system. For example. information from 

the gray level co-occurence matrices could be used to determine the nature of spatial dependencies 

in a texture. 'This knowledge could then help choose a "better" POMM. Perhaps an artificial neural 

network could be designed to give a solution to the model selection problem. incorporating other 

texture features including the co-occurence matrix. first and second order statistics. etc. 

Parameter estimation is another crucial factor in the problem of model-fitting. Currently. only 

parameter estimation of homogenous POMMs have been attempted; estimation and more modeling 

of heterogenous models require further investigation. Can visualization techniques be helpful in the 

parameter estimation and model selection problems? Even though the ML method yields estimates 

with desired properties. the estimates may not be the "best" for the POMM model with regard 

to a different objective function. A suggested alternative is to use a Bayesian parameter estimation 

technique by using information from the co-occurence matrix to fit a prior distribution on the possible 

parameter values. The concept of a loss function different from 0-1 may also be incorporated in 
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the estimation technique that may provide better fits of the POMM model. A different optimization 

technique tried here could be used to obtain better and faster estimates. 

Image restoration is another area to which POMMs could be applied. MRFs and a Bayesian 

approach have already been used for image restoration. Some types of POMMs could offer improved 

results. Unsupervised image segmentation may be carried out by simultaneous parameter estimation 

and image segmentation. An additional criterion to model noise may be included to reduce the 

effects of noise in the image. In many cases, highly correlated POMM model parameters may result 

in misclassification of data. A principal component analysis could be carried out to decorrelate the 

parameter estimates for more accurate classification. 

Flinn's algorithm used for texture synthesis has a limitation due to the constraint of a fixed gray 

level distribution for the image throughout the synthesis process. Possible improvements are: 

1. A technique that does not assign a fixed gray level distribution to the image; 

2. One that attains swift convergence to an image satisfying the POMM distribution. 

One method to speed up the synthesis process is to pick an initial image that is close to the desired 

distribution for the specified POMM parameters. This could be achieved by assigning the pixel values 

in the initial image by scanning the image in increasing order of the level sets of the POMM model. 

The gray value at each pixel could then be assigned based on the probability of each possible gray 

value at that site conditioned on the "previous" neighbors. This would give an initial image that is 

statistically "close" to the desired distribution. 

It is known that Markov mesh models are a special kind of POMM, which in tum are a special 

kind of MRF. What are necessary and sufficient conditions for a MRF to be a POMM? Can graph 

theory be used to help solve this latter problem? Can a unilateral-type process like the POMM be used 

to approximate a bilateral process like MRFs? Recall that the use of a dilation in the mathematical 

morphology sense was necessary to derive Theorem 2, Section 4.2. A result relating mathematical 

morphology and a type of co-occurence matrix for texture analysis has been introduced [94]; what 
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implications do these results have for POMMs? Finally, how can the POMMs be incorporated 

into Image Algebra? The structure of the lower adjacency sets, udj-<Uij' is similar to that of a 

template, while the dilation dil aij is related to template convolution under the operation of additive 

maximum. The additive maximum, ISZI, and additive minimum, 12SI, operations are generalizations 

of the mathematical morphology operations of dilation and erosion, respectively. These are by no 

means the only open questions on this topic. 

The POMM models developed here have potential applications to other nonimaging areas. Other 

spatial problems where there exist a particular "ordering" of r.v.s could be modeled by POMMs. A 

thorough analysis of the theoretical properties of POMMs would give a better idea of the possible 

wide ranging applications of POMMs. 
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