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ABSTRACT 

This document demonstrates the synthesis of geared five-bar path generating 

mechanisms using continuation methods. The gear ratio can be varied resulting in a 

solution set of geared five-bars passing through seven prescribed positions. Addition­

ally it will be demonstrated that the gearing configuration may be altered and that 

continuation methods will produce a solution set of geared five-bars with an alternate 

gear configuration generating a prescribed path. 

This development differs from past approaches in that convergence of the syn­

thesis equations to a solution is not dependent on the choice of initial values and, 

furthermore, all solutions to the five precision point, four-bar synthesis problem are 

found. The method can be employed by a designer to select a geared-five bar path 

generator with a wide range of possible gear ratios. 
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CHAPTER 1. INTRODUCTION 

Historically, geared five-bar path generation mechanisms have been designed 

graphically or through synthesis equations requiring iterative techniques. A relatively 

new numerical method that solves systems of polynomial equations, the continuation 

method, may be implemented to solve polynomial systems occurring in kinematic 

synthesis. The continuation method of synthesis provides a twofold advantage over 

past methods. First, the method does not require "close" initial guesses, and secondly, 

all solutions to the first of three continuation methods implemented are generated. 

The continuation method tracks the variables from a start system to a system for 

which solutions are sought through an independent parameter. The system for which 

solutions are sought is referred to in the majority of the literature as the ."target" 

system. 

Freudenstein and Roth (1963) in their development of a geared five- bar synthesis 

method reduced loop closure equations to one non-linear equation per precision point. 

The authors first eliminated various nonessential parameters and then implemented 

a "bootstrap" method that employed techniques similar to continuation methods. 

More recently continuation methods have been used to synthesize four-bar path 

generation mechanisms. Subbian and Flugrad (1989) presented methods resulting 

in all designs passing through five precision points. Morgan and \Vampler (1989) 
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also solved the five precision point, four-bar synthesis problem through polynomial 

continuation. Likewise, Tsai and Lu (1989) employed a homotopy method that gen­

erated four-bar linkages passing though nine precision points. Wampler, Morgan and 

Sommese (1990) demonstrated the solution to the kinematic synthesis of four-bar 

mechanisms passing through nine precision points using polynomial continuation. 

They identified 4326 distinct solutions, inclusive of Robert's cognates. 

The treatment of geared five-bar mechanisms has been addressed by Sandor and 

Kaufman et al. (1969) and by Freu~enstein and Roth (1963). Recently Dhingra and 

Mani (1988) presented closed form solutions for the synthesis of geared mechanisms 

generating a specified function. Subbian and Flugrad (1990) implemented continu­

ation methods to accomplish motion generation with prescribed timing resulting in 

an "eight-bar linkage passing through six precision points. The same authors, in the 

same paper, also demonstrated synthesis of a geared five-bar passing through seven 

precision points employing triad (a triplet combination of vectors) synthesis through 

continuation. 

The synthesis of a geared five-bar mechanism with a varying gear ratio may be 

accomplished purely through continuation techniques beginning with solutions gen­

erated by continuation methods in the synthesis of a four-bar mechanism. Additional 

precision points may be added to the four-bar mechanism's path by modifying and 

adding additional continuation equations referred to as homotopy functions. Fol­

lowing synthesis of a four-bar linkage passing through a desired number of precision 

points, one of three five- bar cognates predicted by Robert's theorem may be selected 

as the start system for the third continuation algorithm. The third continuation 

procedure provides the designer a solution set of geared linkages that will satisfy the 
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path specifications. This solution set may be plotted against a varying gear ratio. 

Finally, the synthesis of a geared five-bar with gears centered about moving pivot 

points is developed using continuation. The gear ratio is varied in this synthesis 

method as well, again resulting in a solution set of geared linkages. 
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CHAPTER 2. FOUR-BAR - SEVEN PRECISION POINTS 

Alexander Morgan (1987) notes in Solving Polynomial Systems Using Contin­

uation For Engineering and Scientific Problems that continuation is a "global and 

exhaustive" numerical method for solving small polynomial systems. Continuation, 

Morgan points out, finds all solutions to the system of equations and does not require 

prior knowledge of the system solutions. 

Essentially, continuation consists of two systems; the first is a simple system 

that provides values at the start of a continuation path; the second system is the 

target system or the system for which solutions are desired. Tracking and following 

a path from the start system to the target system identifies solutions to the target 

system. Morgan also cites Bezout's theorem which enables the designer to identify 

the number of solutions that exist. 

The applications of continuation methods to kinematic synthesis are particularly 

useful as many equations of synthesis lend themselves well to expression in polynomial 

form. The objective of the following presentation is to demonstrate the application 

of continuation methods to first design a single geared five-bar mechanism passing 

through seven precision points and, secondly, to demonstrate a continuation method 

which enables a designer to synthesize a set of five-bar mechanisms with varying gear 

ratios. 



{ 
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Figure 2.1: Five-bar mechanism in the jth position 
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Figure 2.1 schematically depicts the displacement of a five-bar mechanism from 

its initial position to a subsequent position, j. Loop closure equations for each combi-

nation of vector pairs, or dyads, result in the following as established by Freudenstein 

and Roth (1963): 

i<,b· ia· 
DYAD 1 : Zle J + Z2e J = bj + Zl + Z2 

i1/;· i'Y· 
DY AD 2 : Z4e J + Z3e J - bj + Z4 + Z3 

Rearrangement of Eq.{2.1) produces: 

i<,b· ia· 
Zl(e J-1)+Z2(e J-1) 

Z4( ei1/;j ~ 1) + Z3( ei'Yj - 1) 

8· J 

(2.1 ) 

( 2.2) 

Parameters aj and 'Yj may be eliminated since they are not of interest here. To 

accomplish this, real and imaginary components are first separated: 

8xj - Zlxcos<,bj - Zlx - Z1 ysin<,bj + Z2xcoSa j - Z2x - Z2y sinaj (2.3) 

8yj Z1x sin<,bj + Z1ycos<,bj - Z1y + Z2x sinaj + Z2ycosaj - Z2y (2.4) 

8xj Z4xcos1i-'j - Z4x - Z4ysin1/;j + Z3xcos'Yj - Z3x - Z3ysin'Yj (2.5) 

8yj Z4xsimpj + Z4ycos1i-'j - Z4y + Z3x sin'Yj + Z3ycos'Yj - Z3y (2.6) 

Expressions for sinaj and cosaj are developed as follows from Eqs. (2.3-2.6). 

First, Eq.(2.3) is multiplied by -Z2y then Eq.{2.4) is multiplied by Z2x. The results 

of each multiplication are added to produce: 

smaj = (-Z2y6x j + Z2x 8yj + Z2yZ1xcos<,bj - Z1xZ2 x sin4>j 

Z2y Z lx - ZlyZ2xcos4>j - Z2y Z lysin<,bj + Zly Z2x) 

/ (Z~x + Z~y) (2.7) 
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Likewise Eq.(2.3) is multiplied by Z2x and added to the product of Eq.(2.4) and Z2y. 

This results in an expression for cosar 

2 2 
(Z2x Dxj + Z2yDyj + Z2x + Z2y - ZlxZ2xcos<Pj - ZlyZ2ycos<Pj 

- ZlxZ2ysin<pj + ZlyZ2x sin<pj + Z2xZ1x + Z2y Z 1y) 

I (Z~x + Z~y) (2.8) 

Similar treatment of equations (2.5) and (2.6) results in expressions for sinij and 

COSij· 

smij (-Z3yDxj + Z3xDyj + Z4xZ3ycos'l/Jj - Z4x Z3xsim/'j 

COSij 

- Z3yZ4x - Z3xZ4ycos1/'j - Z4yZ3ysin'l/Jj + Z3x Z4y) 

2 2 I (Z3y + Z3x) (2.9) 

22. 
(Z3x Dxj + Z3yDyj + Z3x + Z3y - Z3xZ4xcos'l/Jj - Z3y Z4x sm1/'j 

+ Z3xZ4x - Z3yZ4yCos1/'j + Z3x Z4ysin1/'j Z3y Z4y) 

2 2 I (Z3y + Z3x) (2.10) 

Substitution of Eqs. (2.7-2.10) into the trigonometric identities sin2Qj + cos 2aj = 1 

and sin2'Yj + cos 2'Yj = 1 yield the following: 

2A2 's'l/J . + 2( 1 - c'ljJ . )B2 . + D2 . ) ) ))) o (2.11) 

where: 

·4.1j ZlyZ2x - Z2y Z lx + Zl yDxj - ZlxDyj 

B 1j Zfx + Zfy + ZlxZ2x + Zly Z2y + Zlx Dxj + ZlyDyj 



D1j 

.42j 

B2j 

D2j 

8 

2 2 
2Z2yDyj + 2Z2xDxj + Dxj + Dyj 

Z4y Z3x - Z3yZ4x + Z4y Dxj - Z4x Dyj 

2 2 
Z4x + Z4y + Z3y Z4y + Z3xZ4x + Z4x Dxj + Z4yDyj 

2Z3xDxj + 2Z3yDyj + D;j + D~j (2.12) 

Figure 2.2 depicts a four-bar mechanism in two finitely separated positions. Loop 

closure equations yield expressions identical to those of Eq. (2.1). The four-bar's 

coupler link, with vectors Z2 - Z3 - A, rotates through a displacement Ij' which is 

equal to ex j. Also, in the case of the four-bar, the constraint of a gearing relationship 

between input and output displacements is absent. Consequently, the best choice for 

parameters to be eliminated are 4>j and 'IjJ j' which represent rotations of links Z 1 

.and Z4 respectively. Algebraic ~anipulation and trigonometric substitution siIIJ.ilar 

to the previously detailed method, result in the following for the four-bar: 

DY AD 1 : 2A1jsin
'

j - 2B1jcos'j 

DY AD 2 : 2A2pin'j - 2B1jcos'j 

Solving these expressions for sin, j and cos, j we find, 

COS'j 

-2B1j - D1j 

-2B2j - D2j (2.13) 

(2.14) 

Then invoking the trigonometric identity, sin2

'
j + COS2

'
j = 1, one may form the 

following expression, 

F· J 
2 

(B1j D2j - B2j D1j ) 

+ 4( A1j B2j - A2j B1j )( A Ij D2j - A2j Dlj ) 

2 
+ (A1j D2j - A'2j D1j) (2.15) 
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Figure 2.2: Four-bar. mechanism in the jth position 
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Equation (2.15) was used as the target system in the homotopy function noted below 

by Subbian and Flugrad (1989) in their development of continuation methods for 

synthesis of four-bar mechanisms. 

(2.16) 

G(Zj) is the start system and t, the homotopy parameter, is the independent variable 

for integration of terms resulting in solutions to F( Z j ). 

The development by Subbian and Flugrad (1989) lends itself to further applica­

tion in the synthesis of geared five-bar mechanisms. By modifying the start system, 

G( Z j)' four-bar mechanisms passing through seven precision points can be generated 

by continuation. It. should be noted that this particular continuation procedure is 

heurestic in nature. Also, the continuation method described below finds some of 

the solutions to the seven point four-bar synthesis problem whereas the preceding 

development found all solutions. 

Tsai and Lu (1989) implemented a "cheaters homotopy" (Li, Sauer, and Yorke 

(1986)) function to synthesize four-bar linkages passing through nine precision points. 

However, the "cheaters homotopy" requires that random complex numbers be added 

to the start system to ensure the smoothness and accessibility properties of the ho­

motopy. 

Wampler, Morgan and Sommese (1982) suggested the following function as being 

sufficient for the requirements of an acceptable homotopy, 

(2.17) 

In the above expression, t is the homotopy parameter, G( Z j ) is the start system and 

F( Zj) is the system for which solutions are sought. The parameter () is a randomly 
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chosen constant incorporated in the function to prevent premature vanishing of the 

homotopy and it additionally provides "complexified" homotopy functions. For" syn­

thesis of the original four-bar with a coupler point passing through five precision 

points, the target system, F(Zj), derived by Subbian and Flugrad (1989) and mod­

eled by Eq. (2.1.5) was used. For the second stage of the process, where two more 

precision points were added to the coupler path, the start system, G( Zj), for each 

of the five original precision points was made the sam<7 as the target system, F( Z j ). 

For the two newly prescribed precision points the start system was not equal to the 

target system but instead contained precision points on the beginning mechanism's 

coupler curve. These precision points were those closest in magnitude, direction, and 

timing to the two newly designated points. Therefore, as the homotopy parameter, 

t, approached unity, the initial coupler' curve containing five precision points "moved 

toward" the curve containing the original five plus the two new coupler points. 

The seven point synthesis algorithm requires determination of the system's Ja-

cobian matrix, augmented by the partial derivative of the homotopy function with 

respect to the homotopy parameter. In matrix form: 

3ffl Ix 
gffl ly gffl 2x gffl 2y gff1 4x gffl 4y °:1 

gff2 gff2 gff2 gff2 gff2 gff2 °:2 
Ix ly 2x 2y 4x 4y 

gff3 gff3 gff3 g~; gff3 gff3 °:3 
Ix ly 2x 4x 4y 

gff4 gff4 g{4 g:4 gff4 gff4 °:4 
Ix ly 2x 2y 4x 4y 

gff5 gff5 g:5 g:5 g:5 gff5 °:5 
Ix ly 2x 2y 4x 4y 

gff6 gff6 3:6 3:6 gffl 3ff6 °:6 
Ix ly 2x 2y 4x 4y 
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The Jacobian matrix occupies the first six columns of the augmented matrix 

above. Factorization and inversion of the Jacobian followed by post-multiplication 

with the elements of column seven result in the derivatives of each undetermined 

dZ dZ1 
parameter with respect to the homotopy parameter (Tt, Tt, etc.) The system 

modeled from the above matrix requires that the link parameters Z3x and Z3y be 

specified. However, the choice of Z3x and Z3y is not a necessity, and the matrix 

columns could be adjusted accordingly if two other choices for specified parameters 

were preferred. It should be noted t.hat the choice of parameters to be specified may 

be dictated by design considerations and in some cases the degree of the system may 

be reduced through selective parameter specification. 

The determinant of the augmented Jacobian, with the jth column deleted, 

(where the parameter to be integrated resides in the i h column), IJ AI, divided 

by the determinant of the Jacobian, I JI, provides the appropriate expression to be 

integrated with respect to the homotopy parameter. The sign of the integrand is 

given by (_1)(j+1). Symbolically, 

dZ' IJ I _J = (_1)(j+1) * ~ 
dt IJI (2.18) 

Even though the homotopy functions are complex, integration can be performed sep­

arately on real and imaginary parts, and the results combined in complex form. The 

elements of the Jacobian were obtained analytically by differentiation of Eq.{2.1.5) 

rather than by using numerical estimates. At the end of the integration process 

Newton-Raphson iteration may be performed to refine values along the continuation 

path. Integration of Eq.(2.18) culminates in the synthesis of a four-bar mechanism 

passing through seven precision points. 
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CHAPTER 3. FIVE-BAR - SEVEN PRECISION POINTS 

Similar to the target system of Eq. (2.15), development of the system of polyno-

mial equations for the five-bar, seven precision point synthesis problem begins with 

loop closure equations. Elimination of parameters OJ and Ij in Eq. (2.1) and ex­

pansion of resulting terms into real and imaginary parts, results in the target system 

of the five-bar synthesis algorithm, 

Fj(Zl,Z2) 

Fj+6(Z3, Z4) 

2A'l j sin</>j + 2( 1 - cos<f>j )B1j + D1j 

2A'2jsimpj + 2(1 - cos1/.'j )B2j + D2j (3.1 ) 

A1j' B1j' D1j' .42j' B2j and D2j remain as defined in Eq.(2.12). The unknowns for 

the system are found to include: 

1. The eight components of the mechanism's link dimensions, (Zlx' Zly,etc.) 

2. The angular displacements of the input and output link (<f>j' 1/.'j) 

3. The gear ratio, GR. 

We note that the ouput angular displacement, 'ljJ j' may be expressed as (Sandor and 

Erdman, 1984): 

'ljJ' - GR * A... J - 'f'J ( 3.2) 
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Fourteen unknowns are involved, not counting the gear ratio which is allowed to vary 

over a range of values. The first two angular displacements oflink Z 1 (4)1, and 4>2), 

were also specified, resulting in 12 polynomial equations in 13 unknowns. 

Morgan (1981) presented a numerical method whereby all real solutions to a 

system of N polynomial equations in N + 1 unknowns may' be found. Previously, 

in this presentation, the theoretically verified homotopy functions, represented by 

Eqs. (2.16) and (2.17) have been employed to find solutions. However the method 

described below does not implement either of these equations and resultingly, the 

method may prematurely fail. Nonetheless, a family of geared five-bar mechanisms 

will result even if the desired final gear ratio is not attained. The N + 1 method 

requires determination of the system's Jacobian matrix augmented with the partial 
. of· 

derivative of the target system with respect to the Nth + 1 unknow'n (o( N .f1)). 

The twelve equations noted in Eq. (3.1) represent the target system, Fj' and 

the N + 1 parameter is, in this synthesis problem, the gear ratio, GR. Eq. (3.1) is in 

fact an intermediate expression developed by Subbian and Flugrad (1989). Algebraic 

manipulation and trigonometric substitutions to accomplish complete elimination of 

trigonometric terms was demonstrated in Chapter 2. However, the dependence of the 

output displacement, 1/Jj on the input displacement, 4>j' is important to the synthesis 

of a geared five-bar linkage with gears fixed to links Z1 and Z4. Also, it was the 

intent of this development to preclude the constraint that the gear ratio be an integer 

value. As a result, further elimination of trigonometric functions through algebraic 

treatment, substitution, or series expansion was not possible. 

The Jacobian matrix for the system of equations required for synthesis of a 

geared five-bar mechanism follows, 
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:if-: aF aF ~ :::: aF aF :if: ~ ~ ~ ~ %bh I", aZl
l
y aZ21", 2y 3", aZ31y aZ41", a 4y atl>3 atl>4 tI>~ tl>6 

~ :P.: ~ :it: ~ :it: -:i!: ::t: ~ ~ ~ ~ %bh I", Iy 2", 
ai

y 3", 
a;y 

a 4", 
ai

y atl>3 atl>4 atl>~ tl>s 

:P.:: :::: :it: ~ :i::: ~ ~ ~ ~ %bh a I", a Iy 2", az}y a 3", ii:;; 4", iP.; tl>3 tl>4 tI>~ tl>6 

~ :;;;. ~ ~ :i::: :::: ~ :it; ~ aF4 ~ ~ %bk a I", Iy 2", a 2y 3", 
a;y 

a 4", af,y tl>3 8i4 atl>~ atl>s 

:P.:: ~ :f!: :i::: :f!: -§if; ~ Fi;; ~ ~ ~ ~ %btt I", 
aAY 

2", 
ai

y 3", 4", tl>3 tl>4 tI>~ tl>6 

~ ~ aZ26y ~ tI6 ~ :f!: ~ ~ ~ ~ aFs 
a I", 8Z'i""; a 2", a 3", 

aN 
4", a 4y atl>3 atl>4 atl>s atl>s aotf 

:fL: :f:!: aFr :if:: ~ aFr aFr aFr ~ ~ ~ aFr 
I", 

afY ~ ai
y 3", ~ az;; 8Zf; ~ tl>4 atl>s atl>s ~ 

-:P.:: *- *- :i!: :i!-: ~ ~ ~ ~ ~ aFa 
I", ~ 2", i#; 3", 3y a 4", 4y tl>3 tl>4 tl>s tl>6 ~ 

:P.:: :P.: ~ ~ ~ -:i::: N:: :::: ~ ~ ~ ~ %bh I", 
aiY 2", a 2y a 3", a 3y 4", 

aF
4y tl>3 tl>4 atl>s atl>s 

~ ~ ~ ~ ~ ~ ~ ~ a:lo aliso !~~ I", ~ 2", 2y a 3", 3y 4", az!~ tl>3 tl>4 tl>s 

~ ~ ~ ~ ~ ~ ~ ~ !!fi:. ~ a{11 aF!! ~ a I", Iy a 2", 2y a 3", 
ai

y 4", 
a/

y tl>3 tl>4 tl>s 8q:>6 

~ ~ ~ ~ ~ az;; ~ az!; 
~ aF12 ~ a:12 aF12 

I", a Iy a 2", a 2y a 3", 4", 8t1>3 atl>4 tl>s tl>s aGR 

For each dyad, one equation results per displacement, j. Consequently, for the 

seven precision point synthesis problem, 12 equations adequately model the system. 

The augmented Jacobian dimension is 12 rows by 13 columns; the first six rows are 

a consequence of the movement of dyad 1; the remaining rows are a consequence of 

the movement of dyad 2. 

As shown before, derivatives are acquired through evaluation of the Jacobian's 

determinant, IJ( N + 1) I, as well as the determinant of the augmented matrix, IJ.4.( N + 1) I, 
with the kth column deleted followed by division of the determinants. Subsequent 

integration of these terms leads to the determination of the unknown parameters. 

The integrand's sign is determined by the coefficient (-1)( k+ 1). 

dZk 

d(GR) 
= (_I)(k+l) .IJ A(N +1)1 

IJ(N+1)1 
°(3.3) 

Integration begins with a lower limit of unity since the start system's gear ratio 

will always be +1.0. This conclusion results from the fact that the start system is 

found by implementing Robert's theorem. Robert's theorem provides three five-bar 
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cognates with gear ratio + 1.0 from a single parent four-bar. (Synthesis equations for 

a four-bar passing through seven precision points using continuation were devefoped 

in the preceding section.) When the upper limit of integration is reached, the designer 

has a solution set of geared five-bar linkages over a range of varying gear ratios. The 

upper limit of integration is limited by the physical constraints of the linkage. For 

instance, if integration is performed from a starting gear ratio of + 1.0 to a final gear 

ratio of -1.0, a singularity occurs at a gear ratio of .0.0. The effect of gear ratios 

approaching zero is manifested in some link parameters approaching infinity. The 

significance of this numerical proclivity is realized physically in the synthesis of a 

rack mechanism. Figure 3.1 depicts a rack device in which the magnitude of link 

Z3 is much greater than the magnitude of link Z4' In this instance Z~s magnitude 

approaches an infinite length. 
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Figure 3.1: Rack mechanism 
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CHAPTER 4. ALTERNATE GEAR CONFIGURATIONS 

The synthesis of a geared five-bar mechanism with gears configured as noted 

in Figure 4.1 may be accomplished through continuation methods similar to those 

developed in Chapter 3. However, the equations of synthesis for geared five-bar 

mechanisms with gears held fixed to a stationary link are considerably easier to 

solve with continuation than mechanisms with a configuration like those shown in 

Figures 4.1 and 4.2. The requirement that the equations of synthesis be expressed 

in polynomial form, as well as the enforcement of the gearing relationship at every 

integration step complicates the synthesis for the case where the ground link is not the 

intermediate link between gears. For example, Figure 4.2 depicts a geared mechanism 

where the angular displacement of link Z2 is a function of angular displacements in 

link A, hj), and link Zl, (¢>j). Closed form solutions for angular displacements 'ljJj 

and Ij of dyad componets Z4 and B, respectively, may be written through application 

of inverse kinematics (see Appendix A). Consequently, selection of the mechanism's 

precision points as well as magnitudes and the initial orientation of link components 

Z4 and B, result in the angular displacementsrf; j and I j required to pass throU:gh 

the specified points. Then synthesis of triad Zl - Z2 - A is accomplished through 

continuation. The loop closure equation for the triad given by, 

(4.1 ) 
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The equations of synthesis for the triad are as follows: 

REAL: 

bxj Zlxcos¢>j - Z1x - Z1 y sin¢>j + Z2x COSOj 

Z2 y sinoj + Axcos'j - Z2x - .4.x - Aysinij 

11\IIAGINARY: 

byj Zlycos¢>j - Z1y + Z1x sin¢>j + Z2 y COSOj 

+ Z2x sinoj + AycOSij - Z2y - Ay + Axsinij (4.2) 

The gearing relationship between the coupler link (A - B - Z3) and links Zl and Z2 

must be enforced through the following equation, 

"'V • - 0 . + [0 . - A-. .J G R I) -) )~) ( 4.3) 

Solving for OJ, we have, 

( 4.4) 

Substitution for OJ into Eq.( 4.1), and implementation of trigonometric identities for 

sine and cosine terms yields, 

(4.5) 
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The list of unknowns for this system of equations includes Z1x' Z1y' Z2x, Z2y' 
1> ·GR 1> ·GR 

Ax, A y , and cos( iiVR) and sin( iiVR) for each of the six displacements. The 

1>·GR 1> ·GR 
cos( iiVR) and sin( iiVR) terms are treated as separate variables due to the fact 

that continuation methods require expressions in polynomial form. Thus, the identity 
1> ·GR 1> ·GR 

cos2( iiVR )+sin2( iiVR) = 1 must be enforced at every step - adding one equation 

to the two synthesis equations at every precision point. Table 4.1 notes the number 

of unknowns, number of equations and required number of specified parameters for 

each of the seven precision points. 

Table 4.1: Summary of unknowns and equations for mechanism in Figure 4.2 

Position Displacement No. Unknowns No. Equations No. Specified Parameters 
2 1 8 3 5. 
3 2 10 6 4 
4 3 12 9 3 
5 4 14 12 2 
6 5 16 15 1 
7 6 18 18 0 

1> ·GR d> ·GR 
For each displacement of the triad, two unknowns, cos( iiVR) and sin( iiVR) 

are added. The real and imaginary components of the triad's synthesis equations in 
1> ·GR d> ·GR 

addition to the trigonometric identity cos2( iiVR) + sin2( iiVR) = 1 add three 

equations with every displacement. Examination of the equations of synthesis indi­

cates that the degree of each synthesis equation is of order two as is the trig identity. 

Bezout's theorem (Version 2, as stated by Morgan (1987)) indicates that: 

1. unless a system has an infinite number of solutions, the number of its 

solutions is less than or equal to its total degree. 

2. unless a system has an infinite number of solutions or an infinite number 
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of solutions at infinity, the number of its solutions at infinity adds up to 

exatly the total degree, counting multiplicities 

The degree of each polynomial in this instance is of .order 2. A total of eighteen equa-

tions result, including the equations enforcing the trigonometric identities, therefore, 

by invoking Bezout's theorem it can be predicted that 218 or 262, 144 solutions to the 

system of equations exist. Tracking each of the 262,144 paths predicted by Bezout's 

theorem in continuation would require considerable computer time. The seemingly 

innocuous substitution of the gearing relationship in the equations of synthesis for the 

configuration shown in Figure 4.2 renders the synthesis of this particular mechanism 

relatively intractable. However, by modifying the mechanism's gearing, continuation 

methods may be implemented to design a triad that can be combined with a dyad to 

produce a geared five-bar solution set over a range of gear ratios. Figure 4.1 depicts 

the mechanism of interest. The gearing relationship for this device is: 

a . = ,. + [,. -~,.J * G R 
J J J J ( 4.6) 

Notably, the angular displacement of triad component Z1 which is <i>j' does not ap­

pear in the gearing equation. Consequently, ¢>j can be eliminated from the equations 

of synthesis in the following manner: 

1. The real component of Eq. (4.1) is multiplied by Z1y; the imaginary 

part is multiplied by Zlx and the resulting products are subtracted. This 

produces an expression for sin¢>j. 

2. Then the real part of of Eq. (4.1) is multiplied by Z1x while the imaginary 

component is multiplied by Z1y' These are added to develop an expression 

for cos¢>j. 
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3. The results from (1) and (2) are substituted into sin2e/>j + cos2e/>j = 1 to 

finally eliminate sine/> j and cose/> j. 

This process leads to the following expression, 

2A ·sino.· + 2(1 - coso. ·)B· + D· J J J J J o (4.i) 

where: 

Aj Z1x Z2y - Z1y Z2x + Z2 ybx j - Z2xbyj 

+ (cos/j - 1)("Z2x Ay - Z2y Ax) + sinl'j(Z2yAy + Z2x"lx) 

Bj Z~x + Z~y + Z2xZ1x + Z1y Z2y + Z2ybyj + Z2xbxj 

+ sin'j(Z2xAy - Z2y Ax) + (cos/j - 1)( -Z2xAx - Z2 y A y ) 

Dj 2(Z1xbxj + Z1 ybyj) + b;j + b~j 

2(cos'j -1) [Z1xAx + Z1yAy + Axbxj + Aybyj + .4~ + A~] (4.8) 

Substitution of the gearing relationship of Eq. (4.5) into Eq. (4.6) gives, 

The unknowns in this system are Z1x, Z1y' Ax, A y , Z2x, Z2y' and GR. Since 

G R is the independent variable of integration, and the angular displacements / j and 

ol/Jj are known, the trigonometric terms appearing in Eq. (4.8) need not be treated 

as independent variables. Table 4.2 lists the number of unknowns and available 

equations with each displacement. 

Solutions of a generic system with a
O 

gearing configuration like that shown in Fig­

ure 4.1 would require the solution of six second order equations, with one parameter­

the gear ratio-being specified. Continuation would then track 26 or 64 paths to all 
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existing solutions - real, complex, and infinite. However, a solution set of five-bars 

can be found over a range of gear ratios by implementing the N + 1 method de­

tailed in Chapter 3. Eq. (4.8) is differentiated with respect to each of the unknown 

parameters yielding a (6 X 7) augmented Jacobian matrix. 

Table 4.2: Summary of unknowns and equations for mechanism in Figure 4.1 

Position Displacement No. Unknowns No. Equations No. Specified Parameters 
2 1 7 1 6 
3 2 7 2 5 
4 3 7 3 4 
5 4 7 4 3 
6 5 7 5 2 
7 6 7 6 1 



24 

Figure 4.1: Alternate gear configuration 1 
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Figure 4.2: Alternate gear configuration 2 
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CHAPTER 5. SYNTHESIS EXAMPLES 

All numerical procedures described below were performed on a VAX/VMS 11/785 

central processing unit using VAX FORTRAN and supported at the ANSI FORTRAN­

i7 level. The GEAR method of integration was implemented for all integration pro­

cedures; integration step size was no larger than loDE - 6 for all examples. 

Example 1 begins with a four-bar mechanism passing through the five precision 

points noted in Table .5.1. Implementation of Eq. (2.17), previously referred to 

as the modified homotopy function, results in the addition of two more precision 

points to the coupler path. The target system, F( Z j) contains the values of the 

coupler points that the final design is required to pass through. The start system, 

G( Z j)' is equal in value to the target system for the five original precision points. 

However, the remaining two start functions contain the points on the original four­

bar's coupler curve that are closest in magnitude, direction and timing to the two 

new points. As the homotopy parameter, t, approaches 1, the value of the homotopy 

function becomes closer and closer in value to the target system. More succintly, the 

original path "moves toward" the new path. Figure 5.1 depicts the original four-bar 

passing through the five initially specified precision points. The coupler path of the 

newly synthesized linkage is likewise shown passing through the original five points 

in addition to points 6 and 7. Table .5.1 lists the five original coupler points and 
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Table .5.2 notes the two new points. In this particular example the newly prescribed 

precision points were selected to follow positions four and five. However, this choice 

is arbitrary as long as timing and proximity criteria are observed. Figure 5.2 shows 

the new four-bar mechanism (links Zl - Z2 - Z3 - Z4) and one of its three five­

bar .cognates (links Z~ - Z~ - Z~ - Z~) given by Robert's theorem. The numerical 

procedure required 15.81 CPU seconds to transform the four-bar mechanism passing 

through five precision points into a four-bar passing through seven precision points. 

From this theorem we know that a.geared five-bar cognate with gear ratio of +1.0 

will trace the same coupler path as the parent four-bar. This knowledge enables the 

designer to identify a start system for the N + 1 method detailed by Morgan (1981). 

As the gear ratio varies from +1.0 to its specified upper limit, the change in the 

mechanism can be documented graphically. It should be noted here that an "upper 

limit" may also imply integration of parameters beginning with + 1.0 to values less 

than 0.0. As noted at the close of Chapter 2, gear ratios approaching zero, may 

result in the synthesis of mechanisms consisting of infinite link dimensions. At a gear 

ratio of 0.0 the value of the augmented Jacobian's determinant becomes singular, 

consequently the implementation of N + 1 should include measures to preclude gear 

ratios equal to 0.0 but nonetheless capable of including negative values. Figure 5.3 

shows the change in the links of the original five-bar mechanism with a range of 

gear ratios. On the dependent axes, link lengths and their respective orientations 

are plotted against the gear ratio. The N + 1 method took 250.33 CPU seconds to 

construct the solution set of geared five-bar mechanisms over a range of gear ratios 

from +1.0 to +2.0. 

Any geared five-bar selected from the solution set will pass through the precision 
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points specified in Tables 5.1 and 5.2. The validity of the results may be confirmed 

by substitution of appropriate values of the gear ratio and link parameters into Eq. 

(3.1). Figure 5.4 depicts the coupler path of the geared five-bar linkage selected from 

the solution set of five-bars at a gear ratio of +1.99. 

Table 5.1: Original precision points for four-bar mechanism of Example 1 

Precision Point 
1 
2 
3 
4 

5 

6:r: 

0.0000 
-0.4535 
-0.8385 
-1.0840 

-1.1794 

Table 5.2: New precision points for four-bar mechanism of Example 1 

Precision Point 

6 
7 

-1.1800 
-1.0000 

6 y 

0.0000 
-0.1730 
-0.5228 
-0.9358 
-1.2957 

-1.3400 
-1.6100 

Table 5.3 summarizes the progression of a four-bar mechanism passing through five 

precision points to a geared five-bar with varying gear ratio passing through seven precision 

points. 

Table 5.3: Progression of mechanism synthesis for Example 1 

MECHANISM Zl:r: Zly Z2:r: Z2y Z3:r: Z3y Z4:r: Z4y 

4-BAR 0.0009 0.9997 1.1344 1.3975 -1.7287 0.5016 -0.6386 1.8974 
NEW 4-BAR 0.0179 1.0364 1.1712 1.1432 -1.7287 0.5016 -0.7114 1.9475 

5-BAR(1.00} 1.1712 1.1432 0.0179 1.0364 -0.7114 1.9475 -1.7287 0.5016 

5-BAR(1.99} 1.7970 1.1693 0.0020 1.0347 -0.5379 1.7302 -0.6309 0.2106 

Example 2 also illustrates the solution to the five-bar, seven precision point synthesis 

problem. The original four-bar mechanism generates the coupler path depicted in Figure 
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5.5 and is shown relative to the new linkage's path. Precision points that include those 

listed in Table 5.4, plus two additional points away from the line and noted in Table 5.5, 

were included in the target system. The start system includes the values of the original five 

precision points and the values of the points nearest in timing, magnitude, and direction on 

the original coupler path to the two new points on the resulting mechanism's curve. Figure 

5.6 notes the Robert's five-bar cognate relative to the four-bar synthesized with the modified 

homotopy algorithm. The four-bar mechanism is made up of links Zl - Z2 - Z3 - Z4 and 

the five-bar cognate's links are Zl - Z2 - Za - Z4. This continuation procedure required 

10.2 seconds of CPU time to produce the new four-bar mechanism. Figure 5.7 notes the 

change in· the starting five-bar with gear ratio. Finally, Figure 5.8 shows the coupler path 

generated by a five-bar selected from the synthesis solution set. Integration from a gear ratio 

+ 1.0 to one of + 1.3 required 275.33 seconds of CPU time. Table 5.6 notes the progression of 

synthesis-beginning with a four-bar passing through five precision points and culminating 

in a five-bar passing through seven precision points with a gear ratio equal to + 1.25. 

Table 5.4: Original precision points for four-bar mechanism of Example 2 

Precision Point 
1 
2 
3 
4 

5 

6;:: 
0.0 
-0.3 
-0.6 
-0.9 
-1.2 

Table 5.5: New precision points for four-bar mechanism of Example 2 

Precision Point 

6 
7 

1.35 
1.25 

by 
0.0 
0.0 
0.0 
0.0 
0.0 

0.15 
0.18 

Example 3 demonstrates the design procedure for incorporating a dyad passing through 
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Table 5.6: Progression of mechanism synthesis for Example 2 

MECHANISM Zl;r Zly Z2z Z2y Z3z Z3y Z4z Z4y 

4-BAR -4.4669 5.0802 0.9723 0.2172 0.2572 1.7531 5.5340 -0.4733 . 
NEW 4-BAR -4.0311 3.8192 1.0413 0.2612 0.2572 1.7531 5.2111 -0.4109 
5-BAR(1.00) 1.0413 0.2612 -4.0311 3.8192 5.2111 -0.4109 0.2572 1.7531 
5-BAR(1.25) 0.6281 0.1574 -0.8429 0.2092 -0.5671 -0.8353 1.5244 0.2236 

seven precision points and a triad synthesized through continuation and passing through 

the same seven points. As noted in Figure 4.1 the gearing configuration consists of a gear 

fastened to the intermediate link of the triad, Z2, as well as to the input link of the dyad, 

Z4' The link intermediate to these links is the coupler link, A - B - Z3' 

The start mechanism's parameters are noted in Table 5.7 and were established from the 

algorithm developed 1)y Subbian and Flugrad (1990) in their presentation on triad synthesis. 

A closed for~ solution was used to acquire values of the angula.r displacments of links Z4 

and B noted in Table 5.8. Table 5.9 lists the coordinates of the precision points relative 

to the initial position of the linkage. Eq. (4.2) was implemented to solve for the angular 

displacement of link Z2, OJ, and subsequently the gear ratio, GR, was found by using Eq. 

(4.5). Displacements "Ii and .,pj are known by implementation of inverse kinematics (see 

Appendix A). The solution for GR in Eq.(4.6) provides the lower limit of integration for 

the following system of equations: 

l
GREND dZ' 

__ J dGR = ?i 
GRSTART dGR 

(5.1) 

Figure 5.9 shows the changes in parameters associated with the triad for the changing gear 

ratio. Figure 5.10 depicts the behavior of a geared five-bar mechanism chosen from the 

solution set and having a gear ratio of +1.2548. The procedure required 74.32 CPU seconds 

to establish the solution set of triads varying in gear ratio from 0.0 to + 1.5. The coupler 

curve of the new mechanism is determined iteratively because the angular displacement 

of the triad's input link, Zl, is unknown and indeterminant from the gearing relationship. 
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Since the input angle of link Zl was eliminated in the equations of synthesis, the mechanism 

that results is not functionally related to the angular displacement, </>j, of link Zl'" The 

analysis algorithm which finds the coupler path of the five-bar mechanism resulting from 

triad synthesis and kinematic inversion relies on the angular orientation of the driven link. 

The analysis routine requires that a link be driven a full cycle (360°) to adequately determine 

the behavior of the mechanism and its coupler curve. To accurately describe the path 

generated by the five-bar with a gear configuration as shown in Figure 4.1, the gearing 

relationship must be enforced along the entire path, in addition to the equations of analysis. 

At any given point along the coupler path the unknowns in the analysis procedure are </>j, 

tPj, aj, and Ij. At each position of the coupler point, there are at most three equations; 

one of which ensures that OJ = Ij + [Jj - tPj] * GR: The analysis for this particular 

design procedure requires iterative solution methods to find the mechanism's coupler path. 

Analysis methods for all mechanisms presented in this chapter are noted in Appendix B. 

Zl 

41.3970 

Position 

1 
2 
3 
4 

5 
6 

Table 5.7: Start mechanism parameters - Example 3 

0 1 Z2 O2 A 
(Degrees) (Degrees) 
356.0089 3.7906 84.5901 5.8867 

Table 5.8: Angular displacements - dyad - Example 3 

Ij 
(Degrees) 

14.8964 
28.0787 
37.9732 
43.6838 
50.4121 

57.9338 

0.4. 
(Degrees) 

351.8026 

tPj 
(Degrees) 

- 2.0473 
- 8.9064 
-20.7095 
-29.2973 
-36.9822 
-43.5473 
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Table 5.9: Precision points for five-bar mechanism of Example 3 

Precision Point 

1 
2 

3 
4 

5 
6 
7 

b:z: 
0.0000 
-0.4019 
-1.5000 
-3.0000 
-4.0000 
-5.0000 
-6.0000 

by 
0.0000 
1.5000 
2.5981 
3.0000 
3.0000 
3.0000 
3.0000 
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ORIGINAL CURVE 

NEW CURVE 

Figure 5.1: Original four-bar and coupler curve (Example 1) 
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Figure 5.2: New four-bar and Robert's cognate (Example 1) 
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GEAR RATIO = + 1.99 

Figure 5.4: Five-bar mechanism and coupler path (Example 1) 
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Z4 
7 SEE DETAIL B 

DETAIL B 

ORIGINAL COUPLER CURVE - - -
NEW COUPLER CURVE 

Figure 5.5: Original four-bar and coupler curve (Example 2) 



41 

Figure 5.6: New four-bar and Robert's cognate (Example 2) 
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Figure 5.8: Five-bar mechanism and coupler path (Example 2 ) 
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Figure 5.10: Coupler curve of triad.dyad live.har (EJ<arople 3) 
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CHAPTER 6. RESULTS AND CONCLUSIONS 

Continuation methods have been successfully implemented in the synthesis and 

design of four and five-bar linkages generating a prescribed path. Previous work 

demonstrated that five and nine point four-bar path generation could be accomplished 

through application of continuation methods (Subbian and Flugrad (1989), Tsai and 

Lu (1989), and Wampler, Morgan, and Sommese (1990) ). Continued application of 

their work along with well posed numerical techniques has lead to the development 

of a method of synthesis culminating in a solution set of geared five-bar linkages. 

Subbian and Flugrad (1990) have also shown continuation methods to be useful in the 

design of considerably more complex mechansisms made up of triads and dyads. This 

work has lead to the subsequent development of an algorithm capable of examining 

a more complex gearing configuration. 

Continuation methods provide numerous advantages not typically found in preva­

lent procedures. Traditional numerical methods of solution are heavily reliant on the 

"goodness" of initial values provided. Implied in this fact is that some knowledge 

of the system's behavior is known. Continuation methods alleviate the burden of 

providing "good" initial guesses. 

Secondly, some continuation procedures find all solutions to system equations. 

Even though some of these solutions will be complex and others found at infinity, 
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not all solutions at infinity will be meaningless. Some solutions at infinity may be 

used to synthesize sliders in the case of four-bar mechanisms, and racks in the case 

of geared five-bar mechanisms. To find solutions, polynomial systems are required 

for continuation methods and kinematic synthesis in particular lends itself well to 

expression in polynomial form. Simple algebraic manipulation and various trigono­

metric identities have presently proven sufficient to provide equations amenable to 

continuation methods. Also solution sets of synthesis equations may be found using 

polynomial continuation. Concedin~ the fact that, in the case of the N + 1 method, 

the procedure may prematurely fail. However, whether or not the finally specified 

upper limit of integration is reached, the fact remains that a solution set has been 

found. In the case of the geared five-bar, seven precision point synthesis problem, the 

objective of finding linkage solutions over a range of gear ratios is still accomplished. 

Finally, continuation methods have in the case of geared five-bars provided an 

avenue for exploring non-traditional synthesis problems. For example, variation of 

the gear ratio over a range of values and examination of more complex gearing con­

figurations can be accomplished with continuation methods. 

Disadvantages include the fact that continuation methods are CPU intensive. 

However, numerous techniques for easing CPU requirements, such as elimination 

of solutions at infinity, and homogenization of system equations are described and 

demonstrated by Morgan (1987). 

Presently continuation methods are not in widespread use. However, continued 

research coupled with advancements in computer technology will provide an impetus 

for implementation of continuation methods for solution to numerous and diverse 

applications. 
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APPENDIX A. INVERSE KINEMATIC SOLUTION 

The development given below details the derivation of angles <Pj and Ij given 

the values of 8x j and 8yj ' as well as the magnitude and initial position of vectors Z4 

and B. The angles 0 Band 04 are the orientations relative to the real axis of Z4 

and B, respectively. This method of closed form analysis is referred to throughout 

the preceding material as inverse kinematics. The loop closure equation for the dyad 

noted in Figure A.I is: 

Let: 

,pj + 04 Pj 

Ij + 0 B - <Tj 

(A.I) 

(A.2) 

The known parameter values are 8x j' 8y j' Z4, B, 0 4, and 8 B. Separating real and 

imaginary components: 

REA.L: 

Rx 8x j + Z4cos84 + Bcos0 B 

IiVIAGINARY: 

Ry (A.3) 
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The magnitude of R is given by: 

(A.4) 

The orientation of vector R is given by: 

e R = AT AN2(Ry , Rx) (A.5) 

where "ATAN2" is an intrinsic FORTRAN function th~t finds the tangent of an angle 

in its correct quadrant. Rewriting Eq. (A. 1) in terms of R we have: 

R i0R Z ipJ· B iuJ· € = 4€ + e 

Moving Z4elPj to the left hand side of Eq. (A.6) results in, 

Now, dividing Eq. (A.7) into real and imaginary parts gives, 

Rcose R - Z4COSPj 

Rsine R - Z4 sinpj 

BCOSUj 

Bsinuj 

Squaring the results of this equation and adding them gives, 

Parameters P j and then 'I/J j are found as follows: 

Z2 + R2 _ B2 
PJ· e R ± ACOS( 4 ) 

2RZ4 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.IO) 



57 

Now that the values of Pj and 'l/Jj are known, O"j may be found. 

(A.11) 

BsinO"j 
The value of O"J' results by finding the tangent of B Finally, the angular cosO"j' 

displacement oflink B, Ij is realized with, 

Ij = O"j - e B (A.12) 

The reader should note that two possible orientations for each angular displacment 

are possible. This fact manifests itself when the mechanism of question "branches" 

to form a "mirror" image. 
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APPENDIX B. KINEMATIC ANALYSIS 

The following developments were utilized to generate numerical values and sub­

sequently, graphical depiction of the coupler curve's created by the mechanisms syn­

thesized in this paper. 

For the four-bar mechanism depicted in Figure B.1 the development that follows 

describes the position of point P for any value of 8 1, The known parameters in this 

procedure are Zl, Z2, Z3, Z4, Zs, A, and 81' Also known are angles €, ;3 and A, 

the angles comprising the geometry of the coupler link. The value of the reference 

vector, 1, and its orientation relative to the real axis, may be found as follows: 

(B.1) 

The x and y components of 1 are: 

ly - Zl sin81 - Z5 sin85 

Jl~ + l~ (B.2) 

The orientation of 1 in the i h ("Ij) position may be found by finding the tangent of 

~. 
Writing an equation around loop 1 - Z4 - A gives: 

(B.3) 
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Movement of Aei0 A to the right hand side and separation into real and imaginary 

parts, followed by squaring and addition of the resulting equations gives an expression 

that may be use to solve for ° A' 

A2 + [2 - Z2 ° 4. = 11 . ± ACO S( 4 ) • J 2lA 
(B.4) 

Now 03 may be found noting that 03 = ° A - c. 

The position of point P, relative to the ground pivot of link Zl is: 

(B.S) 

Dividing this expression in real and imaginary parts yields, 

Ry (B.6) 

The values of Rx and Ry may also be expressed relative to the initial position of the 

coupler point P, hence the first precision point will always have coordinates (0.0,0.0). 

The analysis procedure for a geared five-bar like that shown in Figure B.2 is 

simplified by the fact that the gearing relationship provides an additional known 

parameter. Recalling that the displacement of link Zt, <Pj' is related to the displace­

ment of link Z4 through the equation t/J j = G R * <Pj' it can be seen that by stepping 

values of 01 in increments of <Pj' 04, for any 01 may be computed from~ 

(B.i) 

where 04i is the initial value of 04. 

Now the magnitude and direction of reference vector 1 may be found by writing 

the loop closure equation around loop 1 - Zs - Z4. 

leivj = Zsei0S + Z4 ei84 
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Ix Z5cos85 + Z4cos8 4 

ly = Z5sin85 + Z4sin84 

jl~ + l~ 
-11 

V· tan .JL (B.8) 
J lx 

The loop comprising the vectors Zl - I - A gives, 

(B.9) 

Rearrangement of Eq.(B.9) such that Aei0 A is on the left hand side, followed by 

solution for the x and y components of A gives, 

Ay (B.10) 

The magnitude and direction of A are found as follows: 

A 

(B.ll) 

The parameter,02 ,may be found by writing the loop closure equation for loop A -

Z3 (B.12) 

Squaring this equation gives: 

(B.13) 
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The parameter 82 is found by, 

(B.14) 

Now the position of the coupler point, relative to the ground pivot of link Zl' for 

any-01 may be described by: 

(B.15) 

The x and y components of the coupler point, relative to the ground pivot of link Z1 

would be: 

Rpy (B.16) 

Also, the location of the coupler point may be expressed relative to its initial position, 

in which case the first precision coordinates would be (0.0,0.0) and subsequent points 

would be calculated by determining Rp at the "current" value of 81 and subtracting 

the value of Rp at the very first position. 

The final analysis procedure finds the position of the coupler point for the five­

bar mechanism shown in Figure 4.1. The known parameters are Zl, Z2, A,B, Z4, 

and Zs. Also the initial values of the orientations of each link are known and are 

designated by the subscript i. So, for instance, 01 = 81i + <Pj' where j is the value 

of <P at the jth position of the mechanism. It must be noted that at every position 

of the linkage, the gearing relationship must be enforced. Writing a closure equation 

around loop Zl - Z2 - A - B - Z4 gives: 
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The gearing relationship is given by, 

a' = " + [,. -1jJ.J GR J J J J 
(B.18) 

Equation (B.18) may be divided into real and imaginary components, with each 

component equation arranged such that the right hand side is equal to 0.0. 

(B.19) 

Enforcement of the gearing relationship must also include a measure to ensure that 

trigonometric realtionships are preserved. The trigonometric identity that follows 

was used as the third of three residual functions to be solved: 

(B.20) 

Since Eqs.(B.18), (B.19), and (B.20) must be solved simultaneously, an iterative tech-

nique is necessary to find the unknown parameters <Pj'~'j' and 'j' The displacement 

of link A, aj' is the incremental change in angle e A and is stepped until the rotation 

of A has reached 3600
• 

The equation solver implemented for simultaneous solution of Eqs.(B.19) and 

(B.20) was Newton-Raphson. 

Once the values of the unknown angular displacments have been determined. the 

position of the coupler point may be determined from: 

(B.21 ) 
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The x and y coordinates of the coupler point, P, may be expressed relative to the 

ground pivot of link Zl, or as previously shown, subsequent values of Rp may be 

subtracted from the initial value of Rp to yield coordinates relative to the first position 

on the coupler path. 

b . -XJ -

byj -

Rpx - Rpxi 

Rpy - Rpyi (B.22) 
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" " " 

Figure B.I: Planar four-bar mechanism in the jth postion 



66 

,. Figure B.2: Planar geared five-bar mechanism 


