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ABSTRACT 

This thesis presents a neural network application to target classification using a new type 

of neural network called the Fuzzy Image Algebra Neural Network (FlANN). Most pattern 

classification schemes make use of linear convolutional values or morphological structuring 

elements as pattern features that can be learned by a neural net. The FlANN, however, has 

an activation function based on the generalized mean. This function theoretically offers 

a variety of mapping functions, ranging from linear to the fuzzy morphological. The 

FlANN is used in a heterogenous network structure. The first layer of the net performs 

linear template operations, while the remaining aggregation layers are used for classification. 

Generalized image algebra operations are used to obtain fuzzy morphological or linear 

operations. The parameters for the generalized operations are learned in a fashion similar 

to standard backpropagation, but with training rules based on a combination of stochastic 

learning and gradient descent techniques. The type of data used is the range data part of tank 

LADAR data. The objective is to classify the tanks by type. The range data is first converted 

to elevation data, which is input to the net for classification. A two tiered approach is used. 

First, the elevation data is divided into zones, with the expectation that a partially occluded 

object can still carry forward enough information from fewer zones for object identification. 

The aggregation layer of the net is trained using gradient descent. The decision-making layers 

are trained using a combination of stochastic learning and gradient descent. Results obtained 

show that with proper training and selection of parameters, the network can perform very 

good classification. 
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I. INTRODUCTION 

An artificial neural network (ANN) is a complex dynamical system that is inherently 

parallel in nature and can perfonn a variety of tasks such as pattern recognition, optimization, 

and function detennination. By nature of its methodology, an ANN solution can be more 

robust in nature than those from conventional methods. ANNs can be used for the solution 

of problems where the data may be noisy, incomplete, as well as where classical methods 

perfonn poorly, such as in automatic target recognition (ATR) problems . 

. ATR requires the extraction of important infonnation from the image of a target or a 

vehicle. The data is often complex and uncertain, and traditional solutions such as statistical 

pattern recognition and rule based artificial intelligence techniques often do not provide 

adequate solutions. Neural network technology provides a number of tools which can be 

applied successfully to ATR problems. Each target in an ATR system has a signature 

associated with it. ATR requires a solution system that describe targets and background 

completely, and yet are robust to signature and environmental variations. The system should 

be capable of adapting to additional targets and environments. Neural networks are robust by 

nature and also have the capability to "learn" hence, they fonn a good medium for solving 

ATR problems. 

This thesis presents a neural network application to target classification using a new type 

of neural network called the Fuzzy Image Algebra Neural Network (FlANN) [1]. Most pattern 

classification schemes make use of linear convolutional values or morphological structuring 

elements as pattern features that can be learned by a neural net. The FlANN, however, 

has an activation function based on the generalized mean. This function theoretically offers 

a variety of mapping functions, ranging from linear to the nonlinear fuzzy morphological. 
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Theoretically, the network is data independent and can be applied to a wide variety of 

pattern recognition problems. 

The United States Air Force (USAF) is interested in new methodologies that are both 

versatile and accurate in solving ATR problems. This thesis details the research carried out 

in applying the FlANN to solve a tank. classification problem on laser radar (LADAR) data 

supplied by the USAF. LADAR range images provide a topographic mapping of the visible 

portion of the target through direct measurement of the range to points on the target. The 

LADAR data used for this investigation has the added advantage of low expense and high 

resolution. The objective is to classify the tanks in the image data by type. The range data 

is first converted to elevation data, which is input to the net for classification. A two tiered 

approach is used, consisting of a feature extractor followed by a pattern classifier. First, 

a subimage of the target is extracted and converted into elevation form. That subimage is 

divided into overlapping rectangular zones, with the expectation that a partially occluded 

object can carry forward enough information from fewer zones to the neural network for 

object identification. Linear convolution is carried out on each zone to provide feature 

information about the object, and the convolution values are passed to the output layer of 

the network, which performs pattern classification on the features. 

Previous approaches to ATR on range images have used model based approaches where 

the target is matched with 2-dimensional and 3--dimensional target templates [2], or image 

features are matched against model features based on an object description called attributed 

relational graph (ARG) [3]. Morphological approaches make use of structuring elements, 

which are ideally suited for analysis of range images due to their inherently geometric nature 

[4]. Also, they can handle features of known physical size as shown in [5]. 
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The architecture of the FlANN is heterogenous. Generalized image algebra operations 

are used to obtainfuzzy morphological or linear operations. The parameters for the general

ized operations are learned in a fashion similar to standard backpropagation. The lower layer 

of the net is trained using gradient descent. The upper, decision-making layers are trained 

using a combination of stochastic learning and gradient descent. These learning rules were 

developed after investigation of a number of different training schemes, including simulated 

annealing, gradient descent, and stochastic learning. Results are presented for the alternative 

learning schemes. 

Problem Statement 

The FlANN's performance in ATR problems is evaluated. The specific problem is to 

perform target classification on LADAR range data using one form of the flANN. 

Data: LADAR data was used for this work. It consists of two parts: a spatial location, and 

the range or distance measurement from the laser radar to the location. The data is converted 

to an elevation map, so as to obtain shape and surface information on the target. Several 

target classes include M60 and M47 tanks, M42 missile launchers, M53 artillery, and others, 

as well as one nontarget class consisting of natural terrain, such as trees, bushes and sand. 

The elevation map is converted to a standard size 30 x 50 for input to the flANN. 

FIANN: The network activation function is called weighted fuzzy erosion, and is based on 

the generalized mean. Theoretically, this can approximate mapping functions ranging from 

linear to morphological nonlinear. This allows the net to perform independent of the data it 

receives as input. The network architecture is based on the standard multilayer perceptron 

using backpropagation. Training rules, however, are modified to suit the weighted fuzzy 

erosion parameters. Training is carried out using a combination of stochastic learning, 
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gradient descent and the backpropagation delta rule. This is described in detail in chapters 

vm and IX. 

Figure 1 gives an overview of the problem solution. Each of the blocks are discussed 

in detail in the following chapters. 

The thesis is organized as follows: Chapter II gives a background review of the different 

approaches to ATR, with emphasis on neural network based approaches. The chapter gives 

information on ongoing research involving range data. Chapter III gives an overview of the 

image algebra and the next chapter gives a brief overview of fuzzy logic. Chapter V gives 

a description of the data used in the research and the preprocessing necessary to prepare 

it for input to the FlANN. Chapter VI introduces neural networks, their methodology and 

describes in detail the backpropagation net. Chapter VII details the complete theory behind 

the FlANN and its important properties. Chapter vm details the architecture and training 

scheme for the neural network used in this specific target identification problem. Finally, 

Chapter IX gives details of the implementation and the results obtained. The last chapter 

suggests directions for possible future research. 

Range Tanks Equalization Height FlANN Output 
Data Extraction Terrain Transformation Data Feature Class 

of extraction 
256x256 subimage and 

30x50 and 
or Scaling 

classification 
1024x256 

Data Preprocessing 

Figure 1. Block diagram for the ATR problem. 
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II. LITERATURE REVIEW 

The target classification solution presented in this thesis has a two tiered approach. First, 

the available range data is converted to elevation data for better object surface understanding, 

and, second, this data is classified using the fuzzy image algebra neural network. The liter

ature survey showed that much research using neural nets for Automatic Target Recognition 

(ATR) is being investigated. However, this is a relatively recent development and not much 

research using range data in neural networks for ATR is available. 

ATR has been an area of research for longer than the last two decades. The field, which 

originally started with the goal of automatic target cueing to aid helicopter pilots in air-to

ground combat situations, has led to the creation of several generations of automatic targeting 

systems that have been effective and useful mostly in localized domains. The realization of 

the ultimate goals of ATR - the detection, tracking, and recognition of targets of interest in 

all and every scene, scenario, and weather condition - however, has proven to be difficult. 

This is partly due to the low signal quality used for ATR, which is caused by many elements 

such as phenomenological parameters, natural and intentional occlusions, and so forth. Much 

research is being performed to try to improve signal quality for ATR. This includes improving 

sensor design, more efficient signal retrieval, and data fusion, where multiple sensors and 

multiple signals are combined to achieve better results. Another approach to ATR uses 

pattern classification systems which are robust in nature and can adapt themselves to noisy 

data. These include neural networks and multisensor/multisource information fusion systems. 

Most ATR. solutions base their approach on the particular type of sensors used for 

collecting the data, as well as the form in which the data is collected. Algorithm design 

varies from model-based to texture-based approaches. Object detection using remotely 
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sensed images is a complex process involving a number of distinct function modules, which 

include: (1) the physical scene, comprising the objects of interest and the background; (2) 

the sensor system, which generates signals proportional to the reflected or emitted radiation 

from the scene; and (3) the data processing and interpretation. This last module discriminates 

measurements associated with objects of interest from those associated with background, 

events. For successful detection of objects and rejection of false alarms, it must be assumed 

that objects possess distinctive "signatures" in some measurement space. The discrimination 

task is not a simple one-dimensional thresholding function to separate signal from noise. but 

involves a series of steps that first convert the sensory signals into meaningful measurements 

and then analyze these measurements, to assign them to either an object or background class. 

One approach to ATR is the model based approach used in [6]. This details an 

experimental target recognition system (XTRS) capable of detecting and recognizing armored 

tactical vehicles in range and intensity images provided by ground based and airborne laser 

radars. XTRS is a model-based recognition system in which the key components are an 

object representation scheme and a generic matching engine. 

Recent neural net approaches to ATR include the Infrared (lR) based SAHTIRN target 

recognition system [7] being developed at Hughes Aircraft Company. SAHTIRN stands for 

Self Adaptive Hierarchal Target Identification and Recognition Neural network. This system 

combines three parts: (1) a vision segmenter, (2) a hierarchal feature extraction and pattern 

recognition system, and (3) a pattern classifier based on the backpropagation algorithm. This 

system is undergoing continual development and is being tested on ground vehicular targets 

using terrain board modeled IR imagery. These are images simulated using scenes filmed 

with a camera. The image is oriented in several different directions, creating a comprehensive 
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data base. Another neural net based system is MODALS (3-D multiple object detection and 

location systems) [8], which is being developed by Booz-Allen and Hamilton, Inc., under the 

visible sensor ANVIL (artificial neural vision learning) program. This system simultaneously 

detects, locates, segments, and identifies multiple targets. MODALS distinguishes itself from 

most ATR approaches by performing all these tasks simultaneously, unlike other systems 

which follow a serial approach. A serial approach can lead to cumulative errors, thereby 

reducing overall performance of the system. 

Another approach to target recognition is the feature based approach. With this approach 

an attempt is made to discover features that are inherently invariant with respect to size and 

orientation of the object in the sensor's field of view. A feature based classifier is used to 

map the extracted set of feature values into various object classes. Two-dimensional moment 

variants [9] are a good example of this type, of classifier. Another approach using template 

matching approach is based on matching the silhouette of the unknown object with those in 

a prestored library of templates of likely objects. Chamfer matching [10] is an example of 

this technique. Both of these approaches have shortcomings. One of the main disadvantages 

is \he dependence on availability of information about the complete object. Performance of 

the feature-based system deteriorates considerably when only partial infonnation is available. 

However, a combination of the two methods as proposed in [11] combines the advantages of 

the feature based method, namely invariance to size and orientation, with the advantages of 

silhouette based methods, particularly in dealing with partial infonnation caused by occlusion 

and poor segmentation. 

Another area of research in ATR is sensor fusion. Infonnation from a number of different 

sensors is combined to give better results than by a single sensor. Different approaches 
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include data fusion, feature fusion, and decision fusion, although at present most research 

focuses on the first two. An ATR system using sensor fusion is described in [12]. Finally, 

an approach to ATR using texture is detailed in [13]. In this approach, image characteristics, 

object characteristics, and detection methodology are assumed to be the variables associated 

with object detection. The development and extensive evaluation of an image clutter measure 

is studied. 

AlR performance is limited both by the capabilities of the ATR algorithms as well as 

the information content provided by the sensor. In the case of laser radar sensors, these 

parameters include the range to the target, the aspect angle of the target, the atmospheric 

extinction rate, the sampling rate, and signal-to-noise ratio. A considerable amount of 

research has been carried out to find optimal ways of processing sensor information for 

ATR so as to reduce uncertainty in the signal. One way is to improve sensor design as 

proposed in [14]. Here, authors propose a technique for evaluating the information content 

of a sensor and study the intrinsic separability of laser radar data with a view towards its 

usefulness to "algorithm independent" ATR sensor design. 

Much research using range data has focused on segmentation and edge detection of 

the images [15] [16]. Three-dimensional object recognition currently is not a very mature 

field. Some schemes handle only single, pre-segmented objects while others can interpret 

multiple object scenes [17] [18]. Some systems perform only 2-D processing using 3-D 

information [19]. Some methods require that intermediate data be provided by the person 

operating the system. Many techniques assume that idealized data is available from sensors 

and intermediate processors. Others require high contrast or backlit scenes. Most efforts have 

restricted the class of recognizable objects to spheres, cylinders, cones or a combination of 
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these [20]. 

Information such as edge maps or planar region descriptions is often available from range 

data. Surface and 3-dimensional shape information can also be extracted from range images. 

In 1979, Duda et al. [21] discussed the use of registered range and reflectance images to 

find planar surfaces in 3-D scenes. A sequential planar region extraction procedure was used 

on images obtained from an amplitude-modulated imaging laser radar. This was one of the 

earliest papers to use range data for scene analysis. Milgrim and Bjorklund [22] presented a 

different approach to planar surface extraction from range images. Their system was planned 

for vehicle navigation. Spherical coordinate transformations were used to convert range data, 

azimuth angle, and elevation angle sensor data into Cartesian x, y, z coordinates. They used 

a more straightforward approach than Duda et al., since no a priori assumptions were made. 

Reeves et al. included range moments from range images to carry out moment based 3-D 

analysis [23]. Single object, pre-segmented, synthetic range images were classified using 

silhouette moments, range moments and a combination of the two. 

Other approaches to ATR include statistical pattern recognition, syntactical pattern 

recognition, and expert systems. Table 1 gives a brief description of these approaches, 

their advantages, and the requirements for each approach. 

The fuzzy image algebra neural net has been used previously for the ATR problem of 

tank classification [24]. A simple version of the FlANN performed classification on tank 

range data using features intrinsically determined by the neural net Fairly positive results 

were achieved. 
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Table 1 Various approaches to ATR 

ATR Approach Working Advantages Disadvantages 

Statistical Pattern Computes Works well on Not a robust 

Recognition discriminant patterns with well scheme. Very 

function parameters defined distributions. comprehensive data 

to obtain primitive set is required. 

shape features. 

Syntactic Pattern Follows linguistic Rules can be created Does not work well 

Recognition rules that describe from limited data. on noisy data. 

target structure. 

Expert Systems A data base of Can include No clear cut rules 

(Knowledge Base) targets, scenes, etc., "knowledge" not for acquiring and 

is created and used. present in pattern representing 

recognition systems. knowledge. 
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III. IMAGE ALGEBRA 

In recent years the use of image processing has increased considerably in the military, 

industrial, and academic fields. However, research and development of image processing 

algorithms has not made use of any standardized, mathematically rigorous, algebraic structure 

that is designed specifically for image manipulation. In response to this need for a common 

algebraic structure for image processing, the Air Force Armament Laboratory at Eglin Air 

Force Base, in conjunction with DARPA, called for the development of a highly structured 

mathematical environment for image processing and image analysis with the intent that the 

fully developed structure would subsequently form the basis of a common image processing 

language. The structure developed in response to this is image algebra. 

Image algebra provides a common mathematical environment for image processing 

algorithm development as well as methodologies for algorithm optimization, comparison 

and performance evaluation. 

Image algebra is a heterogenous algebra that has six basic types of operands. These are 

value sets, point sets, the elements of each of these sets, images, and templates. 

Value Sets 

Some common types of value sets are the set of integers Z, the set of real numbers 

R, the set of complex numbers C, the set of binary numbers of fixed length k, Z2k, 

R~~ = {+oo} U {r E R: r ~ O}, and extended real numbers (which include one of the 

symbols -00 or + (0) denoted by R+::o = R U {+oo} and R-::o = R U { -00 }. These 

sets correspond to values commonly encountered in image processing operations. However, 

in its most general form, image algebra allows for any semi-group F to be a value set. We 
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denote an unspecified value set by F. The operations on and between elements of a given 

value set F E {Z, R, C, Z2k, R- oo , R+:x'} are the standard elementary operations associated 

with F. Thus, if F = R, then the operations could be the arithmetic and logic operations of 

addition, multiplication, and maximum, and the corresponding operations of subtraction, 

division and minimum. In addition to these elementary operations, image algebra also 

includes the operations of union (U), intersection (n), set subtraction (\), choice function, 

and cardinality function on subsets of F. The choice function when applied to a set returns 

an arbitrary value from the set, while the cardinality function gives the number of elements 

in the set. 

Point Sets 

A point set is a subset of n-dimensional Euclidean space RO. The letters X, Y, and 

W are reserved to denote point sets. Point sets can be rectangular, hexagonal, or toroidal 

arrays, as well as infinite subsets of RO. Due to the wide variety of shapes, sizes and 

dimensions provided by point sets, image algebra can model and manipulate continuous as 

well as discrete images on any desired type of point set. 

Image algebra operations on point sets are operations on subsets of point sets as well as 

operations between points. Operations on subsets of point sets are union, intersection, set 

difference, choice function, and cardinality function. Examples of image algebra operations 

on or between elements of point sets are vector addition, scalar and vector multiplication, 

and dot product. 
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Images 

Images are the most fundamental of the image algebra's operands. The most general 

definition of an image involves both value sets and point sets. If we have a value set F and 

a point set X. then an F valued image a on X is the graph of a function a: X -+ F. Thus, 

an F valued image a on X is of the form 

where a(x) E F. 

The set X is called the set of image points of a, and the range of the function is the 

set of image values of a. An element (x, a(x)) of the image a is called a picture element 

or pixel, where x is the pixel location and a(x) the pixel value at location x. The set of all 

F valued images on X is denoted by FX. If the value set F = R or F = Z, then we have 

real valued or integer valued images, respectively. Similarly, selecting F = C or F = Z2k 

provides for complex or k-bit images. 

Operations on and between F valued images are the natural induced operations of the 

algebraic system F. Thus, real valued image operations reflect the arithmetic and logic 

operations on R. For instance, the binary operations of addition, multiplication. and maximum 

on RX are defined as follows: 

Let a, b E RX. Then 

a + b = {(x, c(x)) : c(x) = a(x) + b(x), x E X} 

a * b = ((x,c(x)) : c(x) = a(x) * b(x),x E X} 

a V b = ((x,c(x)) : c(x) = a(x) V b(x),x E X} 

These are basic binary operations for real valued images. Operations on different image 

types vary with the value set to which they belong. 
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We define the Domain of an image a as the point set over which a is defined, eg., for 

a E R x, Domain(a) = X. The range of a is the set of values assumed by the image. eg., 

Range(a) = {a( x) : x E xX} C F is the set of all values a assumes on X. Thus the output 

of domain or range is not an image array, but a set of points or a set of values, respectively. 

Generalized Templates 

In terms of image processing applications, templates and template operations are the 

most powerful tool of the image algebra. The image algebra definition of a template 

unifies and generalizes the usual concepts of templates, masks, windows, and neighborhood 

functions into one general mathematical entity. These templates also generalize the notion 

of "structuring elements" as used in mathematical morphology. 

Let X and Y be point sets and F a value set. A generalized F valued template t from 

Y to X is a function t: Y - FX. Thus, for each y E Y: t(y) E F X : or, equivalently, t(y) is 

an F valued image on X. The set Y is called the target domain or simply the domain of t, 

and the set X is called the range space of t. For notational convenience we define ty = t(y). 

Thus, ty = {(x: ty(x)) : x E X}. The point y is called the target point of template t, and the 

values ty(x) are called the weights of the template tat y. The set of all F valued templates 

from Y to X is denoted by (Fx) Y • 

The k-support of a template is defined as: 

The set Sk(ty) is also referred to as the configuration of t at y. When k = 0, we write 

S(ty) = So(ty). Figure 2 illustrates this concept. 
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If t E (FX) x, then t is called translation invariant if for each x I Y I Z E X with Y + 

z and x + z E X, we have that ty(x) = ty+z(x + z). A template that is not translation 

invariant is called translation variant. Translation invariant templates can be represented 

pictorially; an example is given in Figure 3. 

For e~ample, let X = Z2, where Z2 = Z X Z C R2 is a point set. Let y = (x, y) 

be an arbitrary point of X, Xl = (X, Y - 1), X2 = (x + 1, y), and X3 = (x +1, Y + 

1). We now define a template t E (RX)X. For each Y E X, we define its weights as 

ty(Y) = 1, ty(Xl) = 3, ty(X2) = 2, ty(X3) = 4, and ty(x) = 0 if x is not an element of the 

set {y, xl, X2, X3}. In this case Set,) = {Y, Xl, X2, X3}. Thus t has a configuration and weights 

as shown in Figure 3. The marked cell represents the target point y. 

Operations between Images and Templates 

The three basic operations between images and templates are denoted by ffi, &'J I and 0j), 

and called generalized convolution, additive maximum, and multiplicative maximum, re-

spectively. These are defined as follows: 

Target Point 
y 

Target Domain Y 

t 

t (x) 
y 

(I).i, · . . · . · . . · . . · . . · . . · . . · . . · . . · . . · . . : : : 
: : : · . . 

v-N ~ 

Range Space X 

Figure 2. Pictorial example of a template from Y to X. 
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Let X C RU be finite and Y C RID. Suppose a E F X and t E (FX) Y, where FE {C,R}. 

Then the generalized convolution of image a with template t is defined as 

a ElH = {(y, b(y)) : b(y) = L a(x) * ty(x), y E Y}. 
x€X 

Similarly,"if a E R~oo' and t E (R~oo) Y, then the additive maximum is defined as 

a[QI t = {(y, b(y)) : b(y) = V a(x) + ty(x), y E Y}. 
x€X 

The multiplicative maximum operation is defined for a E (R~~), and tE ((R~~)X) Y, 

and is given as follows: 

a 6lJt = {(y, b(y)) : b(y) = V a(x) * ty(x), y E Y}. 
x€X 

In all these cases, we assume that the support for t is finite. However, these definitions can 

be extended to the continuous case as well. Thus image algebra can be used for expressing 

both discrete and continuous image transforms. 

One thing to be noted at this point is that while a is an image on X, b, which is produced 

from the above operations, is an image on domain Y. Thus, since X and Y can be of 

y 

y 

y - 1 
t=m rn 

x x+l 

Figure 3. Pictorial representation of a translation invariant template. 
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different dimension and shape, template operations can be used to change the dimensionality 

and shape of images. Thus, apart from the usual local or global convolutions that occur 

in edge enhancement, smoothing, and averaging operations, templates can also be used for 

image rotation, zooming, image reduction, and matrix multiplication. 

The above material gives a very general overview of image algebra. For a more detailed 

view of image algebra we refer the reader to [25]. 



18 

IV. FUZZY LOGIC 

Introduction 

Fuzzy systems is an alternative to the traditional notions of set membership and logic that 

has applications at the leading edge of the area of artificial intelligence. The notion central 

to fuzzy systems is that truth values (in fuzzy logic) or membership values (in fuzzy sets) 

are indicated by a value on the range [0.0, 1.0], with 0.0 representing absolute Falseness and 

1.0 representing absolute Truth. For example, let us take the statement: 

"Jane is old." 

H Jane's age was 75, we might assign the statement the truth value of 0.80. The statement 

could be translated into set terminology as follows: " 

"Jane is a member of the set of old people." 

This statement would be rendered symbolically with fuzzy sets as: 

mOLD(Jane) = 0.80, 

where m is the membership function, operating in this case on the fuzzy set OLD of old 

people, which returns a value between 0.0 and 1.0. 

Here it is important to point out the distinction between fuzzy systems and probability. 

Both operate over the same numeric range, and both appear to have similar values: 0.0 

representingfalse (or non-membership), and 1.0 representing true (or membership). However, 

there is a distinction to be made between the two statements: The probabilistic approach 

yields the natural-language statement, "There is an 80% chance that Jane is old," while the 

fuzzy terminology corresponds to "Jane's degree of membership within the set of old people 

is 0.80." The semantic difference is significant: the first view supposes that Jane is or is not 
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old; it is just that we only have an 80% chance of knowing which set she is in. By contrast, 

fuzzy tenninology supposes that Jane is "more or less" old, or some other tenn corresponding 

to the value of 0.80. Further distinctions arising out of the operations will be noted below. 

Definitions 

We next give some basic definitions for the fuzzy logic system. These are: 

• Definition 1: Let X be some set of objects, with elements noted as x. 

• Definition 2: A fuzzy set A in X is characterized by a membership function: mA(x) 

which maps each point in X onto the real interval [0.0, 1.0]. As mA(x) approaches 1.0, 

the grade of membership of x in A increases. 

• Definition 3: A is EMPTY iff for all x E X, mA(x) = 0.0. 

• Definition 4: A = B iff for all x E X, mA(x) = mB(x) [or, rnA = mB]. 

• Definition 5: rnA' = 1 - rnA, where A' denotes the complement of A in X. 

• Definition 6: A is CONTAINED in B iff rnA ~ mB. 

• Definition 7: C = A UNION B, where: mC(x) = MAX(mA(x), mB(x». 

• Definition 8: C = A INTERSECTION B where: mC(x) = MIN(mA(x), mB(x)). 

Applications 

Some fuzzy system applications include infonnation retrieval systems, a navigation 

system for automatic cars, a predicative fuzzy-logic controller for automatic operation of 

trains, laboratory water level controllers, robot arc-welders, graphics controllers for automated 

police sketchers, and more. 
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Expert systems have been the most obvious recipients of the benefits of fuzzy logic, 

since their domain is often inherently fuzzy. Examples of expert systems with fuzzy logic 

central to their control are decision-support systems, financial planners, diagnostic systems for 

determining soybean pathology, and a meteorological expert system in China for determining 

areas in which to establish rubber tree orchards [26]. Another area of application, akin to 

expert systems, is that of information retrieval [27]. 

The fuzzy image algebra neural network has an activation function which is based on 

the generalized mean. This definition of the generalized mean assumes fuzzy memberships 

for each of the elements of the data set. This relationship is explained in greater detail in 

chapter VIT. 
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v. DATA 

One goal of a machine vision system is to interpret automatically the information provided 

in a physically sensed signal. In computer vision research, two-dimensional (20) signals are 

used to determine the geometric structure of three-dimensional (3D) scenes. Each data point 

in a digitized 20 signal has three values associated with it: the first two are the spatial x, y 

coordinates representing the location, and the third is the magnitude z of the sensed physical 

quantity. These 20 signals are represented as a matrix of integers. Each matrix element or 

pixel has a (row, column) location, and a digitized value representing the magnitude. These 

matrices are referred to as digital images. Some common images are intensity, range, tactile, 

X-ray, infrared, radar, and ultrasound images. 

The type of data used for this research is laser radar (LAOAR) data collected by LTV. 

Range is measured by using the time difference between a start pulse derived from the 

transmitted pulse, and the received signal from the target to the signal detector. LAOAR 

data is visually very good and has very high resolution, of the order of 0.1 milliradians in 

both vertical and horizontal directions. This data consists of two types of information at 

every pixel location. The first is the distance, from the sensor to the sensed object in the 

real world, and is called range data. It has 16 bits with values ranging from 1 to about 2000 

units. The second value is the intensity of the returned signal which is 8 bit data with a 

range of values from 1 to 255. See Figure 4 for a sample of range and intensity data. One 

approach to ATR uses both range and intensity data [28], but for our classification problem, 

we used only of the range data. Even though the intensity data has greater visual contrast 

and hence appears to carry more information, it is actually the range data which carries more 

information. Range images are unique in a mathematical sense among 20 signals for scene 
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analysis, because they directly approximate the physical surfaces of objects in scenes. With 

other types of data, such surface information has to be inferred indirectly from the sensor 

data, regardless of the resolution or qUality. From the range data an elevation image can be 

constructed using simple geometric and trigonometric rules. Thus, there is 3-dimensional 

geometrical shape information in the range data that is not available in the intensity data. 

The range resolution along the line of vision is very good and is of the order of 0.15 meters. 

"',', -:. : ....................... ".. .......... .. .... ", 

Range Image Intensity Image 

Figure 4. 256 x 256 Range and intensity images of the same scene. 

Data Classes in the Range Data 

The range images from the LADAR data are of size 256 x 1024 pixels, or 256 x 256 

pixels, and contain one or more vehicles within a one kilometer range from the sensor. The 

vehicles are tanks, trucks, and jeeps. Some of the vehicles present in the data are M60, 

M114, and M47 tanks, M53 artillery tanks, and M42 missile launchers. One set of images, 

consisting of natural terrain such as trees, bushes, and sandhills, provides the nontank class. 
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See Figure 5 for sample images of some of the data classes. We remark that the five images 

in Figure 5 are of different sizes. The desired subimage consisting of a tank or non tank 

image is extracted, then histogram equalized. The extraction process is as follows: 

1. The coordinates of the top lefthand corner of the subimage are detennined by visual 

inspection. For the vehicular data this infonnation was available in the header files for 

each image. This file gives information on the number of targets present in each image, 

and the size and location of the targets. 

2. The size of the subimage (rows x columns) to be extracted is detennined. 

3. The subimage is extracted starting from the top lefthand comer point. The Image Algebra 

Fortran (lAp) preprocessor was used for this purpose. 

An image processing software called Khoros can also be used for extracting subimages. 

Khoros is a public-domain software that allows, among other things, windowing of images, 

and also gives exact coordinates at any point in the image. Further research could be carried 

out to perfonn automatic extraction of the vehicle subimage. After extraction, the subimage 

is converted to elevation data using either the Cartesian method or the locus method. We 

used the Cartesian method [29]. The locus method is described in [29]. 

Converting Range Data to Elevation Data: The Cartesian Method 

The position of a point in the Cartesian coordinate system can be derived from the 

measured range value and the direction of the sensor beam at that point [29], both of which 

are available from the data. Figure 7 shows the range measurement (p) and the direction of 

the sensor beam which is specified by its vertical (f/J) and horizontal (0) scanning angles. The 
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M60 Range Image M47 Range Image 

M53 Range Image 

M42 Range Image Nontank Image (Tree) 

Figure 5. Range images of the five input classes. 
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z 

.1-----:::1---7--- Y 

x 

Figure 7. Range sensor geometry. 

value of the horizontal and vertical scanning angles for each point in the image is derived 

from the row and column position, (r, c) using the equations 
(j = (jo + c * ~O 

cP = cPo + r * ~cP· 
Here, cPo, 00 are the initial values, and ~cP and ~O are the increments for the vertical and 

horizontal scanning angles, respectively. 

The variables cP, 0, and (r, c) in Figure 7 have the following definitions: 

p : range measurement. 

cP : vertical scanning angle (initial value cPo, increment ~4J). 

(j : horizontal scanning angle (initial value (jo, increment ~(j). 

(r, c): range image row and column coordinates. 

The x, y. and z coordinates are then obtained using the following equations based on 

simple trigonometry and geometry. The header file for the image provides the information on 

sensor angle, vertical and horizontal resolution, as well as range resolution and range offset 
x = p * sinO 

y = p * coscP * cosO (1) 

z = p * sincP * cosO 
The resulting transformed image is called the elevation image. 
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Converting Range Data to Elevation Data: The Locus Method 

The traditional Cartesian approach has several problems associated with it. First, it 

introduces nonunifonn samples in Cartesian space. Even though the sensor scans with equal 

angle inte~als, the Cartesian map is progressively more sparse at points further from the 

sensor. Secondly, the environment may cast range shadows due to rugged terrain, such as 

the shaded area in Figure 8, due to rugged terrain. Without explicit infonnation about the 

shadow areas, the surface would be smoothly interpolated, possibly incorrectly. Third, the 

uncertainty of range measurement gets distributed across a region in the elevation map, i.e., 

uncertainty in the elevation is dependent not on a single range measurement but on many 

neighboring sensor measurements. The locus method suggested in [29], uses a model of 

the sensor and works in image space. In the locus method, the elevation z at a point (x, y) 

Sensor 

Uncertainty in range data 

:----±-"-------.x 

Figure 8. Problems associated with the Cartesian method. 
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on the reference plane is found by computing the intersection of the terrain with a vertical 

line at (x, y). By computing the distance from the sensor to the scene points on this vertical 

line, we can create a locus of this vertical line in image space. We derive the equation of 

the locus as a function of ¢ from Equation 1, assuming x and y constant: 

P = Pl(¢) = 
2 

Y . + x2 = 
cos2(¢) 

x * cos(¢) () = ()l = arctan . 
y 

y2 + x 2 * cos2(¢) 

cos2(¢) (2) 

We now describe the locus method algorithm for computing the elevation z at a grid point 

(x, y): 

1. Compute the locus Pl(¢) using Equation 2. 

2. Compute the corresponding ()l(¢j) using Equation 2. 

3. Obtain a sample data at (¢j, ()l), Pm(¢j), from the range image. 

4. Compute the difference between the locus and the sample of data, ~(1)j) = Pl(¢j) -

Pm(¢j ). 

5. Find the two scanlines of the range image 1>1 and 1>2 between which the intersection is 

located. This will be the point where sgn ~(1)1) is not equal to sgn ~(1)2), where 

{ 
+1 if x> 0 

sgn(x) = -1 if x < 0 

6. Apply a binary search between 1>1 and 1>2, and find the intersection point 1>n. 

7. Compute P and () using Equation 2, and then compute an elevation value using Equation 

1. 

8. Repeating steps 1-7 for vertical lines at every desired (X, y) point results in a dense 

elevation map at the desired resolution. 
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The locus method avoids some of the problems of the Cartesian method. However, it is 

computationally very intensive, and thus for this thesis, the Cartesian method was employed. 

Interpolation 

Since the Cartesian method introduces nonuniform samples in image space several data 

values are found to be missing. To compensate for the nonuniform samples produced, 

interpolation between data points is necessary. The following steps are carried out for 

interpolating within the elevation image. 

1. The x, y, and z values are mapped into an image whose dimensions extend from 0 to the 

maximum value of x calculated for the columns, and 0 to maximum value of y calculated 

for the rows. An even grid is created and all missing z values are left empty. 

2. A variation of the linear interpolation scheme is used to fill in the data. 

a. Let a € RX be the incomplete elevation image and b € RX be the filled image. X 

is of size Rows x Columns, where Rows = maximum x dimension and Columns = 

maximum y dimension. 

b. We check for a string of zeros in a row in between two nonzero z values. Let the 

two nonzero values be at locations (ii) and (i+IJ). Then the values in between are 

given by: 

for r=j,j+k 

a(i, r) = (a(i,j) + a(i,j + k))/(j - r) 

c. If a boundary location has a zero value, we look for the nearest nonzero values along 

the row and along the column and average these. A point with this value is assumed 
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outside the boundary point and interpolation carried out as in (b). See Figure 9 for 

a pictorial description of the interpolation scheme. 

The interpolated elevation images vary in size from 300 x 300 to 100 x 100, depending on 

the size of the image extracted. It is necessary, therefore, to scale them to a standard size 

to input to the neural net. 

Scaling 

The standard image size used for input to the neural net is 30 x 50. The different sized 

elevation image is scaled to size 30 x 50 by convolving it with a shrinking, averaging template. 

The template used is a translation variant template and is obtained using the following steps. 

1. If X is an M x N rectangular array and a € RX. Let Y be a P x Q rectangular array and 

b € RY where P < M, Q < N. We write 

N=V*(J+S 

a(i, .) 

values 

U, V; R, S are integers 

o ~ R ~ M, 0 ~ S ~ N 

0-, 
I j ....... 

: : i- r.... a(i,j+k) 
1 : : : 1-
I I I I I 
I I I I I 
I I I I I 
f f I I I 
I I I I I 
I I I I I 
I I I I I 

Interpol ed data 
values a(i,r) 

Figure 9. Linear interpolation scheme. 
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Example: X = 3 x 3, so a is an element of R3 x 3. Then Y = 2 x 1, and b € R2 x 1. 

2. If (R, S) i= (0,0) then define t € (Rx)Y as follows: 

if 1 ~ i ~ P-R, and 1 ~ j ~ Q-S, then; 

if (( i-I) * u + 1) ~ h ~ i * u, and, 
((j - 1) * v + 1) ~ k ~ j * v, and is 

otherwise. 

If P-R+l ~ i ~ P, and 1 S j ~ Q-S, then; 

if ((i - 1) * (u + 1) + 1) ~ h ~ i * u, and 
((j -1)*v+l) ~ k ~j *v, and is 

otherwise. 

If 1 ~ i ~ P-R, and Q-S+l ~ j ~ Q, then; 

if (( i-I) * u + 1) ~ h ~ i * u, and 
((j - 1) * (v + 1) + 1) ~ k ~ j * (v + 1), and is 

otherwise. 

If P-R+l ~ i ~ P, and Q-S+l ~ j ~ Q, then; 

if ((i -1) * (u + 1) + 1) ~ h ~ i * (u + 1), and 
((j - 1) * (v + 1) + 1) ~ k ~ j * (v + 1), and is 

otherwise. 

Then the scaled image is b = a ffi t .. We now work out a small example to illustrate how 

the shrinking, averaging template works. 

Example: Let X = M x N = 3 x 3 and Y = P x Q = 2 x 2. Here, X indicates the input 

image size, and Y the output image size. Then we write 

1. 

3=V*2+S 

This gives us U = 1, V = 1, R = 1, and, S = 1. 
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2. Since R i= 0, and S i= 0, we get t € (RX? as follows: 

3. Then on convolving a with t we get the reduced, averaged image b, given in Figure 12. 

Thus, the image a is averaged and shrunk using the above translation variant template. 

a= 

t(1,l) = 

t(1,2) = 

3 2 6 

3 7 1 t= 

7 11 5 

Figure 10. Input image a and template t. 

1 0 

0 0 

0 0 

0 1/2 

0 0 

0 0 

0 

0 t(2,1) = 

0 

1/2 

0 t(2,2) = 

0 

Figure 11. Template t. 

b = rn rn 
Figure 12. Result of convolving a with t. 
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A pictorial representation of this is given in Figure 13. The data is now in a fonn where 

it can be input to the neural net for classification. Figure 14 gives the original range 

image ( an M60 tank), the corresponding interpolated elevation image and the scaled 

30x 50 image. The image resolutions are different in each case. 

A clearer view of the elevation data is obtained from the 3--dimensional graphs as shown 

in Figures 15 and 16. 

50 • 

Input rows 

• • Input columns 

Figure 13. Scaling original image to standard size 30 x 50 . 

. . ...... ~ ... :-: .. ~:. ~ '~ .. :.·::~:i:'·{.~·.-::" . 
. . 

'< 

. ~$ 

Original range image Interpolated elevation image Scaled 30 x 50 image 

Figure 14. Image processing stages. 
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Range Image Elevation Image 

150 

100 

50 

o 0 

Figure 15. Range image and elevation graph of the M1l4 tank. 

Range Image Elevation Image 

300 

30 

50 0 

Fi~ 16. Range image and elevation graph of the M60 tank. 
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VI. NEURAL NETWORKS 

History 

Two fundamentally different approaches to infonnation processing are Neurocomputing 

and programmed computing. Neurocomputing is the technological discipline concerned 

with infonnation processing systems that autonomously develop operational capabilities 

in adaptive response to an infonnation environment. Programmed computing, on the 

other hand is based on algorithms and set rules. Neural networks come under the field 

of Neurocomputing. The area of Neurocomputing started when researchers attempted to 

emulate the human brain. Ti1e models developed were called neural networks for the 

biological neurons from which they were modeled. The field then diverged into two primary 

areas of research: (1) neurobiological network models, which are computational models of 

biological nervous systems, and, (2) artificial neural networks, which are biologically inspired 

mathematical models having technical applications. Artificial neural networks (ANN's) are 

also called parallel distributed processing systems or connectionist models. This research is 

concerned with ANNs. 

The beginning of Neurocomputing dates back to 1943, when McCulloch and Pitts [30] 

showed that even simple types of neural networks could in principle compute any arithmetic 

or logical function. Other researchers, principally Weiner and Neumann [31], suggested that 

research on computers inspired by the functioning of the brain would be fruitful. In 1949 

Hebb wrote a book entitled "The Organization of Behavior" [32], which carried further the 

idea that classical psychological conditioning in animals is a property of individual neurons. 

The first successful neurocomputer, the Mark I perceptron, was developed during 1957 and 
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1958 by Rosenblatt, Wightman, and others [33]. Due to his many contributions in this field, 

Rosenblatt is often considered the founder of Neurocomputing as known today. Shortly after 

Rosenblatt, Widrow developed a different type of neural network processing element, called 

ADALINE [34], with a new learning law, which is still in widespread use. However, these 

early successes in Neurocomputing were followed by a period of stagnation, partially as 

a backlash against the hype associated with them. During the period from 1967 to 1982 

very little research was carried out in artificial neural networks. Associated research in the 

fields of adaptive signal processing, pattern recognition, and biological modelling, however, 

remained active during this time. 

In the 1980's there was a revival of interest in artificial neural networks, and extensive 

research since then has been investigated in this area. One person responsible for this 

resurgence was Hop field , an established physicist who wrote some very interesting papers 

on neural networks [35], and lectured widely. In 1986, "Parallel Distributed Processing, 

Volumes I and IT', edited by Rumelhart and McClelland were published [36], and in 1987 

the first open conference on neural networks, the IEEE International Conference on Neural 

Networks, was held in San Diego, marking the coming of age of this field. 

Introduction 

Artificial neural nets are most often used as pattern classifiers. They perform a mapping 

from an input object space to an output classification space. The input-output relation is 

learned by an iterative optimization procedure, where the error between the input and a 

corresponding desired output is minimized. This is called the "training" phase. The data 

used for training should be statistically representative of the data to be classified, to obtain 

good results. Neural nets can be fairly good at determining complex relationships between 
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input data and classification representations. Although neural networks do not have a very 

rigorous or broad mathematical foundation, they have been used to solve a wide variety of 

problems and have produced very acceptable results in many applications. They have been 

used for pattern recognition, speech and image processing, data forecasting, and many other 

tasks. Lippmann [37] gives a tutorial on a wide variety of networks for pattern classification. 

A neural network is a parallel distributed information processing structure, consisting 

of processing elements or nodes, each of which can possess local memory and carry out 

localized information processing operation. A network can have one or more layers, each 

layer consisting of one or more nodes depending upon the architecture of the network. 

Nodes in different layers are interconnected through connections or weights. The nodes in a 

layer may be connected to nodes in other layers, or to each other, or both, based upon the 

connection scheme used for that particular neural net. Information processing at a node can 

be defined arbitrarily with the restriction that it must be completely local, i.e., it must depend 

only on the current values of the input signal arriving at the node via impinging connections, 

and on values stored in the node's local memory. Each node has a single output that may 

be passed onto as many other nodes as is desired. 

The basic design principles of neural networks are based on the following three important 

properties: 

• Adaptivity - This is the ability to encode information in a meaningful way by means 

of an adaptation rule. 

• Fault Tolerance - In pattern recognition, terms this implies the ability to recognize 

noisy patterns. 

• Parallel Processing - This is associated with neural networks because of their ability 
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to operate in a purely distributed fashion. 

While fault tolerance and parallel processing are features commonly shared by a wide variety 

of computing devices, adaptivity is a feature unique to neural networks. 

Connection Schemes in Neural Networks 

There are four basic types of connection schemes between nodes in a network that 

indicate the flow of data within the net These are: 

• Feed forward - The network accepts data from the input nodes and passes it on to the 

output or next layer of nodes. Data flows only in the forward direction and only once. 

• Recurrent - The network allows data to flow from the node to itself. 

• Feedback - The information between nodes can flow forward or backward, that is, 

from the output nodes to the input nodes. 

• Recursive - The network recursively iterates in the feed forward or feedback process. 

Learning in Neural Networks 

This is a mathematically defined process by which the weights of a network are 

changed. Learning occurs in networks that are recurrent and/or have feed forward or feedback 

connection schemes. There are two types of learning a net can undergo. These are: 

• Supervised Learning - The network is provided information from outside to help make 

adjustments in weights. This information includes: 

a. The desired output and an error criterion. 

b. When to terminate the training process, eg., after how many iterations, or after what 

error level. 
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c. The number of times the data must be presented to the net during training. 

Examples of this are error correction learning, backpropagation, and stochastic learning. 

• Unsupervised Learning - This is a process that relies only on information available 

internaI to the net This allows natural groupings of the data to form by themselves 

using predefined similarity measures. One example is the Kohonen net. 

Methodology of Operation 

To illustrate the nature of neural networks we describe briefly a classical neural net 

architecture known as the perceptron. This is mainly of historical importance now as it has 

since been superceded by other, more powerful networks. 

Perceptron: This is a neural network that consists of one or more of the processing elements 

or nodes shown in Figure 17. For simplicity, we next describe the operation of a single 

perceptron processing element. Figure 18 shows the classification problem we are trying to 

solve using the perceptron. We have two classes of patterns, class 0 and class 1. A pattern is 

y 

r 

n 

Figure 17. Single processing element of a perceptron. 
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simply a point in n-dimensional space, where the coordinates of the points represent attributes 

or features of the object to be classified, such as height, weight, density, or frequency. In 

order to be classified correctly by the perceptron, the two classes must be separated from 

each other by a simple linear hyperplane. In 2-dimensional space, a hyperplane is a line, 

in 3-dimensional space it is an ordinary plane, and in n-dimensional space it is called a 

hyperplane residing in (n-l) dimensional space. A set of classes having this property is 

termed linearly separable. The goal is to find a set of weights or coefficients wo, WI, 

W2, ....... Wn which determine a unique hyperplane such that the output of the perceptron is 1 

if the input pattern vector (XO, Xl, X2, ...... .xn) belongs to class 1, and 0 if the pattern vector 

belongs to class O. The value y at the output is calculated as shown in Equation 3. 

{ 

n 

1 if ~ Wi * Xi ~ 0 
Y - c=() 
• - n 

o if L: Wi * Xi < 0 
i=() 

(3) 

The weights are stored in the node's local memory and are automatically modified by the 

node itself using the perceptron learning rule. We represent the weight Wi as the strength 

• • •• • •• • 
•• • • ••• • 

Class! • 

• • 
Class 0 

•• • • •• • •• •• • • 

Hyperplane 

Figure 18. Pattern classification problem in n-dimensional space. 
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of the connection from input node i to the single output node. The learning process for 

the network is simply the methodology by which the weights are changed to produce the 

correct classification results. During training, the perceptron is given a sequence of randomly 

selected patterns, one at a time. A pattern is represented by a vector a. Each time a training 

pattern is presented to the perceptron, the system is also told to which class, 0 or 1, it belongs. 

With each input vector, the weights are modified using the equation 

w1lCW = wold + (yd _ y)a, 

where yJ is the correct class number for input a, and y is the output of the perceptron. The 

idea behind the learning rule is that if the perceptron makes an error in its output, that is, 

if yd - y 1= 0, then this indicates that the solution hyperplane needs to be reoriented so as 

to not make the error in the future. If the error is zero, the weights will not change. Once 

training is completed, the network weights will not change anymore. The neural net can then 

be tested on patterns which were not present in the training set. 

Most neural networks are more complex in nature then the perceptron, and can have a 

variety of architectures. The architecture of a neural net is based upon: 

• The number of information processing layers. 

• The number of nodes in each layer. 

• The connections between the layers. The nodes in two consecutive layers can be fully 

or partially interconnected. 

• The equation determin~g how the new node value is calculated at each layer. 

• The learning "rules for all the layers in the net. 

Due to the flexibility provided by these factors, neural networks can be applied to a variety of 

tasks such as business analysis, forecasting, signal and image processing, pattern recognition, 
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and medical diagnostics, to name just a few. In the next section, one of the more popular 

neural nets called the backpropagation neural net is described in detail. This particular net 

forms the basis for the architecture of the FlANN. 

Backpropagation Neural Networks 

Backpropagation nets are capable of implementing a broad variety of tasks, including pat

tern association, pattern classification, image compression, data compression, robot control, 

and function approximation tasks. It is a powerful network that has been applied successfully 

to solving many different types of problems. 

There are two phases in the operation of the backpropagation net. The first phase is the 

training phase, during which the weights are iteratively updated, and the second phase is the 

recall phase, where the weights are held constant while the net simply calculates output values 

for classification purposes. The backpropagation network follows the feedback method of 

connection and uses supervised learning methods. It uses a layered hierarchial architecture 

of simple nodes with a high degree of connectivity between layers. Connections are allowed 

between two adjacent layers, but connections within a layer are not allowed. A schematic 

diagram showing a two layered feed-forward network with full connectivity is shown in 

Figure 19. The backpropagation algorithm does not require full connectivity of adjacent 

layers, so partial connections between layers are allowed. Further, weights or connections 

that skip one layer are permitted. The major restriction is that information in the net can 

only flow forward in the layer hierarchy, not backward, laterally or recursively. The network 

architecture consists of one input layer, one or more hidden layers, and an output layer. 

The input layer performs no processing on its inputs, but merely serves to distribute 

them to the first processing layer. Following the input layer are the hidden layers, so called 
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Input Layer 

Synapses ...---'~" 

Nodes 

Figure 19. Fully connected backpropagation network. 

because they receive no input from, and produce no output to, the outside world. Finally, 

the output layer produces the output results of the network for the user. In designing the net 

architecture, the number of input nodes are fixed by the number of input variables needed 

for the task, and the number of output nodes are fixed by the number of values or classes 

that are desired. Each node in the network receives one or more inputs from the outside 

world or from preceding layers, and produces a single output value, which is broadcast to 

other node inputs in succeeding layers as determined by the connection scheme. Each node 

i in the first hidden layer calculates its state value via Equation 4. This is simply the dot 

product of the node's weight vector with its input vector, together with an additive bias (): 

n 

bi = L Wji * aj + O. 
j=l 

(4) 

Here, aj represent the value at node j in the input layer; Wji represents the corresponding 

weight applied to that input; () is the offset or bias term for the node, and n is the number 

of connections to node i. Next, node i's output is obtained by passing the value bi through 

a non linear function called an activation function. Typical functions include the sigmoidal 

function given in Equation 5. For the backpropagation network, the activation function must 
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be continuously differentiable and monotonically increasing. 

1.0 
Ci=---~ 

1.0 + e-bi 
(5) 

Here, Cj is node i's output, and bj is as in Equation 4. 

Learning in Backpropagation Nets 

These nets are used to implement supervised learning tasks for which a training data set 

consisting of input and desired output pairs is available. All backpropagation nets learn by 

approximating a unidirectional mapping from an n-dimensional input space Rn, where n is the 

number of input variables, to an m-dimensional output space Rm, where m is the number of 

output variables or classes. The network updates the weights Wjj using error feedback from 

the training examples. One common measure of error is the mean squared error, defined as 

(6) 

where cJ ij represents the correct output value for pattern i; cij is the value calculated by the 

net with its current set of weights; m is the number of output nodes; and n is the number 

of training patterns. 

To minimize the error in Equation 6, we first obtain the partial derivative of the error 

with respect to each of the weights as follows: 

BE 
t1wi = k*-. 

BWj 

The backpropagation learning law, also called the generalized delta rule, is given by: 
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where bjj represents the jth input to the ith node on that pattern presentation; 1] is a stepsize 

parameter that controls the rate at which the change in weights takes place; and OJ is the 

"delta" tenn representing the error for the ith node. The weights are then updated following 

the gradient as follows: 

where OJ for an output node is given by 

(7) 

Here, the second term [ci(l - Ci)] represents the derivative of the sigmoidal activation 

function with respect to the net input. 

The first term in Equation 7 can be specified directly for an output node but not for a 

hidden layer node. For hidden nodes, it is defined recursively in terms of the delta values of 

the nodes above it. The 0; values are passed back through the synapses, or "backpropagated" 

so that the error value for a hidden layer node i is taken as a weighted sum of the errors of 

the nodes in the layers above to which it is connected. This is given by 

n 

Oi = [ci(l - Ci)] L Wji * OJ, 
j=l 

(8) 

where Wj; is the weight on the output line of node j to node i; OJ is the delta value for node 

j in the layer above; and n is the number of synapses for node i. 

The architecture for the FlANN is similar to the multilayer perceptron with backpropa-

gation. The next chapter describes the FlANN and the theory associated with it. 



45 

VII. FUZZY IMAGE ALGEBRA NEURAL NETWORK (FlANN) 

Classical neural networks combine the information at a particular node as follows: 

Ci = f (t Wiiai) I 

j=() 

where Ci is the output node value at upper level node i , a j is the node value at a lower node 

j, Wji is the connecting weight between i and j, and f is the activation function. 

The activation function of the FlANN is motivated by the generalized mean, and is 

useful for defining generalized template operations. This is because the generalized mean 

can represent both linear and morphological operations. The generalized mean for a set of 

numbers {Xi};~l is given by: 

Here, Xi E [0.0,1.0], represents the input fuzzy class memberships, and Wi can be viewed 

as relative importance factors for different criterion. Further, we must have Xl + x2 + 

....... " + X" = 1 [38]. 

One of the properties of the generalized mean that makes it attractive is that the mean 

value always increases with an increase in P, that is, if -00 < P < +00, then we can obtain 

all values from the minimum to the maximum of the data set. Thus, the whole range of 

fuzzy operations from intersection to union and anything in between can be approximated. 

An interesting feature is that P = -1 gives the harmonic mean, P = 0 gives the geometric 

mean, and P = 1 gives the arithmetic mean. 
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Governing Equation for the FlANN 

We first define the operands involved in the fuzzy image algebra neural net Let X = Z 

x Z be the coordinate set, where Z is the set of integers. An image on X with values in the 

closed in~rval [0,1] is a function a: X ~ [0,1]. A template on X is a function t. X ~ [O,I]X. 

The maximum support, So, of the template t, and its minimum support S 1 are defined by 

(9) 

In this thesis we use the subscript ji to designate (j,l) for templates, to ease the notation. 

The governing equation for the fuzzy image algebra neural net is given by: b = a '@,q, 

where 

(10) 

Here, b represents the weighted fuzzy erosion of image a with a parametrized template group 

g given by : g = (t, w; P), where w and t are image algebra templates, and P a parameter. 

Here, a is an image with values in [0,1]. The supports So and Sl are as defined in Equation 9. 

The generalized mean has two important properties which make it a very flexible operator 

and very useful in pattern recognition problems. These two properties when applied to the 

operation of weighted fuzzy erosion give the following two important results. These are 

as follows: 

1. Fuzzy erosion property: The first of these properties is as follows. Let Nj = 

{SO(tii) n Sl(tid}, that is, all the points where tj; is not equal to either 0 or 1. Then 
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I Nj I denotes the cardinality of the set Nj. 

1 
Wji = INjl 

Then if 

for all i,j 

and p~ -00 

then c -+ a IZSI ft. 

Here d = a IZSI It represents the fuzzy erosion of image a with template t and is defined by: 

dj = /\ r(l - tji + ad. 
iESl(tj) 

The ramp function r( x) is defined by: 

r(xl = G x<O 
O<x<l. 

·1 < x 

See Figure 20 for a graph of r. In effect, the weighted fuzzy erosion represented by b should 

approximate the fuzzy erosion c of image a with template t when the above conditions are 

met 

2. Convolution property: The second property is if P =1, and tji = 1 for all i, j, then 

which is given by: 

c = aEBw, 

Cj = L ai *Wji· 

iESu(Wji) 

If w is translation invariant then a EBw represents linear convolution. 

Figure 20. Ramp function r. 

1(.) 
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These two properties of the generalized mean make the activation function of the FlANN 

very interesting. They show the wide range of operations that can be obtained from this 

function, from linear convolution to fuzzy erosion. However, the key point in using this 

activation function is that it is differentiable. This allows us to derive a gradient descent 

learning algorithm using the chain rule, to train the network. 

The weighted fuzzy erosion between a and g is carried out over an image area which 

represents the intersection of the maximum and minimum supports of t. 

The input to the network is an image. We train on N pairs of data, each pair consisting 

of an image ak and a desired output dk ; k = I, .. .N. We wish to find a template group g that 

minimizes the sum of the squares of the difference between the actual and desired output: 

N 

E = L L El(i,j) 
k=l (i.j)d~ 

where 

and where i is the ideal template for fuzzy erosion. 

Learning Schemes 

(11) 

A number of different algorithms were implemented to train the FlANN. Initially the 

network was tested for its convolution and erosion properties. Three learning schemes were 

implemented. Gader suggested gradient descent as a learning scheme [1]. Two other learning 

schemes used were stochastic,learning [39] and simulated annealing. These three schemes 

are now described in detail. 
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Gradient Descent 

1. In this method the cost function is minimized by following the gradient of E. 

2. Algorithm: 

1. The templates t, w are randomly initialized to values in [0,1]. Parameter P is 

randomly initialized to some large negative number. 

2. Training pairs of input image ak and desired output image dk are presented to the net. 

3. Error E is calculated and generalized template g modified using the gradient descent 

learning rules. 

4. Steps 2-3 are repeated until error falls below acceptable level. 

3. Training Ru1es: 

• For Template w: The weights Wji are updated following the gradient of E as follows: 

(12) 

where 

aE = ~ (jlf _d~)ajk. at .. L...J J J at .. ' 
J' k=l J' 

and 

a jk = 2wii (jk) I-P (r[1 _ tii + adP _ (jk) P) . 
aWii pllwII 2 

Further, the value of g£;i is nonzero only when r(1 - tji + ai) E [0,1], and this holds 

true for all the partial derivatives. The computation of ZC and a;; is the same as 

for Wji. 

• For Template t: Learning equations for template t are as follows: 

e~~w = t~~d _ '112 aE 
JI J' '/ at .. 

JI 
(l3) 
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8fk -2Wji (fk) (l-P)/P( [1 ]P-l) -- r -t··+a· 
8tji - UwU2 J' , . 

The value of the parameter 11 can be detennined by the training set size [40]. Thus, 

if we have three classes of data and the number of training images in each class is 

a, b, c respectively, then the value of 11 is detennined by: 

1.5 
11= . va2 + b2 + c2 

• For Parameter P: The equations for updating P are as follows: 

where 

and where 

Stochastic Learning 

Pncw paid 8E = -113-
8P 

(14) 

1. In this method we randomly perturb one of the weight vectors, and if the resultant 

cost function is lower we select this vector and start gradient descent at this point. This 

technique allows us to move about in the error space and jump out of a local minima [39]. 

2. Algorithm: 

1. The templates t, w are randomly initialized to values in [0,1]. Parameter P is 

randomly initialized to some large negative number. 
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2. The initial error EOld is calculated. 

3. Small random changes are made to one of the templates t, W or to parameter P, 

using the following equations: 

t'!!!W = tC!{d ± at 
}I }I 

p71CW = paid ± a p 

Here a represents the small incremental change in the weight vector for the templates 

or in the parameter P. The value of a can be the same for both the templates and P 

or can be different. However within each template the incremental value is constant, 

i.e., the entire weight vector is perturbed by the same amount. The decision to 

increase or decrease the value is taken randomly. The new error E1IeW is calculated 

based on the new weights. 

4. IT E1IeW < Eold then goto step 5. Else repeat step 3. 

5. Keep the new weight set and discard the old. 

6. Gradient descent is carried out for a fixed number of iterations. 

7. Once error falls below some predetermined acceptable cost, we end training, else 

return to step 3. 

8. Steps 3-7 are repeated until error falls below the acceptable level. 

Simulated Annealing 

1. Simulated Annealing is a combinatorial optimization method that minimizes "cost func-

tion" or error. 

2. Algorithm goal: To minimize cost function E 

a. Initialize control parameter Cb and values t, w and P. 
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b. Compute initial cost £Old. 

c. Randomly change P, or one element of t, or one element of w. Compute Enew with 

this new weight vector. 

d. Let ll.E = ETtCW - Eold. If ll.E ~ 0 then accept new values of t, w, P otherwise 

accept them with probability, 

-Il.E 

P = e c;;- Metropolis Criterion. 

(Generate fJ € U[O,I], uniformly and randomly. If p>fJ, accept the new state, 

otherwise retain old state.) 

e. Repeat steps 2-4 a fixed number of times. 

f. Decrease Ck and repeat until Ck = 0 and error falls below an acceptable minimum. 

Simulated annealing will in theory converge to the optimal solution, but in practice this 

does not always happen. This method produces much smaller jumps in error space than in 

the case of stochastic learning, but it also allows the net to jump out of a local minima when 

it accepts a weight vector with a higher cost 

All three methods had different degrees of success in testing the properties of the 

FIANN. However, for the target classification problem, a combination of gradient descent 

and stochastic learning was used and produced the best results. 
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VIII. NETWORK ARCHITECTURE AND TRAINING 

In the .design of an FlANN, an infinite number of architectural models are possible. For 

a particular classification problem, the net's input and output layers will be constant. The 

number of input nodes will depend on the data and the number of parameters we wish to train 

on, while the number of output nodes will be dictated by the number of classes or the type 

of output desired. Thus, the greatest variability exists in the backpropagation nets hidden 

layers. The net can have one or more hidden layers and as many nodes as is desired in these 

layers. For the AlR problem, several different architectures were implemented before the 

final architecture was determined. 

There were two stages to the research. In the first stage the nets properties were tested, 

while in the second stage the FlANN was used for target classification. We now describe

the particular network architectures used for the two stages. 

Stage I: Testing the FlANN's Erosion and Convolution Properties 

Architecture 

In this case, the net is trained on a pair of images, an input image and a desired output 

image. To test the erosion property the desired image used is an image eroded with an ideal 

template. Similarly for testing the convolution property the desired output image consists 

of the training image convolved with an ideal template. The network architecture remains 

the same for testing both properties. A network architecture with a single input-output layer 

is used. 
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The number of nodes in the layer is equal to the number of pixels in the image. For 

instance, if the image is of size 16 x 16, then the number of nodes in the layer will be 256. 

This architecture is shown in Figure 21. 

Training 

1. Convolution property: To test the FIANN's convolution property, the above architecture 

was used and the net was trained using gradient descent rules as given in Chapter VII. 

2. Erosion property: All three training schemes given in Chapter vn are used to test this 

property. Comparative results are given in Chapter IX. 

Stage II: Using the FlANN for Target Classification 

The second stage of the research, after verifying the nets erosion and convolution 

properties was to test the nets classification abilities. The FlANN was used for classifying the 

tanks in LADAR tank data. A network architecture somewhat similar to the backpropagation 

Output Image Values 

i 1··························1 

i i 
Input Image Values 

Figure 21. Network architecture for the FlANN in Stage I. 
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net was used, but with different training rules. We now describe the architecture and training 

in detail. 

Architecture 

This net has an input layer, one or two hidden layers and an output layer. The architecture 

for each layer is determined based on several factors which are now listed. 

1. Input Layer: The number of nodes in the input layer corresponds to the number of pixels 

in a 30 x 50 elevation image, taking values in the closed interval [0,1]. Thus, the input 

layer has 1500 nodes arranged in a 30 x 50 size grid. To facilitate feature discrimination, 

the image is divided into a number of overlapping subimages of size 6 x 8. All the 

subimages overlap by two rows and two columns, except at the edges. The row-column 

overlap for a subimage in the center of the main image is shown in Figure 22. Other 

subimage sizes that we experimented with were 5 x 7, and 10 x 12. 

2. Hidden Layers: Either one, or two hidden layers are used. 

a. Hidden layer 1: The number of nodes in the first hidden layer is determined by the 

number of subsections of the input image. All the pixels from one subsection of 

the input image are connected to one node in the first hidden layer. For instance, 

when the subimage size is 6 x 8, then the 30 x 50 image gets divided into 56 

subimages. Thus, in this case the first hidden layer has 56 nodes. Further, a limited 

interconnection scheme is applied between the input layer and the first hidden layer. 

Each node in the first hidden layer is connected to the 48 image pixels from one 

subsection, and to no other pixels. This hidden layer approximates the operation 
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of linear convolution in order to learn the features of different sections of the input 

image. 

b. Hidden Layer 2: This is implemented in two different ways. 

• Partially connected: Four nodes from the first hidden layer are connected to one 

node in the second hidden layer. This is used so that the net can learn input 

image features more efficiently. The four nodes from the first hidden layer are 

selected so that they represent four adjacent subsections of the input image. This 

is shown in Figure 23. Thus, for an image size of 30 X 50, and a subsection 

size of 6 x 8, the second hidden layer will have a total of fourteen nodes. 

• Fully connected: Eight nodes are used in the second hidden layer, and these are 

o 6 x 8 subsections 

D 1 pixel 

Overlapping pixels 

Figure 22. 6 x 8 subsections of 30 x 50 input image. 
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fully connected with all the first hidden layer nodes. This second layer acts as an 

aggregation layer where the feature information from the first layer is collected 

and learned as one cohesive unit by the net. 

3. Outpu~ Layer: This is the final decision making layer and the number of nodes are 

determined by the number of output classes desired. For instance, for four classes, three 

tank and one nontank, two different architectures can be used. 

a. The output layer can have one node for each class, that is, a total of four nodes. 

b. Use a binary scheme, whereas four classes can be represented by just two nodes as 

shown in Table 2. 

Due to the variations possible in each layer, several different architectures can be imple

mented. Some possible schemes are given in Table 3. 

Of all the schemes possible, two are now explained in detail. The first of these uses two 

hidden layers, while the second uses only one hidden layer. 

Training 

Using two hidden layers 

The architecture for the net is shown in Figure 24. The net is trained as follows: 

Table 2 Classification values at the output layer. 

Class Output node 1 Output node 2 

Tank 1 Low Low 

Tank 2 Low High 

Tank 3 High Low 

Nontank High High 
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1. An elevation image of size 30 x 50 with values in [0,1] is input to the first layer of 

the net The image is divided into subimages of size 6x8 which overlap with adjacent 

images by 2 rows and 2 columns. 

a. Each of these subimages is connected to one hidden node in the first hidden layer. 

Hidden 
Nodes """(11""74'-) o-r""'(8=)-~· 

Input -. 
Nodes (56) 

6x8 
sub 
sections 

~-------------------. 

subsections 

Figure 23. Connection scheme for hidden layers. 

Table 3 Architecture schemes for target classification. 

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer 

1500 56 - 2 

14 (partially 
1500 56 2 

connected) 

8 (partially 
1500 56 2 

connected) 

1500 56 8 (fully connected) 2 
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This layer has a total of 56 nodes. A simple linear convolution is performed between 

the subimage and the node to combine the information from all the data points in the 

sUbimage. Multiple template groups are used for the image, one for each subimage. 

Let these be represented by g1 = (tI, w 1, P 1). This layer extracts the image features. 

b. • Partially connected: Four successive first hidden layer nodes are connected to 

one second hidden layer node. The multiple templates used here are represented 

by g2 = (t2, w2, P2). 

• Fully connected: For fully connected nodes only one template is used. 

c. Finally, the second hidden layer nodes are completely connected to the output layer 

Output 
Layer 

( Fully 
Int~ected) 

Hidden 
Layer 2 
(8 nodes) 

(partially 
Interconnected) 

Hidden 
Layer 1 

(56 nodes) 
(Each node 
connected to 
one subirnage) 

Classification 

o 0 1 0 

Input Layer -0' 
f 

i 
/ 

--/ 
. ---_____ L ____ L ____________ /' 

Weighted 
Fuzzy 
Erosion 

Weighted 
Fuzzy 
Erosion 

Linear 
Convolution 

Learning 

Stochastic 
& 

gradient descent 

Stochastic 
& 

gradient descent 

Gradient descent 

Figure 24. Network architecture I for the AANN 
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nodes. This generalized template for classification in this layer is represented by g3 

= (t3, w3, P3). 

2. The t and w templates associated with the generalized templates are initialized randomly 

to values in [0,1]. The parameter P is initialized to some negative number. In gl, PI 

= 1, since we are trying to simulate the linear convolution property of the generalized 

mean. All the templates are translation invariant. 

3. The output at all the nodes in the hidden and output layer.s is calculated successively 

using weighted fuzzy erosion, as follows: 

b=a~q 

bj = [ L Wji * r[l _ tji + adP] 1/ P 

ifSu(tj)nSl (tj) 

4. Training the weights: A modification of the standard backpropagation network is used. 

A training image is input to the net. The node outputs are calculated for the successive 

layers up to and including the output layer. Knowing the desired values for the output 

nodes, error is calculated for that image. The weights are trained using a combination 

of stochastic training and gradient descent techniques. The template weights are updated 

based on the error surface. At each layer stochastic training is carried out. This allows 

the template weights to move around in error space and search for a global minima. The 

backpropagation law then adjusts these weights along the error gradient. The weight 

training for each layer is now described in detail. 

a. Output Layer: For each presentation of the training data the following two types of 

training are carried out: 

• As each successive input is presented to the net, the output at the final layer and 

the error associated with the input are calculated. The weight vectors for g3 are 
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perturbed and the output calculated using Equation 14. Error ej for the input 

image is calculated by taking the sum of the squared difference between actual 

output bj and desired output bdj. over all output nodes as follows: 

n 2 

ej = L (bj- bj) 
j=l 

where n is the number of output nodes. This process is repeated iteratively 

recalculated until we obtain weight vectors for g3 which gives us a lower error 

for that image. This is done until we get a lower error or for 25 iterations, 

whichever comes first. 

• Using the set of weights for g3 obtained after stochastic training the partial 

derivatives are calculated as per the gradient descent rule. A combination of 

stochastic learning and gradient descent gives the best results for this net. Batch 

mode training is carried out using the rules given in Chapter 3. All the training 

images are passed through once, before the template weights are changed as per 

equations 12, 13, 14. 

Stochastic training is carried out for each of the training images. After all the 

training inputs have been presented, weights are updated based on the total error of 

the system. The total error is calculated using Equation 11. 

b. Hidden Layers: The same training procedure is carried out for both hidden layers. 

This is similar to the training for the output layer weights. The chain rule is used to 

derive the learning rules. The training is now described in brief. 

• Initially, stochastic training is carried out. The weight vectors for g2 are 

perturbed, and node values calculated at the hidden and output nodes using 

Equation 14. Error is calculated for the output nodes using Equation 14 and 
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the process repeated until a lower error is obtained or 25 iterations are done, 

whichever comes first. 

• Using the new weight vector for g2, the partial derivatives for E with respect to 

t, w, and P are calculated. Batch training is perfonned. 

c. The training images are presented in iterative fashion, with each complete presenta

tion counting as one iteration. The weights are trained until the error at the output 

nodes is very small, of the order of 10-3 as compared to an initial error of above 20. 

d. The network is now trained and ready for classification. 

5. Testing the network: The net is now tested on tank elevation images, that were not 

represented in the training set. 

Using one hidden layer 

The net has an input layer, one hidden layer and an output layer. This net is identical in 

all respects to the previous one except that it uses just a single hidden layer. 

1. Input Layer: This has 1500 nodes corresponding to the pixels of the 30 x 50 input 

elevation image. This is identical in all respects to the input layer in the previous net. 

2. Hidden Layer: This is identical to the first hidden layer of the previous net. It has 56 

nodes, each node corresponding to a 6 x 8 subsection of the input image. There is only 

partial connectivity between the input and hidden layers. 

3. Output Layer: Number of nodes correspond to the desired number of classes. This layer 

is completely connected to the hidden layer, and performs classification based on the 

image features passed to it. 
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Figure 25. Network architecture II for the FIANN 
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4. Training the net: Network training for the output and hidden layers is the same as for 

the previous net 

The results obtained are presented in the next chapter. 
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IX. IMPLEMENTATION AND RESULTS 

The net implementation was carried out in two stages. In the first stage a one layer 

FlANN was designed whose training data consisted of N pairs of an input image and a 

corresponding desired output image. The FlANN's erosion and convolution properties were 

tested and optimal training rules obtained. In the second stage, a multilayer FlANN was 

implemented to carry out target classification. A more detailed description of each stage 

now follows. 

Testing the FlANN's Erosion and Convolution Properties 

Erosion property 

A one layer net was implemented in which the number of nodes equalled the number of 

pixels in the input image. The network architecture and training are described in the previous 

section. The input was an image of size 16 x 16 or 64 x 64, and the desired output was its 

corresponding fuzzy eroded image c obtained as follows: 

Cj = /\ r(l - tji + ad. 
ieSl(tj) 

Figure 26 shows one input and corresponding desired output pair. The generalized template 

g was initialized such that Wj; = l/INjl for all i, j, where Nj = {So(t) n Sl(t)}; template t 

and parameter P are initialized randomly. The net was trained to "learn" a template g such 

that weighted fuzzy erosion of input a with this template would produce the same output 

image as would the fuzzy erosion of a with i, where i is some template commonly used for 

fuzzy erosion. Figure 27 shows the template used for creating the desired output, as well as 

the templates generated by the net Several different training rules had to be applied before 
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an optimal training rule was obtained. The net was trained using three different learning 

schemes. These were: 

1. Stochastic Learning 

2. Simulated Annealing 

3. Gradient Descent 

Figure 27 shows the template values obtained for the fuzzy erosion case with the different 

learning schemes. As can be seen, none of the templates match the original template exactly. 

However, it should be noted that the operations of fuzzy erosion and weighted fuzzy erosion 

are algebraically different operations, hence two different templates could produce the same 

output with these two operations. The lowest error, calculated using Equation (11), was 

obtained using the stochastic learning algorithm. Simulated annealing and gradient descent 

Original image Desired output image 

Figure 26. Input and corresponding fuzzy eroded image. 
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both did not give good results for this experiment. The output images for stochastic training 

are given in Figure 28. 

Convolution Property 

This was tested similarly on a one layer net where number of nodes equalled the number 

of pixels. Generalized template g was initialized such that P = 1 and tji = 1 for all i, j. The 

net was trained to "learn" a template g such that weighted fuzzy erosion of input a with g 

would be equivalent to convolution of a with template w given by: 

Cj = L ai * Wji 

iESo(tj) 

Figure 29 gives an input image and its desired output image. This property was tested 

using the gradient descent scheme. This learning method gave fairly good results. As can 

0333 0.083 0.331 -0.56 -0.06 0.41 

0.416 
J: \, 
{0..l O.4H 0.75 ~ -3.7 

0.333 0.083 0.333 0.0 -1.01 0.35 

Original Template Template from gradient descent training 

0.9 -.484 1.227 .401 .102 .388 

.484 
/.), 

.444 ~"1} 
.544 V1.i\ .391 

1\ .J 
.603 .516 .066 .333 .09 .54 

Template from simulated annealing Template from stochastic learning 

Figure 27. Templates obtained for different training schemes. 



67 

be seen in Figure 30, the template values do not correspond to one another but the template 

shown below produced an output image closest to the desired image. This is displayed in 

Figure 31. 

Target Classification using a Multilayer FlANN 

The network architecture and learning rules are explained in the previous chapter. Three 

different classification problems were addressed: one class, two class, and a three class 

problem. These are now described in detail. 

Desired output image 
Image obtained from weights trained by the 

stochastic learning scheme. 

Figure 28. Desired output and actual output produced by the FlANN. 
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One class problem 

The first test that was done was to train the net on a single data class. The tank used 

was the M60. The FlANN was trained on an M60 of one particular orientation and tested 

on an M6() of a different orientation. The results for this are given in Table 4. 

Original Image Image convolved with ideal template 

Figure 29. Input and desired output image pair . 

. 333 .083 .333 4.06 3.08 5.6 

.416 V ~ 
i\L<y .416 4.51 @ 5.89 

.333 .083 .333 3.85 3.54 6.89 

Original Template Template from gradient descent learning 

Figure 30. Results for the convolution property of the FlANN. 
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Two class problem 

The two classes consisted of one tank and one nontank class. The tank used was an M60 

and the nontank data consisted mainly of terrain data. The results are given in Table 5. 

Desired output image Image obtained from trained weights 

Figure 31. Desired and actual output for convolution property. 

Table 4 Results for one class problem using the flANN. 

Training Data Recall Data % Classified as the % Classified as the 

correct tank wrong tank 

M60 I 20 20 78% 22% 
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Three class problem 

The net was trained on three different sets of training data consisting of the following 

sets of classes: 

1. Data Set I contained the following classes: 

a. Tank of type M60. 

b. Artillery of type M53. 

c. Nontank. 

2. Data Set II contained the following classes: 

a. Tank of type M47. 

b. Missile launcher of type M42. 

c. Nontank. 

3. Data Set III was: 

a. M114 artillery tank 

b. 2.5 ton truck 

c. Nontank. 

Table 5 Results for two class problem using the FlANN. 

Training Data Recall % Classified as % Classified as False alann rate 

Data the correct tank the wrong tank 

M60 20 10 90% 8% -

Nontank 20 10 70% 30% 
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The results obtained are given in Tables 6, 8, and 10. "False alann" signifies that a nontank 

object was identified as a tank. The recall data was a combination of training data and new 

inputs. Sample range images for the various classes can be seen in Figures32, 33, 34 and 

35. As can be seen in this figure, the data is varied. The tanks are at several different 

orientations and the images are of different sizes. We compared the FlANN's performance 

on this data with that of a regular backpropagation net The backpropagation net performed 

better than the FIANN, but the results were still not very good. These results are given in 

Tables 7, 9, and 11. 

Considering the complexity of the network, the FlANN gave a reasonably good perfor-

mance on the range data. Further, the data used for training purposes was real data. This 

data was extracted from several different range images, each having a different range offset 

Table 6 Results for M60, M53, and nontank using FlANN. 

Training Data Recall Data % Classified as the % Classified as False 

correct tank the wrong tank Alarm 

M60 32 16 83% 17% -

M53 32 16 76% 24% -
Non-tanks 32 8 80% - 20% 

Table 7 Results for M60, M53, and nontank with backpropagation. 

Training Data Recall Data % Classified as the % Classified as False 

correct tank the wrong tank Alarm 

M60 32 16 88% 12% -

M53 32 16 91% 9% -

Non-tanks 32 8 84% - 16% 
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and sensor angle. The horizontal and vertical resolutions also varied in these images. The 

elevation data obtained was very sparse and had to be filled in using linear interpolation. 

Thus, the data used was fairly noisy. This could be a reason for the inconsistent results. 

Table 8 Results for M42, M47, and non tank using FlANN. 

Training Data Recall Data % Classified as the % Classified as False 

correct tank the wrong tank Alarm 

M42 20 10 74% 26% -
M47 20 10 68% 32% -
Non-tanks 20 10 84% - 16% 

Table 9 Results for M42, M47, and nontank with backpropagation. 

Training Data Recall Data % Classified as the % Classified as False 

correct tank the wrong tank Alarm 

M42 20 10 78% 22% -
M47 20 10 75% 25% -
Non-tanks 20 10 86% - 14% 

Table 10 Results for M114, 2.5T truck, and nontank using FlANN. 

Training Data Recall Data % Classified as the % Classified as False 

correct tank the wrong tank Alarm 

M114 20 10 80% 20% -
2.ST 20 10 74% 26% -

Non-tanks 20 10 82% - 18% 
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Table 11 Results for M114, 2.5T truck, and nontank with backpropagation. 

Training Data Recall Data % Classified as the % Classified as False 

correct tank the wrong tank Alarm 

M114 20 10 86% 14% -
2.5T 20 10 82% 18% -
Non-tanks 20 10 84% - 16% 

.~~. 

M60 Tanks (30 x 76) M60 Tanks (30 x 86) M60 Tanks (48 x 78) 

Figure 32. Sample range images of M60 tanks. 
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M53 Tanks (26 x 70) M53 Tanks (62 x 72) M53 Tanks (48 x 78) 

Figure 33. Sample range images of M53 tanks. 

M47 Tanks (34 x 52) M47 Tanks (48 x 76) M47 Tanks (98 x 218) 

Figure 34. Sample range images of M47 tanks. 
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M42 Tank (63 x 62) Nontank (Tree) 

Figure 35. Sample range images of an M42 tank and a tree. 
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X. CONCLUSIONS 

Various experiments were carried out to improve the performance of the net. The starting 

point was to try various learning algorithms to improve weight training. The three methods 

used were gradient descent, stochastic learning and simulated annealing. Gradient descent 

gave fairly promising results for the FIANNs convolution property, while stochastic learning 

performed well for its erosion property. Simulated annealing did not perform well in training 

the net. Stochastic learning allowed the weights to jump to a lower error space and then used 

a traditional method like gradient descent from that point. This facilitated fast training and 

helped avoid the problem of getting stuck in local minima, which gradient descent techniques 

can run into. 

The next stage of research was to apply the net for target classification. The first step 

here was designing the network architecture. Once again, we experimented with a number 

of different architectures. The basis for the design was a standard backpropagation network. 

We used two main architectures, one with a single hidden layer, and another with two hidden 

layers. The one layer net did not perform well. Since we were using an input image of size 

30 x 50, this single layer had to aggregate information from 1500 pixels and pass them to 

the output layer for classification. Further, we allowed only partial connection between the 

input layer and this hidden layer. Thus this layer learned the features of the input image, 

but the net had no means of aggregating this information. Using a second hidden layer to 

combine the information helped improve classification results. Thus the final net used had 

two hidden layers. 

Another point for experimentation was to change the image subset size, thus changing 

the features learned by the first hidden layer. We experimented with different sizes such as 
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5 x 7, 10 x 12 and finally settled on 6 x 8. The reason for not taking a smaller size was 

purely practical. Training time increased considerably, plus the program compiler could not 

handle such large amounts of data at a time. Larger subimage sizes led to fewer features 

for the net to learn which reduced the classification percentages. So we optimized by taking 

a midsize subimage. 

Once subimage size and network architecture had been decided on, data had to be run 

on the net to obtain classification results. The first set of experiments was carried out for 

two classes, an M60 tank class and one nontank class. We obtained a classification rate of 

90% in this case. However the false alarm rate was a high 30%. 

To test the nets perfonnance on variant data, we tried a one class problem in which 

the net was trained on a tank of one orientation and then tested on a similar tank, but of a 

different orientation. The FlANN did not perfonn well here, giving just 78% classification. 

The final step was to test the net's classification abilities when more than one type of 

tank was used. Three different cases were tried and the net gave average results in all three. 

Several factors came into the picture and contributed to these results. The first factor is 

the data used in the research. We use range data from LADAR tank data. This data has a 

high level of resolution. It is first converted to height data using the cartesian method, and 

then classified. However, the height data obtained through the cartesian method was noisy 

and did not give distinct features for each type of tank. It had several problems associated 

. with it, such as irregular elevation points and range shadow. Hence classification results 

were not very good. A different approach for converting range data to height data would 

help in this case. Secondly the net was very sensitive to small variations in weights and 

depending on the initial weights, classification results could vary considerably. Third, one of 
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the basic conditions for the generalized mean was that the sum of the numbers whose mean 

is being taken should be zero. No such precondition was applied to this data. All these 

factors added together to produce only fair results. 

The FIANN shows great potential as a pattern classifier [24]. The network's differentiable 

activation function, based on the generalized mean, requires careful selection of initial values 

for the parameters. The training schedule for the FlANN, as formulated in our research, is 

a complex combination of several different training schemes. Hence, parameter selection 

is a critical factor in network training. The results obtained so far are quite promising, 

and further research into the FlANN appears viable. Selection of initial starting points for 

the weight vectors, finding optimum values for the various parameters used in training and 

weight update, as well as different training schemes for the net, are all areas requiring further 

investigation. Further, the network architecture proposed in the report, which is a variation of 

the standard backpropagation net, is just one type of architecture possible. For example, this 

net could be modified to have different numbers of hidden layers and nodes. A completely 

different architecture, one that is not based on the backpropagation algorithm, could also 

provide more experimentation. The network's performance on data other than elevation data 

would be an indicator of its pattern recognition capabilities. A more efficient conversion 

from range to elevation data, such as the locus method proposed in [29], could be explored 

to improve performance of the system. 

The results from this thesis will be presented at the Fifth Annual Image Algebra and 

Morphological Image Processing Conference in San Diego, California, July 24 - 29, 1994. 
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