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CHAPTER 1: INTRODUCTION 

It is an accepted fact that perceptual information 

undergoes preprocessing and is transformed as it passes from 

the periphery of the nervous system to the higher centers in 

the brain. Apparently, one of the objectives of 

preprocessing is to decrease redundancies and enhance 

features in the afferent information, so as to decrease the 

amount of processing required at the brain. The brain 

interprets the arriving information and associates it, (it 

is believed), with certain classes or concepts. 

Neurons are the processing units in the nervous system. 

Neurons have intrinsic properties that characterize their 

responses to stimuli; but neurons are not independent units. 

Neurons interconnect and communicate extensively with each 

other. Thus, when a stimulus is applied, many neurons are 

activated. Each neuron receives input from other neurons in 

the system, integrates the converging information, and 

produces a response governed by its own intrinsic 

properties. Processing of the information depends on the 

neurons' properties and on their interconnections. 

The purpose of the study was to describe and discuss 

possible properties and interconnections of neurons in an 

idealized sensory network and to evaluate their functional 

significance in the processing of topographic information. 
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The properties and interconnections proposed were based on 

physiological evidence obtained from classical literature. 

Assumptions were introduced where there was a lack of 

physiological evidence. 

A mathematical model was built based on the 

quantitative description of neuron properties and 

interaction characteristics. The model was made up of units 

(which represented the neurons of the nervous system) that 

responded to a stimulus according to a 'power law' transfer 

function. The units were arranged in levels (that 

represented the synaptic stations in the nervous system) 

with lateral interactions among units in the same level and 

convergent and divergent interconnections to units in other 

levels. The number of units decreased at each of the 

successively higher levels of the hierarchically organized 

model. The implemented model had a hierarchical 

organization and a pyramidal structure. 

A computer program was written and run to evaluate the 

model. Two model versions were tested. First, a one 

dimensional model with linear and piecewise linear units was 

tested. Then, a two dimensional model, which was an 

extension of the one dimensional model, was also tested. 

The time invariant receptive fields of units in the one 

dimensional model were evaluated. The receptive fields were 
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characterized by an on-center response for units with self-

inhibition and an off-center response for units with self-

excitation. In addition, when the piecewise linear units 

were introduced, adaptive receptive fields resulted. The 

range of the inhibitory response of the units was limited 

resulting in fields with large inhibitory regions and 

decreased disinhibitory effects. The adaptive response was 

most noticeable· when the response to a step function was 

tested. 

It was demonstrated that a transient response with 

respect to time can be obtained from units with sustained 

response as a result of feedback mechanisms. External 

interconnections; such as self-feedback, can serve the 

purpose. Thus, the response with respect to time of a unit 

can be governed by the interconnections of the external 

network. The transient response of a unit combined with a 

nonsymmetric receptive field yielded a unit with a response 

that was sensitive to the direction of motion of the 

stimulus. 

Finally, a time invariant two dimensional model was 

tested. This model proved sensitive to spatial features of 

the input stimulus. Edges were enhanced in the first 

hierarchical level and sensitivity to edge orientation was 

observed in the second and third levels. Corners were 
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detected in the last hierarchical level, and were 

represented in the response map as peaks surrounded by 

moderate activity. 
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CHAPTER 2: LITERATURE REVIEW 

The mathematical model built was based on a number of 

physiological facts found in the classical literature. Most 

of the information was obtained from studies of cats and 

monkeys which, like man, are species in the higher end of 

the evolutionary ladder. The purpose of this chapter is to 

present the information that was used in synthesizing the 

model. 

The somatic and visual modalities were considered as 

primary sources of physiological evidence. These are 

topographic modalities with similar functional ~nd 

organizational characteristics in their pathways from the 

sensing surface to the higher centers. The first objective 

of this review is to highlight those features that are 

common to both modalities and might therefore be basic 

components in the processing of sensory information in the 

afferent nervous system. 

The concept of receptive fields is introduced and 

tactile as well as visual receptive fields at different 

levels of the afferent pathway are described. Proposed 

models for receptive fields by Rodieck, Marr and others are 

discussed. At the cortical level, the work by Hubel and 

Weisel is presented. Finally, the studies by Hartline and 

Ratliff concerning the eye of the horseshoe crab are 
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discussed along with the reasons why their findings were 

applied to the present model. As shall be seen l ater, 

lateral inhibition may play an important role in the 

determination of the receptive field and the Hartline-

Ratliff equations appear to correctly describe the 

quantization and distribution effects of such inhibitory 

interactions. 

Some generalities in the somatic and visual pathways 

can be deduced after observing the anatomical constitution 

of both afferent systems. According to Kandel and Schwartz 

(1981), the pathway for the somatic sense begins with a 

receptor sensitive to a specific submodality, for example a 

Meissner corpuscle that mediates superficial touch. Large 

myelinated fibers from these receptors in the skin enter the 

spinal cord via the dorsal roots and branch upward to 

synapse in the medulla with cells in the dorsal co~umn 

nuclei (the gracile and cuneate nuclei}. Second order 

sensory neurons in the dorsal column nuclei cross the 

midline in the medulla and ascend the brainstem on the 

opposite side and form synapses with cells in the ventral 

posterior lateral nucleus of the thalamus. The third order 

neurons in the thalamus send axons to the primary and 

secondary somatic sensory regions in the cortex of the 

brain. 
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The peripheral anatomical path for visual information 

can be described as follows. The photoreceptors (cones or 

rods) synapse on bipolar cells in the outer plexiform layer 

of the retina. The bipolar cells transmit the information 

to the ganglion cells with which they synapse at the inner 

plexiform layer. The ganglion cells, in turn, connect to 

either the lateral geniculate nucleus of the thalamus or to 

the superior colliculus (an important center for the control 

of head, neck, and ocular movements) . Finally, the neurons 

originating in the lateral geniculate nucleus project to the 

striate cortex. 

At each synaptic nucleus, the cell that projects out of 

the nucleus (relay cell) to the next nucleus (relay station) 

receives synaptic input from many afferent fibers, each 

afferent fiber terminating on many cells . Thus, convergence 

and divergence are characteristic i nteract ions at the relay 

stations. 

In addition to the relay cells, the input fibers also 

activate interneurons that can be either inhibitory or 

excitatory. In the visual system the horizontal cells make 

lateral inhibitory interconnections at the outer plexiform 

layer, while the amacrine cells are interneurons at the 

inner plexiform layer of the retina. Both are examples of 

local interneurons that contribute to the transformation of 
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information transmitted to the brain. In the touch sense 

the local interneurons at synaptic nuclei produce two types 

of inhibition; presynaptic and postsynaptic. Inhibitory 

interactions are general and are encountered repeatedly in 

the relay stations of both sensory systems. 

One may deduce from the above description, that for the 

two sensory modalities the information is passed from one 

nucleus to the riext one along relay neurons. In some nuclei 

the information may be transformed by the relay station 

interneurons and local interconnections and is then sent to 

the next processing stati~n. This type of processing is 

representative of hierarchically organized systems. 

Having described the general connectivity 

characteristics of the touch and vision systems, it is 

necessary to examine the processing properties of the 

neurons themselves. Neurons may be functionally d~scribed 

in terms of their input-output relationship. This relation 

has been determined experimentally by applying a controlled 

voltage across the neuron's membrane and measuring the 

resulting elicited response frequency [Stevens, 1966]. In 

general, the results show that the slope of the relation is 

progressively smaller for increasingly intense stimuli and 

that the response is negligible for stimulus intensities 

below a critical threshold value. A qualitatively similar 
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curve is obtained for receptor response to stimulation of 

the proper modality. The curve has been expressed in terms 

of a power law [Stevens, 1971], 

w = K(I-Io)n (2.1) 

for I ~ Io and w = 0 otherwise, 

with, 

w: firing rate 

I: applied intensity 

K: constant value 

I 0 : threshold 

n: exponential. 

The exponential value depends on the modality, 

experimental conditions, etc. In general the value of n 

varies within 0.2 and 1.0 s as to fit the compression of the 

response curve in the upper range of stimulus intensities 

(saturation effects). 

We can assume that a receptor is a special type of 

neuron that shares the power law input-output relationship 

but differs in that its depolarization arises through the 

transduction or transformation of external signals into 

neural activity rather than through the summation of the 

activity of the converging neurons. 

More centrally located neurons of ten present 

spontaneous activity. They often have an intrinsic or 
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resting firing rate which is different from zero. Stimuli 

may cause either an increase or a decrease of discharge in 

these neurons. Threshold in this case is defined as the 

stimulus magnitude that provoked a deviation in firing from 

the intrinsic firing rate [Somjen, 1972]. 

It is interesting to note that for small values of the 

exponential n, the power law approximates a logarithmic 

function. Therefore, the classic psychophysical law of 

Fechner-Weber can be considered a special case of the power 

law [Stevens, 1971]. This, and the fact that recordings at 

the first and higher order neurons yield input-output 

relations that can be expressed in terms of the power law, 

may have important implications, although it is not yet 

known how the power law at the neural level relates to the 

power law at the perceptual level (if , i n fact, they are 

actually related). 

To evoke a response in a neuron, the stimulus must be 

applied within the neuron's receptive field. The receptive 

field has been defined as 'that area in space where an 

adequate stimulus evokes a discharge of impulses in the 

afferent unit' [Mountcastle, 1967]. In the context of the 

present study, the 'area in space' will be interpreted as 

the skin surf ace when ref erring to the touch sense and as 

the retina when referring to vision. The concept of 
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receptive field and its properties i s important in that it 

is representative of the processing faculties of the portion 

of the afferent system extending from the input surf ace to 

the monitored neuron, although it does not elucidate the 

interconnections and synaptic interactions in the network. 

Neurons in the afferent nervous system are not only 

sensitive to stimulus intensity but to other stimulus 

factors as well. Other factors that affect the response of 

a neuron may be: stimulus shape, stimulus orientation, 

stimulus size, and time factors such as time of stimulation, 

time between stimulat ions, and stimulus motion. The number 

of factors is large and all affect the neuron's response to 

a larger or smaller degree. Optimum st imuli result in 

maximum discharge. 

The receptive field of ganglion cells in the cat retina 

was mapped by shining a spot of light on different areas of 

the retina [Kuffler, 1953]. Two basic receptive field types 

were found: on-center and off-center. The receptive fields 

were roughly concentric to the ganglion cell. I n an on-

center receptive field, light produced an excitatory 

discharge when applied in the center, whereas, if appli ed in 

the surrounding region, inhibition of the discharge with 

respect to its intrinsic firing rate occurred. The center 

and surround were antagonistic and tended to cancel each 
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other when the entire receptive field was uniformly 

illuminated. The boundaries of the receptive field could 

not be delineated accurately. They contracted under h igh 

background illumination and expanded during dark adaptation. 

Off-center ganglion cells responded in exactly the opposite 

way, showing inhibition in the center and exc i tation in the 

surround. 

Kuf f ler suggested that the antagonist response in the 

areas of the receptive fields could result if the 

connections of the central receptors to the ganglion cell 

were of one type (either excitatory or inhibitory) while the 

other type of connection was used for the interconnection of 

the surrounding receptors to the ganglion cell. He also 

noted that ganglion receptive fields were overlapping, that 

i s, one spot of light shone in the retina el i c i ted discharge 

from many ganglion cells. Interestingly enough, o~erlapping 

receptive fields projected to neighboring ganglion cel l s; 

neurons processing related information were clustered 

together. This is an important principle of neural 

organization as will be seen below. 

Other models were proposed for cat retinal receptive 

fields. Some were functional models that applied linear 

systems techniques. In his model, Rodieck [1965] assumed 

superposition to be valid. He expressed the response of the 
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'unit' ( the 'units' of the model were representative of 

neurons in the nervous system) to a moving stimulus as the 

convolution of the shape of the static receptive field of 

the unit with a term which was, in turn, the convolut ion of 

the first derivative of the shape of the stimulus with the 

temporal step response. The function he chose for the 

representation of the receptive field shape was the sum of 

two two dimensional Gaussian functions , a narrow positive 

going one and a broad negative going one. These two 

Gaussian functions did not have a special physical 

significance; only the ov~rall receptive field shape was 

considered. The model was consistent with experimental 

results, but the ·analyti c expressions chosen for the 

receptive fields and temporal step response were very 

sens i tive in describing t he response to moving stimul i at 

very high or very low ve l oc ities (short stimuli in time and 

long stimuli in time). 

A model of directionally sensit ive receptor units and 

their use i n the process i ng of visual motion was proposed 

[Marr and Ullman, 1981]. These units computed the 

convolution of the geometr ica l shape of the receptive f i eld 

with the image. The shape of the receptive field was 

obtained from the Laplacian of a Gaussian, v2G. This 

differed little from the 'difference of Gaussians' shape, 
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provided the respective standard deviations were correctly 

adjusted. 

Intensity changes were detected by noting the zero 

crossings of the convolution of the Laplacian operator with 

the image, 

S(x,y,t) = v2G*I ( 2 • 2 ) 

which Marr suggested corresponded to the response of an X 

type ganglion cell (sustained response), while the 

measurement of its partial time derivat i ve, 

T(x,y,t) = a(V2G*I) / ot ( 2 • 3 ) 

corresponded to the response of a Y type cell (transient 

response). 

These components combined to conform a directionally 

selective zero crossing detector. The receptive field had 

three components: a sustained on-center X un i t, a sustained 

off-center X unit, and a transient or Y unit. The output of 

the X units was combined by a logical AND gate. The AND 

gate detected the presence of a zero located between the two 

X units. The transient Y unit indicated the direction of 

motion at the point where the zero had been detected. 

The retinal cells, of characteristic on-center and off-

center fields, project to the next relay station, the 

lateral geniculate nucleus (l.g.n.). Therefore, the l.g.n. 

cells are considered to be in a higher hierarchical level 
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than the retinal cells. What do the receptive fields of 

l.g.n. cells look like? The recorded receptive fields at 

the l.g.n. consisted of three concentric zones: center, 

antagonistic surround, and synergistic outer surround 

[Hammond, 1973]. 

Similarities to cells at the retinal level (on-center 

and off-center receptive fields) were observed with either 

sustained responses (X cells) or transient responses (Y 

cells). Contrary to retinal cells, the surrounds of the 

l.g.n. fields showed a more powerful antagonism towards 

their centers. 

The receptive field shape was explained in terms of the 

contribution of the lower converging retinal cells. If each 

single cell in the l.g.n. received field center input from 

one or several retinal cells of the same type (all on-center 

or all off-center), and field surround input from a number 

of complementary type retinal cells (or same type via 

inhibitory interconnections), then the retinal surround 

would give rise to the synergistic outer surround of the 

l.g.n. receptive fields. 

Application of a stimulus (spot or annular) in the 

synergistic surround of the field resulted in a response 

having the same characteristics as those obtained for a 

stimulus applied in the center of the field. For example, 
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let us assume that that the l.g.n. inhibitory surround was 

the result of inhibitory interconnections from surrounding 

on-center retinal cells. When the inhibitory area of the 

receptive field of a retinal cell was stimulated, the 

discharge of the retinal cell decreased. Because of the 

inhibitory nature of the projection of the retinal cell to a 

l.g.n. cell, a decrease i n the activity of the retinal cell 

resulted in a decrease of the inhibitory input to the l.g.n. 

cell. As a consequence the response of the l.g.n. cell 

increased; there was disinhibition. 

Excitatory and inhibitory interactions were also found 

in touch receptive fields. Stimuli delivered on the 

contralateral forearm of a monkey provoked changes in the 

discharge rate of central neurons in the post central gyrus 

of the brain [Mountcastle, 1974]. The cell was excited by 

stimuli delivered on the preaxial side of the arm .and 

inhibited by stimuli delivered within the surrounding area. 

Mountcastle suggested that this form of spatial response 

could be caused by inhibition exerted at every level of the 

afferent pathway by way of local interneurons. 

Other experimenters reported that the recept i ve fields 

of cells in the cat visual cortex suggested a degree of 

complexity at the upper levels that far exceeded anything 

seen at the lower, more peripherial levels (Hubel and 
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Weisel, 1962]. A number of functionally different cell 

types was found, the great majority falling i n two groups: 

simple and complex cells. 

The simple receptive fields were radially asymmetric 

with antagonistic excitatory and inhibitory areas separated 

by straight lines. The spatial distribution of excitation 

and inhibition differed from cell to cell, and their effects 

cancelled when the stimulus consisted of uniform diffuse 

illumination of the entire receptive field. The most 

effective stimuli found were slits, edges, and dark bars. 

Shape, size and position of the stimulus were critical 

features for the response of the cell. Many of these cells 

increased their sensitivity to moving stimuli. 

Contrary to simple receptive fields, the response of 

complex cells could not be predicted from maps made with 

small circular spots. The excitatory and inhibitory regions 

could generally not be determined. These cells were 

responsive to spatial features of the applied stimulus such 

as slits, edges, and dark bars. Stimulus shape and 

orientation were important factors in determining the 

response, but, unlike simple cells, stimulus position was no 

longer a critical factor. The cell fired for several 

positions of the stimulus within the receptive field. Other 

variants in the response of complex cells required 
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additional constraints in the stimulus for improved response 

[Kuffler et al., 1984). For example, angles or corners i n 

the stimulus shape as well as direction of motion were 
\ 

important features that resulted in enhanced response of 

these cells. 

It was found that one or more of the receptive field 

characteristics tended to be shared by neighboring cells 

[Hubel and Weisel, 1962; Hubel, 1963). The retinas 

projected upon the cortex in an orderly fashion. The cortex 

was divided into discrete columns and within each column the 

cells shared the same rec~ptive field main axis orientation. 

These cells were either simple or complex, their receptive 

fields were situated in the same region of the retina and 

usually overlapped, although they did not precisely 

superimpose. 

Hubel and Weisel proposed a hierarchical organization 

for the system. The simple cells received their afferent 

i nput from l.g.n. cells, while the simple cells in the same 

column projected directly to the higher order complex cells. 

A similar orderly projection of the tactile receptive 

fields to the cortex was found [Mountcastle, 1957]. The 

cortex was organized into narrow vertical columns. Each 

neuron in a vertical column was activated by the same single 

submodality: touch, joint position or movement of the 
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hairs. In addition, the neurons of the same columns had 

similar receptive fields. These columns can be considered, 

analogously to columns in the visual cortex, to be 

functional units that process the information coming from 

lower levels and projecting it to the association areas 

where information from all senses is integrated. 

The receptive field approach allows the understanding 

of the behaviour of individual cells, but fails to deal with 

the problem of the relationship of one cell with its 

neighbors in the coding of information by cells at the same 

level. For technical reasons, simultaneous monitoring from 

a group of cells is very difficult to achieve in practice. 

Nevertheless, several theories have been put forward. 

Erickson (1968] suggested some principles of neural 

coding common to all sensory modalities. His view opposed 

the feature detector principle, suggested by Hubel and 

Weisel, because, according to him, there were simply not 

enough neurons to represent the entire range of possible 

stimuli. His hypothesis allowed the possibility of having 

more neural messages or functions than there were neurons. 

The information in the nervous system existed in the form of 

relative amounts of activity across many neurons. That is, 

the activity of a single neuron did not give by itself any 

unequivocal information concerning the stimulus quality and 



20 

intensity; the activity of each neuron contributed to a 

'general pattern of activity'. The function of each neuron 

could not be given in terms of 'red' or 'vertical edge 

detector', for a 'red' neuron participated in the 'green' 

messages and a 'vertical detector' was involved in the 

representation of lines with other orientations. The 

activity of a cell was meaningful only in the context of the 

activity of parallel cells . 

This hypothesis was shared by Mountcastle [1967], who 

proposed the 'frequency profile in a population' to be a 

neural code. This implied that the discharge frequency of a 

single unit to input stimulus intensity was extended across 

large numbers of neurons. The stimulus contour, position, 

and extent were mapped to neural coordinates as a 'frequency 

profile' of the neural units. 

Leibovic [1982] analyzed the w~y i nformation was 

transmitted from one processing level (source level) to a 

second processing level (target level). For his discussion, 

Leibovic considered a number of features of the nervous 

system organization. He assumed that a layered arrangement 

of cells represented a processing level, that convergence 

and divergence existed between layers, that the number of 

target cells was smaller that the number of source cells, 

and that target cells had overlapping on-center receptive 
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fields. The receptive fields were def ined as the difference 

of two Gaussian functions (s imi lar to Rodieck's model). 

From his studies Leibovic concluded that broad 

receptive fields reproduced t~e stimulus pattern more 

closely than narrow receptive fields. The narrow receptive 

fields generated an oscillating response wherever the input 

presented irregularities. Apparently, much of the 

information was preserved and the global patterns were 

transmitted from level to level. 

Lateral inhibition is a phenomenon commonly observed at 

each synaptic relay or nucleus of the afferent nervous 

system. Lateral inhibitory interconnections at any of the 

nuclei have been found to be of several types: presynaptic, 

postsynaptic, recurrent, etc. It is believed that lateral 

inhibi tion plays an important role in the processing of the 

information on its way to the higher centers. 

A step towards understanding the function of l ateral 

inhibition in the processing of sensory information was 

achieved by Hartline (1969] in his studies of the visual 

receptors (ommatidia) of horseshoe crabs. As a result of 

his experiments, Hartline determined the existence of 

lateral interactions among the receptors. He described the 

interactions as being inhibitory, recurrent, and decreasing 

with increasing distance separation of the interacting 
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ommatidia in the eye. He expressed these interactions in 

terms of a set of simultaneous equations now known as the 

Hartline-Ratliff equations. 

Ratliff . (1965] emphasized the similarity in the neural 

response of horseshoe crab with a perceptual phenomenon 

called the Mach bands. He observed that wherever the 

stimulus intensity curve of a stimulated surface had a 

concave or a convex f lexion, then the neural activity was 

higher or lower, respectively, than its surroundings. The 

same type of deviations at the flexion regions had been 

detected at the perceptual level in humans. Therefore, 

Ratliff suggested that probably both the neural and 

perceptual processes could be linked in some degree 

(analogous to the power law situation presented above ) . 

Naturally, there is a significant difference between 

human perception and the horseshoe crab nervous system, but, 

perhaps, as Ratliff inferred, some principles that are true 

for the simple interaction in the eye of the horseshoe crab 

can prove useful in elucidating the very complex features of 

neural physiology of highly developed animals. 
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CHAPTER 3: METHODS AND RESULTS 

This chapter describes the mathematical model built, 

the computer programs created to implement the model and the 

results obtained. The information is organized in sections 

which tend to follow the course of the work during the 

research. Each section consists of 

• presentat~on of the model version, 

• implementation of the computer program, 

• results obtained. 

The reason for choosing a modular structure for this chapter 

is twofold. First, the model complexity increases in the 

successive sections as innovations are introduced. Most 

innovations are based on the results of former versions. 

Second, examples of several functional properties are easier 

to illustrate with simple models. 

In this chapter the one dimensional model is ·presented 

first. The general assumptions upon which the model is 

based are introduced before moving on to the linear and 

nonlinear models. Time effects are considered in a section 

dealing with direction selectivity. A two dimensional 

model, which is an extension of the one dimensional model, 

is described last. In this last part of the chapter 

emphasis is made on model structure, system solution, and 

results; not on concepts and assumptions outlined in the 

introduction of the one dimensional model. 
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One Dimensional Model 

A one dimensional model was built to 

• develop the notation and system solution that could 

later be applied to the two dimensional model, 

• study the effects of the assumptions made, 

• observe the response to parameter changes. 

The model structure consisted basically of equidistant 

units arranged in one dimension, without ring connections at 

the ends. Arrays were interconnected in series / succession 

giving rise to hierarchical organization. Interconnections 

within arrays and between arrays are described below . 

In this section the linear and nonlinear models are 

presented. Solutions for both systems, as well as the 

corresponding program implementation are described. The 

results shown include receptive fields and step responses. 

Implementation of the mathematical model 

The mathematical model implemented was based on 

physiological evidence present in classical literature and 

in assumptions of three different natures: simplifying, 

generalizing and complementary. The following is a brief 

description of the physiological facts and assumptions 

included in the model. 
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Processing unit The model was made up of linear and 

continuous processing units or cells interconnected with 

each other to build the processing network. The linear 

transfer function used was a simplification of the power law 

suggested by Stevens (1971]. The power coefficient was 

assumed equal to one and the threshold ignored. A second, 

nonlinear model, with piecewise linear units was developed 

also. A unitary value was assigned to the power 

coefficient, but the threshold was not ignored. Since it 

was a static model, the units were assumed to have a 

nonadaptive response with respect to time. 

Convergence layer This was an array of equidistant 

processing units (target units) characterized by the 

interconnections to the units in the preceding layer (source 

units) . The response of the target units was determined by 

the addition of the weighted activi~y of the source units as 

shown in Figure 3.1. Mathematically, 

for m = 1 to N, with, 

Mi: response of target unit i at convergence l ayer , 

Im: activity of unit m at source layer, 

wµ(i),m: Gaussian weighting factor from source unit m 

to target unit i, whose position projection to the source 

layer is µ(i), 

N: number of units in the source layer. 
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It was assumed that the spatial weighting function was 

decreasing with distance. This was expressed mathematically 

using a Gaussian spatial distribution function centered on 

the position of the target unit, 
= e-(µ(i)-m)2 / 2a~on Wµ(i),m 

with, 

( 3. 2) 

acon= standard deviation for convergence weighting 

distribution. 

The standard deviation was a model parameter. 

I 
r.1 

l ! i 

_ _/_ __ 

-m 

-i 

FIGURE 3.1. Convergence layer interconnections 

The purpose of this layer was to represent the 

functional role of the relay cells that interconnect the 

subsequent relay stations [Kandel and Schwartz, 1981]. It 

may be observed in Figure 3.1 how several units at level m 

contributed to the response of one single unit at level i, 

there was convergence of inputs. Similarly, it may be 

observed how the overlapping weighting functions resulted in 
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divergence: one single source unit at level m contributed 

to the response of several target units at level i. The 

number of target units received their input from a larger 

number of source units yielding a pyramidal structure 

(Levine, 1985; Leibovic, 1982]. This assumption was an 

extension of what is observed in the retina, where the 

number of light receptors is larger than the number of 

ganglion cells. 

Lateral inhibition layer This was an array of 

equidistant units characterized by interconnections within 

the array. In this layer, the output or response of each 

unit was fed back to its own input and to neighboring units 

as shown in Figure 3.2. The lateral interconnections were 

inhibitory (Kandel and Schwartz, 1981], and their influence 

decreased with distance. Mathematically, this was expressed 

in terms of the Hartline-Ratliff equations deriveq from the 

lateral interconnections in the eyes of horseshoe crabs 

(Hartline, 1969], 

0· 2 f(M· l l , 

with, 

Oi: output of unit i , 

Mi: input of unit i, 

( 3 • 3 ) 

K(i,p): lateral interconnection factor from output of 

unit p to input of unit i, 

f: a linear or piecewise function of Mi, K(i,p), 



28 

and Op. 

A Gaussian spatial distribution function was used to assign 

values to the lateral interconnection coefficients [Ratliff, 

1965), 

for pf i 

= SI for p=i, 

SI: self-feedback coefficient, 

( 3 • 4 ) 

( 3 • 5 ) 

ainh: standard deviation for lateral weighting distribution. 

The standard deviation was a model parameter. An arbitrary 

value was assigned to the self-feedback coefficient, another 

model parameter. 

~ . 
l. 

l 
- i 

FIGURE 3.2. Lateral inhibition layer interconnections 

The purpose of this layer was to represent the 

processing that takes place at the relay stations. Several 

types of lateral interaction have been reported at the relay 

stations (synaptic nuclei) [Kandel and Schwartz, 1981; 

Mountcastle, 1974]. The Hartline-Ratliff equations, which 
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describe recurrent inhibitory interactions, were used as an 

approximation to the many processes performed at the relay 

stations. 

To account for the intrinsic firing rate displayed by 

many neurons at the higher levels of the nervous system 

[Somjen, 1972], it was assumed that, 

O· = 0 l 

represented an increased discharge, 

represented inhibited discharge, whereas 

represented the intrinsic d i scharge of the neuron. 

Processing level A processing level consisted of a 

convergence layer followed by a lateral inhibition layer. 

Processing levels were used as modular blocks whose 

organization and successive interconnection determined the 

model's structure . The processing characteristics of each 

level depended on the values assigned to the layer 

parameters. Figure 3. 3 shows the arrangement of .a 

processing level. 

Thus, every processing level represented a set of relay 

neurons and the relay station where they terminated. For 

example, the first processing level represented the first 

order neurons and the first relay station, the second 

processing level represented the second order neurons and 

the second relay station, etc. 
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convergence 

lateral inhibition 

FIGURE 3.3. Structure of a processing level 

Model structure The model consisted of processing 

levels interconnected in series. The information flowing 

out of a certain level P was simultaneously the input to 

level P+l. Level P+l processed the information and relayed 

it to level P+2, and so on. This structure i s typical of 

hierarchical systems. 

A system with N hierarchical levels was built with N 

successive processing levels. Figure 3.4 shows a model with 

N=3 hierarchical levels. Information flows from the broad 

base towards the narrow tip of the pyramidal structur e. 

Linear Model 

A linear model was the first tested. Thi s initial 

version of the model allowed me to observe the response of a 

hierarchically organized system and weigh the significance 

of some of the model's parameters in the system's response. 
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from preceding pr ocessing leve ls 

convergence 

l aterRl i nhibition 

oroce~sin~ 

level 
conver~enee 

conver~. 

1.1. 

to succeedi~ processi~ levels 

FIGURE 3.4. General mode l structure 

Linearity was def ined by assuming a linear response of 

all units in the model. Th i s implied no change in the 

convergence equat i ons, but resulted i n the following 

equations for the lateral inhibition layer (see fig. 3.2), 
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oi = Mi-rK(i,p)Op 
which in matrix notation was written as, 

[O] = (M]-[K] [O] 

with, 

[O] output vector, 

[M] input vector, and 

[K] lateral coefficients matrix. 

( 3 • 6 } 

( 3. 7} 

Note that row i of [K] contained the inhibitory coefficients 

from all outputs to unit i. The system solution was 

obtained through, 

((U]+[K]}[O] = (M] 

(A](O] = (M] 

(O] = (Ainv] [M] 

where, 

(U] : identity matrix, and 

[Ainv] : system transfer function. 

( 3. 8) 

( 3 • 9 ) 

(3.10) 

Note that row i of [Ainv] contained the direct contribution 

coefficients from every unit in the array to the output of 

unit i. In matrix notation, 

(Ainv] = [Ci,j1 

and, 

[R1·] = (C· ·] l, J 

for i=l,N and j=l,N 

for j=l,N. 

(3.11) 

(3.12) 

The solution of the system was accomplished by 

determining the inverse matrix [Ainv]. This matrix of size 
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N·N (where N was the number of elements in the lateral 

inhibition layer considered), was a sparse, diagonally-

syrnmetric matrix. Edge effects were observed on the borders 

of the matrix but were negligible so long as N was much 

greater than ainh· Thus, the transfer function was 

interpreted as being representative of a convolution 

operation. The solution of the system was obtained either 

by applying equ~tion 3.10 or through the convolution of the 

input with [Re], the central row of [Ainv], 

[O] = [M]*[Rc]• (3.13) 

Finding the inverse of a matrix when N was a large 

number was very demanding for the minicomputer PDP 11-23 

used in terms of . time and memory. Things got even worse for 

a two dimensional model with N·N units in the inhibitory 

array, for which [A] was a N2 ·N2 matrix. 

One approach to solve this problem was windowing. It 

was noticed that the influence of lateral inhibition 

decreased with distance. Two units that were sufficiently 

apart could be considered as noninteracting. Therefore, a 

small matrix [A'] of size N' ·N' was implemented. This 

matrix represented only the significant interactions with 

respect to a central unit . The inverse of [A'] was 

calculated yielding [A'inv]. [R'cl, the middle row of 

[A'inv], was essentially equal to [Rel, the middle row of 
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[Ainv]. The vector [R'c] was used as a window and the 

output solved as the convolution of the input with the 

window, 

[O] = (M]*[R'c]. (3.14) 

Accurate results were obtained if N' was much greater than 

ainh• 

run: 

A model with the following parameters was built and 

Input: 81 elements 

First level: 41 units 

Second level: 21 units 

aeon = 1 ; ainh = 2 ; SI = 0.3. 

Computer programs in Fortran language were written and 

run on a minicomputer. These programs solved the system 

using the windowing technique and the Gauss-Jordan method to 

compute inverse matrices. Receptive fields and step 

responses were determined for systems with one and two 

hierarchical levels. The role of self-feedback in the 

system response was also analyzed. 

Receptive fields Receptive fields of central units 

at the first and second levels were calculated. The 

receptive fields were determined by shifting a point input 

along the input array and mapping the corresponding output 

of the observed unit. See Appendix A for program listing. 



35 

One processing level: Results Results obtained 

for various self-feedback coefficient values and a Gaussian 

distribution function at the inhibition layer are presented 

in the first column of Figure 3.5. The second column of the 

Figure 3.5 shows the results obtained for a different 

weighting distribution function at the lateral inhibition 

layer. The lateral coefficients in this second case were 

defined as 

Ki,p = (l+cos(2~(i-p) /L) / 2 for Ji-pl s L/2 

with, 

Ki,p = 0 for i=p and Ji-pJ > L/2. 

(3.15) 

( 3. 16) 

The first row of Figure 3.5 compares the receptive 

fields in the absence of self-feedback (SI=O). Note that 

the receptive fields were significantly different in shape. 

Row 2 shows the receptive fields when self-inhibition was 

applied. In this case the self-feeqback coefficient of all 

units in the array was greater than zero. The receptive 

fields were excitatory in the center and inhibitory in the 

surrounding area. Row 3 is an example of units with self-

excitation. In this situation, the self-feedback 

coefficient was negative and larger than one in magnitude. 

No restrictions were imposed on the other units of the 

array, they could be either self-inhibitory or self-

excitatory. It is observed that the receptive fields were 

inhibitory in the center and excitatory in the surrounding 
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FIGURE 3.5. Effect of feedback on receptive fields [for the 
following distributions and SI: a) Gaussian, 
sr~o, b) cosine, SI=O, c) Gaussian, SI>O, d) 
cosine, SI >O, e) Gaussian, SI<O, f) cosine, 
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area. 

Results showed relatively little change in the shape of 

the receptive fields when self-feedback was introduced. 

Self inhibition (row 2) resulted in on-center receptive 

fields, whereas, self-excitation resulted in off-center 

receptive fields. The receptive fields were similar in 

shape to the receptive fields reported by Kuffler [1953] for 

the ganglion cells in the cat's retina. When no self-

feedback was applied, the two distributions considered 

resulted in receptive fields with significantly different 

shape (row 1). 

Two processing levels: Results The receptive 

field of a model with one processing level (Figure 3.6.a) 

was compared with the recept i ve field of a model with two 

processing levels (Figure 3.6.b). 

! . ? 1.2 

: . I 

j~ 
Q. I 

J . 4 0. 4 . : . c 
-~ . 0 ~ -Q.Q , . 

~ . . 
~ - ) . I L -l . 4 

-J . i -Q . I 

1. l Z': . l 4~ . l RO n .a 
-1.2 

u 2Q. 0 40 . a &Q. 0 BO. 0 
"'' .: cp\We A·•~hl'I . 

(a) (b) 

FIGURE 3.6. One dimensional linear receptive fields (for a) 
unit at level one, b) unit at level two] 
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It was observed that when the units in the first level 

had an on-center field, the resulting field for the second 

level repeated the on-center field shape. The receptive 

field of the second level covered a larger area than the 

receptive field of the first level and presented an 

increased inhibitory magnitude in the surrounding area. 

These results did not differ greatly from the obsevations 

made by Hammond (197 3] at the lateral geniculate nucleus. 

Response to ~ step input One and two level 

responses to a step input were studied. The step 

stimulation consisted of a unit input stimulation along 

input units 0 to 40 and zero stimulation for units 41 to 80. 

The output was observed at all 41 output units of the first 

l evel and all 21 units of the second level. 

Results obtained are presented in Figure 3.7 where it 

i s observed that both systems 

• react at the site of the stimulus edge, 

• present attenuated response at the region with 

uniform stimulation, 

• present inhibitory response just before the edge. 

It is also true that the two level system presents 

• an increased response at the edge site, 

• a decreased response at the region with uniform 

stimulation. 
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FIGURE 3.7. Linear response to step input (a) at level one, 
b) at level two] 

Nonlinear model 

A nonlinearity was introduced in the model at the 

lateral inhibition layer of the processing levels. The 

reason why this nonlinearity was included in the model was 

the fact that negative discharge rates cannot physically 

occur whenever the sum of inhibitory interactions was 

greater than the excitatory input. This fact was previously 

considered for the Hartline-Ratliff equations by imposing 

the condition that, if the total inhibition was larger than 

the exc i tat ion, then the corresponding response was set to 

zero (Ratliff, 1965]. A similar assumption was used in this 

model, but adapted to the notation used. The intr insic 

firing rate of a unit had been defined as zero output and 

inhibited discharge as negative output. Therefore, a 

negative threshold value, equivalent to null discharge, was 

included in the model. Thus, whenever the response was 
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beyond the threshold value, the output was set equal to the 

threshold value. The following piecewise linear equat ions 

resulted for the lateral inhibition layer 

oi = (Mi-K(i,i)Oi-rK(i,p)Om)T 

with, 

0 · = 0 · l l 

0 · = T l 

i f 

if 

( 3.1 7) 

( 3 .18 ) 

(3 . 19) 

Matrix notation was used although the system could no 

l onger be solved by calculating the i nverse of matr i x [A] 

since the system was no longer linear. 

A modified version of the Gauss-Seidel iterative method 

was used to solve the system. The Gauss-Seidel method is 

generally used to solve systems of simultaneous linear 

equat i ons. This method assigns arbitrary initial values to 

the unknowns and c alculates the correspond ing output values 

for the first iteration. Next, it starts the second 

iteration with the unknowns updated as the output va l ues 

obta ined during the first iteration. New output va lues are 

obtained and the process continues iterati ng until the 

output values of two consecutive iterat ions differ by l ess 

than a pre-establ i shed amount. 
or+1 = 

l 
r r M · - K ( · · ) 0 · - tK ( · ) 0 l l,l l l,p p ( 3.20) 

A computational step was added to the Gauss-Se ide l 

method. At the end of each iteration, the resulting output 
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values were modified according to equations 3.18 and 3.19 

above. See program implementation included in Appendix B. 

As in the linear model, the shifting window technique 

was applied to obtain the solution of the system. Some 

innovations were introduced due to the iterative nature of 

the solution method. A matrix (A'] of reduced size N' ·N' 

(similar to the matrix used for the linear model) was 

assigned the significant lateral coefficients with respect 

to a central unit. The system was solved iteratively for 

the central unit of the array. The matrix (A'] was then 

shifted one unit along the input array and the system solved 

for the new central unit. The process continued for all the 

units in the array. The effects of the nonlinearities on 

receptive fields and step responses were evaluated. The 

results are presented below. 

Note that the model parameters remained the same as for 

the linear system. In running the programs it was observed 

that the number of iterations decreased for null threshold 

values and large self-inhibition coefficient values. 

Receptive fields The receptive field of a system 

with one processing level was studied. The model was tested 

for several threshold values with the results shown in 

Figure 3.8. Figure 3.8.a shows the response of a system 

with unlimited inhibition. The receptive field coincided 
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with that of the linear model. Figure 3.8.b shows the 

response for a system with a threshold value T=-0.2. It was 

noticed that inhibition was limited and clamped at the value 

of T. The inhibited area had increased and disinhibition 

effects were decreased. Figure 3.8.c shows the response for 

T=O (equal to the assumed spontaneous firing frequency rate 

of the units). Note the virtual absence of inhibition and 

disinhibition. The negative excursions of the response were 

demonstrated to be an artifact derived from the 

interpolating algorithm used to plot the receptive fields. 

Finally, the response of a linear receptive field whose 

negative portions of the response were ideally rectified is 

presented in Figure 3.8.d. It is observed that even though 

inhibition disappeared, disinhibition did not change. This 

result is functionally incorrect. 

Disinhibition in recurrent networks is a consequence of 

the indirect interaction among two units across an 

intermediate unit. Increased activity of a unit as a 

response to stimulus increases the inhibitory influences on 

the neighboring intermediate unit. The activity of the 

intermediate unit decreases, and, as a consequence, so does 

its inhibitory interaction on the third unit, which i s 

released of inhibitory constraints and increases its firing 

rate. Thus, disinhibition is mediated through the 
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FIGURE 3.8 . One d ime ns ional nonlinear receptive fields [for 
a) unlimited inhibition, b ) T=-0.2, c) T=O, d) 
rectified linear RF] 

inhibition of an intermediate unit. Since in Figure 3.8.d 

the inhibition range of the intermediate unit was cancelled 

by setting the threshold value equal to the intrinsic 

discharge rate (T=O), then theoretically, no disinhibition 

should have taken place. 
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Response to step input Responses to a step input 

were studied for systems with one and two processing levels. 

The results are presented in Figure 3.9. 
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FIGURE 3.9. Nonlinear response to step input [at a) level 
one, b) level two] 

It was observed that both systems 

• reacted at the site of the stimulus edge, 

• presented attenuated response at the region with 

uniform stimulation, 

• lacked inhibition just before reaching the edge. 

It was also noted that the system with two processing 

levels, 

• presented an increased response at the edge site, 

• presented a decreased response at the region with 

uniform stimulation. 

The response in the region of uniform nonzero 

stimulation was the same for both the linear and nonlinear 
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models. This adaptive response was attributed to the 

increased firing rates of the units in the region of unif orm 

stimulation. In that region, the gap available between 

maintained activity and the set threshold increased and 

resulted in a larger range for inhibition. As a 

consequence, the mode l tended t o behave linearly. 

Linear vs. nonlinear models 

Linear and nonlinear models were tested and no 

important advantages of one model with respect to the other 

were observed. The most important difference was perhaps, 

the adaptive response of the nonlinear model • . In this 

section a different type of test i s described which 

contrasted the behaviour of the two systems. 

The test consisted of the determination of the 

receptive field of a central unit located at the convergence 

layer of the third processing layer, as shown in Figure 

3.10. 

Results, shown in Figure 3.11 . a and Figure 3.11.b, 

indicated that the peak response was similar for both the 

linear and the nonlinear models . When the standard 

deviation of convergence layers was increased, then the 

nonlinear response was considerably greater than the linear 

response, as is observed in Figure 3.11.c and Figure 3.11.d. 

The reason for the improved response was that for the linear 
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conve~ence 

lateral inhibition 

conver~ence 

converg 

~· FIGURE 3.10. Linear vs nonlinear test receptor site 

model the processing unit in level three averages out the 

excitatory and the inhibitory portions of the response of 

level two; increased values of the standard deviation for 

convergence improved the averaging efficiency. Whereas, for 

the nonlinear model, there was no averaging out since the 

inhib itory response of level two was limited by the 

threshold value set. 
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FIGURE 3.11. Comparison of responses [a) l i near b) 
nonlinear c) linear, wide convergence d) 
nonlinear, wide convergence] 

Directional selectivity 

This section deals with the implementation of a 

processing unit sensitive to the direction of stimulus 

motion. 

Directional selectivity was obtained by, a) generating 

an asymmetric receptive field for the central unit of the 
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convergence layer indicated in Figure 3.10 and, b) 

introducing time limitations in the unit's response. 

Time is an important factor that had not been 

considered in the model. Neurons in the nervous system do 

not present an ideal static response, but have time 

limitations. For example , neurons may present a sustained 

response (X cells), a transient response (Y cells), or be 

sensitive to time between stimuli, to the speed of stimulus 

motion, etc. 

Linear time analysis was applied to approximate the 

units' time responses. Under this analysis, the units were 

assumed to behave linearly with respect to time and to have 

a limited bandwidth, as do physical systems in general. To 

determine the output, the static response of a unit to a 

moving stimulus was calculated. Then, linear analysis was 

applied to the resultant output sequence to determine the 

time response. 

Asymmetric receptive field A nonsyrnrnetric receptive 

field was obtained by allowing self-inh i bit ion in units O to 

10 of level two, and self-excitation in units 11 to 20 of 

the same level. This resulted in on-center receptive fields 

for the first half of the units in the array and off-center 

units for the other half. The generated 'static' receptive 

field is shown in Figure 3.12. 
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FIGURE 3.12. Static asymmetric receptive field 

Figure 3.12 indicates that a stimulus applied on the 

left half of the receptive field produced an excitatory 

response of the observed unit, whereas the response was 

virtually inhibited on the other half of the receptive 

field. It is important to note that for a point stimulus 

moved from left to right, the static response sequence of 

the unit first rose slowly as a result of the low gradient 

of the receptive field and then fell sharply . For a 

stimulus moved from right to left, the response sequence 

showed an initial sharp increment due to the increased 

gradient in the shape of the receptive field and then 

decayed slowly as the stimulus moved out of the receptive 

field. 

Dynamic considerations Cells in the lower portions 

of the afferent nervous system are known to have two classes 

of response with respect to time: sustained and transient 



50 

[Kuffler et al., 1984]. Sustained response has been 

expressed in terms of a differential equation in time 

[Amari, 1977] 

T~~(t) + O(t) = i(t) (3.21) 

whose Laplace frequency transform was a first-order lowpass 

filter 

O(s) l TIST = _l_+_S_T_ (3.22) 

in the s domain. 

The transient response was also expressed in terms of a 

differential equation 

r~d2o(t) r1do(t) 

dt2 + dt 

and the frequency 

corresponded to a 

O(s) 

I(s) 
= 

o(t) rodi(t) 
+ = dt 

response description 

bandpass filter, 

where s was the Laplace operator. 

(3.23) 

of this equation 

( 3. 24) 

A similar transient response was obtained with a 

negative feedback system consisting of a sustained response 

for the direct and feedback paths. 

O(s) 
-- = (3.25) 
I(s) 
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This was true so long as l / T2 was negligible with respect to 

the signal's relevant low frequencies, where 

Tl: time constant for the direct path, 

T2 : time constant for the feedback path, and 

k: gain of the direct path. 

Then equation 3.25 responded as a bandpass filter within the 

frequency range of interest. 

The Laplace transform is valid for continuous signals 

that can be transformed into a continuous frequency domain. 

Since the type of data that resulted from running the model 

was discrete, then the Laplace transform was not applicable. 

The z transform, which is a transform commonly used for the 

linear analysis of discrete data, was used to determine the 

time response of the unit. 

Thus, the 'feedback' filter in the s domain was mapped 

to the z domain using the bilineal algorithm. The f i lter 

was applied to the static ( time invariant) response sequence 

of the unit to compute the time response . The stati c 

response sequence was generated by moving a point stimulus 

along the input array of the model (conceptually equivalent 

to the mapping of the receptive field in one dimensional 

models). Next, the stimulus was moved in the opposite 

direction (mathematically equivalent to reversing the output 

order of the response) and the Z transform algorithm applied 

again. 



52 

Figure 3.13.a shows the static response sequence of the 

unit for a point stimulus moved from left to right ( L/ R). 

Figure 3.13.b shows the time response of the unit obtained 

after applying the z transform. Figure 3.13.c shows the 

time response of the unit after rectification of the 

response beyond the threshold value. Rectification at this 

level was valid because there were no lateral interactions 

among the units of a convergence layer. Figures 3.13.d 

through 3.13.f show the response for a stimulus moved from 

right to left (R/ L). 

A close inspection of Figure 3.13.b and Figure 3.13.e 

indicates that at the velocity of motion simulated, the unit 

response approximated the gradient of the generated static 

sequence, in accordance with Marr's and Rodieck's models. 

The response depended on the direction of motion. 

Velocity of motion was an important factor in the 

determination of the dynamic response. Velocity was 

controlled indirectly by changing the sampli ng frequency 

value in the Z transform coefficients. When the simulated 

velocity of motion increased, the time response of the unit 

approximated the integral of the static sequence. 

Analogously, very slow motion resulted in an attenuated, 

undifferentiated directional selectivity to stimulus 

direction of motion. In this case, the signal's relevant 
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frequencies were negligible with respect to l / r 2 and most of 

t he energy of the sequence f ell under the low f requency , 

flat portion of the band pass filter . 
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FIGURE 3.13. Direction sel ect ivity r esponse [for a ) L/R 
static, b) L/ R time, c ) L/ R f i na l , d ) R/ L 
stat i c, e ) R/ L time , f) R/ L f i na l ] 

Two Di mensional Model 

This section describes the creation and implementation 

of a two dimensional model. This model was analogous to the 

one dimensional model, therefore, many of the properties and 

results obtained for the one dimens i onal model were extended 



54 

to this model. New properties, such as orientation 

sensitivity, which are inherent to models with more than one 

dimension are discussed in this section. 

The inclusion of a second dimension substantially 

increased the required amount of processing time and memory 

necessary to solve the system. On the other hand, models 

that were limited in s i ze, and were therefore less demanding 

in terms of computing resources, had their response 

contaminated by boundary effects. Boundary effects 

decreased for units located away from the borders (at a 

distance greater than the unit's receptive field). Thus, it 

was · necessary to build a model with a large number of units . 

and compute the response near the center of the input array. 

The increased computational demands were partially solved by 

running the programs in a mainframe computer NAS AS/9160. 

This section follows the structure employed for the 

description of the one dimensional model. The first part 

describes the new layer equat i ons resulting from the 

inclusion of the second dimension in the model. It also 

describes the model structure and processing paths. The 

following part shows the receptive fields of units in the 

first and second processing levels. Finally, the response 

of the system is analyzed. 
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Implementation of the mathematical model 

As mentioned earlier, this model was an analog of the 

one dimensional model. Therefore, assumptions on which that 

model were based are also valid for this one. This part 

deals with the extension of such assumptions to two 

dimensions. 

Convergence layer The convergence layer consisted 

of a two dimensional array of equidistant target units, 

where the output of one unit at (x,y) coordinates was given 

by, 

M(x,y) = ttwµ{x,y),(m,n) 1(m,n) 
mn 

a two dimensional version of equation 3.1, with, 

(3 .26) 

M(x,y): response of target unit located at coordinates (x ,y) 

of the convergence layer, 

I(m,n) : activity of source unit located at coordinates (m,n) 

of the source layer, 

wµ(x,y),(m,n): weighting factor from source unit at 

coordinates (m,n) to target unit whose projection to the 

source layer is µ(x,y). 

The weighting spatial function was a two d imensional version 

of a Gaussian distribution , 
-((µ(x)-m) 2/2a2+(µ(y)-n)2/2a2) wµ(x,y), (m,n) = e x y 

with, 

ax: x axis standard deviation, and 

ay: y axis standard deviation. 

(3 .27) 
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In this case we noted the existence of two variables, the 

standard deviation for the x dimension and the standard 

deviation for the y dimension. The ratio between these two 

parameters was important in establishing the shape of the 

receptive fields, as will be shown later. If both 

parameters had equal value then radially symmetric receptive 

fields resulted. If the ratio was different from one, then 

elongated receptive fields resulted. Receptive fields with 

various orientations were obtained by using relative axis 

angle rotation transformations. 

Lateral inhibition The lateral inhibition layer 

consisted of a two dimensional array of equidistant spaced 

units with lateral interconnections. In this case, it was 

necessary to express not only the connections from a unit to 

all other units in the same row, but to al l other units in 

all rows. Thus the output of a unit with spatial 

coordinates (x,y} was expressed as, 

O(x,y} = f(M(x,y}r K(x,y},(p,q)• O(p,q}} 
a two dimensional version of equation 3.2, with, 

O(x,y): output of unit located at (x,y), 

M(x,y): input of unit located at (x,y}, 

( 3. 28) 

K( ) ( )" lateral interconnections weighting factor x,y , p,q • 
from unit located at coordinates (p,q) to unit with 

coordinates (x,y), 

f: a linear or piecewise linear function of M(x,y)r 
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K(x,y),(p,q)' and O(p,q)· 
The lateral inhibition factors were derived from a Gaussian 

spatial distribution, 
K - e-((x-p)2+(y-q)2) / 2a2 

(x,y), (p,q) - (3.29) 

for (x,y) + (p,q), 

and, 

K(x,y),(p,q) =SI for (x,y) = (p,q) (3.30) 

with, 

SI: self-feedback, and 

a: standard deviation for lateral distribution. 

Model structure The modular characteristics of the 

one dimensional model were preserved in the two dimensional 

extension. This model was constructed by interconnecting 

the processing levels in series and in parallel . The order 

in which the modules were put together can be observed in 

Figure 3.14. 

The methodology followed to put the model together was 

based on Hubel and Weisel's hierarchical organization theory 

and architectural features reported for the visual cortex of 

the cat (Hubel and Weisel, 1962; Hubel, 1963]. As mentioned 

in an earlier chapter, similar features are also found in 

the touch sense, as reported by Mountcastle (1974]. The 

model built had a common input processing level followed by 

a set of parallel paths that converged to the final common 
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converv,er.ee l evel one 

lateral \ nh\hition 

l evel cwo 

l ateral inhi~t tt~n 

level th ree 

J u t put 

FIGURE 3.14. Two dimensional model structure [a common 
initial level is followed by parallel columns 
that converge to the output l evel] 

output level. The first level units had radially symmetric 

receptive fields similar to those reported at retinal and 

L.G.N. levels in the cat visual pathway. The second level 

units had radially asymmetr ic receptive fields, generated by 
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assigning unequal values to ax and ay, that resembled the 

receptive fields of simple cells. There were four parallel 

pathways. The receptive fields of each path had been rotated 

0°, 45°, 90°, and 135°, respectively. 

The second level units projected through symmetric 

convergence to the third level. The purpose of the third 

level was to converge input from elongated, similarly 

oriented receptive fields that were overlapping in space. 

As a consequence, the third level units had a broad 

receptive field which was sensitive to the orientation of 

the stimulus and fairly insensitive to stimulus position. 

This type of response is representative of complex cells 

(time effects notwithstanding). 

There was an orderly topographic projection from level 

to level. The input field was represented at each level of 

each path. Each of the parallel columns processed the same 

input information according to the particular orientation of 

the receptive fields of their units. Thus, if we thought of 

the units at the second level as simple cells and those at 

the third as complex cells, then each one of the parallel 

paths was functionally equivalent to the discrete columnar 

structures in the cortex described by Hubel and Weisel for 

the visual cortex of the cat [Hubel and Weisel, 1962; Hubel, 

1963]. 
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The fourth level represented what was assumed was the 

processing role of a 'higher than complex' cell in the 

cortex. These cells ran radially through the thickness of 

the cortex and extended laterally as they received 

information from complex cells in neighboring columns. 

Thus, they integrated the information from a region of the 

input field that had been processed by the various paths. 

In the model, this was achieved by adding point to point the 

outputs of each path. 

Model specifications and solution implementation 

The values assigned to the parameters of the two dimensional 

model are presented in Table 3.1. 

TABLE 3 . 1. Two dimensional model specifications 

level N•N ax ay a SI type 

input 81•81 
first 41•41 1.3 1. 3 2.6 1.0 linear 
second 21·21 1.3 2.6 2.6 1.0 nonlinear 
third 11·11 1.3 1.3 2.6 1.0 nonlinear 
fourth 11·11 

The implemented solution was basically a two 

dimensional version of the one dimensional model. Windowing 

techniques (discussed previously) were used in both the 
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convergence and the inhibitory processing layers. A matrix 

or window was assigned the corresponding Gaussian 

coefficients and shifted across the input of the convergence 

layers. 

Computation of the coefficients of the lateral 

inhibition window was a more complex process. In general, 

to describe the lateral interactions of a two dimensional 

model, a four dimensional array was necessary. As can be 

observed in equations 3.29 and 3.30, the lateral coefficient 

K had four subscripts, which implied the generation of a 

four dimensional array [K] of size N·N·N·N to represent the 

interactions between units in all rows and columns. To 

calculate the solution of the system using matrix algebra, 

the four dimensional array had to be transformed into a two 

dimensional matrix. This was accomplished through a change 

in notation. The units in the input array [M] were no 

longer labelled according to their spatial coordinates, but 

were numbered following a line scan transformation into a 

vector [ML] of size N2 ·1. Similarly, the lateral 

interaction array [A] of four dimensions was line scan 

transformed into a matrix [AL] of size N2 ·N2 , analogous to 

the one dimensional model, where row i contained the lateral 

interaction coefficients from all units to unit i. The 

inverse of [AL] was computed and the system solution 

determined as 
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(3 .31) 

where [RLi] (the row i of [ALinvl>, contained the direct 

contribution coefficients from all inputs to unit i. An 

inverse line scan transformation on [OL] was necessary to 

reorder the output values on to the original two dimensional 

coordinates notation. 

For linear windowing, a reduced matrix [A'L] of size 

N12 ·N12 was used. This matrix contained the significant 

lateral interaction coefficients with respect to a central 

unit. The inverse of the matrix was computed yielding 

(A'Linvl· The middle row [R'Lcl contained only the relevant 

direct contribution coefficients from neighboring units to 

the central unit. An inverse scan transformation on (RLcl 

reordered the direct contribution coefficients onto a two 

dimensional window [B], whose convolution with the two 

dimensional input array yielded the response (O], 

[O] ,. [B]*[M]. (3.32) 

Windowing for the nonlinear model required the use of 

the modified Gauss-Seidel subroutine for matrix inversion. 

This method required the iterative computation of the 

solution for every unit of the input array. In order to 

apply [A'L], the input array [M] of size N·N was line scan 

transformed into a vector (ML] of size N2·1. The matrix 

(A'L], of reduced size N' 2 ·N' 2 , was shifted across the 
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vector [ML] and the system solved for the relative central 

units. These values were stored in [OL] of size N2 ·1. The 

process continued until the entire [OL] had been computed. 

Finally, the values in [OL] were relocated onto a two 

dimensional output array [O] of size N•N through an inverse 

line scan transformation. See Appendix C for program 

implementation. 

Linear receptive fields 

Linear receptive fields were determined for the first 

and second processing levels. Figure 3.15 shows the 

receptive field for a central unit at level one. A central 

excitatory zone with inhibitory surroundings, similar to the 

on-center receptive field reported by Kuffler [1953] was 

observed. Disinhibition effects were also noticeable. 

Two possible receptive fields for the second level were 

computed. The first one, Figure 3.16, belonged to a unit 

with radial symmetry at the convergence layers of leve l s one 

and two. An expansion in the extent of the receptive field 

and an increase in the relative surrounding inhibition with 

respect to Figure 3.15 were observed. These results were 

similar to those obtained by Hammond [1973] in his 

comparison of retinal and L.G.N. responses. 

The second case, Figure 3.17, shows a receptive field 

with radial asymmetry used in the model. Asymmetric 
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FI GURE 3.15 . Recept ive f i eld at level one 

FIGURE 3.16. Symmetric receptive field at level two 
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convergence distributions were used at level two. As in 

simple cells, the receptive field had an elongated shape and 

well defined on and off regions separated by straight lines. 

In the following section it is shown how units with this 

type of receptive field responded to different features in 

the input stimulus. 

FIGURE 3.17. Asymmetric receptive field at level two 

System response 

The model's response to simple geometrical shapes was 

studied. The shapes used were basically squares and 

triangles of small size with respect to the input array, but 
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larger than the nonlinear receptive fields. To avoid the 

edge effects the shapes were located away from the input 

array boundaries. 

The first test was done with a square shape. The 

square was 40 input units long per side. Figure .3.18 shows 

the activity in level two when a centered square was 

applied. The response was obtained from the parallel path 

with no rotation in the orientation of the receptive field's 

main axis. There was an increased activity of those units 

coincident with the shape edges that were parallel to the 

orientation of the receptive field's main axis. 

FIGURE 3.18. Level two response to centered square 
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Figure 3.19 shows the response at processing level 

three of the same parallel path. A lessened activity in the 

central portions of the detected edges and central areas was 

observed. 

I 
I 

~ : 

~ J 
I 

FIGURE 3.19. Level three response to centered square 

Figure 3.20 shows the system's response to the centered 

square. Increased activity coincident with the square's 

corners is observed. A similar type of response for some 

complex cells was reported by Hubel and Weisel [1962]. 

Figure 3.21 shows the response when the square stimulus 

was shifted four units from the center in the x direction. 
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FIGURE 3.20. Response to a centered square 

FIGURE 3.21. Response to a shifted square 
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Figure 3.22 shows the response when the square stimulus 

was shifted eight units from the center in the x direction. 

FIGURE 3.22. Response to a further shifted square 

A comparison of the results obtained indicates that the 

presence of corners in the input stimulus was reflected by 

peaks in the output, whereas the response to uniform (or 

diffuse) stimului tended to be attenuated. The location of 

the peaks shifted across the output array when the input 

stimulus shifted position. Some activity was observed along 

the lines joining the corners and also in the vicinity of 

the corners. The amount and distribution of this secondary 
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activity varied with the stimulus position and no activity 

was detected outside the projection area of the square 

stimulus. 

Figure 3.23 shows the response to a triangular 

stimulus. There was an increased activity at corner sites, 

with the right angle corner having a lower response than the 

acute angle corners. 

at the first level. 

Perhaps, an explanation can be found 

A unit located at the triangle's right 

angle corner receives inhibitory input from a relatively 

larger number of units than does a unit located at an acute 

corner. Thus, the response tended to rise higher at the 

acute corners. 

It is interesting to note the relative lack of activity 

along the triangle's diagonal. One possibility was that 

secondary activity was a local phenomenon of corner activ i ty 

and thus decreased as the stimulus~ corners separated. 

Consistent parameter values were chosen throughout the 

study so as to simplify the comparison and understanding of 

the processing functions of the model; although it must be 

noted that there were parameter combinations that enhanced 

edge detection better than others, other combinations 

resulted in an improved attenuation to uniform diffuse 

stimulation, and yet others were ideal to obtain a smooth 

response in the direction selectivity output. The important 
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FIGURE 3.23. Response to a triangle 

point was that while the structural principles of the model 

held, there were no significant qualitative changes in the 

observed response for the range of parameter values tested. 

An on-center field remained essentially an on-center field, 

although its extension, inhibition, disinhibition, etc. 

characteristics could change. 
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CHAPTER 4: DISCUSSION 

The aim of this chapter is to relate the results 

obtained with the model to some physiological and functional 

aspects reported in classical literature. It must be 

remembered that the objective was to integrate in a 

mathematical model various neurological principles obtained 

from the classical literature. The model was tested from a 

functional point of view. Its receptive fields and step 

responses were determined. 

The model implemented represented the lower levels of a 

standardized topographic modality. As may be inferred from 

previous chapters, it was a simple model oriented to the 

hierarchic processing of static information. The model was 

simple in that it was constrained to basic aspects of neural 

organization and principles, and was also simple i n that it 

contained a relatively small number of units when compared 

to the millions of neurons in the nervous system. 

Nevertheless, some of the results obtained were 

interesting in that they partially matched some funct i onal 

properties reported in the classical literature. Naturally, 

this results were valid in the limited context in which they 

were generated and as such it is rather dangerous to extend 

the results to other systems or to generalize. 
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The results obtained with the one dimensional model, 

receptive fields and step responses, are discussed first. 

Then the possibility of achieving a transient response from 

a unit as a result of delayed feedback effects is presented. 

Finally, the two dimensional model and the processing of two 

dimensional shapes is examined. 

On-center and off-center receptive fields were obta ined 

with the one dimensional model. These receptive fields were 

similar in shape to the cross section of the symmetric 

receptive fields reported by Kuffler [1953] and Rodieck 

[1965] for the ganglion cells in the cat's retina. Rodieck 

[1965] and Marr and Ullman [1981] proposed ad hoc models 

that resorted to ~athematical means with no physical 

significance to express the shape of the receptive fields. 

Kuff ler suggested that an on-center r eceptive field 

originated from excitatory interconnections from the central 

field receptors to the ganglion cells and i nhibitory 

interconnections from the surrounding field receptors to the 

ganglion cell. In the proposed model , the excitatory and 

inhibitory characteristics of the receptive field originated 

in the systematic interactions of the lateral inhibition 

layers. It was found that self-feedback may play an 

important role in the shape of receptive fields. In the 

first place, it tended to standardize the receptive field 
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shape; the particular distribution of the lateral 

interactions (as long as it was monotonically decreasing 

with distance) was no longer a primary factor in the 

determination of the receptive field shape. Secondly, the 

receptive fields were on-center or off-center depending on 

the nature of the self-feedback connection. Self-inhibition 

resulted in on-center fields, while self-excitation resulted 

in off-center fields. The type of receptive field may not 

necessarily be determined by the intrinsic characteristics 

of the unit, but may be determined by the particular 

interconnections of the neural network. 

Another interesting feature observed was that on-center 

and off-center units could be intercalated together in the 

same array. This implied that if the type of response of 

the unit was controlled by external connect i ons r ather than 

by intrinsic processes, then i t was not necessary to have 

two independent network arrays differentiated by the nature 

of the feedback connection. On-center and off-center units 

could be part of a common network and share the same 

physiological properties, but have their type of response 

governed by the nature of the self-feedback connection. 

Self-inhibition interactions have been reported by 

Hartline (1969] in the light receptors of the limulus eye 

and included in the Hartl i ne-Ratliff equations that describe 
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postsynaptic recurrent processes. The equations are valid 

even if we assume that the lateral interactions are mediated 

through inhibitory interneurons that receive their input 

from recurrent branches of the postsynaptic relay units. 

The interneurons terminate on neighboring cells for lateral 

interactions, and on their own relay unit (to close the 

loop) for self-inhibition. If the local interneuron was 

missing, the recurrent branch would terminate directly on 

its own body, yielding self-excitation. A similar 

arrangement has been found at the spinal cord level for 

motor neurons [Kandel and Schwartz, 1981]. 

· An adaptive receptive field resulted from the 

nonlinearity introduced in the model. The nonlinearity 

limited the inhibitory response of the unit whenever the 

inhibitory interactions were larger than the excitatory 

stimulus (input stimulus and/or intrinsic discharge rate). 

The on-center and off-center overall characteristics were 

maintained, but the response of the inhibitory regions of 

the field depended on the threshold value. 

It was noticed that when the threshold value was small 

and negative allowing a small range for inhibition (as would 

be the case for a low intrinsic discharge rate of the unit 

and little background stimulus input) the inhibitory 

response magnitude was limited to the threshold value and 
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extended in space over a larger area than in the linear 

receptive fields. In addition, the disinhibition effects 

were reduced. When the threshold value was large and 

negative, allowing a large range for inhibition (as could be 

the case for high intrinsic discharge of the unit and/o r 

high background stimulus input) the inhibitory magnitude of 

the response increased and there was a contraction of the 

inhibitory area of the receptive field similar to that 

described by Kuffler (1953] for ganglion cells in the cat. 

There was an increase of the disinhibitory effects on the 

outer surround of the field. Kuffler did not report 

disinhibitory effects in his study. 

A hierarchical model with two levels was then tested. 

In this model, the output units of the first level, each 

with on-center fields, represented the input source for the 

second level units. The resulting receptive field of a unit 

in the second level was found to repeat the on-center shape 

of the first level units with an increased inhibitory 

magnitude in the surrounding regions, similar to the effects 

described by Hammond [1973] in his contrast of ganglion with 

1.g.n. cells in the cat. Disinhibitory effects as reported 

by Hammond were also observed, but they were not originated 

by direct projections of on and off center fields as Hammond 

suggested, but were a result of the lateral interactions at 

the inhibitory level. 
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A comparison of the responses at the first and second 

levels showed that the global patterns of the stimulus were 

transmitted from one level to another as Leibovic [1982) 

concluded from his study. The response at stimulus 

discontinuities was enhanced, whereas the response was 

attenuated at the regions with uniform diffuse stimulation. 

It was at the regions with uniform stimulation that the 

linear and nonlinear models behaved similarly due to the 

adaptive properties of the nonlinear receptive fields. 

At this point no apparent advantage was obvious (except 

computationally) between the linear and the nonlinear 

models. The convergence standard deviation had been 

assigned small values to obtain narrow receptive fields and 

thus reduce the edge effects in the central regions of the 

arrays at the higher levels. It was observed how the 

receptive fields tended to expand in space for units located 

in successively higher levels. This fact, combined with the 

pyramidal effect that reduces the number of units at 

successive levels [Levine, 1985), can greatly distort the 

expected response. 

When broad convergence distributions were allowed in 

the linear model, the information tended to attenuate as it 

was transmitted from level to level. The broad convergence 

distributions averaged out the inhibitory and excitatory 
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portions of the transmitted information more efficiently 

than did narrow convergence distributions. Conversely, for 

the nonlinear model, the inhibition magnitude was limited 

and therefore the response did not tend to cancel. 

It was concluded that the limited inhibition assumption 

allowed broad or narrow convergence distributions to be used 

with no risk of averaging out the information as it was 

transmitted along the successive levels. 

Linear time considerations were included in the model 

and used to demonstrate that the transient response of a 

unit could be the result of a feedback mechanism. This 

concept was previously introduced by Hartline [1969]. He 

suggested that th~ self-feedback interconnections observed 

i n the ommatidia could be responsible for the transient 

response of the receptors. He indicated that the delay 

involved in the transmission of the inhibitory ~ignal 

through the feedback loop and back to the cell body allowed 

the output response to reach a peak. When the inhibitory 

signal arrived back at the cell body, the output decreased 

and the transient response was initiated. 

The approach made was similar to Hartline's, except 

that the time feedback loop was incorporated in the model at 

the convergence layer and not at the inhibition layer, for 

computational reasons. It was found that a unit with 



79 

transient response combined with an asymmetric receptive 

field could be used to determine direction of motion of a 

stimulus pattern. It is interesting to note that the 

transient response was obtained by the interconnection of 

two units with sustained response. Again, as in the case 

discussed above for on-center and off-center units, it i s 

not necessary to have functionally different units to 

achieve differential responses. The type of response may be 

governed by the type of interconnect ion among units of the 

same type. 

Transient response a~ a result of feedback may not be 

restricted to extrinsic means. Feedback processes within a 

unit may also give rise to an transient response. 

It was observed that the time invariant response of the 

two dimensional model extracted different features at the 

successive processing levels. 

observed in the first l evel. 

General edge enhancement was 

Sensitivity to edge 

orientation was observed in the second_ and third stages. 

Corners were detected in the fourth and last leve l of the 

model. 

Corners were indicated in the response map by peaks 

surrounded by moderate or secondary activity. The peak 

response magnitude presented little change with respect to 

stimulus position, although it proved sens itive to the 
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stimulus shape corner angles. Acute angles elicited a 

higher response than did right angles. The secondary 

activity appeared to contain information about the relative 

position of the corner. When the stimulus position changed, 

the magnitude and distribution of the secondary activity 

changed accordingly. These results showed that information 

is transformed in passing from the lower processing levels 

to the higher processing levels. 
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CHAPTER 5: SUMMARY 

The purpose of the study was to describe and discuss 

possible properties and interconnections of neurons in an 

idealized sensory network and to evaluate their functional 

significance in the processing of topographic information. 

A mathematical model was built based on physiological 

evidence obtained from classical literature. Some of the 

physiological facts included in the model were hierarchical 

organization of the units, convergence and divergence of the 

information, and lateral inhibition. 

A computer program was written and run to .eva luate the 

model. Two model versions were tested, a one dimens iona l 

model and a two dimensional model. For both models, the 

static receptive fields were mapped and the static response 

to an input stimulus evaluated. 

Results showed typical on-center or off-center 

receptive fields depending on the nature of the self-

feedback connection in the units. Self-inhibition yielded 

on-center response while self-excitation yielded off-center 

fields. 

Units with piecewise linear transfer functions produced 

adaptive receptive fields. The characteristics of the 

receptive fields depended on the inhibitory range allowed by 

the unit's activity and the threshold value of . the piecewise 
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linear transfer function. The unit's activity was 

determined as the resultant of the inhibitory interactions 

and the excitatory input (external and spontaneous ) . 

It was observed that the response of a unit with 

respect to time may be governed not only by the the 

intrinsic properties of the unit but also by the type of 

external interconnections. A transient response was 

obtained from a unit with sustained response with respect to 

time when a negative feedback path was introduced. 

A unit with transient response combined with a 

nonsymmetric receptive field yielded a direction sensitive 

response t o moving stimuli. 

Finally, a static two dimensional model was tested. 

This model proved sensitive to spatial features of the input 

stimulus. Edges were enhanced in the first hierarchical 

level, sensitivity to edge orientation was observed in the 

second and third levels. Corners were detected in the last 

hierarchical level and were represented in the response map 

as peaks surrounded by moderate act ivity. 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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PR022.FOR 

This program calculates the receptive field of a 
one dimensional, one level, linear system. It uses 
windowing at both the convergence and LI layers. 
The receptive field is obtained by shifting a unitary 
stimulus across the input. The corresponding output 
is evaluated only for the central receptor. 

Subroutines used: 

MINV: Computes the inverse matrix using Gauss' 
algorithm 

HGRAPH: Graphics subroutine 

Description of parameters: 

A: Matrix containing lateral inhibition coefficients 
XI: Input vector 
XO: Storage of the central receptor output for each 

position of the i~put stimulus 
XHl: Convergence layer output 
Cl: LI layer output 
B: LI window 
GAUSCO: Covergence window 
WOVECl: Auxiliary vector for inverse rnatric computations 
WOVEC2: Auxiliary vector for inverse matrix computations 
XN:Graphics auxiliary vectoF 

c-----------------------------------------------------------------c 

c 
c 

c 

DIMENSION A(ll,ll),DIAGA(ll),XI(81),X0(81),XN(81 ) 
DI MENS ION B ( 11) , GAUSCO ( 11) 
DIMENSION XH1(41),Cl(41) 
DIMENSION WOVEC1(11),WOVEC2(11) 

TYPE*,' INPUT standard deviation for convergence' 
ACCEPT *,SIGCON 
TYPE*,' INPUT standard deviation for lateral inhibition' 
ACCEPT *,SIGMA 
TYPE*,' INPUT self feedback coefficient' 
ACCEPT *,SI 

c---------------------------------------------~--------------------c 
C ** Calculate inhibitory coefficients ** 



c 

10 
c 
c 

20 
c 

DO 10 I = 1,11 
DO 10 J = 1,11 
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A(I,J) = EXP(-((I-J) / SIGMA )**2/2) 
CONTINUE 

* Include 
DO 20 I = 

A(I,I)= 
CONTINUE 

self feedback effect * 
1,11 
l+SI 

c----------------------------------------------------------------
c 
c 
c 
c 

* Calculate matrix inverse and load convergence window * 
* MINV computes inverse and replaces values on A * 

D•O 
DO 25 I=l,11 

WOVECl(I) = 0 
WOVEC2(I) = 0 

25 CONTINUE 
c 

CALL MINV(A,ll,D,WOVEC1,WOVEC2) 
c 
C * If value of matrix determinant is 0 then stop * 

IF(D.EQ.0) STOP 
c 

30 
c 

DO 30 I=l,11 
B(I) = A(6 ,I) 

CONTINUE 

c----------------------------------------------------------------c 
c 
c 

** Calculate convergence array ** 

DO 40 I = 1,11 
GAUSCO(I) = EXP(- ((I-6)/SIGCON)**2 / 2) 

40 CONTINUE 
c c----------------------------------------------------------------c 

42 
c 

DO 42 I 
XI(I) 
XO( I) 

CONTINUE 

= 1,81 
= o. 
= o. 

c----------------------------------------------------------------
c 
C ** Calculate receptive fields ** 
c 
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DO 1000 KPRIN = 1,81 
c c----------------------------------------------------------------c 
c **Clear arrays ** 
c 

45 
c 
c 

DO 45 I = 1,41 
XHl(I) = O. 
Cl(I) = 0. 

CONTINUE 

c-----------------------------------------------------------------c 
c 
c 
c 

c 

** Generate input ** 
* Incremental shift of input stimulus * 

IF (KPRIN.GT.l) XI(KPRIN-1) = 0. 
XI(KPRIN} = 1. 

c-----------------------------------------------------------------c 
C * First level * 
c 
C * Convergence layer * 
c 
c 

c 
c 
c 
c 

* 
c 
c 
50 
c 
c 
c 
c 
c 
c 
c 

ICOUNT = 0. 
* window shifts two units at time across source XI * 

DO 50 Il = 1,81,2 
* target XHl increments one unit at a time * 

ICOUNT = ICOUNT + 1 

* multiply source Xl and widow gausco point to point 
and then add for target XHl response * 

DO 50 I2 = 1,11 
I3 = I1+6-I2 

* avoid operating outside source X! limits * 
IF((I3.LE.0}.0R.(I3.GE.82}} GOTO 50 

XHl(ICOUNT} = XH1(ICOUNT}+GAUSCO(I2}*XI(I3} 

CONTINUE 

** Lateral inhibition layer ** 

* incremental pointer Il points at LI unit for which the 
response is being computed, for RF only the response at 
central unit (21) is calculated * 

DO 60 Il = 21,21 



c 

c 
c 
62 
60 
c 
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* calculate convolution of input XHl with window B * 
DO 62 I2 = 1,11 

I3 = Il+6-I2 
* avoid computations outside input array * 
IF((I3.LE.0).0R.(I3.GE.42)) GOTO 62 

Cl(Il) = Cl(Il)+B(I2)*XHl(I3) 
CONTINUE 

CONTINUE 

c-------------------------------------------------------------c 
c 
c 
c 
1000 
c 

* Store output of central unit in XO and repeat for 
next input position * 

XO(KPRIN) = Cl(21) 

CONTINUE 

c-----------------------------------------------------------------c 
c 

130 
c 

** graphic output ** 
DO 130 I = 1,81 

XN(I) = I-1 
CONTINUE 

DO 140 I = 1,81 
IF(XO(I).GT.XMAX) XMAX=XO(I) 

140 CONTINUE 
c 

DO 150 I=l,81 
XO(I)=XO(I)/XMAX 

150 CONTINUE 
c 

c 
END 

CALL INIPLT(7,4.,4.) 
CALL SCALE(0.,80.,-1.2,1.2) 
CALL AXIS(20.,0.4,'Receptors' ,9,1,1,'Response' ,8,1,1) 
CALL SMOOTH(XN,X0,81,0,0,l,0,0) 
CALL ENDPLT 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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PROGRAM: PR053.FOR 

This program calculates the response of a one dimensional, 
two level, piecewise linear system to an arbitrary input. 
It uses windowing technique at both the convergence layer 
and L.I. layer. A linear response can be obtained if the 
chosen threshold value THRES is large and negative. 

Subroutines used: 

MIO: Solves the nonlinear system by iterations. 

HGRAPH: Graphics subroutine. 

Description of parameters: 

A: Matrix containing lateral inhibition coefficients 
DIAGA: Vector with A's diagonal elements for iterative 
solution 
XI: Input vector 
XHI: Convergence layer output at level 
Cl: Lateral inhibition layer output at 
XH2: Convergence layer output at level 
C2: Lateral inhibition layer output at 
GAUSCO: Convergence window 

1 
level l 
2 
level 2 

XHAUX: LI auxiliary vector loaded with segment of input 
vector on which LI windowing is computed 
CAUX: LI auxiliary vector with output from LI windowing 
XN: Graphics auxiliary vect.or 

c------------------------------------------------------------------c 

c 
c 

DIMENSION A(ll,ll),DIAGA(ll),XI(81),XN(21) 
DIMENSION GAUSCO(ll) 
DIMENSION XH1(41),Cl(41),XH2(21),C2(21) 
DIMENSION XHAUX(ll),CAUX(ll) 

TYPE*,' INPUT Standard deviation for convergence' 
ACCEPT *,SIGCON 
TYPE*,' INPUT Standard deviation for lateral inhibition' 
ACCEPT *,SIGMA 
TYPE*,' INPUT Self feedback coefficient' 
ACCEPT *,SI 
TYPE*,' INPUT Threshold value' 
ACCEPT *,THRES 
TYPE*,' INPUT Stimulus limits' 
TYPE*,' LOW LIMIT, UPPER LIMIT' 
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ACCEPT *,KLOW,KHIGH 
c c------------------------------------------------------------------
c 
c ** Load inhibitory weighing coefficients ** 
c 

10 
c 
c 
c 

20 
c 

DO 10 I = 1,11 
DO 10 J = 1,11 

A(I,J) = EXP(-((I-J) / SIGMA)**2/2) 
CONTINUE 

* Prepare matrix for iterative subroutine * 
DO 20 I = 1,11 

* Include self feedback coefficient * 
DIAGA(I) = l.+SI 

A(I,I)=O. 
CONTINUE 

c----------------------------------------------------------c 
c 
c 

** Load convergence weighing coeffic i ents on window ** 

DO 40 I = 1 ,11 
GAUSCO(I) = EXP(-((I - 6) / SIGCON)**2 / 2) 

40 CONTINUE 
c c----------------------------------------------------------c 

DO 42 I = 1,81 
XI(I) = 0. 

42 CONTINUE 
c c----------------------------------------------------------
c 
C ** Input stimulus generation ** 
c 

1000 
c 

DO 1000 KPRIN = KLOW,KHIGH 
XI(KPRIN)=l. 

CONTINUE 

c----------------------------------------------------------c 
c 
c 

45 
c 

**Clear arrays ** 

DO 45 I = 1,41 
XHl (I) 2 0. 
Cl(I) = 0. 

CONTINUE 

DO 46 I= 1,21 



46 
c 

XH2 (I) = 0. 
C2(I) = 0. 

CONTINUE 
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c----------------------------------------------------------c 
c 
c 
c 
c 
c 

** First level ** 

* Convergence layer * 

!COUNT = O. 
c * Window shifts two units at a time across source XI * 

DO 50 Il = 1,81,2 
C * Target XHl increments one unit at a time * 

!COUNT = ICOUNT + 1 
c 
C * Multiply source XI and window GAUSCO one to one 
c and then add for target XHl response * 

DO 50 I2 = 1,11 
I3 = Il+6-I2 

C * Avoid operating outside source XI limits * 
IF((I3.LE.O).OR.(I3.GE.82)) GOTO 50 

c 
XHl(ICOUNT) = XHl(ICOUNT )+GAUSCO(I2)*XI (I3) 

c 
50 CONTINUE 
c 
C ** Lateral inhibition layer ** 
c 
C * Incremental pointer Il points at LI unit for which 
C the response is computed and indirectly 
C determines segment of input XHl to be loaded 
C onto XHAUX * 

c 
c 

61 
c 
c 
c 

c 

DO 60 Il = 1,41 
KOUNT=O 

* Clear XHAUX auxiliary array * 
DO 61 K=l,11 

XHAUX(K)=O. 
CONTINUE 

* Load the relative segment of input XHl on to 
XHAUX auxiliary array * 

DO 62 I2 = 1,11 
I3 = Il+6-I2 
KOUNT•KOUNT+l 
IF((I3.LE.0).0R.(I3.GE.42)) GOTO 62 

XHAUX(KOUNT)=XH1(!3) 
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c 
c 
c 
c 
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CONTINUE 

* Calculate system solution * 
CALL MIO(A,XHAUX,CAUX,DIAGA,11,THRES) 
* Save only central receptor response * 
Cl(Il)=CAUX(6) 

60 CONTINUE 
c 
c 
c----------------------------------------------------------
c 
C ** second level ** 
c 
C * Convergence layer * 
c 
c 

!COUNT = 0 
C * Window shifts two units at a time across source Cl * 

DO 80 Il = 1,41,2 
C * Target XH2 increments one unit at a time * 

I COUNT = I COUNT·+ 1 
c 
C * Multiply source Cl and window GAUSCO one to one 
C and then add for target XH2 response * 

DO 80 I2 = 1,11 
!3 = Il+6-I2 

C * Avoid operating outside source Cl limits * 
I F ( ( I 3 . LE . 0 ) . OR. ( I 3 . GE . 4 2 ) ) GOTO 8 0 

c 
XH2(ICOUNT) = XH2(ICOUNT)+GAUSCO(I2)*Cl(I3) 

c 
80 CONTINUE 
c 
C ** Lateral inhibition layer * 
c 
C * Incremental pointer Il points at LI unit for which 
C the response is computed and inderectly 
C determines the segment of input Xhl to be 
C loaded onto XHAUX * 

c 
c 

91 
c 
c 
c 

DO 90 Il = 1,21 
KOUNT=O 

* Clear XHAUX auxiliary array * 
DO 91 K=-1,11 

XHAUX(K)=O. 
CONTINUE 

* Load relative segment of input XH2 onto 
XHAUX auxiliary array * 



c 
92 
c 
c 
c 
90 
c 
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DO 92 I2 = 1,11 
I3 = Il+6-I2 
KOUNT=KOUNT+l 
IF((I3.LE.O).OR.(I3.GE.22)) GOTO 92 

XHAUX(KOUNT)=XH2(I3) 
CONTINUE 

* Calculate system solution * 
CALL MIO(A,XHAUX,CAUX,DIAGA,ll,THRES} 
* Save only central receptor response * 
C2(Il}=CAUX(6) 

CONTINUE 

c----------------------------------------------------------c 
c 
c 

** Graphic output ** 
DO 130 I = 1, 21 

XN(I) = I-1 
130 CONTINUE 
c 
C * Normalize output * 

DO 140 I = 1,21 
IF(C2(I}.GT.XMAX} XMAX=C2(I} 

140 CONTINUE 
c 
c 

c 

c 

XMAX=XMAX*l.2 

CALL INIPLT(7,4.,4.} 
CALL SCALE(0.,20.,-XMAX,XMAX) 
CALL AXIS(5.,XMAX/ 2,'Receptors' ,9,1,1,'Response' ,8,1,l ) 
CALL SMOOTH(XN,C2,21,0,0,l,0,0} 
CALL ENDPLT 

TYPE *,'SIGMA=' ,SIGMA,'SIGCON=' , SIGCON 
TYPE *,'SI=' ,SI,'THRES=' ,THRES 
END 

c--------------------------------------------------------



c 
c 
c 

c 
c 
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SUBROUTINE MIO(C,XIN,XOUT,DIAG,N,T) 

DIMENSION C(N,N),XIN(N),XOUT(N),DIAG(N) 
ITER = 1 
EPS = lE-5 

CC DO 5 I = l,N 
CC XOUT(I ) = 0. 
CCS CONTINUE 
c 
99 BIG = 0.0 

DO 100 I = l,N 
SUM = 0. 
DO 10 J = l,N 

SUM= SUM+C(I,J)*XOUT(J) 
10 CONTINUE 
c 
c 
c 

TEMP= (XIN(I)-SUM)/DIAG(I) 

IF(TEMP.LT.T) TEMP = T 

RESID = ABS(TEMP-XOUT(I)) 
IF(RESID.GT.BIG) BIG = RES ID 
XOUT(I) =TEMP 

100 CONTINUE 
c 

c 

c 

IF(BIG.LT.EPS) RETURN 
IF(ITER.GT.150) GOTO 200 

ITER = ITER+l 
GOTO 99 

200 TYPE *,'MORE THAN 150 ITERATIONS' 
RETURN 
END 
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c 
c 
C PROGRAM: R2DNL 
c 

98 

C This program calculates the response of a two dimensiona l 
c linear model to an arbitrary input. Linear processing is 
c assumed at the first level, while a piecewise solution is 
C applied at other levels. Windowing techniques are 
C used for both the convergence and LI layers. A linear 
C response can be obtained if the chosen threshold value 
C THRES is large and negative. 
c The final output values are stored in file R2DNL.DAT and 
C can be plotted using program GRAR2D. 
c 
C Subroutines used: 
c 
C CLR: Clears array 
c 
C CLRIO: Clears input and output arrays to a level 
c 
C CONV: Calculates the response of the convergence layer 
c 
C CONVAN: Adds point to point the output from each 
C individual parallel path 
c 
C DIACLR: Prepares matrix A for iterative subroutine. 
C Loads main diagonal elements of matrix A on to DIAGA 
C and makes matrix A diagonal elements equal to zero 
c 
C GENIND: Generates the LI coefficients 
c 
C GENINP: Generates system input 
c 
C INH: Calculates the piecewise linear response of a 
C lateral inhibition layer without using windowing 
C techniques 
c 
C INHL: Calculates the linear response of a LI layer 
C using windowing techniques 
c 
C INHN: Calculates the piecewise linear response of 
C a LI layer 
c 
C LOADA: Loads the LI coefficients on matrix A, 
C includes the self inhibition effects 
c 
C LOADB: Loads the elements in the middle row of 
C matrix A on to linear LI window 
c 
C LOGAUS: Loads convergence window 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

99 

MIO: Calculates the solution of a system of piecewice 
linear equations using an iterative method 

MINV: Calculation of matrix inverse using Gauss method 

WRIFIL: Writes output file 
on to window B 

WRIXTO: Saves the output of each parallel path 

Description of parameters: 

GEN: Four· dimension array for LI coefficients 
computation 
A: LI matrix 
DIAGA: Vector loaded with A diagonal elements for 
iterative computations 
AINV: Inverse LI matrix 
B: Linear LI window 
WOVECl: Auxiliary vector for the computation of inverse 
matrix 
WOVEC2: Auxiliary vector for the computation of inverse 
matrix 
GAUSl: Symmetric convergence window 
GAUS2: Asymmetric convergence window 
XTOT: Storing array for the output of each parallel 
path 
XI: Input array 
XHi: Convergence layer array for level i 
Ci: LI layer array for level i 
Ni: Number of units per side of array at l evel i 
SIGMA: LI standard deviation 
SIGCOl: Convergence standard deviat ion 
SIGC02: Convergence standard deviation 
SI: Self feedback value 
THRES: Threshold value 

c-------------------------------------------------------------c 
c 
c 

Initialization 

DIMENSION GEN(ll,11,11,ll} 
DIMENSION A(l21,121},DIAGA(l21} 
DIMENSION AINV(l21,121},B(ll,11},WOVEC1(121},WOVEC2(121} 
DIMENSION GAUS1(11,ll},GAUS2(17,17} 
DIMENSION XTOT(ll,11,4) 
DIMENSION XI(81,81} 
DIMENSION XH1(41,41},Cl(41,41} 



c 

c 

c 

10 
c 

100 

DIMENSION XH2(21,21),C2(21,21) 
DIMENSION XH3(11,ll),C3(11,ll) 
DIMENSION XH4(11,ll) 

Nl=81 
N2=41 
N3a21 
N4=11 

SIGMA 
SIGCOl 
SIGC02 
SI 
THRES 

= 2.0 
= 1.3 
= 2*SIGC01 
= 1.0 
= o.o 

DO 10 I=l,121 
WOVECl(I)=O. 
WOVEC2(I)=O. 

CONTINUE 

c-------------------------------------------------------------c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Main Program 

Initialization of Matrices and associated arrays 

* Generate LI coefficients * 
CALL GENIND(GEN,SIGMA) 
* Load LI coefficients on matrix A * 
CALL LOADA(GEN,A,SI,11,121) 
* Load LI coefficients on matrix AINV * 
CALL LOADA(GEN,AINV,SI,11,121) 
* compute inverse of matrix and store solution in AINV * 
CALL MINV(AINV,121,D,WOVEC1,WOVEC2} 
* load LI linear window with middle row of AINV 
CALL LOADB(AINV,B) 
* prepare A and DIAGA for iterative subroutine * 
CALL DIACLR(A,DIAGA,121) 

C * load symmetric convergence window * 
CALL LOGAUS(GAUSl,SIGCOl,SIGCOl,11,6,0.) 

c 
c 
C * clear input and output arrays * 

CALL CLR{XI ,Nl} 
CALL CLR{XH4,N4) 

c 
C Response 
c 
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C * generate input * 
CALL GENINP(XI) 

c 
C * calculate output first level * 

CALL CLRIO(XH1,Cl,N2) 

c 
CALL CONV(XI,XHl,GAUSl,ll,6,Nl,N2) 
CALL INHL(XH1,Cl,B,N2) 

C * calculate the output of parallel paths with RF main 
C axis orientation given by ANG, output is stored at 
C XTOT * 

DO 20 KONT=l,4 
ANG=(FLOAT(KONT-1))*45. 
CALL CLRIO(XH2,C2,N3) 
CALL CLRIO(XH3,C3,N4) 

C * convergence asymmetric window oriented according 
C to ANG value * 

CALL LOGAUS(GAUS2,SIGC01,SIGC02,17,9,ANG) 
C * calculate level two * 

CALL CONV(Cl,XH2,GAUS2,17,9,N2,N3) 
CALL INHN(XH2,C2,N3,A,DIAGA,THRES) 

C * calculate level three * . 
C * no windowing is used at this LI layer due to 

the small size of the LI layer * 
CALL CONV(C2,XH3,GAUS1,ll,6,N3,N4) 
CALL INH(XH3,C3,ll,121,A,DIAGA,THRES) 

c 
C * save parallel path output * 

CALL WRIXTO(C3,XTOT,KONT) 
20 CONTINUE 
c 
C * compute level four output *' 

CALL CONVAN(XTOT,XH4) 
C * write file * 

CALL WRIFIL(XH4,N4) 
c 

c 
STOP 
END 

c-------------------------------------------------------------
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c 
SUBROUTINE CLR(X,N) 

c 
C This subroutine clears two dimensional arrays 
c 
c 

DIMENSION X(N,N) 

DO 10 I=l,N 
DO 10 J=l,N 

X(I,J)=O. 
10 CONTINUE 
c 

c 
RETURN 
END 

c--------------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE CLRIO(AUXI,AUXO,N} 

This subroutines clears the contents of t~o arrays: 
AUXI and AUXO. 

Description of parameters: 

AUXI: array 
AUXO: array 
N: number of elements per side of the array 

c-------------------------------------------------------------
c 

DIMENSION AUXI(N,N),AUXO(N,N) 

DO 10 I=l,N 
DO 10 J=l,N 

AUXI(I,J ) =O 
AUXO(I,J)=O. 

10 CONTINUE 
c 

c 
RETURN 
END 

c---------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE CONV(XI,XH , GAUS,Kl,K2,Nl,N2) 

This subroutine calculates the response of a 
convergence layer using the windowing technique. The 
window is shifted along the source array in steps of 
two units at a time, and the point to point product of 
the window elements with their corresponding source 
array elements is performed and added up to determine 
the target unit's response. The results are stored in 
neighboring units of the target array, giving rise to 
the pyramidal structure of the model. 

Description of parameters: 

XI: source array 
XH: target array 
GAUS: convergence window 
Nl: number of units per side of source array 
N2: number of units per side of target array 
Kl: number of units per side of convergence window 
K2: middle of convergence window 

c---------------------------~--------------------------------
c 

DIMENSION XI(Nl,Nl),XH(N2,N2),GAUS(Kl,Kl) 
c 

IXCONT=O 
C * window shifts two steps at a time in x direction 
C across the source array * 

DO 10 IXl=l,Nl,2 
c 
C * target pointer increments one unit at time in x 
C direction * 

c 
IXCONT=IXCONT+l 
IYCONT=O 

C * window shifts two steps at a time in y direction 
C across the source array * 

DO 10 IYl=l,Nl,2 
C *target pointer increments one unit at time in y 
c direction * 

IYCONT=IYCONT+l 
c 
c 
c 

* multiply point to point the source with the window 
and add for target response * 

DO 10 IX2•1,Kl 
IX3•IXl+K2-IX2 

DO 10 IY2=1,Kl 
IY3=IYl+K2-IY2 



c 
c 

c 

c 
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* avoid operating outside of source limits * 
IF((IX3.LE.O).OR.(IX3.GE.(Nl+l})) GOTO 10 
IF((IY3.LE.0).0R.(IY3.GE.(Nl+l))) GOTO 10 

XH(IXCONT,IYCONT)=XH(IXCONT,IYCONT)+ 
@ GAUS(IX2,IY2)*XI(IX3,IY3) 

10 CONTINUE 
c 

c 
RETURN 
END 

c-----------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE CONVAN (XTOT,XH) 

This subroutine adds point to point the contents of 
all four 11*11 arrays in XTOT 

Description of parameters: 

XTOT: input array 
XH: output array 

c------------------------------------------------------------c 
c 

c 
c 

DIMENSION XTOT(ll,ll,4),XH(ll,11) 

DO 10 I=l,11 
DO 10 J:sl,11 
DO 10 K=l,4 

XH(I,J)=XH(I,J)+XTOT(I,J,K) 

10 CONTINUE 
c 

c 
RETURN 
END 

c----------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE DIACLR(A,DIAGA,N) 

This subroutine transfers the contents in the main 
diagonal of matrix A to vector DIAGA and clears 
the matrix's diagonal 

Description of parameters 

A: LI matrix 
DIAGA: vector 
N: dimension of A and DIAGA 

c----------------------------------------------------------c 
c 

DIMENSION A(N,N),DIAGA(N) 

DO 10 I=l,N 
DIAGA(I)=A(I,I) 
A(I,I) =O. 

10 CONTINUE 
c 

c 
RETURN 
END 

c------------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE GENIND(GEN,SIGMA) 

This subroutine generates the LI coefficients using a 
four dimensional array. The first two subscripts 
indicate the row and column location in the LI array 
where the lateral connection originates and the last 
two subscripts indicate the row and column of the 
array to which the lateral connection projects. 

Description of parameters used: 

GEN: Four dimensional array for systematic generation 
of LI coefficients 
SIGMA: LI standard deviation 

c-------------------------------------------------------------c 
c 

c 

c 

DIMENSION GEN(ll,11,11,11) 

DO 10 IUX=l,11 
DO 10 IUY=l,11 

DO 10 IX=l,11 
DO 10 IY=l,11 

GEN(IUX,IUY,IX,IY)=EXP(-((IX-IUX)**2+(IY-IUY)**2 ) 
@ / (2*(SIGMA**2))) 

10 CONTINUE 
c 

c 
RETURN 
END 

c-------------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE GENINP(XI) 

This subroutine generates the input pattern. This is 
done by setting the loop indexes with the appropriate 
values. 

Description of parameters: 

XI: Input array on which the pattern is generated 

c------------------------------------------------------------
DIMENSION XI(81,81) 

c 

c 
c 

DO 20 I=21,61 
DO 20 J=21,61 

XI(I,J)=l 

20 CONTINUE 
c 

c 
RETURN 
END 

c------------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE INH(XH,C,Nl,N2,A,DIAGA,T) 

This subroutine calculates the piecewise response of 
a LI layer. It does not use the windowing technique 
since it is assumed to operate with arrays whose 
side length is comparable to the source's; thus saving 
computation time. To solve the system a line scan 
transformation is performed with the array elements. 
This arrangement allows the application of an 
iterative method based on the Gaus-Seidel algorithm. 

Description of parameters: 

A: matrix with the LI coefficients and zero for the 
elements in the main diagonal 
DIAGA: contains original elements in main diagonal 
of A 
XH: input array 
C: output array 
XIN: auxiliary array used store the values of XH 
after the 'line scan' transformation 
XOUT: auxiliary array with output values after 
iterative solution of the system 
Nl: number of units per side in LI layer 
N2: number of units per side in matrix A and 
vector DIAGA 

c------------------------------------------------------------c 

c 
DIMENSION A(N2,N2 ),DIAGA(N2),XH(Nl,Nl),C (Nl,Nl) 
DIMENSION XIN(441),XOUT(44l) 

C * line scan transformation of input array * 
DO 5 IX=l,Nl 
DO 5 IY=l,Nl 

AUX=Nl*(IX-l)+IY 
XIN(AUX)=XH(IX,IY) 

C * clearing the output array to start first 
C iteration (may be commented out) * 

XOUT(AUX)=O. 
5 CONTINUE 
c 

ITER=l 
C * resolution coefficient * 

EPS=lE-04 c 
C * start iteration * 
99 BIG=O.O 

DO 100 I=l,N2 
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SUM=O. 
DO 10 J=l,N2 

SUM=SUM+A(I,J)*XOUT(J) 
10 CONTINUE 
c 
C * solve for variable I * 

TEMP=(XIN(I)-SUM) / DIAGA(I) 
C * compare with threshold and change if necessary * 

IF(TEMP.LT.T) TEMP=T 
C * determine the maximum difference in all present 
C output values with respect to values in the previous 
C iteration * 

c 

RESID=ABS(TEMP-XOUT(I)) 
IF(RESID.GT.BIG)BIG=RESID 
XOUT(I ) =TEMP 

100 CONTINUE 
c 

IF (BIG. LT. EPS·) GOTO 2 0 0 
C * stop if more than 250 iterations are made * 

IF(ITER.GT.250) STOP 
ITER=ITER+l 
GOTO 99 

c 
C * once resolution specifications are met, apply 
C inverse 'line scan' transformat i on and place output 
C values in their corresponding 2 D array positions 
200 DO 20 I=l,Nl 

DO 20 J=l,Nl 
AUX=(I-l)*Nl+J 
C(I,J)=XOUT(AUX) 

20 CONTINUE 

RETURN 
c 

END 
c c------------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE INHL(XH,C,B,N) 

This subrout i ne calculates the response of a LI layer 
with linear units. The windowing techn ique is used. 

Description of parameters used: 

XH: input array 
C: output array 
B: window with transfer elements 

c----------------------------------------------------------c 

c 
DIMENSION B(ll,11 ) 
DIMENSION XH (N,N),C(N,N) 

C * increment pointer that ind i cates section of input 
C array to be processed by window * 

DO 10 IXl=l,N 
DO 10 IYl=l , N 

c 
C * point to po i nt mult iplication and addit i on of 
C window B elements with section of input array 
C contents * 

c 
c 

c 
c 

DO 10 IX2=1,ll 
I X3=IX1+6-IX2 

DO 10 IY2=1,ll 
IY3=IY1+6-IY2 

* avoid operating out side input array * 
I F( ( IX3.LE.0).0R.( IX3.GE. (N+l) ) ) GOTO lb 
IF((IY3 . LE. 0 ).0R.(IY3.GE. (N+l) ) ) GOTO 10 

C( I Xl, I Yl)=C (IXl , IYl)+B (IX2,IY2 ) *XH ( IX3, I Y3 ) 

10 CONTINUE 
c 

c 
RETURN 
END 

c----------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE INHN(XH,C,N,A,DIAGA,THRES) 

This subroutine calculates the piecewise linear 
response of a LI layer. The windowing technique is 
used. A section of the input array is systematically 
picked and stored in a window array that transfers the 
data to the iterative subroutine MIO. This subroutine 
solves the system based on the Gauss-Seidel algorithm. 
The solution for the central unit of the input window 
is returned and saved. The following section of the 
input array is picked and the process continues. 

Description of parameters: 

A: matrix with LI coefficients and zero for the 
elements in the main diagonal 
DIAGA: contains original elements in main diagonal 
of A 
XH: input array 
C: output array 
XHAUX: auxiliary 
input array that 
iterative window 

array to store the portion of the 
is being processed by the LI 

Cllll: variable with solution value for window's 
central unit 

Subroutines used: 

MIO: solves the piecewise system using a modified 
Gaus-Seidel iterative method. In doing so, it must 
first rearrange its input array XHAUX through a 
'line scan' transformation. 

c-----------------------------------------------------------c 

c 
c 
c 

DIMENSION A(l21,121),DIAGA(l21) 
DIMENSION XH(N,N),C(N,N) 
DIMENSION XHAUX(ll,11) 

Cllll=O. 

C * start window shift * 
DO 10 IXl=l,N 
DO 10 IYl=l,N 

c 
C * clear auxiliary array before every window shift* 

DO 20 KX=l,11 
DO 20 KY=l,11 
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XHAUX(KX,KY)=O. 
20 CONTINUE 
c 
c * load corresponding section of input array on to 
c the auxiliary array * 

c 

c 

DO 30 IX2=1,ll 
IX3=IX1+6-IX2 

DO 30 IY2 2 l, 11 
IY3=IY1+6-IY2 

IF((IX3.LE.0).0R.(IX3.GE.N+l)) GOTO 30 
IF((IY3.LE.0).0R.(IY3.GE.N+l)) GOTO 30 

XHAUX(IX2,IY2)=XH(IX3,IY3) 
c 
30 CONTINUE 
c 
C * solve for windowed section * 

CALL MIO(A,XHAUX,Cllll,DIAGA,THRES) 
c 
C * save solution for central unit of windowed 
C section * 

C(IXl,IYl)=Cllll 
c 
10 CONTINUE 
c 

c 
RETURN 
END 

c-----------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE LOADA(GEN,A,SI,Nl,N2) 

This subroutine loads the LI coefficients stored in 
GEN on to a matrix A. Now, the array units are labelled 
accor.ding to a 'line scan' numbering array and not 
according to their coordinates in the array. Thus, 
in matrix A, an element in row X and column Y refers 
to the lateral connection from unit Y to unit X. 
The self feedback effect is also included. 

Description of parameters: 

GEN: Four dimension array with LI coefficients 
A: Matrix loaded with reordered coefficients 
SI: Self feedback coefficient 
Nl: Dimension of GEN 
N2: Dimension of A 

c-----------------------------------------------------------c 
DIMENSION GEN(Nl,Nl,Nl,Nl),A(N2,N2) 

c 
C * load A from GEN according to line scan 
C transforamtion * 

c 

c 

c 
c 
c 

I=O 
DO 10 IUX=l,Nl 
DO 10 IUY=l,Nl 

I=I+l 
J=O 

DO 10 IX=l,Nl 
DO 10 IY=l,Nl 

J=J+l 

A(I,J)=GEN(IUX,IUY,IX,IY) 

10 CONTINUE 
c 
C * self feedback effect * 

DO 20 I=l,N2 
A(I,I)=-1.+SI 

20 CONTINUE 
c 

c 
RETURN 
END 



---------------------------------------------------------J 
9TT 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE LOADB(A,B) 

This subroutine loads the contents of the middle row 
of matrix A on to matrix B. In doing so, an 'i nverse 
line scan ' transformation that arranges the B matrix 
elements to be in line with the corresponding input 
unit for point to point window computations. 

Description of parameters: 

A: system transfer function 
B: array for linear windowing at LI layer 

c-----------------------------------------------------------c 
c 

DIMENSION A(l21 , 121),B(ll,ll) 

DO 10 I=l,11 
DO 10 J=l,11 

B{I,J)=A(61,ll*(I-l)+J) 
10 CONTINUE 
c 

c 

RETURN 
END 

c----------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE LOGAUS(GAUS,SIGCOX,SIGCOY,Kl,K2,ANG) 

This subroutine loads the convergence window GAUS with 
the weighing coefficients resulting of applying a 
2 dimensional gaussian distribution with standard 
deviations SIGCOX and SIGCOY on the respective axis. 
Orientation transformations are applied to rotate 
the distribution's main axis an angle as indicated 
by ANG. 

Description of parameters: 

GAUS: Convergence window 
SIGCOX: Standard deviation 
SIGCOY: Standard deviation 
ANG: Rotation of main axis 
Kl: Dimension of window 
K2: Center of window 

for x axis 
for y axis 

c------------------------------------------------------------c 
DIMENSION GAUS(Kl,Kl) 

c 
C * convert to radians * 

ALPHA=ANG*3.141591/180 
c 

c 
DO 10 IX=l,Kl 
DO 10 IY=l,Kl 

C * rotation transformations * 
XR2 (FLOAT(IX-K2))*COS(ALPHA)+(FLOAT(IY-K2))*SIN(ALPHA) 
YR=(FLOAT(IY-K2))*COS(ALPHA)-(FLOAT(IX-K2))*SIN(ALPHA) 

c 
C * calculate coefficients * 

GAUS(IX,IY)=EXP(-(((XR)/SIGCOX)**2+ 
@ ((YR)/SIGCOY)**2) / 2) 

c 
10 CONTINUE 

c 
RETURN 
END 

c------------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE MIO(A,XHAUX,Cllll,DIAGA,T) 

This subroutine calculates the solution of a system 
of piecewise linear equations using an iterative 
algorithm. The method is based on a modified version 
of the Gaus-Seidel iterative solution, with a step 
added at the end of each iteration to account for the 
threshold effect. The subroutine also rearranges the 
input data array through 'line scan' transformation 
into a one dimensional vector, thus maintaining 
coherence with the form in which the LI coefficients 
are ordered in matrix A. The solution value of the 
central unit is returned to the calling program. 

Description of parameters: 

A: matrix with LI coefficients and zero for the 
elements in the main diagonal 
DIAGA: contains original elements in main diagonal 
of A 
XHAUX: auxiliary array with section of input array 
to be processed 
XIN: auxiliary vector which stores input values 
after the 'line scan' transformation 
XOUT: auxiliary vector on which the solution values 
of the system are stored 
Cllll: variable with solution value of central unit 

c-----------------------------------------------------------c 

c 
DIMENSION A(l21,121),DIAGA(l21),XHAUX(ll,ll) 
DIMENSION XIN(l21),XOUT(l21) 

C * line scan transformation * 
DO 5 IX=l,11 
DO 5 IY=l,11 

AUX=ll*(IX-l)+IY 
XIN(AUX)=XHAUX(IX,IY) 

C * may be commented out to reduce the number of 
C iterations in uniform input regions by using 
C the output values as starting approximations 
C for the following iterative solution * 
C XOUT(AUX)=O. 
5 CONTINUE 
c 
C * set resolutiion coefficient * 

EPS=lE-04 
c 



99 BIG=O.O 
DO 100 I=l,121 

SUM=O. 
DO 10 J=l,121 

120 

SUM=SUM+A(I,J)*XOUT(J) 
10 CONTINUE 
c 
C * solve for variable I * 

TEMP 2 (XIN(I)-SUM) / DIAGA(I) 
C * compare with threshold and change if necessary * 

IF(TEMP.LT.T) TEMP=T 
C * determine maximum difference of all present output 
C values with respect to values in the previous 
C iteration * 

c 

RESID=ABS(TEMP-XOUT(I)) 
IF(RESID.GT.BIG)BIG=RESID 
XOUT(I)=TEMP 

100 CONTINUE 
c 

IF(BIG.LT.EPS) GOTO 200 
C * stop if more than 250 iterations * 

IF(ITER.GT.250} STOP 
ITER=ITER+l 
GOTO 99 

c 
C * when resolution specifications are met, return 
C solution value for central unit of array * 
200 Cllll=XOUT(61} 

RETURN 
c 

END 
c c-----------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE MINV 

PURPOSE 
INVERT A MATRIX 

USAGE 
CALL MINV(A,N,D,L,M) 

DESCRIPTION OF PARAMETERS 
A - INPUT MATRIX, DESTROYED IN COMPUTATION AND 

REPLACED BY RESULTANT INVERSE. 
N ORDER OF MATRIX A 
D - RESULTANT DETERMINANT 
L - WORK VECTOR OF LENGTH N 
M - WORK VECTOR OF LENGTH N 

REMARKS 
MATRIX A MUST BE A GENERAL MATRIX 

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED 
NONE 

METHOD 
THE STANDARD GAUSS-JORDAN METHOD IS USED. THE 
DETERMINANT IS ALSO CALCULATED. A DETERMINANT 
OF ZERO INDICATES THAT THE MATRIX IS SINGULAR. 

SUBROUTINE MINV(A,N,D,L,M) 
DIMENSION A(l),L(l),M(l) 

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS 
DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM 
THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS. 

DOUBLE PRECISION A,D,BIGA,HOLD,DABS 

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION 
STATEMENTS APPEARING IN OTHER ROUTINES USED IN 
CONJUNCTION WITH THIS ROUTINE. 

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE 
MUST ALSO CONTAIN DOUBLE PRECISION FORTRAN 
FUNCTIONS. ABS IN STATEMENT 10 MUST .BE CHANGED TO 
DABS. 
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c .................................................. . 
c 
C SEARCH FOR LARGEST ELEMENT 
c 

c 

D=l.O 
NK=-N 
DO 80 K=l,N 
NK=NK+N 
L(K}=K 
M(K}=K 
KK=NK+K 
BIGA=A(KK} 
DO 20 J=K,N 
IZ=N* (J-1} 
DO 20 I=K,N 
IJ=IZ+I 

10 IF( ABS(BIGA}- ABS(A(IJ}}} 15,20,20 
15 BIGA=A(IJ} 

L(K}=I 
M(K}=J 

20 CONTINUE 

C INTERCHANGE ROWS 
c 

c 

J=L(K} 
IF(J-K} 35, 35, 25 

25 KI=K-N 
DO 30 I=l,N 
KI=KI+N 
HOLD=-A (KI) 
JI=KI-K+J 
A(KI}=A(JI) 

30 A(JI) =HOLD 

C INTERCHANGE COLUMNS 
c 

c 

35 I=M(K} 
IF(I-K) 45,45,38 

38 JP=-N*(I-1} 
DO 40 J=-1,N 
JK=NK+J 
JI=JP+J 
HOLD•-A(JK} 
A(JK) =A(JI} 

40 A(JI) =HOLD 

C DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT 
C IS CONTAINED IN BIGA} 
c 

45 IF(BIGA) 48,46,48 



46 D=O.O 
RETURN 

48 DO 55 I=l,N 
IF(I-K) 50,55,50 

50 IK=NK+I 
A(IK)=A(IK) /(-BIGA) 

55 CONTINUE 
c 
C REDUCE MATRIX 
c 

DO 65 I=l,N 
IK=NK+I 
HOLD=A( IK) 
IJ=I-N 
DO 65 J=l,N 
IJ=IJ+N 
IF(I-K) 60,65,60 

60 IF(J-K) 62,65,62 
62 KJ=IJ-I+K 

A(IJ)=HOLD*A(KJ)+A(IJ) 
65 CONTINUE 

c 
C DIVIDE ROW BY PIVOT 
c 

c 

KJ=K-N 
DO 75 J=l,N 
KJ=KJ+N 
IF(J-K) 70,75,70 

70 A(KJ)=A (KJ)/BIGA 
75 CONTINUE 

C PRODUCT OF PIVOTS 
c 

D=D*BIGA 
c 
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C REPLACE PIVOT BY RECIPROCAL 
c 

c 

A(KK)=l.0/BIGA 
80 CONTINUE 

C FINAL ROW AND COLUMN INTERCHANGE 
c 

K•N 
100 K•(K-1) 

IF(K) 150,150,105 
105 I=L(K) 

IF(I-K) 120,120,108 
108 JQ•N*(K-1) 

JR•N*(I-1) 
DO 110 J=l,N 



c 

JK=JQ+J 
HOLD=A(JK) 
JI=JR+J 
A(JK) =-A (JI) 

110 A(JI) =HOLD 
120 J=M(K) 

IF(J-K) 100,100,125 
125 KI=K-N 

DO 130 I=l,N 
KI=KI+N 
HOLD=A (KI) 
JI=KI-K+J 
A(KI)=-A(JI) 

130 A(JI) =HOLD 
GO TO 100 

150 RETURN 
END 
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c-----------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE WRIFIL(XO,N) 

This subroutine writes out a file with the system 
output values. 

Descr.iption of parameters: 

XO: output array 

c----------------------------------------------------------------
c 

DIMENSION XO(N,N ) 
c 

WRITE(6,100 )((XO(I,J),J=l,N),I=l,N) 
100 FORMAT(llFl0.5) 
c 

c 
RETURN 
END 

c------------------------------------------------------------



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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SUBROUTINE WRIXTO(C3,XTOT,KONT) 

This subroutine loads the contents of array C3 on t he 
layer of XTOT indicated by KONT 

Description of parameters: 

C3: input array 
XTOT: storing array 
KONT: pointer 

c-----------------------------------------------------------c 
c 

DIMENSION C3(11,ll),XTOT(ll,ll,4) 

DO 10 I=l,11 
DO 10 J=l,11 

XTOT(I,J,KONT)=C3 (I ,J) 
10 CONTINUE 
c 

c 
RETURN 
END 

c-------------------------------------------------------------




