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I. INTRODUCTION 

The analysis of heat transfer involving a participating 

medium has been receiving considerable amount of interest 

since the last decade. The applications are numerous and 

diverse, such as combustion chambers, gaseous nuclear 

reactors, and plasma generators for nuclear fusion . 

However, the integral nature of radiation transport, the 

complex coupling between the radiative properties and 

temperature, and the dependence of radiation transport on 

the geometry complicates the analysis of heat transfer 

problems with radiation. 

A great deal of work has been reported on the 

interaction of radiation and conduction . Most of the work 

reported in combined conduction and radiation problems 

involving a participating medium is confined to one-

dimensional studies. Several approximate and exact 

solutions have been reported over the years and the results 

of these studies are well-documented in radiation heat 

transfer textbooks [l-3]. However, in two-dimensional 

problems there are only a few studies. Razzaque formulated 

the energy and heat flux equations for an absorbing-emitting 

gray medium contained in a rectangular enclosure and 

utilized a Galerkin finite element approach to obtain 

solutions [4]. Ratzel used a P-N approximation to analyze 

the interaction of radiation and conduction in a rectangular 
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enclosure containing an absorbing, emitting and 

isotropically scattering gray medium [5]. Shih and Chen 

proposed a computationally attractive discretized intensity 

method for radiation conduction problems [6]. For 

cylindrical geometry the energy equation and heat flux 

equations were developed and solved by the Galerkin finite 

element technique by Fernandes and Francis [7]. 

Radiative equilibrium problems in rectangular geometry 

has been solved by many methods. The most common method is 

probably Hottel's zone method [8]. This method has been 

modified recently by Larsen to include interaction of 

radiation with other modes of heat transfer [9]. Fiveland 

used discrete ordinates to solve the racliative transport 

equation for a specified temperature distribution in 

rectangular geometry (10]. The P-N approximation results 

for radiative equilibrium are reported in [5]. Yuen and 

Wong [11] and Yuen and Ho [12] present point a collocation 

solution to the radiative equilibrium in two-dimensional 

rectangular enclosures. The latter study considers effects 

of heat generation. The Galerkin finite element solution of 

the exact energy equations are reported in [4]: Recently 

Crosbie and Schrenker [13] contributed another exact 

solution based on a quadrature method. 

Several investigators report that the finite element 

technique is a viable means of analyzing the interaction of 
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conduction with radiation involving a participating medium 

[4,14-16]. The numerical solution of integral equations 

arising in radiative transfer problems has also been 

addressed [17,18]. The finite element technique is reported 

to be a viable method for solving integral equations. A 

general description of the finite element method can be 

found in [19]. 

Present work is an extension of the work reported in 

[4] to include scattering and heat flux boundary conditions. 

The governing equations are modified to include isotropic 

scattering, and the effects of scatter ing albedo, Stark 

number, wall emissivities and Biot number are investigated. 

The main assumptions involved in the analysis are that the 

medium and the surrounding walls of the enclosure are gray, 

and have uniform constant properties. 

The basic complexity introduced in this study over 

previous studies is the consideration given to more general 

type boundary conditions, namely convective heat flux 

boundary conditions. Although the engineering importance of 

heat flux .boundary conditions is apparent, except for a 

recent one-dimensional study, this problem has not been 

addressed [20]. 
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II. ANALYSIS OF COMBINED CONDUCTION AND RADIATION 

The objective of this analysis is to formulate the 

governing equations for combined conduction and radiation 

heat transfer in an absorbing, emitting, and isotropically 

scattering gray medium contained in a rectangular enclosure 

of diffuse gray walls. The major assumptions used in the 

analysis will be stated first. The energy equation and the 

incident radiation equation will be developed based on these 

assumptions in Sect ion B. Section C will contain the 

nondimensional form of the governing equations. The heat 

flux equations on the surrounding walls will be stated in 

Sect ion D. Finally, the boundary conditions required will 

be explained in Section E. 

A. Assumptions 

An exact analysis of the combined conduction and 

radiation problem is extremely complex due to the coupling 

between the temperature field and radiation transfer . The 

radiative properties of the materials are dependent on the 

temperature and wavelength of the radiation and the 

temperature is dependent on the radiative transfer in a 

nonlinea r manner. In order to reduce the exact problem to a 

more tractable one the following assumptions are made: 

• The radiative properties of the medium are 

independent of wavelength, temperature, and 
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position, i.e., the medium is gray with constant 

and uniform absorption and scattering coefficients. 

• The scattering is independent of the direction , 

i.e., the scattering is isotropic. 

• The surrounding walls of the enclosure are opaque 

and their radiative properties are independent of 

wavelength, temperature, and direction, that is, 

the surrounding walls are diffusely emitting and 

reflecting gray walls with constant and uniform 

emissivities. 

• The medium is in local thermodynamic equilibrium; 

hence Kirchoff's laws are valid, i.e., the 

absorption and emission coefficients are equal. 

• The index of refraction is unity. 

• The thermal conductivity of the medium is constant 

and uniform. 

• The medium is stationary, i.e., it does not move 

due to temperature or external effects. 

• The enclosure can be considered two dimensional. 

• The system is at steady-state. 

Among the above assumptions the first one, namely 

assuming a gray medium, is the most restrictive assumption. 

However, this assumption simplifies the analysis of the 

problem considerably. Unfortunately, real materials are not 

gray and exhibit rapidly varying radiative properties with 
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temperature and wavelength [1,2]. Yet the gray medium 

approximation has been used extensively by many researchers 

in order to develop computational methods for radiative 

transfer problems. This is because of the simplicity of 

this approximation. Furthermore, some engineering materials 

have absorption bands in certain wavelength regions over 

which the radiative properties of the material are 

independent of the wavelength. Therefore, those materials 

can roughly be considered as a mixture of gray materials 

[1,2]. 

The assumption of isotropi c scat ter i ng is applicable to 

systems with randomly placed scattering particles, which is 

a common situation [2]. However, non-isotropic scattering 

can easily be handled if the phase function for the 

scattering is independent of the incidence angle provided 

that the phase function can be approximated accurately. 

Non- uniform or temperature dependent properties can 

also be easily handled with the numerical method used in 

this study without introducing any additional complexity. 

B. Energy Equation 

With the above assumptions in mind, the energy equation 

for a participating gray medium with conduction and 

radiation as the only modes of heat transfer can be 

expressed as: 
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= q'' ' ( 1 ) 

where qc and qr are the conductive and the radiative heat 

fluxes and q''' is the heat generation rate. Considering a 

control volume, Eq. (1) states that the net energy leaving 

the control volume by conduction and radiation is equal to 

the heat generated in the control volume. The divergence of 

the conductive heat flux is given by 

( 2 ) 

where k is the thermal conductivity and T is the 

temperature. 

In order to develop an expression for the divergence of 

the radiative heat flux, one must cons i der the whole 

enclosure. The control volume will absorb a fraction of the 

incoming radiant energy and will emit radiative energy 

proportional to the fourth power of its temperature. The 

incoming radiative energy to the control volume is the sum 

of the directional radiation intensities in all possible 

directions which can be expressed as (1,3) 

g = f i ' dw 
4~ 

where g and i ' represent the incoming radiant energy and 

( 3 ) 

the directional radiation intensity, respectively, and dw is 

the differential solid angle. Assuming that the control 
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volume is chosen small enough so that the emitted energy in 

the control volume is not attenuated in the control volume, 

the net radiative heat flux out of the control volume, in 

other words the divergence of the radiative heat flux for a 

gray medium in local thermodynamic equilibrium with an 

absorption coefficient 'a', can be expressed as [l-3) 

4 Vqr = 4aaT - ag 

where a is the Stefan-Boltzman constant. 

Substituting Eq. (4) and Eq. (2) into Eq. (1) gives 

2 4 -kV T + 4aaT - ag = q' '' 

( 4 ) 

( 5 ) 

which is the energy equation for an absorbing, emitting, and 

isotropically scattering gray medium with constant and 

uniform properties. The terms in Eq. (5) represent the net 

conductive heat transfer out of the control volume, the 

emitted energy from the control volume, absorbed energy in 

the control volume, and the heat generated in the control 

volume due to internal heat sources, respectively. In order 

to solve Eq. (5) for temperature field expressions f o r the 

incident radiation energy and boundary conditions for 

temperature are needed. The incident radiation equation 

will be developed in the next section and the boundary 

conditions will be stated at the end of this chapter. 
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C. Incident Radiation Equation 

In order to obtain an expression for the incident 

radiation which is the sum of the directional intensities in 

all directions , the directional intensity of radiation needs 

to be approximated. Several processes affect the 

directional intensity at a point. In order to formulate 

these, the change in the directional intensity as it passes 

through an infinitesimal length 'ds' in the interior of the 

enclosure which contains an absorbing, emitting, and 

isotropically scattering gray medium will be considered (2). 

The directional intensity will increase due to the 

emission from the medium. Since the emitted energy is 

proportional to the fourth power of its temperature with the 

proportionality constant being 4aa and since the emitted 

energy is independent of the direction, the increase in the 

directional intensity due to emission from the medium in a 

particular direction will be 

i ' = aoT4 
e ~ 

( 6 ) 

The directional intensity will be attenuated due to 

absorption and scattering . ·The absorption will result in 

attenuation of the directional intensity and scattering will 

result in the attenuation of the intensity in a particular 

direction . Thus, both of these effects can be expressed as 
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' I ( 1 = - a + a a s 
) i I ( 7 ) 

Another process that affects the directional intensity 

is the incoming scattering. The scattering is assumed to be 

isotropic, thus, the probability that a scattering will 

occur in a specific direction is the ratio of the scattering 

coefficient, a to the solid angle, 4~. Since the incident s 

radiation at a point is the the sum of the directional 

intensities in all directions then the probability of having 

a scatter ing which will result in an increase in the 

directional intensity can be expressed as 

a 
, I S 
1 s = 4~ g ( 8 ) 

The sum of the above effects should be equal to the 

change in the directional intensity as it passes through a 

length 'ds' which can be written as 

di I 

ds = i ' 
a 

+ i ' + i ' 
s e 

If an extinction coefficient is defined such that 

(3 = a + a s 

and a nondimensional length K such that 

K = (3 S 

and scaling the physical length scale by the extinction 

co e f f i c i en t i n Eq . ( 9 ) g iv es 

( 9 ) 

(10) 

(11) 
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oT4 0 + (l - Q) rr + 4~ g ( 12) 

where another nondimensional parameter, the isotropic 

scattering albedo n = o /~ has been introduced. In order to s 

find the directional intensity at a point K in the medium, 

this first order differential equation can be integrated to 

give 

i ' (K) = i ' (O)exp(-K) + f K ( i , + i , ) exp ( - ( K. - K - ) ) d K • 
s e 

(13) 
0 

where i ' (0) is the value of the directional radiat ion at the 

boundary and 1<.* is the dummy variable of integration. For a 

diffusely emitting and reflecting gray wall the directional 

intensity can be expressed as 

q~ 

i ' (O) =~ rr (14) 

where q; is the outgoing component of the radiative heat 

flux at the boundary. The positive direction for the heat 

flux vector is chosen parallel to the inward normal of the 

surface. Substituting Eq. (14) into Eq. (13) results in 

i ' (K.) + J"ci; + i;)exp(-(< - •• lld<. 
0 

(15) 
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Now that the directional intensity is approximated in 

terms of temperature, incident radiation and the optical 

properties of the enclosure, we can integrate Eq. (15) over 

the entire solid angle to obtain an equation for the 

incident radiation. Performing the integration gives 

= J + 
4~ 

J J"ci ~ + i ; )exp(-(< - ,·))d<.dw 
4~ 0 

(16) 

The single integral in Eq. (16) represents the fraction of 

energy that originates from the boundary of the system that 

reaches a point K in the medium. The double integral 

represents the contribution of the medium to the incident 

radiation at point K. The radiation energy originating . in 

the medium in the form of emission and scattering reaches 

point K after being attenuated by a factor which depends on 

the optical distance between the points. The locus of 

points K. depends on the solid .angle. Note that the 

incident radiation equation is an integral equation and is 

linear in T'. 

The geometry of the enclosure does not explicitly 

appear in Eq. (16) . The differential solid angle and the 

optical distance of the medium needs to be expressed in 

terms of the geometrical parameters of the enclosure. Only 
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the fina l form of the equations will be presented in this 

study in the next section. The details of the derivation of 

these equations can be found in [4]. 

D. Nondimensional Form of Equations 

In order to generalize the governing equations and to 

obtain a better understanding of the physical phenomenon 

associated with this problem, the energy equation and the 

incident radiation equation can be transformed into a 

nondimensional form. Although there may be several 

different methods of select i ng these nondimensional 

quantities, it seems reasonable to choose the optical 

distance as the length scale and normalize the energy flux 

values with respect to a reference black body emissive 

power . The temperature can be normalized with respect to a 

reference temperature. If the reference temperature is 

denoted by 'T r ' and the reference emissive power is selected 

as 'Eb= aT;' then the following dimensionless quantities 

are obtained; 

Dimensionless Temperature . u . = T/ T r 

Dimensionless Incident Radiation G = g/ Eb 

Dimensionless Heat Flux . . "' = q / Eb 

Dimensionless Heat Generation Rate Q = q' I I / 4 t3 Eb 

Isotropic Scattering Albedo . 0 = a lt3 . s 

Stark Number . N . = kt3Tr / 4E b 
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Dimensionless Length : y = {3y' 

The incident radiation equation in nondimensional form 

can be expressed as 

G(y,z) =; { Ja'~;Ki , (c~sa)da 
-a 1 

+ (((Cl _ O)u4 + QG)Ki (z - z·) dadz• 
4 i cosa cosa 

0 - a 
l 

<P 2 

+ J ~·Ki (z - z)d<P 
2 2 cos a 

-<P l 

z <P 2 

+ J J ( ( 1 - n) 4 + gG) Ki ( z. - z) u 4 i cos<P 
z -<P l 

'Y 2 

+ f ~·Ki (y - Y)ct-y 
4 2 cos-y 

d¢dz· 
cos<P 

where~ ; , ~;, ~; , ~: are the outgoing components of the 

radiative heat flux at the bottom, top, left, and right 

( 17) 
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walls, respectively, and the energy equation becomes 

( 18) 

where the integrations in Eq. (17) are explicitly stated in 

terms of geometrical parameters. The configuration used is 

shown in Figure 1. The Ki functions appearing in the n 

incident energy equation are explained in Appendix A. They 

are the Bickley functions, and are analogous to the 

exponent ial integral function appearing i n one-dimensional 

radiative transfer problems with participating media. 

The nondimensional form of the governing equations 

indicates that the governing parameters for this problem are 

the optical length, the scattering albedo, and the Stark 

number for a given set o f boundary conditions. The effect 

of the optical thickness of the enclosure, that is the 

extinction coefficient multiplied by the physical length o f 

the enclosure, can be seen from Eq. (15) . The extinction 

coefficient which has units of inverse length can be 

considered as the inverse of the average distance a photon 

travels before making an interaction. Therefore, a high 

value of optical length implies that a photon will interact 

with the medium in its vicinity . The radiative transfer 

will l ose its integral character and will approach a 

diffusion type process. On the other hand if the optical 

thickness of the medium is small, the interaction of photons 
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( Y. Z) 
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y 

FIGURE 1. The rectangular enclosure configuration 
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within the medium will be negligible. The radiative 

transfer will approach that in a nonparticipating medium. 

These limiting cases are referred as the the optically thick 

and optically thin limits. Approximate solutions are easily 

obtained when one of these limiting cases is applicable. 

However, for most engineering systems neither of the above 

limiting cases are applicable. In this study intermediate 

values of the optical thickness are considered. 

The Stark number describes the relative importance of 

the conductive heat transfer to that of radiative heat 

transfer. A high value of the Stark number implies that 

conduction is the dominant mode of heat transfer. Radiation 

heat transfer becomes more important than conduction heat 

transfer for values of Stark number less than unity. If the 

Stark Number is zero then the system under consideration is 

a purely radiating system and the energy equation is no 

longer a second order partial differential equation but 

reduces to 

4 G = 4u 

which implies that solving the incident radiation will 

provide the temperature solution, hence, the number of 

unknowns is reduced to one. 

(19) 

Another important parameter appearing in the energy 

equation is the scattering albedo. Two limiting cases of 
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scattering albedo can be identified. If the albedo is zero 

then the medium is purely absorbing and emitting. The 

incident radiation equation is no longer an integral 

equation but depends only on the fourth power of 

temperature. Thus, the incident radiation does not h av e to 

be considered as a variable [3]. In order to obtain the 

energy equation corresponding to this case Eq. (17) with U=O 

can be substituted into Eq. (18) to give 

+ K. (z - z •) 1
1 cosa 

+ 

+ 

y 8 . 

ff 
2
u 4Ki (y - y·) 

i cos8 
0 -8 

l 

+ 

dadz· 
cos a 

d¢dz• 
cos¢ 

d8dy · 
cos8 
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+ (20) 

This is the form of the energy equation used in [4]. The 

temperature distribution can be obtained from Eq . (20). The 

other extreme case is the case when the scattering albedo is 

unity. In this case, the medium neither absorbs nor emits 

radiation. As can be seen from the energy equation, the 

energy equation reduces to a conduction equation and is 

uncoupled from the incident energy equation . In this case, 

the radia tive and conductive transfer mechani sms are 

independent of each other, thus, simple addition of the heat 

flux values obtained from a pure radiation problem and a 

pure conduction problem having the same boundary conditions 

gives the total heat flux values. To see this, if we take 

0 =1 in Eq. (17) and Eq. (18) then the incident radiation 

equation becomes 

G ( y' z) = 2 { fa 2 1/1 + K . ( z ) d 1i i 
1 

2 cos a a 
-a i 

+ (('~ 
0 -a 

l 

K. (z - z •) 1
1 cos a 

dadz· 
cos a 
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z 4> 2 • 
d~dz· I I G . (z - z) + 4 Kl1 COS</> COS</> 

0 -q, l 
(J 2 

+ J w;Ki 2 (ccie)de 
-e l 

+ (('~ K' (Y - y·) d8dy· 
1 1 cos(} cos(} 

o -e l 
'Y 2 

+ J w·Ki (Y - v)d-y 
' 2 COS')' 

--y l 

y 'Y 2 

d)'.dy· } + I I g Ki (y· - Y) 4 i cos-y COS')' 
y --yl 

( 21) 

and the energy equation is simply 

2 -NV' u = Q (22) 

If Eq. (19) is substituted into Eq. (21) the energy equation 

for a gray medium in radiative equilibrium is obtained. It 

should be noted that this observation is not valid when heat 

flux boundary conditions are used. 

The values of the nondimensional parameters covered in 

this study are for intermediate optical thickness, i.e., of 

the order of unity, and the range of Stark numbers 

considered was from unity to 0 .01. The scattering albedo 

was varied between zero and unity. 
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E. Heat Flux Equations 

The total heat flux at a wall is the sum of the 

conductive and radiative heat fluxes. The radiative heat 

flux is the difference between the radiative energy leaving 

the surface and incident on the surface per unit area in a 

direction normal to the surface [l]. The surface will 

receive radiant energy from the medium and the other walls 

of the enclosure. If we consider that the directional 

intensity represents the radiative energy per unit area 

normal to its direction, then the total incident radiative 

energy per unit surface area can be computed by [2] 

q: = J i ' cos adw ( 23) 

where cosa is the cosine of the angle between the direction 

of the directional intensity and the normal of the surface. 

The radiative energy leaving a surface is the sum of the 

reflected portion of the incoming radiative energy and the 

emitted radiative energy. For a diffuse gray wall with an 

emissivity of 'e', the outgoing component of the radiative 

heat flux is given by [l-3] 

q• = eaT 4 + (1 - e)q-
w w 

Therefore, the net radiative heat flux at a wall can be 

calculated by 

(24) 
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The conductive heat flux is proportional to the 

temperature gradient at the wall and is given by 

qc = -kaT) an ... 

( 25) 

(26) 

The nondimensional form of the heat flux equations are 

found to be 

(27) 

and for the outgoing component of radiative heat flux 

(28) 

and for the conductive heat flux 

(29) 

The specific forms of the radiative heat flux equations 

for a rectangular enclosure have been derived in [4]. Upon 

modifying these equations to take scattering into account, 

the incoming radiative heat flux at the bottom wall can be 

expressed as 

(30) 
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and the net heat flux is given by 

1/11 (y) = -4Nau) OZ z= o 

4 + e(u(y,0) + l/l~(y)) (31) 

Similarly, for the top wall one can obtain 

~;(y) =; { Ja'~;Ki,(c~sa)cosada 
-a1 

(32) 

- n>u4 + gG)Ki (v - v·) tgeaeay· 4 2 case 
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and the net heat flux is given by 

4Nau) + e(u(y,Z) 4 + w;(y)) az z =Z 
( 3 3 ) 

The left side wall incoming radiative heat flux is given by 

W;(z) = ~ { f~'W:Ki,(c~s~lcos~d~ 
-~ l 

(34 ) 
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and the net heat flux is given by 

w (z) = -4Nau) + e(u(O,z) 4 + w~(z)) 
3 ay g sQ 

(35) 

The configuration used for these equations is shown in 

Figure 2. The double integral terms appearing in the 

incoming heat flux equations represent the contribution of 

the medium to the radiative heat flux. The single integrals 

represent the effect of the other walls. The emissivity of 

the walls affects the medium temperature through its effect 

on the outgoing component of the radiative heat flux even 

though it does not appear explicitly in the energy and 

incident radiation equations. 

F. Boundary Conditions 

The incident radiation equation is an integral equation 

and does not require any boundary conditions . However, the 

temperature of the surrounding walls and the wall 

emissivities are included in the incident radiation equation 

through the single integral terms. Although it has been 

noted that the incident radiation equation is linear, 

strictly speaking this holds true for only black wall cases 

where the outgoing components of the radiative heat f lux 

depend on the temperature of the wall only . For a gray wall 

the outgoing component depends on the temperature and the 

incident radiation distribution in the enclosure. 
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a) Bot tom Wall 

b) Top Wall 

c) Left Side Wall 

FIGURE 2. The configuration used for developing heat flux 
equations 
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The energy equation is a nonlinear elliptic 

differential equation except for the case of a unity 

isotropic scattering albedo. In order to solve the energy 

equation the boundary conditions must be specified on all 

the surrounding walls. These boundary conditions can either 

be a specification of the temperature or the temperature 

gradient at the walls. 

In this study, two types of boundary conditions are 

considered. The first type is to specify the temperature on 

all the walls. The second type of boundary condition 

considered is the convective heat flux boundary condition . 

If a coolant with a nondimensional temperature of u is used 

to extract heat from one of the walls of the enclosure an 

energy balance on the wall gives 

-4Nau + ~z = 4NBi(u - u_) an -

where the Biot number is defined as 

Bi = h 
k{3 

( 36) 

( 3 7) 

and {3 is the extinction coefficient of the medium. Eq. (36) 

relates the temperature and the temperature gradient at the 

wall to the temperature and incident radiation distribution 

in the medium through the radiative heat flux. As noted 

earlier the radiative and conductive heat transfer 

mechanisms are independent of each other if the isotropic 
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scattering albedo is unity. However, if a convective type 

boundary condition is used the two heat transfer mechanisms 

are coupled to each other by specifying the total heat 

transfer at the wall. 
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III. METHOD OF SOLUTION 

The incident radiation and energy equations are complex 

enough to preclude an analytical solution in their general 

form, thus, a numerical approximation is necessary. The 

incident radiation equation, a double integral equation, can 

be solved by a direct method if the temperature field and 

the outgoing components of the radiative heat fluxes are 

known. However, the accuracy of the numerical approximation 

to the incident radiation can not exceed the accuracy 

achieved in the evaluation of the integrals. In order to 

evaluate the integrals accurately, a large number of 

integration points should be used, which renders the direct 

solution techniques inefficient. Furthermore, the numerical 

integration requires the values of the incident radiation 

and temperature to be known at the integration points. 

Therefore, an efficient numerical interpolation scheme is 

desirable. On the other hand, the energy equation is a 

nonlinear elliptic partial differential equation with 

nonlinear mixed type boundary conditions which necessitates 

an iterative type of solution technique. One can conclude 

that the numerical method to be used should be able to 

supply the values of the dependent variables over the whole 

domain and be suitable for an iterative type computation. 

As can be seen from the above discussion, the incident 

radiation and the energy equation are two different types of 
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equations which have to be solved simultaneously, and a 

numerical method suitable for one of the equations may not 

be the best choice for the other one. Among the several 

methods that are applicable to this problem, the finite 

element method formulated by using a Galerkin weighted 

residuals approach is selected for this problem. 

The Galerkin finite element method has been applied to 

combined mode heat transfer problems successfully 

[4,7,14-19]. Razzaque used a Galerkin finite element 

technique to obtain solutions for the radiative equilibrium 

and combined conduction and radiation of an absorbing and 

emitting gray medium in a two-dimensional rectangular 

enclosure [4]. Wu and Ferguson [14] and Fernandes et al. 

[15] applied the Galerkin finite element method to the 

interaction of conduction and radiation in one-dimension for 

a gray participating medium. Another similar study of one-

dimensional radiation-conduction problem is reported by Nice 

[16]. Although all studies mentioned above utilize a 

Galerkin finite element technique, there are differences 

between the treatments of nonlinearities. Yet two important 

conclusions common to all of the above studies are 

• The Galerkin finite element method is a viable 

method for solving combined conduction and 

radiation problems involving a gray participating 

medium. 
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• It is difficult to achieve convergence for small 

Stark numbers. 

The solution of integral equations by the Galerkin finite 

element method is reported to be an efficient accurate 

scheme [17-19]. The basic advantage of the finite element 

method as applied to this problem comes from the 

interpolation scheme built into the finite element 

equations; the integrals appearing in the incident radiation 

equation can be evaluated accurately. Another feature of 

the finite element technique is the discretization of the 

heat flux boundary conditions so that the characteristics of 

the original differential equation are preserved better than 

they would be with the finite difference methods [2 0 ,21]. 

Although variable material properties are not considered in 

this problem finite element technique can easily handle such 

problems. 

Having described the motivation for choosing the finite 

element technique for the numerical approximation to this 

problem, the method will be described briefly in Section A. 

The iterative procedures used ~ill be described in Section 

B. Although an elaborate error analysis has not been 

performed, a simple check on the accuracy of the results 

will be presented in Section C. 
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A. Finite Element Formulation 

The finite element method consists of fi nding the 

expansion coefficients of the interpolating functions which 

are used to approximate the dependent variable so that the 

error introduced by the approximation is minimized according 

to certain criteria. In the Galerki n f o rmulation of the 

finite element method, this criterion is specified as being 

the vanishing of the weighted error if the we i ghti ng 

functions are chosen the same as the interpolating fu nctions 

(21-23]. 

In order to apply the procedure, the domain is first 

divided into smaller subdomains called finite e l ements. The 

dependent variable is approximated over each element by a 

linear sum of the interpolating functi ons. The 

interpolating functions are generally chosen to be 

polynomials in spatial coordinates. Depending on the order 

of polynomial selected the nodes are assigned to the 

elements such that the interpolating polynomials are 

uniquely determined . Another criterion used in specifying 

the interpolating functions is to :require that they vanish 

outside an element and be equal to unity at the nodes of the 

element. The approximation to the dependent variable 

expressed in terms of the interpolating functions is 

substituted into the differential equation and the resulting 

error is weighted by the interpolating functions. Since the 
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only unknowns in the weighted error are the expansion 

coefficients of the interpolating functions associated with 

the nodes, equating the weighted error to zero permits the 
' 

resulting equation to be solved for the expansion 

coefficients. Once the expansion coefficients are known the 

dependent variable can be calculated everywhere in the 

domain. 

In order to demonstrate the application of the above 

procedure, an elliptic partial differential equation defined 

on a finite domain can be considered. Consider a partial 

differential equation of the form 

2 -AV u + Bu = F 

with proper boundary conditions, where A, B and F can be 

functions of the dependent variable as well as the 

independent variables. The incident radiation and the 

energy equation can be cast into the form of the above 

( 38) 

equation by a proper selection of A, B and F. Approximate 

the dependent variable as 

(39) 

where u J are the unknown values and ¢ J are the interpolating 

polynomials for each node. Substituting this approx i mation 

into the partial differential equation and weighting by the 

interpolating functions ¢'s one obtains 
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(40) 

where dr is the differential area element of the domain, and 

the double integrations are over the whole domain. If we 

apply integration by parts (or Gauss divergence theorem) to 

the first term the resulting equation is 

where do is the differential surface element belonging to 

the boundary. Since the interpolating functions are defined 

so that they vanish outside an element the above equation 

can be computed over each element individually and then 

summed. The surface integral appearing in Eq. (41) vanishes 

for elements inside the domain. Only for those elements 

which have an element boundary coincident with the boundary 

of the original domain will the surface integral term not 

vanish if the derivative of the dependent variable is 

specified. Suppose that the boundary condition along a 

boundary is given as 

-Aau + W = H(u - u_) an - (42) 

where w is a known function of the dependent and independent 

variables. Then one can use this equation to obtain 
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(43) 

Substituting Eq. (43) into Eq. (41) gives 

,~, u, {ff (AV~,v~, + B~ 1 ~ 1 )dr + f H¢,¢ 1da} = 

(44) 

which can be expressed in the matrix notation as 

(K . . J(U.] - (F . 1 = 0 
1 J J 1 

( 45) 

where 

(46) 

is named the 'stiffness matrix' and 

( 4 7 ) 

is the 'load vector' (21-23]. Therefore, the original 

partial differential equation has been reduced to a system 

of equations which can be solved by an appropriate 

technique. 

In order to find the specific form of Eq. (45) for the 

incident radiation the follow i ng substitutions can be made 

A = H = 1/1 = 0 
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B = 1 

F = right hand side of Eq. (17) 

to give 

( 48a) 

where 

( 48b) 

(48 c ) 

and G
1 

denotes the nodal values of the incident rad iation. 

For the energy equation in a similar manner, the following 

substitutions 

A = N 

B (1 Q)u 3 = -

F (1 !2) G + Q = - 4 

H = NBi 

1/J = 1C 
4 

yields 

[K .. ]U [U.] - [Fi]U = 0 ( 49a) 
l] J 

where 
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(49b) 

and 

[Fi]U =ff ((1 - Q)~ + Q)~1dr + 

f (NBiu~+ ~ )~ 1 da (49c) 

Therefore, the numerical approximation to the governing 

equations has been obtained. The system of equations 

defined by Eq. (48) and Eq. (49) constitute a nonlinear 

system of equations that needs to be solved for t he unknown 

nodal values of the incident radiation and the temperature. 

The next section will describe some of the possible 

numerical procedures that can be used to solve Eq. (48) and 

Eq. (49). 

B. Solution Technique 

1. Incident radiation equation 

The algebraic form of the incident radiation equation, 

that is Eq. (48), can be solved by a suitable linear 

equatio~ solver provided that the integrals are approximated 

by a numerical quadrature method and the values of the 
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incident radiation, temperature and the outgoing components 

of the heat fluxes are known at the integration points. 

Among the various numerical integration schemes, Gaussian 

quadrature was selected to approximate the integrals. The 

range of the integrals was divided into two, and a 6 point 

Gaussian rule was used. The reason for this selection lies 

in the fact that most of the computational time required is 

spent to compute the integrals. Therefore, a n integration 

rule which has a high accuracy with the minimum number of 

integrand evaluations was sought. The integrands i n the 

incident radiation equation are smooth functions wi th 

rapidly decreasing der i vatives, hence the Gaussian 

quadrature is expected to perform well. The order selected 

was based on a comparison of the results obtained by the 

Gaussian quadratures of several orders with the adaptive 

Romberg integration for selected representative integrands. 

A Gaussian quadrature of order 6 was found to be a good 

compromise between numerical accuracy and computational time 

requirement. 

Once an initial guess for the temperature, incident 

radiation and the outgoing components of the heat fluxes is 

available then, using this information, the r i ght hand side 

of the incident radiation equation can be computed. 

Therefore, Eq. (48) can be solved for the nodal values of 

the incident radiation. 
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2 . Energy equation 

The energy equation can be treated in several ways . 

The simplest approach would be to keep the nonlinear terms 

at the right hand side of the equation. In this case, 

(50a) 

and 

+ 

(50b) 

in Eq. (49a). The advantage of this approach is that the 

stiffness matrix is linear through out the iterations and 

needs to be factored only once. The new values of 

temperature can be obtained by simple back substitution 

after the force vector is computed. Unfortunately, this 

method tends to diverge for Stark numbers less than 0.1. 

This can be observed by noting that a small change in the 

temperature will be amplified by its fourth power first in 

the incident radiation equation and then in the energy 

equation. The problem is more severe for a small scattering 

albedo since (1-U) appears as the coefficient of temperature 

in both equations. The same behavior was observed in one-

dimensional solutions of the radiation-conduction problem by 
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finite elements in other studies [14-16]. One way of 

circumventing the numerical difficulties associated with 

rapidly changing temperature values is simply to reduce the 

change in the temperature by using an under-relaxation 

parameter [14,16]. In this case the iteration converges, 

however, the number of iterations is very high. For a one-

dimensional problem, this may not be a major drawback, but 

in a two-dimensional problem the slow convergence of the 

method is formidable. Also the selection of a suitable 

under-relaxation parameter is by no means trivial. 

Another approach to the numerical solution of Eq. (18) 

can be sought by introducing the emission term into the 

stiffness matrix. In this case the stiffness matrix has to 

be computed at every iteration. This form of the equations 

is given by Eq. (49). This scheme is slightly better than 

the first one and has been used successfully for Stark 

numbers up to 0.05 in [4]. The same problem, namely slow 

convergence for small Stark numbers, is reported [4]. 

Since treating the energy equation as a linear equation 

and using successive substitutions at every iteration does 

not yield satisfactory results, one has to resort to other 

methods for small Stark numbers. A Newton- Raphson type of 

procedure can be used. In this technique, a correction to 

an approximation to the solution is obtained by solving 

h(U) + ~ AU = 0 (51) 
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where 

J\ ( u) = [K .. ]U [U.] - [F.] U 
l J J 1 

for the correction terms au [22]. This method is better 

than the above methods. Several versions of this method can 

be applied depending on the application [22,24]. The basic 

difference of this method is the need to compute the 

Jacobian of the system of equations, sometimes referred as 

the tangential matrix (22,23] at every iteration. However, 

as a simplification the Jacobian can be kept constant for a 

number of iterations which results in a higher number of 

iterations to satisfy the same convergence requirement (22] . 

If the energy equation is treated as a nonlinear 

equation then an iteration step to obtain the updated values 

of the temperature field cons is ts of ' inner' iterations to 

solve the nonlinear system of equations. The inner 

iterations compute the Jacobian and obtain corrections to 

the previous iterates. If the energy equation is treated as 

a linear equation then an iteration to update the new values 

of temperature consists of solving the linear system of 

equations. 

3. Heat flux computations 

For problems with black walls and specified temperature 

boundary conditions, the outgoing components of the 

. radiative heat fluxes that are required to evaluate the 
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single integrals in the incident radiation equation are only 

a function of the wall temperature. Therefore, the heat 

flux computations need to be done only once after the 

convergence has been obtained. However, for problems with 

gray walls the outgoing component of the radiative heat flux 

is the sum of the emitted and reflected heat fluxes, and the 

incoming heat flux is dependent on the incident radiation. 

Thus, the incoming components of the radiative heat flux 

should be updated after every iteration. When convective 

heat flux boundary conditions are imposed on one or more of 

the walls, the emission term in the outgoing component of 

the radiative heat flux varies at every iteration, 

therefore, it has to be updated at every iteration. 

The evaluation of single integrals in the incident 

radiation equation requires that the outgoing components of 

the radiative heat fluxes be known at irregularly spaced 

integration points. For problems with gray walls, the 

incoming components of the radiative heat flux can not be 

computed by using the exact expressions because of the 

computational time requirement. In order to circumvent this 

problem, the outgoing and incoming components of the 

radiative heat fluxes were computed at regularly placed 

points on the walls and a quadratic interpolation was used 

to obtain the values at other points. 

One computational problem that has been pointed out by 
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previous studies of this problem is the treatment of the 

corner nodes [4,5]. If the temperature of two adjacent 

walls are specified and differ from each other then there is 

a discontinuity at the corner wall. This effect is very 

pronounced in heat flux computations near the corner nodes 

where a discontinuity in temperature exists. A reasonable 

approximation is to take the corner value to be the average 

of the temperatures of the two adjacent walls. Depending on 

the corner temperature value a peak in the heat flux values 

near the corner has been observed. In this study, for 

problems without convective type boundary conditions, the 

bottom wall temperature was taken as uniform and quadratic 

interpolation was used for the side wall temperatures . 

4 . Iteration procedure 

The overall iteration procedure can be described as: 

1. Assign initial values to the incident radiation, 

temperature and outgoing components of heat 

fluxes. 

2. Compute the right hand side of the incident 

radiation equation and solve for new values of 

incident radiation. 

3. Solve for temperature by using the newly computed 

values of the incident radiation and other 

information to obtain a new temperature field. 

4. For problems with gray walls or convective heat 
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flux boundary conditions using the newly computed 

incident radiation and temperature values compute 

the outgoing and incoming components of the heat 

flux on the surrounding walls. 

5. Test for convergence. 

The convergence criterion used in this study is based 

on the absolute difference between two successive 

iterations, and is required to be less than 0.001 for the 

incident radiation and temperature values. 

c. Numerical Verification 

In order to establish the accuracy of the code 

developed and to obtain a rough estimate of the errors 

introduced into the results through various approximations 

involved in the solution procedure outlined in the previous 

section, some numerical checks were performed. Since there 

are no analytical results available, the numerical solution 

of the exact equations of radiative equilibrium as reported 

by Larsen [9], and Crosbie and Schrenker (13] were used for 

comparison. Both methods are exact in the sense that the 

exact governing equations are solved and the only errors in 

the results are numeri cal errors introduced in the 

discretization of the equations. The comparison will be 

made for a black square enclosure containing a gray medium. 

The bottom wall has a nondimensional temperature of unity 
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and all other wall temperatures are zero. Table 1 compares 

the bottom, top and side wall heat fluxes and Table 2 

compares the incident radiation values along the centerline. 

TABLE 1. Comparison of heat flux values for a square black 
enclosure containing a gray medium in radiative 
equilibrium 

Bottom Wall Side Wall Top Wall 

z or y [ 9 ] (13] FEM [ 9] ( 13] FEM [9] [ 13] FEM 

. 1 .832 .8 27 .83 0 .52 4 .518 .520 . 189 .190 .1 90 

. 2 . 798 .796 . 796 .437 .431 .434 .212 .213 .213 

. 3 . 778 .777 .776 . 368 .366 .365 .229 .230 . 230 

.4 . 768 .767 .766 .31 0 .3 08 .309 .240 . 240 .240 

. 5 . 764 .764 .763 .260 . 259 .259 .243 .244 . 244 

. 6 .768 .767 .766 .218 .217 . 218 .240 .244 .240 

. 7 .778 .777 .776 . 182 .181 .181 .229 .2 30 . 230 

.8 . 798 .796 .796 . 149 .149 .149 .212 . 213 . 213 

. 9 .832 .8 27 .83 0 . 119 .119 .119 .189 . 190 . 190 

The results of this study show excellent agreement for 

the case compared . For this problem the enclosure was 

divided into 16 uniform elements and linear shape functions 

were used for the incident rad iation which results in 25 

nodal unknowns. The element force and stiffrtess matrix 

integrations were performed by using four Gauss points over 

each element. The evaluation of integrals appearing in Eq. 

(17) was done by a 6 point Gauss quadrature formula in each 

variable. 
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TABLE 2. Comparison of centerline incident radiation values 
for a square black enclosure containing a gray 
medium in radiative equilibrium 

Centerline Incident Radiation 

z [9] [13] FEM 

o.o 2.517 2.4804 
0.1 2.084 2.076 2.0763 
0.2 1.736 1.732 1.7329 
0.3 1. 444 1.444 1. 4435 
0.4 1. 200 1.196 1 .2 014 
0.5 1.000 1. 000 1 . 0000 
0.6 0 .832 0.832 0.8326 
0.7 0.692 0.692 0 .6918 
0.8 0 .568 0.568 0 . 5701 
0.9 0.456 0 . 460 0 . 4602 
1.0 0.345 0 . 3545 

As Table 2 suggests the agreement for the incident 

radiation is very good except for the bottom and top wall 

incident radiation values. The relative percent error in 

the top wall incident radiation is 1.48 % and for the bottom 

wall the relative error in bottom wall incident radiation is 

2.2 %. At all other locations along the centerline the 

differences between the solutions are less than 0 .1 %. 
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IV. RESULTS 

The results of the computations performed for the 

analysis of the combined mode radiative and conductive heat 

transfer are summarized below. The results will be 

presented in two major sections. First the results of 

several cases with specified temperature boundary conditions 

will be summarized. The second section will contain the 

results of problems with heat flux boundary conditions on 

one or more of the surrounding walls. In each section, the 

black wall cases will be presented first. The effect of 

Stark number and isotropic scattering albedo will be 

discussed. An attempt to compare the results from this 

study to previously published results will be made. 

Additional results are included in Appendix B. 

A. Results for First Type Boundary Conditions 

The results will be presented for a square enclosure 

with a hot wall and three cold walls. The hot wall is the 

bottom wall and its temperature is used as the reference 

temperature for most of the cases. The bottom wall 

temperature is specified as unity and the other wall 

temperatures as 0.5. The square enclosure was divided into 

16 uniform elements. For temperature, 9-noded quadratic 

elements with Lagrangian shape functions were used. For 

incident radiation, 4- noded linear elements were used. The 
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numerical integrations required to compute the coefficient 

matrix and the force vector were calculated by using 

Gaussian quadrature. 

1. Results for a square black enclosure 

Figure 3 shows the centerline temperature profiles for 

various Stark numbers for an absorbing and emitting gray 

medium in a black enclosure. The limiting cases of an 

infinite Stark number corresponding to a pure conducting 

medium and a zero Stark number corresponding to a pure 

radiating medium are also included. The radiative transfer 

becomes more important with decreasing Stark number . 

Existence of radiative transfer results in an increase in 

the medium temperature compared to a pure conduction case. 

For Stark numbers larger than unity, the temperature 

profiles are very close to a pure conducting case and the 

effect of radiation is negligible. On the other hand, for 

small Stark numbers, such as 0.01, the medium temperature 

profiles differ considerably from that of a pure radiation 

case. The conductive heat transfer mechanism does not allow 

a temperature slip between the wall and the medium 

temperature next to it as the radiative transfer mechanism 

does. Therefore, the medium temperature is forced to match 

the wall temperature near the walls due to the existence of 

the conduction. 
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The results obtained for the centerline temperature 

values agree well with the previously published values of 

Larsen [9] who used the Exchange Factor Method ( EFM ) . A 

comparison of the numerical values of the centerline 

temperature values for a square enclosure with an absorbing 

and emitting gray medium is given in Table 3. 

TABLE 3. Comparison of centerline temperature values for an 
absorbing and emitting gray medium contained in a 
black square enclosure with u(y,0)=1.0 and 
u ( O,z)=u(y,l)=u(l,z)= 0 .5 

Stark Number N = 0.01 N = 0 .1 

Nondimensional Centerline Temperat ure 
z Ref [ 9] % E FEM Ref [9] % E FEM 

o.o 1.000 0 . 0 1 .0 00 1.000 o.o 1. 000 
0.1 0.879 1.6 0 .893 0 .902 0 .2 0 .903 
0.2 0.829 0.3 0. 831 0 .823 0 .3 0 .826 
0.3 0.789 0.5 0.793 0.759 0 .5 0 .763 
0.4 0.755 0.5 0.758 0.707 0 .4 0 .709 
0 .5 0.724 0.2 0 .725 0 .66 3 0 .5 0 .666 
0.6 0.694 0.3 0 .696 0 .626 0 .3 0 .628 
0.7 0.664 0.2 0 .665 0 .594 0 .2 0 .595 
0.8 0.629 0.1 0.630 0.563 0 .1 0 .564 
0.9 0.582 0.1 0.581 0.533 o.o 0.533 
1.0 0.500 o.o 0.500 0.500 0 . 0 0 .50 0 

The net heat flux values at the bot tom wall are shown 

in Figure 4. As can be observed from this figure, a 

decrease in Stark number results in a decrease in t h e net 

heat flux from the hot (bottom) wall. For Stark number 
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equal to zero the net heat flux is simply the net radiative 

heat flux and for Stark number equal to infinity the net 

heat flux is the conductive heat flux only. For other 

values of Stark numbers, the heat flux is the sum of the 

conductive and radiative heat fluxes. The ratio of 

conductive heat flux to total heat flux decreases as the 

Stark number decreases since the medium has a thermal 

conductivity equivalent to 4N. The decrease in the total 

heat fl ux is due to a decrease in the Stark number , since 

the temperature gradients at the hot wall increase with 

decreasing Stark number. 

The comparison of bottom wall net heat flux values with 

the results of other studies indicates a reasonable 

agreement except near the corner of the enclosure. The 

discrepanc·y near the corner is due to the treatment of the 

discontinuity in the temperature. As discussed in Section 

II-B, the temperature of the side wall near the corner nodes 

is interpolated quadratically, resulting in higher 

temperatures on the side wall, therefore, causing a decrease 

in the net heat flux at the bottom wall near the corner . 

The numerical values of the bottom wall heat flux are 

compared with those of Larsen [9], and Ratzel [5] in Table 

4. The results from this study are in close agreement with 

the results from Larsen. 

The effect of the isotropic scattering albedo on the 
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TABLE 4. Comparison of bottom wall heat flux values for an 
absorbing and emitting gray medium contained in a 
black square enclosure with u(y,O)=l.O and 
u(O,z)=u(y,l)=u(l,z)=0.5 for N=0.01 

Bottom Wall Net Heat Flux 
z Ref [ 9] % E Ref [ 5] % E FEM 

0.1 0.975 9.1 1.062 18.8 0.894 
0.2 0.852 4.8 0.915 12.5 0.835 
0.3 0.811 1.2 0.855 6.7 0.801 
0.4 0.793 1. 0 0.826 5.2 0.785 
0.5 0.787 0.7 0.817 4.6 0.781 
0.6 0 .793 1.0 0.826 5.2 0.785 
0.7 0 .811 1.2 0.855 6.7 0.801 
0.8 0.852 4.8 0.915 12.5 0.835 
0.9 0.975 9.1 1.062 18.8 0 .894 

centerline temperature profiles is shown in Figures 5-7 for 

an absorbing, emitting and isotropically scattering gray 

medium contained in a black square enclosure for various 

Stark numbers. The effect of scattering albedo is to 

decrease the medium temperature compared to the temperature 

of an absorbing-emitting medium. This is basically due to 

the decrease in the amount of absorption in the medium. 

This effect is important for cases where radiation heat 

transfer is the dominant mode of heat transfer, that is for 

small Stark numbers. For Stark numbers greater than 0 .1 the 

scattering effects are negligible. As discussed earlier, a 

unity scattering albedo implies that the radiative and 

conductive heat transfer mechanisms are independent of each 

other and the energy equation reduces to a pure conduction 
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equation. When the scattering albedo is zero the medium is 

an absorbing-emitting gray medium, and the interaction 

between the radiation and conduction is greatest. 

The effect of scattering on hot wall heat flux can be 

observed from Figure 8. An increase in scattering albedo 

causes a decrease in the hot wall net heat flux due to a 

reduction in the temperature gradients near the wall. The 

magnitude of this decrease is small. 

2. Results for a square gray enclosure 

When the surrounding walls of the enclosure are not 

black the outgoing component of the radiative heat flux on a 

particular wall is the sum of the emitted and reflected 

components and is given . by Eq. (27). The centerline 

temperature profiles for various Stark numbers are shown in 

Figures 9-10. The medium is enclosed with gray walls each 

having the same emissivity. As Figure 9 suggests the 

overall effect of a decrease in wall emissivity is a 

decrease in the medium temperature. This is basically due 

to a reduction in the energy emitted by the hot wall. Since 

there is less energy available in the interior of ~he 

enclosure for absorption, the temperature of the medium 

decreases. However, the existence of conductive heat 

transfer forces the medium temperature to be equal to the 

wall temperature and the temperature gradients near the wall 

remain almost constant. Another effect of a reduction in 
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wall emissivity is to flatten the temperature distribution 

inside the medium due to additional redistribution of energy 

provided by reflection from the walls. As expected the wall 

emissivity has ·more influence on the temperature and heat 

flux distribution when the radiation is dominant mode of 

heat transfer. 

The heat flux distributions for the bottom wall for a 

gray enclosure are shown in Figure 11. The decrease in the 

net heat flux at the hot wall is due a decrease in the net 

radiative heat flux. The conductive heat flux remains 

almost the same and is not affected by the decrease in the 

wall emissivity. 

Figure 12 and Figure 13 show the effect of hot wall 

emissivity on the centerline temperature distribution and 

bottom wall heat flux for Stark number equal to 0.05. In 

this case all the walls except the bottom wall are black. 

By decreasing the hot wall emissivity, the hot wall in a way 

becomes cooler since the radiative heat flux incident on the 

medium from the hot wall decreases. A zero hot wall 

emissivity implies that there is no emitted radiant energy 

incident on the medium from the hot wall. However, the 

existence of conduction raises the temperature of the medium 

near the hot wall. 

The effect of the isotropic scattering albedo on 

centerline temperature profiles when the enclosure walls are 
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gray are shown in Figures 14-15 for various Stark numbers. 

The change in the interior medium temperature is more 

significant when compared to a black enclosure. For small 

Stark numbers, the scattering and gray wall effects cause 

the medium temperature to decrease near the bottom wall and 

to increase near the top wall. The interior medium 

temperature is flattened due to existence of gray walls. 

The variation of bottom wall heat flux in a gray 

enclosure with isotropic scattering is shown in Figure 16. 

Also shown are the bottom wall heat flux values obtained by 

Ratzel by using a P-3 approximation [5]. The combined 

effect of increasing isotropic scattering albedo and 

decreasing wall emissivity results in a decrease in the 

bottom wall heat flux. The effect of the discontinuity of 

the temperature at the bottom wall corner node is felt less 

when the walls are gray. For practical purposes, the bottom 

wall heat flux can be considered as a constant value. 

B. Results for Heat Flux Boundary Conditions 

In this section, the results for a square enclosure 

containing an absorbing, emitting and isotropically 

scattering gray medium will be presented. The bottom wall 

is cooled with a coolant having a zero nondimensional 

temperature. The other wall and bottom wall corner nodes 

are kept at 0.5 nondimensional temperature. 
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The enclosure was divided into 16 uniform elements. 

Quadratic serendipity elements which have 8 nodes were used 

for incident radiation. The temperature was approximated by 

using quadratic Lagrangian elements having 9 nodes. The 

element force and stiffness matrix integrations were 

computed by using a 4- point Gaussian ·quadrature formula. 

The convergence criterion was set at 0.001 based on t he 

absolute value of the maximum difference in incident 

radiation and temperature values between two consecutive 

iterations. 

The effect of Biot number on the centerline temperature 

profile in a black square enclosure with an absorbing a nd 

emitting gray medium wi th a Stark number equal to 0 .1 is 

shown in Figure 17. When the Biot number is zero, which 

implies a zero heat flux from the bottom wall, the 

temperature and incident radiation distribution in the 

medium is uniform since all of the other walls are at t he 

same temperature. On the other hand for a Biot number 

approaching infinity, the bottom wall temperature approaches 

the coolant temperature. For other cases, the medium 

temperature decreases with increasing Biot number since more 

energy is carried away from the bottom wall. The decrease 

in temperature is localized to regions near the bottom wall. 

The bottom wall net heat flux values for the above 

problem are shown in Figure 18. At the bottom wall co r ner 
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node the heat flux is discontinuous. The conductive heat 

flux at the corner node is zero, because there are no 

temperature gradients since the corner node temperature is 

specified as the same as the side wall temperature. The . 
radiative heat flux is also discontinuous at the corner node 

[13]. However, the convective heat flux is proportional to 

the temperature of the bottom wall. Therefore, conductive 

and radiative heat fluxes are unable to match the convective 

heat flux near the corners. 

The boundary conditions although satisfied at the nodes 

are not satisfied near the corner. This is an indication of 

the coarseness of the finite element mesh used. A finer 

mesh with smaller element sizes, hence with nodes closer to 

the bottom wall corner, would have provided solutions that 

can adequately resolve the heat flux variations near the 

corner node. However, in this study, such an attempt was 

not made. 

Figure 19 shows the distribution of bottom wall heat 

flux values for various Stark numbers with Biot number equal 

to 10 and 100. Although the nondimensional parameter 4NBi 

which can be considered as the ratio of the convective heat 

flux and the radiative heat flux at the boundary is expected 

to be the significant parameter, the values obtained 

indicate that the Stark number and Biot number independently 

affect the temperature and heat flux distribution. As can 
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be seen from Figure 19 for the same value of 4NBi the 

temperature and heat flux values differ considerably . The 

Stark number, which can be considered to be proportional to 

the medium thermal conductivity, has similar effects to 

those discussed in the previous section. An increase in 

Stark number results in higher bottom wall heat flux values 

due to an increase in the conductive heat transfer and 

therefore, lower medium temperatures. 

The effect of the isotropic scattering albedo on 

centerline temperatures and on bottom wall heat flux values 

are shown in Figure 20 and Figure 21, respectively . The 

medium Stark number is 0.01 and the enclosure walls are 

black. The decrease in centerline temperature due to 

increasing scattering albedo is because of the reduction in 

the energy available for absorption and emission, since for 

the same extinction coefficient the absorption coefficient 

decreases with increasing scattering albedo. For Stark 

numbers larger than 0.1 the effect of scattering is not 

significant. The existence of convective heat flux at the 

bottom wall reduces the effect of the scattering albedo to a 

certain extent. The radiative heat flux decreases due to an 

increase in the scattering albedo, however, since the total 

heat flux at the bottom wall is specified as proportional to 

the bottom wall temperature, the conductive heat flux 

compensates for the decrease in the radiative heat flux. 



x 
::l 
__] 

0 • -
a:> . 
0 

u... co • 
E--t 0 
a: w 
:I: 
E--t w z.,,. • c 

N • 0 

0 . 

74 

Q = 0.0 

/· . \ I . 
I \ 
. \ I . . \ I ·~ . 

. / ."" ""· I /• '"" "·'fa B~ .. 100.0 . -Bi= 10.0 i I /--------,_ "'--. .........._ . .........._ __ _ 

-·-N .. 0.1 
- ---- N • 0.05 

N = 0.01 

/ ', ~-fl/ ---- ',,',,, -·-· 
f•• I ,,,"' ', '........ -Bi= 100.0 

111

1 
,' ...... ... ...... ...... / • 10 0 , , ',..... ... ... ... ... ~ Bi = . 

I ,,,__ ----------
• I ,' ------------------1 I 

I I 
I I 
I I 
I I 
I I 
I I 
I I ,, , 
I 

100.0 

Bi= 10.0 

O~------.....,--------..,..--------r--------.,--------1 
0.0 0.1 0.2 0.3 0.4 0.5 

POSITION 

FIGURE 19. Net heat flux distribution at the bottom wall in 
a square enclosure with black walls for various 
values of Stark number with Bi=lO and Bi =l OO 



75 

Hence, the net effect of scattering is reduced. 

Figure 22 shows the effect of emissivity of the walls 

on the centerline temperature for a radiation dominated case 

with convective heat flux boundary conditions. All the 

walls have the same emissivity and the medium Stark number 

is equal to 0.01. Since a decrease in wall emissivity 

reduces the net radiative heat flux, the medium temperature 

also decreases. The hot walls, top and side walls, have 

less energy available for the medium compared to a black 

enclosure. The bottom wall temperature also decreases due 

to a decrease in the wall emissivi ty. 

The bottom wall heat flux values are shown in Figure 

23. As expected the net heat flux values also decrease with 

decreasing wall emissivity. Although conductive heat 

transfer mechanism compensates for the reduction in the 

radiative heat flux, the convective heat flux is less when 

compared to the black wall case due to the decrease in the 

bottom wall temperature. 

C. Summary 

The results of the previous two sections can be 

summarized as below. 

• The radiative mode of heat transfer is dominant for 

values of Stark number less than 0.1. For higher 

values of Stark number conduction is the basic mode 
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of heat transfer and radiation effects are 

negligible. 

• The radiative properties of the medium and the 

enclosure affect the medium temperature 

distribution and the heat flux values for radiation 

dominant cases. Their effect on the conductive 

heat flux is relatively small. 

• The existence of radiation increases the medium 

temperature and decreases the heat flux va lues when 

compared to a pure conducting medium. 

• The effects of a decrease in wall emissivity are 

lower medium temperatures and lower heat flux rates 

due to a decrease in the net radiative heat flux. 

• The scattering is important for radiation dominant 

cases with the scattering albedo greater than 0.5 . 

The medium temperature and heat flux decreases with 

increasing isotropic scattering albedo. The 

magnitude of reduction in the heat flux rate is 

small. The effect of scattering in a gray 

enclosure is more significant than the effect of 

scattering in a black enclosure. 

• When the enclosure is cooled with a coolant the 

medium temperature distribution and the net heat 

flux values on the surrounding walls depend on the 

Biot number and the Stark number rather than their 
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product. The effect of a high Biot number is to 

reduce the medium temperature especially near the 

bottom wall. The Stark number basically controls 

the penetration of the effects of the Biot number. 

For a high value of Stark number and for the same 

Biot number, the temperature near the top wall is 

less than it would be for a lower Stark number. 

• The effects of the radiative properties of the 

medium and the surrounding surf aces are reduced 

when heat flux conditions are applied. 

• The equivalence of radiative equilibrium and pure 

scattering for an enclosure having the same surface 

properties is not valid when heat flux boundary 

conditions are present. 

D. Discussion 

In this study, the exact equations governing the heat 

transfe r in a conducting, absorbing, emitting and 

isotropically scattering gray medium with constant 

properties were solved by the finite element method. Two 

types of boundary conditions were considered ; prescribed 

temperature on the surf aces and convective heat flux 

boundary conditions. The effects of the Stark number, 

isotropic scattering albedo, wall emissivities and Biot 

number on the temperature and heat flux distribution were 
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investigated. Comparisons with different formulations of 

the same problem were made. 

Two contributions of this study are the investigation 

of scattering in gray enclosures and the inclusion of 

convective type heat flux boundary conditions. The method 

employed can easily incorporate nonisotropic scattering 

independent of the incidence angle and temperature dependent 

properties as long as the medium is gray. 

Although the aspect ratio of the medium is a very 

important physical parameter, its effects have not been 

investigated in this study. A more realisti c study of two-

dimensional combined mode radiation and conduction problem 

should be able to analyze nongray mediums. The fo rmulation 

and the numerical method used in this study is no t capable 

of solving nongray medium problems in a reasonable amount of 

computer time. 

The accuracy of the numerical results could have been 

improved, especially for small Stark numbers and for 

problems with convective heat flux boundary conditi ons, if a 

finer mesh was used . However, this was not attempted. 

The formulation of the governing equations needs to be 

considered in more detail. The variabies used were the 

incident radiation and the temperature, and they were 

treated separately. The incident radiation equation was 

numerically easy to solve with the fin i te element met hod, 
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however, it consumed most of the computation time. The 

energy equation, despite its simple appearance, was hard to 

solve with the finite element method. Therefore, the 

problem was divided into two simpler subproblems, one easy 

to solve yet time consuming, the other numerically hard to 

solve. 

The treatment of the incident radiation equation is not 

suitable for an efficient numerical algorithm. Further work 

on this equation seems to be essential before attempt i ng to 

solve more practical problems. 



84 

V. REFERENCES 

1. M. N. Ozisik . Radiative Transfer and Interactions 
with Conduction and Convection. John Wiley & Sons, 
New York, 1973. 

2 . R. S iegel and J. R. Howell. Thermal Radiation Heat 
Tranfer. McGraw Hill, New York, 1981. 

3. E. M. Sparrow and R. D. Cess. Radiation Heat 
Transfer. McGraw Hill, New York, 1978. 

4. M. M. Razzaque. "Finite Element Analysis of Combined 
Mode Heat Transfer Including Radiation in Gray 
Participating Media". Ph.D. Dissertation. 
University of Texas at Austin, Austin, Texas, 1982. 

5. A. C. Ratzel . "P-N Differential Approximation for 
Solution of One and Two Dimensional Radiation and 
Conduction Energy Transfer in Gray Participating 
Media". Ph.D. Dissertation. University of Texas at 
Austin, Austin, Texas, 1980 . 

6. T. M. Shih and Y. N. Chen. "A Di scretized Intensity 
Method Proposed for Two-Dimensional Systems Enclosing 
Radiative and Conductive Media". J. Num. Heat 
Transfer 6:117-134, 1983. 

7. R. Fernandes and J. Francis. "Combined Conductive 
and Radiative Heat Transfer in an Absorbing, Emitting 
and Scattering Cylindrical Medium". J. Heat Transfer 
104:594-601, 1982. 

8 . H. C . Hottel and E. S. Cohen. "Radiant Heat Exchange 
in a Gas-filled Enclosure: Allowance for Non-
uniformi ty of Gas Temperature". AICHE J. 4 : 3-14, 
1958. 

9. M. E . Larsen. "The Exchange Factor Method: An 
Alternative Zonal Formulation for Analysis of 
Radiating Enclosures Containing Participating Media". 
Ph.D. Dissertation. University of Texas at Austin, 
Austin, Texas, 1983 . 

10. W. A. Fiveland. "Discrete-Ordinates Solution of the 
Radiation Transport Equation for Rectangular 
Enclosures". J. Heat Transfer 106:699-706, 1984. 



85 

11. w. w. Yuen and L. w. Wong. "Analysis of Radiative 
Equilibrium in a Rectangular Enclosure with Gray 
Medium". J. Heat Transfer 106:433-439, 1984. 

12. W. W. Yuen and c. F. Ho. "Analysis of Two-
Dimensional Radiative Heat Transfer in a Gray Medium 
with Internal Heat Generation". Int. J. Heat Mass 
Transfer 28:17-23, 1985. 

13. A. L. Crosbie and R. G. Schrenker. "Radiative 
Transfer in a Two-Dimensional Rectangular Medium 
Exposed to Diffuse Radiation". J. Quant. Spectrosc. 
Radiat. Transfer 103:339-372, 1984. 

-
14. S. T. Wu and R. E. Ferguson. "Appli cati on of Finite 

Element Techniques to the Interaction of Conduction 
and Radiation in Participating Media". In Heat 
Transfer and Thermal Control, pp. 61-92. Edited by 
A. L. Crosbi~. AIAA, New York, 1981. 

15. R. Fernandes, J. Francis and J. N. Reddy. "A Finite 
Element Approach to Combined Conductive and Radiative 
Heat Transfer in a Planar Medium". In Heat Transfer 
and Thermal Control, pp. 93-109. Edited by A. L. 
Crosbie. AIAA, New York, 1981 . 

16. M. L. Nice. "Application of Finite Element Method to 
Heat Transfer in a Participating Medium". In 
Numerical Properties and Methodologies in Heat 
Transfer, pp. 497-514. Edited by T. M. Shih . . 
Hemisphere Publishing Co., Washington D. c., 1983. 

17. J.P. Wong and G. Aquirre-Ramirez. "Numerical 
Solution of Integral Equations by Finite Element 
Method". Proceedings of the 12th Annual Meeting, 
pp. 560-567, Society of Engineering Science , 
Washington D. c., 1975. 

18. J. N. Reddy and v. D. Murty. "Finite Element Solution 
of Integral Equations Arising in Radiative Heat 
Transfer and Laminar Boundary Layer Theory". J. Num. 
Heat Transfer 1:389-401, 1978. 

19. 0. C. Zienkiewicz. The Finite Element Method. 3rd 
edition. McGraw Hill, New York, 1977. 

20. M. Kaviany. "One Dimensional Conduction-Radiation 
Heat Transfer Between Parallel Surfaces Subject to 
Convective Boundary Conditions". Int. J. Heat Mass 
Transfer 28:497-499, 1985 . 



86 

21. K. H. Huebner and E. A. Thornton. The Finite Element 
Method for Engineering. 2nd edition. John Wiley and 
Sons, New York, 1982. 

22. w. F. Ames. Nonlinear Partial Differential Equations 
in Engineering. Academic Press, New York, 1965. 

23. T. M. Shih. Numerical Heat Transfer. Hemisphere 
Publishing Co., Washington D. c., 1983. 

24. W. W. Yuen and L. W. Wong. "Numerical Computation of 
an Important Integral Function in Two Dimensional 
Radiative Transfer". J. Quant. Spectrosc. Radiat. 
Transfer 29:145-149, 1983. 

25. R. J. J. Starnm'ler and M. J. Abbate. Methods of 
Steady-State Reactor Physics in Nuclear Design. 
Academic Press, New York, 1983. 



87 

VI. APPENDIX A 

The Ki functions are known as the Bickley-Naylor 
n 

functions and are defined as [4~24,25] 

~12 

Kin(x) = J exp(c~~8)cosn-lede 
0 

= I 
0 

= I 
1 

exp(-xcoshu)du 
coshnu 

The zeroth order Ki function is equal to the modified n 

Bessel function of the second kind and order zero. The 

following relationships are valid among the Ki functions 
n 

dd (Ki (x)) = -Ki (x) X n n-1 

Ki.(x) = Ki.(0) - JxKi._,(t)dt 
0 

~ 

Kin(x) = J Kin_ 1 (t)dt 
x 

These functions are related to the exponential integral 

functions by the following equation [24] 
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~1 2 

En (x) = ~ J Ki n (c~s 8)cosn-2 8dt. 
0 

Several numerical approximations to these functions are 

published [4,9,24,25]. The numerical approximations used in 

this study are based on the expressions given in [4]. 
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VII. APPENDIX B 

Numerical values of the temperature distribution in the 

medium and the net heat flux values on the surrounding walls 

are tabulated for some selected cases. The contour plo t s of 

temperature are also i ncluded. For the cases wit h firs t 

type boundary conditions, the bottom wall is at a 

nondimensional temperature of 1 . 0 and the other walls are at 

a nondimensi ona l tempera t ure o f 0 . 5 . Fo r t he cases wi t h 

heat flux boundary condit ions, on ly the bott om wa ll i s 

cooled with a coolant hav i ng a nondimensi onal tempe r a ture o f 

0 . 0 and the o ther wal l s a re kept at 0 .5 nondime ns iona l 

temperature. In t he contour p l ots, the ver t i c a l axis is the 

z-axis and the ho rizontal axis is the y-axi s. 
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TABLE 5. Temperature distribution and wall net heat flux 
values in a black square enclosure with N=0 . 01 for 
s c atter ing albedo equal to 0.0 

Stark Number = 0.01 Scattering Albedo = 0.0 
Wall Emissivi ty Bottom = 1.0 Top = 1.0 Side = 1. 0 
Wall Temperature . . Bottom = 1.0 Top = 0 . 5 Side = 0.5 

Temperature Distribution 
z \ y 0.000 0.100 0.200 0 .300 0 . 400 0 . 500 

0.0 1.000 1.000 1.000 1. 000 1.000 1. 000 
0.1 0.540 0.783 0.866 0.883 0 . 890 0 . 893 
0. 2 0.481 0 . 696 0.787 0 . 815 0.826 0 . 832 
0 .3 0.507 0 . 664 0 . 742 0.774 0 . 786 0 . 793 
0 .4 0.499 o-. 640 0.710 0.740 0 . 753 0 . 759 
0 .5 0 .500 0.618 0.679 0 . 707 0 . 720 0 . 725 
0.6 0 . 500 0.602 0 .655 0.680 0 .6 91 0.696 
0 . 7 0 . 500 0 . 585 0 . 630 0.651 0 . 661 0 . 665 
0 .8 0 . 500 0.566 0.602 0.618 0 .6 27 0 . 630 
0 . 9 0 .500 0.542 0.564 0 . 574 0 . 579 0 . 581 
1. 0 0 .500 0.500 0.500 0 . 500 0 . 500 0 . 500 

Wall Heat Fluxes 
Z OR y Bottom Wall Side Wall Top Wall 

0 . 1 0 .8 94 - 0 . 671 -0.175 
0.2 0 .83 5 -0.467 -0 . 205 
0 . 3 0.801 -0 . 403 -0 . 226 
0 .4 0.785 -0 . 328 - 0 .238 
0 .5 0.781 -0.2 71 - 0 .242 
0 .6 0 . 785 -0.224 - 0.238 
0 . 7 0 . 801 -0 . 182 -0.226 
0.8 0 .835 -0.145 - 0 . 205 
0 .9 0 . 894 -0 . 108 -0 .1 75 

Ave rage 0 .8 32 -0.311 -0 . 214 
% Error -0 . 565 
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TABLE 6. Temperature distribution and wall net heat f lux 
values in a black square enclosure with N=0.05 for 
scattering albedo equal to 0 . 0 

Stark Number = 0.05 Scattering Albedo = o~o 
Wall Emissivity Bottom = 1. 0 Top = 1.0 S i de = 1.0 
Wall Temperature . Bottom = 1. 0 Top = 0.5 S ide = 0.5 . 

Temperature Distribution 
z \ y 0.000 0. 1 00 0.200 0.300 0.400 0.500 

o.o 1.000 1 .000 1.000 1.000 1.000 1. 000 
0.1 0.540 0.763 0 .85 5 0.887 0 . 901 0 . 905 
0.2 0.4 81 0.664 0.760 0 . 805 0 . 826 0.832 
0 . 3 0 .507 0 .6 22 0.701 0.747 0.769 0 . 776 
0.4 0.499 0 .5 94 0 . 660 0 . 701 0 . 722 0 . 730 
0 .5 0 .5 00 0 . 575 0 . 628 0 . 663 0 . 682 0.688 
0.6 0.500 0.560 0.602 0.631 0 . 646 0 .652 
0 . 7 0.500 0.546 0 .5 79 0 .601 0 . 613 0 . 617 
0.8 0.500 0 .532 0. 555 0.571 0. 579 0. 582 
0.9 0 .500 0 .518 0.531 0. 53'9 0 . 543 0 . 545 
1. 0 0 .500 0 .500 0 .5 00 0.500 0 . 500 0 . 500 

Wall Heat Fluxes 
Z OR Y Bottom Wall Side Wall Top Wall 

0 .1 1.429 -1 . 347 - 0 . 182 
0 . 2 1.094 -0 . 725 - 0 .226 
0.3 0.985 -0 . 611 -0 . 256 
0.4 0.934 -0 . 449 -0.275 
0 .5 0.921 -0.363 -0 .282 
0 .6 0.934 -0.290 -0.275 
0 .7 0.985 -0.225 - 0.256 
0.8 1.094 -0.170 -0.226 
0 .9 1.429 -0.116 -0.182 

Average 1.183 -0.477 - 0 .240 
% Error -1.028 



93 

0---------------------------------------------, -
cc . 
0 

co • 
0 

...,. 
0 

N 
0 

-------------------
o.57------

----- ........ 

----------............ 
~~' ... , 

---------
----------------

0 

o..,E~~.;.;.~,._;;;;;;;;;;;;;;;;;;;==:;;;;========:;====------.,----......,--..-, 
o.o 

FIGURE 25. 

0.2 O.i 0.6 0.8 1.0 

Temperature distribution in a black square 
enclosure with N=a.a5 and for scattering albedo 
equal to a.a 



94 

TABLE 7. Temperature distribution and wall net heat flux 
values in a black square enclosure with N=O.l for 
scattering albedo equal to 0.0 

Stark Number = 0.10 Scattering Albedo = o.o 
Wall Emissivity Bottom = 1.0 Top = 1.0 Side = 1.0 
Wall Temperature . Bottom . = 1.0 Top = 0.5 Side = 0.5 

Temperature Distribution 
z \ y 0.000 0.100 0.200 0.300 0.400 0 .500 

0 .0 1.000 1.000 1.000 1.000 1.000 1.000 
0 .1 0.540 0.773 0 .853 0 .882 0 .9 00 0.903 
0.2 0.481 0.651 0 .749 0.798 0.820 0.826 
0.3 0.507 0.600 0.682 0.733 0 . 755 0 .763 
0.4 0.499 0.579 0.639 0.680 0.703 0.710 
0.5 0.500 0 .560 0.607 0.640 0.659 0 .666 
0 .6 0.500 0 .546 0.582 0 .608 0.623 0.628 
0.7 0.500 0.534 0.561 0.580 0.592 0 .595 
0.8 0.500 0.523 0.542 0.554 0 .562 0.565 
0.9 0.500 0.513 0.522 0.528 0 .532 0.534 
1.0 0.500 0.500 0.500 0.500 0.500 0 . 500 

Wall Heat Fluxes 
Z OR y Bottom Wall Side Wall Top Wall 

0.1 1.932 -2.385 -0.193 
0.2 1.432 -0.957 -0.246 
0.3 1.295 -0.749 -0 .284 
0.4 1.153 -0.570 -0.309 
0.5 1.144 -0.446 -0.317 
0.6 1.153 -0.348 -0.309 
0.7 1.295 -0.265 -0.284 
0.8 1.432 -0.193 -0.246 
0.9 1.932 -0.127 -0.193 

Average 1.617 -0.671 -0.264 
% Error 0.635 
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TABLE 8. Temperature distribution and wall net heat flux 
values in a gray square enclosure with N= 0 . 01 for 
wall emissivity equal to 0 .5 and for scatteri ng 
albedo equal to 0.0 

Stark Number = 0.01 Sc attering Albedo = 0.0 
Wall Emissivity Bottom = 0.5 Top = 0.5 Side = 0.5 
Wall Temperature . Bottom . = 1. 0 Top = 0.5 Side = 0 .5 

Temperature Distribution 
z \ y 0 . 000 0.100 0 . 200 0 .3 00 0.400 0 . 500 

0 . 0 1 . 000 1. 000 1. 000 1. 000 1.0 00 1 . 000 
0 .1 0 . 540 0 . 774 0 .846 0.859 0 .864 0 . 866 
0 .2 0 . 481 0 .69 0 0 . 770 0 . 792 0 .8 01 0 . 804 
0.3 0 . 507 0 . 662 0 . 733 0 . 758 0 . 768 0 . 772 
0 .4 0 . 499 0 . 642 0 . 707 0 . 731 0 . 742 0 . 746 
0 .5 0 .5 00 0 . 625 0 .684 0 . 707 0 . 718 0 . 722 
0 .6 0 .5 00 0 . 612 0.665 0 .687 0.697 0 . 701 
0 .7 0 .500 0 .598 0 .64 5 0.665 0 .6 74 0 .6 77 
0 .8 0 .500 0 . 582 0 .6 21 0.638 0 .646 0 . 649 
0 .9 0 .500 0 .555 0 .581 0.592 0. 597 0 .599 
1. 0 0.500 0 . 500 0 .50 0 0.500 0 .500 0 .5 00 

Wal l Heat Fluxes 
Z OR Y Bottom Wa ll Side Wall Top Wall 

0 . 1 0 .481 -0 . 363 -0 . 103 
0 . 2 0 . 427 -0 . 254 -0 .1 24 
0 . 3 0 .418 -0 . 224 -0 .1 36 
0 . 4 0 . 411 -0 . 188 -0 . 143 
0 . 5 0 .410 -0.164 -0 . 145 
0 .6 0 . 411 -0 . 1 44 -0 . 143 
0 .7 0 . 418 - 0 . 125 - 0 .136 
0 . 8 0 . 427 -0 . 107 -0 . 124 
0 . 9 0.481 -0.084 -0 . 103 

Average 0.447 -0 .184 -0 .1 29 
% Error 3.628 
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TABLE 9. Temperature distribution and wall net heat flux 
values in a blac k square enc l osure with N= 0 .01 for 
wall emissivity equal to 0 . 5 and for scattering 
albedo equal to 0 .5 

Stark Number = 0.01 Sc attering Albedo = 0 .5 
Wall Emissivity Bottom = 0.5 Top = 0 .5 Side = 0 .5 
Wall Temperature . Bottom . = 1.0 Top = 0 .5 Side = 0 .5 

Temperature Di str ibution 
z \ y 0 . 000 0 .1 00 0 . 200 0 . 300 0 .4 00 0 .500 

0.0 1.000 1.000 1. 000 1. 000 1 . 000 1. 000 
0 .1 0.54 0 0.776 0 .835 0 . 846 0 . 858 0 .8 58 
0 .2 0.481 0.674 0.756 0 . 784 0 .794 0 . 797 
0 . 3 0 . 507 0.63 7 0 . 71 5 0 . 750 0 . 761 0 . 76 5 
0 .4 0 .499 0 .6 23 0 .688 0 . 720 0 . 734 0 . 738 
0 .5 0 .5 00 0 .61 0 0 . 669 0 . 698 0 . 712 0 . 716 
0 . 6 0 . 500 0 .598 0 .651 0 . 678 0 .691 0 . 695 
0 . 7 0.500 0 . 585 0.631 0 .6 56 0 . 668 0 .6 70 
0.8 0.500 0 . 569 0 .608 0 . 625 0 .63 3 0 .6 38 
0.9 0.5 00 0.545 0.570 0 . 575 0 . 578 0 . 587 
1. 0 0.500 0.500 0 . 500 0 . 500 0 . 500 0 . 500 

Wall Heat Fluxes 
Z OR y Bottom Wal l Side Wall Top Wall 

0 . 1 0 .4 75 -0.371 -0 .1 03 
0 .2 0 .443 -0 . 245 -0 . 123 
0 .3 0 .440 -0.207 -0 .128 
0 .4 0 .428 -0 .1 79 -0 .1 31 
0 .5 0 .428 -0 . 158 -0 .141 
0 .6 0.4 28 -0 . 140 -0.131 
0.7 0 .440 -0 . 123 -0 . 128 
0 .8 0 .443 -0.1 05 -0 .123 
0 . 9 0 .4 75 -0 . 084 - 0 . 103 

Average 0 .457 -0 . 179 -0 .1 23 
% Error -5 .326 
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TABLE 10. Temperature distribution and wall ne t heat flux 
values in a black square enclosure with N=0.01 
for wall emissivity equal to 0 . 1 and for 
s c attering albedo equal to 1.0 

Stark Number = 0.01 Sc attering Albedo = 1 . 0 
Wall Emissivity Bottom = 0 .1 Top = 0.1 S ide = 0 . 1 
Wall Temperature . Bottom . = 1. 0 Top = 0. 5 S ide = 0 . 5 

Temperature Distribution 
z \ y 0 . 000 0.100 0.200 0 .300 0 . 40 0 0 . 500 

0 . 0 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 
0 . 1 0 .54 0 0 . 765 0 . 846 0 . 876 0 . 897 0 . 900 
0 . 2 0 . 481 0 . 63 7 0 . 731 0 . 780 0 . 803 0 . 811 
0 . 3 0 . 507 o-. 581 0 . 655 0 .7 04 0 . 726 0 . 734 
0 . 4 0 . 499 0 .55 9 0 . 608 0 . 644 0 . 666 0 . 673 
0 . 5 0 . 500 0 . 54 0 0 . 576 0 . 603 0 . 619 0 . 625 
0 .6 0 . 500 0 . 528 0 . 553 0 . 572 0 . 584 0 . 588 
0 . 7 0 .500 0 .51 9 0 .5 35 0 .549 0 . 557 0 .560 
0 .8 0 . 500 0.511 0.522 0 .530 0 . 535 0.537 
0 . 9 0 . 500 0.505 0.510 0.514 0 .51 7 0 . 517 
1. 0 0 . 500 0.500 0 . 500 0.500 0 . 500 0 . 500 

Wa ll Heat Fluxes 
Z OR Y Bo ttom Wall S ide Wall Top Wa ll 

0 . 1 0 . 188 -0.215 -0 . 026 
0 . 2 0 . 138 -0 . 078 -0.028 
0 . 3 0 . 125 -0.062 -0 . 030 
0 . 4 0 . 112 - 0 . 049 -0 . 031 
0 .5 0 . 111 -0 . 04 1 - 0 . 031 
0 . 6 0 .112 -0 . 036 -0 . 031 
0 . 7 0 . 125 -0 .. 031 -0 . 030 
0 .8 0.138 -0 . 028 · -0 . 028 
0 .9 0 .188 - 0 . 025 -0 . 026 

Average 0 .159 -0 . 063 -0 . 029 
% Error 2 .351 
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TABLE 11. Temperature distribution and wall net heat flux 
values in a black square enc losure with N=O.l f o r 
s cattering albedo equal to 0 . 0 and Bi=l. O 

Stark Number = 0 .10 Scattering Albedo = 0.0 
Wall Emissivity Bottom = 1.0 Top = 1. 0 Side = 1 . 0 
Wall Temperature . Top = 0.5 . Side = 0 .5 

Temperature Distribution 

o.o 0.500 0.431 0 .4 05 0.393 0 . 385 0 .38 3 
0 .1 0 .50 0 0.460 0 . 436 0 .422 0 .414 0 .4 12 
0 . 2 0 .5 00 0 .4 75 0 .456 0 . 444 0 .437 0 . 434 
0 .3 0 . 500 0.483 0 .46 9 0 .4 59 0 .454 0 .45 2 
0.4 0 . 500 0.488 0 .478 0 . 471 0 . 466 0 .465 
0 .5 0 .500 0 .4 92 0 .484 0 .4 79 0 .4 76 0 . 475 
0 . 6 0 .5 00 0 . 494 0 . 489 0 .485 0 . 483 0 . 482 
0 . 7 0 .5 00 0.496 0 .49 2 0 .4 90 0 .488 0 . 488 
0 .8 0.500 0 .497 0 .495 0.494 0 .49 2 0 .4 92 
0 n • .I 0 .500 0.499 0 .498 0 .49 7 0 .496 0 . 496 
1.0 0 .500 0.500 0.500 0 .50 0 0 . 500 0 .5 00 

Wall Heat Fluxes 
Z OR Y Bottom Wall Side Wall Top Wall 

0 . 1 -0 .172 - 0 . 220 - 0.008 
0 .2 - 0 .179 -0 . 132 -0 . 016 
0.3 - 0 .157 - 0.090 - 0 . 021 
0 . 4 - 0 . 157 - 0 . 062 - 0 . 0 23 
0 .5 - 0 . 154 - 0 . 046 - 0 . 025 
0 .6 - 0 .157 -0 . 033 - 0 . 023 
0 .7 -0.157 -0 . 024 - 0 . 021 
0 .8 - 0 .179 -0.015 - 0 . 01 6 
0 .9 - 0 .172 - 0 . 00 6 - 0 . 008 

Average -0.152 0.070 0 . 018 
% Error -3.793 
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TABLE 12. Temperature distribution and wall net heat flux 
values in a black square enclosure with N=O.l for 
scattering albedo equal to 0 .0 and Bi=lO.O 

Stark Number = 0 . 10 Scattering Albedo = o.o 
Wall Emissivity Bottom = 1.0 Top = 1.0 Side = 1. 0 
Wall Temperature . Top = 0.5 . Side = 0 . 5 

Temperature Distribution 
z \ y 0.000 0.100 0.200 0 .30 0 0.400 0 . 500 

0 . 0 0 .500 0.208 0 .136 0.124 0 .1 09 0 . 106 
0 .1 0.500 0 .339 0.261 0.222 0 . 202 0 . 196 
0 . 2 0 .5 00 0 .4 04 0 . 339 0 .299 0 .2 78 0 . 271 
0 . 3 0 . 500 0 . 437 0.389 0 .356 0 . 338 0 . 332 
0 .4 0 .5 00 0 . 458 0 .4 22 0 .39 7 0 .382 0 . 377 
0 .5 0.500 0.471 0.446 0 .42 7 0 .416 0.412 
0 .6 0 .5 00 0 .480 0 .463 0.448 0 .4 44 0 .4 53 
0 . 7 0.500 0.486 0 .4 75 0.465 0 .4 62 0 .4 66 
0 .8 0.500 0.492 0 .484 0 .479 0 .4 75 0 .4 72 
0.9 0.500 0.496 0 .49 2 0 .490 0 .488 0.489 
1.0 0.500 0.500 0.500 0.500 0 .500 0.500 

Wall Heat Fluxes 
Z OR y Bottom Wall Side Wall Top Wall 

0.1 -0 . 749 -0.901 -0 . 031 
0.2 -0.655 -0.486 -0 . 044 
0 .3 - 0 .473 -0.309 - 0 . 063 
0.4 -0.442 -0 . 202 -0.057 
0 . 5 -0.426 - 0 . 145 -0.026 
0 .6 -0.442 -0 . 112 - 0 . 057 
0 .7 -0.473 -0.075 -0.063 
0 . 8 -0 .655 -0 . 044 - 0 . 044 
0.9 -0.749 -0.101 -0.031 

Average -0.523 0.264 0.046 
% Error -9.881 
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TABLE 1 3 . Tempe rature distribution and wall net heat flux 
v a lue s in a black square enclosure with N=0 . 0 5 
fo r scattering albedo equal to 0.0 and Bi=lO . O 

St a rk Numbe r = 0.05 Scattering Albedo = o.o 
Wall Emissivity Bottom = 1. 0 Top = 1.0 S ide = 1. 0 
Wall Temperature . Top = 0.5 . Side = 0 . 5 

Temperature Distribution 
z \ y 0 . 000 0 . 100 0.200 0 . 300 0 . 400 0 .50 0 

0 . 0 0.500 0 . 216 0.146 0 . 134 0 . 120 0 .117 
0 . 1 0.500 0 . 345 0.270 0 . 233 0 . 214 0 . 208 
0 .2 0.500 0 . 409 0.348 0 .31 0 0 . 290 0 . 284 
0 . 3 0 . 50 0 0.441 0.396 0 . 366 0 .349 0 .343 
0 .4 0 . 500 0.461 0 .429 0 .4 05 0 . 392 0 .38 7 
0 .5 0 . 500 0 . 4 73 0.450 0 .434 0 . 423 0 .42 0 
0 . 6 0 . 500 0 . 481 0.466 0 .454 0 . 447 0 . 444 
0 . 7 0.500 0.487 0 . 4 77 0 .469 0 . 464 0 . 462 
0.8 0.500 0 . 492 0 . 485 0 .481 0 . 477 0 . 476 
0 . 9 0 . 500 0.496 0 .493 0 .490 0 . 489 0 . 488 
1. 0 0 . 500 0.500 0.500 0.500 0 . 50 0 0 . 500 

Wall Heat Fluxes 
Z OR y Bottom Wall Side Wall Top Wall 

0 . 1 -0 .390 -0 .454 -0 . 021 
0 . 2 -0.347 - 0.248 -0.030 
0.3 -0.259 -0.161 - 0 .036 
0. 4 -0.243 -0 . 109 - 0 . 040 
0.5 -0 . 234 -0 . 078 - 0 . 041 
0.6 -0 . 243 -0. 056 -0 . 04 0 
0 . 7 -0 . 259 -0.161 -0 . 036 
0.8 - 0.347 -0 . 028 -0 . 030 
0.9 -0 . 390 - 0 . 017 -0 . 02 1 

Average -0.280 0 . 146 0 . 033 
% Error 3 . 295 
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TABLE 14. Temperature distribution and wall net heat flux 
values in a black square enclosure with N=0.01 
for scattering albedo equal to 0.0 and Bi=lOO.O 

Stark Number = 0 . 01 Scattering Albedo = 0 . 0 
Wall Emissivity Bottom = 1.0 Top = 1.0 Side = 1. 0 
Wall Temperature Top = 0.5 Side = 0.5 

Temperature Distribution 
z \ y 0.000 0.100 0.200 0.300 0 .400 0. 500 

0.0 0.500 0.076 0.014 0.032 0.024 0 . 02 4 
0.1 0.500 0.295 0.212 0.182 0 . 166 0 .162 
0.2 0.500 0.395 0.329 0.292 0 . 275 0. 269 
0.3 0.500 0.438 0.394 0.367 0 . 352 0 . 347 
0.4 0.500 0.461 0.432 0.413 0 . 402 0 . 398 
0.5 0.500 0.474 0.455 0.441 0 .434 0 .431 
0.6 0 . 500 0.482 0 .468 0.459 0 . 454 0 .4 52 
0.7 0 .500 0 .487 0 . 478 0.472 0 . 468 0 . 467 
0.8 0.500 0.491 0.485 0.481 0 .479 0 .478 
0.9 0 .500 0 . 495 0.492 0.490 0 .489 0 .488 
1.0 0.500 0.500 0.500 0.500 0 .500 0.500 

Wall Heat Fluxes 
Z OR y Bottom Wall Side Wall Top Wall 

0.1 -0.163 -0.157 -0.016 
0.2 -0.139 -0.086 -0.019 
0 . 3 -0.105 -0.058 -0.021 
0.4 -0.100 -0.042 - 0.022 
0.5 -0.096 -0.032 -0 . 02 3 
0.6 -0 .1 00 -0.025 -0 . 022 
0.7 -0.105 -0.019 - 0 . 021 
0.8 -0.139 -0.015 -0.019 
0.9 -0.163 -0 . 011 -0.016 

Average -0.115 0.049 0.020 
% Error -2.978 
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TABLE 15. Temperature distribution and wall net heat flux 
values in a black square enclosure with N=0.01 
for scatterihg albedo equal to 0.5 and Bi=l OO . O 

Stark Number = 0 .01 Scattering Albedo = 0 .5 
Wall Emissivity Bottom = 1.0 Top = 1. 0 Side = 1. 0 
Wall Temperature . Top = 0.5 Side = 0.5 . 

Temperature Distribution 
z \ y 0 . 000 0.100 0.200 0 . 300 0 .4 00 0 . 50 0 

0 . 0 0 .5 00 0.076 0.014 0 . 032 0.023 0 . 0 23 
0.1 0 .500 0 . 287 0 .2 01 0 .168 0 .152 0 . 147 
0 .2 0.500 0.386 0.314 0.274 0 .255 0 . 249 
0 .3 0.500 0.431 0.382 0 . 350 0.332 0 . 327 
0 .4 0 .500 o·. 4 5 7 0 .42 3 0.400 0.386 0 . 382 
0 . 5 0 .500 0 . 472 0 . 449 0 .43 3 0 .423 0 .4 20 
0 .6 0 .500 0 .481 0 . 465 0 .454 0 .44 8 0 . 445 
0 .7 0 .5 0 0 0 .48 7 0 .4 77 0 .46 9 0 . 465 0 . 463 
0 .8 0 . 500 0 .491 0 .485 0.480 0 . 478 0 . 477 
0 .9 0 .500 0 . 495 0.492 0.490 0 . 489 0 . 488 
1. 0 0 .500 0.500 0 . 500 0.500 0 . 5 00 0 . 500 

Wall Heat Fluxes 
Z OR Y Bottom Wall S ide Wall Top Wall 

0 .1 -0 .161 - 0 . 158 -0.015 
0 .2 - 0 .136 -0 . 088 - 0 . 018 
0 .3 -0.102 -0.060 - 0 . 0 20 
0 .4 -0 . 096 -0 . 042 -0. 0 22 
0.5 - 0.093 -0.032 -0 . 022 
0 . 6 - 0.096 -0 . 025 -0 . 022 
0 . 7 - 0 .102 -0. 019 - 0 . 020 
0 .8 - 0 .136 -0 . 014 - 0 . 018 
0.9 -0 . 161 -0. 01 0 -0 . 015 

Average -0 . 113 0 . 050 0 . 019 
% Error -5 . 242 
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TABLE 16. Tempe r a ture distribution and wall net hea t flux 
va l ue s in a black squa r e enclosure with N=0 . 01 
for s c a tt e ring albedo equa l to 1 . 0 and Bi =lOO . O 

St ark Number = 0 . 01 
Wal l Emiss ivity 
Wa l l Temperature : 

Scattering Albedo = 1 . 0 
Bottom = 1. 0 Top = 1 . 0 S ide = 1.0 

Top = 0.5 Sid e = 0 . 5 

z \ y 

0 . 0 
0 . 1 
0 . 2 
0 . 3 
0 . 4 
0 . 5 
0 . 6 
0 . 7 
0 . 8 
0 . 9 
1. 0 

Z OR Y 

0 . 1 
0 . 2 
0.3 
0 . 4 
0 . 5 
0 . 6 
0.7 
0 . 8 
0 . 9 

Average 
% Error 

Tempe rature Distribution 
0 . 000 

0 . 500 
0 . 500 
0.500 
0 . 500 
0 . 500 
0 . 500 
0.500 
0 . 500 
0.500 
0 . 500 
0 . 500 

0 . 100 

0 . 076 
0 . 274 
0 . 369 
0.414 
0 . 443 
0.460 
0 . 473 
0.482 
0 . 489 
0 . 495 
0 . 500 

0 . 200 

0 . 013 
0.181 
0.286 
0 . 351 
0 .396 
0 . 427 
0.449 
0.466 
0 . 479 
0 . 490 
0 . 500 

0.300 

0 . 03 1 
0 . 145 
0 .238 
0.310 
0 .363 
0 . 402 
0.431 
0 . 453 
0 . 471 
0 . 486 
0 . 500 

Wall Heat Fluxes 
Bottom Wall Side Wall 

-0 .16 0 -0 . 159 
-0 .1 33 -0.090 
-0 . 098 -0 . 061 
- 0 . 092 -0 . 044 
-0 . 089 -0. 033 
-0 . 092 -0. 02 5 
-0 . 098 -0.019 
-0 . 133 -0.014 
- 0.160 -0.009 

-0 . 110 0 . 050 " 
-7 . 707 

0 . 400 

0 . 022 
0 . 126 
0 . 215 
0 . 287 
0 .343 
0 . 387 
0 . 42 0 
0 . 446 
0 . 466 
0.484 
0 . 500 

0 . 500 

0 . 02 2 
0 . 121 
0 . 207 
0 .280 
0 .337 
0 . 381 
0 .416 
0 .443 
0 . 465 
0 .483 
0 . 500 

Top Wall 

- 0.014 
- 0 . 017 
- 0 . 019 
-0 . 021 
-0 . 021 
- 0 . 021 
- 0 .019 
- 0 .017 
-0 . 014 

0 . 018 
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TABLE 17 . Temperatu re dist ribution a nd wall ne t h ea t flux 
va l ues i n a gra y s quare enclosure with N=0 . 01 fo r 
wall emi s s ivity equa l to 0 . 5 and Bi= lO . O 

Stark Number = 0.01 Scatte r i ng Al bedo = 0 . 0 
Wall Emissivit y Bottom = 1. 0 Top = 1.0 Side = 1. 0 
Wall Temperature . Top = . 0 . 5 Side = 0 . 5 

Tempe r a tu r e Dist r ibution 
z \ y 0 . 0 00 0 .1 00 0 . 200 0 . 300 0 . 400 0 . 500 

0 . 0 0 . 500 0 . 241 0.181 0 . 175 0 . 164 0 . 162 
0 . 1 0 . 500 0 . 370 0 . 311 0 . 285 0 . 271 0 . 267 
0 . 2 0 . 500 0 . 429 0 . 384 0 . 359 0 . 346 0 . 341 
0 . 3 0 . 500 0 . 455 0 . 424 0 . 405 0 . 395 0 . 391 
0 . 4 0 . 500 0 . 469 0 . 448 0.434 0 . 426 0 . 423 
0 . 5 0 . 500 0 . 477 0 . 462 0 . 452 0 . 446 0 . 444 
0 . 6 0 . 500 0 . 483 0 . 471 0 . 464 0.460 0 . 458 
0 . 7 0 . 500 0 . 486 0 . 478 0 . 473 0 . 470 0 . 469 
0 . 8 0 . 500 0 . 490 0 . 484 0 . 480 0.478 0 . 477 
0 . 9 0 . 500 0 . 49 4 0 . 490 0 . 488 0 . 487 0 . 487 
1 .0 0 . 500 0 . 500 0 . 500 0 . 500 0.500 0 . 500 

Wall Heat Fluxes 
Z OR Y Bo ttom Wal l S i de Wa l l Top Wall 

0 . 2 - 0 . 08 5 - 0 . 049 -0 . 012 
0 . 3 -0 . 070 -0.034 - 0 . 014 
0 . 4 -0 . 068 -0 . 025 -0 . 014 
0 . 5 - 0 . 066 -0 . 020 -0 . 015 
0 . 6 -0 . 068 -0 . 016 -0 . 014 
0 . 7 -0 . 070 -0 . 013 -0 . 014 
0 . 8 -0 . 085 -0 . 011 -0 . 012 
0 . 9 - 0 . 089 -0 . 008 - 0 . 01 0 

Av erag e -0 . 070 0 . 029 0 . 013 
% Erro r -0 .891 
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