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I. INTRODUCTION 

The use of liquid metals in nuclear reactor technology is becoming 

increasingly important. One problem encountered in the use of liquid 

metals is the accurate measurement of pres sure in experimental equipment. 

One method for accurate measurement of low pressures involves the use of 

a manometer column. This method of measurement involves two problems 

in the determination of the pressure. The first i s the determination 

of the height or level of the liquid metal and the second is the calcu-

lation of the pressure when the column height is known. 

The level of the liquid metal in a manometer column can be deter-

mined by use of a differential transformer. By letting the manometer 

column act as the core of the transformers, a maximum output voltage will 

be attained when one transformer has the empty column as a core and the 

othe r ~ ransformer has a core consisting of the manometer column filled 

with the liquid metal. With the two transformers placed close together 

the maximum voltage occurs when the level i s between the transformers. 

The temperature is an important consideration in the second problem 

s ince most metals are molten only above room temperature and the density 

of most liquid metal s changes s ignificantl y with temperature. Therefore, 

the dens ity or temperature of the column must be known to determine the 

pressure. 

The purpose of this investigation is to establish and check the 

validity of a mathematical model used to solve for the temperature dis-

tribution in a manometer col umn containing sod ium. lf the ma thematical 

model can be shown to be valid over the des ired operating range, the 
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temperature distribution of the sodium in the column can be computed 

mathematically for any desired combination of loop and column tempera-

tures. The height of the column necessary befo re the temperature 

gradient along the column becomes essentially zero can also be deter-

mined. 
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II. REVIEW OF LITERATURE 

A review of the literature was first conducted t o see whether or 

not a general solution for the temperature distribution in a finite 

hollow cylinder had been published. Carslaw and Jaeger (1) have con-

ducted the most extensive work on the temperature distributions in 

various geometries and with various boundary conditions. Some of the 

boundary conditions used by Carslaw and Jaeger for finite hollow cyli nders 

with time independent solutions are 

1. Finite hollow cylinder a < r < b, o < z < L. r =a maintained 

at f{z), and all other faces at zero temperature. 

2. Finite hollow cylinder a < r < b, o < z < L. Flux of heat into 

the solid at r •a, a prescribed function f{z ), and all other surfaces 

kep t at zero temperature. 

3. Finite ho ll ow cy linder a < r < b, o < z < L. The su rface z = o 

kept at f{r), all other su rfaces a re kept at ze ro temperature. 

4. Finite hollow cy linder a < r < b, o < z < L. r =a is kept at 

temperature f{r). Radiation a t all o ther surfaces into medium at zero 

temperature. 

5. Finite ho ll ow cyl inder a < r < b, o < z < L. No heat flow across 

r = a, zero temperature at z = o and z = L, and temperature f {z) at r : b . 

6. Finite holl ow cylinder a < r < b, o < z < L. Heat production at 

cons tant rate A0 per unit time per unit volume, no flow over r: a, and 

zero temperature at other su r faces. 

7. Finite hollow cyl inder a < r < b, o < z < L. Heat production at 

constant rate A0 per unit time per unit volume, zero temperature at z = o, 
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z = L, and r = b, and water coo ling over r = a. 

None of these systems of boundary condition s fit those needed for the 

present prob lem. 

Schneider (4) a nd Cars law a nd Jaeger ( 1) both give the s teps neces -

sa ry in the so luti on of a problem of thi s type. Their resu lts were 

used as a guide for applying the desired bou nda ry conditi ons to obta in 

the solut ion for the temperature di s tributi on in the manometer co lumn. 
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I II. APPARATUS 

The manometer column under consideration is to be used to measure 

the pressure of molten sodium in a horizontal 3/4 inch O.D. schedule 40 

lnconel 600 pipe. The column was constructed of 3/8 inch O.D. by 0.035 

inch wall lnconel 600 tubing welded perpendicularly to the pipe. 

Since sodium has a melting point of 97.8°c {208°F), it was necessary 

to incorporate a heat source in the manometer column in order to keep 

the sodium molten. The heat source for the manometer column consisted 

of a single strand of #24 chrome! A wire along the axis of the manometer 

column. The heater wire was insulated with 1/8 inch alundum beads and 

this assembly was placed in a 5/32 inch O.D. by 0.014 inch wall lnconel 

600 tube to shield it from the sodium. The end of the 5/32 inch tube 

was fused closed around one end of the heater wire. The 5/32 inch tube 

served as electrical ground and completed the circuit for the heater. With 

this system placed concentrically inside of the manometer tube, the space 

left for the sodium in the manometer column was an annulus or hollow 

cylinder. Figure 1 is a photograph of the cross section of the manometer 

tube with the heater assembly. 

The 3/4 inch pipe was used to simulate a portion of a sodium loop . 

For this apparatus a special heater in the pipe was necessary to obtain 

simulated loop temperatures. A concentric heater was placed in the pipe 

to supply this heat. Figure 2 is a sketch of the manometer column with 

the pipe and heaters. 

The 3/4 inch pipe was attached to a reservoir of sodium which could be 

forced into the manometer column by helium pressure. Two pressure gages, 
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Figure 1. Cross sectional view of manometer 
column including heater assembly 
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one attached to the reservoir and the other to the top of the manometer 

column, were used to give an indication of the sodium height in the 

co lumn. 

For the purpose of measuring the temperature at several points along 

the manometer col umn, several chromel - alumel thermocouples were attached 

to the surface of the inconel tube. The thermocouples used were made 

from standard #24 chromel-alumel thermocouple wire with a guaranteed 

accu racy of ± 4°F from 0 to 530°F and ± 3/4% from 530 to 2300°F. The 

junction was formed by melting the two wires into a bead. This bead was 

spot-welded to the surface of the inconel tube and the bead was then 

ground down to minim ize the surface defect. Figure 3 is a photograph 

of a 3/8 inch tube with thermocouples attached similarly to those on 

the manometer co lumn. 

The temperatures from the thermocouples were reco rded on a twelve-

point Brown recorder with a O-S00°c scale. Since 24 thermocouples were 

used on the system, each recorder point recorded alternately two spec ific 

thermocouples. The calibration of the recorder was checked with a poten-

tiometer both by calibrating the recorder and by reading the emf of the 

thermocouples periodically on the potentiometer. 

Simpson vo ltmeters and ammeters were placed in the c ircu it to measure 

the power inputs to each heater. These meters were calibrated with a 

Westinghouse type TA power analyzer. 

Figure 4 is a photograph of the apparatus used includi ng the auxiliary 

equipment. 
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Figure 2. Sketch of manometer column 
and loop pipe with heaters 
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Figure 3. Section of manometer tube showing 
thermocouples attached 
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Figure 4. Picture of expe ri mental apparatus 
with aux i i iary equipment 
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IV. GENERAL THEORY 

If the heat transfer in the ma nometer column i s assumed to be due 

solely to conduct ion, the temperature di stribu ti on in the co lumn can be 

determined from the general hea t conduction equation which i s given by 

Schneider (4) as 

111 q 
K = a 

OU 
ch ( 1) 

For a heat conducting medium in which there are no heat sources o r heat 

"' sinks, the term ...9._ becomes zero. For a steady state or t ime independent 
K 

solution, the term J_ ~ also van i shes leaving the heat conduction equa-
a at 

tion in the form of Laplace's equat ion 

0 (2) 

Laplace's equation may be expressed in cy 1 i ndr i ca 1 coordinates for 

the case under consi derat ion which is g i ven as 

d2 u + clu + 02 u 0 (3) ---- = or 2 r or oz2 

where r is the radial variable and z i s the longitud ina l var iable. 

The so lution of t he Lap lace equat ion i s obtai ned by the technique 

of sepa rat ion of var iabl es. The solution of the temperature as a function 

of position rand z has the form 
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u(r.z) = R(r) Z (z) (4) 

Two di f ferential equations, one with the variable rand the other with 

the va riable z, a re obtained and are solved independentl y . 

a~(r) 
ar 2 + 

r 
a R(r) 
ar - /1 2 R(r) = 0 

Equation 5 has the fo rm of the wave equat ion which has a general 

so luti on 

Z(z) = Acost1z + Bsint1z 

(5) 

( 6) 

( 7) 

Equation 6 has the fo rm of t he modified Bessel's equation wh i ch has a 

so luti on of the fo rm 

(8) 

The complete gene ra l sol uti on for the temperature distribution in 

a finite ho ll ow cy linder i s obtai ned by subst ituting equat ions 7 and 8 

i n to eq ua t ion 4. 
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(9) 

The particular solution of this equation is determined by applying the 

existing boundary conditions and obtaining values for the constants A, 

B, C, D, and a . The fol lowing section discusses the assumptions and 

boundary conditions used in the solution of these constants. 
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V. THEORETICAL ANALYSIS 

The accuracy with which the temperature of the sodium must be known 

was determined by the accuracy with which the level of the sodium can be 

measured. The liquid level measuring device for the sodium had a standard 

deviation of about± 0.1 cm. Therefore, it wi 11 be sufficient to main-

tain the error in the measurement of pressure which is due to the uncer-

tainty in the value of the density of the sodium to a similar magnitude 

of± 0.1 cm of sodium. 

The density of sodium as a function of temperature is given by 

Sittig (5) as 

( 10) 

This equation is stated by Sittig to be valid to about ± 0.20% for tempera-

tures up to 64o0 c . The rate of change of density with temperature is 

obtained from the derivative of equation 10 . 

= - 2.2 3x 10-• - ( 11) 

Since the dens ity of sodium varies nearly linearly with temperature in 

the range being considered, i.e., 100-500°c, the average rate of change of 

density with temperature in this range is approximately that at 350°c. At 

the temperature of 350°c the rate of change of density is -2 .35 x lo-4 

gm/cm3-0 c and the density is 0.8688 gm/cm3. An error of 0 . 1 cm. in the 

height of a sodium column at 350°c is equivalent to an error in pressure 
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2 of 0.08688 gm/cm . Therefore, the product of the sodium height, the 
a uncertainty in the temperature, and ;:_f__ must be less than 0.08688 au 

gm/cm2 in order that the error be les s than 0.1 cm . Thi s may be ex-

pressed as 

h Au (2.35x10-•) < 0.08688 ( 12) 

or 

h 6u < 370 ( 13) 

Since the maximum sodium hei ght which can be measured is about 100 cm., 

the uncertainty in the temperature must be less than 3.7°C to insure that 

the error due to the uncertainty in the density is less than the error due 

to the measurement of the sodium level. 

The transfer of heat in the ve r tical direction of the manometer 

column is due mainly to the sodium. The heat transfer up the column by 

the lnconel tubes and the alundum ins ulators i s smal l and i s taken into 

account by using an equivalent area for the sodium. The equ ivalent sod ium 

area is determined by determining the ratio of the total heat conducted 

by the complete manometer column and that conducted only by the sodium. 

The one dimensi onal heat conduction equat ion is given by Schneider (4) as 

q 
au = - KA--dz ( 14) 
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If the temperature gradient is the same for all materials, the heat 

flow wi 11 be proportional to the product of the thermal conductivity 

and the area of the particular material . The materials being considered 

are the sodium, lnconel 600, and the alundum beads. Table 1 gives values 

of the thermal conductivities and the areas of the various materials which 

make up the cross section of the manometer column. The values of the 

thermal conductivities of the materials in the table are for a temperature 

Tab 1 e 1. Properties of materials at 350°c 

Material 

Sodium 

lnconel 600 

Alundum 

asittig (5). 

blucks and Deem (3). 

clee and Kingery (2). 

Area 

cm2 

0 . 3481 

0.2815 

0.04048 

Thermal Conductivity 

cal/cm2-sec-°C/cm 

0. 1760a 

0 . 04705b 

0 . 03 70c 

of 350°c which is approximately the average of the temperatures being con-

sidered. The heat flow in the vertical direction of the sodium is given by 

q 
( 15) 
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The total heat flow in the vertical direction of the manometer column 

is given by 

q 
( 16) 

The value obtained from equation 15 for the heat flow only in the sodium 

is 0.06022 cal/sec- °C/cm and the simi Jar value for the complete manometer 

column obtained from equation 16 is 0.7496 cal/sec-°C/cm. The equivalent 

area of sodium necessary to transfer the same amount of heat as the com-

plete column is found by multiplying the ratio of the heats by the actual 

sodium area. The equivalent area has a value of 0.4277 cm2 which cor-

responds to an annulus with an inside radius of 0.1981 cm and an outside 

radius of 0.4188 cm. The error introduced in the heat flow by using this 

equivalent area of sodium is a maximum of about 3.5% at both 100 and 500°c . 

The basic assumption has been made that the transfer of heat by the 

sodium is due entirely by conduction. This assumption should not introduce 

much error since the size of the annulus is quite smal 1 which would tend 

to eliminate any convection. 

Using the previous assumptions, the following boundary conditions 

can be used to determine the values of the constants in equation 9 which 

is the general solution of the heat conduction equation. 

l .) The plane at the base of the manometer column (z = o) is an 

infinite heat source with a temperature which corresponds to 

the temperature of the sodium in a loop. 
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2.) The manometer column is high enough so that there is essenti-

ally no heat loss from the top of the manometer column (z: L). 

3.) The single wi re heater in the manometer column is a constant 

heat source along the column at r : P. 

4.) The heat flux out of the sodium at r = R is equal to the heat 

loss to the atmosphere which is a function of the temperature 

of the column. 

In boundary condition 4 the relationship between the heat loss to 

the atmosphere and the temperature of the manometer column was determined 

empirically. The results are shown in Table 2 and the curve of heat loss 

from the manometer tube per centimeter of length vs. temperature is shown 

in Figure 5. 

Table 2. Heat input to manometer column 

Tube wall temperature 

120 .5 
130 .5 
148.5 
164.0 
I 77 .0 

196.5 
209.5 
223.0 
234.5 
247 .0 

265 .o 
282 .0 
301 .o 
324.5 
347 .5 

Heat input to column 

cal/cm-sec 

0.0874 
0 . 0997 
0. 128 
0. 153 
0. I 73 

0 .207 
0.230 
0 .262 
0 .285 
0.313 

0 .347 
0 .380 
0 .42 7 
0.490 
0.546 



Table 2 . (Continued) 

Tube wall tempe rature 

oc 

357 .5 
3 75 .5 
398.0 
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Heat input to column 

cal/cm-sec 

0.577 
0.638 
0.699 

The equation for the curve can be expressed as a polynomial. The 

degree of the polynomial which fits the experimental data is determined by 

the method of differences as described by Sokolnikoff and Redheffer (6). 

The heat loss from the manometer tube at 50°c intervals is obtained from 

the experimental curve and tabulated in Table 3. The first, second, 

third, and fourth forward differences are also shown in Table 3. Since 

the smallest value of the sum of the terms divided by the number of terms 

is for f!q 11 , the polynomial to be used i s a second degree polynomial. 

II q = ( 17) 

The constants in equation 17 were determined by applying a least squares 

fit to the data in Table 2. The least squares fit is obtained by requiring 

that S be a minimum where S is defined as 

( 18) 

Substituting equation 17 for f{ui} gives 



u 
C1> 
(/) 

I 
E 
u 

....... 
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w 
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0 z 
<! 
:E 
:E 
0 a:: 
lJ.. 
(/) 
(/) 
0 
_J 

~ 
w 
I 
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1.00 ..--- --.----.------..----.----r------.-----. 
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.20 

. 10 

100 200 300 400 500 
SURFACE TEMPERATURE, °C 

Figures . Empirica l relation for heat 
loss from ma nometer column 

600 700 
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( 19) 

The minimum value of S is obtained by setting the partial derivatives 

Table 3. Forward differences for heat loss 

Temperature Heat loss 

u q" !:::. q' ' f:::.2q" f:::.sq'' t::.•q" 

OC ca 1 /cm- sec 

100 0.0610 
0.070 

150 0. 131 0.014 
0 . 084 0 . 004 

200 0.215 0 . 018 -0.010 
0. 102 -0.006 

250 0.317 0.012 0.007 
0.114 0.001 

300 0.431 0 . 013 0 . 008 
0. 12 7 0.009 

350 0.558 0.022 
0.149 

400 0.707 

Sum 2 .420 0.646 0 .079 0 . 020 0 . 025 

Average 0 .346 0. 108 0.016 0.005 0 . 008 

of S with respect to b1, b2 , and b3 equal to zero . The following three 

equations are obtained and solved simultaneously for b1, b2 , and b3 

using values f rom Table 2. 

n 
+ b3L u~ = 

i: I 

n 
~ II 
L.., qi 
i: I 

(20) 



n 
bl: uj 1 i=I 

n 
b r u1 

I i•I i 

n 2 
+ b1 ru1 I= I 

n 
+ b LU1 

2,_1 I 

+ 

+ 
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n 
b Lua 
ll•I I 

n 
b LU~ 3 jaf I 

= 

= 

n 
"t" II 
L,U. qi 
l•I I 

A 2 II 
~u,q, 
l•I 

Using values obtained from these equations, equation 17 becomes 

q" = -0.0272 + 5.84 x l0-4 u + 3.12x10-•u1 

(21) 

(22) 

(23) 

The complete solution of the general heat conduction equation can 

now be obtained using the assumptions and boundary conditions previously 

discussed. The general heat conduction equation for a medium with no heat 

sources or sinks and for steady state conditions is given by Laplace 1 s 

equation 

V 2u = 0 (2) 

The first two boundary conditions are 

u(r,O) = TL (24) 

( 
t}u J -
aiJz=L -

0 (25) 
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For s implifi cat ion in so lv ing equation 2 for these boundary conditi ons, 

the fo llowing substitution is made 

w( r, z ) = u( r,z} - (26) 

The boundary condition s in equations 4 and 5 applied to the variable 

w{r,z) gi ve 

w(r,O) = 0 {2 7) 

(
aw( r,z)\ = 0 
oz fz=L {28) 

The heat conduction equation sti 11 has the fo rm of Laplace ' s equat ion. 

'V 2 w(r, z ) = 0 {29) 

The Laplac ian opera tor in the form of cylindrica l coordinates is given by 

+ + = 0 (30) 
r 

By applying the technique of sepa rat ion of va riables , t he solut i on of this 

equati on wi 1 I have the f orm 

w(r, z) = R(r) Z (z) (31) 
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Solving fo r the first and second partial derivatives of equation 21 

with respect to both rand z, substituting these into equation 30 and 

dividing by R(r)Z(z) gives an equation in which each term is a function 

of onl y one variable. 

I cl 2 R(r) + I clR(r) + I a2z(z) 0 (32) = R(r) a ,2 rR(r) a r Z(z) a z2 

Since a variation of z has no effect on the first two terms of this 

equation and a variation of r has no effect on the third term, both the 

first two terms and the third term must be constant. Since their sum is 

equal to zero, the value of the third term must be the negati ve of the 

value of t he f irst term. The boundary condi t ions specified by equations 

27 and 28 require that this cons tant be real and positive as used in the 

following equation . 

I cl 1R(r) 
R(r) clr 2 

+ clR(r} 
rR(r) clr 

(33) 

The t wo separate differential equations obtained f rom equation 33 are 

(34) 

+ aR(r) 
rclr (35) 
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Equa tion 35 has t he form of the wave equat ion which has a soluti on 

of t he form 

Z ( z) = A' cos /3 z + B ' s In P z (36) 

Applying t he bounda ry conditions g iven by equat ions 27 and 28 one 

obtai ns 

Z(O) = 0 . . . A'= 0 

(
oZ(z) \ = 0 
OZ Jz= L 

8 1/j cos /j L = 0 

Avo iding the triv ial so l ution of s 1 = 0 one is left with 

which gives 

= 

cos/j L = 0 

(2n - f ) T 
2L n =I 2 3 .... · ' ' ' 

(3 7) 

(38} 

(39) 

(40} 

The solution of the wave equation for this case i s an infinite series 
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(41) 

Equation 35 has the form of the modified Bessel's equation. The general 

solution for this equation is given by Schneider (4) as 

(42) 

The complete so lu tion is obtained by substituting equations 41 and 42 

into equation 31. The constants are combined leaving only two unknown 

constants for the remaining two boundary conditions. 

w(r,z) = (43) 

The boundary condition at the inside surface of the annulus, (i . e. r = P) 

is that the heat flux thru the wall is constant at any point along the 

column. This is given by the one dimens ional heat conduction equation 

q = au - K l1 N'. or (44) 

in which q(P,z) = constant which is equal to the heat input of the mano-

meter heater per unit length. The thermal conductivity of sodium is 

given by Sittig (5) as a linear f unction of temperature 

(45) 
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Since the substitution of u:w+TL was made to simplify the solution, the 

thermal conductivity of sodium in terms of w is 

= + + (46) 

The heat flux into the sod ium at P per unit length of column is given by 

I q = 
q 
L 

The partial derivati ve of equation 43 with respect tor is 

(47) 

For s implification in writing the equations in the remainder of the 

derivation the f o l lowing forms will be used 

(49) 

where F, f may represent H, h; M, m; or N, n and g may repres ent r, R, 

or P. The fo l lowing substitution wi 11 a l so be made 

C _ I + I + I + I {SO) hmn-2h-2m•2n- I 2h+2m- 2n- I 2h-2m - 2n• I 2h+2m+2n-3 

Usi ng these s impli f ications, substituting equat ions 43, 46, and 48 into 

equation 47, and sett ing r : P g ives 
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I q 

(51) 

00 co 
+ o2L L N l P) M1(P) sinA,z sin~ = O 

n•I m•t CJ 

This equation can be simplified by obtaining an orthogonal set of equa-

tions from the infinite series in the second term. If this equation is 

multiplied by the factor sin hz and the resulting equation integrated 

over the length of the column from z = o to z = L, the fol lowing set 

of h equations are obtained where h = 1, 2, 3, 

cfL 
2h-I 

(52) 
co (1) 

I L NcJ.P) M,(P) chmn = 0 
n=I m=I 

The boundary condition at r : R is given by q" : f(u) where f(u) is the 

function of the heat loss of the column and is given by equations 17 and 

23. Using equation 47 and making the proper substitutions gi ves 

(53) 

Substitution of equations 43 and 48 into this equation gives the complete 

form of equation 53 . 
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00 00 
+ b3 2: L N lR)M lR)sin~ z sin~ z(54) n=I m=l "'O ... 0 n m 

= 0 

As was done for equation 51, this equation is multiplied by the factor 

sinfJhz and integrated over the interval of z from 0 to L. This gives 

another set of equations which contain a double infinite series. 

(55) 

Equations 52 and 55 were solved simultaneously to determine Ah and Bh. 

Since these two equations contain double infinite ser ies, the solution 

for the values of Ah and Bh were obtained on a computer by an iterative 

process. In the two final equations for Ah and Bh, i.e., equations 52 and 

55, the contributi on of the series is small compared to the other terms in 

the equations. A fair approximation of Ah and Bh can be obtained by omit-

ting the series terms and solvi ng the two equations simultaneously. The 

approximation for Ah and Bh can be improved by using the previously de-

termined values of Ah and Bh in the series terms and then solving the 

remainder of the equation for Ah and Bh again. This process can be re-

peated until the desired accuracy of Ah and Bh is obtained. 

The fol lowing set of values were used for the constants in equations 

52 and 55 to determine the values of Ah and Bh. 
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L • 100 cm 

p = 0 .1981 cm 

R • 0.4188 cm 

a1= 0 .2166 

a2: -1.16x 10-4 

b 1 = -o .02 72 

b2: 5 .84 x 10-4 

b3: 3.12 x 10-6 

A separate set of values for Ah and Bh were obtained for each value of 

simulated loop temperature, TL, and each value of heat loss from the 

manometer column, q" . The four sets of boundary values 1 isted in 

Table 4 were used for the calculations. 

Table 4. Boundary values 

Set No. TL q" 

OC cal/cm-sec 

200 0.09455 

2 300 0.09455 

3 400 0.1306 

4 500 0. 1306 

Only the first twenty values of Ah and Bh were solved and these are 

shown in Tables 6 and 7. 

The values from Tables 6 and 7 were used in equation 43 to obtain the 

series dolution for w(r,z). The actual theoretical temperature distribu-
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tion, u(r,z), was then obtained by substituting equation 43 into equation 

26. The values of the temperature obtained from this equation at the 

outer radius r : R = 0.4188 cm at various points along the manometer 

column are given in Table 8. 
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VI. EXPERIMENTAL PROCEDURE 

The temperature recorder used to obtain the temperatures of the 

various points along the column was calibrated with a potentiometer. 

Periodically throughout the runs the temperatures of the recorder were 

checked against those read by the potentiometer . The ammeters and volt-

meters used for measuring the power input to the heaters were checked 

against a power analyzer before and after the run. 

After the sodium was molten, it was fo rced into the manometer column 

from the reservoir by pressurized helium. A pres sure difference of about 

1 3/4 psi between the reservoir and the top of the manometer column pro-

duced a column of sodium approximately 120 cm. 

The first part of the experiment consisted of determining the rela-

tionship between the heat loss from the manometer column and the tempera-

ture of the co lumn. Thi s was achieved by setti ng the heaters to obtain a 

constant temperature along the manometer column and determining the power 

input to the manometer column by read ing the vo ltage and current to the 

ma nometer heater. The temperatures of the column were obta ined from the 

thermocouple recorder by averaging the temperatures over five recorder 

cyc les . The recorder printed the temperature at 24 points in a period of 

s ix minutes. Thi s allowed enough time to assure that the temperature had 

reached steady state conditions. These measurements were made at co lumn 

temperatures ranging from 100 to 4oo0 c and the resu lts a re shown in Table 

2 and Figure S. 

The principal part of the experiment consisted of measuring the 

temperature distribution along the manometer col umn when the temperature 
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of the sodium in the pipe at the bottom of the manometer column was at 

a higher temperature than that in the column. This was done by setting 

the current to the manometer heater to the value obtained from Figure 5 

which would give the desired manometer column temperature. The reservoir 

and pipe heaters were then turned up to give a desired higher temperature. 

The temperatures at the points along the manometer column were obtained 

in a manner similar to that used in the first part of the experiment. 

The data obtained from these measurements are shown in Table 5. 
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VI I. DISCUSSION AND RESULTS 

The results of the theoretical calculations are tabulated in Table 

9 and are compared with the experimental data in Figures 6, 7, 8, and 9. 

Since the experimental measurements were taken on the outside of the mane-

meter tube and the theoretical values were calculated for the outer sur-

face of the sodium, the temperature drop across the tube wal I is not 

taken into consideration in the comparison of the experimental and 

theoretical data. This temperature difference can be shown to be small 

in the temperature range being considered by calculating the temperature 

drop across the tube wall at some mean temperature using the one dlmen-

slonal heat conduction equation. 

q 
L 

ou = -2,,.K or (54) 

For a mean temperature of 4oo0 c which is in the upper part of the tempera-

ture range being considered, and using the following set of values for the 

calculations, the temperature drop across the 35mi1 tube wall is less 

than one-half of one degree centigrade. 

q/L • 0.705 cal/cm-sec 

K - 0.0490 ca l/cm2- sec-°C/cm 

r 0 - 0.476 cm 

r· = 0.387 cm I 

The four plots of temperature vs. position along the manometer column 

show relatively good agreement between the experimental points and the 

theoretical curves over most of the range. The greatest discrepancies 
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appear at the low end of the column at the elevation two, seven, and 

twelve centimeters. The experimental temperatures are all lower than 

the theoretical values at these points . The difference at the two 

centimeter elevation is quite large. Since the other measurements 

agree, it is believed that this measurement was too close to the cross 

pipe to give an accurate temperature indication. The average permissible 

error in temperature was previously calculated to be about 3.7°C. The 

agreement between the theoretical and experimental values is within this 

allowable error over most of the column length and the average error 

would be within the allowable amount. 
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VI I I • CONCLUSIONS AND RECOMMENDATIONS 

The mathematical model used for the calculation of the temperature 

distribution in t he manometer co lumn gave results in good agreement with 

the experimental data. The two approximations, reducing the infinite 

series to series of twenty terms and using the iterative method for cal-

culating Ah and Bh, were apparently satisfactory. The last iteration 

chunged the values of Ah and Bh by less than 0.05% in al 1 cases except 

for A1 of run 4. The change was only slightly greater in this case. 

It can be concluded, therefore, from the results of this investiga-

tion that the theoretical procedure used here may be used to determine 

the temperature distribution within the stated accuracy for loop tempera-

0 0 tures from 200 to 500 C and for column temperatures of 125 to 150 C. 

In this investigat ion the assumption was made that the level of the 

sodium in the manometer column was always considerably above the level 

at which the temperature gradient in the z direction became zero. Further 

studies could be made on the theoretical solution of the problem in wh i ch 

the sodium level is below the point at wh i ch the temperature gradient 

along the column becomes zero. This problem wou ld involve a change in 

the boundary condition at z : L which in this case was 

(55) 

The new problem would consider heat f low across the boundary at z : L. 
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Table 5. Experimental data 

Thermocouple Position Temperature, 0 c 
Along Column 

cm TL : 200 \ = 300 TL : 400 TL : 500 

1 2.0 178.8 252.6 316.0 386.6 
2 7.0 151 • 2 188.4 226.4 256.0 
3 1 2.0 138.8 155.5 192.4 200.8 
4 17.0 132.8 142.2 169.4 174.o 
5 22 . 0 128. 2 134.6 160. 2 162. 8 

6 27.0 126.5 130.2 156. 2 157. 8 
7 32 .o 125.8 127 .8 153 .6 154.8 
8 37.0 125.8 127 .o 152. 2 153 .o 
9 42.0 124.o 125. 2 150 .4 151 • 0 

10 47.0 124.o 124.6 149.6 149. 5 

11 52.0 125.8 126.2 150 .4 150 .4 
12 57.0 126.6 126.8 1 51 . 6 1 51 • 2 
13 62.0 125. 5 125.8 150. 2 150. 2 
14 67.0 125 .6 126.0 150. 2 150. 2 
15 72.0 1 25 .o 125.6 150.0 150 .0 

16 77 .o 125. 5 125.6 150 .o 150. 2 
17 82.0 124.2 124.6 149.4 149.8 
18 87 . 0 124.6 125.6 150. 2 151 .o 
19 92.0 124.2 125.0 149.8 150 .o 
20 97.0 124.o 124.8 149.4 150.0 

21 102.0 124.0 124.6 149.4 150.0 
22 107.0 124.4 125.2 150 .4 152.0 
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Tab 1 e 6. Values of Ah 

h TL : 200 \ = 300 TL : 400 T : 500 
L 

1 -94.46 - 220 .2 -315.1 -440.6 
2 -28. 18 -66. 18 -96. 10 -135. 1 
3 - 14.02 -33.34 -49.49 -10.23 
4 -8.000 -19.33 -29.36 -42.13 

. 5 -4.927 -12.11 -18.78 -27.28 

6 -3.211 -8.026 -12.68 -18.63 
7 -2.191 -5.563 -8.925 -13. 26 
8 -1. 553 -3.998 -6.501 -9.760 
9 -1. 136 -2.962 -4.870 -7.381 

10 -0.8538 -2.250 -3.736 -5.709 

11 -0 .6556 -1 . 746 -2.924 -4.501 
12 -0 .5149 -1 .379 -2.327 -3.606 
13 -0.4107 -1 • 107 -1.880 -2. 930 
14 -0.3326 -0.9012 -1 • 538 -2.409 
15 -o. 2728 -0.7422 -1 • 273 -2.001 

16 -0.2264 -0.6177 -1.063 -1.678 
17 -o. 1897 -0 . 5188 -0.8956 -1.417 
18 -0. 1605 -0 .4392 -0.7600 -1 • 205 
19 -0. 1368 -0.3745 -o.6491 -1 .030 
20 -0.1175 -0.3213 -0.5575 -0.8856 



46 

Table 7. Va 1 ues of Bh 

h TL : 200 TL : 300 T - 4oO 
L -

TL : 500 

1 0.09442 0.09376 0.1314 o. 1309 
· 2 .03054 .02904 .o4o68 .03920 
3 .01750 .0154o .02145 .01925 
4 .01190 .009500 .01302 .01035 
5 .008862 .006339 .008437 .005485 

6 .006990 .004455 .005678 .002571 
7 .005740 .003252 .003904 .0007237 
8 .004855 .002445 .002710 - .0004883 
9 .004200 .001881 .001879 - .001301 

10 .003697 .001475 .001284 - .001851 

11 .003300 .001175 .0008509 - .002224 
12 .002979 .0009485 .0005297 - .002474 
13 .002715 .0007748 .0002886 - .002637 
14 .002494 .0006391 .0001056 - .002737 
15 .002305 .0005315 .00003443 - .002791 

16 .002143 .0004449 - .0001425 - .002812 
17 • 002001 .0003742 - .0002264 - .002807 
18 .001876 .0003155 - .0002920 - .002783 
19 .001764 . 0002660 - .0003436 - .002745 
20 .001664 .0002239 - .0003839 - .002696 
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Table 8. Theoretical results 

Position Temperature, 0 c 
Along Column 

cm TL : 200 \ = 300 \ = 4oo TL : 500 

1.0 191 • 4 278.7 367.2 451 .9 
2.0 183. 2 258.5 335.9 406.4 
3.0 175.7 240.1 307.9 365.7 
4.o 169.0 224.o 283 .7 331 .o 
5.0 163 .4 210.5 263 .8 302.9 

7.5 152.9 186.s 229.8 256.2 
10.0 145.7 170.4 208.0 227.4 
12.5 139.9 157 .4 190.4 203.6 
15.0 135.6 147 .8 177 .4 185.8 
20.0 131 .o 137.8 165.2 170.4 

25.0 128.0 131 • 2 156. 7 158.8 
30.0 126.8 128.8 154.4 156.2 
35.0 125.9 126.6 1 51 • 5 152. 2 
4o.o 125.6 1 26.3 1 51 • 5 152.5 
so.a 125.3 125.5 150. 7 151 • 5 

60.0 125. 2 125. 3 150. 5 151.2 
70.0 125. 2 125. 2 150 .4 151 • 1 
Bo.a 125.2 125. 2 150.4 1 51 • 1 
90.0 125.1 125. 2 150 .4 151 .o 

100.0 125. 1 125.2 150 .4 1 51 • 0 


