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I. INTRODUCTION

The use of liquid metals in nuclear reactor technology is becoming
increasingly important. One problem encountered in the use of liquid
metals is the accurate measurement of pressure in experimental equipment.
One method for accurate measurement of low pressures involves the use of
a manometer column. This method of measurement involves two problems
in the determination of the pressure. The first is the determination
of the height or level of the liquid metal and the second is the calcu-
lation of the pressure when the column height is known.

The level of the liquid metal in a manometer column can be deter-
mined by use of a differential transformer. By letting the manometer
column act as the core of the transformers, a maximum output voltage will
be attained when one transformer has the empty column as a core and the
other transformer has a core consisting of the manometer column filled
with the liquid metal. With the two transformers placed close together
the maximum voltage occurs when the level is between the transformers.

The temperature is an important consideration in the second problem
since most metals are molten only above room temperature and the density
of most liquid metals changes significantly with temperature. Therefore,
the density or temperature of the column must be known to determine the
pressure.

The purpose of this investigation is to establish and check the
validity of a mathematical model used to solve for the temperature dis-
tribution in a manometer column containing sodium. |f the mathematical

model can be shown to be valid over the desired operating range, the



temperature distribution of the sodium in the column can be computed
mathematically for any desired combination of loop and column tempera-
tures. The height of the column necessary before the temperature

gradient along the column becomes essentially zero can also be deter-

mined.



I1. REVIEW OF LITERATURE

A review of the literature was first conducted to see whether or
not a general solution for the temperature distribution in a finite
hollow cylinder had been published. Carslaw and Jaeger (1) have con-
ducted the most extensive work on the temperature distributions in
various geometries and with various boundary conditions. Some of the
boundary conditions used by Carslaw and Jaeger for finite hollow cylinders
with time independent solutions are

1. Finite hollow cylinder a < r <b, o<z <L. r = a maintained
at f(z), and all other faces at zero temperature.

2. Finite hollow cylinder a < r <b, o <z < L. Flux of heat into
the solid at r = a, a prescribed function f(z), and all other surfaces
kept at zero temperature.

3. Finite hollow cylinder a < r < b, o <z < L. The surface z = o
kept at f(r), all other surfaces are kept at zero temperature.

4. Finite hollow cylinder a <r <b, o<z < L. r =a is kept at
temperature f(r). Radiation at all other surfaces into medium at zero
temperature.

5. Finite hollow cylinder a < r <b, 0 <z < L. No heat flow across
r = a, zero temperature at z = o and z = L, and temperature f(z) at r = b.

6. Finite hollow cylinder a < r <b, o0 <z < L. Heat production at
constant rate Ay per unit time per unit volume, no flow over r = a, and
zero temperature at other surfaces.

7. Finite hollow cylinder a < r <b, 0 <z < L. Heat production at

constant rate A, per unit time per unit volume, zero temperature at z = o,



z =L, and r = b, and water cooling over r = a.
None of these systems of boundary conditions fit those needed for the
present problem.

Schneider (4) and Carslaw and Jaeger (1) both give the steps neces-
sary in the solution of a problem of this type. Their results were
used as a guide for applying the desired boundary conditions to obtain

the solution for the temperature distribution in the manometer column.



111. APPARATUS

The manometer column under consideration is to be used to measure
the pressure of molten sodium in a horizontal 3/4 inch 0.D. schedule 40
Inconel 600 pipe. The column was constructed of 3/8 inch 0.D. by 0.035
inch wall Inconel 600 tubing welded perpendicularly to the pipe.

Since sodium has a melting point of 97.8°C (208°F), it was necessary
to incorporate a heat source in the manometer column in order to keep
the sodium molten. The heat source for the manometer column consisted
of a single strand of #24 chromel A wire along the axis of the manometer
column. The heater wire was insulated with 1/8 inch alundum beads and
this assembly was placed in a 5/32 inch 0.D. by 0.014 inch wall Inconel
600 tube to shield it from the sodium. The end of the 5/32 inch tube
was fused closed around one end of the heater wire. The 5/32 inch tube
served as electrical ground and completed the circuit for the heater. With
this system placed concentrically inside of the manometer tube, the space
left for the sodium in the manometer column was an annulus or hollow
cylinder. Figure 1 is a photograph of the cross section of the manometer
tube with the heater assembly.

The 3/4 inch pipe was used to simulate a portion of a sodium loop.
For this apparatus a special heater in the pipe was necessary to obtain
simulated loop temperatures. A concentric heater was placed in the pipe
to supply this heat. Figure 2 is a sketch of the manometer column with
the pipe and heaters.

The 3/4 inch pipe was attached to a reservoir of sodium which could be

forced into the manometer column by helium pressure. Two pressure gages,



Figure 1. Cross sectional view of manometer
column including heater assembly



one attached to the reservoir and the other to the top of the manometer
column, were used to give an indication of the sodium height in the
column.

For the purpose of measuring the temperature at several points along
the manometer column, several chromel-alumel thermocouples were attached
to the surface of the inconel tube. The thermocouples used were made
from standard #24 chromel-alumel thermocouple wire with a guaranteed
accuracy of * 49F from O to 530°F and * 3/4% from 530 to 2300°F. The
junction was formed by melting the two wires into a bead. This bead was
spot-welded to the surface of the inconel tube and the bead was then
ground down to minimize the surface defect. Figure 3 is a photograph
of a 3/8 inch tube with thermocouples attached similarly to those on
the manometer column.

The temperatures from the thermocouples were recorded on a twelve-
point Brown recorder with a 0-500°C scale. Since 24 thermocouples were
used on the system, each recorder point recorded alternately two specific
thermocouples. The calibration of the recorder was checked with a poten=-
tiometer both by calibrating the recorder and by reading the emf of the
thermocouples periodically on the potentiometer.

Simpson voltmeters and ammeters were placed in the circuit to measure
the power inputs to each heater. These meters were calibrated with a
Westinghouse type TA power analyzer.

Figure 4 is a photograph of the apparatus used including the auxiliary

equipment.
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Figure 3. Section of manometer tube showing
thermocouples attached



Figure 4. Picture of experimental apparatus
with auxiliary equipment
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IV. GENERAL THEORY

If the heat transfer in the manometer column is assumed to be due
solely to conduction, the temperature distribution in the column can be
determined from the general heat conduction equation which is given by

Schneider (4) as

. q I au
Vet % T W

For a heat conducting medium in which there are no heat sources or heat
i
sinks, the term -3_ becomes zero. For a steady state or time independent
K
solution, the term 1% éhl_ also vanishes leaving the heat conduction equa-

at

tion in the form of Laplace's equation
V3u = 0O (2)

Laplace's equation may be expressed in cylindrical coordinates for

the case under consideration which is given as

d%u | du o%u
e + = 0 (3)
ar? r dr a7

where r is the radial variable and z is the longitudinal variable.
The solution of the Laplace equation is obtained by the technique
of separation of variables. The solution of the temperature as a function

of position r and z has the form
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u(r,z) = R(r) Z(2) (&)

Two differential equations, one with the variable r and the other with

the variable z, are obtained and are solved independently.

%z

'"52_=(£)‘ + B*Z2(z) = O (5)
aR(r) | AR(r
_  — — - = 6)
or? r dr ARy = O :

Equation 5 has the form of the wave equation which has a general

solution

Z(z) = AcosBz + Bsin Bz (7)

Equation 6 has the form of the modified Bessel's equation which has a

solution of the form

R() = CI{Br) + DKy BrY (8)

The complete general solution for the temperature distribution in
a finite hollow cylinder is obtained by substituting equations 7 and 8

into equation 4.



ulr,2) = [Acos Bz + BsinBz|[C I(Br) + DKAN)] (9)

The particular solution of this equation is determined by applying the
existing boundary conditions and obtaining values for the constants A,
B, C, D, and [3 . The following section discusses the assumptions and

boundary conditions used in the solution of these constants.
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V. THEORETICAL ANALYSIS

The accuracy with which the temperature of the sodium must be known
was determined by the accuracy with which the level of the sodium can be
measured. The liquid level measuring device for the sodium had a standard
deviation of about = 0.1 cm. Therefore, it will be sufficient to main-
tain the error in the measurement of pressure which is due to the uncer-
tainty in the value of the density of the sodium to a similar magnitude
of £ 0.1 cm of sodium.

The density of sodium as a function of temperature is given by

sittig (5) as
p = 0,9490-223x107% - 1,75 x 107%" (10)

This equation is stated by Sittig to be valid to about * 0.20% for tempera-
tures up to 640°C. The rate of change of density with temperature is

obtained from the derivative of equation 10,

ap

o -2.23x107* - 3.50x10" %y (1)

Since the density of sodium varies nearly linearly with temperature in

the range being considered, i.e., 100-500°C, the average rate of change of
density with temperature in this range is approximately that at 350°%C. At
the temperature of 350°C the rate of change of density is -2.35 x 10~4
gm/cm3-OC and the density is 0.8688 gm/cm3. An error of 0.1 cm. in the

height of a sodium column at 350°C is equivalent to an error in pressure
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of 0.08688 gm/cmz. Therefore, the product of the sodium height, the
0
uncertainty in the temperature, and :;E. must be less than 0.08688
u
gm/cm2 in order that the error be less than 0.1 cm. This may be ex-

pressed as
hAu (2.35 X107*) < 0.08688 (12)
or

h&du < 370 (13)

Since the maximum sodium height which can be measured is about 100 cm.,
the uncertainty in the temperature must be less than 3.7°C to insure that
the error due to the uncertainty in the density is less than the error due
to the measurement of the sodium level.

The transfer of heat in the vertical direction of the manometer
column is due mainly to the sodium. The heat transfer up the column by
the Inconel tubes and the alundum insulators is small and is taken into
account by using an equivalent area for the sodium. The equivalent sodium
area is determined by determining the ratio of the total heat conducted
by the complete manometer column and that conducted only by the sodium.

The one dimensional heat conduction equation is given by Schneider (4) as

du
q = - KA 32 (14)
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|f the temperature gradient is the same for all materials, the heat

flow will be proportional to the product of the thermal conductivity

and the area of the particular material. The materials being considered
are the sodium, Inconel 600, and the alundum beads. Table 1 gives values
of the thermal conductivities and the areas of the various materials which
make up the cross section of the manometer column. The values of the

thermal conductivities of the materials in the table are for a temperature

Table 1. Properties of materials at 350°C

Material Area Thermal Conductivity
cm? cal/cm?-sec=°c/cm
Sodium 0.3481 0.1760°
Inconel 600 0.2815 0.0#705b
Alundum 0.04048 0.0370°
asittig (5).

PLucks and Deem {3).

CLee and Kingery (2).

of 350°C which is approximately the average of the temperatures being con=-

sidered. The heat flow in the vertical direction of the sodium is given by

i,
du * 7 KnePwe (15)

oz



The total heat flow in the vertical direction of the manometer column

is given by

—
Py
0z

The value obtained from equation 15 for the heat flow only in the sodium

= -KNaANe - Kln Aln - KAAA (15)

is 0.06022 cal/sec-°C/cm and the similar value for the complete manometer
column obtained from equation 16 is 0.7496 cal/sec-°C/cm. The equivalent
area of sodium necessary to transfer the same amount of heat as the com=
plete column is found by multiplying the ratio of the heats by the actual
sodium area. The equivalent area has a value of 0.4277 cm? which cor-
responds to an annulus with an inside radius of 0.1981 cm and an outside
radius of 0.4188 cm. The error introduced in the heat flow by using this
equivalent area of sodium is a maximum of about 3.5% at both 100 and 500°C.

The basic assumption has been made that the transfer of heat by the
sodium is due entirely by conduction. This assumption should not introduce
much error since the size of the annulus is quite small which would tend
to eliminate any convection.

Using the previous assumptions, the following boundary conditions
can be used to determine the values of the constants in equation 9 which
is the general solution of the heat conduction equation.

1.) The plane at the base of the manometer column (z = o) is an

infinite heat source with a temperature which corresponds to

the temperature of the sodium in a loop.



2.) The manometer column is high enough so that there is essenti-
ally no heat loss from the top of the manometer column (z = L).

3.) The single wire heater in the manometer column is a constant
heat source along the column at r = P.

L4.) The heat flux out of the sodium at r = R is equal to the heat
loss to the atmosphere which is a function of the temperature
of the column.

In boundary condition 4 the relationship between the heat loss to

the atmosphere and the temperature of the manometer column was determined
empirically. The results are shown in Table 2 and the curve of heat loss

from the manometer tube per centimeter of length vs. temperature is shown

in Figure 5.

Table 2. Heat input to manometer column

Tube wall temperature Heat input to column
. cal/cm=sec
120.5 0.0874
130.5 0.0997
148.5 0.128
164.0 0.153
177.0 0.173
196.5 0.207
209.5 0.230
223.0 0.262
234.5 0.285
247.0 0.313
265.0 0.347
282.0 0.380
301.0 0.427
324.5 0.490
347.5 0.546



Table 2. (Continued)

Tube wall temperature Heat input to column
g cal/cm=sec
357.5 0.577
375.5 0.638
398.0 0.699

The equation for the curve can be expressed as a polynomial. The
degree of the polynomial which fits the experimental data is determined by
the method of differences as described by Sokolnikoff and Redheffer (6).
The heat loss from the manometer tube at SOOC intervals is obtained from
the experimental curve and tabulated in Table 3. The first, second,
third, and fourth forward differences are also shown in Table 3. Since
the smallest value of the sum of the terms divided by the number of terms

is for a?q”, the polynomial to be used is a second degree polynomial.
q" = b, + bu + by’ (17)

The constants in equation 17 were determined by applying a least squares
fit to the data in Table 2, The least squares fit is obtained by requiring

that S be a minimum where S is defined as

S = ié‘:l [f(ui) - q'i']2 (18)

Substituting equation 17 for f(u;) gives
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4 " -
S =|Z[b, +byu,+ by, - q}] (19)
|

The minimum value of S is obtained by setting the partial derivatives

Table 3. Forward differences for heat loss
Temperature Heat loss
U q" A q" Azqn A’q” A4q||
o cal/cm=sec
100 0.0610
0.070
150 0.131 0.014
0.084 0.004
200 0.215 0.018 -0.010
0.102 -0.006
250 0.317 0.012 0.007
0.114 0.001
300 0.431 0.013 0.008
0.127 0.009
350 0.558 0.022
0.149
L00 0.707
Sum 2.420 0.646 0.079 0.020 0.025
Average 0.346 0.108 0.016 0.005 0.008

of S with respect to by, by, and by equal to zero. The following three
equations are obtained and solved simultaneously for by, by, and b3

using values from Table 2.

n n n
bn + byxu + byru = Xaqi (20)



22

. < 2 < 3 4 1"

b,% u + bgélul + balz.‘,‘u, g I'Zluiq, (21)
H L ~ 4 = 2_n

|:>,i)§ui *ohau * bylu = gu,q' (22)

Using values obtained from these equations, equation 17 becomes

q" = -00272+ 584 X|0°*u+ 3,12 %10 %® (23)

The complete solution of the general heat conduction equation can
now be obtained using the assumptions and boundary conditions previously
discussed. The general heat conduction equation for a medium with no heat
sources or sinks and for steady state conditions is given by Laplace's

equation

vgu = 0 (2)

The first two boundary conditions are

u(r0) = T_ (24)
u | = 0 (25)
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For simplification in solving equation 2 for these boundary conditions,

the following substitution is made
wir,z) = wulr,2) - T (26)

The boundary conditions in equations 4 and 5 applied to the variable

w(r,z) give

w(r,0) = O (27)

ow(r,z
_.._L.I...). - 0 (28)
The heat conduction equation still has the form of Laplace's equation.

Viw(r,z) = O (29)

The Laplacian operator in the form of cylindrical coordinates is given by

9w I ow *w
ot tTa tar 0 =

By applying the technique of separation of variables, the solution of this

equation will have the form

w(r,z) = RI(r) Z(2) (31)
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Solving for the first and second partial derivatives of equation 2]
with respect to both r and z, substituting these into equation 30 and
dividing by R(r)zZ(z) gives an equation in which each term is a function

of only one variable.

1R, I OR(MM , I 2°2(2) _
Ao TwmAaar Tm s "9 W

Since a variation of z has no effect on the first two terms of this
equation and a variation of r has no effect on the third term, both the
first two terms and the third term must be constant. Since their sum is
equal to zero, the value of the third term must be the negative of the
value of the first term. The boundary conditions specified by equations
27 and 28 require that this constant be real and positive as used in the

following equation.

I 3%R(r) | OR() _ _ 1 3%°Z(2) _ e
R(r) ar® +rR(r) ar T 2(2) oz2° =& A

The two separate differential equations obtained from equation 33 are

0%Z(z)

v el B*Z(z) = O (34)
d*R(r) | OR(r) )
ot * v T FRN =0 o
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Equation 35 has the form of the wave equation which has a solution

of the form

Z(z) = A'cosBz + B'sinpz (36)

Applying the boundary conditions given by equations 27 and 28 one

obtains
Z(0) = O S A=D (37)
02Z(2) X .
= R = 38
32 - o) B B cos BL 0 (38)

]

Avoiding the trivial solution of B' = 0 one is left with

cosBL = O (39)
which gives
2n—|
B = __"(21. L n=1,2,3,: (40)

The solution of the wave equation for this case is an infinite series



26

Z(z) = B!

2 , Sin B,z (41)

Equation 35 has the form of the modified Bessel's equation. The general

solution for this equation is given by Schneider (4) as
R(r) = A"1(Br) + B"K,(Bn (42)

The complete solution is obtained by substituting equations 41 and 42
into equation 31. The constants are combined leaving only two unknown

constants for the remaining two boundary conditions.

wira) = S[Al8,1) + 8,K,(Ap)] sin B,z (43)

The boundary condition at the inside surface of the annulus, (i.e. r = P)
is that the heat flux thru the wall is constant at any point along the

column. This is given by the one dimensional heat conduction equation

du
: (1)

a9 = “KAYS

in which q(P,z) = constant which is equal to the heat input of the mano-
meter heater per unit length. The thermal conductivity of sodium is

given by Sittig (5) as a linear function of temperature

Ky = @ +a,u = 0.2166 - 116 XI10™*u (45)
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Since the substitution of u=wsT, was made to simplify the solution, the

L

thermal conductivity of sodium in terms of w is
K, = a + a,T + qg,w (46)

The heat flux into the sodium at P per unit length of column is given by

AP N Ow_
q = L = Z"Kﬂpar (47)

The partial derivative of equation 43 with respect to r is

a::r,z) = ;l[AmB,,,l,(ﬁnr) - B A K,(er)] sinf_ z (48)

For simplification in writing the equations in the remainder of the

derivation the following forms will be used

F(a) = Al (Bsg) + ByK(B;q)
(49)

Fla) = AB1(Ba) - BB K(BQ)
where F, f may represent H, h; M, m; or N, n and g may represent r, R,

or P. The following substitution will also be made

_ - [ | |
Cmnn'zh-Zm*Zn-l *onvem-2n-1T TZh-2m-Zn¢l ' BniEmon-3 (50)

Using these simplifications, substituting equations 43, 46, and 48 into

equation 47, and setting r = P gives



28

q 5 2 .
5P + [a, + a, L]mzﬁ M,(P) sin 8 z o)

2 °2§§,N0(P)M|(P) sinfB,z sinB,z = O

This equation can be simplified by obtaining an orthogonal set of equa-
tions from the infinite series in the second term. |If this equation is
multiplied by the factor sin ,,z and the resulting equation integrated
over the length of the column from z = o to z = L, the following set
of h equations are obtained where h = 1, 2, 3, =--=--
]
q'L l
2 + [a' "+
v P 2h-|

(52)

n=l hmn

@ @
+ 32— 3% NPIMP) Cpy = O
R

The boundary condition at r = R is given by g =z f(u) where f(u) is the
function of the heat loss of the column and is given by equations 17 and
23. Using equation 47 and making the proper substitutions gives
2 2
b, + by, + byT? + [b, +2b W + bgw
(53)

. - Ow_
= ZwR[a, +02TL + azw] or

Substitution of equations 43 and 48 into this equation gives the complete

form of equation 53.
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[b, + b,T + bJF] + 2#R[o, + a1 ] 'ZIM,(R)sianz
0 0 @
+ [b, + 2b]] S NJRISINBz + byd. > NJRIMRIsinB z sinBz (5

* ZrRuz:Z: :i:l NJRIM,(R)sinB,z sinBz = O

As was done for equation 51, this equation is multiplied by the factor
sin‘?hz and integrated over the interval of z from 0 to L. This gives

another set of equations which contain a double infinite series.

b oo ) * el [E R + oRLf + ot ] Hem
(55)

+ 22k S SN RIMRIC, .+ GRLY > NRIMRICyy = O

2w n§m=l 0 AL O n;mﬂN"( {R) Crmn

Equations 52 and 55 were solved simultaneously to determine An and Bp,.
Since these two equations contain double infinite series, the solution

for the values of A and By, were obtained on a computer by an iterative
process. In the two final equations for Ap and B, i.e., equations 52 and
55, the contribution of the series is small compared to the other terms in
the equations. A fair approximation of Ay and By can be obtained by omit-
ting the series terms and solving the two equations simultaneously. The
approximation for A, and By can be improved by using the previously de-
termined values of Ay and By, in the series terms and then solving the
remainder of the equation for Ay and By again. This process can be re-
peated until the desired accuracy of Ay and By, is obtained.

The following set of values were used for the constants in equations

52 and 55 to determine the values of Ap and B,
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L = 100 cm

0.1981 cm

o
n

R = 0.4188 cm

ay= 0.2166

ayz =1.16 x 1074

by= -0.0272

b,z 5.84 x 107
by= 3.12 x 1076

A separate set of values for Ay and B, were obtained for each value of

simulated loop temperature, T, and each value of heat loss from the

manometer column, q'"' . The four sets of boundary values listed in

Table 4 were used for the calculations.

Table 4. Boundary values
Set No. T q"
it cal/cm-sec
1 200 0.09455
2 300 0.09455
3 Loo 0.1306
L 500 0.1306

Only the first twenty values of A, and By, were solved and these are
shown in Tables 6 and 7.
The values from Tables 6 and 7 were used in equation 43 to obtain the

series dolution for w(r,z). The actual theoretical temperature distribu-
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tion, u(r,z), was then obtained by substituting equation 43 into equation
26. The values of the temperature obtained from this equation at the

outer radius r = R = 0.4188 cm at various points along the manometer

column are given in Table 8.
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V1. EXPERIMENTAL PROCEDURE

The temperature recorder used to obtain the temperatures of the
various points along the column was calibrated with a potentiometer.
Periodically throughout the runs the temperatures of the recorder were
checked against those read by the potentiometer. The ammeters and volt-
meters used for measuring the power input to the heaters were checked
against a power analyzer before and after the run.

After the sodium was molten, it was forced into the manometer column
from the reservoir by pressurized helium. A pressure difference of about
| 3/4 psi between the reservoir and the top of the manometer column pro-
duced a column of sodium approximately 120 cm.

The first part of the experiment consisted of determining the rela-
tionship between the heat loss from the manometer column and the tempera-
ture of the column. This was achieved by setting the heaters to obtain a
constant temperature along the manometer column and determining the power
input to the manometer column by reading the voltage and current to the
manometer heater. The temperatures of the column were obtained from the
thermocouple recorder by averaging the temperatures over five recorder
cycles. The recorder printed the temperature at 24 points in a period of
six minutes. This allowed enough time to assure that the temperature had
reached steady state conditions. These measurements were made at column
temperatures ranging from 100 to 400°C and the results are shown in Table
2 and Figure 5.

The principal part of the experiment consisted of measuring the

temperature distribution along the manometer column when the temperature
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of the sodium in the pipe at the bottom of the manometer column was at

a higher temperature than that in the column. This was done by setting
the current to the manometer heater to the value obtained from Figure 5
which would give the desired manometer column temperature. The reservoir
and pipe heaters were then turned up to give a desired higher temperature.
The temperatures at the points along the manometer column were obtained

in a manner similar to that used in the first part of the experiment.

The data obtained from these measurements are shown in Table 5.
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Vi1, DISCUSSION AND RESULTS

The results of the theoretical calculations are tabulated in Table
9 and are compared with the experimental data in Figures 6, 7, 8, and 9.
Since the experimental measurements were taken on the outside of the mano-
meter tube and the theoretical values were calculated for the outer sur-
face of the sodium, the temperature drop across the tube wall is not
taken into consideration in the comparison of the experimental and
theoretical data. This temperature difference can be shown to be small
in the temperature range being considered by calculating the temperature
drop across the tube wall at some mean temperature using the one dimen=-

sional heat conduction equation.

. du

For a mean temperature of 400°C which is in the upper part of the tempera-
ture range being considered, and using the following set of values for the
calculations, the temperature drop across the 35 mil tube wall is less
than one-half of one degree centigrade.

9/L = 0.705 cal/cm=sec

- 0.0490 cal/cm?-sec-oC/cm

-~
1

r. = 0.476 cm

-
"

0.387 cm
The four plots of temperature vs. position along the manometer column
show relatively good agreement between the experimental points and the

theoretical curves over most of the range. The greatest discrepancies
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appear at the low end of the column at the elevation two, seven, and
twelve centimeters. The experimental temperatures are all lower than

the theoretical values at these points. The difference at the two
centimeter elevation is quite large. Since the other measurements

agree, it is believed that this measurement was too close to the cross
pipe to give an accurate temperature indication. The average permissible
error in temperature was previously calculated to be about 3.7°C. The
agreement between the theoretical and experimental values is within this
allowable error over most of the column length and the average error

would be within the allowable amount.
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VIIl. CONCLUSIONS AND RECOMMENDATIONS

The mathematical model used for the calculation of the temperature
distribution in the manometer column gave results in good agreement with
the experimental data. The two approximations, reducing the infinite
series to series of twenty terms and using the iterative method for cal=-
culating AL and B, were apparently satisfactory. The last iteration
changed the values of Ah and Bh by less than 0.05% in all cases except
for Ay} of run 4. The change was only slightly greater in this case.

It can be concluded, therefore, from the results of this investiga-
tion that the theoretical procedure used here may be used to determine
the temperature distribution within the stated accuracy for loop tempera=
tures from 200 to SOOOC and for column temperatures of 125 to ISOOC.

In this investigation the assumption was made that the level of the
sodium in the manometer column was always considerably above the level
at which the temperature gradient in the z direction became zero. Further
studies could be made on the theoretical solution of the problem in which
the sodium level is below the point at which the temperature gradient
along the column becomes zero. This problem would involve a change in

the boundary condition at z = L which in this case was

= 0 (55)

The new problem would consider heat flow across the boundary at z = L.
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X! . APPENDIX



Table 5. Experimental data

Thermocouple Position Temperature, °C
Along Column
cm TL = 200 TL = 300 TL = Loo TL = 500
1 2.0 178.8 252.6 316.0 386.6
2 7.0 151.2 188.4 226.4 256.0
3 12,0 138.8 155.5 192.4 200.8
h 17.0 132.8 142,2 169.4 174.0
5 22.0 128.2 134,6 160.2 162.8
6 27.0 126.5 130.2 156.2 157.8
7 32,0 125.8 127.8 153.6 154,.8
8 37.0 125.8 127.0 152.2 153.0
9 42.0 124.0 125.2 150.4 151.0
10 47.0 124,0 124,6 149.6 149.5
11 52.0 125.8 126.2 150.4 150.4
12 57.0 126.6 126.8 151.6 151.2
13 62.0 125.5 125.8 150.2 150.2
14 67.0 125.6 126.0 150.2 150.2
15 72.0 125.0 125.6 150.0 150.0
16 770 145.5 125.6 150.0 150.2
17 82.0 124,2 124,6 1494 149.8
18 87.0 124.6 125.6 150.2 151.0
19 92.0 124,2 125.0 149.8 150.0
20 97.0 124,0 124.8 149 .4 150.0
21 102.0 124,0 124.6 149.4 150.0

22 107.0 1244 125.2 150.4 152.0
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Table 6. Values of Ap
h TL = 200 TL = 300 TL = L0o TL = 500
1 -94 .46 =-220,2 =315,1 =440 .6
2 -28,18 -66,18 -96,10 =135,1
3 -14,02 -33.34 -49,49 -70.23
L -8.000 =19.33 -29.36 -42,13
*5 =4,927 =12,11 -18,78 -27.28
6 =3,211 =-8.026 -12,68 -18.63
7 =2,191 =5,563 -8,925 -13,26
8 -1,553 -3.998 -6,501 =9,760
9 -1.136 -2,962 -4 ,870 -7.381
10 '0.8538 -2.250 '3-736 -50709
11 -0,6556 -1.,7L46 -2,924 -4,501
12 -0.5149 -1.379 -2,327 -3,606
13 -0.4107 -1.107 -1,880 -2.930
14 -0.3326 -0,9012 -1,538 -2.409
15 -0,2728 -0.7422 -1.273 -2.,001
16 -0,2264 -0,6177 -1,063 -1,678
17 -0.1897 -0,5188 -0,8956 -1.417
18 -0.1605 -0.4392 -0.7600 -1.205
19 -0.1368 -0.3745 -0,6491 -1.030
20 -0.1175 -0.3213 -0.5575 -0.8856
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Table 7. Values of Bh

h TL = 200 TL = 300 TL = Loo T, = 500
1 0.09442 0.09376 0.1314 0.1309
> 2 .03054 .02904 .0L068 .03920
3 .01750 .01540 .02145 .01925
L .01190 .009500 .01302 .01035
5 .008862 .006339 .008437 .005485
6 .006990 .004455 .005678 .002571
7 .005740 .003252 .003904 .0007237
8 .004855 .002445 .002710 - ,0004883
9 .004200 .001881 .001879 - ,001301
10 .003697 .001475 .001284 - ,001851
11 .003300 .001175 .0008509 - 002224
12 .002979 .0009485 .0005297 - 002474
13 .002715 .0007748 .0002886 - ,002637
14 .002494 .0006391 .0001056 - ,002737
15 .002305 .0005315 .00003443 - ,002791
16 .002143 0004449 - 0001425 - ,002812
17 .002001 .0003742 - ,0002264 - ,002807
18 .001876 .0003155 - .0002920 - ,002783
19 .001764 .0002660 - 0003436 - 002745

20 .001664 .0002239 .0003839 .002696




47

Table 8. Theoretical results
Position Temperature, °C
Along Column
cm TL = 200 TL = 300 TL = 400 TL = 500
1.0 191.4 278.7 367.2 451.9
2.0 183.2 258.5 335.9 Lo6. 4
3.0 175.7 240,1 307.9 365.7
4,0 169.0 224.,0 283.7 331.0
5.0 163.4 210.5 263.8 302.9
7.5 152.9 186.5 229.8 256,2
10.0 145,7 170.4 208.0 227.4
12.5 139.9 157.4 190.4 203.6
15.0 135.6 147.8 177 .4 185.8
20.0 131.0 137.8 165,2 170.4
25.0 128.0 131.2 156.7 158.8
30.0 126.8 128.8 1544 156,2
35.0 125.9 126,6 151.5 152.2
Lo.o 125.6 126.3 151.5 152.5
50.0 125.3 125.5 150.7 151.5
60.0 125,12 125.3 150.5 151.2
70.0 125.2 125,2 150 .4 151.1
80.0 125:2 125.2 150.4 151.1
90.0 125.1 125.2 150.4 151.0
100.0 125.1 125.2 150.4 151.0




