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ABSTRACT 

The integration of nondestructive test (NDT) methods into industrial 

environments has quickened in recent years as economic incentives to do so 

have increased. NDT methods find application both as a tool for inspecting 

manufactured goods as well as a tool for process control. Another 

important application involves the use of NDT techniques for detection of 

Intergranular Stress Corrosion Cracking (lGSCC) in nuclear power plant 

tubing. All these applications involve the analysis and interpretation of 

large volumes of data generated by transducers during the course of 

inspection. Techniques that can automate the process of analysis can 

contribute significantly towards improving both consistency as well as 

accuracy in interpretation. 

One of the problems encountered in ultrasonic signal classification is 

the presence of temporal shifts. Consequently the transducer signal is 

preprocessed to extract features which are insensitive to temporal shifts. 

This thesis evaluates various preprocessing techniques in conjunction with 

neural networks for classification of ultrasonic NDT signals. Several 

preprocessing techniques were evaluated including the use of the Discrete 

Wavelet Transform. Alternate architectures such as the Time- Delay 

Neural Network (TDNN) were also investigated. Results obtained to date 

demonstrate the potential of neural networks for performing complex 

classification tasks, and the importance of preprocessing techniques for 

successful flaw characterization. 
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CHAPTERl 

INTRODUCTION 

Nondestructive testing (NDT) is a branch of materials science that is 

concerned with aspects of uniformity, quality and performance of materials 

and structures. Flaw detection and the interpretation of signals form a 

critical part of this interdisciplinary activity. 

Nondestructive testing techniques are means by which materials and 

structures may be inspected without impairment of their performance. 

NDT techniques playa vital role in a variety of industries for evaluating the 

integrity of critical components. A typical NDT system [1] involves the use 

of a transducer for exciting the test specimen. The energy/specimen 

interaction is sampled by the receiving transducer. The received signal is 

then analyzed for evaluating the integrity of the test object. The diverse 

nature of NDT applications has led to the development of a variety of 

inspection techniques, employing different forms of excitation energy. 

Electromagnetic, radiographic and ultrasonic inspection techniques are a 

few examples. Of these, ultrasonic techniques are the most widely used 

method because of the simplicity and versality of the approach. Ultrasonic 

energy can propagate easily into the interior of many structures without 

excessive attenuation. Under appropriate conditions the returned signals 

carry sufficient information for determining important characteristics of 

the flaws in materials. A major aspect of research in ultrasonic NDT 

involves the analysis of received signals for classification of defects in 

the test object. The analysis is usually rendered difficult due to the 
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presence of noise and other artifacts present in the ultrasonic reflections 

[2]. 

One application of ultrasonic NDT is the inspection of heat 

exchanged tubes and pressure vessels in reactors. Process pipes and 

vessels are designed to have an added amount of metal wall thickness or a 

specific corrosion allowance based on conditions such as pressure, 

acceptable corrosion rates and the expected life of the equipment. Extremely 

high corrosion rates could lead to wall thining, resulting in dangerous 

conditions with regard to pipe and pressure ratings. If pipes and vessels 

become too thin, they could burst causing considerable plant damage. For 

this reason, in the particular case of nuclear power plant tubing, the" aObility 

to distinguish the ultrasonic reflections from intergranular stress 

corrosion cracking (lGSCC) is critical. Boiling water reactor (BWR) tubing 

is anchored with plates made of carbon steel at various intervals [3]. Over 

time, corrosion products at these junctures can cause cracks in the piping, 

which can lead to radioactive contamination of the cooling system. To avoid 

contamination, it is important to detect IGSCC as soon as it occurs. 

The cracking usually occurs on the inside surface, close to the weld 

in heat affected zones. Detection of IGSCC by ultrasonic means is made 

difficult mainly due to the close resemblance of IGSCC signals to signals 

from nearby weld joint physical features, such as root welds and 

counterbores (ridges machined prior to welding to match unequal pipe wall 

thickness) as shown in Figure 1.1. Figure 1.2 shows a typical geometry. In 

order to use ultrasonic NDT method effectively, it is necessary to be able to 

discriminate between the naturally occuring features and flaw signals. 



80 

30 

-20 

-70 

-120 

90 

40 

-10 

-60 

0 50 

3 

Crack 

100 150 200 250 

Counterbore 

-110 '--_"'-_"""--_"""--_....L...-_....&...-_.....I..-_ ......... _--L..._--a..._--'-~ 

o 50 100 150 200 250 

Rootweld 
120 

70 

20 

-30 

-80 

-130 
0 50 100 150 200 250 
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_---+- Crack 

Rootweld Counterbore 

Figure 1.2 Geometrical relations between defects [2] 

Presently such discrimination is performed by human operators who 

view the reflected ultrasonic signals on a CRT screen and use their 

experience and training to decide, whether or not a flaw is present. This 

thesis evaluates the application of various signal processing techniques for 

ultrasonic flaw characterization. The application of signal processing 

allows discrimination within an automated framework. The overall defect 

characterization scheme proposed in this thesis is shown in Figure 1.3. 

The first step in the classification process is preprocessing. The reflected 
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ultrasonic signals contain information regarding the type, size and location 

of the defects. Defects are present at different locations in the material 

which result in temporal shifts of features in signals. The preprocessing 

stage renders the classification result relatively immune to effects of 

temporal variations in the signal. The preprocessing stage also 

compresses the information in the signal into a relatively small set of 

descriptors. Compression reduces the computational effort and minimizes 

problems caused by redundant information present in the ultrasonic 

signal. In this thesis, various preprocessing techniques, such as the 

discrete Fourier transform, the discrete cosine transform, the wavelet 

transform, are implemented in an attempt to ascertain the effectiveness of 

each method for ultrasonic flaw characterization. 

The next step in the analysis process involves the classification of the 

signal. This thesis proposes the use of a multi-layer perceptron (MLP) 

neural network for classification, due to its ability to generate highly 

nonlinear decision surfaces in the multi-dimensional feature space. These 

networks do not require apriori statistical information about the defect 

signals. Alternate network architectures such as the time delay neural 

network are also investigated. The time delay neural network (TDNN) 

network is a variation of the multi-layer perceptron where a network of 

time delays is employed within the structure to identify features and their 

temporal relationships. As a result the network offers the advantage of 

invariance under temporal shifts in the signal. 

In addition, distance measures such as the Euclidean distance and 

the Similarity coefficient are implemented to assess the effectiveness of 



7 

neural networks as pattern classifiers. A final postprocessing stage, is 

included to help reduce the error caused by ambiguous classifications. 

Chapter 2 presents an overview of the concepts of ultrasonic 

nondestructive testing methods. A review of various signal processing 

techniques that have been applied to ultrasonic NDT waveforms, is given in 

Chapter 3. Chapter 4 introduces the concepts of neural networks and the 

architectures used for classification. Chapter 5 describes the contribution 

made by this thesis in terms of the evaluation of several signal processing 

techniques with respect to ultrasonic signal analysis. These techniques 

include the use of spectral coefficients, discrete cosine transform, cepstral 

analysis, envelope sampling, coarse coding, principal component aiuilysis, 

and autoregressive modeling. In addition, the fundamental theory of the 

wavelet function and the wavelet transform method is developed. The 

results of applying the various preprocessing schemes to a database of 

ultrasonic signals are presented in Chapter 6. Finally, in Chapter 7, some 

conclusions, comments and areas for future research are presented. 
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CHAPrER2 

ULTRASONIC NONDESTRUCTWE TESTING 

Ultrasonic methods of examination have been used widely by 

industry for quality control and for determining the integrity of materials. 

The major advantage of using ultrasonic method of examination is the 

ability to detect both surface as well as subsurface defects. Ultrasonic 

techniques allow the detection and determination of the shape, size and 

location of flaws in materials. The technique can be employed in a number 

of other applications, including, for example, the measurement of 

thickness of sheets and pipes. A significant advantage of the method lies in 

the fact that it allows the examination of a variety of materials including 

metallic as well as non-metallic objects. 

2.1 Wave Propagation 

. The ultrasonic inspection method makes use of mechanical waves 

[4]. These waves are composed of oscillations of discrete particles of 

material, although the particles themselves do not travel through the 

material. The energy produced forces the particles to vibrate progressively 

through the medium, from one plane to the next. The frequency (f) of a 

wave is the number of oscillations of a given particle per second. The 

wavelength (A.) is the distance between two planes in which the particles are 

in the same state of motion. 
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2.2 Modes of Propagation 

There are several modes of ultrasonic wave propagation [5] namely 

the longitudinal (compression), transverse (shear), surface (Rayleigh), and 

plate (Lamb) waves. A brief description of each mode is given below. 

Longitudinal waves occur when the displacement of the particles is 

in a direction parallel to the direction of propagation as indicated in Figure 

2.1. They are most commonly used in ultrasonic testing because they are 

easily generated and detected. Longitudinal waves can travel through 

gases, liquids as well as solids. 

• • • • • • • • i • • • • • 
• • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • .- • 
Direction of particle Direction of wave 

Figure 2.1 Longitudinal wave [4] 
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Shear waves occur when the displacement of the particles is 

transverse or at right angles to the direction of propagation as shown in the 

Figure 2.2. Shear waves travel at a velocity that is approximatley one half 

the velocity of the longitudinal waves in the same material. As a result, the 

shear wavelength is shorter than the longitudinal wavelength at the same 

frequency, making the shear wave more sensitive and more susceptible to 

scattering. However, shear waves can travel only through solids. 

Surface waves are vibrations which propagate easily at the surface of 

the material. The amplitude of these waves decreases exponentially with 

depth attenuating to 0.37 of its maximum value within one wavelength. 

t • • • • • • • • • • • • • • • • • Q) • • • • • • ...... • • c.> • • .... • • • t! • • • • tIj • • • • ~ • • • • • • • • ~ • • 0 • • • • • s:: • • 0 • • • • .... • • • • ~ • • c.> • • Q) • • • • '"' • • • .... • • ~ • • • • 
t • • • • • • • • • • • • • • • • • • • • • • • • • • r ·1 Direction of 

wave 

Figure 2.2 Shear wave [4] 
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The velocity of surface waves is approximately 0.9 times that of the shear 

wave and the particle displacement follows an. elliptical orbit. 

Plate waves are produced by ultrasonic vibrations in thin rods or 

plates whose thickness is less than or equal to a shear wavelength. Such 

waves occur in two different modes viz. symmetrical and asymmetrical [5]. 

2.3 Governing Equations 

Ultrasonic fields in materials are governed by the elastic wave 

equation [6] having the form 

a2'y' 
V.T + f = P2 (2.1) 

at 

where .Y, is the displacement vector. T is the stress tensor, p denotes 

material density and frepresents the body force vector. 

If we assume that 

no body forces exist, 

there are no internal losses, 

the material is homogeneous and isotropic, 

and the deformations present are small, 

the field equation reduces to 

2 a2u 
(1l+A.) VV.!! + Il V .Y, = p at2 (2.2) 
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The solution to equation (2.2), yields three orthogonally polarized plane 

wave solutions [7], one being the longitudinal wave and the other two, 

shear waves. Further, the velocity of the shear waves is approximately half 

of that of the longitudinal wave. As a result the direction of the group 

velocity is no longer parallel to the direction of phase velocity, so that the 

energy does not propagate perpendicular to the phase fronts [8]. 

Consequently the reflected signals tends to be corrupted by noise and 

artifacts, making the inspection of defects in materials a difficult task. 

2.4 Acoustic Impedance 

When an ultrasonic wave is incident on a plane boundary between 

two media, perpendicular to the surface, some ultrasonic energy is 

transmitted through the boundary and some energy is reflected back [9]. 

The fraction of energy transmitted and reflected depends on the specific 

acoustic impedance Z defined for each material as 

Z = pV (2.3) 

where p is the density of the material and V is the velocity of the wave. 

For two materials of different acoustic impedances Zl and Z2, the 

percentage of energy transmitted, ET, and percentage of energy reflected 

ER, are given by 

4Z1Z2 x 100 
(Zl + Z2)2 

(2.4) 
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(Zl - Z2'1' x 100 
(Zl + Z2)2 

= 

= 

PlVl in medium 1 

P2 V 2 in medium 2 

2.5 Mode Conversion 

(2.5) 

When an ultrasonic beam is incident obliquely at an angle to the 

interface between two media having different acoustic impedances, the 

wave undergoes reflection and refraction, as shown in Figure 2.3. The 

angle at which the wave is reflected (a) is same as the angle of incidence. 

The angle of refraction (~), is determined by the sound velocities, VIand V 2 

in the two media and the angle of incidence a as indicated in Figure 2.4. In 

general, when a longitudinal wave is incident at an interface, there will be 

three new waves created, namely a reflected longitudinal wave, a 

transmitted longitudinal wave and a transmitted shear wave. This 

phenomenon is known as mode conversion. Since different waves have 

different velocities in the same material, they will refract at different angles 

as shown in Figure 2.4. 
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Incident beam ---__ .. , 

Reflected beam 

Material 1 

Material 2 

sina _ 'i ---
sin~ V2 

Figure 2.3 Reflection and refraction of a plane wave 

2.6 Attenuation 

The term attenuation is used to denote reduction in the ultrasonic 

intensity as the beam travels through the material. Attenuation of 

acoustical waves or signals is a consequence of two primary causes, 
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absorption and scattering. Absorption is the conversion of energy into 

other forms [5], such as heat. Scattering occurs due to the fact that the 

material is not homogeneous. Inhomogeneity can in general be due to a 

boundary between two materials such as coarse grain particles, pores and 

small defects. Ultrasonic scattering produces numerous echoes with 

different transmit times which result in artifacts, also known as grass or 

clutter, in which the true reflection is embedded. 

Incident beam ----~~, 

Materiall 

Material 2 

Figure 2.4 Mode conversion 
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2.7 ffitrasonic Transducers 

Mechanical vibrations for measurement and analysis are generated 

by electromechanical transducers i.e. elements having the ability to 

transform electrical energy into mechanical energy and vice-versa. In 

most ultrasonic inspection systems, piezoelectric transducers are used. 

The active element in the transducer is a piezoelectric crystal which 

generates electric charges when mechanically stressed, and conversely, 

become stressed when electrically excited [10]. Such a material can be used 

as an ultrasonic transmitter as well as a receiver. The dimension of the 

piezoelectric element is nominally one half the wavelength at the center 

frequency of operation. It is placed between a backing element [7] for 

support and a wear plate for protection as shown in Figure 2.5. Some of the 

materials which exhibit piezoelectric effect include quartz, barium titrate, 

lead niobate and lithium sulfate. In order to provide a good contact between 

the transducer and the test material, a coupling material is utilized. The 

amount of energy reflected at an interface is given by 

where = 
= 

P1Vl in medium 1 

P2 V 2 in medium 2 

(2.6) 



Casing .. 

Piezoelectric 

Element 

Wear Plate 
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Lossy Backing 

Material 

Figure 2.5 Piezoelectric transducer [11] 

When Zl = Z2, ER = 0, indicating that all the energy is transmitted. Hence, 

smaller the impedance mismatch, greater the percentage of energy 

transmitted across the interface. Liquids such as glycerine, silicone, oil, 

water and grease serve as excellent transducer couplants. 

Typically, a transducer operates when an electric pulse of short 

duration is applied to the crystal causing it to vibrate [12]. The excitation is 

allowed to decay after which the transducer is used in inverse mode to 

detect the reflected signal. 
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2.8 Test Methods 

The active area of the transducer determines the amount of energy 

that can be transmitted into the test material [9,12]. The amplitude of the 

crystal vibration is small as a result of which a fluid couplant is used 

between the transducer and the test specimen. This type of testing is 

known as contact testing. In immersion testing, the sound is transmitted 

into the material through a water bath or liquid column. Figure 2.6 shows 

some of the configurations used for contact and immersion testing. 

Contact testing and immersion testing are used in two modes, 

namely, pulse echo and pitch catch. The pitch catch technique uses two 

transducers, where one acts as a transmitter and the other as a receiver, 

as shown in Figure 2.6 (b), (c). The pulse echo technique uses a single 

transducer which operates as a transmitter in forward mode and as a 

receiver in inverse modes indicated in Figure 2.6 (a), (d). 

2.9 Flaw Detection 

Ultrasonic NDE involves the introduction of short bursts of high 

frequency elastic waves into a material [12,13]. By observing the resulting 

return echo it is possible to extract information about the material. The 

basic ultrasonic test system is shown in the Figure 2.7. The piezoelectric 

transducer is placed in contact with the material to be tested. The waves 

generated by the transducer travel through the material and are reflected 
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(c) 

(d) 

water 

Figure 2.6 Basic configurations [15] 

(a), (b), (c) Contact testing and (d) Immersion testing 
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- ...oIL 
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r-- Receiver / 
Couplant 

Feature Flaw 
extraction Classification 

Figure 2.7 mtrasonic test system [7] 

B ackwall 
eflection V r 

Defect 

or scattered by flaws in the material [11,13]. The reflected echoes are 

received either by the same transducer (as shown) or by a separate 

transducer placed in appropriate position on the test object. This 

information is then processed to extract relevant information, such as 

presence or absence of a flaw. This thesis evaluates various techniques for 

extracting such information from the ultrasonic signal. 

A typical waveform of the received signal is shown in Figure 2.8. A 

flaw, if present, will be located between the frontwall and backwall 

reflection [14]. 
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Figure 2.8 Typical ultrasonic reflection 

Frontwall reflections are caused by the mismatch in impedance 

when the ultrasonic signal enters the test material and backwall reflections 

Occur due to the mismatch in impedance when the ultrasonic wave exits 

the material. Care must be taken when sending the ultrasonic signal into 

the material so that signals from previous excitation do not interfere or 

overlap with the signal being observed. 

The final component of the UT system involves signal processing and 

flaw characterization. The following chapters deals with the subject in 

greater detail. 
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2.9 Current Industrial Methods 

The reflected ultrasonic signals are displayed using one of three 

types of presentation namely A scan, B scan or C scan as shown in Figure 

2.9 [4]. In A scan echoes are displayed just as on an ordinary 

oscilloscope where the x-axis represents the distance travelled by the 

pulses and the y-axis represents the amplitude of the echoes. In the case of 

B scan, the probe scans the surface of the specimen along a line over time. 

The amplitude of the echos are displayed using the z-modulation of the 

cathode ray beam. The scan image represents a cross-section of the test 

y 

t 

Figure 2.9 A scan, B scan and C scan [5] 

object along the scan line of the probe. With a C scan representation, the 

display shows the flaw area as if it were viewed from above. For a C scan 

mapping, an X-Y scanner is used to translate the transducer in a plane 



parallel to the test surface. This technique does not give any information 

with regard to the depth of the flaw between the top and the bottom surfaces 

of the test piece. 
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CHAPTERS 

DIGITAL SIGNAL PROCESSING AND FLAW CHARACTERIZATION 

An importance aspect of research in nondestructive testing is defect 

characterization in materials. This has lead to the application of several 

digital signal processing techniques for enhancing inspection [16]. The 

aim of digital signal processing is to extract as much relevant information 

. as possible from the reflected ultrasonic signals. In addition signal 

processing techniques are often used to compress information contained in 

the ultrasonic signal and format the signal into a form suitable for flaw 

classification. The processed ultrasonic signal is then analyzed for 

information leading to characterization of the flaw. This chapter presents a 

brief survey of techniques employed for extracting information about the 

shape, size and location of the defects. 

The signals are usually interpreted from the displays of A or B scans. 

In practice, experienced and trained operators are needed to make the right 

decision. However, studies have indicated that the average human 

performance during inspection is much lower than an advanced, 

inspection system [17]. In addition, the performance of human beings 

depend on a number of factors [18,19], for example, operator boredom and 

fatigue were found to have a severe impact upon operator performance. 

Studies [17] have consistently indicated a need for automated inspection 

system. The following section present a brief overview of some of the 

methods employed for enhancing the quality of the signal. 
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3.1 Frequency Diversity Technique 

The major difficulty encountered with an ultrasonic flaw detection 

system is the presence of microstructure noise (clutter) resulting from 

scattering at grain boundaries. Grain echoes exhibit randomness in 

amplitude and arrival time. One method of decorrelating grain echoes is by 

changing the frequency of the excitation signal [20]. This method is referred 

to as frequency diversity. Frequency diversity can be achieved by 

transmitting a broadband echo through materials and bandpass filtering 

the received echoes over many bands of frequencies. Flaw detection is 

sensitive to frequency diversity, and the outputs of the bandpass filters can 

be treated as a random vector representing information related to flaw and 

grain echoes. Saniie [20] used the statistical Bayes classifier design 

approach for flaw detection and grain-noise discrimination based on the 

information obtained from the output of bandpass filters. 

The feature vector at any time t can be represented as 

y = (3.1) 

where each element Yi is the i-th filter's output signal, and k is the total 

number of filters used. 

The Bayes classifier for flaw detection can be formulated as a sample 

problem in hypothesis testing where 

Hypothesis Ho: Flaw is present 

Hypothesis Hl: No Flaw is present 



The Bayes classifier at a given time is represented by: 

<1>00 
p(YI Ho) P(Hl) 

--> Ho (3.2) = > 
p(Y I HI) P(Ho) 

<1>00 
p(YIHo) P(Hl) 

--> HI (3.3) = < 
p(YI HI) P(Ho) 

where, 

<1>(Y) = likelihood ratio which serves as the discriminant function 

= probability of presence of flaw 

= probability of absence of flaw 

= detection threshold 

p(Y I Ho) = probability density function of flaw and grain echoes 

p(Y I HI) = probability density function of grain echoes 

The use of a Bayes classifier requires a priori probability density function of 

each class. Saniie [20] assumes that the features from bandpass filters are 

normally distributed and vary about their means with different covariance 



matrices. Hence, the probability density function of the feature vector is 

given by 

= 

-1 
1 , ,- T -1 

--k- Li 2 exp[-(Y-Mi) Li (Y-Mi)] , i=O or 1 (3.4) 

(21t) 2 

where M..i is the mean vector and Li is the covariance matrix of the input 

vector Y. For a normally distributed feature vector it is more convenient to 

write the discriminant function in the logarithm form. 

log <j>m = (3.5) 

The above equation represents a second order discriminant function. 

Assuming that the hypothesis Ho and H1 are equally probable, the final 

decision rule is derived as 

log <j>(Y) > 0 assign to Ho 

log <j>(Y) < 0 assign to H1 

Figure 3.1 shows implementation of the technique. 

(3.6) 
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Figure 3.1 Frequency diversity technique [20] 



3.2 Multiple Scanning Technique 

Another method that eliminates the clutter nOIse IS the spatial 

averaging technique. Lateral spatial averaging [11,21] assumes that the 

the lateral profile of the defects change gradually. If multiple scans of a 

single defect are taken in the lateral direction, similar to the B scan image 

and the results are averaged together, the random background noise is 

smoothed, allowing the flaw to be distinguished from noise. 

Problems associated with this method include the requirement of 

apriori information concerning the flaw orientation and the assumption of 

uncorrelated noise. 

3.3 Synthetic Aperture Focusing Technique (SAFT) 

SAFT [22,23] is a signal processing method in which the ultrasonic 

wave measurements are used to generate a high quality image of a flaw. 

SAFT provides high resolution with a high signal to noise ratio using only 

a single transducer. The resolution of all imaging systems is limited by the 

effective aperture area i.e. the area over which data can be collected. Before 

synthetic aperture techniques were developed, the maximum aperture was 

limited by the ability to control the physical aperture used for data 

collection. The SAFT technique overcomes these limitations by 

synthetically creating large physical apertures. SAFT is a technique in 

which the focal properties of a large focused transducer are simulated or 



synthesized by a series of measurements made using a small aperture 

transducer that scans over a large area. 

The data are usually presented in the form of an unprocessed radio 

frequency (RF) signal or A-scan. Once the RF waveform has been recorded 

at one transducer position, also referred to as an aperture element, the 

transducer is moved to the next position and the process is repeated. 

Figure 3.2 shows the result of the process for 9 aperture elements. 

SHORT FOCUS 
SCANNING 
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ECHO FROM 
DISCONTINUITY 

TRANSDUCER ____ 

-
\ , 
\ I 
'/ 

" , 

-

""" A"~ DISCONTINUITY 

" , " , / , 

Figure 3.2 Synthetic aperture focusing technique (SAFT) [23] 
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The transducer in Figure 3.2 is focused above the test surface to 

produce a highly divergent beam. When the transducer is located directly 

above a discontinuity, the time delay is minimal. As the transducer moves 

away from this position, the time delay increases in a non-linear fashion. 

The time delay between each transducer position and the defect is 2* 

distance/velocity. The factor 2 accounts for the fact that the pulse travels to 

the defect and back to the transducer. The distance Rijk [24] between the ith 

transducer position and the cell (j,k) can be expressed as ( see Figure 3.3) 

= (3.7) 

The distance is used along with the velocity to find the time of flight. 

time of flight = 2 Rijk/velocity (3.8) 

U sing the time of flight information, the amplitude of the recorded 

waveform Si at a given point in time is summed into the image array at 

point (j,k). This is repeated for all N transducer positions. The summation 

for the intensity value at point (j,k) is given as 

N-l 2F L Si[ ~ RijkJ 
i=O veloCIty 

(3.9) 

where F s is the sampling frequency. 
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A major advantage of this waveform processing scheme is that the 

signal amplitude is substantially increased. Furthermore, the uncorrelated 

noise in each signal is almost completely eliminated. The enhanced 

ultrasonic signal is then used for extracting features which are, in turn, 

used for signal classification. Some of the methods commonly used for 

feature extraction are described next. 

3.4 Feature Extraction 

In order to render ·the flaw characterization system more efficient 

and reliable, selection of appropriate features is very important. The 

dimensionality of the measurement vector can be reduced by selecting only 

those features that contain discriminatory information. There are two 

important methods for selecting features. The first method known as 

optimum feature selection is based on maximization or minimization of a 

criterion function. The second method is called performance dependent 

feature selection. This method is related to the performance of the 

classification scheme, usually in terms of probability of classification error. 

The features selected are then input to the classifier. 

Adaptive Learning Network is a feature reduction technique which is 

based on the second strategy. Brown [25] and Mucciardi [26] investigate the 

use of Adaptive Learning Networks (ALN) for the purpose of identifying 

flaws. ALN attempts to fit a polynomic model [27] 

y = (3.10) 
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where Xl, x2, x3, ... xn are the input variables and y is the output. The 

transfer function is built by employing a network of elements each of which 

computes a nonlinear function of a pair of input variables. Higher order 

multinomials can be generated by interconnection of the above elements. 

The input data set is partitioned into the training data and the testing data. 

Pairwise combinations of the input variables are fed to the first stage 

consisting of mo = (n(n-l))/2 modules as shown in Figure 3.4. The 

parameters or coefficient vector for each of the modules is then estimated. 

The testing data is then applied to the network and the best of the parameter 

vectors are chosen on the basis of an appropriate performance criterion 

exceeding a preset threshold value. The output of the ml «=mo) best 

modules forms the input to the next stage. The procedure is repeated and a 

set of m2 «=ml) modules is chosen at the next stage. The process is 

continued until a single output is selected in the final stage. The overall 

transfer function is evaluated by back-tracking through the selected 

modules. Once the nonlinear model parameters have been identified, the 

nature of the flaw is identified either by observing the output synthesized 

from the selected list of input vectors or by using clustering algorithms in 

the multidimensional parameter space. 

Doctor [28] uses the Fisher discriminant method to identify a small 

subset of features that contain the most amount of discriminatory 

information. In this method the n-dimensional data is projected onto a 

vector W described by the following equation as 
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y = (3.11) 

where the pattern vector Ab A2, .. An have the corresponding projections 

Yl, Y2, .. Yn· If we consider a two class problem as shown in Figure 3.5 we 

would like to choose W so as to maximize the separation 

Figure 3.5 Fisher linear discriminant method 

between the projections corresponding to the two classes. A quantitative 

measure of the class separability is provided by the Rayleigh quotient J 

which is a weighted ratio of inter to intra class "distance" between the 

patterns. 



J = 
wTs W _ b_ 

WTS W _ w_ 

(3.12) 

where Sb and Sw represent the inter class and the intra class scatter 

matrix respectively. The vector W which maximizes J is given by 

(3.13) 

-1 
If Sw is nonsingular then Sw Sb W = A W which is a conventional 

eigenvalue problem. Classification using the projected data is obtained 

using standard pattern recognition methods. However, in much of the 

work reported in the literature features have been derived from raw time 

domain signal, frequency domain and spatial domain. 

Rose [29] describes the use of three features namely rise time, pulse 

duration and the fall time to create a feature vector for classification. 

Classification is performed using the Fisher Linear Discriminant Method 

Burch [21] computes features such as amplitude ratio, root-mean 

square variation of amplitude with angle, waveform pulse duration, 

waveform kurtosis, perpendicular deviation from best fitting plane and 

sphericity to form the feature vector. Classification was performed using 

the Fisher Linear Discriminant function. 

Saniie [30] used LPC coefficients together with the resonating 

frequency and system poles. Actual classification was performed by 

finding the minimum Euclidean distance from a cluster center to a test 

vector. . 
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CHAPTER 4 

NEURAL NETWORKS 

The increasing volume of information in varIOUS forms with 

different levels of complexities has lead to the development of sophisticated 

information processing systems. A major step associated with the design 

of modern information processing systems is automated pattern 

classification. 

Pattern classification deals with classifying or labelling a group of 

objects on the basis of certain subjective requirements. Objects classified 

into the same class usually have some common characteristics. The 

classification requirements vary depending on the application problem. 

For example in recognizing the characters of the English language there 

are 26 pattern classes, whereas in distinguishing English characters from 

Chinese characters there are only 2 pattern classes. In order to accomplish 

this, a decision or discriminant function is necessary to partition the 

feature space appropriately. 

The simplest approach for designing a pattern classifier is through 

the use of distance functions. This approach utilizes the concept of 

clustering in forming decision surfaces. Patterns with dissimilar attributes 

constitute different classes. The similarity of attributes can be measured in 

terms of functions such as the Euclidean distance and the Similarity 

coefficient. 
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A second class of pattern classifiers is based on an adaptive approach 

which relies on the process of training by means of an iterative learning 

algorithm. A typical learning algorithm involves presenting the classifier 

with training patterns of known classification. During the training phase, 

the classifier learns to associate the sample input patterns with their 

corresponding desired outputs. An example of such a type of classifier is 

the artificial neural network. Artificial neural networks are gaining 

increasing recognition as tools for solving problems of pattern recognition. 

Examples of applications include character recognition [31], process 

control [32], robotic control [33], speech recognition [34] and fault diagnosis 

[35]. The motivation and historical development of neural networks is 

described next. 

Neural networks, also known as Parallel Distributed Processing 

(PDP) networks, connectionist models or neuromorphic systems, attempt to 

achieve good performance via dense connections of simple computational 

elements. They emulate the human learning process by attempting to 

mimic the human nervous system. This concept can be better understood by 

examining the human nervous system, and then comparing it to the 

characteristics of artificial neural networks. 

4.1 Human Nervous System 

The biological nervous system is a conglomerate of cells that 

continually receives information, elaborates and perceives the information, 

and then makes decisions. It does all this by means of neurons and 
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interconnections between neurons. It is estimated that the human brain is 

composed of 1012 nerve cells or neurons that can be classified into perhaps 

1000 different types. Within each type there are many subtypes whose 

properties are defined primarily by their connections or their transfer 

functions. The complex function within the brain arises due to similar 

cells performing different functions depending on their connectivity. 

Figure 4.1 shows a typical nerve cell. The neuron or the nerve cell is 

composed of four regions [36,37]: the dendrites, the axon, the soma or the 

cell body and the presynaptic terminals of the axon. Dentrites of a cell are 

used to receive information from other cells. The axon on the other hand, is 

used to propagate information to dentrites of neighboring cells. The axon 

near its end, divides into fine branches, each of which has a specialized 

ending called the presynaptic terminal. The terminal contacts the 

receptive surface of other cells and transmits, by chemical or electrical 

means, information about the activity of the neuron to other neurons. The 

point of contact is known as the synapse. It is formed by the presynaptic 

terminal of one cell and the receptive surface of the other cell 

(postsynaptic cell). Within and around the soma are different types of ions 

such as sodium (Na+), calcium (Ca++), potassium (K+), and chloride (CI-). 

When a voltage change is applied to stimulate the membrane of the 

soma, ions outside of the membrane are allowed to diffuse across the 

membrane and change the internal state of the soma. In other words, the 

neuron is excited by information received due to voltage change in the cell 

body. A neural network is formed by the interconnections of all the neurons 

via axons and dentrites, regulated by synapses. A neuron can be viewed as 
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Figure 4.1 Typical nerve cell [36] 



42 

a processing element that produces an output only if the sum of the 

inputs exceeds a threshold level. The output signal is sent down the axon to 

other neurons and dentrites. 

Artificial Neural Networks represent an attempt to mimic 

information processing strategy of the brain and therefore a lot of attention 

has been paid to the biological aspects of massively parallel realizations of 

intelligent activity. Before presenting the aspects of a neural network 

model, let us look at some of the features of the human nervous system. 

1. Processin~ speed 

The brain processes an element of information as much as 1 million 

times slower than the digital computer. 

2. Processin~ order 

Though, most advanced computers are able to process information 

one million times faster, the brain is a superior system for performing 

cognitive tasks. This is due to the order in which information is processed. 

The brain processes information in parallel where as conventional Von 

Neumann computers process information serially. 

3. Abundance and complexity: 

It is estimated that about 1011 to 1014 neurons operate in parallel in 

the brain at a given moment. In order to emulate the activities in the brain, 

the artificial neural model will require a large number of processing 

elements. Therefore, practical implementations with current technologies 

would require some modifications. 

4. Stora~e 
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Knowledge in the brain is thought to be stored in the interconnections 

between neurons. New information can be learnt or added by adaptation of 

the weights. 

5. Fault tolerance 

Brain has a much higher fault-tolerance than artificial neural 

systems. 

6. Processin~ control 

In the brain, each neuron has access to information contained only 

in those neurons to which it is directly interconnected. Therefore, the 

output of each neuron is a function of locally available information. 

4.2 Artificial Neural Networks 

Artificial neural networks [38] consists of a large number of simple 

processing nodes densely linked by interconnecting weights. The strength 

of the interconnection from one neuron to another is determined by its 

interconnecting weights. This is similar to the synaptic strengths in the 

biological case. Information is stored in the network in the form of weights 

and the scheme of weight connection therefore plays an important role in 

the network configuration. The nodes are often characterized by a nodal 

activation function as shown in the Figure 4.2. The nodal activation 

function sums up all the inputs from other nodes and determines whether 

the action is excitory or inhibitory. This models the activation potential in 

the cell body or the soma. 
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Hard limiter Threshold logic Sigmoidal 

Figure 4.2 Nodal activations 

Rumelhart [39] enumerates the eight major aspects of a PDP model. 

1. Set of processing units. 

2. State of activation. 

3. Output function for each unit. 

4. Pattern of connectivity. 

5. Propagation rule. 

6. Activation rule for combining inputs affecting a unit with its present 

state to produce an output. 

7. Learning rule whereby interconnections can be modified on the basis of 

experience. 

8. Environment within which the learning system must operate. 
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Although the mathematical modeling of artificial networks, are in 

general complex, a number of neural networks have been developed based 

on the eight concepts listed above. A taxonomy of six major classes of 

neural networks [38] are illustrated in the Figure 4.3. The networks are 

Neural NeI Classifas let FIXed PaIIems 

Bilaly fl!lJl ContiI'IIous-Values Input 

SLplrvMd UnsupelVisad Supervised Unsupervised 

l ~ \ 

leader 
ClIsaaring 
~III 

P8ICep1rDn Kohonen 
Self-organizing 
Feature Maps 

Figure 4.3 Taxonomy of neural networks [38] 
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divided into two classes that can operate on binary or continous valued 

outputs. They are further divided based on their training scheme which 

may be classified as supervised or unsupervised. Supervised training 

implies that the networks are presented with desired output during 

training process. The multi-layer perceptron employs supervised learning 

and finds widespread application in pattern classification. Unsupervised 

training provides no information of the correct class during training. Such 

nets, are used as vector quantizers to form clusters of the inputs. An 

example of unsupervised pattern classifier is the Kohonen's Self 

Organizing Feature Map [38]. The following section describes the multi­

layer perceptron, network used in this thesis. 

4.3 Multi-layer Perceptron 

The multi-layer perceptron (MLP) are feed-forward networks with 

one layer of input nodes, one layer of output nodes and one or more layers of 

nodes between the input and output, called the hidden layers. Figure 4.4 

shows a typical three layer MLP. Each layer in the network is fully 

interconnected to the adjacent layer by a weight structure. The use of 

additional hidden layers allows the generation of complex decision 

boundaries in the feature space. The ability to generate such surfaces is 

crucial in most pattern classification problems. Each node in the network is 

characterized by a nonlinear function, usually chosen as the sigmoidal 

function illustrated in, Figure 4.5. Figure 4.6, illustrates partitions which 

can be generated using the MLP [38]. 
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In the standard MLP, the output of each node in the network is the 

nonlinear function of the weighted sum of the inputs connected to the node. 

When a large number of input nodes are used, it is usually necessary to 

normalize the weighted sum computed at each node so that the node 

operates on the linear portion of the sigmoidal function. Since a typical 

ultrasonic signal consists of 256 points, the MLP network used here was 

modified to ensure that the weighted sum at each node was within the 

linear range. 

Input nodes 

Figure 4.4 Multi-layer perceptron 
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The multi-layer perceptron operates In two phases namely the 

learning or training phase and the classification phase. One of the most 

commonly used training algorithms is the backward error propagation 

algorithm. The back propagation algorithm described in the next section 

has been applied to a number of deterministic problems, such as those 

related to defense [40], problems on speech synthesis and recognition [41], 

robotics [42], image processing [43], fault diagnosis [44] and target detection 

[45]. 

4.4 Backward EITor Propagation Training Algorithm 

The purpose of back-propagation algorithm is to determine a set of 

weights which when applied to an input vector, produces an output that is 

sufficiently close to the desired output. This is accomplished by using 

gradient search techniques for minimizing the mean square error between 

the actual output and the desired output. The mean squared error E is 

defined as 

E = 

where, 

J is the output node index 

c is the sample case index 

y is the calculated output 

d is the desired output 

(4.1) 



Training begins by applying patterns from known classes 

sequentially to the network. The mean squared error E is calculated and 

the weights are adjusted to minimize the error. Weight adjustment begins 

with the output layer and is propagated backward through the network. 

Hence, the name back-propagation. The algorithm cycles through the 

training data repeatedly until the network is trained. A single pass 

through the entire training data set is called an epoch. The network is 

considered trained when the error between the actual and the desired 

outputs falls below a certain threshold, or until a given number of iterations 

has been exceeded. The steps involved in the back-propagation is presented 

below: 

1. Initialize weights to small random values. 

2. Present an input vector to the input nodes and the corresponding output 

to the output layer of nodes. 

3. Calculate the actual output values corresponding to the input vector 

presented to the network in step 2. 

4. Re~ursively adapt weights starting at the output nodes and working back 

to the input using the equation: 

(4.2) 

where Wi/t) is the weight connecting node i to and node j, Xi is either the 

output of node i or an input to a node j, 11 is the learning rate. The term Bj 
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represents the error associated with node j. If j is an output node, then we 

have 

(4.3) 

If the node j is in the hidden layer, then 

OJ = Xj (l-Xj) L OkWjk (4.4) 
<k> 

where k is over all the nodes in the layer above node j. 

5. Repeat by going to step 2 until convergence is achieved. 

The derivation of the equations for backward error propagation training 

algorithm is presented in Appendix A. 

4.5 Convergence Issues 

A major drawback of the back-propagation algorithm [46,47] is that it 

suffers from problems usually associated with gradient techniques, 

namely, convergence to local minima and lack of convergence due to 

oscillations between two points. Figure 4.8 explains the above situation. 

In this one dimensional example, initial weights Wa and Wb will 

converge to local mimina whereas We will converge to the global minimum. 

As a result, back propagation performs poorly in cases where more than 

one minimum is present. In addition, it is possible that the weights will 
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oscillate between two points and fail to converge, as in the case at points Wd 

and We in Figure 4.8. 

The wide range of applications of the back-propagation algorithm 

and the multi-layer perceptron has resulted in an extensive analysis of the 

method. This has led to several interesting areas of research such as 

hidden layer optimization [48], learning rate improvement [49,50], alternate 

connection topologies [51,52] and alternate threshold functions [53]. The 

MLP is sensitive to temporal variations in the input signal. Temporal 

variations in ultrasonic signal arise due to varying flaw depths and flaw 

locations. The time delay neural network described in next has the 

advantage of being insensitive to temporal variations in the input signal. 

Error 

local minimum 

global minimum weight 

Figure 4.8 Convergence of back-propagation [47] 
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4.6 Time Delay Neural Network 

The time delay neural network (TDNN) closely resembles the multi­

layer perceptron with the added advantage of being insensitive to temporal 

shifts in the input signal. This is an important property, particularly since 

flaw classification is to be performed independent of the location of the 

defect in the test object. 

In MLP, the basic unit computes the weighted sum of its inputs and 

then passes this sum through the sigmoidal function. In case of the 

TDNN, the basic unit is modified by introducing delays Do through DN [54] 

as shown as in Figure 4.9, where Do represents the undelayed signal and 

Di i=1,2 .. N represent a delay of i time units. The J inputs of such a 

unit are multiplied by a set of weights for each delayed version. 

The TDNN therefore has the ability to correlate the features in the 

input signal and exploit their temporal relationship. An alternate 

interpretation is to consider each hidden unit as connected to a slice of the 

input vector, and the slice or window is moved down the input vector in 

unit steps. This can be explained with the help of Figure 4.10. 

The network shown consists of n rows, each containing m hidden 

units connected to m successive slices or receptive fields of the input vector. 

The m weights connecting the hidden units of a given row to m successive 

input units are put in one class. The TDNN is trained using the back­

propagation algorithm with the added constraint that the weights to all the 

time-shifted versions remain the same [55]. At the end of each iteration, 
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Figure 4.9 Basic TDNN unit [54] 
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output units 

n -----~ 

hidden units 

m+n-1 Inputs 

Figure 4.10 TDNN representation [55] 

where the weights are updated, every weight in an equivalence class is 

set to the average of the weights in that class. This enables the network 

to extract position independent features from the input signal. As a result, 

when the network is trained, all the hidden units in a given row will have 



learned the same weight pattern. Each row can be treated as a single unit 

replicated m times to examine m successive input slices as illustrated in 

Figure 4.11. 

n 

2 

1 

m+n-1 Inputs 

output units 

hidden units 

Figure 4.11 Equivalent TDNN representation [55] 
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The network effectively contains only n hidden units. Although the m 

copies of the hidden units posses identical weights, they can assume m 

different activation levels to represent the presence or absence of a feature 

in the m slices of the input. The same process is repeated for the output 

nodes. The modifications in the back-propagation algorithm for the TDNN 

is described next. 

The error of a back-propagation network for a given case is a function 

of the differences between the network actual output OJ and the 

corresponding target values dj, given as 

E = ~ ~ (OJ - dj ) 2 
J 

(4.5) 

For the MLP, the output values OJ of a network are the activation levels of its 

output units Yj- In case of the TDNN, there are two ways of combining the 

output responses. In the first method, each output value of the network is 

the average of the activations of several temporal replicas of an output unit, 

I.e. 

OJ = {'LYjt 
t 

(4.6) 

where t is the number of time shifted copies of the output unit. The mean 

squared error in this case is 



E = 1 '" 1'" 2 - £.. ( - £.. Yjt - dj ) 
2 j t t 

(4.7) 

In the second method, each output value of the network is the sum of the 

squares of the activations of several temporal replicas of an output unit, i.e. 

(4.8) 

The mean squared error is then 

E = (4.9) 

The weights are adapted to minimize the error in equation (4.7) using the 

back-propagation algorithm. The multiple shifted copies of the input signal 

used in this scheme forces the network to extract features in the data 

regar~ess of their temporal relationship. 
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CHAPfER5 

PREPROCESSING 

The overall classification scheme used in this thesis is presented in 

Figure 5.1. Prior to the neural network classification, the signal is 

ffitra somc Defec t output ... Preprocessing ... Classification .. 
al· -SIgn 

Figure 5.1 Overall classification scheme 

first preprocessed. The preprocessing stage plays an important role in the 

characterization of the flaw. The input data typically consists of a mix of 

relevant and irrelevant information. Preprocessing serves to eliminate 

much of the irrelevant information and represents the relevant data in a 

compact and meaningful form. The compaction in turn results in the 

reduction of overall computational effort. This is important since neural 

networks, which are implemented on single processor systems, are 

extremely computationally intensive. Another important objective of 

preprocessing is to achieve invariance of classification performance under 
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translation of the input signal. Temporal variations in ultrasonic signals 

arise due to varying flaw depths and flaw locations. Neural networks are 

inherently sensitive to temporal shifts of the input signal. As a result, 

classification of ultrasonic signals using neural networks becomes 

sensitive to the location of the flaw in the material. By appropriately 

choosing the preprocessing technique, the features derived from the signal 

can be made insensitive to translations or rotations of the signal. 

The choice of preprocessing techniques typically should meet the 

following criteria. Features should be selected in a manner that retains as 

much discriminatory information as possible. Second, the features should 

be rendered invariant under temporal shifts in the signal and be 

reasonably immune to effects of noise in the signal. 

It is generally difficult to find a technique which meets all the above 

requirements at once. This chapter compares the effectiveness of 

numerous preprocessing techniques for characterizing ultrasonic signals. 

In addition to evaluating the performance of commonly used techniques 

such as 

1. Spectral Coefficients. 

2. Discrete Cosine Transform. 

3. Cepstral Analysis. 

4. Envelope Sampling. 

5. Coarse Coding. 

6. Autoregressive Modeling. 

7. Principal Component Analysis. 
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the ultrasonic signal is also analyzed using the relatively new wavelet 

transform. 

The preprocessing techniques are described next along with a 

discussion of their advantages and disadvantages. The theory and 

application of the wavelet function and wavelet transform is also developed 

later. 

5.1 Spectral Coefficients 

Spectral coefficients are the Fourier series expansion coefficients of a 

signal. The discrete Fourier transform (DFT) [56] of a sequence { x[n] }, n= 

0,1,2, .. N-1 is given as 

N-l -j27tnk 

X[k] = L x[n] e N , k = 0, 1, ... N-1 

n=O 
n = 0,1, ... N-1 

where N is the number of samples in the input signal x[n]. 

Let y[n] be the time shifted version of x[n] expressed as 

y[n] = x[n-Ilo] 

where no is the number of time units by which the signal is shifted. 

Using the properties of Fourier Transform we have the relation 

(5.1) 

(5.2) 



-j21tnok 

x[n-Ilo] <--> X[k] e N 

-j21tnok 

or Y[k] = X[k] e N 
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(5.3) 

(5.4) 

The DFT of a sequence· shifted in time is the same as the DFT of the 

unshifted sequence, times a phase factor. The magnitude of the X[k] and 

Y[k] are the same indicating that the magnitude of the spectral coefficients 

are independent of temporal shifts in the signal. This property makes it a 

suitable choice for characterizing ultrasonic signals. 

The DFT of dimension N can be implemented using fast algorithms 

involving O(NlogN) operations [56]. Figure 5.2 shows the spectral 

coefficient sequence of an ultrasonic signal. As can be seen from the 

graph, most of the energy is concentrated in the first few coefficients. 

Hence, the signal can be expressed using a small number of DFT 

coefficients. To test the effectiveness of the technique, the neural network 

was first trained using the first 40 coefficients. The network was also 

trained using the first 30 coefficients, in an attempt to reduce the 

computational effort further. 
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Figure 5.2 Spectral coefficients of ultrasonic signal 

5.2 Discrete Cosine Transform 

The discrete cosine transform (DCT) [57] of a sequence { x[n] } 

n=0,1,2, .. N-l is given as 

N-l 
X[k] = a(k) L x[n] cos [ 1t(2; l)k] 

n=O 

k =0,1, .... N-l 
'n =0,1, .... N-l 

(5.5) 
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where, 

a(D) = {f and a(k) = g, k=I,2, ... N-l 

The DCT of a (N xI) sequence { xeD), x(I), x(2), ... x(N-l) } can be 

obtained from the DFT of a (2N x 1) symmetrically extended sequence of the 

form ( x(N-l), x(N-2), .... x(I), xeD), xeD), x(I), ..... x(N-2), x(N-l)}. The 

proof is presented in Appendix B. 

The advantage of this method lies in the availability of many fast and 

efficient computational techniques for computing the real valued DCT 

coefficients. The DCT can be implemented in O(NlogN) operations using an 

N-point FFT algorithm. The DCT provides excellent energy compaction for 

highly correlated data. The correlation of a sequence { x[n] }, n=D,I, .. N-l 

can be expressed as 

r(t) = 
N-l 

1. L x[n] x[n-t] 
N n=Q 

(5.6) 

Figure 5.3 shows the correlation sequence of an ultrasonic signal. The 

corresponding DCT coefficients are plotted in Figure 5.4. 

The disadvantage of this method is that the DCT coefficients of a 

signal are not time invariant. The neural network was trained using the 

first 30 as well as the first 40 coefficients as input, in an attempt to identify 

the discriminatory information present in the transformed signals. 
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Figure 5.3 Correlation sequence of a typical ultrasonic signal 
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Figure 5.4 Discrete cosine transform coefficients of ultrasonic signal 



5.3 Cepstral Analysis 

In the pulse echo method of ultrasonic testing, the reflected signal, 

can be expressed as 

y(t) = x(t) * h(t) (5.7) 

where x(t) represents the input signal. We also assume that the system is 

linear time-invariant with impulse response h(t), which models the 

propagation of sound through the medium in the direction along the beam. 

A more complete model for the received signal [58] would be 

y(t) = 

where, 

u(t) = 

Tl(t) = 

Pl(t) = 

hl(t) = 

P2(t) = 

T2(t) = 

u(t) * Tl(t) * Pl(t) * hl(t) * P2(t) * T2(t) 

electrical impulse driving the transducer 

forward transducer impulse response 

forward propagation path impulse response 

impulse response of scatter of interest (e.g. defect) 

return propagation path impulse response 

backward transducer impulse response 

If x(t) = u(t) * Tl(t) * Pl(t) and h(t) = hl(t) * P2(t) * T2(t) 

then, 

(5.8) 

(5.9) 



y(t) = x(t) * h(t) (5.10) 

If h(t) is separated from the source x(t), one would have complete 

characterization of the material. Cepstral analysis is a deconvolution 

technique commonly used for estimating the impulse response. 

The cepstrum [58,59] of a signal is the Fourier transform of the 

logarithm of the power spectrum. Taking the Fourier transform of 

equation (5.10) we get 

Y(f) = X( f) H( f) (5.11) 

The power spectrum of the signal is represented as 

(5.12) 

Taking the natural logarithm on both sides, we get 

T(f) = 2 In I Y( f) I = 2 In I X( f) I + 2 In I H( f) I (5.13) 

Thus, the multiplicative functions are transformed to additive ones and 

can be separated by appropriately filtering. The Fourier transform of 

equation (5.13) can be represented as 

C(q) <--> F{ T(f) } (5.14) 



· C(q) <--> 2 F In I X( f) I + 2 F In I H( f) I (5.15) 

where <--> denotes the Fourier Transform pair. 

However, in the presence of noise n ( t ) as shown in Figure 5.5, the reflected 

signal is represented as 

yet) = x(t) * h(t) + n(t) (5.16) 

The multiplicative properties of the spectrum do not hold any longer and as 

a result the performance of the cepstrum deteriorates. 

------~·~L ___ h_(t_) __ ~ x(t) _ 

+ • 
+ 

net) 

yet) 

Figure 5.5 Output of linear system with additive noise 

The cepstrum of the ultrasonic signal is shown in Figure 5.6. The 

first few cepstral coefficients were chosen as input to the classifier. The 

cepstral coefficients provide a time invariant representation. 
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5.4 Envelope Sampling 

This method is based on the use of the envelope of the time domain 

signal. The signal is sampled by extracting the peaks [11]. This operation 

reduces the dimensionality of the signal. In order to obtain time 

independent features the signal is centered. The algorithm for performing 

this operation is summarized below: 

1. Rectify the signal and pick out a set of 50 maxima. 

2. Center the 50 element array by placing the maximum peak in 

the middle of the array shifting the rest of the values accordingly. 

3. Extend the input array by including the time intervals between 

the peaks. 

Additional information about the envelope is retained in the form of 

time intervals between peaks. This information is appended to the 50 

element array to form a 100 element input vector. The elements are 

normalized before being input to the neural network. Figure 5.7 shows a 

typical feature vector obtained using envelope samples of an ultrasonic 

signal. 



72 

0.8~--~--~--~--~--~----r---~--~--~--~ 

0.6 
CI) 

"'C 
::s 
~ 

'S 
b..O 
«I 
~ 0.4 

0.2 

0.0 L-----c...L...-~...&...;;::....:;.__'_ __ __'_ __ ____' ____ ~:::...._ ......... _=__'_ __ _lI. _ __' 

o 10 20 T' 30 lme 40 50 

Figure 5.7 Envelope sampled ultrasonic signal 

5.5 Coarse Coding 

Another method of compressing information contained in the time 

domain signal is known as coarse coding. In this method the ultrasonic 

signal is divided into non-overlapping segments or bins as shown in Figure 

5.8 and an input neuron is assigned to each zone or segment [39]. The 

segments chosen are fairly large to provide a relatively translation 
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invariant representation hut small enough to accurately pinpoint location 

of the feature. 

The ultrasonic signal was split into 8,16 and 32 non-overlapping 

segments and the integral of the signal spanning each segment was 

presented as input to the neuron. A typical time integrated ultrasonic 

signal using 16 hins is shown in Figure 5.9. 

Coarse coding is effective when the features can he represented as an 

average of the features within each hin. Coarse coding provides 

translation invariance as well as added immunity to noise. 

Time 

Bin 1 Bin 2 Bin 3 Bin 4 

J J J J 

Figure 5.8 Coarse coding 
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5.6 Autoregressive Modeling 

Autoregressive (AR) models treat the time domain signal between 

two consecutive backsurface reflectors as a stationary stochastic process. 

Irregular flaw shapes, grain boundaries and the inhomogenity of the 

materials serve as reflectors. 

Let { xt } , t=1,2 ... N be the sampled time series between two 

consective backsurface reflectors. Assuming a stationary stochastic 

process, we have 

E{ xp+n , xk+n } = E{ xp, xk} (5.17) 

where, 

p,k,n E Nand E denotes the expectation operator 

The time series is then represented by an AR model according to equation 

xt - 4>lxt-1 .......... 4>mxt-m = at (5.18) 

where, the residual { at } is assumed to be normally distributed with zero 

mean and variance cr2. The autoregressive coefficients of the model are 

given as {4>i }, i=1,2 ... m, where m represents the order of the model. Once 

the AR model is fitted, the input signal is condensed to a parameter vector 

.e. of dimension (m+1), where 

where .e.T = (5.19) 
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and t T = (tV1 ...... tVm) (5.20) 

The AR model coefficients were computed using the Levinson-Durbin 

algorithm [58]. Although, this method provides data compression, the 

descriptors are not invariant under time shifts. The coefficients computed 

for various values of the model order m were presented as input to the 

neural network. 

5.7 Principal Component Analysis 

Another popularly used feature selection technique is the principal 

component analysis [60,61]. This method consists of finding an orthogonal 

transformation of the original variable to a new set of uncorrelated 

variables called principal components. The components are linear 

combinations of the original variables. The objective is to find, in the 

transformed feature space, fewer components to account for most of the 

variation in the original data set, effectively reducing the dimension of the 

signal. 

Let {xt }, t=1,2, .. p represent the sampled time series. A linear 

orthogonal transformation of {xt } with uncorrelated coefficients is of the 

form 

(5.21) 
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where z = ( Zl, Z2 .... zm)T with m < p, and <I> is a mxp orthogonal matrix. 

Further, 

E{ ZiZj} = 0 (5.22) 

= 1 1 =J 

The objective of this method is to determine the transformation matrix <1>. 

The autocorrelation matrix of {xt }, t=1,2, .. p is defined by the equation 

ro .... rp-l 

R = ro .... rp-2 (5.23) 

. . 
rp-l ro 

where ri = E{ xt xt-i} 

It can be shown that the columns of the matrix <I> can be formed by 

using the m eigenvectors, of the autocorrelation matrix, associated with the 

m largest eigenvalues Ai of R. 

Since the eigenvalues represent a measure of the interset variance, 

the eigenvectors represent the orthogonal directions, in the transformed 

space, that account for most of the variation in the original data set. The 

eigenvalues of the autocorrelation matrix are also known as the principal 

components of the signal. Singular value decomposition [62] routines can 
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be used is to obtain the A.i values. Figure 5.10 shows the graph of the A.i 

values for a typical ultrasonic signal. 

It can be seen that the first few eigenvalues account for most of the 

variation in the original data set. The neural network was trained using 

varying number of eigenvalues as the input vector. 
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Figure 5.10 Eigen values of toeplitz ( R ) matrix for ultrasonic signal 
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5.8 Wavelet Transform 

The aim of signal analysis is to extract relevant information from a 

signal by transforming it. For analysis of stationary signals, that is, 

signals whose properties do not evolve in time, the well known Fourier 

transform is used. The Fourier transform of a signal x(t) is expressed as 

X(f) = f~ x(t) e -j2xf tdt (5.24) 

The analysis coefficients XeD are computed as inner products of the signal 

with a sinusoidal basis function of infinite duration. As a result, any 

abrupt change in a non-stationary signal x(t) is spread over the entire 

frequency axis xeD. Therefore, the Fourier transform cannot be used for 

analyzing non-stationary signals. 

The approach commonly used for analyzing non-stationary signals 

is known as Short Time Fourier Transform (STFT) [63]. STFT introduces 

time dependency in the Fourier analysis through a sliding window. The 

location of the sliding window adds a time dimension and one obtains a 

time-frequency analysis. 

Consider a signal x(t) and assume it is stationary when seen 

through a window get) of finite support, centered at time location t. The 

Fourier transform of windowed signal x(t) g*(t-t) yields the Short Time 

Fourier Transform (STFT) given as 



(5.25) 

which maps the signal onto a two dimensional function on the time­

frequency plane ('t,f). 

Once the window is chosen for the STFT, it is fixed over the time­

frequency plane keeping the resolution same over the entire plane, as 

shown in Figure 5.11. 

~~ 

frequency 

--... 

time 

Figure 5.11 Time-frequency resolution with STFT [64] 
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With STFT each component within the signal can be analyzed with good 

time resolution or good frequency resolution but not both.To overcome the 

resolution limitation of the STFT, one must have a multi-resolution 

analysis providing both, good time and good frequency resolution [65]. This 

can be obtained using bandpass filters with constant relative bandwidth 

(i.e. /1f1f = constant). Thus, instead of the filter being regularly spaced over 

the frequency axis as in the case of STFr, the filters are regularly spaced on 

the log frequency axis as shown in Figure 5.12. 

Therefore, when the frequency resolution changes, so does the time 

resolution, satisfying the uncertainty principle where the product of time 

resolution and frequency resolution is constant. 

The wavelet transform is a representation whose basis functions are 

well localized in time and frequency. The basis functions called the 

wavelets is defined as scaled ( i.e. stretched or compressed) and translated 

version of the same prototype h( t) i.e. 

hah , = (5.26) 

where a is the scale factor or the dilation parameter and b is the shift or the 

translation parameter. The constant 1/...Ja is used for energy normalization. 

As opposed to the STFT, the shape of the resolution cell varies with the scale 

parameter a. When a is small, resolution is coarse in the spatial domain 

and correspondingly fine in the frequency domain. When a is large, the 

resolution is fine is spatial domain and coarse in frequency domain as 

shown in Figure 5.13. 
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Figure 5.12 Bandpass filters for STFT and WT [64] 
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~~ 

frequency 

-p 

time 

Figure 5.13 Time frequency resolution for WT [64] 

The wavelet transform [66] of a signal set) can be represented as 

W(a,b) = ~f h * ( t-b ) s( t) dt Va a 

where, 

a is the dilation parameter, > 0 

b is the shift parameter 

s( t) is the input signal 

h(t) is the analyzing basis wavelet 

W(a,b) is the transformed signal 

(5.27) 



In general, any signal can be represented as a combination of wavelets i.e. 

that the original waveform can be synthezied by adding elementary 

building blocks of constant shape but different widths and amplitude. The 

analysis is done using equation (5.27) and the synthesis process consists of 

summing up all the projections of the signal onto the wavelets as shown in 

equation (5.28). 

x(t) = cf f W(a,b) ha,b(t) da~b 
a>0 a 

(5.28) 

where c is a constant that depends only on h(t). The functions ha,b "are in 

general not orthogonal, since they are defined for continously varying 

values of a and b. The reconstruction formula (5.28) is well defined if the 

wavelet satisfies certain conditions [64]. 

5.8.1 Constraints on the analyzin~ wavelet 

The functional form of the analyzing wavelet must satisfy the 

following conditions. 

1. h( t) is absolutely integrable and square integrable (e.g. finite 

energy) 

i.e. f Ih(t~ dt < 00 and f Ih(t~ 2dt < 00 (5.29) 
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2. Also the low frequency behavior of h(t) must be such that 

fH( f) df < 00 

Ifl 
(5.30) 

where H(£) is the Fourier trans.form of h(t). The above condition implies that 

H( f ) is a smooth function in the neighborhood of the frequency origin with 

H( 0 ) = 0 which also implies that the true time domain function h( t) is zero 

mean. 

5.8.2 Discrete Wavelet Transform 

The wavelet transform can be discretized by sampling the scale 

parameter a and the shift parameter b. The scale parameter is varied 

logarithmically, so that 

(5.31) 

and the shift parameter b is sampled uniformly at a rate proportional to the 

scaling. This is accomplished by defining 

b =nao mbo (5.32) 
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With these definations, the discrete wavelet transform can be represented 

using discrete valued parameters m and n as 

W(m,n) = 1 L h *( t-naombo ) s(t) 

'" ao m aom (5.33) 

(5.34) 

The reconstruction equation is 

x(t) = cL L W(m,n) hm,n(t) (5.35) 
m n 

where c is a constant that depends on h(t). For ao = 2 and bo = 1 the discrete 

wavelet transfonn [67] reduces to 

(5.36) 

Figure 5.14 shows the sampling grid for the orthogonal wavelet 

implementation .. This grid allows a precise reconstruction of the signal. 

5.8.3 Wavelet Frames 

The theory of wavelet frames [64,67] permits a balance between (i) 

redundancy and (ii) restrictions on the wavelet h(t) for accurate 

reconstruction. If the redundancy is large ( high oversampling), then mild 



restrictions have to be imposed on the basis function whereas if the 

redundancy is small, then the basis function must satisfy the required 

conditions. 

The family of wavelet functions constitute a frame when the energy of 

the wavelet coefficients W(m,n) ( sum of the square of the moduli) relative to 

that of the signal lies between two positive "frame bounds" A and B. i.e. 

AEx <= L lW(m,n~ 2 <= BEx (5.37) 
m,n 

Translation 

1 • • • • • • • • • 
2 • • • • • 

4 • • • 

8 • • 

Figure 5.14 Sampling grid for discrete wavelet transform 
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where Ex is the energy of x(t). These frame bounds are computed from ao, 

bo and h(t) [64,67]. The reconstruction equation can be written in terms of A 

andB as 

x(t) = A2B L L W(m,n) hm,n(t) 
+ m n 

(5.38) 

If A=B, the wavelet frame constitute a tight frame, in which case the 

wavelets behave exactly like an orthonormal basis [64,67]. 

5.8.5 Functional forms of the analyzing wavelet 

Some of the wavelet functions used in these transforms are described 

below. The functional form of the Kronland-Martinent wavelet [68] is 

2 
h(t) = exp (f + jrot) (5.39) 

where, ro ::= 5.33 for the wavelet to satisfy the admissibility condition. 

Another function called the Mexican hat function [63] is defined by 

the equation 

h(t) = 
2 2 

(1- t ) exp r1 ) (5.40) 

The Figure 5.15 shows h(t) for few values of scaling and dilation. 
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The wavelet transform of ultrasonic signals were computed using 

the Mexican hat wavelet, for values of the scale parameter as 1,2,4,8,16 and 

32. The transformed vectors for the different values of scaling are shown in 

figure 5.16-5.17. The transformed vectors were normalized and presented 

as input to the neural network. 

1.0 

m=2, "=-5 

m=1,n=5 
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Figure 5.15 Mexican hat wavelet for m=O,1,2 
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Figure 5.16 Wavelet transform of ultrasonic signal for m=O and m=1 
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Figure 5.17 Wavelet transform of ultrasonic signal for m=2 and m=3 
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CHAPrER6 

RESULTS 

6.1 Dataset 

A data set consisting of ultrasonic signal reflections belonging to 

three classes was analyzed. The first class of signals was from 

Intergranular Stress Corrosion Cracking (IGSCC) flaws in piping, 

whereas the last two class waveforms represent rootwelds and 

counterbores which are benign sources. A total of 909 signals were 

obtained, at a transducer frequency of 1.5 MHz. The signals were 

partitioned into three groups based on wall thickness of the piping 

inspected. Table 6.1 describes the three groups of signals. 

Table 6.1 Description of the three groups of signals based on the range of 

wall thickness 

Description Wall thickness Number of signals 

Thinwalled 0.7 - 1.2 360 

Midthickness 0.9 - 1.4 246 

Thickwalled 1.2 - 1.5 303 



The distribution of the signals in each class within each group IS 

summarized in Table 6.2. 

Table 6.2 Distribution of signals within each group 

Group Cracks Couterbores Rootwelds 

Thinwalled 116 130 114 

Midthickness ffi 73 75 

Thickwalled 1Z) 00 84 

Initially, the midthickness file was considered and the preprocessing 

techniques were implemented with the multi-layer perceptron for 

classification. Results were also obtained using the distance measures 

such as the Euclidean distance and the Similarity coefficient. The entire 

data set was later used for implementation of the multi-layer perceptron 

and the time delay neural network. This provided a better understanding of 

the generalization capability of neural networks in comparison to the other 

distance measures. The results also helped in the assessment of each 

technique. 

Regardless of the network size 2/5 of the total signals were used for 

training, and the remaining 3/5 were used for testing. This provided an 



effective means of comparison for different databases as well as network 

architectures. For each preprocessing technique employed, the number of 

nodes in the network was varied in an attempt to optimize the classification 

performance. Table 6.3 presents the results obtained with the multi-layer 

perceptron, using signals from the mid thickness file. 

The architecture of the network used is described in terms of the 

number of nodes in the input-hidden-output layers. Classification 

performance on both the training as well as the test data are shown. 

The classification of signals in the midthickness file using 

conventional pattern recognition methods was then performed. The 

classification results with distance measures for different preprocessing 

techniques are presented in Table 6.4. 

The algorithm was extended to the entire range of data including 

tubing of various wall thicknesses. Once again, the data was partitioned 

into a. training set consisting of 2/5 of the signals. The results of 

classification using several preprocessing methods and the multi-layer 

perceptron as well as the TDNN are presented in Table 6.5. Results 

obtained using traditional classifiers are presented in Table 6.6 for 

comparIson purposes. 



Table 6.3 Classification results of signals in midthickness file using 

the multi-layer perceptron network 

Preprocessing Architecture Train Test 
Technique 

DFT 30-15-3 95.96% 61.22% 
40-20-3 94.95% 61.90% 

DCT 40-20-3 97.88% 66.67% 
30-15-3 92.93% 67.35% 

Envelope Sampling 100-30-3 100.00% 82.31% 
100-40-3 100.00% 82.31% 

Coarse Coding 16-10-3 98.99% 82.31% 
32-10-3 98.99% 78.91% 
8-4-3 96.57% 74.83% 

Wavelet Transform 76-25-3 96.97% 70.75% 
44-20-3 96.97% 78.91% 
28-10-3 97.98% 86.39% 
20-10-3 95.96% 86.39% 
16-8-3 92.93% 88.44% 

Principal Component 30-20-3 83.84% 65.99% 
Analysis 

AR Modeling 10-5-3 61.18% 45.58% 

Cepstral Analysis 50-25-3 62.63% 59.18% 



Table 6.4 Classification results of signals in midthickness file using 

traditional pattern recognition techniques 

Preprocessing Number of Euclidean Similarity 

Features Measure Coefficient 

DFT 40 59.86% 64.25% 
30 59.18% 64.25% 

DCT 40 51.09% 50.64% 
30 60.36% 61.46% 

Envelope Sampling 100 85.03% 86.39% 

Wavelet Transform 16 62.58% 68.70% 
~ 75.51% 78.91% 
28 74.82% 74.14% 
44 75.51% 70.06% 
76 70.74% 70.74% 

Coarse Coding 8 71.48% 72.89% 
16 70.06% 70.06% 
32 70.74% 70.74% 

Principal Component 30 55.78% 56.46% 

Analysis 40 55.78% 56.46% 

Cepstral Analysis 30 50.03% 51.79% 

40 50.34% 51.79% 

AR Modeling 10 53.74% 53.96% 



Table 6.5 Classification results of the entire data set using the MLP and 

TDNN 

Preprocessing Architecture Network Test 
Technique 

DIT 30-15-3 MLP 79.27% 
40-20-3 MLP 76.70% 

DCT 40-20-3 MLP 74.31% 
TDNN 76.15% 

Envelope Sampling 100-30-3 MLP 78.90% 
TDNN 74.13% 

100-40-3 MLP 78.90% 
TDNN 73.76% 

Coarse Coding 16-10-3 MLP 87.34% 
TDNN 84.95% 

32-10-3 MLP 86.42% 
TDNN 86.06% 

8-4-3 MLP 85.14% 
TDNN 81.83% 

Wavelet Transform 76-25-3 MLP 86.24% 
TDNN 84.40% 

44-22-3 MLP 83.30% 
TDNN 77.98% 

28-20-3 MLP 82.94% 
TDNN 78.53% 

20-12-3 MLP 83.85% 
TDNN 77.80% 

16-8-3 MLP 84.77% 
TDNN 79.63% 



Table 6.6 Results of the entire data set using traditional pattern 

classifiers 

Preprocessing Number of Euclidean Similarity 

Features Measure Coefficient 

DFr 3) 62.56% 62.20% 

40 63.12% 62.75% 

DCT 3) 60.36% 61.46% 
3) 51.01% 50.64% 

Envelope Sampling 100 73.21% 72.66% 

Wavelet Transform 16 55.04% 57.98% 
al 67.88% 62.20% 

28 67.33% 63.85% 
44 73.94% 69.17% 
76 75.41% 70.45% 

Coarse Coding 8 75.77% 73.21% 
16 74.86% 71.55% 
32 74.49% 70.27% 
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6.2 Postprocessing 

In order to enhance the performance of the algorithm the 

misclassified signals were further analyzed. The analysis showed two 

types of classification errors which can be explained as follows. 

The output assignments for the three different classes are given as: 

Cracks 

Counterbore 

Rootwelds 

-> 

-> 

-> 

(001) 

(010) 

(100) 

The first type of misclassification involved incorrect classification where a 

signal due to a crack is incorrectly classified as (010), namely a 

counterbore. In the second type of misclassification the network gives an 

invalid output such as (011) or (000). These signals are labelled as 

"ambiguous" and are resolved using a postprocessing method. The 

addition of a postprocessor resulted in significant improvement in 

performance. 

Two different types of postprocessing were considered. The first 

method is based on the node which has the highest output level. This can be 

best understood with the help of an example. A network output of (0,0.2,0) is 

treated by the network as class (000) which indicates ambiguous 

classification. The postprocessing assigns the signal to the class based on 

the node which has the highest level of output namely (010). In the second 
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method a simple mappIng function was derived such that the overall 

classification error was minimized. The following mapping was used. 

Invalid output 

(000) 

(011 ) 

(101) 

(110) 

-> 

-> 

-> 

-> 

Class 

(001) 

(010) 

(100) 

(100) 

For example, the output of (000) is treated as a crack belonging to class (001) 

and so on. The mapping scheme was derived on the basis of the results 

obtained during the training phase. The results obtained using 

postprocessing are shown in Table 6.7. From Table 6.7 it can also be 

observed that the classification performance using the TDNN is slightly 

lower than that obtained using the MLP for the same architecture. 

However, the TDNN tends to have a fewer number of incorrect 

classifications. Table 6.8 shows the number of classification errors using 

the MLP and the TDNN. 
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Table 6.7 Classification results with postprocessing 

Preprocessing Network Test Post processing 
Technique Mapping Max. Node 

DFT MLP 79.27% 84.15% 83.10% 

DCT MLP 74.31% 80.50% 81.65% 
TDNN 76.15% 82.10% 83.60% 

Envelope Sampling MLP 78.90% 82.56% 82.20% 
TDNN 74.13% 82.20% 83.85% 

Coarse Coding MLP 87.34% 89.17% 89.70% 
TDNN 84.95% 89.49% 88.60% 

Wavelet Transform MLP 86.24% 89.17% 88.90% 
TDNN 84.40% 88.25% 90.27% 

Table 6.8 Analysis of misclassifications with the MLP and the TDNN 

Envelope Coarse Wavelet ncr 
Sampling Coding Transform 

MLP 14.10% 7.20% 7.90% 11.94% 
TDNN 9.10% 6.20% 5.50% 11.00% 
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CHAPTER 7 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

Ultrasonic NDT is used extensively for detecting intergranular stress 

corrosion cracking (IGSCC) in nuclear power plant tubing. Detection of 

IGSCC is made difficult due to the close resemblance of IGSCC signals to 

signals form nearby weld joint physical features, such as rootwelds and 

counterbores. In addition, the presence of temporal shifts in the reflected 

ultrasonic signal due to varying flaw locations and varying flaw depths, 

makes classification of ultrasonic NDT signals a difficult task. This thesis 

evaluates the application of various signal processing techniques for 

ultrasonic flaw characterization. 

The overall defect characterization scheme consists of three major 

modules. The first step in the classification process is preprocessing. The 

preprocessing stage renders the classification result relatively immune to 

effects of temporal variations in the signal. The preprocessing also 

compresses the data which in tum reduces the computational effort. Several 

preprocessing methods were evaluated in an attempt to find optimal features 

for characterizing ultrasonic signals. In addition to evaluating the 

performance of commonly used techniques such as spectral coefficients, 

discrete cosine transform, autoregressive modeling, principal component 

analysis and cepstral analysis, techniques such as coarse coding, envelope 

sampling and the relatively new wavelet transform were investigated. Most 
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of the above preprocessing techniques provide both data compression and 

time invariance. 

The wavelet transform represents the signal using an orthogonal set 

of basis functions, well localized in time and frequency. These basis functions 

called wavelets are scaled and translated versions of a prototype wavelet. 

This method provides multi-resolution analysis by changing the scale 

parameter. 

The next step in the classification process is the classifier. This thesis 

uses the multi-layer perceptron (MLP) for the characterization of ultrasonic 

signals obtained during inspection of nuclear power plant tubing. A major 

advantage of the multi-layer perceptron is its ability to generate highly non­

linear decision surfaces in the multi-dimensional feature space. In addition, 

these networks do not require apriori statistical information. Also, once the 

network is trained, classification of unknown signals can be implemented in 

real time. Alternate architectures, such as the time delay neural network 

(TDNN) was also investigated. The TDNN offers the advantage of invariance 

under temporal shifts in the signal. 

The final step in the classification process is postprocessing, which is 

included to help reduce the error caused by ambiguous classification. 

Classification results were obtained using features extracted with the 

above preprocessing schemes in conjunction with the MLP and the TDNN. 

The classification performance is seen to be sensitive to the choice of network 

parameters and most importantly to the choice of features. Features 

computed using coarse coding, envelope sampling and the wavelet transform 
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demonstrated good performance. The TDNN seemed to have lower 

percentage ofmisclassifications in comparison to the MLP. 

The wavelet transform analysis studied in this thesis shows 

considerable promise for representing and classifying ultrasonic NDT signals. 

However, there are several issues that require further study. Firstly, a major 

drawback of the back-propagation algorithm is convergence to local minima 

which results in suboptimal estimates of the decision boundary used in the 

classification. Alternate algorithms for determining globally optimal solutions 

will enhance classification performance. In addition, a systematic method for 

arriving at the optimal network architecture is needed. 

In conclusion, artificial neural networks combined with appropriate 

preprocessing provide an exciting prospect for classifying ultrasonic signals in 

real time. The classification performance obtained using the various 

preprocessing techniques indicates the need for good preprocessing for 

successful flaw characterization. 
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Appendix A 

The back-propagation algorithm minimizes the error function E with 

respect to the interconnection weights. The error E is defined as 

E = (A-I) 

where c is the case index for the output pairs, j is the index over the output 

units, y is the calculated output and d is the desired output. To minimize E, 

we find the derivative of the error with respect to each weight in the 

network. We start by calculating the error at the output layer and 

propagate the error back to the input layer. 

The total input to a unit is the linear combination of the inputs and 

can be written as 

Xj = LYi Wij (A-2) 

where Wij is the weight connecting Yi to Xj. The output of the unit can be 

expressed as 

Yj 
I 

(A-3) = 

The derivative of the error aE/awij can be expressed using the chain rule as 



= 
dE dXj 

dXj 'dWij 

Differentiating equation (A-2) yields 

= Yi 

Also aE/axj can be expressed as 

= 
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(A-4) 

(A-5) 

(A-6) 

Differentiating equation (A-I) and (A-3) and combining the result with 

equation (A-6) yields 

(A-7) 

The above equation indicates how a change in the total input will affect the 

error. Further, the total input is a function of the states of the lower level 

units and weights. 

For output node j 

= OjYi (A-8) 
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For hidden node j 

where k is over the nodes in the output layer. 

dE 
.. dWij = (1 - Yj) Yj L OkWjk 

k 

(A-9) 

(A-I0) 

In order to implement gradient descent method, the weight 

correction scheme calculates the gradient of the error curve and updates 

the interconnection weights by an amount tlw, proportional to the gradient 

value. This correction will move the weight values in the direction of error 

minimum. The incremental change in each weight is thus chosen to be 

proportional to the derivative of error w.r.t. the weights. i.e. 

tlw = 
dE 

11- 0< 11 < 1 dw 
(A-II) 
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AppendixB 

The discrete cosine transform (DCT) of a (Nx1) sequence given as 

( x(O), x(1), x(2), ... x(N-1) } can be obtained form the discrete Fourier 

transform of a (2Nx1) symmetrically extended sequence of the form 

( x(N-1), x(N-2), ... x(l), x(O), x(O), x(l), .... x(N-2), X(N-1) }. 

Proof: 

The DFT of a sequence {y[n] }, n=O,l, .. 2N-1 is given as 

Y[k] = 
2N-l '2 k 
~ -J 1tn 
£. yEn] e 2N ,k=0,1, ... 2N-1 
n=O 

n = 0,1, ... 2N-1 

Splitting the summations over two intervals, we have 

N-l -j21tnk 2N-l -j21tnk 

Y[k] = L yEn] e 2N + L yEn] e 2N 

n=O n=N 

where due to the symmetric extension we have 

yEn] = 

and yEn] = 

x[N-1-n] 

x[n-N] 

0<=n<=N-1 

N<=n<=2N-1 

Substituting for yEn] in equation (B-2) we have 

(B-1) 

(B-2) 
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N-l -j21tnk 2N-l -j21tnk 
Y[k] = I x[N-l-n] e 2N + I x[n-N] e 2N 

n=O n=N (B-3) 

Substituting p = N-l-n in the first summation and p= n-N in the second 

summation, we get 

Y[k] = 
~l -j21t(N-l-p)k ~ -j21t(p+N)k 
£..J x[p] e 2N + £..J x[p] e 2N 
p::.Q p=O (B-4) 

Rewriting equation (B-4) we get 

Y[k] = 
N-l -j21t(N-l-p)k 
I x[p] {e 2N 
p::.Q 

-j21t(P+N)k} 
+ e 2N 

(B-5) 

Simplifying (B-5) further, we have 

Y[k] = 
N-l { j(p+l)21tk -j21tPk} I x[p] e-j1tk e 2N + e 2N 
p::.Q (B-6) 

Using trigonometric identities, Y[k] can be expressed as 

Y[k] = 
N-l '2 k 
~ ,J 1t { 2 +1 } £..J x[p] e-J1tkeN cos[1t( ~N )k] (B.7) 

p::.Q 

, j21tk 
Since e-J1tkeN is a constant w.r.t. p, we have 
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j27tk N-l 
Y[k] = e-j7tkeN L x[n] {cOS[7t(2~~1)k]} (B..8) 

n=O 

which is the discrete cosine transform of a sequence { x[n] }, n =0,1, ... N-1. 




