
Implementation of a digital adaptive filter

by

Thomas Aloysius Sexton

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Co-majors: Biomedical Engineering

Electrical Engineering

Approved:

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1984

1497953

ii

TABLE OF CONTENTS

INTRODUCTION 1

BACKGROlJND 3

HETH OD

RESULTS

Noise Canceler 3
Linear estimator 5
Example 6

Candidate Filters 9
Least Hean Square filter 9
Adaptive Gradient Lattice filter 9
Decision to use the Ll!S algorithm 12

Derivation of the LllS Algorithm 12

Hardware

Program

Block organization
Automatic Gain Control (AGC)

Flow graphs
Code, overhead
Using the ADC and DAC

Bandwidth and Filter Length
Noise Variables, H(z)

Signals Tested
Amplifier Performance on the ECG
Example Impulse Responses
Stability

18
18
18
18
21
21
21
28
28
28

31
31
31
35
39

DISCUSSION 41

CONCLUSION 43

REFERENCES 44

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6·.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure.12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

iii

LIST OF FIGURES

Adaptive·noise canceler

Test setup of example

Impulse response of example

LHS signal flow graph

Lattice structure

Linear estimator

Error surface

System block diagram

AGC circuit

Program flow graph

Scaling flow graph

Program disassembly

General noise canceler

Sum of sines

ECG + 60 Hz sine

30 Hz + white noise

IR when cancelling sine

IR when cancelling white noise

IR when cancelling sine
with H(z) unequal to unity

IR when cancelling white noise
with H(z) unequal to unity

4

7

8

10

10

15

19

20

22

23

24

29

32

32

33

36

36

37

37

Figure 21.

Figure 22.

\

Transient behavior

Transient behavior

iv

38

38

Table 1.

Table 2.

v

LIST OF TABLES

SNR improvement

Bandwidth

34

40

1

I:-O'TRODUCTION

Time invariant filters fail when the spectrum of the noise they are

intended to filter changes (nonstationarity). If the noise lies within

the signal bandwidth, as white noise would, simple bandpass or bandstop

filters cannot eliminate the noise entirely.

Theoretically, an optimal Wiener filter can be applied if the signals

are stochastic and stationary. Wiener filters are discussed in (1,2).

However, this requires knowledge of the cross-correlation of the noisy

signal with the true signal and the autocorrelation of the noisy signal.

The filters discussed herein assume almost no previous knowledge of the

signal. They approach the optimal response by adapting to the input data.

Rather than realizing a specified frequency response, adaptive filters

estimate a time-domain vers.ion of the noise in a signal and subtract it

out. Adaptive filters do not use correlation functions, but they do

require a reference noise input. Such data-dependent filters are

nonlinear.

The purpose of this research has been to design, build and test an

adaptive filter with a bandwidth suitable for biological signals. Since

the highest bandwidth needed was only 100 Hz (electrocardiogram or ECG),

no bandwidth problems were expected. But, due to the long 64-tap filter

needed to cancel white noise, bandwidth was restricted to 30 Hz for this

case. A bandwidth of 100 Hz was realizable for filtering an ECG polluted

with 60 Hz power line noise.

An adaptive filter was built with the Hotorola 68000 microprocessor

for its processing unit. The 68000 is part of a microcomputer designed by

2

}lotorola: the Educational Computer Board (ECB). The analog amplifier and

filter, analog to digital converter (ADC) and digital to analog converter

(DAC) circuits were designed by the author.

The filter was programmed in assembly language and stored on cassette

tape. The ECB supports debugging with trace and breakpoint commands. No

source code is stored; the firmware assembles each line as it is entered

using an interpreter. This precludes use of variable and address names

and comments.

This thesis is divided as follows: background, method, results,

discussion, and conclusion. The background section covers the two kinds

of filters considered, the Adaptive Gradient Lattice (AGL) and the Least

Mean Square (LMS) filter. The LMS was ultimately chosen for

implementation. Other promising filter structures are also mentioned.

The method section gives block and flow diagrams of the different parts of

the filter along with a discussion of bandwidth, scaling and noise

considerations. The hardware block diagram gives the reader an overview

of the data acquisition system used. The results section discusses filter

performance for the various signals tested, sinusoidal and broadband.

That section contains photographs of filtered signals with corresponding

impulse responses. The discussion and conclusion sections. review the

strengths and weaknesses of the filter.

3

BACKGROUND

A noise canceler can be used to filter a signal when the source of

noise in a signal is known. The heart of a noise canceler is a linear

estimator. A least squares estimate of the noise in the signal channel is

made by the linear estimator operating on a noise reference.

If the noise is not stationary, then a noise canceler which can adapt

is needed. An adaptive algorithm is needed to do adaptive noise

cancelling. Two gradient search algorithms are discussed here, the

Adaptive Gradient Lattice filter (AGL) and the Least Hean Square filter

(Ll!S). The terms algorithm and filter are synonyms when considering

digital filters. Ultimately, the LMS filter was chosen for real-time

capability considerations.

Noise Canceler

Two input signals are required for the noise canceler (Figure 1):

1) the noisy information signal, s + n, where

the desire is to isolate s, and

2) a reference signal, x, which is correlated

with n but not with s.

The box labeled "W" :i.s properly called the adaptive filter while the

entire system is referred to as a noise canceler. W operates on "future"

and "past" values of x in order to estimate the present value of n. In

filter theory, W is generally known as a linear estimator. The estimate

of n is called y. Subtracting y from s + n gives an "error" signal, e.

The nomenclature_, e, is a pseudonym from control theory. The canceler

does not drive the "error" to zero, but rather e appi:-oaches the

signal + noise ~ s + n

reference,

x
Adaptive Filter,

w

Figure 1. Adaptive noise canceler

4

+ output, e

estimate of n, y

5

information, s.

Some ingenuity is required to obtain the reference signal, x.

Obviously, x cannot be set to equal n. If n were known exactly, it could

be simply subtracted out. However, the source of n is often known, and if

so, the source can be tapped for a signal x. If x arises from the same

source as n, then they will be correlated. Care must be taken to acquire

x without picking up the information signal, s. If a signal

related to s finds its way into x, then the noise canceler will not cancel

n exactly, and some compromise will be reached where the error power

is a minimum:

Linear estimator

W operates on x to produce a least squares estimate of n. This point

is discussed here and its veracity should become apparent in the

derivation of the LI-IS algorithm; the AGL algorithm will not be derived

since it was not used.

Following the development in (3) we have:

e = s + n - y. The mean square of e is

E(e**2) = E(s**2) + E((n-y)'"*2) + 2E(s(n-y))

E denotes the expectation operator and m': denotes "squared".

s is orthogonal to both n and y. Hence,

E(e'""''2) = E (s*'"'2) + E ((n-y)'""''2).

The filter adapts to minimize E(e'""'2) but s is unaffected since it is

an input:

min(E(e'""''2)) = E(s*'"'2) + min(E((n-y)**2))

Minimizing the left-hand side makes y a least squares match to n in

I

·1

6

the right-hand side.

If the initial relationship is rewritten as e - s = n - y, it can be

seen that if y is made to match n, then e becomes a least squares estimate

of s.

Thus, the noise canceler operates on s + n and x to produce a least

squares estimate of s.

Example

An example of LMS filter operation from the results section is

included here to add clarity. Figure 2 shows the test set-up. The

information signal, s, is a sine wave, while the corrupting noise, n, is

bandlimited white noise. Experiments with n not equal to x were also

conducted as discussed later. After the filter runs for a few seconds, W

converges to the impulse response shown in Figure 3. W weights the

future, present and past values of x to estimate the present value of n.

The estimate is y. If the autocorrelation of n is low, then W tends to

emphasize only those samples of x near in time to the present. Some

values of x are in the future compared to s + n because the latter is

delayed.

Digital filters are defined by sets of equations. Several different

filter structures are possible to realize a given set of equations. Each

realization is mathematically equivalent, but each will behave differently

under quantization, some doing better than others (3). Either the Lr!S or

AGL filter may be used to implement noise cancelling. Further explanation

of the UIS filter is given in the section on the derivation of the Ll!S

algorithm.

s =
sine

+

bandlimited
white
noise,
n = x

s + n

+

Figure 2. Test setup of example

7

+ e ~ s

w
y

8

Figure 3. Impulse response of example

9

Candidate Filters

The salient points of the L}!S and AGL filters with respecl: to

implementation are now considered.

Least Mean Square filter

The LMS filter strucl:ure is given in Figure 4. It is a realization

of the Widrow LMS algorithm (4). Note the familiar tapped delay line or

transversal filter structure. The multiply and sum configuration is the

direct implementation of the vecl:or inner product taken in the Ll!S

algorithm. The creation of the vector X used in the forthcoming

derivation from the scalar sampled x is evident in the figure. A given

value of the sampled x is multiplied successively by each element of W.

If X(transpose) = (1 0 0 • • . 0), y is the impulse response, and W is that

response. The elements of X multiplied by wl, w2, w(N/2)-1 occur in

time before the value of s + n used at the summer to produce e. Thus, they

are "future" values of X.

Adaptive Gradient Lattice filter

The lattice filter structure is a signal flow graph of the Levinson

recursion (2,5,6). Figure 5 shows one portion of a lattice filter.

A given reflection coefficient, k(i), is equal to the autoregressive

parameter which is the ith coefficient in an ith order linear predictor.

"Linear predictor" refers to the set of coefficients a(j) used to

represent an autoregressive process, viz.

N
x' (t) = ""'""' a(j)x(t-j)

L.,.,j=l

where prime refers to estimate and t is the time index.

lll[f[R[NC[•

10

r---------------------,

AOUTIVI
Fl&.J'la

Figure 4. LHS signal flow graph (Taken from (3))

Figure 5.

•

Lattice structure
using the Adaptive

(This is
Gradient

a portion of a noise canceler
Lattice (taken from (6)).)

11

The forward error is

e(t) = x(t) - x'(t).

The a(j) can be reversed in time to "predict" a past value:

x'(t-N) = LN a(j)x(t-N+j)
j=l

The backward error is

b(t) = x(t-N) - x'(t-N).

See (7) for more details on linear prediction. The lattice

transforms x into a set of orthogonal variables, b. The portion of b

which is correlated with s + n is subtracted from the latter giving an

estimate of s (8). Lattice theory will not be delved into further due to

its complexity and the fact that it wasn't used.

During filter operation, s + n and x are measured at discrete

intervals. The filter transfer function is updated, or adapted, between

measurements. The update takes a certain amount of time. The number of

multiplications needed per update by the AGL filter is 7N, while it is

only 2N for the LHS filter (8,9). Long update times limit the sampling

rate. By the well-known Nyquist criterion, bandwidth is one-half of the

sampling rate. Given a certain amoun~ of computational speed therefore,

the AGL filter will have only about one-third the bandwidth of the LHS

filter. This is the weakest point of the AGL filter and the strongest

point of the UIS filter.

The AGL filter can be designed with no assumptions to guarantee

stability. A worst-case design of the LHS filter requires some

knowledge of the eigenvalues of the noise correlation matrix.

12

Decision to use the Ll!S algorithm

The cru"ial point favoring the Widrow Lt!S algorithm is that it is

approximately 3 1/2 times faster than the AGL algorithm (9). One of the

primary purposes of this work has been.to create a real-time filter using

a microcomputer. The AGL filter requires too many operations to do in

real time and still have any useful bandwidth. If an array processor had

been used, the multiply and sum bottleneck inherent in digital filtering

would not have been such an important consideration. However, this

research was restricted to using a readily available microcomputer.

The transversal filter structure used in implementing the LMS filter

is easy to adapt. However, it suffers greatly from the inaccuracys caused

by finite word length arithmetic and coefficient quantization (10).

Reference (li) presents filter structures which are less sensitive to

coefficient quantization. However, the structures presented in (11) may

not be useful as adaptive filters. The difficulty lies in finding a

filter structure the performance of which is not too sensitive to small

inaccuracies in the filter coefficients and whose coefficients can be

rapidly updated.

Most recently Cioffi and Kailath (12) have introduced a fast

transversal filter (FTF). The Ll!S is considered suboptimal since it

resorts to a gradient technique to approach the optimal solution, but the

FTF is a "true least squares" or optimal algorithm.

Derivation of the Ll!S Algorithm

The Ll!S algorithm. is derived here starting with the statement of the

best linear estimator problem (13).

13

The data vector x (see Figure 6) is to be weighted by a filter vector

W and summed to produce an ouput y. W should give a y which is a minimum

square error estimate of a desired signal, d.

Note that Wis a row vector: W = (wO wl w2 ... wN). Xis a column

vector (the transpose is shown here): X(transpose) = (xO xl x2. xN).

In the following development, ei':,>rz denotes 11 e squared11
, and 2i':e

denotes 11 2 times e", and E is the expectation operator.

From the figure:

e = y - d and y = WX.

We seek to minimize E(e''*2).

e'""'Z = (y - d)''*2 = .(WX - d)''"2.

= (WX)'"°'2 - 2dWX + d""2

Taking expectations, the function to be minimized is

F = E(e""2) = E((WX)""2 - 2dWX + d'°'"'2).

Exact determination of the W needed to minimize F is done using a

calculus of variations approach (1,13). The resulting Wis called the

optimal Wiener filter. Adaptive processing diverges at this point from

the exact solution. Avoiding computation of the correlation functions

needed for the exact solution is necessary so that th_e filter can run in

real time.

The function F forms a quadratic surface in N + 1 space which has the

shape of a bowl. The terms shape and bowl are used loosely here since

they usually refer to a space with three or fewer dimensions. Figure 7 is

an example in 3-space taken from the tutorial discussion in (4). The

method of steepest descent is used to determine the coordinates of the

14

x w y e

d

Figure 6. Linear estimator

15

The error surface can be viewed as an (N+l) dimensional
paraboloid where N is the number of taps in the filter. The
gradient always points opposite to the bottom. The steepest
descent method goes opposite to the gradient direction to find
the minimum error point (Taken from (8)).

Figure 7. Error surface

16

bottom of the bowl (4,8). This point corresponds to the minimum value of

F and hence the optimum value of W.

The optimum value of W can be attained by iteration:

1) Any initial guess is made for W like (O 0 0 ... 0).

?.) The slope (gradient), G, at Won the F surface is computed by:

G(j) =

o(F(j))
oTwOi

o(F(j))
o(wN)

where j is the time index.

3) W is updated with the gradient multiplied by a step size

factor, u, which controls stability and rate of convergence.

W(j+l) ='W(j) - uG(j)

4) Return to 2) until G(j) = 0, or, in other words, the minimum

value of F has been reached.

Computing an expectation or even an estimate of an expectation doesn't

lend itself to real-time applications. The expectation of a variable.is

found by integrating the variable times its probability density function

over the range of the variable (1). This implies considerable knowledge of

the variable. To make the problem workable, the expectation operator is

dropped from the expression for F. Then, an approximate gradient can be

found, G' (j).

G' (j) =

Cl (e'"'''2 (j))
Cl (wO)

Cl (e1"'2 (j))
Cl(WN)

17

= ·2e(j)

Cl C~.Ll.2.l
Cl(wO)

Cl (e(j))
(l(wN)

The noise canceler is configured so that

e(j) = s(j) - W(j)X(j).

Hence,

G'(j) = ·2e(j)X(j), and the iteration becomes

W(j+l) = W(j) + 2ue(j)X(j), which is the LHS algorithm.

·Dependence on eigenvalue W must have at least as many elements

as there are nonzero eigenvalues in the autocorrelation matrix of x (4).

If a given eigenvalue is small, it will cause F to have a shallow surface

along one dimension of W. It takes longer for the LHS algorithm to

descend along a shallow surface than a steep one. Therefore, small

eigenvalues extend the time needed for the LHS algorithm to converge. On

the other extreme, large eigenvalues contribute steep slopes to F and

limit stability. For the LHS algorithm to be stable (4), the step size, u,

must be less than or equal to the reciprocal of the largest eigenvalue.

Eigenvalue calculations were not done for this research.

18

NETHOD

The following sections give an overview of the filter implementation.

Hardware

Figure 8 is a block diagram of the data acquisition and analog output

circuits with the microcomputer given as a single block.

Block organization

ADC protection Standard voltage limiting zener diode circuits are

used to protect the ADC inputs. In order to avoid damage, the ADC inputs

are not allowed to exceed the DC reference voltages supplied.

Decoding The ADC and DAC are memory mapped. This means that

control lines and registers were assigned to specific addresses. The

particular assignments are discussed in the Progr~m section. The decoding

circuitry is a simple collection of two-input AND gates.

Reference voltages Reference voltages are obtained by placing

resistors and zener diodes in series. Making the references as noise free

as possible is necessary to avoid measurement error.

The other circuits can all be found in a text like Hilman (14).

Automatic Gain Control (AGC)

The instrumentation amplifiers are equipped with AGC in order to

maintain maximum use of the finite word length available. The dynamic

characteristic of drain to source resistance with respect to gate voltage

of a field effect transistor (FET) was used. The gate voltage is obtained

by the author's circuit as shown in Figure 9. The peak value of Vout is

fed to the amplifier via the follower. The zero and span of the AGC ouput

signal, Ve, are controlled by potentimeters Pl and P2 respectively.

19

I
AGC ~ I Voltage I (Hr{ I Limiting

I s + n ~ v I JE- I Voltage I ADC

CHN I AGC Limiting

I • --v •
I

Instrumentation v
Amplifiers

1 ·
I\ .ii-~

Interrupt Decoding Reset

r-~

Address
Bus ,,

clock
Microcomputer, ECB . .

1\ I .
Data
Bus

. . .
Lowpass u DAC .. I ' .. ~ Latches
Filter ,

Figure 8. System block diagram

Figure 9.

Vout

+

r~-7 Peak
Dececc.or

20

4.7,,,

P2

50

Amplifier

tnscrumentacion
Amplifier

AGC circuit

+

6.8

-12 v

Pl

21

Program

The following paragraphs cover the details of the program.

Flow graphs

Figure 10 gives the step by step arithmetic done in the program to

implement the LMS algorithm. The program consists of two loops. The

first loop updates the W vector; the second loop computes the estimate,

y.

Careful scaling is needed in fixed word length arithmetic. In other

words, keep all the bits you can as long as you can. Figure 11

illustrates scaling in the program flow. The word lengths used are

optimal, given that s and x are only 8 bits long. A limitation on this

system is the use of an 8 bit ADC. Finite precision problems could be

mitigated by sampling at faster rates as this would give a finer

representation of the signal to the filter. However, this would require

more computing power.

Code, overhead

Figure 12 is the disassembled object code used for the 64 point

filter. The code is broken into four sections: initialization,

measurement of s + n and x, W update, and computation of e.

Significant overhead in the program lies in keeping track of the

circular queues of s + n, x and W. Each time a variable is recalled the

queue pointer must be tested to see if it should be reset to the begining

of the.queue. However, the multiplication executed in each loop consumes

the most time of any given single instruction. A 16 by 16 bit

multiplication takes about 23 ms.

22

OEeration- Pro~ram

SteE

Measure s .and x l

Update W by summing
the vectors W and

(}
eX; for i = l to N:

Compute e*xi 2
Compute u* (exi) 3
Compute wi + uexi 4

Find vector inner product
of W and X; for

0 i = 1 to N:
Compute WiXi 5
Compute y = y + wixi 6

Find output:
Compute e = s - y 7

Output e 8

Figure 10. Program flow graph (Notation: X - vector, xi.- vector
element)

23

Variable Lens th (bits)

.,
8 I 16

24

I x
~

e
I ex
I uex

ex*2**-8
w

W + uex
I Wx.
I y = Wx

I s
I s*2**16
I s-y e

I e*2**-8
le*Z**-16

Figure 11. Scaling flow graph

Program
Step

l

2
3

scaling

4
5
6
l

scaling
7

scaling
8

24

001140 1011 MOVE.B CAU ,OO
001142 427BOB5C CLR.W $0000085C
001146 OA7800FFOB5C EOR.W #255,$0000085C
00114C 4E73 RTE
00114E 0000 OC.W $0000
001150 247C00039001 MOVE.L #233473,A2
001156 207C0003A001 MOVE.L #237569,AO
qo115c 227C0003C001 MO<JE. L #245761,Al
001162 267C00036001 MOVE.L #221185,A3
001168 203C1)0000100 MOVE.L #256,00
00116E 287COOOOOAOO MOVE.L #2560,A4
001174 4254 CLR.W CA4l
001176 D9FC00000002 ADO.L #2,A4
00117C 51C8FFFS DBF.L 00,$001174
001180 1SBC0002 MOVE.B #2, C A3 l
001184 1210 MOVE.B (AO) , 01
001186 4278085C CLR.W $0000085C
00118A OC7800000B5C CMP.W #0,$00000B5C
001190 67F8 BEl3.S $00118A
001192 223C00000007 MOVE.L #7,Dl
001198 0300 BTST 01 ,DO
00119A 5SC9FFFC OBNE.L 01,$001198
00119E 06010001 AOD.B #1,D1
0011A2 E341 ASL.W #1'01
0011A4 11C10B58 MOVE.B Dl,$00000858
0011A8 287COOOOOAOO MOVE.L #25SO,A4
0 01 lAE 2A7COOOOOA20 MOVE.L #2592,AS
001184 2C7COOOOOASO MOVE.L #2656,AS

The. format of the disassembly is: memory location on the
left, followed by object code and finally the assembly code.
The above section of code includes the .brief in"terrupt routine
(lines $1140-114C), the begining of the program ($1150),
initialization of address registers (AO-A6), and zeroing of
the data buffers (via the code of lines $1168-117C). Lines
$1180-11A4 were initially used to read a potentiometer to set
the step size, u. A data register (07) is now loaded by the
operator with the desired value of u before program execution.

Figure 12. Program disassembly

25

0011BA 16BCOOOO MOVE.B #0, C A3 l
0011BE 1210 MOVE.B CAOl ,Dl
0011CO 427·0005c CLR.W $OOOOOa5C
0011C4 OC7aOOOOOa5C CMP.W #Q,$00000a5C
0011CA 67F8 aECl.S $0011C4
0011CC 04000080 sua.B #128,DO
0011DO 89FCOOOOOA20 CMP.L #Z592,A4
0011D6 6606 aNE.S $001 lDE
0011D8 2.87COOOOOAOO MOVE.L #2560,A4
0011DE 18CO MOVE.a DO, CA4l+
0011EO 168C0001 MOVE.a #1, <A3)
0011E4 1210 MOVE.a CAO) , D 1
0011E6 42780a5C CLR.W $OOOOOa5C
0011EA OC7800000a5C CMP.W #0,$00000a5C
0011FO 67F8 aECl.S $0011EA
0011F2 04000080 SUa.a #128,DO
0011F6 8aFCOOOOOA60 CMP.L #2656,AS
0011FC 6606 aNE.S $001204
0011FE 2A7COOOOOAZO MOVE.L #2592,A5
001204 1ACO MOVE.a DO,< A5) +
001206 aaFCOOOOOA60 CMP.L #2656,A5
00120C 6606 aNE. S - $001214
001ZOE 2A7COOOOOAZO MOVE.L #2592,AS
001214 1A86 MOVE.a D6,!A5l

The above code corresponds to step 1 of Figure 10.
Measurement of s begins with enabling the ADC (lines $11BA and
llBE). Then the program waits for the interrupt routine
($1140-114C) to set flag $B5C ($11C4, llCA). The measured
value is placed in data register DO by the interrupt routine.
This value is scaled for the proper sign bit at line $11CC.
Before storing the value in the s queue (the s queue is
pointed to by A4), a check is made to see if the end of the
queue has been reached (lines $11D0-11D8); the value value is
finally stored by execution of line $11DE.
A similar procedure is done to measure and store x (lines
$11E0-1204, the x queue is pointed to by AS). Lines
$1206-1214 provide for insertion of a constant into the
sequence of measured x values. The constant is placed in D6
by the operator before execution.

Figure 12 (continued)

26

00121G 263C0000003F MOVE.L #G3,D3
00121C 32380B5A MOVE.W $00000B5A,D1
001220 BBFCOOOOOA60 CMP.L #2656,A5
00122G 660G BNE.S $00122E
001228 ZA7COOOOOAZO MOVE.L #2592,A5
00122E 101D MOVE.B <A5l+,DO
001230 BDFCOOOOOAEO CMP.L #2784,A6
001236 G606 BNE.S $00123E
001238 2C7COOOOOAGO MOVE.L #ZG5G,A6
00123E 4880 EXT.W DO
001240 C1C1 MULS.W Dl,DO
001242 E080 ASR.L #8,DO
001244 GB06 BM~ .S $00124C
001246 EE60 ASR.W D7,DO
001248 D15E ADD.W DO, <AG l +
00124A G010 BRA.S $00125C
00124C EESO ASR.W D7,DO
00124E G40A BCC.S $00125A
001250 OC40FFFF CMP.W #-1, DO
001254 GG04 BNE.S $00125A
00125G 303COOOO MOVE.W #0.DO
00125A D15E ADD.W DO, <AG)+
001Z5C 51CBFFBE DBF. L ' D 3 ,'.l;i) 1)1 21 C
0012GO 4283 CLR.L D3

This section of code carrys out the adaption of W. D3 is the
loop counter and $BSA holds the previous value of e. Program
step 2 (Figure 10) corresponds to lines $1220-1240, step 3 to
$1246 or $124C, and step 4 to $1248 or $125A: The test for a
minus result ($1244) was necessary, as without it, 1/2 rounds
off to 0, but -1/2 rounds off to -1 in twos-complement
arithmetic.

Figure 12 (continued)

27

001262 Z83C0000003F MOVE.L #63.D4
001268 aaFCOOOOOA60 CMP.L #Z656,A5
00126E 6606 aNE.S $001276
001270 2A7COOOOOA20 MOVE.L #Z592,A5
001276 101D MOVE.a. CA5l+,DO
001278 BDFCOOOOOAEO CMP.L #2784,A6
00127E 6606 aNE.S $001286
001280 2C7COOOOOA60 MOVE.L #2656,A6
001286 321E MOVE.W CA6l+,D1
001288 4880 EXT.W DO
00128A C1C1 MULS.W D1, DO
00128C D680 ADD.L DO,D3
00128E 51CCFFD8 DaF.L D4,$001268
001292 a9FCOOOOOAZO CMP.L #2592,A4
001298 6606 BNE.S $0012AO
00129A 287COOOOOAOO MOVE.L #2560.A4
0012AO 1214 MOVE.a CA4l ,D1
0012A2 48C1 E>(T. L D1
0012A4 E181 ASL.L #8.D1
0012A6 E181 ASL.L #8.D1
0012A8 9283 SUB.L D3,D1
0012AA E081 ASR.L #8,D1
0012AC 31C10a5A MOVE.W D1,$00000a5A
001280 E081 ASR.L #8.D1
001282 3601 MOVE.W D1,D3
001284 11C30859 MOVE.a D3,$00000B58
001288 06030080 ADD.B #128.D3
00128C 1483 MOVE.8 03, CAZ l
00128E 4EF8118A JMP.S $0000118A

The ouput, e, is formed by the above instructions. Program
step 5 corresponds to $1268-1284, and 6 to $128C. After some
scaling maneuvers ($12A2-12A6), step 7 is carried out in line
$12A8. The 16 bit value of e to be fed back is stored in
memory (line $12AC). An 8 bit representation of e is sent to
the DAC (step 8: lines S12BO- 12BC). Control is then passed
back to the point at which new values of s + n and x are
measured.

Figure 12 (continued)

28

Using the ADC and DAC

To obtain an input from an ADC input channel, 3 steps occur:

1) select the channel by writing a number 0-7 to $36001,

2) signal the ADC to begin conversion by putting

S3A001 on the address bus (read or write), and

3) after the ADC signals end of conversion (via the

interrupt routine setting ($B5C)=$FF), read $3C001 to

obtain the 8 bit value.

The DAC is written to by writing the digital ouput value to $39001.

Bandwidth and Filter Length

Bandwidth is determined by filter length N. The number of

multiplications needed per update is 2N. The update time is inversely

related to the highest frequency which can be sampled without aliasing.

The kind of noise to be cancelled determines N. This follows in that

the. reference is filtered in order to duplicate the signal noise. A

predictive filter works weakly on signals which are not orthogonal over

the window it looks at (N is the size of the window). If the signal is a

single sine, only a short window is needed. If the signal is a sum of

sines, a longer window is needed.

Noise Variables, H(z)

Figure 13 gives a view of the most general noise cancelling situation

possible. This figure is found in (4). ml and m2 are uncorrelated with

each other and s and n. They are additional noise signals which limit

filter performance. This research is not completely general in that ml

and m2 were not purposely added in as signals. However, they are

independent noise, m2

•

Figure 13.

transfer
function
of path

difference,
H(z)

independent noise, ml

General noise canceler

29

+ e

W(z)
y

30

unfortunately present anyway as quantization error.

Almost all of the results herein correspond to H(z)=l since this is

the simplest case. Elaborate programming is needed to complicate H(z).

This was done just once; H(z) = .5z'"'-8 + .5z"'"+8 was tested. The

signal to be cancelled was a single sine or white noise. About 20 dB

improvement in signal to noise ra~io was achieved giving hope for use of

the filter in nonideal situations where H(z) is not unity.

31

RESULTS

The following sections discuss and exhibit results of the

experimental work.

Signals Tested

Three general waveforms were used to generate test signals:

sinusoids, ECGs and broadband noise. The noisy and filtered signals are

shown in Figures 14, 15 and 16. Signal to noise ratio (SNR) improvement

is given in Table 1.

SNR measurement for the random noise rejection case (figure 16) was

not done accurately. The problem extends back to the limited processing

speed of the general purpose microcomputer used. Because the noise was

white a long filte~ was needed: N=64. Because bandwidth is inversely

related to N, the bandwidth was cut down to .1 - 30 Hz. This causes a

conflict with the available voltmeters as they are not suitable for this

low band. The mean in th.e rms measurement done by the voltmeter used is

taken over too short a time for this band. If a· faster processing system

was used, the filter could operate on a frequency range with a higher

upper limit.

Amplifier Performance on the ECG

Figure 15 gives filter performance on the ECG. An implicit point

this picture shows is that the amplifier hardware works well. ~lost of the

test signals were generated on the lab bench. Considerable testing,

however, was done using strap electrodes from the author directly to the

amplifiers. The transient nature of the R wave in the ECG caused

unacceptable transient AGC behavior initially. Increasing the time

32

Figure 14. Sum of sines (The upper trace is a sum of three equiamplitude
sines. The lower trace is the canceler output.)

Figure 15. ECG+ 60 Hz sine (The upper trace.is a noisy ECG. The lower
trace is the canceler ouput.)

33

Figure 16. 30 Hz sine +white noise (The upper trace is a corrupted sine.
The lower trace is the canceler output.)

Table 1. SNR improvementa

signal + noise components
(s + n)

sin(6. 28'''25t)

sin(6.28*25t) + sin(6.28''17t)
(where s is the 25 Hz signal)

sin(6.28*25t) + sin(6.28*17t)
+ sin(6.28''7t)

(where s is the 25 Hz signal)

34

uncancelled

5 dBm

SNR(power)
= 1.16

SNR(power)
= . 73

output
(e)

cancelled

-15.5 dBm

SNR(power)
= 176. 6

s:-."R (power)
= 122.45

~e SNR improvement of the 25 Hz sine is about 41 dB for the latter
two cases. However, low frequency components around 2 Hz make these
values vary by +/- 1 dB. The 2 Hz variation is in itself an
unaccounted-for noise. For that reason, the data in the first entry is
used to give the nominal performance of the filter: 20.5 dB(power)
cancelation of the noise signal.

35

constant of the AGC peak detecting circuit to several seconds solved the

problem. This was done by increasing R of figure 8. The algorithm itself

had no trouble with the ECG. As long as there is no ECG-correlated signal

in the reference, the ECG will pass through the noise canceler.

Example Impulse Responses

Figures 17, 18, 19 and 20 give example impulse responses (IRs) of the

filter after convergence. Figures 17 and 18 look very much .like

autocorrelation functions of the reference signals they operated on. The

autocorrelation function of a sine is a cosine and of bandlimited white

noise is sin(x)/x. The output of the filter after convergance is the

convolution of its IR with the reference signal. In the case of Figures

17 and 18, H(z) is unity. Hence, the filter needs simply to reproduce its

input. Convolving the autocorrelation function with the reference gives

the most likely present value of the noise. This value is then subtracted

from the noisy signal giving optimal noise reduction.

Figures 19 and 20 are for the case H(z) = .Sz'"'-8 + .5Z'''''+8. Figure

20 shows that the filter mimics this transfer function to produce useful

cancellation. The IR of Figure 19 also produced noise reduction of about

20 dB. But, a transfer function like that of Figure 20 would also have

cancelled a sine. Because the filter is data dependent, it only needs to

11 11 h f , create t e requency response which passes the portion of x

corresponding to n. If n is a simple sinusoid of frequency f, then the

the number of W's having the needed magnitude and phase response is

infinite. It can be shown in the time domain that convolving a function

like that of Figure 20 with a sine of frequency f gives another sine

36

Figure 17. IR when cancelling sine

Figure 18. IR when cancelling white noise

37

Figure 19. IR when cancelling sine with H(z) unequal to unity

----~ - -- -~---

Figure 20. IR when cancelling white noise with H(z) unequal to
unity (The upper trace shows the IR before low pass
filtering.)

38

Figure 21. Transient behavior (The upper trace is the reference; the
lower trace is the canceler output.)

I

' -
'

Figure 22. Transient behavior (The filter converges to cancel the 60 Hz
sine from the ECG.)

39

of frequency f with a change in amplitude. With a good deal more

effort, it can be shown that the function in Figure 19 will do the same,

along with creating some sines of other frequencys roughly 37 dB down

from the sine at frequency f. Thus, either impulse response could do

the same filtering job.

Figures 21 and 22 show typical transient behavior of the filter. The

upper trace in 21 is the reference signal; the lower is the filter ouput.

Convergence time is dependent on step size and reference spectrum. For a

step size of 2mrr-S, convergence times ranged from 2 to 10s for simple sines

to white noise. Times of less than a second are possible with a step size

of 1/2, but stability may then be in doubt.

Table 1 gives data on SNR improvement. ·The nominal noise reduction

of 20 dB is mediocre. The inverse relationship of useful bandwidth to

filter length is indicated in Table 2. The 16 tap filter worked well on

single sines up to a frequency of 120 Hz. This was the filter used to

cancel a 60 Hz sine from an ECG. A longer filter, 64 taps, was needed· to

cancel white noise.

Stability

As a .good test of stability a step size of 2"''"·4 was chosen to filter

white noise. The filter was turned on and let run for 1 hour. In that

time, the filter transfer function was updated 36.4 million times.

Occasional perturbations occurred, but the filter would reconverge within

10 s. It is considered stable.

40

Table 2. Bandwidth

Filter length, N Sampling Rate Bandwidth
(Hz) (Hz)

16 500 120
32 300 50
64 140 30

41

DISCUSSION

The results of this research are good. A general purpose

microcomputer was outfitted with moderately sophisticated analog input

channels and an analog output channel. A digital filter program was

written and optimized.

The filter achieves a. conservative figure of 20 dB improvement in

signal to noise ratio for the sinusoidal and wideband signals tested. 20

dB is certainly not the theoretical limit. For the case in which ml = m2

(Figure 13), and infinite precision, infinite rejection Of noise is the

limit. However, finite precision arithmetic is limited to finite noise

rejection. The SNR improvement achieved is good considering the available

equipment. Computation of the precise rejection limit optainable requires

correlation measurements (15). This was not done.

Noise rejection would be improved by taking steps to overcome the

problems of finite word length. These steps should include, foremost, use

of a microcomputer designed for signal processing applications. Such a

system would allow for use of a more sophisticated algorithm like the

adaptive gradient lattice and still give useful bandwidth.

Also, a faster system would allow sampling at far above the Nyquist

rate. This would effectively interpolate between the points seen at a

lower sampling rate.

An improvement would be the.use of a 12 bit ADC.

Among all these hardware considerations one also needs to use the

filter in a useful way. Good use of this kind of filter can be made

wherever the input x (Figure 1) is available. This does not require that

42

the noise n be known exactly but only that its source be known. Examples

of chronic, known biomedical noise sources are power line 60 Hz,

electrocautery interference, and electromyograms masking other

biopotentials.

43

CONCLUSION

The Adaptive Gradient Lattice and Least Mean Square filters were

considered for use in real-time noise cancelling situations. The LllS was

chosen for implementation due to its computational simplicity. Even

though the algorithm was simple, bandwidth was still low for the case of

white noise. The filter converged for the signals tested and remained

stable. Noise reduction was limited to a conservative figure of 20 dB due

to the algorithms sensitivity to errors caused by limited word length

arithmetic. A working digital adaptive filter has been demonstrated.

(1) R. Brown.
Filtering.

44

REFERENCES

Introduction to Random Signal Analysis and Kalman
New York: Wiley, 1983.

(2) T. Kailath. "A View of Three Decades of Linear Filtering
Theory." IEEE Trans. Information Theory IT-20 n1arch 19i4): 146-180.

(3) M. Yelderman, B. Widrow, J. Cioffi, E. Hesler, and J. Leddy. "ECG
Enhancement by Adaptive Cancellation of Electrosurgical
Interference." IEEE Trans. Biomedical Engineering BME-30 (April
1984):30-38.

(4) B. Widrow, J. Glover, J. McCool, J. Kaunitz, C. Williams, R. Hearn,
J. Zeidler, E. Dong and R. Goodlin. "Adaptive Noise

(5)

Cancelling: Principles and Applications." Proce.edings of the IEEE
63 (March 1975):1692-1716.

J. Makhoul.
Prediction."
ASSP-25 (Oct.

"Stable and Efficient Lattice Methods for Linear
IEEE Trans. Acoustics, Speech, and Signal Processing
1977) :423-428.

(6) S. Kay and S. Marple. "Spectrum Analysis - A Modern
Perspective." Proceedings of the IEEE 69 (Nov. 1981):1380-1419.

(7) J. Makhoul.
the IEEE 70

"Lin~ar Prediction: A' Tutorial Review."
(April 1975):561-580.

Proceedings of

(8) C. Gritton and D. Lin. "Echo Cancellation Algorithms." IEEE Trans.
Acoustics, Speech and Signal Processing ASSP-23 (April 1984):30-38.

(9) B. Friedlander. "Lattice Filters for Adaptive
Processing." Proceedings of the IEEE 70 (Aug. 1982):829-86i.

(10) C. Mullis and R. Roberts. "Synthesis of ~linimum Roundoff Noise Fixed
Point Digital Filters." IEEE Trans. Circuits and Systems
CAS-23 (Sept. 1976):551-562.

(11) P. Vaidyanathan, and S. Mitra. "Low Passband Sensitivity Digital
Filters: A Generalized Viewpoint and Synthesis
Procedures." Proceedings of the IEEE 72 (April 1984): 404-423.

(12) J. Cioffi and T. Kailath. "Fast, Recursive-Least~Squares Transversal
Filters for Adaptive Filtering." IEEE Trans. Acoustics, Speech and
Signal P!ocessing ASSP-32 (April 1984):304-337.

(13) A. Whalen. Detection of Signals in Noise. New York: Wiley, 1971.

(14) J. Milman. Microelectronics. New York: McGraw Hill, 19i9.

I

45

(15) C. Caraiscos and B. Liu. "A Roundoff Error Analysis of the Ll!S
Adaptive Algorithm." IEEE Trans. Acoustics, Speech, and Signal
Processing ASSP-32 (Feb. 1984):34-41.

