
Department:
Major:

Comparison of feature vectors for speech recognition

using the time delay neural network

by

Brian Lee Schmidt

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Electrical Engineering and Computer Engineering
Electrical Engineering

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1993

ii

DEDICATION

To my loving wife Kara, for all of her support and understanding

throughout this entire endeavor.

ill

TABLE OF CONTENTS

CHAP1'ER 1. INTRODUCTION ... 1

CHAPTER 2. SPEECH PROCESSING AND RECOGNITION 10

CHAP1'ER 3. ARTIFICIAL NEURAL NETWORKS .. 34

CHAPTER 4. RESULTS ... 54

CHAP1'ER 5. CONCLUSION AND FUTURE WORK .. 57

REFERENCES ... 58

APPENDIX .. 60

iv

LIST OF FIGURES

Figure 1.1 D1W Algorithm ... 4

Figure 1.2 Search Space for the DTW Algorithm ... 5

Figure 1.3 Markov State Diagram .. 5

Figure 1.4 Speech Recognition System .. 9

Figure 2.1 Simplified Vocal Tract Model ... 11

Figure 2.2 Vocal Tract System Model ... 11

Figure 2.3 Vocal Response Including Excitation and Modulation 11

Figure 2.4 Fonnants for leI .. 12

Figure 2.5 Time and Frequency Plot of leI... 13

Figure 2.6 Speech Recognition System .. , 15

Figure 2.7 Block Diagrams for Feature Extraction ... 16

Figure 2.8 Speech Signal Containing 12 Words .. 17

Figure 2.9 Endpoint Detection Scheme. 18

Figure 2.10 Processing of Speech Sample using Endpoint Detection Scheme 19

Figure 2.11 D1Ff ... 20

Figure 2.12 Discrete Fourier Transform ... 21

Figure 2.13 Computation of Real Cepstrum ... 21

Figure 2.14 Separation of Excitation and Modulation .. 23

Figure 2.15 Computation of Complex Cepstrum .. 24

Figure 2.16 Decomposition of Complex Cepstrum into Even and Odd Parts 24

Figure 2.17 Complex Cepstrum of leI .. 25

Figure 2.18 Mel-Scale ... 27

Figure 2.19 Linear Prediction Equation .. 29

v

Figure 2.20 Autocorrelation Recursive Algorithm .. 29

Figure 2.21 DAUB4 Wavelet ... 33

Figure 3.1 Biological Neuron ... 35

Figure 3.2 Single ~yer Perceptron .. 36

Figure 3.3 Nonlinear Activation Functions ... 37

Figure 3.4 Solvable Decision Region for SLP .. 39

Figure 3.5 XOR Decision Region that is not Solvable by the SLP 39

Figure 3.6 Learning Algorithm for the SLP .. 40

Figure 3.7 Ramp Function ... 41

Figure 3.8 Multilayer Perceptron ... 42

Figure 3.9 Decision Regions of the Perceptron for Various Number of~yers 44

Figure 3.10 Back-Propagation Learning Algorithm .. 45

Figure 3.11 Single Delay Unit for the TDNN ... 49

Figure 3.12 Time Delay Neural Network ... 50

Figure 3.13 Modified Back-Propagation Algorithm .. 51

vi

LIST OF TABLES

Table 2.1 Mel-Scale Coefficients ... 28

Table 4.1 Recognition Rates for 6 Feature Vectors .. 54

Table 4.2 Implementation Techniques for Feature Vectors 56

1

CHAPTER 1. INTRODUCTION

Speech Recognition

Significance of Speech Recognition

There has been a desire for some time to have an automatic typing machine, which will

use voice input to produce typewritten output Such a machine will relieve people from

having to develop keyboarding skills. Obviously, it will be of particular benefit to disabled

people who lack the physical ability to use a keyboard. This automatic typing machine has not

yet been realized but there has been progress toward this ideal. There are currently software

packages that will do limited recognition and insen words into a word processor. Another

useful application of speech recognition is in controlling light switches and other appliances

that respond to a selected word or phrase. Speech recognition can be beneficial to people

who have to perform some task, while they are using their hands for another task. A lot of

tasks may be automated with speech recognition. Currently there are dictation machines that

recognize a fairly large vocabulary (20-30,000 words), that are being marketed toward

surgeons. This dictation machine recognizes words and generates a typewritten repon.

However, there are several problems and issues that must be taken into account when

developing a speech recognition system.

Problems Encountered in Speech Recognition

Several problems are encountered when trying to build a speech recognition system.

Some ofthe common problems are speaker variations, ambiguity, variations in an individual's

pronunciation, and noise or interference. Speaker variations refer to the differences in speech

produced by different people. Ambiguity arises, e.g., due to similar sounding words such as

"to", "too", and "two". An individual does not pronounce a word in exactly the same way

every time. It is common for one to speak a particular word in different amounts of time or

with different emphasis on the syllables.

There are several issues that must be addressed when building a speech recognition

system. These include endpoint detection, data reduction, segmentation, time alignment,

normalization, and the selection of a recognition technique. If the speech signal is composed

of more than one unit of speech, the beginning and ending of each unit must be detected. This

process is referred to as endpoint detection. Data reduction is usually required for a speech

system because of the large amounts of data involved with speech signals. If, for example, a

speech signal consists of 2 minutes of speech sampled at 12 kHz there would be about a

2

million and a half data points. Often words are processed in a speech system and words alone

tend to last anywhere from half a second to two seconds. When processing words, there are

too much data in a full word to allow reduction of the data in a reliable manner; therefore it is

conunon to segment the word. Segmentation is a process that divides a word into smaller

components. Time alignment is an important issue in speech recognition. If a person spoke a

particular word several times it is very unlikely that he/she would speak the word in exactly

the same amount of time or spend the same time on each phoneme (basic unit of speech that

completely represents all of the sounds in a given language) or syllable. Therefore, if the

segmentation process simply divides the word based on the amount of time there may be

severe misalignment between different realizations of the same word. Normalization is used

to reduce the difference in speech produced by different speakers.

In addition to these problems and issues there are different levels of complexity

depending upon whether a system handles isolated or continuous speech, small or large

vocabularies, whether it is speaker dependent or independent, and whether speech

understanding is required. Isolated speech has intentional pauses between each word, which

makes endpoint detection easier. Continuous speech, however, has no intentional pauses and

is generated at a normal speaking rate. Small vocabularies are usually based on 10 to 100

words, while large vocabularies include 1000 or more words. Speech understanding systems

not only recognize the words, but also know sentence structure and grammar.

Common Speech Recognizers

There are at least three types of speech recognizers currently being used [3]. These

recognizers fall under the categories of dynamic time warping (DTW), hidden Markov models

(HMM), and artificial neural networks (ANN). In the following each of these types of

recognizers is described along with some pros and cons. The discussion of the dynamic time

warping and the hidden Markov model recognizers is more detailed since they will not be

discussed in the remainder of this paper.

The dynamic time warping recognition technique involves creating reference templates

for each recognition unit. The templates are compared to a time warped speech signal (test

word); the template that is closest to the warped speech signal is chosen to be the recognized

unit. The test word (or test template) is compared to the reference templates in a manner that

3

gives the best matching score. The matching score is determined by minimizing time

differences between the references and the test word. The technique used to minimize these

time differences is referred to as dynamic programming. In processing the test templates and

the reference templates the features are recorded in the following manner:

test template: 1(1),1(2),1(3), ... ,tO), ... ,I(I)

reference template: r(1),r(2),r(3), ... ,r(j), ... ,r(J)

The cost is denoted as: 0 ~ d(i" ,j,) = cost of matching t(ik) with r(jk)' where d is some

distance measure and k is the number of transition in the path traversed. The global cost
K

function is simply the sum of all of the individual costs: D = I d(ik'jl), K is the total length
k=1

of traversal. The match is selected for the template that provides the smallest overall cost.

Figure 1.1 gives a typical algorithm for isolated word recognition. Figure 1.2 gives the search

space for the DTW algorithm. The search space is the area that the DTW algorithm checks to

determine if a word matches a template. If a path extends beyond the search space it is

assumed to be unusable.

Advantages of the DTW include: alleviation of time alignment problem and optimum

word sequence search. Problems with the DTW recognition technique are many states, poor

generalization for large vocabularies, not being usable for continuous speech recognition,

being computationally expensive, and storage problems for the many templates.

Hidden Markov models are stochastic models of speech production. HMM is a

system that is capable of being in only a finite number of states; each state of the HMM

generates a finite number of possible outputs. To generate an output sequence the system

moves through different states emitting an output at each state until the entire word is

produced. An example of a state diagram for a Markov process is given in Figure 1.3. The

circles represent states and the arrows represent the transitions between states. The

transitions between states and the outputs associated with each state are random. Allowing

the transitions and outputs to be random gives the model the ability to overcome variations in

pronunciation and timing.

4

D1W Algorithm for Isolated Word Recognition

Step 1 Initialization

Dmin (l,j) = d(l,j),

Dmin (i, 1) = dO, 1),

j = 1, ... ,£

i= 1, ... ,£

Dmin is the minimum cost for traversing the path

d is a distance measure

Step 2 Recursion

For i = 2, ... ,/

For i = J, ... ,2

Dmin (i,i) = .mi.n {Dmin[(i1_P,i1_P)]+ J[(i1, jJ!(i1-P,j1_P)]}
(·t-,.Jt-,)

where J[(i1, i1)I(i1_p ' i1-P)] ~ I d[(;1-".' j1-".)1(;1-".-1' i1-".-I)]'
".=0

d[(i1-".,j1-JI(i1-".-pj1-".-I)] is the distance to move to

(;1-".' j1-".) given the previous distance (;1-".-1' il-".-I)'
and p is a legal previous node

Next i

Next i

Step 3 Termination

- {Dmin(/,j)/ I,
Best path has cost D = min Dmin (i,J) / J,

j = J -£, ... ,J

i=I-£, ... ,/

Figure 1.1 D1W Algorithm

J

J-E

l+E
1

5

.
}

~-r-+--------+---+---- 1

1 l+E I-E I

Figure 1.2 Search Space for the DTIV Algorithm

Figure 1.3 Markov State Diagram

6

Each word to be recognized is represented by a model similar to that given in Figure

1.3. Therecognizer has only the outputs of the system to use in determining which model

provided the output. It is assumed that each state-to-state transition occurs at discrete times
and that the transition from state qj to qj has a probability that only depends on state qj. The

numbers seen in Figure 1.3 represent the transition probabilities between the states. The

notation used to represent the transition probabilities for a system with N states is a NxN

matrix denoted by A, where Qij = p{ transition from qj to qj}. The transition matrix for the

state diagram in Figure 1.3 is:

0.5
0.5 '

A=
0.6

0.6

0.2

0.0

0.0

0.0

0.0 0.3

0.4 0.1

0.3 0.1

0.0 0.4

If there is a set of T possible outputs {Zj} , then the probabilities of the outputs corresponding

to the different states are represented by a NxT matrix B. With each state qj there is an

associated vector 5j, of size T, where bjj = p{ output = zjlstate = qj}. The ith row vector of

the output matrix B is E;'. The initial state probabilities are denoted by the vector p(l), where

pj(1) = P{initial state is qJ. The entire system can be specified with the parameters N, p(1),

A, and B. This model can be defined as M = {N,p(1),A,B}.

A library of models that represent the words in the vocabulary must be constructed to

train the recognizer. This implies that for each word the number of states, the transition

matrix A, the initial state probabilities p(1), and the output probabilities B must be determined.
At recognition time the system observes the output O(t) = (00 ,01 , ••• ,OT_I). For each model

M j the probability p{ olMj} is computed. The recognized word is determined to be the

model word that yields the highest probability.

The recognition task is composed of estimating the probability p{ OIMj}. A simple

recursive algorithm can be used for this purpose and will be discussed here. There is a more

efficient method called the Viterbi algorithm, which determines the optimal path [11]. The

recursive algorithm presented here is called the forward method. To start with, assume that at

some time t the model has reached a state qj' having emitted the partial output sequence

O(t) = (Oo,q, ... ,O,), where each OJ is some output symbol ZA;. Assume that the probability

of arriving at qj at time t with an observation vector O(t) is known, and let this probability be

7

<l,(i) = p{O(t) and qj at t}. Next we want to detennine the probability at the next time

interval: Ur+1 (j). If the only transition considered are those from qj' then the new probability

would be a,(i)ajjbjA;. Since more than one path leads to the state qj' all of these paths must be

considered. Therefore:
N

0.,+1 (j) = La, (i)ajijl
j=1

The initial step for this recursion is 0.1 (j) = pj(1)bj1 for all j. The probability that the word

was produced by the model M j is:

N

P{OIMJ= LaT-1(j)
j=1

There are several key advantages of the HMM over the DTW. These advantages are:

quick recognition, fewer states, simple algorithm (this gives a straight forward

implementation), and cheap computation. The disadvantages of the HMM are: long training

times, underflows when making calculations, and estimation of large number of parameters.

Artificial neural networks have typically been applied to pattern recognition type tasks.

Neural networks are fairly new to speech recognition, but have been shown to be effective for

the task. A neural network consists of several layers of interconnected nodes whose outputs

are calculated by summing inputs multiplied by suitable weights and passing the sum through a

nonlinear activation function. The neural network has been successfully applied to many

complex problems. The advantages of neural networks are complex decision regions, quick

recognition, possible VLSI implementation, and efficient training algorithms. The

disadvantages of neural networks are long training times and no guarantee of convergence to

a global minimum. More detailed discussion of ANN will be presented in Chapter 3.

Objective/Scope

The purpose of this research is to compare several different feature vectors in terms of

their accuracy of speech recognition when used in a time delay neural network. The time

delay neural network (TDNN) was developed by Alex Waibel and will be discussed in Chapter

3. A feature vector is a small set of values that represent the speech signal in some manner;

the representation of the signal in this manner is important since it reduces the amount of

information that the neural network is required to learn. All the features considered in this

work involve spectral components of the speech signal. These features are mel-scaled FFf

(Fast Fourier Transform) coefficients, linear fllter bank FFT coefficients, linear prediction

8

coefficients, mel-scaled cepstral coefficients, linear filter bank cepstral coefficients, and

wavelet transform coefficients. The mel-scale is a nonlinear scale which emphasizes low

frequencies. The mel-scaled FFf generates coefficients by summing the spectrum in

frequency ranges described by the mel-scale. The linear fllter bank FFf simply divides the

frequency range linearly and sums the spectrum values in those ranges. Linear prediction

estimates the envelope of the spectrum by predicting future output based on past outputs

using linear methods. The cepstrum is the inverse Fourier transform of the log of the FFf,

which separates the excitation spectrum and shaping filter spectrum of the speech signal.

Both the mel-scale fllter and the linear filter bank are applied to the cepstrum to generate two

different sets of coefficients. The mel-scaled cepstrum is currently the most commonly used

feature vector for speech recognition. The last method of generating feature vectors is

through the wavelet transfonn. Wavelet transforms adjust the scaling of the output depending

on whether the signal is of high or low frequency. For low frequencies the wavelet transfonn

provides more information about the frequency content while at high frequencies more

information about when the frequency occurred is obtained. The founh order Daubechies

wavelet transform is used in this work. The goal is to determine one or two feature vectors

that work well for speech recognition using the time delay neural network. The determination

of the "goodness" will be based on comparing the effectiveness of the feature vectors in terms

of speech recognition accuracy.

The speech signals used in this work were speaker dependent isolated words. The

words chosen for this purpose were fbI, IdI, leI, and Iv/. These words were selected for the!r

confusability in the leI family, which makes the recognition task more difficult. Having a more

difficult recognition task was helpful in discriminating the effectiveness of the different feature

vectors. The entire recognition system was made up of the following components: end point

detection, segmentation of each word (blocking), generation of the feature vectors,

compression of the feature vectors, normalization of the feature vectors, and recognition using

the time delay neural network. Figure 1.4 shows the block diagram of the system used in this

work.

The first step in building this recognition system was to collect speech samples. The

speech samples were obtained using a sampling frequency of 12 kHz. Groups of around 12

words were collected at a time. Endpoint detection is required for the speech signals, since

there are several words in each signal. For this work the endpoint detection was

accomplished using a comparison of the variance of the silent sections and word sections.

9

The next step in the recognition system was segmentation of the word. Once the word has

been extracted from the speech signal it was broken into 5 ms blocks (60 samples). These

small blocks of speech samples were used to generate the individual feature vectors. Six

different feature vectors were used as discussed above. Thirty sets (150 ms) of feature

vectors were generated, which were then compressed to 15. The compression was

accomplished by averaging adjacent blocks, which gave a broader base for the time delay

neural network. Normalization was performed on the features to give coefficients that ranged

between 0 and 1. The normalization provides a more dense input vector for the neural

network, and removes variations due to loudness of the spoken words. Finally the time delay

neural network uses 15 sets of feature vectors and classifies the input as one of the four

possible outputs (fb/,/d/, leI, Iv!). The built-in delays in the TDNN allow the neural network

to learn the speech signals without accurate time alignment. Not requiring precise time

alignment allows for simple implementation of the endpoint detector.

Speech Recognized
Signal

Endpoint Segmentation Feature Compression Time Delay
Word

---t
Detection ~ (5 ms blocks) ~ EXlTactior r-- to 10 ms

-.. Normalization r--- Neural Network

Figure 1.4 Speech Recognition System

Organization of the Remaining Document

There are four chapters that follow this introductory chapter. Chapter 2 provides an

introduction to speech production, speech processing, speech recognition, and a discussion of

the techniques used in this work. Chapter 3 presents artificial neural networks, a discussion of

neural networks that led to the development of the time delay neural network, and a

description of the implementation of the time delay neural network. The results obtained in

this work and the significance of those results are discussed in Chapter 4. The final chapter

contains the concluding remarks and some suggestions for future research. Following these

main chapters is an appendix that includes all of the programs used in the implementation of

the time delay neural network.

10

CHAPTER 2. SPEECH PROCESSING AND RECOGNITION

This chapter introduces the concepts of speech production, processing, and

recognition. A discussion of the speech recognition system developed for this project is also

included along with the different methods used to generate the feature vectors.

Speech Production

The vocal system can be divided into three subsystems - the lungs and trachea, larynx,

and vocal tract. The lungs and trachea act as the power source for the system, the larynx is

the main sound generator, and the vocal tract modulates the sound from the larynx. There are

two main functions associated with speech generation - excitation and modulation. Excitation

is the generation of a pulse train and modulation imposes information onto the pulse train, see

Figures 2.1, 2.2, 2.3.

A simplified diagram of the vocal tract is given in Figure 2.1 (e(n) is the excitation, e
(n) is the modulation, and s(n) is the output speech signal) or, from a system viewpoint,

Figure 2.2. The two types of excitations used to generate phonemes are voiced and unvoiced.

Voiced excitation is a periodic stream, while unvoiced excitation is turbulent. Acoustically the

vocal tract is a tube of nonuniform cross section, which has many natural frequencies.

Because of the nonuniformity the vocal tract resonances are not equally spaced; however,

there is approximately 1 resonant frequency per kHz bandwidth. These resonance frequencies

(formants) have different locations depending on the phoneme being spoken. Formants are

the primary source of information for the generated speech. Formants are labeled by number

in order of increasing frequency: ~, F2 , etc. The formants for the phoneme leI are shown in

Figure 2.4. Fa is the pitch; pitch is the principle frequency generated. There is a large amount

of information contained in the frequency of the signal. Figure 2.5 shows both a time and

frequency plot of a speech signal (note that the information contained in the frequency signal

is more readily usable then the time signal).

Speech Recognition

Complexity Issues

There are several levels of complexity involved in speech recognition systems. One

distinguishing level of complexity is whether the system is using isolated or continuous words.

Isolated words are words that have intentional pauses between each word (usually pauses are

at least 250 ms), while continuous speech have no intentional pauses. Another possible

e(n)

11

13 em

(((8.5 em
~

I
8(n)

~
17 em

Figure 2.1 Simplified Vocal Tract Model

Voiced Input

I I I I I I

Filter

,y'~~~~~e~ ,InPU~
III II II

• Slow· variations

Figure 2.2 Vocal Tract System Model

=

1E(a1)1

11

Excitation responsible for

• fast· spectral variations

x

a1

..
: s(n)

~

_ ..

Vocal system responsible

for· slow· variations

Figure 2.3 Vocal Response Including Excitation and Modulation

til
-a
.a

12

Magnll.lde Speclrum of leI In dB
5a~+---~------~-------r------~------.-------'

., .
. .. ·········:················!·F·············:········F,······1················:···············

: ; 2 : 3; ; ·

7: 25
CII ..
:I

2a

15

1Q ..•.•.•.•.•.•.. ~ .•...•.•.•.•.•.. ! ~ ~ ? ••••.•.•. •••
o • • • • · · · ·

5~----~~----~------~------~------~----~
a 1cca 2CCC ~CCC ~CCC 50CC SCCC

Frequency In Hz

Figure 2.4 Fonnants for lei

13

Uno Domain
2CCC~------~--------~------~--------,-------~

r~t J
JI rfwv

-2CCQ L...-_____ --L.. ____ ..L..-___ --'-____ .:....L.... ___ ---'

C C.CCS C.CI C.CIS C.02 C.C2S
Time In Seconds

Frequency Doma~

ICCC 2CCC 3CCC 4COC SOCC SCCO
Froquoncy In Hz

Figure 2.5 Time and Frequency Plot of leI

14

system is one that only recognizes certain words (word spotting). Yet another possibility is a

system that implements speech understanding. Speech understanding systems not only

recognize the words but understand the context of the sentences. The order of comple~ity,

from least to most complex, of these four types of recognizers are: isolated word, word

spotting, continuous speech, and speech understanding. Speech systems are either built for

individual speakers or multiple speakers. Having a system that works for multiple speakers

opposed to a single speaker makes the system more complex.

Problems Encountered

The following are a few common problems that are encountered when developing a

speech recognition system.

• Speaker Variations: Since no individual sounds exactly like another there is

speaker dependent information in the speech signal.

• Ambiguity: There are many words like "two", "to" and "too" that sound the

same. Also, words that sound similarly can cause problems such as "see",

"bee", and "pea".

• Speech Variations: Individuals do not always pronounce words the same

due to carelessness, phonetic variations, coarticulation, and temporal

variations. Phonetic variations are slight changes in an individual's formant

frequencies. Coarticulation refers to the phonetic features affected by the

context of the speech. Temporal variations are time misalignments; words

are not always pronounced in the same amount of time or with the same

amount of time pronouncing the phonemes of a word.

• Noise & Interference: One must also consider the noise and interference

that may be encountered when collecting speech samples.

These problems cause various difficulties when implementing a speech recognition system.

These speech related problems are coupled with signal processing issues. The signal

processing issues that are commonly addressed are end point detection, time normalization,

segmentation, and data compression. Generally, all of the signal processing issues must be

taken into consideration while some of the speech problems can usually be ignored. Ignoring

the speech problems usually makes a less robust but functional system. Many times systems

are limited to a single speaker or the data is intentionally collected in a noise free environment

to minimize the speech problems.

15

Speech System

The speech recognition system developed for this research work is shown in Figure

2.6. The feature extraction block in Figure 2.6 can be replaced with one of the block

diagrams illustrated in Figure 2.7, which generate the six feature vectors that are being

compared in this work. Only feature vectors that are in the frequency domain are considered

since there is a larger amount of accessible information in the frequency domain. In the next

several sections, each component of the speech recognition system is discussed in detail.

Speech Recognized
Signal

Endpoint Segmentation Feature Compression Time Delay
Word

.--+ Detection ~ (5 ms blocks)
4

IExtractiol1 ... to 10 ms r-. Normalization r--+ Neural Network

Figure 2.6 Speech Recognition System

The speech samples were collected using an Ariel DSP board. The sampling rate was

set to 12 kHz in order to make comparisons with others' work. As mentioned in the

introduction, the system uses isolated words and is speaker dependent. The words fbI, IdI, leI,
and Ivl were collected, typically 3 sets of the 4 words at a time. When processing the words

the fIrst 150 ms of the word was used since most of the distinguishing information is located

in this region. There are 150 of each words for a total of 600 words. Not all 600 words were

collected at the same time; the collection process spanned over three days to allow more

variation in the speaker's voice. These 600 words were broken into training and recognition

groups. Roughly 400 words were used for training while the other 200 were used for the

recognition task. An entire speech sample of 10 seconds, containing 12 words, is shown in

Figure 2.8.

Signal Processing

Endpoint Detection

The speech samples consisted of several isolated words and required a method of

extracting the individual words from the silence and other words. The method used to extract

the words was a simple standard deviation comparison. The steps for the standard deviation

method are outlined in Figure 2.9.

-
-
-
-
~

B
an

d
F

F
f

Po
w

er

Pa
ss

Fi

lte
r

-1
f
f
f

H

 Power
H1

~~
 ~
 B

an
d

Pa
ss

 F
F

r
Fe

at
ur

e

M
el

 S
ca

le
d

F
F

f
Fe

at
ur

e

-
{

f
f
f

H

 Power
H

 Log
K
~
w
}
1
 Po

w
er

H

 i~l
~

-1
f
f
f

H

 Power
H

 Log H
 [fff

K
 Power

H
 ~~~~~ 
~
 

~
 

-L
 

L
PC

 F
ea

tu
re

 

I 
L

PC
 

I"
 

-1 :
've

':! 
~
 W

av
el

et
 

Fe
at

ur
e Fi

gu
re

 2
.7

 B
lo

ck
 D

ia
gr

am
s 

fo
r 

Fe
at

ur
e 

E
xt

ra
ct

io
n 

B
an

d 
Pa

ss
 

C
ep

st
ra

l 
Fe

at
ur

e 

M
el

 S
ca

le
d 

C
ep

st
ra

l 
Fe

at
ur

e 

-0\ 



17 

SpeAch Sam piA wl1h 12 Werds 
~QQQ~--~----~----T---~----~----~----r---~~--~--~ 

2QOO 

iOOQ 

Q 

-200Q 

· . . . . . . ............................. , ......... _ ......... _ ............................. . . . 

· . . . . . . .................................................... _ .......... _ ....... . · . . . . . 
· fbI ~I lei Ivl 

t 2 458 
1fmA kt cAcondc 

7 

Figure 2.8 Speech Signal Containing 12 Words 

. . ................ . 

8 10 



18 

Standard Deviation Endpoint Detection 

Step 1. Determine the standard deviation of the silent parts of the speech 

signal. The samples between 600 and 1800 are used (there are 

120000 samples in one data set) for this calculation. The 

standard deviation is calculated using: 

O='I~ I, (X(i)2 _X2), where x=! I,X(i). 
,n 1 ;=1 n ;=1 

Step 2. Determine the standard deviation of the entire speech sample for 

5 ms blocks. 

Step 3. Find the starting point of the word - If the standard deviation of 

each of three consecutive blocks is greater than three times the 

standard deviation of the silence the start of a word is detected. 

Step 4. Find the end point of the word - If any two of the last four 

consecutive blocks standard deviation fall below three times the 

silence standard deviation the end of a word is detected. There is 

also a minimum length of 150 ms for the word. 

Step 5. Go to Step 3. Repeat until end of speech sample is reached. 

Figure 2.9 Endpoint Detection Scheme 

A small speech sample with one word and the endpoints detected for the sample are 

shown in Figure 2.10. This very simple procedure gives reasonably good results when there is 

litde noise in the environment. If the environment is noisy, however, the standard deviation of 

the silent section maybe large and it could be difficult to separate the noise from the words. 

When building speech recognition systems for noisy environments, more complex methods of 

endpoint detection are required [3]. 



19 

Speech cample wl1hout M'ldpolnt detacllon 
2000r-------~------~------~------~------~------~ 

. 
1000 · . ..... ..... ..... ..... .......... ... .... ...... ..... . · . · . · . · . · . 
O~------~------~------~ 

-lOCO .............. -- .............. , ............... . · . · . · . · . · . · . -2000 '--______ ..L..-______ ..L..-______ ...L.-.-.:.....L:.... __ ...L.-______ ...l-______ ...J 
a 2000 '000 SOOO 1000 10000 12000 

Speech sample wl1h endpo"t detectbn 

1000 

a······ 

·1000 .... -_ ................ . · . · . · . · . · . · . 
·2oaO'----~--~~~~--~----...L.---~----~--~---...J~--...J 

5500 SOOO 8500 7000 7500 1000 1500 8000 8500 10000 10500 

Figure 2.10 Processing of Speech Sample using Endpoint Detection Scheme 

Blocking (Segmentation) 

The segmentation procedure for the speech samples corresponding to each word was 

very simple. Segmentation was accomplished by simply dividing the word into 5ms blocks. 

Given that the sampling rate was 12 kHz. each 5 ms block contained 60 samples. The shift 

invariance property of the time delay neural network allowed the use of this simple 

segmentation procedure. If the time delay neural network were not shift invariant, a more 

complicated procedures for segmentation might have been required. 

Fourier Transform and Inverse Fourier Transform 

This section begins with an introduction to the discrete-in-time. continuous-in

frequency Fourier transform (OTFr) and then discusses the discrete Fourier transform 

(discrete both in time and frequency) and its implementation. The discrete Fourier transform 

(OFf) is used in this work. The Fourier transfonn uses a series of sinusoidal wave fonns with 

varying amplitudes and frequencies to represent a given signal. The defining equations for the 

DTFr and its inverse are given in Figure 2.11. 



-
X(ejol) = L,x(n)e-i<M 

/1=-

1 lit . . x( n) = - X (e ftD )eJOlII dOl 
21t -II: 

20 

Fourier Transfonn 

Inverse Fourier Transfonn 

Figure 2.11 D1Ff 

The Fourier transfonn of a function x is denoted by 1 {x}. The Fourier transfonn is 

used for analyzing a sequence to determine the frequency components that are required to 

generate the sequence. It is common to break the Fourier transfonn into magnitude and phase 

components, shown here. 

The Fourier transfonn is sometimes referred to as the spectrum, since it gives the amplitude 

and phase of the sinusoids required to generate a given sequence. 

The discrete Fourier transfonn is often used in practical situations, since having 

discrete frequency components allows simple implementations. These implementations of the 

DFf are referred to as FFfs (Fast Fourier Transfonns). Since the Fourier series 

representation is ideal for periodic signals, the approach taken for the DFT is to construct a 

periodic sequence for which the period is equal to the original finite length sequence. The 

defining equations for the DFT and its inverse are given in Figure 2.12. Both X(k) and x(n) in 

Figure 2.12 are periodic sequences. 

The DFT was implemented with a decimation-in-time FFT algorithm [10]. The 5 ms 

blocks (60 samples) were zero padded to 256 samples and then the 256 point FFT was 

computed for the block. The two methods used to generate the 16 coefficients were the filter 

bank and mel-scale filter, discussed shortly. 

Cepstrum 

The cepstrum transfonn was given its name because the cepstrum is the inverse of the 

spectrum. With the word cepstrum, other common tenns have been changed to reflect the 

inverse transform; these tenns include quefrency (inverse frequency) which is the independent 

parameter, and liftering (filtering) to "filter" the quefrencies [10]. The key feature of the 

cepstrum is that it allows for the separate representation of the glottal excitation and the vocal 



21 

N-I -j27t1tl 

X(k)= Lx(n)e-N-

Commonly the following abbreviation is used. 
j2JC 21t.. 27t 

WN =e N =COS-+ Jsm-
N N 

N-I 

Which gives: X(k) = Lx(n)W-U 

1 N-I 

TheinverseDFfis: x(n)=- LX(k)WU 

N k=O 

Figure 2.12 Discrete Fourier Transform 

tract modulation. The separation of the excitation and modulation can also be thought of as a 

deconvolution. The discussion begins with the real cepstrum, since it is a little easier to 

understand. Then the complex cepstrum (implemented in this work) is discussed. The 

defming equation for the real long term cepstrum is: 

cs(n)=r l {logll{s(n)}1} =_1 IJC logIS(ro~ej<alftdro 
27t -JC 

The block diagram of the real cepstrum computation is given in Figure 2.13. 

s(n) 
loglsl 

Cs(ro) = logIS(ro)1 Inverse 
FFf -- FFT 

Figure 2.13 Computation of Real Cepstrum 

cs(n) 

Real Cepstrum 

If the signal sen) is composed of two parts (excitation and modulation) the first two blocks 

given in Figure 2.13 give the following representation of the signal. 

Cs(oo) = logIS(ro)1 

= logIE(ro)S(ro)1 

= log 1 E (ro)1 + loglS( ro)1 

= Cc (ro) + Ce (00) 



22 

Now, the signal is represented as a sum of the excitation and modulation; then the inverse 
Fourier transfonn is taken giving the real cepstrum cl(n) = c~(n)+ ee(n). This expression 

gives the desired characteristics of linear separation of the excitation and modulation. The 

transition from the long-tenn real cepstrum to the shon-tenn real cepstrum is accomplished by 

using the shon tenn DFf and inverse along with zero padding of the signal. The real 

cepstrum can be used for two key applications in speech processing: pitch estimation and 

fonnat estimation [11]. 

Now the complex cepstrum will be discussed; the discussion will stan with the long 

tenn concepts knowing that the transition to the shon-tenn complex cepstrum will be 

accomplished with a shon-tenn DFf. The complex cepstrum is a subclass of homomorphic 

signal processing [to]. The real cepstrum is not a subclass of homomorphic signal processing, 

however, since the original signal can not be reconstructed from the real cepstrum. The key 

difference between the complex cepstrum and the real cepstrum is the complex logarithm that 

is used by the complex cepstrum. The definition of the complex logarithm and its application 

to the Fourier transfonn of a signal is: 

log z = loglzl + j argJ zl complex log 

10gS(w) = 10gls(w)l+ jarg{S(w)} 

In order for 10gS(w) to be unique the arg{S(w)} must be selected to be an odd continuous 

function of w [to]. Figure 2.14 illustrates the separation of the excitation and modulation and 

the block diagram of the complex cepstrum is shown in Figure 2.15. Diagram 2.15 is redrawn 

in Figure 2.16 to show the computation of the real and imaginary pans of the complex log, 

which leads to the decomposition of the signal into its even and odd pans. The cepstrum for 

the 5ms blocks was implemented using a 256 point FFf. The 16 coefficients were generated 

with the linear and mel-scale filter banks. Figure 2.17 shows a plot of the complex cepstrum 

for the phoneme let. 

Filter Bank 

The filter bank is simply a set of band pass filters. There are 16 filters that cover the 

6000 Hz frequency range of the data. These filters divide the frequency range linearly, so that 

every filter covers 375 Hz. Then, to generate the feature coefficients with the filter bank, the 

strength of the frequency components in each range are summed. The features are detennined 



e,(n) 

m 

Low quefrency energy 
High quefrency 

P 2P 3P n 

= 

23 

loglE( "'31 log\8( u~1 

+ 

1Z m 

+ 

P 2P 3P n 

Figure 2.14 Separation of Excitation and Modulation 

1Z m 

n 



24 

s(n) --'" 
FFf 

Complex log (S (CO )) Inverse "(s(n) 
r--- _ .. --. 

log 
P' 

FFf Complex 
Cepstrum 

Figure 2.15 Computation of Complex Cepstrum 

Ys,real (00) sen) S(oo) Inverse "( I,nelt(n) 
FFf log I I 

FFf + "(s(n) 
~ 

Y,;_,(ro) ~ Inverse "( I,odd(n) + 
_ .. arg{ } r 

FFf 

} 

Figure 2.16 Decomposition of Complex Cepstrum into Even and Odd Pans 



25 

Cocptrum of 101 

8~------~---------r--------~--------~--------r-------~ 

,I -

-

5 -

-

-

2 -

1 -

-

II 3 I I 
-1~------~--------~------~~------~--------~------~ o 50 100 150 200 250 ~oo 

Figure 2.17 Complex Cepstrum of leI 



26 

using the following equation: 
j·37S 

C(o= L,S(j), fori=I,K ,16 
j=(i-J)"375 

where c(i) is the feature coefficient and s(j) is the spectrum or cepstrum of the block. The 

summing of the frequency strengths yields the 16 coefficients that are required by the time 

delay neural network. 

Mel-Scale Filter 

The mel is the unit of pitch, where pitch is defined relative to some reference 

frequency. The mel-scale is a logarithmic scale that relates the frequency (in Hz) to the pitch 

(in mels). One approximation of the mel-scale is: y = 1000 Iog2 ( 1 + 1 ~ ). In Figure 2.18 

pitch in mels is plotted versus frequency. To create the mel-scale filter a selected range in 

mels is taken and then all of the frequency components in that range is added together to 

generate the mel-scale coefficient. The mel-scale frequency ranges used to generate the mel

scale coefficients are given in Table 2.1 for a sampling rate of 12 kHz. 

Linear Prediction Coefficients 

Linear prediction, when used for speech recognition, predicts the spectrum envelope 

of the speech signal. The goal of linear prediction is to predict the current output based on 

the previous outputs. The linear prediction estimate and prediction error are given in Figure 

2.19. 

There are two common ways of obtaining the optimum predictor coefficients, the 

autocorrelation and covariance methods. The autocorrelation and covariance names are 

derived from the fact that the data representation reduces to the short-term autocorrelation 

and the covariance matrix respectively. The autocorrelation method is used in this research, 

so only that method will be discussed. The autocorrelation method of obtaining the predictor 

coefficients using the Levinson-Durbin recursion is shown in Figure 2.20 [11]. Levinson

Durbin recursion solves a system of equations of order n assuming that there is already a 

solution for the predictor of order n-I. 



27 

3000 -

_ 2000 
"" 
~ --5 -it 

1000 • 

20 
Frequency (Hz) 

Figure 2.18 Mel-Scale 



28 

Table 2.1 Mel-Scale Coefficients 

Mel-Scale Coefficients for 12 kHz Sampling Rate 

Coefficient Frequency Range 

m(1) =s(I)+s(2)+s(3)12 0- 141 

m(2) =s(3)12+s( 4)+ ... +s( 6)+s(7)12 141- 328 

m(3) =s(7)12+s(8)+ ... +s(10)+s(11)12 328- 516 

m(4) =s(11)12+s(12)+ ... +s(14)+s(15)/2 516- 703 

m(5) =s(15)12+s(16)+ ... +s(18)+s(19)/2 703- 891 

m(6) =s (19)/2+s (20)+ ... +s(22)+s(23)/2 891-1078 

m(7) =s(23 )12+s(24)+ ... +s(26)+s(27)12 1078-1266 

m(8) =s(27)12+s(28)+ ... +s(30)+s(31)12 1266-1453 

m(9) =s(31 )12+s(32)+ ... +s(35)+s(36)12 1453-1688 

m(10) =s(36)12+s(37)+ ... +s(41)+s(42)/2 1688-1969 

m(11) =s(42)12+s(43)+ ... +s(48)+s(49)12 1969-2297 

m( 12) =s( 49)12+s(50)+ .. , +s(57)+s(58)12 2297-2719 

m( 13) =s(58)12+s(59)+ ... +s( 68)+s(69)12 2719-3234 . 

m(14) =s(69)12+s(70)+ ... +s(81)+s(82)12 3234-3844 

m(15) =s(82)12+s(83)+ ... +s(97)+s(98)12 3844-4594 

m(16) =s(98)/2+s(99)+ ... +s(116)+5(117)12 4594-5484 



29 

Linear Prediction Estimate 

.9{n) = - t a(i)y(n - i), 
i=1 

where - a(i) is the predictor coefficients and p is the predictor order 

Prediction Error 

Step 1. 

Step 2. 

Step 3. 

p 

e(n) = y(n)- yen) = La(i)y(n-1) 
i=O 

Figure 2.19 Linear Prediction Equation 

Autocorrelation Recursive Algorithm 

For n=O, Eo = '0' where E is the error term and 

N-I 

Ii = Ly(n)y(n-O (the autocorrelation) 
II=i 

For step n, 

k" = ~~I f arl ',,-i k is the reflection coefficient 
E i=O 

a"=k" 
" 

Fori=l,K ,n-1 

a~ = a~-I + k"a"-~ 
•• II-a 

Repeat Step 2 until n=p, the order of the prediction desired. 

Figure 2.20 Autocorrelation Recursive Algorithm 



30 

Wavelet Transform 

The wavelet transfonn has many properties in common with the Fourier transfonn, but 

has some distinguishing differences that might give the wavelet transfonn an advantage over 

the Fourier transfonn for speech recognition [12]. The two key differences between the 

wavelet and Fourier transfonns is the mapping and the number of functions. The Fourier 

transfonn maps the time domain to the frequency domain, while the wavelet transfonn maps 

the time domain to a scale domain. Fourier analysis decomposes a signal into individual 

frequency components, but does not tell when the frequencies occurred. The scale domain of 

the wavelet transfonn, however, contains infonnation about the frequencies in the signal and 

when they occurred. There are many wavelet functions available while there is only a single 

function for the Fourier transfonn. 

In wavelet analysis, a generating function, the wavelet, is selected and an associated 

transfonn gives a time-scale representation of functions. The wavelet function can be thought 

of as the impulse response of a band pass filter [14]. The time-scaling is accomplished by 

using contracted versions of the wavelet for fine temporal analysis and dilated versions for fine 

frequency analysis. The orthononnal wavelet bases constructed by Daubechies (used in this 

work), gives rise to a discrete, time-scale representation of finite energy signals [12]. 

The basic concept of the wavelet transfonn is varying the window size which yields 

better time-frequency resolution of signals. The uncertainty principle excludes the possibility 

of having arbitrarily high resolution in both time and frequency. By varying the window size, 

resolution in time can be traded for resolution in frequency. One way of achieving the trading 

of resolution is to have shon high frequency basis functions and long low frequency basis 

functions. The trading is accomplished with the wavelet transfonn, where the basis functions 

are obtained from translating, dilating, and contracting a single wavelet. An example basis 

function is: 

When a is large, the basis function is a stretched version of the prototype wavelet (low 

frequency) and for small a the basis function is a contracted version of the prototype wavelet 

(high frequency). Translation is obtained by adjusting the value of b. The wavelet transfonn 

is defined by the equation on the top of the next page. 



31 

1 J" (t-b) Xw(a,b)= fa _ .. h -;;- x(t)dt 

Daubechies wavelets are specified by a panicular set of numbers, called wavelet fIlter 

coefficients. The Daubechies wavelets range from highly localized to highly smooth 

representations of the signals. The simplest (and most localized) of the Daubechies wavelets 

is called DAUB4 and has only four coefficients, co"",c3 ' The DAUB4 wavelet was used in 

this work. The following is the transformation matrix that acts upon a column vector of data 

to its right. 

Co c1 c2 c3 

c3 -c2 c1 -co 

Co c1 c2 c3 

c3 -c2 c1 -co 

Co c1 c2 c3 

c3 -c2 c1 -co 
c2 c3 Co c1 

c1 -co c3 -c 

Here blank entries signify zeros. The first row of the matrix generates one component of the 

data convolved with the filter coefficients CO"'" c3 • Likewise so do the other odd rows. If 

the even rows followed this pattern, offset by one, then the matrix would be circular, that is an 

ordinary convolution that could be computed by an FFf. Instead of convolving with 

co ••••• c3 , however, the even rows perform a different convolution, with coefficients 

C3 ,-C2 ,C1,-CO' The action of the matrix is to perform two related convolutions, then to 

decimate each of them in half, and interleave the remaining halves. The values of the four 

coefficients are: 

Co = ( 1 + ../3) / 4J2 

c2 = (3-../3)/4J2 

C1 = (3+J3)/4J2 

c3 = (1-../3)/ 4J2 

Figure 2.21 is a plot of the DAUB4 wavelet. The wavelet transform does not allow for a 

different number of outputs than inputs, therefore the 16 coefficients have to be generated in a 



32 

slightly different manner for the 60 data samples. The 16 coefficients, for each 5 ms block, 

are generated by taking 4 wavelet transforms of size 16 and averaging the results. The range 

of data used are: 1-16, 15-30,30-45,45-60. 

Compression 

The coefficients were generated for the original 5 ms blocks of the words. To reduce 

the amount of data used to represent the speech signal the 5 ms blocks were compressed to 10 

ms blocks. The compression was achieved by simply averaging adjacent blocks. Compressing 

the data also helped to reduce time alignment problems. When the data was averaged for 10 

ms, instead of the original 5 ms, the resulting coefficients were smoother. 

Normalization 

There is a wide range of values that were determined for the feature coefficients. 

Having wide-spread coefficients can cause problems for neural networks, therefore the 

coefficients were normalized. To normalize the coefficients, for each representation of the 

words, the largest coefficient is detennined. Then the coefficients for the given word were 

divided by the largest coefficient. Dividing by the largest coefficient provides a set of 

coefficients that were between 0 and 1. These smaller, less widely-spread coefficients seem to 

make the time delay neural network learn more quickly. This normalization also removes 

loudness information in the speech signals. 



33 

0.14,...--.-,.--..,-----.P"""'---.---...---.-----

0.04 

0.02 

0 

-0.02 

-0.04 
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 

Figure 2.21 DAUB4 Wavelet 



34 

CHAPTER 3. ARTIFICIAL NEURAL NETWORKS 

This chapter gives a brief introduction to artificial neural networks (ANNs) in context 

of their use as pattern classifiers. Three models are discussed: the single layer perceptron, the 

multilayer perceptron, and the time delay neural network. An in-depth presentation of the 

time delay neural network is given, as this network was used for the recognition part of the 

speech system. For more detailed information on ANNs, consult [2,13], for example. 

ANNs are simple mathematical models of the neurobiological structure (neural 

networks) of the brain. Figure 3.1 depicts a biological neuron and some local 

interconnections. Dendrites are fibers that transmit electrochemical pulses into the neuron. 

The neuron combines the inputs from all dendrites and if the combined signals are of the right 

strength, the neuron sends out an electrochemical pulse along axons, fibers that branch 

outward and meet other dendrites at junctions called synapses. As there are around 100 

billion neurons in the brain, ANNs cannot hope to emulate biological neural networks, at least 

at this stage of development. However, ANNs have been shown to be quite good at solving 

certain pattern recognition problems, including those in speech recognition. 

Single Layer Perceptron 

Background 

The perceptron is the first successful ANN architecture, developed by Rosenblatt in 

1957 [2]. The perceptron grew out of Rosenblatt's research to model the neurological 

structure of the brain. The perceptron is successful only where decision boundaries between 

pattern classes are linear hyperplanes, and this severely narrows the class of problems the 

perceptron is useful for solving. 

One main use of ANNs is for pattern classification. They also have the ability to 

determine function mapping, to deal with noisy data, to complete patterns, and to be adaptive 

in their solutions. For example, one of the first successful applications is handwritten 

character identification. Other areas that neural networks have been successful in providing 

solutions include: control systems, financial analysis, signal analysis, and pattern classification 

in biochemistry [1,13]. 



35 

Integration 

Dendrites 

Nucleus 
Output region of axon 

Figure 3.1 Biological Neuron 

Architecture 

The architecture of an ANN is the set of "neurons," or nodes, which perfonn the 

numerical calculations, plus the connections linking cenain nodes to others. The single layer 

perceptron (SLP) has a straight-forward architecture. See Figure 3.2. There are actually two 

layers in this network, the input layer of neurons, which perfonns no calculations, plus the 

output layer of neurons, where each neuron does computation. Each input neuron simply 

passes its numeric value along each connection to nodes in the upper layer to which it is 
connected. Each connection has a weight value associated with it: wji is the weight value 

from lower node i to upper node j. At output node j, the value of the input node at location i 
is multiplied by the corresponding weight wji' summed, and then passed through a nonlinear 

activation function f. The fmal value at each output node is passed out of the network, and 

gives an indication of the pattern class represented by the input data. For M outputs, we have 

M pattern classes. Fonnally, the combining operation at each output node is 

Yj = f(fxiWji). 
1=1 



Activation Functions 

Class 1 
YI 

36 

Class M 
YM 

Figure 3.2 Single Layer Perceptron 

Output laye 
M outputs 

Input Layer 
N inputs 

Nonlinear activation functions give the neural network the ability to learn complex 

data sets. The hardlimiter and bipolar hardlimiter are often used for integer valued data sets, 

while the sigmoid and hyperbolic tangent are typically used for continuous data sets. These 

common activation functions are graphed in Figure 3.3. The equations of these four 

activation functions are as follows: 

hardlimiter 

bipolar hardlimiter 

sigmoid 

hyperbolic tangent 

I(X)={~ 

I(X)={~l 
I 

I(x) = 1 -<:u 
+e 

I(x) = tanh(x) 

x~o 

x<O 
x~O 

x<O 

The most commonly used activation function for the single layer perceptron is the hardlimiter. 



37 

Bipolar Hard Lml1&r 

.•...•.•. : ...•..... T------~------_1 

0.5 .........•......... ~.-........ , ....... . 

a ......... , ................... ; ........ -

-0.5 .•.•...•.•......... . ..•.•...••........ 

-1 ; ...•.•...• ; ......... -

-1.5 '-----'----'-------'------' 
-to -5 0 5 to 

Sigmoid 

I ......... ! .......... ~ ... -..:' .;...------1 

0.5 ................... . ........ ~ ....... . 

01----;.---.-;-····· .: .......... ~ ....... . . , 
, ................................ _"' ....... . , , , -0.5 

-i·········!··········;··········:········· 

-1.5 '----'---'----'---~ 
-10 -5 0 5 10 

Hard Lmltar 

1 4O ........... ~ ............ j-' ---~---~ 

· . 0.5 ......... ~ .......... -... - ... -.~.- ..... -. 

o I----r---~ .......... ;. ....... . 
, , 

-0.5 ..•...... ~ .......... ; .......... ;- ....... . · . , , 
-I .......... ; .......... : .......... ~ ........ -

-1.5 '-----'----.......... '-------'-----' 
-10 -5 o 5 to 

Hyperbole Tangent 

I ......... ! .......... :.. "J" -----I 
. . 0.5 ......... ~ .......... ! .•.•.•.•. ~ .•.•.•.• 

, 

o ......... ~ ...... j ............. ~ ........ -· . , · . , , , , 
-0.5 ......... ~ ........ '; .......... ;- ....... . · . , · , , · . . -I ..... ; ........... ; ........ . 

-1.5 '-----'"-----'------'-----' 
-10 -5 o 5 10 

Figure 3.3 Nonlinear Activation Functions 



38 

Decision Regions 

ANNs can be viewed as complex dynamical nonlinear systems, mapping an N-vector 

of input data to an M-vector of outputs. Correct pattern classification occurs when the M

vector lies inside a certain region of M-space. Thus, the infonnation about the mapping 

properties or classifications is contained in the weight values. As mentioned previously, the 

main drawback of the single layer perceptron is its linear decision boundary. The single layer 

perceptron is able to classify only linearly separable data sets. The requirement for the data to 

be linearly separable implies that the single layer perceptron can not even solve the XOR 

(Exclusive-or) decision boundary. An example, for two inputs and two outputs, of data sets 

that the single layer perceptron can distinguish is given in Figure 3.4. The light gray is the 

area that will be classified as region A and the dark gray is classified at region B. The XOR 

decision boundary that can not be solved by the single layer perceptron is given in Figure 3.5. 

There is a comparison of solvable decision regions for the perceptron based on the number of 

layers given in Figure 3.8, which is located in the section on the multilayer perceptron. 

Convergence Procedure 

The tenn learning refers to the neural network discovering the association between 
inputs and desired outputs in terms of the weights {w ji }. There are two types of learning: 

supervised and unsupervised. Supervised learning is based on presenting both the inputs and 

desired outputs to the ANN. The ANN uses the inputs and calculated outputs to adjusts the 

weights so on the next pass they classify the inputs correctly to the desired outputs. This 

presentation of inputs followed by a correction in the weight values is done iteratively, 

typically thousands of times. For unsupervised learning, the ANN is given the inputs and 

decides by the use of pre-defined heuristic algorithms how to separate the data into different 

classes. A supervised method is used in this work. The original supervised learning 

procedure developed by Rosenblatt is outlined in Figure 3.6. 

Rosenblatt proved that if two classes of data are linearly separable, then the perceptron 

converges (using the method outlined in Figure 3.6) with a hyperplane separating the two data 

sets. If the two classes of data are not linearly separable then it is possible for the perceptron 

convergence procedure to oscillate continuously [6]. A procedure developed by Widrow and 

Hoff minimizes the least mean squared error to determine an optimal solution for data that is 

not linearly separable. This algorithm is simply called the Widrow-Hoff or LMS algorithm. 



39 

Figure 3.4 Solvable Decision Region for SLP 

Figure 3.5 XOR Decision Region that is not Solvable by SLP 



40 

Learning Algorithm for Single Layer Perceptron 

Step 1 Initialize the Weights and Threshold 

Set the initial weights (Wjj (0), (0 ~ i ~ N -1, 0 ~ j ~ M» and 

threshold (8) to small random values, where Wjj (t) is the weight 

from input node i to output node j at time t and 8 is the threshold 

for the output node. 

Step 2 Present New Input and Desired Output 

Present a new input set Xj (k), 0 ~ i ~ N -1, where k is the index 

of the data sets. Along with the input give the desired output d(k). 

Step 3 Calculate the Actual Output 

The calculation for the actual output is 

(

N-I ) 

Y/k)=! ~Wji(t)Xi(k)-8 , 

where f is a nonlinear activation function, Wjj (t) is the weight from 

input node i to output node j, xj(k) is the input of node i, and e is a 

threshold or offset. 

Step 4 Adapt Weights 

The weights are adapted in the following manner. It should be 

noted that if the calculated and desired output are the same the 

weights are not updated. 
Wjj(t+ 1) = Wjj(t)+ Tl(d(k)- y(k))xj(k), 0 ~ i ~ N -1, and 11 is the 

learning rate or gain factor 0 < 11 < 1. 

Step 5 Repeat by going to Step 2. 

This process is completed when there is one complete presentation 

of the training data without having to adapt the weights. 

Figure 3.6 Learning Algorithm for the SLP 



41 

The Widrow-Hofffollows Rosenblatt's procedure except the hardlimiter is replaced by a ramp 

function, shown in Figure 3.7. Both learning algorithms require the weights to be corrected 

on every trial by an amount that is related to the difference of the desired and calculated 

outputs. 

/ 
Figure 3.7 Ramp Function 

Multilayer Perceptron 

Architecture 

The multilayer perceptron (MLP) takes the simple structure of the single layer 

perceptron and combines several SLPs. The architecture of the MLP has the ability to learn 

complex decision regions. There are multiple layers in the MLP, see Figure 3.8; the layers 

between the input and output layers are called hidden layers. It has been shown that no more 

than two hidden layers are required to learn data of any complexity [2]. The MLP is a fully 

interconnected network; full interconnection implies that every node of layer 1 has weighted 

connections to layer 2, every node of layer 2 is connected to layer 3, etc. There is no 

restriction on the number of input nodes, hidden nodes, and output nodes. There have been 

many attempts to give a general rule to determine the number of nodes, but no rule works for 

all cases. Usually the number of input nodes is determined by the input data set, and the 

number of output nodes is the number of desired classes. Lippmann makes the following 

suggestion on detennining the number of nodes that are required for a panicular data set [6]. 

In Lippmann's statement the first layer refers to the first or lowest hidden layer and these 

second layer is the second hidden layer or the one below the output layer. 



42 

"The number of nodes in the second layer must be greater than one when decision 

regions are disconnected or meshed and cannot be formed from one convex area. 

The number of second layer nodes required in the worst case is equal to the number 

of disconnected regions in input distributions. The number of nodes in the fIrst layer 

must typically be suffICient to provide three or more edges for each convex area 

generated by every second-layer nodes. There should thus typically be more than 

three times as many nodes in the flrst as in the second layer." 

Figure 3.8 Multilayer Perceptron 

Decision Region 

Output layer 
M nodes 

Hidden 
layer 
L nodes 

Input layer 
N nodes 

The architecture of the multilayer perceptron allows the MLP to learn more abstract 

data sets than the SLP. A comparison of the complexity of the decision regions for the single 

layer perceptron, a two layer perceptron, and a three layer perceptron are given in Figure 3.9 

[6]. The areas @ and ® are the regions that are desired to be classified as class A or B. 

The gray and white regions are those that the ANN has chosen to be classes A and B. As 

depicted in Figure 3.9 the two layer perceptron has the ability to learn either convex open or 

convex closed regions. The convex regions can have no more sides than the number of nodes 



43 

in the input layer. Knowing that the complexity of the convex region is dependent on the 

number of input nodes helps to detennine the number of input nodes to be used in the neural 

network. If there are too many input nodes, however, the weights can not adjust properly to 

give reliable outputs. The three layer perceptron has the ability to classify arbitrarily complex 

decision regions. The 3 layer MLP even can separate meshed regions like that in the bottom 

right of Figure 3.9. 

Back.Propagation Learning Algorithm 

The back-propagation training algorithm was used to train the time delay neural 

network, and thus this training algorithm is presented in detail. Until the advent of the back

propagation learning algorithm, the multilayer perceptron was not used much, since there 

were no effective/efficient way to train the network. It is possible to train the MLP with the 

algorithm given in Figure 3.6, but the weights in some of the layers are required to be fixed 

which makes learning and training more difficult. With recent development of more advanced 

algorithms the popularity of the MLP has grown. The back-propagation (sometimes referred 

to as back-prop) learning algorithm is one of the most common methods for training the MLP 

and several other ANNs. The back-prop is an iterative gradient descent learning method 

designed to minimize the mean square error between the desired output and calculated output. 

An outline of the back-propagation learning algorithm is given in Figure 3.10. The basic 

procedure of the back-prop algorithm is to calculate the actual output given an input data set 

and the initial weights, find the mean square error between the desired and calculated outputs, 

adjust the weights between the highest two levels, use the error tenn to generate an error term 

for the next lower level, update the weights at the next lower level, and continue this process 

until reaching the weights between the lowest hidden layer and the input layer. The back

propagation algorithm requires a continuous activation function; usually either the sigmoid or 

hyperbolic tangent are used. 

Considering the possibility that the back-propagation method may find a local 

minimum instead of a global minimum it usually provides very good results. The momentum 

tenn discussed in Step 4 of Figure 3.10 may sometime alleviate the problem of local 

minimums by bouncing the gradient descent out of a local minimum. Also, having random 

valued starting weights may help to jump over or out of some local minimum. The biggest 

drawback of this algorithm is the fact that many presentations of the training data are usually 

required for the network to learn the data. 



Structure 

Single Layer 

J\ 
Two Layer 

Types of decision 

Half Plane 
Bounded by 
Hypetplane 

Convex Open 
or Closed 
Regions 

Arbitrary 
(Complexity 
limited by number 
of nodes) 

44 

Exclusive OR Classes with Most general 

@ 

0 

Figure 3.9 Decision regions of the perceptron for various number of layers 



4S 

Back-Propagation Learning Algorithm 

Step 1 Initialize the Weights and Offsets 

Set all of the weights to small random numbers (usually between -1 

and 1). This includes initializing the weights from the offsets to the 

nodes above. 

Step 2 Present Inputs and Desired Outputs 

Present a new input set xj(k), 0 ~ i ~ N -1, where k is the index 

of the data sets. Along with the input specify the desired output 

d(k). If the network is being used as a classifier then generally the 

desired outputs are all 0 except for the node corresponding to the 

desired class which is given the value of 1. 

Step 3 Calculate the Actual Outputs 

Calculate the outputs at each layer starting at hidden layer 1 and 

working toward the output layer. The output equitation is 

YJ (k) = f( ~ w. (t )x, (k) - e ). where f is the nonlinear activation 

function with the sigmoidal function typically being used. Yj(k) is 

the output of node j with input set k, Wjj (t) is the weight between 

node i and node j, Xj (k) is the output of node j, e is a threshold or 

offset. and N is the number of nodes in the current layer. 

Step 4 Adapt Weights 

Start by updating the weights between the output layer and the 

highest hidden layer and recursively work down to the weights 

between the lowest hidden layer and the input layer. Adjust the 
weights with the following equation. W ji (t + 1) = Wjj (t) + 110 jX;, 

with W ji (t) being the weight from hidden node i or from an input 

node i to node j at time t. x; is the output of node i or an input 

Figure 3.10 Back-Propagation Learning Algorithm 



46 

node i. 11 is the gain term or learning rate. OJ is the error term for 

nodej. If node j is an output node, then OJ = Yj(1- Yj)(dj - Yj) 

with d (j) the desired output at node j and Y j is the calculated 

output. If node j is a hidden node, then OJ = x~(1-x~) I0j;Wjj; 
k 

where k is over all nodes in the layers above node j. Convergence 

can sometimes be faster if a momentum term is included in the 

adaptation of the weights. The adaptation of weights including the 

momentum term is given below. 
wji (t + 1) = Wji (t) +110 jX; +a.(wji(t) - wj; (t-l», where 0< a. < l. 

Step 5 Repeat by going Step 2. 

Continue until the system has converged for the training data. 

Figure 3.10 Continued 

Time Delay Neural Network 

Background 

The time delay neural network (TDNN) was introduced by Alex Waibel in 1988 [7]. 

The following reasons are given by Waibel for using the TDNN for speech recognition: 

• Multilayer neural networks can represent arbitrary complex decision regions. 

• The time delay structure gives the network the ability to learn the temporal 

structure of speech. 

• The network is translation invariant, therefore it has the ability to learn the speech 

pattern without precise alignment. 

The learning procedure used by Waibel and in this research is the back-propagation algorithm. 

The flfSt recognition task performed by Waibel were on the letters "B", "0", and "G" with 

average recognition rates between 97.5% and 99.1 % for speaker dependent speech samples 

[7]. 



47 

Architecture of the Time Delay Neural Network 

This network was used for the pattern classification part of the speech system in this 

work. An important structure of the time delay neural network is the delay included at each 

node. Figure 3.11 is a diagram that depicts the delays in the TDNN. The delay node takes 

the weighted versions of N previous inputs and the current input to calculate the nodes 

output. This delaying unit gives the time delay neural net the ability to learn speech data 

without accurate time alignment. 

The overall TDNN used by Waibel and this research is shown in Figure 3.12. This 

TDNN takes 15 sets (15Oms) of 16 nodes (i.e. the 16 coefficients generated by the feature 

extraction) for the input and ends up with an output of 4 nodes (3 nodes in Waibel's case). 

There are two hidden layers, which contain 8 nodes in the lower hidden layer and 4 nodes in 

the upper hidden layer. A delay of N=2 between the input and hidden layer 1 leaves hidden 

layer 1 with 13 sets of eight nodes. The delay of N=4 between hidden layer 1 and hidden 

layer 2 gives hidden layer 2 9 sets of 4 nodes. Finally the delay between hidden layer 2 and 

the output layer is N=9 leaving only 1 set of the four output nodes. Increasing the delay size 

(or window size) when ascending the layers of the TDNN gives the TDNN the ability to learn 

more abstract relationships between the data. 

To calculate the output of a node the following calculations are performed: multiply 

the value of the lower nodes (and delayed versions) by their corresponding weights, sum these 

multiplications, and pass the summation through a nonlinear activation function (in this work 

the sigmoid function). This procedure works for all but the output layer. For the output layer 

a weighted sum of all node l's is performed followed by passing the summation through the 

nonlinear activation function to generate the output for node 1 of the output layer. This is 

continued for each of the other three nodes. The reason for this final calculation is to include 

the information for the entire 150ms of data. 

Modifications to the Back-Propagation Algorithm 

The structure of the TDNN has many similarities to the perceptron so almost all 

implementations of the TDNN use a modified back-propagation algorithm. Using a back

prop algorithm is also suggested by Waibel [7]. This research thus follows suit and has 

developed a modified back-prop algorithm. 



48 

The structure of the time delay neural network imposes some problems for the back

propagation algorithm. These problems include the calculation of the output nodes being non 

standard, the dependence of outputs on shifted versions of inputs, and the different delays or 

window sizes used for various layers. Therefore there must be modifications made to the 

back-prop algorithm to overcome these problems. The method used in this work is outlined 

in Figure 3.13. The two main modifications that were required are incorporating the delayed 

information and calculating the final output. Since the output from a node is used several 

times a more complex scheme for keeping track of the nodes is needed. The manner that the 

final output is calculated requires that the algorithm is modified. 



Input 
NodeJ 

Input 
Node I 

• 
• 

• 

49 

Activation 
Function 

=F-

w(i) 

Figure 3.11 Single Delay Unit for the TDNN 



... 
:l 
c.. = -

50 

tttt 
I I I I I 

/~ 

'\ / 
4 P. P. 

Time (0-15Oms) ~ 

Output layer 
(4 nodes) 

Hidden layer 2 
(4 nodes, 9 vectors) 

Hidden layer 1 
(8 nodes, 13 vectors) 

Input layer 
(16 nodes, 15 vectors) 

Figure 3.12 Time Delay Neural Network 



51 

Time Delay Neural Network Modified Back-Prop Algorithm 

Step 1. Initialize Weights 

Set the initial weights to random numbers between -0.5 and +0.5. 

Step 2. Present Inputs and Desired Outputs 

Present a new input set Xi (j), 0 SiS N -I, where j is the index 

of the data sets. Along with the input specify the desired output 

d (j). If the network is being used as a classifier then generally the 

desired outputs are all 0 except for the node corresponding to the 

desired class which is given the value of 1. 

Step 3. Calculate Outputs 

a) Calculate the output at hidden layer 1. 
16 3 

y(i,j) = L L w(i,m,j,l)* xCi +(m-l),l), where i is the 
1=1 ",=1 

number of vectors in hidden layer 1, j is the number of nodes in 

hidden layer 1, m is the size of the delay, I is the number of 

input nodes, w is the weight between the input layer and hidden 

layer 1, and x is the inputs from the input layer. 

b) Calculate the output at hidden layer 2. 
II S 

y(i,j) = L L w(i,m,j,/) * xCi +(m-l),/), where i is the 
1=1 ",=1 

number of vectors in hidden layer 2, j is the number of nodes in 

hidden layer 2, m is the size of the delay, I is the number of 

nodes in hidden layer 1, w is the weight between hidden layer 1 

and hidden layer 2, and x is the output from hidden layer 1. 

Figure 3.13 Modified Back-Propagation Algorithm 



52 

c) Calculate the output at output layer. 

4 9 
y(i)= L Lw(l,i,j)*x(l,j), ifi=j,whereiisthenumber 

j=1 1=1 

of nodes in the output layer, j is the number of nodes in hidden 

layer 2, I is the size of the delay, w is the weight between 

hidden layer 2 and the output layer, and x is the output from 

hidden layer 2. 

Step 4. Adapt Weights 

a) Adapt weights between output layer and hidden layer 2. 

deltaU) = yU) * (1- yU» * (dU) - yU» 

w(k,j,i) = w(k,j,i)+ Tl * delta(j) * x(k,i) 

+0. * (w(k,j,i) - wold(k, j,i» 

where j is the number of nodes in the output layer, i is the 

number nodes in hidden layer 2, and k is the delay. 

b) Adapt weights between hidden layer 2 and hidden layer 1. 
4 

delta(k,j) = y(k,j) * (1- y(k, j» * L delta(i) * w(k,i, j) 
i=! 

where i is the number of nodes in the output layer. 

w(k,/, j,i) = w(k,/, j,O + Tl *delta(k,j) * y(k + (1-1),0 

+0. * (w(k ,1, j,i) - wold (k ,I, j,i» 

where k is the number of vectors in hidden layer 2, I is the 

number of delays, j is the number of nodes in hidden layer 2, and 

i is the number nodes in hidden layer 1. 

Figure 3.13 Continued 



53 

5 
w(l,k,j,i) = ~ I w(l,k,j,i) 

5 k=1 

c) Adapt weights between hidden layer 1 and input layer. 

de/taCk + (/-1), j) = y(k, j) * (1- y(k, j» + 
4 

Ide/la(k,i) * w(k,I,i,j) 
i=1 

where k is the number of vectors in hidden layer 2, I is the 

number of delays, i is the number of nodes in hidden layer 2, 

and j is the number of nodes in hidden layer 1. 

w(k,l, j,i) = w(k ,I, j,i) +11 * de/ta(k ,j) * x(k + (/-I),i) 

+a * (w(k,/, j,i) - wo/d(k ,I, j,t» 

where k is the number of vectors in hidden layer I, j is the 

number nodes in hidden layer I, i is the number of nodes in the 

input layer, and I is the number of delays. 

3 
w(l,k,j,i) = ~ I w(l,k,j,i) 

3 k=1 

Step 5. Reduce the Size of 11, and ex 

Reduction of 11, and ex often helps to stay in a minimum once found. 

Step 6. Go to Step 2 

Repeat until there is one presentation of all of the data without 

updating the weights. 

Figure 3.13 Continued 



54 

CHAPTER4. RESULTS 

The complete results for this research are given in Table 4.1. The infonnation 

contained in Table 4.1 is the recognition rates for each of the 4 words, the average recognition 

rates, and the recognition rates for the training data set. The recognition rates for the training 

data provides infonnation about how well the training data was learned by the TDNN. Ideally 

the IDNN should recognize the entire training set without error; the training time for the data 

was approximately 6 cpu hours and it was decided that the recognition rate achieved was 

good enough. Since the training set was not learned completely the TDNN can not be 

expected to recognize untrained words with a higher recognition rate than that of the training 

set. 

Table 4.1 Recognition Rates for 6 Feature Vectors 

Recognition Rates 

Feature Vectors Word Recognition Rate Overall Training 

fbI Idl leI Iv! Recognition Recognition 

Mel-Scale FFT 74.0% 100.0% 84.0% 88.0% 86.5% 97.5% 

Filter Bank FFT 74.0% 84.0% 74.0% 98.0% 79.5% 96.75% 

Mel-Scale Cepstrum 86.0% 96.0% 96.0% 98.0% 94.0% 98.5% 

Filter Bank Cepstrum 83.0% 94.0% 92.0% 93.0% 90.5% 98.0% 

Linear Prediction 80.0% 94.0% 92.0% 92.0% 89.5% 97.75% 

Wavelet Transfonn 88.0% 94.0% 96.0% 96.0% 93.5% 98.25% 

It can be seen that the recognition rates for the wavelet transfonn and the mel-scaled 

cepstrum are fairly high. The reason for their good perfonnance is their ability to separate the 

high and low frequency content of the signal. The techniques, other than the mel-scaled 

cepstrum and wavelet transform, do not supply as much information about the low frequency 

content of the signals. Since the mel-scale cepstrum and the wavelet transform obtain nearly 



55 

the same recognition rate it is important to see if there is any advantages of one or the other 

technique. The wavelet transform has the advantage of a more simple implementation than 

the mel-scale cepsnum. The wavelet transform could also be implemented in hardware, which 

would make the processing speed faster than the mel-scale cepstrum. 

Notice that the performance of the fIlter bank cepstrum is not as good as the mel

scaled cepstrum and likewise the performance of the filter bank FFr is not as good as the mel

scaled FFf. Apparently the nonlinear filtering of the cepsnum (or FFr) to generate the 

coefficients works better than the linear filtering of the cepstrum (or FFr). The main reason 

that this nonlinear filtering works better than the linear filtering is that the nonlinear filter 

emphasizes the lower frequencies, which is where most of the distinguishing speech 

information is located. 

The recognition rates for the word fbi are not as high as the other words. Many times 

fbi was recognized as lei; apparently the distinguishing information in fbi is not much different 

than lei. Most often the other words were not recognized as any of the others when an error 

occurred. The fact that the wavelet transform and the mel-scale cepstrum both do a better job 

of recognizing /bl, than the other techniques reemphasizes the fact that these two techniques 

are the best for speech recognition using the TDNN. 

The work was also compared with results obtained by other researchers. This insured 

that the implementation of the time delay neural network was correct. A paper by Lang and 

Waibel [7] used the same words, and the mel-scaled cepstrum for the feature vector. The 

sampling rate used by Lang and Waibel was 12 kHz. The recognition rate obtained for their 

work was approximately 94%, which compares favorably with the results obtained in this 

work for the mel-scaled cepstrum feature vector, therefore the implementation of the time 

delay neural network was assumed to be correct. 

Table 4.2 gives the methods of implementation of the different feature vectors. Most 

of the feature vectors were generated with FORTRAN programs, but the complex cepstrum 

used a MatLab function. These programs can be found in any speech processing or signal 

processing book [3,10]. The MatLab function was used for the complex cepsnum because of 

the difficulty in implementing the complex logarithm. The program for the wavelet transform 

is included in the appendix, although it could have been just as easily implemented in MatLab. 



56 

Table 4.2 Implementation Techniques for Feature Vectors 

Feature Vector Implementation Technique 

Mel-Scale FFT Program 

Filter Bank FFT Program 

Mel-Scale Cepstrum MatLab 

Filter Bank Cepstrum MatLab 

Linear Prediction Program 

Wavelet Transform Program 

The most interesting and imponant aspect of this work is the use of the wavelet 

transform. The wavelet transform has not been applied to speech recognition using neural 

networks. The fact that the recognition rate of the wavelet rransform is so high is very 

promising for future work. One other item that should be noted is that currently neural 

networks do not perform the recognition task quite as well as the hidden Markov model. The 

use of the wavelet transform may give neural networks the ability to perform at a higher 

recognition rate than the hidden Markov model. 



57 

CHAPTER 5. CONCLUSION AND FUTURE WORK 

This work has found that both the popular mel-scaled cepstrum feature vector and a 

wavelet transform feature vector provide good recognition rates. Both of these feature 

vectors were capable of producing recognition rates of around 94% for the four phonemes fbI, 

IdI, leI, and /vI. Since the wavelet transform has not been used before to generate feature 

vectors for speech recognition this gives a possible new method for speech recognition. 

The next step in this work should be looking at different wavelet transforms and 

comparing their capabilities for speech recognition. This should be continued by increasing 

the number of phonemes that are used. Increasing the number of phonemes will allow more 

realistic speech recognition to be performed. Once the vocabulary is increased the 'good' 

feature vectors should be compared again to guarantee that they work well for the larger 

vocabularies. At this point a processor to gather the phonemes to generate words should be 

developed. The final stage would be creating a language processor to determine the sentence 

structure. 



58 

REFERENCES 

[1] Paolo Antognetti and Veljko Milutinovic, Neural Networks Concepts, Applications, 
and Implementations, Prentice Hall, Englewood Cliffs, New Jersey (1991). 

[2] Judith E. Dayhoff, Neural Network Architectures, Van Nostrand Reinhold, New York, 
New York (1990). 

[3] John R. Deller, Jr., John G. Proakis, and John H. L. Hansen, Discrete-Time 
Processing of Speech Signals, Macmillan, New York, New York (1993). 

[4] Sadaoki Furui, Digital Speech Processing, Synthesis, and Recognition, Marcel 
Dekker Inc., New York, New York (1989). 

[5] Nobuo Hataoka, and Alex H. Waibel, "Speaker-Independent Phoneme Recognition on 
TIMIT Database Using Integrated Time-Delay neural Networks (TDNNs)," IEEE 
ICNN,1990. 

[6] Richard P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP 
Magazine, 4-22, April, 1987. 

[7] Kevin J. Lang and Alex H. Waibel, "A Time-Delay Neural Network Architecture for 
Isolated Word Recognition," Neural Networks, vol. 3,23-43, 1990. 

[8] Robert J. Mayhan, Discrete-Time and Continuous-Time Linear Systems, Addison 
Wesley, Reading, Massachusetts (1984). 

[9] Satru Nakamura, Hidefumi Sawai, and Masahide Suigyama, "Speaker-Independent 
Phoneme Recognition Using Large-Scale Neural Networks," ICASSP-92, 409-412, 
1992. 

[10] Alan V. Oppenheim, and Ronald W. Schafer, Discrete-Time Signal Processing, 
Prentice Hall, Englewood Cliffs, New Jersey (1989). 

[11] Thomas Parsons, Voice and Speech Processing, McGraw-Hill, New York (1986). 

[12] Oliver Rioul and Martin Vetterli, "Wavelets and Signal Processing," IEEE Signal 
Processing Magazine, 14-38, October 1991. 

[13] Fran~oise Fogelman Soulh! and Jeanny Herault, Neurocomputing - Algorithms, 

Architectures, and Applications, Springer-Verlag, New York (1990). 



59 

[14] Martin Vetterli and Cormac Herley, "Wavelets and Filter Banks: Theory and Design," 
IEEE Trans. on ASSP, vol 40, 2207-2232, September 1992. 

[15] Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and 
Kevin 1. Lang, "Phoneme Recognition Using Time-Delay Neural Networks," IEEE 
Trans. on A SSP , vol 37, 328-339, March 1989. 



60 

APPENDIX 
••••••••• * •• * ••••• ** ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * •• * •••••••• 
• • 
• Program TDNN • 
• Main program for the TDNN • 
• Written by : Brian Schmidt • 
• Date Created: 7(26/93 • 
•••••••• * •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• Subroutines Used: • 
• Initialize (init.f) • 
• Features (feature.f) • 
• Output (outputf) • 
• Write_Weights (weightf) • 
• Update (update.f) • 
• Results (results.f) • 
• • 
• Functions Used: • 
• Sigmoid (sigmoid.f) • 
• • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• Files used: • 
• mode.dat (main.f I input) • 
• feature.dat (feature.f I input) • 
• test.dat (feature.f I input) • 
• weights.dat (feature.f I input) • 
• weights.dat (weight.f I output) • 
• results.dat (results.f I output) • 
• • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••• *** •• * ••••• *.* •• * •• **.****** •••••••• ***.*** ••••••••••••••••••••••••• 

• • 
• Parameters : • 
• max_words maximum number of words to be used • 
• max_features maximum number of features • 
• max_vectors maximum number of feature vectors • 
• in_nodes number of input nodes • 
• hidden I_nodes number of hidden nodes at layer I • 
• hidden2_nodes number of hidden nodes at layer 2 • 
* oucnodes number of output nodes • 
• delay I time delay between input and layer I • 
• delay2 time delay between layer I and layer 2 • 
• delay3 time delay between layer 2 and output • 
• veci number of feature vectors at layer 1 • 



61 

... vec2 number of feature vecotrs at layer 2 ... 

... ... 

... For the structure of the TDNN vee2 = delay3, out_nodes = ... 

... hidden2_nodes, in_nodes = num_feautres ... 

... ... 

... Variables: ... 

'" num_words number of words to be used ... 
... numjeatures number of features to be used ... 
... num_ vectors number of feature vectors to be used ... 
... training logical to tell if in training mode ... 
... feature the training data set '" 
'" test the classifying data set ... 
... yo calculated outputs for all input words ... 

'" yd desired outputs for all input words ... 
... yl output at layer I '" ... y2 output at layer 2 '" ... y3 output at layer 3 (output layer) ... 
... wi weights from input layer to layer 1 ... 

'" woldl previous weights from input to layer I '" ... w2 weights from layer 2 to layer 1 '" 
'" wold2 previous weights from layer 2 to 1 ... 
... w3 weights form layer 3 to layer 2 ... 

'" wold3 previous weights from layer 3 to 2 '" ... cant logical to tell if this is a continuation of a previously started ... 
... training period ... 
... eta learning rate of the back-prop ... 
... alpha learning rate for the momentum term '" ... ... 
"'**"'*"'********************************************************* ... ************************* 

Program TDNN 

Integer max_words, maxjeatures, max_vectors, in_nodes, hidden I_nodes 
Integer hidden2_nodes, oucnodes, delay 1. delay2. delay3 
Integer veel, vec2 

Parameter (max_words = 450. max_features = 16, max_vectors = IS) 
Parameter (in_nodes = 16, hidden I_nodes = 8, hidden2_nodes = 4) 
Parameter (oucnodes = 4, delay I = 3, delay2 = 5, delay3 = 9) 
Parameter (veel = 13, vee2 = 9) 

Real feature(max_ words,max_ vectors,maxjeatures) 
Real test(max_ words,max_ vectors,max_features) 
Real yo(max_words,out_nodes), yd(max_words,oucnodes) 
Real yl(vecl,hiddenl_nodes), y2(vec2,hidden2_nodes), y3(out_nodes) 
Real wl(vecl,delayl,hiddenl_nodes,in_nodes) 
Real wold 1 (vee l,delay I ,hidden I_nodes,in_nodes) 
Real w2(vee2,delay2,hidden2_nodes,hiddenl_nodes) 
Real wold2(vee2,delay2,hidden2_nodes,hidden I_nodes) 



62 

Real w3(delay3,out_nodes,hidden2_nodes) 
Real wold3(delay3,out_nodes,hidden2_nodes), eta, alpha 
Integer num_words, num_features, num_vectors 
Logical training, cont 

Call Initialize(max_words, maxjeatures, max_vectors, in_nodes, 
& hidden I_nodes, hidden2_nodes, out_nodes, delayl, delay2, delay3, 
& vec I, vec2, feature, test. num_ words, numjeatures, num_ vectors, 
& training, ),1, )'2, )'3, yd, yo, wI, woldI, w2, wold2, w3, wold3) 

Open (Unit=lO, File='mode.dat',Status='Unknown') 
Read (10,*) training 
If (training .EQ .. True.) then 

Read (10.*) cont 
Endif 
Read (10,*) eta, alpha 
Close (10) 

Call Features(max_ words, maxjeatures, max_vectors, in_nodes, 
& hidden I_nodes, hidden2_nodes, oucnodes, delayl, delay2, 
& delay3, vecl, vec2, feature, test, num_words, num_features, 
& num_vectors, training, cont, yd, wI, w2, w3) 

write(l2,*) 'entering Output' 

Call Output(max_ words, max_features, max_vectors, in_nodes, 
& hidden I_nodes, hidden2_nodes, out_nodes, delayI, delay2, 
& delay3, vec!, vec2, feature, test, num_words, num_features, 
& num_vectors, training, cont, yl, y2, y3, yd, yo, wi, woldl, w2, 
& wold2, w3, wold3, eta, alpha) 

write(I2,*) 'entering Results' 
Call Results(max_words, oucnodes, training, yd, yo, num_words, eta 

& alpha, cont) 
c1ose(12) 
c1ose(14) 
End 



63 

*************************************************** ••• *.********* •• ********.***.**.*.**** 
* • 
* Subroutine Initialize * 
* Subroutine to initialize all of the variables '" 
* Written by : Brian Schmidt * 
* Date Created: 7/26/93 * 
* * 
*********************************.************* •• **.*** •• **.** •••• * •• *.** •• *** •• **.*****. 

**************.********************************************.***************************** 
* * 
* Parameters : * 
* max_words 50 * 
* max_features 20 * 
* max_vectors 20 * 
* in_nodes 16 * 
* hidden I_nodes 8 * 
• hidden2_nodes 4 • 
* out_nodes 4 * 
• delay 1 3 • 
• delay2 5 • 
• delay3 9 • 
* vecl 13 • 
• vec2 9 • 
• • 
• Variables: • 
• num_words number of words to be used • 
• num_features number of features to be used * 
• num_ vectors number of feature vectors to be used * 
* training logical to tell if in training mode * 
• feature the training data set * 
• test the classifying data set * 
* yo calculated outputs for all input words * 
* yd desired outputs for all input words • 
* yl output at layer 1 • 
• y2 output at layer 2 * 
* y3 output at layer 3 (output layer) * 
• wI weights from input layer to layer I * 
* woldl previous weights from input to layer I • 
* w2 weights from layer I to layer 2 * 
• wold2 previous weights from layer 2 to I • 
* w3 weights from layer 3 to layer 2 * 
* wold3 previous weights from layer 3 to 2 * 
* loop index * 

* j loop index * 
• k loop index * 
• * 
.****** •• ** •• *.****************.*********.****"'.******.***************** ••• * •• ******.***. 

Subroutine Initialize(max_words, maxjeatures, max_vectors, in_nodes, 
& hidden I_nodes, hidden2_nodes, out_nodes, delayl, delay2, delay3, 



64 

& vec 1, vec2, feature, test, num_ words, numjeatures, num_ vectors, 
& training, yI, y2, y3, yd, yo, wI, woldI, w2, wold2, w3, wold3) 

Integer num_words, num_features, num_vectors, max_words, max_features 
Integer max_vectors, in_nodes, hidden I_nodes, hidden2_nodes, out_nodes 
Integer delayI, delay2, delay3, veci. vec2 
Integer i, j, k 
Real y 1 (vec 1 ,hidden I_nodes), yo(max_ words,out_nodes) 
Real y2(vec2,hidden2_nodes), y3(out_nodes) 
Real yd(max_ words,oucnodes), w 1 (vee I,delay 1 ,hidden I_nodes,in_nodes) 
Real wold 1 (vec 1 ,delay 1 ,hidden I_nodes,in_nodes) 
Real w2(vec2,delay2,hidden2_nodes,hiddenI_nodes) 
Real wold2(vee2,delay2,hidden2_nodes,hiddenl_nodes) 
Real w3(delay3,out_nodes,hidden2_nodes) 
Real wold3(delay3,oucnodes,hidden2_nodes) 
Real feature(max_ words,max_ veetors,maxjeatures) 
Real test(max_ words,max_ vectors,maxjeatures) 
Logical training 

num_words = 0 
num_features = 0 
num_ vectors = 0 
training = .True. 

Do 100 i = 1, max_words 
Do 200 j = 1 , max_vectors 

Do 300 k = I, maxjeatures 
feature(ij,k) = 0.0 
test(ij,k) = 0.0 

300 Continue 
200 Continue 
100 Continue 

Do 350 1= 1. veel 
Do 400 i = I, delay 1 

Do SOO j = 1, hidden I_nodes 
Do 600 k = 1, in_nodes 

wI(l,ij.k) = (Ran(I)-O.S) 
woldl(l,ij.k} = 0.0 

600 Continue 
SOO Continue 
400 Continue 
350 Continue 

Do 6S0 I = 1, vee2 
Do 700 i = 1, delay2 

Do 800 j = 1, hidden2_nodes 
Do 900 k = 1, hidden I_nodes 

w2(l,ij.k) = (Ran(l)-O.S) 
wold2(I,ij.k) = 0.0 

900 Continue 



800 Continue 
700 Continue 
650 Continue 

Do 1000 i = I, delay3 
Do 1100 j = I, out_nodes 

Do 1200 k = I, hidden2_nodes 
If (i .EQ. j) Then 

w3(ij,k) = (Ran(l)-0.5) 
Else 

w3(ij,k) = 0.0 
Endif 
wold3(ij,k) = 0.0 

1200 Continue 
1100 Continue 
1000 Continue 

Do 1300 i = 1, vee 1 
Do 1400 j = 1, hidden I_nodes 

yl(ij) = 0.0 
1400 Continue 
1300 Continue 

Do 1500 i = 1, vee2 
Do 1600 j = 1, hidden2_nodes 

y2(ij)= 0.0 
1600 Continue 
1500 Continue 

Do 1700 i = 1, out_nodes 
y3(i) = 0.0 

1700 Continue 

Do 1800 i = 1, max_words 
Do 1900 j = 1, oucnodes 

yd(ij) = 0.0 
yo(ij) = 0.0 

1900 Continue 
1800 Continue 

Return 

End 

65 



66 

••••••••••••••••••••••••• * •••••• ***.****.**.**.*****.****************************.*** •• *. 

• * 
* Subroutine Features * 
* Subroutine to read the feature vectors .. 
* Written by : Brian Schmidt * 
* Date Created: 7 {26/93 * 
• * 
***.**.**.********.************************.********************************************* 

** ••••••••• ****.*********************************************************.*********.***** 

* * 
* Parameters : * 
• max_words 50 * 
* max_features 20 * 
• max_vectors 20 * 
• in_nodes 16 * 
• hidden I_nodes 8 * 
• hidden2_nodes 4 * 
• oucnodes 4 * 
• delay I 3 * 
• delay2 5 * 
• delay3 9 * 
• vecl 13 * 
• vec2 9 * 
• * 
• Varialbes: * 
• num_words number of words to be used * ... numjeatures number of features to be used * 
* num_ vectors number of feature vectors to be used * ... training training data set * 
• test classifying data set * 
• )Q calculated outputs * 
• yd desired outputs for all input words * 
• yl output at layer I * 
* y2 output atlayer2 * ... y3 output at layer3 (output layer) * 
* wI weights from input layer to layer I * 
... wold I previous weights from input to layer I * ... w2 weights from layer2 to layer I * 
* wold2 previous weights from layer2 to layerl * 
• w3 weights from layer3 to layer2 * 
* wold3 previous weights from layer3 to layer2 * 
* loop index * 
* j loop index * 
* k loop index * 
* I loop index * 
* * 
***************************************************************************************** 

Subroutine Features(max_ words, max_features, max_ vectors,in_nodes, 
& hidden I_nodes, hidden2_nodes, out_nodes, 



67 

& delayl, delay2, delay3, vecl, vec2, feature, test, num_words, 
& num_features, num_vectors, training, cont, yd, wI, w2, w3) 

Integer IDaX_ words, maxjeatures, max_vectors, in_nodes, hidden Cnodes 
Integer delay 1 , delay2, delay3, vecl, vec2, hidden2_nodes, oucnodes 
Real feature(max_ words,max_ vec tors ,maxjeatures) 
Real yd(max_ words,oucnodes) 
Real test(max_ words,max_ vectors,max_features) 
Real wl(vecl,delayl,hiddenl_nodes,in_nodes) 
Real w2(vec2,delay2,hidden2_nodes,hiddenl_nodes) 
Real w3(delay3,oucnodes,hidden2_nodes) 
Integer num_ words, numjeatures, num_ vectors 
Integer i, j, k, 1 
Logical training, cont 

If (training .EQ .. True.) Then 

Open (Unit=lO, File='feature.dat',Status='Unknown') 

Read(lO,*) num_words 
Read(10,*) numjeatures 
Read(10,*) num_vectors 

Do 50 k = 1, num_ words 
Read(10,*) (yd(k,l), 1=1, out_nodes) 
Do 100 i = l,num_vectors 

Do 200 j = 1, num_features 
Read(lO,*) feature(k,ij) 

200 Continue 
100 Continue 
50 Continue 

Else 

Close(lO) 

Open (Unit= 10,File='test.dat',Status='unknown') 

Read(lO,*) num_words 
Read( 1 0, *) numjeatures 
Read(lO,*) num_vectors 

Do 300 k = 1, num_ words 
Do 400 i = 1 t num_ vectors 

Do 500 j = 1, numjeatures 
Read (l0,*) tesl(k,ij) 

500 Continue 
400 Continue 
300 Continue 

Close (10) 



68 

Endif 

If «cont .EQ .. True.) .OR. (training .EQ .. False.» Then 
Open (Unit=IO,File='weighlS.dat',Status='Unknown') 

Do 550 I = 1, vee 1 
Do 600 k = 1, deiayl 

Do 700 j = 1, hidden I_nodes 
Do 800 i = 1, in_nodes 

Read(lO, *) wI(I.kj,i) 
800 Continue 
700 Continue 
600 Continue 
550 Continue 

Do 850 I = 1, vee2 
Do 900 k = 1, delay2 

Do 1000 j = 1, hidden2_nodes 
Do 1100 i = 1, hidden I_nodes 

Read(lO,·) w2(I,kj,i) 
1100 Continue 
1000 Continue 
900 Continue 
850 Continue 

Do 1200 k = 1, delay3 
Do 1300 j = 1, out_nodes 

Do 1400 i = 1, hidden2_nodes 
Read(lO,.) w3(kj,i) 

1400 Continue 
1300 Continue 
1200 Continue 

Close(10) 

Endif 

Return 

End 



69 

***************************************************************************************** 

* * 
* Subroutine Output * 
* Subroutine to calculate outputs at hidden and output nodes * 
* Written by : Brian Schmidt * 
* Date Created: 7(27/93 * 
* * 
***************************************************************************************** 

***************************************************************************************** 

* * 
* Parameters : * 
* mIDcwords 50 * 
* maxjeatures 20 * 
* max_vectors 20 * 
* in_nodes 16 * 
* hidden I_nodes 8 * 
* hidden2_nodes 4 * 
* oucnodes 4 * 
* delayl 3 * 
* delay2 5 * 
* delay3 9 * 
* vee 1 13 * 
* vee2 9 * 
* * 
* Varialbes: * 
* num_words number of words to be used * 
* num_features number of features to be used * 
* num_ vectors number of feature veetors to be used * 
* training logical to tell if in training mode * 
* feature training data set * 
* test classifying data set * 
* yo calculated outputs for all input words * 
* yd desired outputs for all input words * 
* yl output at layer 1 * 
* y2 output at layer 2 * 
* y3 output at layer 3 * 
* wI weigths from layer 1 to input layer * 
* wold 1 previous weights from layerlto input * 
* w2 weights from layer2 to layer 1 * 
* wold2 previous weights from layer2 to layer! * 
* w3 weights form output layer to layer 2 * 
* wold3 previous weights from output to layer2 * 
* loop index * 
* j loop index * 
* k loop index * 
* I loop index * 
* m loop index * 
* done logical to tell if updating is complete * 
* up logical to tell if weights need updating * 
* eta learning rate * 



• 
• 

alpha learning rate 

70 

• 
• 

•• * •• **.* ••• * ••••••••••••• ***** •••••••••• ***********************.**.** •••• * ••••• * •••••••• 

• 

Subroutine Output (max_words, max_features, max_vectors, in_nodes, 
& hidden I_nodes, hidden2_nodes, out_nodes, delayl, delay2, delay3, 
& vecI, vec2, feature, test. num_words, num_features, num_vectors, 
& training, cont, yl, y2, y3, yd, yo, wI, woldl, w2, wold2, w3, 
& wold3, eta, alpha) 

Integer max_words, max_features, max_vectors, delayl, delay2, delay3 
Integer vecI, vec2, in_nodes, hidden I_nodes, hidden2_nodes, out_nodes 
Real wi (vec 1 ,delay 1 ,hidden I_nodes,in_nodes) 
Real wold I (vec I ,delay I ,hidden l_nodes,in_nodes) 
Real yl(vec I ,hidden I_nodes) 
Real w2(vec2,delay2,hidden2_nodes,hiddenl_nodes) 
Real wold2(vec2,delay2,hidden2_nodes,hidden I_nodes) 
Real y2(vec2,hidden2_nodes) 
Real w3(delay3,oucnodes,hidden2_nodes), y3(oucnodes) 
Real wold3(delay3,oucnodes,hidden2_nodes) 
Real yd(max_words,oucnodes), yo(max_words,out_nodes) 
Real feature(max_ words,max_ vectors,maxJeatures) 
Real test(max_ words,max_ vectors,maxJeatures) 
Real eta, alpha 
Integer i, j, k, I, m, num':' words, num_features, num_ vectors 
Integer count, max_count 
Logical training, done, up, cont 

If (training .EQ .. True.) Then 
Write(*, *) 'What is the maximum number of training iterations?' 
Read(·,*) max_count 

Endif 

done = .False. 
count = 0 
Do 25 While «done .NE .. True.) .AND. (training .EQ .. True.» 

done = .True. 

outputs at hidden layer 1 
count = count + 1 
Do 50 k = 1, num_ words 

Do 100 i = 1, veci 
Do 200 j = l, hidden I_nodes 

yl(ij) = 0.0 
Do 300 1 = 1, num_features 

Do 400 m = 1, delay 1 

400 
300 

yI(ij) = wl(i,mj,l)· feature(k,i+(m-l),1) + yl(ij) 
Continue 

Continue 
yI(iJ) = sigmoid(yl(ij» 



200 
100 

* 

800 
7S0 

700 
600 

* 

Continue 
Continue 

outputs a hidden layer 2 

Do 600 i = 1, vec2 
Do 700 j = 1, hidden2_nodes 

y2(ij) = 0.0 
Do 7S0 I = 1, hidden I_nodes 

Do 800 m = 1, delay2 

71 

y2(ij) = w2(i,mj,I)*yl(i+(m-l),I) + y2(ij) 
Continue 

Continue 
y2(ij) = sigmoid(y2(ij» 

Continue 
Continue 

outputs at output layer 

Do 1000 i = 1, out_nodes 
y3(i) = 0.0 
Do 1100 j = 1, hidden2_nodes 

Do 1200 1 = 1, dclay3 
If (i .EQ. j) Then 

y3(i) = w3(I,ij) * y2(lj) + y3(i) 
Endif 

1200 Continue 
1100 Continue 

y3(i) = sigmoid(y3(i» 
1000 Continue 

* check to see if weights need to be updated during training mode 

up = .False. 
Do 1300 i = I, oucnodes 

If «yd(k,i) .LE. (y3(i)-.IS».AND.(yd(k,i) .LE. 0.0000 1» then 
up= .True. 

Endif 
If «yd(k,i) .GE. (y3(i)+.IS».AND.(yd(k,i) .GE. 0.99999» then 

up = .True. 
Endif 

1300 Continue 

If (up .EQ .. True.) Then 
Call Update(max_words, in_nodes, hidden I_nodes, hidden2_nodes, 

& out_nodes, delayl, dclay2, dclay3, vecl, vec2, wI, 
& woldl, w2, wold2, w3, wold3, yI, y2, y3, yd, k, eta, 
& alpha, feature, max_vectors, max_features, count) 

done = .False. 
Endif 

SO Continue 



·reducing the size of eta and alpha 

eta = eta - 0.001 • eta 
alpha = alpha - 0.001 • alpha 

If (count .ge. max_count) Then 
done = .true. 

Endif 

25 Continue 

If (training .EQ .. True.) Then 

72 

Call Write_ weights(in_nodes, hidden I_nodes, hidden2_nodes, 
& out_nodes,delayl, delay2, delay3, wI, w2, w3, veeI, vee2) 

Open (Unit=lO, File='mode.dat', Status='unknown') 
Write(lO,·) training 
Write(lO,·) cont 
Write(lO, *) eta 
Write(10,*) alpha 
Close(lO) 

Endif 

·Calculating final outputs for the training or classifying data sets 

Do 1400 k = 1, num_ words 

·Calulating outputs allayer 1 

Do 1500 i = 1, veci 
Do 1600 j = 1, hidden I_nodes 

yl(ij) = 0.0 
Do 1700 I = 1. num_features 

Do 1800 m = 1, delay 1 
If (training .EQ .. True.) Then 

yI(ij) = wI(i,mj,I)· feature(k,i+(m-I),I) + yl(ij) 
Else 

yI(ij) = wI(i,mj,I)· tesl(k,i+(m-I),I) + yI(i,j) 
Endif 

1800 Continue 
1700 Continue 

yJ(ij) = sigmoid(yl(ij» 
1600 Continue 
1500 Continue 

·Calculating outputs at layer 2 

Do 1900 i = 1, vec2 
Do 2000 j = 1, hidden2_nodes 

y2(ij) = 0.0 
Do 2100 1= 1, hidden I_nodes 



73 

Do 2200 m = I, delay2 
y2(ij) = w2(i,mj,l) * yl(i+(m-I),l) + y2(ij) 

2200 Continue 
2100 Continue 

y2(ij) = sigmoid(y2(ij» 
2000 Continue 
1900 Continue 

*Calculating outputs at output layer 

Do 2300 i = I, out_nodes 
yo(k,i) = 0.0 
Do 2400 j = I, hidden2_nodes 

Do 2500 I = I, delay3 
If (i .EQ. j) Then 

yo(k,i) = w3(1,ij) * y2(1j) + yo(k,i) 
Endif 

2500 Continue 
2400 Continue 

yo(k,i) = sigmoid(yo(k,i» 
2300 Continue 
1400 Continue 

Return 

End 



74 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 

• 
Subroutine Update • 
Subroutine to update weights using the back propagation learning method, including momentum term • 
Written by : Brian Schmidt . • 
Date Created: 7(27/93 • 

• 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• Parameters: • 
• max_words 50 • 
• in_nodes 16 • 
• hidden I_nodes 8 • 
• hidden2_nodes 3 • 
• oucnodes 3 • 
• delay I 3 • 
• delay2 5 • 
• delay3 9 • 
• vee I 13 • 
• vee2 9 • 
• • 
• Varialbes: • 
• cur_word current word being processed • 
• yd desired outputs for all input words • 
• yl output at layer 1 • 
• y2 output at layer 2 • 
* y3 output at layer 3 • 
• wI weigths from layer 1 to input layer • 
* wold I previous weights from layerl to input • 
* w2 weights from layer2 to layerl • 
* wold2 previous weights from layer2 to layerl • 
• w3 weights form output layer to layer 2 • 
• wold3 previous weights from output to layer2 • 
• loop index • 
• j loop index • 
• k loop index • 
• I loop index • 
• eta learning rate • 
• alpha learning rate • 
• new temporary variable for the new weight • 
• • 
••••••••••••••••••••••••• * ••• * •• *****.** •• ** •• *.****.*** •• *****.********* •• ****.** •• ****. 

Subroutine Update(max_words, in_nodes, hidden I_nodes, hidden2_nodes, 
& out_nodes, delayI, delay2, delay3, vecI. vee2, wI, woldI, w2, 
& wold2, w3, wold3, yI, y2, y3, yd, cur_word, eta, alpha, feature. 
& max_vectors, max_features, count) 

Integer max_ words, max_vectors, maxJeatures, count 



* 

100 

& 

400 

300 
200 

... 

75 

Integer in_nodes, hidden I_nodes, hidden2_nodes, oucnodes 
Integer delay I , delay2, delay3, veeI, vee2, cur_word 
Real wI(veeI,delayI,hiddenl_nodes,in_nodes) 
Real wold 1 (vee 1 ,delay 1 ,hidden I_nodes,in_nodes) 
Real w2(vee2,delay2,hidden2_nodes,hiddenl_nodes) 
Real wold2( vee2,delay2,hidden2_nodes,hidden I_nodes) 
Real w3(delay3,out_nodes,hidden2_nodes) 
Real wold3(delay3,oucnodes,hidden2_nodes) 
Real y 1 (vee 1 ,hidden I_nodes), y2( vee2,hidden2_nodes) 
Real y3(out_nodes), yd(OlaX_ words,oucnodes) 
Real del1(13,8), de12(9.4), feature(max_words,max_veetors,OlaX_features) 
Real de13(4), eta, alpha. temp. new 
Integer i, j, k, I, m 

Calulations for the weights between output layer and layer 2 

Do 100 j = I, out_nodes 
deI3(j) = y3(j) ... (l - y3(j» ... (yd(eur_wordj) - y3(j» 

Continue 

Do 200 j = I, out_nodes 
Do 300 i = I, hidden2_nodes 

If (j .EQ. i) Then 
Do 400 k = I, delay3 

new = w3(kj,i) + eta ... del3(j) ... y2(k,i) + 
alpha'" (w3(kj,i) - wold3(kj,i» 

wold3(kj,i) = w3(kj,i) 
w3(kj,i) = new 

Continue 
Endif 

Continue 
Continue 

updating weights between layer 2 and layer 1 

Do 800 k = I, vec2 
Do 900 j= 1. hidden2_nodes 

temp = 0.0 
Do 1000 i = I, out_nodes 

If (i .EQ. j) Then 
temp = deI3(i) ... w3(k.ij) + temp 

Endif 
1000 Continue 

deI2(kj) = temp'" (y2(kj» ... (1 - y2(kj» 
900 Continue 
800 Continue 

Do 1200 k = 1. vec2 
Do 1300 j = 1, hidden2_nodes 

Do 1400 i = I, hidden I_nodes 
Do 1500 I = 1. delay2 



& 

1500 
1400 
1300 
1200 

1750 

1800 
1700 
1650 
1600 

... 

1860 
1840 

2100 

2000 
1950 
1900 

& 
& 

76 

new = w2(k,lj,i) + eta ... de12(kj) ... yI(k+(l-I),i) + 
alpha ... (w2(k,lj,i) - wold2(k,lj,i» 

wold2(k,lj,i) = w2(k,lj,i) 
w2(k,lj,i) = new 

Continue 
Continue 

Continue 
Continue 

Do 1600 j = I, hidden2_nodes 
Do 1650 i = I, hidden I_nodes 

Do 1700 1 = I, vee2 
new =0.0 
Do 1750 k = I, delay2 

new = w2(l,kj,i) + new 
Continue 
Do 1800 k:: I, delay2 

w2(I,kj,i) = new/delay2 
Continue 

Continue 
Continue 

Continue 

updating weights between layer 1 and input layer 

Do 1840 k = I, vee 1 
Do 1860 j = I, hiddenI_nodes 

dell (kj) = 0.0 
Continue 

Continue 

Do 1900 k = I, vec2 
Do 19501 = I, delay2 

Do 2000 j = I, hidden I_nodes 
temp = 0.0 
Do 2100 i = I, hidden2_nodes 

temp = deI2(k,i) ... w2(k,I,ij) + temp 
Continue 
dell (k+(l-I)j)= temp'" (yl(kj»'" (1 - yl(kj» + dell (k+(l-l)j) 

Continue 
Continue 

Continue 

Do 2300 k:: I, veel 
Do 2400 j:: I, hidden I_nodes 

Do 2500 i = I, in_nodes 
Do 2600 1 = I, delayl 

new = wl(k,lj,i) + eta ... del1(kj) ... 
feature(cur_word,k+O-l),i) + alpha'" (wl(k.lj.i)
wold 1 (k,lj,i» 
woldl(k.I~.i) = wl(k.lj,i) 



wl(k,lj~) = new 
2600 Continue 
2500 Continue 
2400 Continue 
2300 Continue 

Do 2700 j = I, hidden I_nodes 
Do 2800 i = I, in_nodes 

Do 2900 I = I, veel 
new = 0.0 
Do 3000 k = 1, delay 1 

new = wl(l,kj,i) + new 
3000 Continue 

Do 3100 k = 1, delayl 
wl(1,kj~) = new/delay I 

3100 Continue 
2900 Continue 
2800 Continue 
2700 Continue 

Return 

End 

77 



78 

•••••••• * •• *** ••• **.** •••• * •••••• * •••••••••••• * •••• * ••••••••••••••••••••••••••••••••••••• 

• 
• 
• 
• 
• 
• 

Subroutine Write_weights 
Subroutine to write the trained weight to the file weights.dat 
Written by : Brian Schmidt 
Date Created: 7(27/93 

• 
• 
• 
• 
• 
• 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• **.*.*****.*** ••• **** 

•••••••••••••••• * •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• Parameters : • 
• in_nodes 16 • 
• hidden Cnodes 8 • 
• hidden2_nodes 4 • 
• out_nodes 4 • 
• delay 1 3 * 
• delay2 5 • 
• delay3 9 • 
• • 
• Variables : • 
• wI weights from layerl to input layer • 
• w2 weights form layer2 to Iayerl • 
• w3 weights form layer3 (output) to layer2 • 
• loop index • 
• j loop index • 
• k loop index • 
• 1 loop index • 
• * 
•••••••• ************.** ••• *.*.*****.* •••• *.* •• *.**** ••• * •••• * •• **.** •••• **** ••••••• *** •• * 

Subroutine Write_weights(in_nodes, hidden I_nodes, hidden2_nodes, 
& out_nodes, delayl, delay2, delay3, wI, w2, w3, veel, vee2) 

Integer in_nodes, hidden I_nodes, hidden2_nodes, oucnodes, delay 1 
Integerdelay2, delay3, vee 1 , vec2 
Real wI(vecI,delayl.hiddenI_nodes,in_nodes) 
Real w2(vee2,delay2.hidden2_nodes,hiddcn I_nodes) 
Real w3(delay3,oucnodes,hidden2_nodes) 
Integer i, j, k, 1 

Open(Unit=IO,File='weights.dat',Status='Unknown') 

Do 50 I = I, vec 1 
Do 100 k = I, deiayl 

Do 200 i = I, hidden I_nodes 
Do 300 j = I, in_nodes 

Write(lO,*) wI(l,k,ij) 
300 Continue 
200 Continue 
100 Continue 



79 

50 Continue 

Do 3501 = 1, vec2 
Do 400 k = 1, delay2 

Do SOO i = 1, hidden2_nodes 
Do 600 j = 1, hidden I_nodes 

Write(1 0, *) w2(1,k,ij) 
600 Continue 
500 Continue 
400 Continue 
350 Continue 

Do 700 k = 1, delay3 
Do 800 i = 1, oucnodes 

Do 900 j = 1, hidden2_nodes 
Write(10,*) w3(k,ij) 

900 Continue 
800 Continue 
700 Continue 

Close(lO) 

Return 

End 



80 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* • 
• Subroutine Results • 
• Subroutine to write the results of the TDNN to an output file • 
• Written by : Brian Schmidt • 
• Date Created: 7/27/93 • 
* • 
* •• *.** ••• * •• *.*.* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

* •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• Parameters : • 
• max_words 50 • 
• oucnodes 4 • 
• • 
• Variables: • 
• training logical to tell if in training mode • 
• yd desired output • 
• yo calculated output • 
• k loop index • 
• num_words number of words • 
• • 
.* •••• ** •• * •• * ••••••••••••••••••••••••••••• *****.**.******.*************.********.******* 

Subroutine Results(max_words, out_nodes, training, yd, yo, num_words) 

Integer IDaX_ words, oucnodes, num_ words, i, j, k 
Real yd(tnaX_ words,oucnodes) 
Real yo(max_words,oucnodes) 
Logical training 

Open(Unit= 1 O,File='results.dat' ,Status='Unknown') 

If (training .EQ .. True.) then 
Write (l0,·) Training Mode' 
Write (10,·) 'Desired Output Calculated Output' 
Do 100 k =1 ,num_words 

Write(lO,·) (yd(k,i), i=l, oucnodes), (yo(kj), j=l, out_nodes) 
100 Continue 

Else 

Write (l0,·) 'Classifying Mode' 
Write (l0,·) 'Calculated Output' 
Do 200 k= I,num_words 

Write(lO,·) (yo(kj),j = I, out_nodes) 
200 Continue 

Endif 

Return 
End 



81 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• Function Sigmoid • 
• Function to calculate the sigmoid of a given number • 
• Written by : Brian Schmidt • 
• Date Created: 7/27/93 • 
• • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 

Variables: 
x number to take the sigmoid of 

• 
• 
• 
• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Real Function Sigmoid (x) 

Real x 

If (x .It. -18.0) then 
Sigmoid = 0.0 

Else If (x .gt. 18.0) then 
Sigmoid = 1.0 

Else 
Sigmoid = l/(I+exP(-x» 

Endif 

Return 

End 



82 

••••••••••• **.*************************************************************************** 

* 
* 
* 

DAUB4 implementation of 4-coefficient Daubechies Wavelet 
* 
* 
* 

***************************************************************************************** 

Subroutine Daub4(a, n, isign) 
Integer n, isign. NMAX 
Parameter (CO=O.4829629131445341, CI=0.8365 163037378079, C2=0.2241438680420134, 

C3=-0.1294095225512604. NMAX= I 024) 
Real wksp(NMAX) 
Integer nh, hn I.i, j 

If (n LT. 4) Return 
If (n .GT. NMAX) pause 'wksp too small in daub4' 
nh = nl2 
nhl = nh + I 
If (isign .GE. 0) Then 

i = 1 

Else 

Endif 

Doj = I. n-3, 2 

EndDo 

wksp(i) = CO*aG)+CI *aG+ 1)+C2*aG+2)+C3*aG+3} 
wksp(i+nh) = C3*aG}-C2*aG+ I}+CI *aG+2)-CO*aG+3} 
i = i+1 

wksp(i) = CO*a(n-I)+CI *a(n)+C2*a(I)+C3*a(2) 
wksp(i+nh) = C3*a(n-I)-C2*a(n)+CI *a(1)-CO*a(2) 

wksp(1) = C2*a(nh)+eI *a(n)+C0*a(1)+C3*a(nhI} 
wksp(2} = C3*a(nh)-CO*a(n)+CI *a(1}-C2*a(nhI) 
j= 3 
Doi= I,nh-l 

EndDo 

wksPG) = C2 *a(i)+CI *a(i+nh)+CO*a(i+ 1 )+C3 *a(i+nh 1) 
wksPG+ 1) = C3 *a(i)-CO*a(i+nh)+C 1 *a(i+ 1 )-C2 *a(i+nh I) 
j=j+2 

Do i = I, n 
a(i) = wkSP(i) 

EndDo 

Return 

End 


