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CHAPTER 1. INTRODUCTION 

Digital image processing and analysis has seen an impressive growth in the 

past decade in terms of theoretical developments and application. These techniques 

constitute a leading technology in a number of very important areas, e.g. digital 

telecommunications, medical imaging, multimedia systems, robotics, remote sensing 

via satellites, automated inspection of industrial parts, graphic arts, radar, sonar and 

acoustic image processing etc. Interest in digital image processing arises from the 

principal application areas such as, the enhancement of pictorial information for hu­

man interpretation and processing of scene data for autonomous machine perception. 

Image processing systems play an important role in scientific, industrial, biomedical 

and space applications. A typical image processing system generally performs the 

following operations: (1) aquisition, (2) storage, (3) processing, (4) communication, 

and (5) display. 

Digital image processing deals with the transformation of an image to a digital 

format and its processing by digital computers. The basic image processing requires: 

1. Digital image formation 

2. Digital image restoration 

3. Digital image enhancement 



2 

4. Digital image coding 

5. Digital image compression 

6. Digital image analysis 

Digital image formation is the first step in a digital image processing application. 

Each digital image formation subsystem introduces a deformation or degradation 

to the digital image (e.g. geometrical distortion, noise, nonlinear transformation). 

Digital image restoration is commonly defined as the processing of the measured 

image data to compensate for artifacts introduced by the imaging system. The image 

enhancement techniques deal primarily with improvement of the quality of the digital 

image. This usually involves contrast enhancement, digital image sharpening and 

noise reduction. Digital images usually require a very large amount of memory for 

their storage. The reduction of the memory requirements is of utmost importance 

in many applications like image storage or transmission. Digital image coding and 

compression take advantage of the information redundancy existing in the image 

in order to reduce and compress its information content. Image compression plays 

a vital role in applications involving image databases, digital image transmission, 

facsimile, digital video etc. 

Finally, image analysis is the interpretation of the information content in an 

image data. Image analysis comprises of many functions such as: 

• Feature extraction 

• Segmentation 

• Classification 
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Feature extraction as the name suggests, involves extraction of certain features 

from an image. These include spatial features, transform features, edges and bound­

aries, sharp features, moments, and textures. Segmentation entails division of an im­

age into regions of similar attributes. The methods for segmentation include, besides 

other techniques, template matching, thresholding, boundary detection, clustering, 

quad-trees, texture matching. Classification deals with associating objects having 

identical features with certain properties and grouping together such objects under 

a particular class. The techniques for classification include clustering, decision trees, 

similarity measures, and spanning trees. 

Image segmentation is generally the first step in image analysis. Segmentation, 

in a broad sense partitions the input image into its constituent parts or objects. 

A multitude of algorithms have been presented in the literature in all the above­

mentioned areas. Due to the plethora of applications of image analysis, the algorithms 

for object identification and image segmentation are of prime interest. Space appli­

cations require recognition and analysis of objects in images obtained from space 

missions. In medical imaging, segmentation procedures are mainly used for process­

ing a variety of images obtained using MRI, PET, X-rays, angiograms and other 

radiological images. These images are used for detection of tumors and other dis­

orders. Radar and sonar images are used for detection and recognition of various 

types of targets. Several classical methods for image segmentation exist, some of 

them being thresholding, template matching etc. However, these methods are more 

or less heuristic and specific to a particular application. For example, in case of 

thresholding it is difficult to decide a threshold to segment an image into foreground 

and background. The results obtained from thresholding depends to a large extent 
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on the image under consideration. 

This thesis proposes a new new simple yet robust method for image segmentation 

that is based on genetic algorithm. Although GA techniques have been used exten­

sively in the optimization problems, the application of genetic algorithm in image 

processing is fairly recent and the results are encouraging. 

The rest of the chapters are organized as follows. Chapter 2 provides an intro­

duction to genetic algorithms and attempts to explain their important elements. The 

image segmentation algorithm based on genetic algorithm is explained in chapter 3. 

The results of implementation of the algorithm developed in this thesis, on simple 

simulated images are first described in chapter 4. These results help in developing an 

insight into the performance of the algorithm. A discussion of the performance and 

conclusions regarding feasibility of the approach are finally presented in chapter 5. 
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CHAPTER 2. GENETIC ALGORITHM: AN OVERVIEW 

Genetic algorithms are stochastic search methods, the principles of which are in­

spired from the laws of genetics, natural selection and evolution of organisms. Their 

main attractive characteristic is their ability to efficiently deal with hard combinato­

rial search problems, where the parallel exploration of the search space eliminates to 

a large extent the possibility of getting stuck in local extrema. The approach is based 

on the fact that individuals tend to pass on their traits to their offsprings. The fittest 

of the individuals tend to have more offsprings. In effect, the tendency is to drive the 

population towards favorable traits. Over long periods of time, entirely new species 

are produced which are better adapted to particular ecological conditions. The ge­

netic algorithm is based on the mechanisms exhibited by nature incorporating the 

robustness, the efficiency, and the flexibility of biological systems. Genetic algorithms 

was developed by John Holland, his colleagues and his students at the University of 

Michigan. 

Source of Inspiration: Natural Evolution 

This section considers some features of biological evolution that inspired John 

Holland's invention of GA [3]. GA was proposed as an attempt to mimic some 

of the processes observed in natural evolution. Biologists have been intrigued with 
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the mechanics of evolution since the evolutionary theory of biological change gained 

acceptance. It is indeed very surprising that life at the level of complexity that we 

observe, could have evolved in the relatively short time suggested by fossil records. 

The mechanisms that triggered this evolution are not fully understood, but some of 

its features are known. Evolution takes place at the chromosomes - organic devices 

for encoding the structure of living beings. A living being is created partly by a 

process of decoding the chromosomes. The specifics of chromosomal encoding and 

decoding processes are not fully understood, but here are some general features of 

the evolutionary theory that are widely accepted: 

• Evolution is a process that operates on chromosomes rather than on the living 

beings they encode. 

• Natural selection is the link between chromosomes and the performance of their 

decoded structures. Processes of natural selection cause those chromosomes 

that encode successful structures to reproduce more often than those that do 

not. 

• The process of reproduction is the point at which evolution takes place. Mu­

tations may cause the chromosomes of biological children to be different from 

those of their biological parents, and recombination processes may create quite 

different chromosomes in the children by combining material from the chromo­

somes of two parents. 

• Biological evolution has no memory. Whatever it knows about producing indi­

viduals that will function in their environment is contained in the gene pool -
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the set of chromosomes carried by the current individuals - and in the structure 

of the chromosomes decoders. 

These features of natural evolution intrigued John Holland in the early 1970's, 

and he believed that if this was appropriately incorporated in a computer algorithm, 

it might yield a technique of solving difficult problems, the way nature has done -

- through evolution. These algorithms, using simple encodings and reproduction 

mechanisms, did solve some extremely difficult problems. In reference to their origin 

in the study of genetics, Holland named this field genetic algorithms 

Analogy to Genetics 

Every living being is composed of one or more cells each of which contains a 

nucleus. Each nucleus consists of one or many chromosomes. A chromosome is 

identified as custodians of the trait-determining factors, called genes, that are passed 

on when cells divide and when offsprings are produced. Before we delve into further 

discussion on GA, some of the terms often used are defined with respect to their 

biological counterparts. 

• Gene: Gene is the basic unit of a chromosome responsible for the characteristic 

feature in an individual. 

• Chromosome: A chromosome is an organic device for encoding the structure of 

living beings and is composed of genes. 

• Schema: A schema is a similarity template describing a subset of strings with 

similarities at certain position. 
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• Individual: A living being that is characterized by distinct features dependent 

on the chromosomes. 

• Population: A group of individuals in the same domain. 

What are Genetic Algorithms 

Genetic algorithms [2] are search algorithms based on the mechanics of natural 

selection and natural genetics. They combine survival of the fittest among individ­

uals with a structured yet randomized information exchange. In every generation, a 

new set of artificial individuals (strings) is created using bits and pieces of the fittest, 

found in the earlier generation. While randomized, a genetic algorithm is not a sim­

ple random walk. These algorithms efficiently exploit the historical information to 

speculate on new search points with expected improved performance. Genetic algo­

rithms are theoretically and empirically proven to provide robust search in complex 

spaces. These algorithms are computationally simple yet powerful in their search for 

improvement. The GA is an example of search procedure that uses random choice 

as a tool (as is exhibited by nature) to guide a highly exhaustive search through a 

coding of the parameter space. An important aspect to recognize is that randomized 

search does not necessarily imply directionless search. Many papers and dissertations 

establish the validity of the technique in function optimization and control applica­

tions. Having been established as a valid approach to problems requiring efficient 

and effective search, genetic algorithms are now finding more widespread applica­

tion in business, scientific and engineering circles. This thesis presents yet another 

application of GA to Image Processing. 



9 

Elements of Genetic Algorithms 

A simple genetic algorithm that yields good results in many practical problems 

is composed of three main mechanisms namely: a way of encoding or representing 

solutions to the problem, to chromosomes, a fitness function that returns a figure 

of merit of a chromosome in the context of the problem, and reproduction operators 

that help in evolving new generations. 

1. Encoding - The technique for encoding the solutions may vary from problem 

to problem. In most of the work done so far, encoding is carried out using 

bit strings. A certain amount of art is required in selecting a good encoding 

technique that is appropriate to an application. 

2. Fitness function - The fitness function is the link between the GA and the 

problem to be solved. An evaluation function takes a chromosome as input 

and returns a number that is a measure of the chromosome's performance on 

the problem to be solved. Fitness functions play the same role in GAs as that 

of environment in natural evolution. The interaction of an individual with its 

environment provides a measure of fitness, and the interaction of a chromosome 

with a fitness function provides a measure of fitness that the GA uses when 

carrying out reproduction. 

3. Reproduction operators - The reproduction operators are essential in evolving 

from one generation to another. Three basic reproduction operators that are 

commonly used are described below: 
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• Reproduction 

Reproduction [2] is a process in which individual strings are copied ac­

cording to their fitness function values. Intuitively, we can think of the 

fitness function as some measure of profit, utility, or goodness that we want 

to maximize. Copying strings according to their fitness values means that 

strings with higher value have a higher probability of contributing one or 

more offsprings in the next generation. This operator, of course, is an arti­

ficial version of natural selection, a Darwinian survival of the fittest among 

individuals. In natural populations, fitness is determined by a creature's 

ability to survive predators, pestilence, and other obstacles to adulthood 

and subsequent reproduction. In the artificial setting, the fitness function 

is the final arbiter of the individuals life or death . 

• Crossover 

Crossover [2] may proceed in two steps. First, members of the newly 

reproduced strings in the mating pool are mated at random. Second, each 

pair of strings undergoes crossing over as follows: an integer position k 

along the string is selected uniformly at random between 1 and the string 

length less one [1,1- 1]. Two new strings are created by swapping all the 

characters between positions k + 1 and 1 inclusively. For example, consider 

individuals 11 and 12 of string length 6: 

11 = 0110\10 

12 = 1100\11 
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Suppose in choosing a random number between 1 and 5, we obtain a k = 4 

(as indicated by the separator symbol 1 ). The resulting crossover yields 

two new individuals where the prime (') means the strings are a part of 

the new generation: 

I~ = 0110111 

I~ = 1100110 

The crossover produces children that are radically different from their 

parents. A point to be noted is that the crossover technique will not 

introduce differences for a bit in a position where both parents have the 

same value. An extreme instance occurs when both parents are identical. 

In such cases, crossover can introduce no diversity in the children . 

• Mutation 

Mutation plays a secondary role in the operation of genetic algorithms. 

Mutation [2] is needed because, even though reproduction and crossover 

effectively search and recombine the better features of the parents, oc­

casionally they may become overzealous and lose some potentially useful 

genetic material. In the artificial genetic systems, the mutation operator 

protects against such an irrecoverable loss. It mainly deals with flipping 

the bit from 1 to 0 or vice versa. By itself, it is random walk through the 

string space. When used sparingly with reproduction and crossover, it is 

an insurance policy against premature loss of important notions. 

The mechanics of reproduction and crossover are surprisingly simple, involving ran­

dom number generation, string copies, and some partial string exchanges. Nonethe-



12 

less, the combined emphasis of reproduction and the structured, though randomized, 

information exchange of crossover give genetic algorithms much of their power. The 

process of reproduction and crossover in a GA is a kind of exchange in search for 

better and better performance. 

Given these initial components - a problem, a way of encoding solutions to it, a func­

tion that returns a measure of how good an encoding is, and reproduction operators 

- we can use a GA to carry out simulated evolution on a population of solutions. The 

next section describes the top-level description of the GA itself - the algorithm that 

uses these components to simulate evolution. 

The Genetic Algorithm 

The Genetic Algorithm consists of the following steps. 

1. Generate the initial population. 

2. Evaluate the fitness of each individual according to a fitness function. 

3. Select the fittest individuals for mating. 

4. Apply reproductive operators (e.g. cross-over, mutation) to create offsprings. 

5. Calculate the fitness of the offsprings. 

6. Select the best fit individuals from the pool of individuals in the current gen­

eration and the offsprings. These form the population of the next generation. 

7. If stopping criterion is not met go to step 3, else stop. 
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In every iteration, we move from one generation to the other. By transforming the 

previous set of good individuals to a new one, the operators generate a new set of in­

dividuals that have a better than average chance of also being good. When this cycle 

of evaluation, selection, and genetic operations is iterated for many generations, the 

overall fitness of the population generally improves and the individuals in the popu­

lation represent improved "solutions" to the problem at hand. The genetic algorithm 

can be viewed as a procedure [6] for searching the space of all possible binary strings 

of a fixed length 1 (denoted as {O, 1 }l) which is a 21-dimensional hyperspace. 

The Modules in GA 

The GA [3] can be divided into different modules: 

• Population module: To start with, an initial population is required and there 

are different ways to generate it. The size of the population can be fixed. Each 

member in the population is an individual made up of bits (1 or 0). 

• Evaluation module: This module defines the fitness function which is used to 

evaluate the fitness of each individual. 

• Reproduction module: Different reproduction operators can be defined, the 

most common being crossover and mutation which create offsprings (new in­

dividuals). The Population Module asks the Reproduction Module for a new 

population. The Reproduction Module asks the Population Module for par­

ents to be used in the reproduction events. In each reproduction event, the 

Reproduction Module gets parents from the Population Module, applies the re­

production operators and sends the children created to the Population Module 
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until enough children have been generated. The Population Module interacts 

with the Evaluation Module whenever a new set of children has been produced, 

and asks it to evaluate each new child before the the population of the next 

generation is chosen. 

The interactions between these modules can be explained with Figure 2.1 shown 

below. 

Evaluation Reproduction 

Module 

Figure 2.1: Interactions between the modules 

Schema Theorem 

A schema is a similarity template describing a subset of strings with similarities 

at certain position. The schema theorem states states a schema occurring in chromo-

somes with above-average evaluations will tend to occur more frequently in the next 

generation, and the one occurring in chromosomes with below-average evaluations 
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will tend to occur less frequently (ignoring the effects of mutation and crossover). 

The details of Schema Theorem and other theoretical results are treated in detail in 

[2]. This feature of GAs has been described as one of intrinsic parallelism, in that 

the algorithm is manipulating a large number of schema in parallel. The reproduc­

tion mechanisms cause the best schemata to proliferate in the population, combining 

and recombining to produce high-quality combinations of schemata on single chro-

mosomes. 

What's so special about GA? 

The search involved in genetic algorithms is from a population of points and 

not from a single point. Moreover, GA uses probabilistic transition rules, instead 

of deterministic rules to guide their search. By working from a population of well­

adapted diversity instead of a single point, the GA adheres to the old adage that 

there is safety in numbers. GAs are blind, i.e. they do not require any auxiliary 

information. To perform an effective search for moving towards better solution, GAs 

only require a function value associated with each individual. This characteristic 

makes GA a more canonical method than many search schemes. The mechanics of 

a GA is astonishingly simple, involving nothing more complex than copying strings 

and swapping partial strings. The explanation of why this simple process works is 

much more subtle and powerful. Simplicity of operations and power of effect are two 

of the main attractions of genetic algorithm approach. 

Crossover is regarded as the distinguishing feature of GA and as a critical ac­

celerator of the search process. If only mutation operator is used for reproduction, 

the performance of the GA is degraded. This [2] is analogous to reproduction in-
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volving only one parent (asexual reproduction) as mutation is performed on a single 

parent to produce one or more children. Sexual reproduction on the other hand, is 

employed by more complicated creatures on our planet and it involves more than 

one individual. Those individuals must differ in important respects, and they must 

spend time and energy finding each other when reproduction is to occur. Since this 

type of reproduction has won out in the arena of natural selection, there must be 

some respects in which this overhead is repaid. Crossover allows rapid combination 

of beneficial new traits in a way that cannot be duplicated by mutation. 
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CHAPTER 3. IMAGE SEGMENTATION 

Image segmentation is the fundamental process in image analysis. Segmentation 

entails division or separation of an image into regions of similar attributes. The most 

basic attribute for segmentation is the image intensity (luminance for a monochro­

matic image). Segmentation algorithms basically identify homogeneous image re­

gions, each corresponding to objects or to background. Regional segmentation tech­

niques can be grouped in three classes. Local techniques employ the local properties 

within the image neighborhood. Global techniques segment the image on the basis 

of global information. Split and merge techniques employ both pixel proximity and 

region homogeneity in order to obtain good segmentation results. Segmentation is 

one of the most important tasks in image processing as it determines the eventual 

success or failure of the analysis. The well-known image segmentation techniques are 

thresholding, edge-detection, boundary extraction etc. 

Problem Statement 

In this thesis, we address the problem of detecting homogeneous image regions, 

corresponding to image objects or background. In other words, we are concerned 

with identifying objects in a raw (noisy) image consisting of multiple objects. 



18 

Image Model 

A digitized image is typically represented by a matrix X with components, Xij, 

whose values represent the intensity of pixel (i,j). A raw image is assumed to have 

a picture component superimposed by a noise component. Such a noisy image is 

modeled by the equation 

(3.1) 

Here, iij IS the image intensity and the noise nij IS assumed to be normally 

x. x, Xl X, X. X, x. X 
7 

X, X. X,. X" X'l X" X,. Xu 

X,. X" XII XI9 XlO Xl' Xu XlJ 

Xl. Xl> Xu Xl? Xli X19 X,. X 

" 
X, X" X,. X X,. X17 X" 

X,. 
" 

x .. x X. x., x x x .. x., .. .. ., 
x .. X X,. x" x" x" x X .. ,. 

" 
X,. x" x" x" x .. X" X61 X., 

Figure 3.1: The subimage matrix 

distributed with zero mean and variance a 2 • The images considered in this study are 

composed of a single object of intensity Ro embedded in a background of intensity Rb. 

The segmentation algorithm is performed on the 8 X 8 subimages, and the resulting 

subimages are then combined to obtain the entire segmented image. The 2-D 8XS 

subimages are represented as a vector in I-D as x = [xo, Xl, ••• , X63] , 0 ~ Xi ~ 255, 

where Xi represents the intensity of the pixel in the ith position. This is illustrated 

in Figures 3.1 and 3;2. 
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2 3 4 5 6 7 8 

Figure 3.2: 2-D 8 X 8 raw subimage 

Approach 

The raw image that has to be segmented can be of any arbitrary size. It is divided 

into subimages and the algorithm for image segmentation is applied to each subimage. 

The algorithm comprises of generating initial population, evaluating every individual 

in the population on the basis of a fitness fuction, selecting eligible candidates for 

reproduction, generating offsprings by appling reproductive operators, and finally 

moving to the next generation by allowing only the fittest individuals to survive. 

This procedure is iterated until the stopping criterion is met. The fittest individual 

is the segmented image. The resulting segmented subimages are then combined to 

obtain the entire segmented image. There is no overlap in the subimages. More 

specifically, a pixel in a given image occurs in one and only one subimage. The steps 
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in the algorithm mentioned above are explained in detail next. 

Initial Population 

The first step in the GA is to create an initial population. A set of individuals 

have to be created. Each candidate or individual is a string of Ro (object-intensity) 

and Rb (background-intensity). This represents a binary subimage. The initial pop­

ulation can be represented by the set, 

{Yik}, i=O,1, ... ,63; k=1,2, ... ,N 

where N is the population size. Two methods of generating initial population are 

discussed next. 

Method 1 

In this method every candidate in the population is generated randomly. Each 

individual in the population is a vector of length 64. Each element in the vector is 

randomly chosen to be Ro or Rb. 

Yik = Ro or Rb (randomly) i = 0,1, ... ,63; k = 1,2, ... ,N 

In effect, each individual represents a subimage and N such subimages are gener­

ated which represent the initial population. Figure 3.3 shows the randomly generated 

subimage which is a candidate in the initial population 
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Method 2 

This method uses some heuristic to obtain the initial population. Since the noise 

is assumed to be gaussian with a spread of 30' from the mean, every individual in 

the initial population is generated as described below. For every element Xi in the 

original image, the value in the ith position of the individual k is 

Ro 

~k = Rb 

if Xi > Rb + 30'; 

if Xi < Ro - 30'; 

Ro or Rb (randomly) otherwise 

Figure 3.4 explains the method of generation of initial population based on Method 

2. Figures 3.5 and 3.6 show a raw subimage and a candidate for an initial population 

generated by Method 2. 

2 3 4 5 6 7 8 

Figure 3.3: A candidate of initial population generated by Method 1 
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Figure 3.4: Heuristic used in Method 2 

2 3 4 5 6 7 8 

Figure 3.5: The raw subimage 
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2 3 4 5 6 7 8 

Figure 3.6: A candidate of initial population generated by Method 2 

Method 1 vs Method 2 

Method 1 does not depend on the knowledge of noise vanance. In most of 

the Image Segmentation algorithms, noise variance is one of the parameters to be 

provided by the user. This method of generation of initial population does not 

require knowledge of this parameter. Since the method is totally random, the initial 

population size is kept high so that it has a large enough solution space. In method 

2, N comparisons with the raw subimage are required to generate N candidates for 

the initial population. This method requires one to know the variance. However, 

because some initial heuristic is used, the number of individuals in the population, 

i.e. the population size can be decreased. This effectively decreases the run-time of 

the algorithm. Thus there is a tradeoff between reduced user input parameters and 
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the run-time of the segmentation algorithm. 

Fitness Evaluation 

A fitness function is defined in order to evaluate the individuals of the population. 

The fitness function plays an important role in the genetic algorithm and helps decide 

whether: 

1. The individuals that are capable of producing offsprings. 

2. The offsprings that are fit enough to survive. 

3. The individuals in the current generation that are capable of existing in the 

next generation. 

If the original image is x and the initial population is 

o ~ i ~ 63; 

The fitness of an individual f(yk) of the population is calculated as: 

k=1,2, ... ,N (3.2) 

k 1 
E(Y ) = 2:?3 !l'? - x'! ,=0, , 

(3.3) 

k 1 
T(Y ) = ...--?3 !yk _ w.! L...t,=o, , 

Wi E neighboring pixel of ~k (3.4) 

E(yk) is the measure of similarity between the individual yk and the original noisy 

subimage. The idea here is to minimize the difference between the raw subimage of 

varying gray intensity and the binary subimage. The candidate subimage which has 

the least hamming distance to the raw subimage has the highest E(yk). For instance, 
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for the raw image in Figure 3.7, two candidates along with the similarity measure 

value E(yk) are shown in Figures 3.8 and 3.9. The second term in the fitness, T(yk) 

is the reciprocal of the transition count in the horizontal and vertical direction. This 

term is introduced in order that the images with homogeneous regions have a better 

fitness as compared to those images with discontinuities. The fitter individuals will 

have a high T(yk) since the sum of the transition count will be low. The procedure for 

calculating the transition count is described below. For every pixel, the 4-neighbors 

are observed. 

Figure 3.7: 8 X 8 raw image: SNR = 2 

If the pixel under consideration has a value Rb and three out of the four neighbors 

have values Ro then the transition count of that pixel is 3 * IRb - Rol. The corner 

pixels have only two 4-neighbors while the pixels on the edge of the image have only 

three 4-neighbors. T(yk) is the reciprocal of the sum of the transition counts of all 

the pixels. As can be seen from the figures below, the candidate in Figure 3.11 

is homogeneous and has a higher T(yk) than the candidate shown in Figure 3.10 

which shows many discontinuities. In these images Ro = 150, and Rb = 50. Q is the 

weighting factor that normalizes the two quantities E(yk) and T(yk). 
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Figure 3.8: E(yk) = 2.3595e-04 

Figure 3.9: E(yk) = 3.856ge-04 

Figure 3.10: T(yk) = 9.1743e-05 
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Figure 3.11: T(yk)= 6.2500e-04 

Selection of Fittest 

Once the fitness of the individuals is evaluated, the fitter individuals must be 

selected so that they can be mated to produce offsprings in the next generation. A 

very simple way to do the selection is to define a threshold 0, 

0= Max(f) + Min(f) 
2 

(3.5) 

M ax(f) and M in (f) are the maximum and minimum values of the fitness function 

respectively. The individuals with fitness greater than the threshold are selected to 

produce offsprings. In order that the search space does not get limited, we define a 

minimum number of offsprings, ( that must be generated. If the number of offsprings 

generated is less than ( the threshold 0 is decreased so that more candidates are 

selected for the reproduction and the number of offsprings generated by the selected 

candidates is more than the minimum allowed. 
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Reproduction 

The reproduction phase is critical because it is responsible for the evolution. 

The individuals capable of reproduction are brought together in the mating pool. 

The basic operators of reproduction, namely crossover and mutation are explained in 

chapter 2. However, the way in which they are applied may depend on the problem 

at hand. The implementation of these operators are defined in the application of 

image segmentation is explained next. 

1. Crossover: Let us assume that the mating pool consists of J< individuals. 

Since all are capable of reproduction, we assume that each of the J< individuals 

mates with each of the remaining (J< - 1) individual and produces (I{ - 1) 

offsprings. So in effect, the J< individuals will produce a total of J<(I{ - 1) 

offsprings. Let S denote the set of J< individuals selected from the current 

generation. 

KKK Yo ,t;. , ... , Y63} 

Every individual in the set S generates (I{ - 1) new offsprings as follows. For 

every individual yi, i = 1,2, ... , J< a cross-over point p (0 < p < 63) is randomly 

chosen. If Zi is any individual in { S }, and the crossover point is p then the 

first p + 1 elements of Zi, { ZO, Zl, ... , ZP} are concatenated with the remaining 

64 - (p+ 1) elements from position p+ 1 to 63, of all the individuals in the set { 
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s - Zi } The K - 1 new offsprings created from Zi in { S } can be represented 

as, 

j = 1,2, ... ,K-1. 

The total number of individuals after the crossover is N + K(K - 1). N indi­

viduals belong to the current generation and K(I{ -1) offsprings are produced 

by the crossover operator. A note to be made at this point is that not all of 

the offsprings survive. 

2. Mutation: The mutation operator is applied to the individuals selected for 

the next generation. Mutation can be explained as follows. A living being 

undergoes some changes in its characteristics due to the influence of the sur­

roundings. During its lifespan, every creature develops and grows by adapting 

itself to the existing environment so that it is more suited for survival. In a 

very similar way, the mutation operator applied to the individuals in our study, 

does not really produce new offsprings, but allows the existing individuals to 

develop traits that help them survive. The mutation operator is applied to an 

individual as follows: 

Each gene (pixel value) is modified depending on the value possessed by the 

majority of its neighbor. A neighborhood C is defined (similar to the 8-pixel 

neighborhood or 4-pixel neighborhood). For each bit Xi in the individual Yik 

the neighborhood C is considered. If Nb is the number of background pixels 
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and No is the number of object pixels in C then 

Yik = .{ Rb 

Ro 

i=0,1, ... ,63. 

if Nb > No 

if No> Nb 

k = 1,2, ... ,N. 

The Figure 3.12 shows the typical 4-pixel and 8-pixel neighborhoods. In both 

cases the center pixel is the pixel under consideration and since the Nb is more 

than No in both cases, the pixel under consideration is changed from Ro to Rb 

(a) 0b) 

Figure 3.12: Different neighborhoods 

Next Generation 

Once the reproductive operators have been applied, there are N + J«J< - 1) 

individuals. The fitness of each is evaluated using the fitness function described in 

the equation 3.2. The N best individuals, are selected to form the next generation. 

In order that the genetic algorithm does not get stuck in the local extrema, we 

do not take two individuals with the same fitness value. In case there are more than 

one individuals with same fitness value, one of them is selected randomly. 
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Stopping Criterion 

The algorithm proceeds from one generation to another and evolution takes 

place. One would expect this to go on indefinitely. However, the evolution is directed 

towards improving the individual characteristic. After a number of generations, all 

the individuals of the population will have the same fitness, indicating that conver­

gence is reached. Further processing will not cause improvement and typically, the 

algorithm is stopped at this point. In this study, the algorithm is made to stop after 

a fixed number of generations. This is done to ensure that the algorithm does not 

take an indefinitely long time to come to an end. 

Parameters that Affect the Performance of the G A 

In order that the genetic algorithm works effectively, the various components of 

the algorithm have to be chosen with care. A brief discussion of the parameters that 

influence the performance of the GA has been presented next. 

1. Population size 

The number of individuals at a given time in the population determines its 

size. If the population size is large, the algorithm will take fewer generations 

to reach a good "solution". The run-time of the algorithm for a generation is 

directly proportional to the population size which in other words means that if 

the population size is small then the time required for running one generation 

is less and vice versa. However, the overall runtime is not affected since a 

smaller population size means large number of generations. The reverse also 

holds good. 
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2. Generation of initial population 

We discussed two methods of generation of initial population. There are various 

other ways in which one can generate an initial population. In most of the liter­

ature on genetic algorithm, random method of generation of initial population 

is preferred. 

3. Subimage size 

The size of the subimage is another parameter that can be varied. The subim­

age size also plays an important role in the determining the runtime of the 

algorithm. If the subimage size is increased then the length of the chromosome 

will automatically increase. Intuitively, we can expect that the time for pro­

cessing will increase. But then again the entire image will be divided into fewer 

subimages. If the subimage size is (m X n) then the string length of every 

candidate will be (m X n) and the solution space will increase to 2(mX n). The 

results of the experiments with different subimage size are presented in the next 

chapter. 

4. Fitness Function 

The fitness function chosen decides how well the algorithm performs. The 

genetic algorithm provides a lot of flexibility in the sense that there can be 

numerous fitness functions for a given problem. The choice of a wrong fitness 

function can lead to total failure. It may so happen that the average fitness 

function increases from one generation to another, but the solution obtained 

may be going further away from the desired solution. Care should be taken 

while designing a fitness function. 
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5. Selection Criteria 

A selection criterion is required to decide which of the individuals can be se­

lected for application of reproduction operators. One could decide on a fixed 

number of individuals to be selected every time. Here a fixed number of indi­

viduals with best fitness can be selected. This makes the algorithm very rigid. 

In order to bring more flexibility, we can choose the best fit individuals with a 

certain probability. The selection criteria described in the current algorithm is 

based on a threshold as explained before. This method allows a lot of flexibility, 

that is, every time a different number of individuals are selected for the mating 

pool. 

6. Crossover techniques 

There can be various methods of applying crossover. The method of crossover 

described in this algorithm forces each individual in the mating pool to produce 

an offspring with every other individual. This could be modified in a way that 

each individual mates with the remaining individuals with a certain probability. 

Another variation could be that two individuals are selected randomly from 

the mating pool and made to produce two children. The crossover discussed so 

far is concerned with selecting only one crossover point (one-point crossover) 

randomly. A modification to it could be selecting two (two-point crossover) 

or more (multi-point crossover) crossovers. However this would unnecessarily 

complicate the algorithm and the inherent simplicity of the current algorithm 

will be lost. 
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7. Mutation techniques (different neighborhood) 

The mutation technique described in the section on mutation is based on flip­

ping the selected bits based on some heuristic (looking at the neighborhood). 

We could simply define a mutation rate (number of bits to be mutated) and 

flip bits randomly. Application of any kind of information that is available 

(knowledge of neighboring pixels in this case) to enhance the genetic algorithm 

is referred to as hybridizing the algorithm. Different neighborhoods can be used 

and bits can be flipped with some induced uncertainity to modify the current 

mutation operator. 

8. Variable population 

In the algorithm described above, the number of individuals in the population 

is kept fixed for every generation. This parameter can be made variable by 

allowing individuals with fitness above a certain threshold to move on to the 

next generation instead of allowing a fixed number of best fit individuals to 

form the next generation. 

9. Stopping criteria 

Apart from the stopping criterion used in the algorithm in our study, several 

choices of stopping criteria could be used for terminating the algorithm. The 

algorithm can be allowed to run until convergence is achieved. The algorithm 

converges when the average fitness remains constant from one generation to an­

other. Alternatively the algorithm could be stopped if the threshold () remains 

constant from one generation to another. 
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An investigation of the effects of the above mentioned parameters on the perfor­

mance on GA are presented next using some simple simulated images. The algorithm 

is then implemented on an X-ray image for flaw detection. 



36 

CHAPTER 4. RESULTS AND DISCUSSION 

This chapter is organized in the manner the algorithm evolved over the duration 

of the study. Little was known when this work was started about application of 

genetic algorithm to the problem of object identification in noisy images. In order 

to explore the field, some initial confidence was needed to prove the feasibility of the 

approach and take it further. To start with, some very simple images (horizontal 

and vertical boundaries) were considered. The results on the data looked promising 

and the algorithm was then applied to more complex images with smooth curves and 

other jagged edges the results of which are also presented. The different parameters 

were varied and their role in the performance of the algorithm was studied. All these 

results are presented and discussed in the following sections. 

Effect of Subimage Size 

The study was first conducted on elementary images of size 8 X 8 with Ro = 150 

and Rb = 50. The noisy input image was synthesized by superimposing a random 

gaussian noise on the clean binary image. The variance of the noise controlled the 

signal to noise ratio (SNR) of the raw noisy image. The noise variance (72 was 2500 

and the SN R was 2. 
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The initial population was generated randomly (Method 1) and the population 

size was selected as 30. The algorithm was made to stop after 100 generations. 

Figure 4.1 shows: (a) the original image (Horizontal Cut), (b) the noisy image, (c) 

one candidate of the initial population and finally (d) the resulting segmented image. 

The experiments with a subimage of size 8 X 8 proved the feasibility of the ap­

proach. It seemed reasonable to extend this technique to a larger subimage size. The 

next subimage size that was tried was of size 16 X 16. In the results shown in Figure 

4.2 the image under considerations the object intensity Ro = 150 and background 

intensity Rb = 50. The noise superimposed on the original images had a variance of 

(J2 = 4000 resulting in noisy images of SN R = 1.58 The plot of average"weakness" 

with respect to number of generations is shown in Figure 4.3. The population size is 

chosen to be 35 while it is made to stop after 100 generations. Figure 4.4 shows the 

plot of the weakness of the fittest individual in the population for the 100 generations. 

From the plot shown in Figure 4.4 it is clear that the fitness of the best individual 

does not increase after 57 generation. The average fitness increases, but the same 

best fit individual continues to live from one generation to another. The increase in 

the average fitness is due to the fact that the fitness of most of the individuals in the 

population increases. The optimum solution is not reached. This can be explained 

as follows. The subimage size is increased to 16 X 16 which causes the solution space 

to be increased to 216 . This makes the search for global minimum more difficult. 

Instead of increasing the number of generations, one alternative would be to increase 

the size of the population. At the same time, the number of generations can be also 

reduced. 
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Original Image Raw Image: SNR = 2.0 
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Figure 4.1: Results for 8 X 8 subimage 
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Original Image Raw Image: SNR = 1.58 
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Figure 4.2: Results for 16 X 16 subimage 



40 

x 10' 
3.5F-'-"'--.----.-----.--..,.---.--~-~-~-~-~ 

., 3 .. 
CD 

! 
~2.5 
.5 
'-= 

~ 
~ \ o 2 '-----------. 

~ 
.~ 
:;: 
a: 1.5 

10 20 30 40 50 60 70 80 90 100 
Number 01 Generations 

Figure 4.3: The plot of "average weakness" versus the number of generations (100) 
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Figure 4.4: The plot of the reciprocal of the fitness of the fittest individual with 
respect to the number of generations 
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The algorithm was tried with a population size of 50 which was allowed to evolve 

for 50 generations. The results obtained are presented in Figure 4.5. The subimage 

size is further increased to 32 X 32, and the algorithm was implemented on the 

image, with Ro = 150, Rb = 50, and SNR = 1.58. The population size is 50 and the 

algorithm is made to stop after 30 generations. The results are not very encouraging. 

Moreover, the time complexity also increased as the individual string was 1024 long. 

The result is shown in Figure 4.6. The subimage size of 16 X 16 was found to be 

optimal. 

Initial Population 

In this section, a comparison between the two methods of generation of the initial 

population is discussed. The examples chosen were complex in that the images had 

multiple objects with sharply varying object boundaries. The signal to noise ratio of 

the raw images is 1.58. The population size is maintained at 50 and the algorithm is 

stopped after 10 generations. 

In the results presented in Figures 4.7, 4.8 and 4.9 the initial population is 

generated randomly using Method 1. Figures 4.10 4.11 and 4.12 show the results 

of the algorithm when Method 2 is used to generate the initial population. In the 

second set of figures, the candidate of the initial population resembles the original 

image to some extent. There is an additional time required in generating the initial 

population using the Method 2. The set of initial population has to be generated for 

each of the subimage before processing it further. 
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Figure 4.5: Results for 16 X 16 subimage with increased population size 
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Figure 4.6: Results for 32 X 32 subimage 
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Figure 4.7: Results for 16 X 16 image with sharp edges 
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Figure 4.8: Results for 16 X 16 image with two objects 
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Figure 4.9: Results for 16 X 16 image with smooth curve 
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Figure 4.10: Results for 16 X 16 image with sharp edges using Method 2 for gener­
ating initial population 
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Original Image Raw Image: SNR = 1.58 
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Figure 4.11: Results for 16 X 16 image with two objects using Method 2 for gener­
ating initial population 
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Original Image Raw Image: SNR = 1.58 

5 5 

10 10 

15 15 

5 10 15 5 10 15 

One Candidate of Initial Population Segmented Image 

5 5 

10 10 

15 15 

5 10 15 5 10 15 

Figure 4.12: Results for 16 X 16 image with smooth curve using Method 2 for gen­
erating initial population 
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This additional time for generating initial population increases the time com­

plexity if the image size is large and consequently larger number of subimages. On 

the contrary, if Method 1 is used to generate the initial population, the same set of 

initial population is be used for processing each of the subimage. Another alternative 

is to create a large number of individuals (using Method 1) and choose N of them 

as the initial population for every subimage. Since the results obtained by both the 

methods are comparable, and Method 1 is more efficient and simple, it is used for 

generating initial population hereafter. 

Effect of Number of Generations 

The study was first conducted on images of size 8 X 8 with Ro = 150 and Rb 

= 50. The noise that was superimposed had variance (/72 ) of 2500 which resulted 

in signal to noise ratio (SN R) of 2. The initial population was generated randomly 

(Method 1) and the population size was selected as 30. The algorithm was made to 

stop after 100 generations. Figure 4.13 shows: (a) the original image (Horizontal 

Cut), (b) the noisy image, (c) one candidate of the initial population and finally (d) 

the resulting segmented image. As can be seen, the algorithm was successful in finding 

the global extrema. Figure 4.14 shows the plot of the reciprocal of the average fitness 

or the "weakness" versus the number of generations. As can be seen from the plot, 

the average weakness continues to decrease with the number of generations and the 

reduction is very steep in the first five generations. After that the function remains 

steady until the fiftieth generation. The weakness function falls sharply and once 

again remains constant until the 100th generation. In other words the the maximum 

fitness was attained after 50th generations and the "solution" was reached. 
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Figure 4.13: Initial results for 8 X 8 subimage with a horizontal boundary 
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Figure 4.14: The plot of "weakness" versus the number of generations (100) for 
Figure 4.13 
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ure 4.13 
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Figure 4.16: Results obtained in 4 different trials with the raw image of Figure 4.13 
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four trials 
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The stopping criteria was therefore changed and the algorithm was stopped after 

40 generations. Figure 4.15 shows the plot of the average "weakness" versus number 

of generations. The final segmented image was the same as in Figure 4.13. The plot 

shows decrease in "weakness" as expected. For the sake of curiosity, the number of 

generations was decreased to 10. Figure 4.16 shows the results obtained in this case 

in different trials of the algorithm with different random intial population. The noisy 

input image is the same as in Figure 4.13. However, in each of the runs, a different 

set of initial population was generated randomly. Figure 4.17 shows corresponding 

plots of "weakness" versus number of generations in the different runs. It can be 

observed from Figure 4.16 that the "solution" is reached in 10 generations in three 

of the four trials. But, the one spurious case suggests that the number of generations 

should be more than 10. However it should be noted at this stage that the the global 

"solution" can be reached in 10 generations too but with some probability. Also if 

the starting population is kept the same in the different runs, the same solution is 

obtained after 10 generations. 

Performance on Low Contrast Images 

The image under consideration has a vertical boundary. Here, the object in­

tensity (Ro) was decreased from 150 to 125 and the background intensity (Rb) was 

increased from 50 to 75. A random gaussian noise of variance 0'2 = 2500 was added 

to the 8 X 8 image to get a noisy image with S N R = 1. The initial population was 

generated randomly and the size of the initial population was kept 30. The algorithm 

was stopped after 50 generations and the results are presented in the Figure 4.18. The 

plot of the average "weakness" versus number of generations is shown in Figure 4.19. 
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Figure 4.18: Initial results for 8 X 8 low contrast subimage 
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Figure 4.21 
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Original Image Raw Image: SNR = 1 
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Figure 4.21: Results for 8 X 8 low contrast image with curved object edge 
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Original Image Raw Image: SNR = 1 
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Figure 4.22: Results for 8 X 8 low contrast image with jagged object edge 
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Figure 4.23: The plot of "weakness" versus the number of generations (100) for 
Figure 4.22 

The algorithm was tried a number of times with varying initial population. The 

segmented image converged to the true image in majority of the trials indicating high 

probability of convergence to the global minima even at a low SNR of 1. Howver, 

since the signal to noise ratio was decreased, the number of generations was increased 

to 100. 

Figures 4.21 and 4.22 show the results on object boundaries that are curved 

and jagged object edges. Figures 4.20 and 4.23 show the corresponding plots of 

average "weakness" versus number of generations. In these images, the specifications 

were the same, i.e. Ro = 125, Rb = 75, and S N R = 1. The population size was 30 

and the number of generations for which the algorithm was made to run was 100. 
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Stopping Criteria 

In the experiments conducted so far, the stopping criterion used for the ter­

mination of the algorithm was a fixed number of generations. In this section an 

alternative stopping criteria is described and its effect on the segmentation results 

same are presented. The algorithm is terminated whe the fitness function converges 

to a steady value, i.e. the difference between the average fitness and the maximum 

fitness becomes less than a threshold <p. 

2:f:l f(Y~) _ M ax(J) < <p 
N 

where <p = Ro - Rb (4.1) 

In order that the algorithm does not get stuck in a local extrema, the algorithm 

is forced to terminate after 100 generations even if the convergence is not reached. 

In the previous experiments, the number of generations played an important role in 

reaching a good solution, and the number of generations was obtained by trial and 

error. Such a procedure can lead to severe problems in a practical application. One 

possible approach is to choose the number of generations sufficiently large. However 

this would be very inefficient and computationally wasteful. Figures 4.24, 4.25 

and 4.26 present the results obtained when the the stopping criterion described 

above is used. The images used have Ro = 150, Rb = 50, SNR = 1.58 and the 

initial population size is 50. The number of generations after which the algorithm 

converged is 13, 8 and 10 respectively. Figures 4.27, 4.28 and 4.29 show the plot of 

the average "weakness" versus the number of generations for the the results shown 

in Figures 4.24, 4.25 and 4.26 respectively. 
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Figure 4.24: New stopping criterion used: horizontal and vertical boundary 
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Figure 4.25: New stopping criterion used: sharp edges 
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Figure 4.26: New stopping criterion used: multiple objects 
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Effect of the Fitness Function Parameters 

The fitness function comprises of a similarity measure (E(lk)), a reciprocal of 

the transition count (T(lk)), and a weighting function a The effect of modifying 

these parameters on the segmentation procedure is studied next. 

1. Similarity function (E(Yk )) 

In this experiment the fitness function was defined by only (E(Yk )) Figures 4.30, 

4.31 and 4.32 show the results obtained for different images with Ro = 150, 

Rb = 50, SNR = 1.58, and a population size of 50. The number of generations 

required in each of the three cases is 7, 9 and 7 respectively. As can be observed 

the fitness function with only the similarity measure gives reasonably good 

results by itself. The second term is added only to give improved results. 

2. The role of (T(Yk )) 

The parameter (T(Yk)) is dependent on the number of transition (or disconti­

nuities) in the candidate under consideration. It does not in any way depend 

on the raw image, which is the input to the system. This parameter is intro­

duced only for fine tuning the fitness function and its function is to weight a 

homogeneous individual in the population over one that is inhomogeneous. In 

fact, images in which small objects are to be detected, should preferably not 

have the term (T(Yk)). However, it can be adjusted with the a parameter, the 

role of which is studied in the next section. 
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Figure 4.30: Results for 16 X 16 image with sharp edges: fitness function = E(yk) 
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Figure 4.31: Results for 16 X 16 image with vertical boundary: fitness function = 
E(yk) 
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Figure 4.32: Results for 16 X 16 image with smooth curve: fitness function = E(yk) 
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3. The effect of using different values for a In all the experiments conducted 

so far, alpha was kept as 0.3. The values of E(yk) and T(yk) were observed and 

it was found that 0.3 was a reasonable factor to normalize the two quantities. 

The raw images shown in Figure 4.34 was generated by introducing noise in 

images shown in Figure 4.33. Figures 4.35, 4.36, 4.37 and 4.38 show the 

results with a = 0.15, a = 0.5, a = 1, and a = 10 respectively. As can be 

observed, with very a very high value of a the T(yk) is overemphasised. As 

discussed before, T(yk) does not take the image data into consideration. So 

the results obtained with high a are not good. The value of a should therefore 

be less than 0.5 and was chosen to be 0.3 after trial and error. 

Reproduction 

Crossover and the Mutation are the two operators used for reproduction. Once 

the potential candidates are selected from the current generation, they are placed in 

a mating pool. All the experiments conducted so far, use the crossover technique 

described in Chapter 3. An alternate crossover technique is studied here. 

The Mutation operator used so far considers an 8-pixel neighborhood of each bit 

in the chromosome. In this section we study the effect of a 4-neighborhood mutation 

operator. 

Crossover 

The crossover applied here can be explained as follows. The individuals in the 

mating pool are selected two at a time. 
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Figure 4.33: Original images 
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Figure 4.34: Raw images 
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Figure 4.35: Results for 16 X 16 image: 0: = 0.15 
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Figure 4.36: Results for 16 X 16 image: Q = 0.5 
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Figure 4.37: Results for 16 X 16 image: a = 1 
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Figure 4.38: Results for 16 X 16 image: Q = 10 
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These two form the parents and a random crossover point is selected and the two 

parents produce two offsprings just as in a conventional crossover. The population 

size is fixed as 200. In each crossover, the number of times the reproduction operator 

is applied is chosen randomly. 

For example, if the random number generated is 23 (the random number is set 

to be between 1 and size of the population), then a pair of parents is selected for 

reproduction 23 times (a different pair every time ) to produce 46 offsprings. 

The images used here are similar to previous images, wherein Ro = 150, Rb=50 

SNR = 1.58 and the stopping criteria used is the convergence of fitness function as 

shown in equation 4.1. a is chosen to be 0.2 in these experiments. The Figures 4.39, 

4.40, and 4.41 show the results obtained with the random crossover operator. 

Mutation 

If the object is very small, the mutation operator has the effect of deleting very 

small objects that are treated as noise. Hence the mutation operator using an 8-pixel 

neighborhood, will not be successful in detecting it. However, a 4-pixel neighbor­

hood mutation operator applied with the crossover mentioned above is successful in 

detection objects of size as small as 3 X 3. 

These results are presented in Figures 4.42 and 4.43. The images have RO = 

150, Rb = 50, SNR = 1.58, a = 0.2 and the population size is chosen as 200. The 

initial population is generated randomly. As can be seen, this mutation operator 

performs well only in case of presence of small objects. In images with continuous 

objects, 8-neighborhood mutation operator performs better. 
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Figure 4.39: Results for 16 X 16 image with jagged edges: new crossover technique 
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Figure 4.40: Results for 16 X 16 image with sharp edges: new crossover technique 
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Figure 4.41: Results for 16 X 16 image with multiple objects: new crossover tech­
mque 
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Figure 4.42: Results for 16 X 16 image with small object: 4-pixel neighborhood 
mutation 
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Figure 4.43: Results for 16 X 16 image with sharp edges: 4-pixel neighborhood 
mutation 
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Application to Bigger Images 

As has been explained before in the proposed algorithm, the image is subdivided 

into subimages and the segmentation algorithm is performed independently on each 

subimage. The resulting segmented images are combined to give the final image. 

Figures 4.44 and 4.45 show experiments carried out with images of size 64 X 64. 

If the image size is not a factor of 16 it can be padded with zeroes so that the 

image dimensions are then a factor of 16. In Figure 4.44 the specifications are Ro 

= 150, Rb = 50, SNR = 1.58, size of the initial population = 100, Q = 0.2, initial 

population is generated randomly, crossover used is with randomly selected parents 

and the mutation operator uses the 8-pixel neighborhood. In Figure 4.45 the Ro is 

125, Rb = 75 and SNR = 1, while the other specifications are the same as above. The 

results show that the algorithm is successful in detecting multiple objects of different 

sizes and shapes in low contrast images with signal to noise ratio as low as 1.0. 

Application to X-ray Images 

The results presented so far were obtained using simulated images. The algo­

rithm was implemented on experimental X-ray images and the results obtained are 

presented in Figure 4.46. The 128 X 256 size image that was input to the algorithm 

has various features as indicated by the varying gray levels. At the center of the 

image, there is a circular flaw which is to be identified. The object intensity and the 

background intensity found using histogram analysis were 184 and 63 respectively. 
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Figure 4.44: Results for 64 X 64 image: SNR = 1.58 
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Figure 4.46: Flaw detection in an X-ray image 
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However, 184 corresponds to the brightest region in the image while 63 corre­

sponds to the dark background. The flaw to be identified however is in the center, 

embedded in a very low contrast background and is barely visible to the human eye. 

The GA was executed with population size maintained at 100 while Q' was chosen to 

be 0.2. The initial population was generated randomly and the alternative method 

of crossover, in which a pair of parents are selected randomly from the mating pool 

to generate offsprings, was applied. The 8-pixel neighborhood mutation operator 

was employed. The segmented image obtained is a binary image with Ro = 184 

and Rb = 63. The results, clearly demonstrate that the algorithm is successful in 

detecting the flaw, inspite of the low contrast. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

Summary 

The goal of this thesis was to develop a novel Image Segmentation procedure 

using the genetic algorithm approach. Image Segmentation is first formulated as an 

optimization problem and the optimization is carried out using genetic algorithms. 

Genetic algorithms are based on the evolution theory which advocates the "survival 

of the fittest" principle. In the genetic algorithm approach, an initial population of 

individuals is required along with a measure of fitness to evaluate each individual. 

Only the fitter candidates survive and are able to produce offsprings. The offsprings 

so created tend to inherit the "better" features of their parents. The over all fitness of 

the entire population shows improvement over the generations until a point is reached 

when anyone individual in the population is as good as another. 

This approach has been successfully applied to the Image Segmentation appli­

cation where the typical input images are noisy and the pixel intensity varies from 

o to 255. There is no restriction on the size of the image since the image is divided 

into subimages and each subimage is processed independently. Each subimage is 

represented as a string and the range of values are (0 - 255). 

Two methods of generating the initial population of size N are discussed. Each 

candidate in the population is a string of the same size as the subimage, however it 
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is a binary string having either object intensity Ro or background intensity Rb. In 

the first method, the individuals (strings) are made up of Ro and Rb randomly. The 

second approach uses a heuristic method based on the knowledge of noise variance in 

the image to generate the initial population. There are tradeoffs associated in using 

one method over another as discussed in chapter 3. In most of the literature, ran­

dom methods of generating initial population is recommended and the experiments 

performed assert the same. 

The fitness function describe in equation 3.2 is used to evaluate the merit of 

each candidate. It is composed of a similarity measure and a transition count. This 

kind of a fitness, weights a candidate with a homogeneous object that has a lower 

hamming distance with the subimage under consideration, over a candidate with a 

discontinuous object. 

A criteria for selecting eligible individuals capable of reproduction needs to be 

defined. All candidates with fitness greater than the threshold (), given by equa­

tion 3.5, are put together in a mating pool. The most critical step in the GA is the 

reproduction because it is responsible for evolution. Two methods of crossover are 

presented in this thesis. In one of the methods every individual is forced to mate 

with all the remaining individuals in the pool. In the other method a pair of parents 

is selected randomly to produce offsprings. The number of pairs of parents selected 

is again random and this method of reproduction resembles the way individuals find 

. their partners in nature. In order to add some diversity to the population, the mu-

tation operator is applied. A neighborhood is defined and the value of the pixel is 

flipped depending on the neighborhood. Mutation operators with 4-pixel and 8-pixel 

neighborhood are presented. 
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The next generation comprises of the best N candidates from the previous gen­

erations and their offsprings. In this way evolution takes place from one generation 

to another. The algorithm is terminated after a certain fixed number of generations 

or is made to run until convergence of the average fitness function is achieved. 

Conclusion 

An exhaustive study of the Image Segmentation procedure using genetic algo­

rithm was performed. A number of parameters affect the performance of the al­

gorithm, and a detailed study of these parameters was conducted. The following 

observations were concluded: 

1. The algorithm proved to be successful for a subimage size of 8 X 8, but a 

subimage size of 16 X 16 subimage was optimal in terms of computational 

efficiency and accuracy of the results. 

2. The random method of generating initial population performed well, and no 

substantial improvement was obtained either in terms of accuracy or conver­

gence speed by using the heuristic approach. 

3. The algorithm was terminated after a varying number of generations and the 

results show that the algorithm did not show significant improvement after 200 

generations. 

4. The algorithm performs more efficiently if the the algorithm is terminated on 

convergence rather than after a fixed number of generations. 
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5. The value of the weighting factor a in the fitness function given by equation 3.2 

must be 0.2 or 0.3 typically, so that the solution is based more on the image 

data. 

6. The optimal population size in each generation was found to be 100. 

7. The method of crossover in which a pair of parents is selected randomly for 

reproduction has more appeal than the one in which every individual in the 

mating pool is made to reproduce with every other individual in the pool. 

8. The mutation operator can be used with either 4-pixel or 8-pixel neighborhood. 

If images under consideration have very small objects to be identified, a 4-pixel 

neighborhood mutation operator gives better results. 

9. The algorithm performs extremely well with a low signal to noise ratio of 1. 

10. The performance of the algorithm on low contrast images is exceptionally good. 

In short, the results have shown that the performance of the algorithm compare 

favorably with related techniques. 

Future Work 

Future work comprises of experimenting with: 

1. different methods to generate initial population. 

2. other fitness functions. 

3. different selection criteria to select eligible individuals for the mating pool. 
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Figure 5.1: Results for multiple objects with different intensities 
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4. different crossover operations (e.g. multi-point crossover). 

5. different neighborhoods for mutation operators. 

6. different kinds of mutation operator. 

7. a varying population size instead of a fixed one. 

Future work in this area would be to apply the algorithm to practical images. 

As seen in chapter 4, the results of the X-ray image (Figure 4.46) show that the 

segmented image is binary. The original image has different features which cannot 

be seen in the output image. The reason for this is that the histogram of the entire 

image is considered to obtain the object intensity and the background intensity. The 

image can be interpreted as having multiple objects with different intensities. For 

every subimage, the histogram can be used to calculate the object and the background 

intensity. The Ro and Rb will be different for each subimage. The genetic algorithm is 

then applied to each subimage and the resulting segmented subimages are combined 

to get the entire image. Preliminary work for detecting multiple objects with different 

intensities has been performed. Figure 5.1 illustrates the results. As can be observed 

the algorithm does extremely well in detecting the various features of the specimen 

under inspection. 

The automation of the entire procedure is of interest to many industries. The 

current implementation requires the user to provide the parameters like Ro and Rb. 

Methods of automatic estimation of these parameter have been studied [7]. The 

image segmentation procedure based on genetic algorithm can be linked with this 

method to make it fully automatic. 
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Finally, the intrinsic parallelism of the algorithm can be explored to make the 

implementation more effective. A parallel implementation of this algorithm can be 

done to increase the efficiency. Results obtained to date are very promising and 

further work studying the various aspects of the algorithm must be done. 
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