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CHAPTER 1. INTRODUCTION 

Background 

Arterial or cardiovascular diseases in humans have been a major concern in the 

United States for decades due to their high fatality rate. One major type of arterial 

disease is arteriosclerosis, which is the thickening or hardening of the arterial wall 

leading to loss of elasticity. A second major type of arterial disease, atherosclerosis, 

causes a build up of atheromatous plaque on the arterial wall. The plaque begins to 

extend into the lumen of the artery and narrows the area of the vessel (creat ing a 

stenosis) so that passage of blood becomes more difficult and the local flow patterns 

are changed. T he turbulence and separation in the flow after the stenosis can trig-

ger further plaque deposition as well as thrombus formation and development of an 

embolism, while the pressure drop across the stenosis will decrease tissue perfusion. 

The vascular beds supplied by arteries can usually compensate enough to allow ade-

quate circulation for normal tissue perfusion, but for severe stenosis the beds cannot 

vasodilate further and resistance increases at a nonlinear rate (Stergiopulos et al., 

1992). Extreme occlusion (>75%) of a coronary artery can possibly cause myocar-

dial infarction and congestive heart failure (if the left ventricle is affected), while 

extreme occlusion of a carotid artery reduces blood circulation to the brain which 

may lead to a stroke. If blood circulation to peripheral tissue is severely reduced 
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then gangrene may set in and the t issue may die. T hus, early detection of stenosis 

would obviously be very beneficial to allow physicians time to begin preventative 

pharmacologic treatments on the patient rather than having to perform a higher risk 

and more expensive surgery after the fact. 

Common cardiovascular diseases include hypertension, aortic valvular stenosis 

(AS), aortic regurgitation or insufficiency (AI), and a combination of aortic stenosis 

and regurgitation (AS/ AI). Hypertension is a sustained elevation of the systemic 

arterial pressure. Even though hypertension is not an immediate cause of death, it 

is responsible for many other diseases such as stroke. The major cause of cardiac 

murmurs is disease of the heart valves. Aortic valvular stenosis is the condition 

when a valve is narrowed and blood flow through it is accelerated and turbulent. 

Aortic regurgitation, the loudest murmur, is the abnormality when the aortic valve 

is incompetent and blood flows back through it, again through a narrow orifice that 

accelerates fl.ow. The systolic or diastolic timing of a murmur due to a stenosis or 

regurgitation of any particular valve can be predicted by the mechanical events of the 

cardiac cycle. In the case of AS, the timing of the murmur would be during systole, 

and in the case of AI, during diastole. 

Hemodynamics is the study of blood in motion and is very useful in analyzing 

various blood flow related problems in the human body. Blood flow can be modeled 

in simple terms as a fluid flowing through a tube. Mathemat ical models have be-

come quite accurate in reproducing pressure and flow waveforms in both normal and 

diseased conditions. As technology has developed it has become possible to simulate 

more accurately arterial pressure and flow waveforms. Also the conditions of the flow 

can be easily changed and recalculated much more rapidly with the aid of a model, 
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so that the need for invasive studies may eventually be reduced. Thus, from math-

ematical and computational models and past in vivo studies, it will be feasible to 

more accurately diagnose a patient with a diseased heart valve or to locate a severe 

arterial occlusion from blood pulse t races. 

In a previous study, most of the major arteries of the systemic circulation have 

been computationally modeled using finite element and finite difference methods 

(Stergiopulos et al., 1992). T he finite d ifference code used by Stergiopulos and mod-

ified by Brian C. Frake and me will be utilized in this study to calculate commonly 

used indices for normal heart conditions as well as for diseased heart conditions. 
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CHAPTER 2. LITERATURE REVIEW 

Anatomic Considerations 

The blood vessels of the body are considered a closed transport system of varying 

sized tubular ducts that allows blood to move from the heart to the tissues and 

then return to the heart. T he motion of blood through the vessels is primarily 

provided by the pumping action of the heart. In the systemic circulation additional 

forward motion is provided by diastolic recoil of the walls of the artery, compression 

of the veins during exercise by the skeletal muscles, and the negative pressure in the 

thorax during inspiration. Blood is critical to continual cellular metabolism and tissue 

survi val. It functions as an oxygen and nutrient supplier to the tissues, temperature 

regulator, and hormone distributor. Thus, it is important that flow is continuous and 

not restricted. In developed and industrialized nations, cardiovascular diseases and 

disorders are a leading cause of death , so it is important that signs of these diseases 

or disorders are detected early to avert a possible fatal flow failure. Since the focus 

of this study is the arterial system , where failures commonly occur , the remainder of 

this section will examine the anatomy and characteristics of arteries, arterioles, and 

capillaries in the systemic circulation. 

The systemic system begins with the left ventricle of the heart and the aorta. 

From there, blood is pumped through the arteries and arterioles to the capillaries 
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where t he blood equilibrates with the interst itial fluid. After equilibrat ion the blood 

then drains through venules in to the veins and back to the right atri um . The walls of 

the arteries of the systemic circulat ion a re composed of an outer layer of connective 

tissue, a middle layer of smooth muscle, and an inner layer of endothelium and 

underlying connect ive tissue. The proportions of these layers varies throughout the 

systemic system. The larger diameter a rteries and aorta contain a higher percentage 

of elastic tissue than the arterioles, which contain more smooth muscle. These larger 

arteries promote flow by expanding during systole and recoiling during diastole, while 

the arterioles are the major si te of blood flow resistance. Small variances in arteriole 

caliber cause large variances in the total peripheral resistance, and will be noted in 

the computational model. Branching out from the arterioles are smaller vessels called 

capillari es made only of one layer thick endothelial cells. Their total area in an adult 

exceed 6300 m2 , and each capillary cross sectional area just permits the passage of 

one red blood cell at a time (Ganong, 1991). It is in these vascular beds that most 

oxygen, nu t rient , hormone, and temperature transport takes place. 

In a young adult, the arteries in the body are very compliant and readi ly expand 

with an increase in blood flow and pressure. The pressure wave that is created 

during systole travels at a much higher velocity than that of blood pumped through 

the systemic circulation during systole and expands the arteries as it travels. This 

expansion is called the pulse and can be palpated externally al various poin ts on the 

body. A typical pulse velocity for a young adult is 4 m /s in the aorta, 8 m/s in 

the large arteries, and 16 m /s in the small arteries (Ganong, 1991). Wi th increas ing 

age, the arteries become more rigid which as a result quickens the pressure wave 

velocity travel ing through the arteries. Examining the atrial pressure waveform, one 
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can determine the five phases of the cardiac cycle as a function of time: atrial systole, 

isovolumetric ventricular contraction , ventricular ejection, isovolumetric ventricular 

relaxation , and ventricular filling. Also, the point at which the aortic valve opens 

and closes can be determined. 

Biophysical Considerations 

Experimental Methods 

Before the advent of non-invasive flow meters and pressure transducers, blood 

flow could only be directly measured experimentally by cannulat ing a blood vessel. 

This obviously had serious limi tations, so non-invasive methods of measuring the flow 

velocity through arteries have been developed. The most common flow meter devices 

used today are t he Doppler flow meter and the electromagnetic flow m eter. The prin-

ciple behind the electromagnetic flow meter is that blood acts like a conductor and , 

if placed in a magnetic field , will produce a detectable voltage whose magnitude is 

proportionate to the flow volume speed. The Doppler flow meter uses the Doppler 

effect to determine the rate at which blood is flowing through the vessel. This is 

accomplished by sending diagonal ul trasonic waves from an upstream crystal into a 

vessel. These are reflected from the blood cells and picked up by a second, down-

stream crystal. The reflected wave frequency is higher by an amount proportionate 

to the rate of flow toward the second crystal because of the Doppler effect (Ganong, 

1991 ). Other indirect methods of measuring the blood flow in specific parts of the 

body, such as cerebral or renal blood flow , or extremities include adaptations of the 

Fick principle and indicator dilution techniques, and plethysmography. Thus, from 

these experimental techniques flow waveform data can be determined in various parts 
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of t he body and can be coupled with different assessment indices to deduce the flow 

situation along pertinent arteries. 

Mathematical and Computational M ethods 

Blood kinematics through arteries originally were modeled as an ideal fl uid (non-

viscous and incompressible) flowing through a rigid tube. Arteries are anything but 

rigid , except in specialized cases, and blood is a 2-phase system of liquid (plasma) 

and cells (primari ly, erythrocytes). From the basic principles of conservation of mass 

and conservation of momentum, other theories began to be formed. A brief history 

of hemodynamic mathematical models will be discussed here as well as previous 

computational fluid dynamic models used in arterial modeling. 

The Foundation of H emody nam ics In 1773 , Stephan Hales tried to de-

scribe the distensible properties of the arteries. He believed the arteries to be elastic 

reservoirs which collect blood during systole by stretching and then discharge the 

blood during diastole via the recoil of the walls which causes the continuous forward 

motion of blood. In effect, he postulated that the vessels t ransformed the discontinu-

ous blood flow due to the pumping of the heart into steady flow. In 1899, Otto Frank 

continued Hales train of thought and produced the windkessel theory, which was the 

first lumped-parameter , time-domain based model. It took into consideration the 

resistance and capacitance of vessels and could be modeled as an electrical network 

called a transmission line (Noordergraaf, 1963) expressed by the following equation: 

(2.1) 
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where Q is blood flow p is systemic pressure R is res istance. and J.: is the elastic 

modulus of the vessel. The electri cal model, where t he resistance and capacitance are 

connected in pa rallel, has been very beneficial in explaining the relationship between 

flow from the heart and pressure throughout the system as a function of time. Also 

from this model, the stroke volume of the heart could be est imated accurately. 

Unfortunately, the windkessel theory makes the assumpt ion that pressure wave 

propagation in the arterial system travels at an infinite velocity, thus giving erroneous 

pressure-fl.ow relations during systole where this pressure wave is important. During 

diastole though , this assumption of infini te pressure wave velocity is less influential 

on the results since the pressure is constant throughout the systemic system and 

y ields more realistic predictions (Aperia, 1940). This assumption explains why the 

windkessel model produces more accurate results for high pressure wave cases, e.g. 

more rigid arteries from increasing age, arteriosclerosis, or vasoconstriction (Skalak, 

1972). 

Before Hales discoveries, mathematical equations were being derived to explain 

the basic principles of general fluid mechanics. Two of t he first fundamental laws 

were Newton's conservation of mass and momentum. Based on these laws, the math-

ematical theories to model segmental flow were deri ved , many of which have become 

the foundation of modern fluid dynamics. Applying the physical principle of the 

conservation of mass to a finite control volume fi xed in space leads to the continu-

i ty equation, which states that the rate at which the fluid mass within an arbitrary 

volume is changing must be equal to the rate at which the mass is flowing from the 

volume: 

- ~ f pdV = f pn · qdS at lv l s (2.2) 
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Newton's second law of momentum conservation states that the rate of change of 

linear momentum of a mass of fluid must balance the resultant force acting on the 

mass: 

j r opq 
F = 

5 
pq(n · q)dS + i v 7ftdV (2.3) 

where F is the resultant force on the control volume, and pq is t he linear momen-

tum per uni t volume. From Newton's second law, the Navier-Stokes equations were 

derived which desc·ribe general fluid motion for incompressible, constant viscosity 

fluids: 
Oq 1 /L 2 at+ (q ·\7)q = -P\7p + B + P\7 q (2.4) 

where %1 is the local acceleration (equal to zero for steady flow), (q ·\7)q is the 

convective acceleration, and B represents the body force. These nonlinear partial 

differential equations are the governing equations for viscous fluids and are used as 

the starting point in the analysis of many fluid mechanics problems. T hese will be 

examined next. 

Extended Mathematical Applied Theories Various researchers of t he twen-

tieth century (Wi tz ig, 1914; Aperia, 1940; Morgan and Kiely, 1954; Womersley, 

1955a; Uchida, 1956; McDonald, 1974) used certain simplifying assumptions that 

enabled them to obtain analytic solutions for reduced forms of the Navier-Stokes 

equations. Womersley published a seri es of technical reports on linearized theories of 

pulsatile flow between 1955 to 1957. In his first report (1955a,b), Womersley <level-

oped an analytical solution to oscillatory flow through straight , circular rigid tubes 

by linearization of the Na vier-Stokes equation. By using the superposition principle 

which applies to linear systems, he was able to provide solutions for harmonic os-
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ci llations only. The com plicated flow waveforms are broken down into their Fourier 

components and the solu tions to each can be added for the complete solution. In 

1957, he included the effects of wall elasticity in his solu tion, as well as proposing a 

vascular tethering model to represent t he reaction of t he surrounding tissue to the 

motion of the arterial wall. The linear theories that Womersley developed are useful 

for describing certain aspects of flow in relatively rigid arteries, but they still failed 

to give a complete representation of the flow field in arteries. 

Another approach to arterial flow modeling is the one-dimensional flow model. 

Fox and Saible (1965) integrated the continuity and momentum equations over the 

cross section of a circular tube to yield: 

aA + aQ +'I/; = O 
at ax 

(2.5) 

aQ + _!___ ! u2dA = _A ap + 2tr Rrw + Abx 
at ax p ax p 

(2.6) 

where u is the velocity in the longitudinal direction, A is the cross sect ional area, p 

is t he arteri al pressure, Q is t he flow rate, bx is the body force vector component in 

t he axial direction, 'I/; represents seepage through the walls of small branches per unit 

length, and Tw is the shear stress on the inner wall. In the same line of thought, the 

following assumptions were made by several authors (Young, 1979; Rooz et al., 1982; 

Porenta et al. , 1986; Weerappuli , 1987; Balar et al, 1989; Stergiopulos et al., 1992) 

in developing the governing equations for an arterial model: 

• An artery can be considered a linearly varying tapered tube of circular cross 

section. 

• The walls of the artery can be considered elastic, thin, and incom pressible with 

properties that are constant throughout the segment length. 
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• The artery is constrained in the longitudinal direction. 

• Blood is treated as an incompressible, homogeneous, isotropic, Newtonian fluid. 

• Pressure does not vary along the radius. 

• Flow is laminar and axisymmetric except at localized constrictions; there are 

no secondary flows. 

Though these assumptions do not strictly hold for several cases of arterial flow, 

they prove a reasonable estimation to the conservat ion equations. Integrating the 

momentum and continuity equations over the cross-section of an artery using the 

above assumptions and neglecting seepage, the one-dimensional flow equations for 

continuity and momentum are, respectively 

aA aQ _ 
0 at +ax -

8Q + !__ (Q2
) = _ A8p + 1rDTw at ax A p ax p 

(2.7) 

(2.8) 

where ( ~) is the convective acceleration term. The shear stress is an unknown 

quantity and needs to be evaluated. To do this a knowledge of the flow velocity 

profile in the vicini ty of the wall needs to be found. An approximation method used 

in the past for the shear stress assumes that the velocity profile is parabolic at all 

times (Poiseuille's Law), so that: 

4µ 
Tw = - 1rR3Q (2.9) 

(Raines et al. , 1974; Rockwell et al. , 1974; Rumberger and Nerem, 1977; Rooz, 1980; 

Young et al., 1980; Porenta, 1982; Rangarajan, 1983; Porenta et al. , 1986). However, 
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experimental measurements show that the velocity profile is rather blunt with steep 

gradients existing near the wall , especially in larger arteries (Ling et al. , 1968; Mc-

Donald, 1974) . In fact, McDonald (1974) suggested that there was an approximate 

50% increase in flow resistance as compared to steady flow at the wall due to the 

induced steeper gradients from oscillatory flow. Raines et al. (1974) compensated 

for that by increasing the blood viscosity value by 10% in their calculations. 

Schaaf and Abbrecht (1972) attempted to improve the wall stress approximation 

using a formula derived from a model of pulsatile flow in a rigid, infinite, cylindrical 

tube: 
T _ 8µ u pD(A - 1) au 

w - D + 4 at (2.10) 

where U = Q / A is the instantaneous cross sectional average velocity and .A is t he 

momentum flux coefficient defined as 

1 j u
2 

.A= A u2dA (2.11 ) 

For a parabolic velocity profile, .A = 1 was calculated. If .A = 1 is used, t he unsteady 

term would drop off and Eq. 2.10 will look similar to Eq. 2.9, yielding similar results. 

Also, when all frictional effects were removed by set ting viscosity to zero, there was 

a negligible difference in shear stress results, thus concluding that wall shear stress 

plays a very small role in pulse formation in t he arterial system. 

Concurrently in 1972, Wemple and Mockros derived a shear stress model based 

on Womersley's solution that took into account the unsteady flow oscillation compo-

nents in a straight , rigid tube: 

2 sinc10Q rrµcx2 (cosc10 1) aQ 
Tw = rrµa -- + - - -- - -

AM10 Aw M10 at (2.12) 
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where 
· 2J1(ad) 

M IC10 1 10e = - . 3 .3 m2J0(m2) 
(2.13) 

J0 ( ai~) and J1 ( oi~) are Bessel functions of the first kind of order zero and one, re-

spectively. The values for M 10 and t:10 are tabulated in McDonald (1974) as functions 

of the a parameter. The a parameter, sometimes called the Womersley or frequency 

parameter, is one of the governing parameters for oscillating flow and can be defined 

as a= RJ¥, where R is the vessel radius , w is the angular frequency (rad/sec), and 

v is the kinematic viscosity of the fluid. If a ~ 1, then flow is highly pulsatile and 

inertial forces are predominant. If a < 1, then the Row is quasi-steady, meaning the 

viscous forces dominate and the inertial forces can be neglected. The a values in 

human arteries usually range from 1 (small arteries) to 17 (aorta). After comparing 

results using Eq. 2.12 with the results of the shear stress set to zero, Wemple and 

Mockros came to the same conclusion as Schaaf and Abbrecht did that wall shear 

stress is negligible in the arteries. A little later, Young and Tsai (1973b) arrived 

at a shear stress relation based on Womersley 's solution to oscillatory flow that was 

similar to Eq. 2.12: 

p [8Cv1rµ 8Ql 
Tw = -- --Q +(Cu - 1)-27r R pA 8t 

(2.14) 

The semi-empirical coefficients Cv and Cu represent the semi-empirical coefficients of 

the viscous and unsteady term and are a function of the a parameter,thus, they can 

be evaluated only for the case of purely harmonic flow. These coefficients can be 

calculated from Young's exact solution of 

(2.15) 
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where D is t he t ube diameter and U is the average instantaneous velocity. F igure 

2. 1 shows t he Cv and Cu values foun d by Young and Tsai for a parameters up lo 20. 

In add ition to Eqs. 2. 7 a nd 2.8, an equation descri bing the distensibility of the 

arterial wa ll as a funct ion of a cha nge in pressure must be specified. T he simplest 

form of pressure-area relation used by several past researchers (Snyder et al., 196 ; 

Westerhof et al. , 1969; Young et al., 1980) is a linearly varying relat ionshi p based 

on the assumpt ion that a linear curve can produce relatively accurate a pproxima-

tions within the opera t ional range of distending pressures. This linear relat ionship is 

descr ibed as 

A(p, X) = A0 (x) + C(x )(p - Po) (2.16) 

where A 0 is the cross sectional area at reference pressure p0 , and C is the compliance. 

Overall , the above linear ar te ri a l pressure-area re la t ion was proved to be incorrect 

from experimenta l studies in humans and canines (Berge], 1961; Mozersky et al. 

1972; Anliker et al. , 1978;) so nonlinear fo rms of the pressure-area relationship need 

to be examined . 

Streeter et a l. ( 1963) deri ved t he theoreti cal expression 

(2.17) 

based on the considerat ion that t he ar tery is a thin-walled, incompressible, elast ic 

vessel. D0 and h0 are t he arteri al diameter and wall thickness, respect ively, at the 

reference pressure p0 , and E is the elasti c modulus. 

Wemple and Mockros (1972) introduced an exponential relationshi p between the 

radius and elastic modulus which resu lted in the equation 

p Ro [ 1 [ ( R ) (3 l Po l 2a~ = R ~ R0 - l + 2a~ (2.1 ) 
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Figure 2.1: Coefficients of wall shearing stress for simple ha rmonic flow in a straight , 
rigid tube (Young and T sai , 1973b) 
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where f3 is an experimentally derived constant and a 0 is the velocity of the local wave. 

Rumberger and Nerem (1977) suggested another exponential form of t he pressure-

area relation: 

(2.19) 

where c and c0 are the wave propagation velocities at the distending pressure p and 

reference pressure p0 , respecti vely. T his pressure-area relationship has t he ad van-

tage of relying on the more easily obtaina ble wave velocit ies c and c0 than on other 

compliance related quantities, such as wall thickness and modulus of elasticity. 

Another way to express the equation of state was suggested by Raines et a l. 

(1974 ). They proposed that there is an inverse relat ionship between compliance and 

pressure, and with that in mind the following logorithimic pressure-area relationship 

was arrived at : 
p 

A (p, X) = A0 (p0 , X) + (J ln-
Po 

(2.20) 

where f3 is an empirical quanti ty related to the artery's elastic proper t ies. A quadratic 

expression for t he equation of state was formulated by Rooz (19 0), but not via 

theoretical analysis. Instead , thi s quadratic form was a convenient extension of the 

linear const itutive relation mentioned earlier (Eq. 2. 16) and is capable of account ing 

for the nonlinear properties of the arterial wall. The equat ion is: 

(2.21 ) 

T his form has been used by several researchers (Rooz et al. , 1982; Porenta, 1982; 

Porenta et al. , 1986; Weerappuli , 19 7; Balar et al. 1989; Stergiopulos et al., 1992) 

in their governing equations. This relation yields a linear dependence of t he area 

compliance, C = dA/ dp, on pressure. Stergiopulos et a l. (1994) proposed a n area 
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compliance-pressure relation based on the work of Langewouters et al. (1984) that 

accounted for the strong nonlinear dependence of compliance on pressure that could 

be applied easily to all arterial segments with a small percentage of error in model 

overestimation. This compliance-pressure relationship, which will be employed in 

this research, is of the following form: 

( 
a+ b ) 

Ca = Cref ( )2 1 + P-Pa 
Pb 

(2.22) 

where Cref is the area compliance of the segment at the reference pressure of 100 

mmHg, P is pressure, Pa = 20mmH g, Pb = 30mmH g, and a, b are empirical con-

stants experimentally determined to be 0.4 and 5, respectively. Assuming that arterial 

compliance is given as Ca = ~~, Eq . 2.7 can be rewritten as: 

aQ c 8P - o 
OX + a fJt -

Substituting the wall shear stress expression of Eq. 2.14 into Eq. 2.8 yields: 

aQ a (Q2
) A op Cu-+- - +--+B1Q =O 8t 8x A pox 

(2.23) 

(2.24) 

where B 1 = (8cv7rµ)/(pA). The area, A(x, t) , is given an initial value along the 

arterial segment so that the variables p(x , t) and Q(x, t) can be solved given the 

initial boundary conditions. 

Arterial Stenosis Models As mentioned before, a stenosis is the localized 

narrowing of a vessel caused by plaque buildup. A general experimental and the-

oretical simulat ion used for arterial stenosis is a Venturi or convergent-divergent 

duct similar to t hat used in low-speed windtunnels, where pressure drops and ve-

locity increases at the constriction. If the stenosis is severe enough, the excessive 
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resistance will cause the mean flow to drop so that there is inadequate perfusion of 

blood to the distal beds and the tissue will die. Hence an eq uation to model the 

pressure drop across the stenosis needs to include the Row characteristics of viscous 

effects, turbulence, and the inertia effects from unsteady flow. Since stenosis models 

are extremely difficult to compose numerically or analytically due to their complex 

geometry induced non-lineari t ies and the presence of turbulence, the models have 

mostly been determined experimentally. Young and Tsai (1973a,b) approximated 

an induced pressure drop , D..p(t) , through axisymmetric and nonsymmetric stenoses 

from in vitro experimental studies on steady and pulsatile flow using the following 

equation: 

where 

D..p(t ) = 1~µu(t) + 1~p [~: - lr 1u(t)1 u(t) + l<uPL 11 d~~t) 

A 0 = unconstricted cross sect ional lumen area 

As = minimum cross sectional lumen area inside the constri cted area 

D = diameter of the unobst ructed tube 

K t = e mpirical coefficient of the turbulence term 

Ku = empirical coefficient of the unsteady term 

Kv = empirical coefficient of the viscous term 

Ls = length of the stenosis 

U = instantaneous cross sectional average velocity in unconstricted area 

(2.25) 

On the right hand side of Eq. 2.25, the first term represents the pressure change 

due to viscous effects, the second term represents the t urbulence and accounts for 

nonlinear losses, and the final term represents the inerti a effects from the unsteady 

flow. 
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Later, Young et al. (1975) performed in vivo experiments on dogs to test the 

relevancy of this stenosis model. Rigid, hollow , cylindrical plugs were placed in the 

femoral arteries of t he dogs to simulate a stenosis. The blood flow and pressure 

drop were measured across the art ific ial constrict ion of the artery and compared to 

resul ts calculated from Eq. 2.25. T hese measurements confirmed that t he stenosis 

model yielded satisfactory results. The effect of stenosis geometry on pressure losses 

across models of arteria l stenoses was examined more carefully in 1976 by Seeley 

and Young. They found that t he coefficients f(u a nd f( t were dependent slightly on 

geometry while the coefficient /{v was strongly dependent on the geometry. For the 

blunt-ended stenoses used in the study. I<u and f{t can be approximated to be 1.2 

and 1.52, respectively, while J( v was statistically determined as being the followi ng 

relation: 

J( = 320.83Ls+l.64Ds (A0 )
2 

v D A1 (2.26) 

where A1 is the min imum cross-sect ional area of stenosis and Ds is the diameter 

corresponding to area A .,. Young (1979) presents a full review of the flu id mechanics 

of arter ial stcnosis . 

Computational Fluid Dynamic Models of C irculation Computers have 

aided the hemodynamicists by allowing t hem to use numerical techniques on nonlinear 

and linear systems to obtain solu tions. T he method of characterist ics (An liker et 

al. , 1971; Wemple and Mockros, 1972; Schaaf and Abbrecht, 1972), fi ni te element 

method (Rooz et al. , 1982; Porenta et al. , 19 6; Weerappu li , 19 7; Balar et al. 

1989; Stergiopu los et al. , 1992) , and fin ite di fference method (Raines et al. , 1974; 

Stergiopulos, 1992) have been popular numerical methods used in computational 
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fluid dynamic problem solving. Raines et al. (1974) opted for the finite difference 

method over the method of characteristics in their nonlinear computational model 

of the human leg because it was more convenient and economical. For both normal 

and various diseased arterial flow cases, the computational results proved to be in 

relatively good agreement with experimental results. Rooz et al. (1982) employed 

the Galerkin method to develop a fini te element model to obtain t heir solu tion. It 

uses linear isoparametric quadrilateral elements to transform the partial differential 

equation system into a set of algebraic equations. 

Porenta et al. (1986) applied the Galerkin method to the Raines et al. (1974) 

leg model, but they discretized the equations only in space to arri ve at a system of 

ordinary differential equations (ODE) which they solved using a difference method. 

Weerappuli (1987), Balar et al. (1989), and Stergiopulos et al. (1992) all followed 

Porenta's approach but each studied a different aspect of arterial flow. Weerappuli 

studied the uterine artery of the cow and the femoral artery of a dog, Balar studied 

the arteries of the human arm, and Stergiopulos modeled t he major arteries of the 

entire human body. Both Weerappuli and Stergiopulos found that the fini te difference 

method was a more stable method to use for the systemic circulation model . 

The finite difference scheme utilized by Stergiopulos et al. (1992) to model 

the en tire systemic circulatory system will be incorporated in this study. An ex-

panded discussion of the governing equat ions, boundary conditions, and finite differ-

ence method used here can be found in their paper on computer simulation of arterial 

blood flow. 
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CHAPTER 3. MODEL EQUATIONS, BOUNDARY CON DITIONS, 

AND ARTERIAL GEOMETRY 

Gove rning Equations 

T he non-linear computer model around which this st udy is based was developed 

by Nikolaos Stergiopulos et al. (1992). All assumptions and a complete derivation 

of t he governing equations and boundary condi t ions can be found in t his work and 

earlier works presented by Porenta et al. (1986), Weerappuli (1987), Balar et al. 

(1989), Rooz et al. (1982), and Young (1979). The model uti lizes the finite difference 

method to solve t he model equations of the systemic ar terial system based on the 

one-dimensional flow equat ions (Eqs. 2.23 and 2.24) . The program also incorporates 

an area compliance-pressure relationship (Eq. 2.22) that accounts for t he the non-

linear dependence of compliance on pressure (Stergiopulos et al. , 1994) and calculates 

the wall shearing stress constants for simple harmonic flow (Eq. 2. 14) as predicted 

by Young and T sai (1973b). For the special case of a stenosis, the pressure d rop 

can be empirically predicted by Eq. 2.25 from the instantaneous flow through the 

stenosis (Young and Tsai , 1973b ). Vasodi lation is accounted for after a stenosis 

by reducing the peripheral resistances so t hat the mean flow stays constant unt il 

maxim um vasodilation is reached. T here is a corresponding critical stenosis severity 

point beyond which the peripheral beds cannot dilate and any increase in stenosis 
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severity would result in a reduction of mean flow. Thus, the crit ical stenosis value is a 

function of stenosis location as well as the degree of maximum distal vasodilation. The 

following sections contain the boundary condi tions as well as the initial geometrical 

data. 

Boundary Conditions 

The proximal boundary condition is a pressure input waveform originating at the 

root of the ascending aorta. This waveform is approximated by Fourier coefficients 

as shown in Table 3.1 for a heart rate of 78 bpm (adapted from Balar et al., 1989). 

The coefficients have been adjusted so that the waveform has a frequency of 1.0 Hz to 

add stability to the computer model which did not respond well to frequencies over 

1.0. The adjusted Fourier coefficients for conditions of hypertension, valvular aortic 

stenosis (AS), aortic regurgitation (A I), and a combination of aortic stenosis and 

regurgitation (AS/ AI) are presented in Tables 3.2, 3.3, 3.4, and 3.5, respectively. 

Table 3.1: Fourier coefficients for the control 
proximal pressure waveform 

Harmonics Cosine coefficients Sine coefficients 
(N/m2 ) (N/m 2 ) 

0 0.10429£ + 5 O.OOOOOE + 0 
1 - 0.42968£ + 2 0.20234£ + 4 
2 -0.11870£ + 4 0.12991£ + 4 
3 - 0.54298£ + 3 0.10251£ + 3 
4 - 0.51053£ + 3 - 0.87610£ + 2 
5 - 0.22631£ + 3 - 0.21803£ + 3 
6 - 0.14697 E + 2 - 0.13085£ + 3 
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Table 3.2: Fourier coefficients for the hyperten-
sive proximal pressure waveform 

Harmonics Cosine coefficients Sine coefficients 
(N/m2

) (N/m2
) 

0 0.18046£ + 5 O.OOOOOE + 0 
l -0.24396£ + 4 0.3l741E + 4 
2 -0.1 267£ + 4 -0.65979£ + 3 
3 -0.75191£ + 2 -0. 76335£ + 3 
4 0.14851£ + 3 - 0.17980£ + 3 
5 0.28175£ + 2 - 0.27715£ + 2 
6 -0.16979£ + 2 - 0.52930£ + 1 

Table 3.3: Fourier coefficients for the AS proxi-
mal pressure waveform 

Harmonics Cosine coefficients Sine coefficients 
(N/m2

) (N/m2
) 

0 0.92645£ + 4 0.00000E + 0 
1 -0.12679£ + 4 0.17046£+4 
2 -0. 559£ + 3 -0.24220£ + 3 
3 0.96316£ + 2 - 0.15932£ + 3 
4 -0.11488£ + 3 0.13633£ + 2 
5 - 0.35201£ + 2 - 0.23423£ + 2 
6 -0. 006 E + 1 0.17 98£ + 2 

Pressure is assumed constant and ftow continuity is preserved at bifurcations 

throughout the arterial system. For the distal boundary conditions, a lumped pa-

rameter impedance model is used for each terminal branch to account for the capac-

itances and resistances of microva.sculature at the distal end of the terminal branch . 

The model used is the modified windkessel model which relates pressure and ftow 

by placing a parallel combination of a resistance and a capacitance in series with a 
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Table 3.4: Fourier coeffi cients for the Al proxi-
mal pressure waveform 

Harmonics 

0 
1 
2 
3 
4 
5 
6 

Cosine coefficients 
(N/m2 ) 

0.10803£ + 5 
- 0.20556£ + 3 
-0.16733£ + 4 
-0. 10787 E + 4 
- 0.36991£ + 3 
- 0.18153£ + 3 
- 0.37397 E + 2 

Sine coefficients 
(N/m2

) 

0.00000£ + 0 
0.31 09E + 4 
0.3 094£ + 3 

- 0.39764£ + 2 
- 0.38443£ + 3 
- 0.3275 E + 3 
-0.18144£ + 3 

Table 3.5: Fourier coefficients for the AS/ AI 
proximal press1,1rc waveform 

Harmonics Cosine coefficients 
(N/m2

) 

0 0.14770£ + 5 
1 - 0.61254£ + 4 
2 0.23338£ + 3 
3 - 0.27714£ + 3 

. 4 - 0. 73641£ + 3 
5 - 0.12954£ + 3 
6 - 0.18964£ + l 

Sine coefficients 
(N/m2

) 

O.OOOOOE + 0 
0.28294£ + 4 

- 0.174 0£+4 
0.97066£ + 3 

- 0.43141£ + 3 
- 0.60237 E + 3 
- 0.23880£ + 3 

second resistance to simulate the compliance of the terminal beds: 

(3 .1 ) 

Total peripheral resistance for any terminal branch is R1 + R2 = Rr. In the special 

case where Cr= 0 the modified windkessel model degenerates to a simple resistance 

and Eq. 3.1 becomes Q = i;..· 
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Physiological Data 

The physiological model of t he human arterial tree consists of 55 segments (Fig. 

3.1) that cover most of t he major arteries of a healthy young adult. Those ar teries not 

covered include the coronary arteries and the vasculature of the hands, feet , thoracic 

cavity, abdominal cavity, and cranium. The geometrical data shown in Table 3.6 is 

considered the control case data and includes t he segment length, entry and exit radii , 

orientat ion, and volume compliance. Table 3. 7 shows terminal impedance data. Both 

tables are supplied by Stergiopulos et al. (1992). The body model is represented in a 

supine or standing position with all limbs straight and hands suponated. Appendices 

A and B are sample input files for the computational model for a normal flow case 

and for a 90% stenosis case in the left femoral artery. 
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Figure 3.1: Geometric model 
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Table 3.6: Arterial geometric data (Stergiopulos et al. , 1992) 

Seg Name Length Prox. R Distal R Angle Vol. comp!. 
(cm) (cm) (cm ) (deg) (lo-6 cm!>) 

d ne 
1 Ascending Aorta 4.0 1.470 1.440 90 104.400 
2 Aortic Arch 2.0 1.120 1.120 0 29.600 
3 Innominate 3.4 0.620 0.620 135 13.500 
4 R. Subclavian A 3.4 0.423 0.423 180 5.600 
5 R. Carotid 17.7 0.370 0.370 90 21.360 
6 R. Vertebral 14.8 0.188 0.183 120 1.682 
7 R. Subclavian B 42.2 0.403 0.236 240 33.870 
8 R. Radial 23.5 0.174 0.142 240 1.877 
9 R. Ulnar A 6.7 0.215 0.215 240 1.110 
10 R. Interosseous 7.9 0.091 0.091 240 0.090 
11 R. Ulnar B 17.l 0.203 0.1 83 240 2.210 
12 R. Internal Carotid 17.7 0.177 0.083 90 0.943 
13 R. External Carotid 17.7 0.177 0.083 135 0.943 
14 Aortic Arch B 3.9 1.070 1.070 0 52.100 
15 L. Carotid 20.8 0.370 0.370 60 25.100 
16 L. Internal Carotid 17.7 0.177 0.083 90 0.943 
17 L. External Carotid 17.7 0.177 0.083 45 0.943 
18 Thoracic Aorta A 5.2 0.999 0.999 270 59.700 
19 L. Subclavian A 3.4 0.423 0.423 45 5.600 
20 Vertebral 14.8 0.188 0.183 60 1.682 
21 L. Subclavian B 42.2 0.403 0.236 300 33.870 
22 L. Radial 23.5 0.174 0.1 42 300 1.877 
23 L. Ulnar A 6.7 0.215 0.215 300 1.110 
24 L. Interosseous 7.9 0.091 0.091 300 0.090 
25 L. Ulnar B 17.l 0.203 0.183 300 2.210 
26 Intercostals 8.0 0.200 0.150 0 3.000 
27 Thoracic Aorta B 10.4 0.675 0.645 270 47.600 
28 A bdorninal Aorta A 5.3 0.610 0.610 270 20.400 
29 Celiac A 1.0 0.390 0.390 0 1.360 
30 Celiac B 1.0 0.200 0.200 0 1.000 
31 Hepatic 6.6 0.220 0.220 315 2.300 
32 Gastric 7.1 0.180 0.180 450 1.510 
33 Splenic 6.3 0.275 0.275 0 3.740 
34 Superior Mesenteric 5.9 0.435 0.435 225 10.400 
35 Abdominal Aorta B 1.0 0.600 0.600 270 4.000 
36 L. Renal 3.2 0.260 0.260 0 1.670 
37 Abdominal Aorta C 1.0 0.590 0.590 270 3.800 
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Table 3.6 (Continued) 

Seg Name Length Prox. R Dist. R Angle Vol. compl. 
(cm) (cm) (cm) (deg) (10-6 cm~ ) 

d ne 
38 R. Renal 3.2 0.260 0.260 0 1.670 
39 Abdominal Aorta D 10.6 0.580 0.548 270 33.900 
40 Inferior Mesenteric 5.0 0.160 0.160 270 0.792 
41 Abdominal Aorta E 1.0 0.520 0.520 270 3.500 
42 L. Common Iliac 5.8 0.368 0.350 315 4.580 
43 R. Common Iliac 5.8 0.368 0.350 315 4.580 
44 L. External Iliac 14.4 0.320 0.270 315 15.620 
45 L. Internal Iliac 5.0 0.200 0.200 270 3.300 
46 L. Femoral 44.3 0.259 0.190 270 13.640 
47 L. Deep Femoral 12.6 0.255 0.186 315 1.130 
48 L. Posterior Tibial 32.1 0.247 0.141 270 2.206 
49 L. Anterior Tibial 34.3 0.130 0.130 270 0.842 
50 R. External Iliac 14.4 0.320 0.270 225 15.620 
51 R. Internal Iliac 5.0 0.200 0.200 270 3.300 
52 R. Femoral 44.3 0.259 0.190 270 13.640 
53 R. Deep Femoral 12.6 0.255 0.186 225 1.130 
54 R. Posterior Ti bi al 32.1 0.247 0.141 270 2.206 
55 R. Anterior Tibial 34.3 0.130 0.130 270 0.842 



29 

Table 3. 7: Terminal impedance data (Stergiopulos et al. , 1992) 

Seg Total Resistance Terminal Compliance 
(N;) (ms) 

6 0.60100E+ 10 0.30955E-10 
8 0.52800E+10 0.35235E-10 
10 0.84300E+ 11 0.22069E- l l 
11 0.52800E+ 10 0.35235E-10 
12 0.13900E+ 11 0.13384E-10 
13 0.13900E+ 11 0.13384E~l0 

16 0.13900E+11 0.13384E-10 
17 0.13900E+11 0.13384E-10 
20 0.60100E+ 10 0.30955E-10 
22 0.52800E+ 10 0.35235E-10 
24 0.84300E+ 11 0.22069E-11 
25 0.52800E+ 10 0.35235E-10 
26 0.13900E+l0 0.13384E-09 
31 0.36300E+ 10 0.51251E-10 
32 0.54100E+l0 0.34389E-10 
33 0.23200E+ 10 0. 80191 E-10 
34 0.93000E+09 0.20005E-09 
36 0.11300E+ 10 0.16464E-09 
38 0.11300E+l0 0.16464E-09 
40 0.68800E+10 0.27041E-10 
45 0.79360E+ l0 0.23443E-10 
47 0.47700E+10 0.39003E-10 
48 0.47700E+ 10 0.39003E- 10 
49 0.55900E+l0 0.33281 E-10 
51 0.79360E+ 10 0.23443E-10 
53 0.47700E+ 10 0.39003E-10 
54 0.47700E+10 0.39003E-10 
55 0.55900E+ 10 0.33281E-10 
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CHAPTER 4. MODIFICATIONS AND INDICES 

In this chapter , the modi ficat ions to the compulalional full body arterial finite 

difference model a nd what will be accomplished spec ifically for this thesis will be 

discussed. The focus of this research wil l be lo (1) increase the output information 

of the model to make it more descriptive as well as more versatile, (2) incorporate 

indices into the model, and (3) study influences of var ious flow disfunction s at various 

points in the arterial tree on t hese indices in terms of their sensi tivity as well as their 

ability to predict a stenosis. 

P rogram Versatility 

The original program uses a predetermined input fi le and asks for two nodes for 

which waveforms can be plotted as the only options. The output data produced is (1) 

verification of the input data (including the node numbers assigned to each arterial 

segment, X and Y nodal coordinates, and ini t ial pressure and flow values for each 

node), (2) minimum, maximum, and average pressure and flow values for all nodes of 

the model, (3) pressure and ft ow waveform data for the two specified nodes, and ( 4) 

area versus pressure data for the two specified nodes to demonstrate t he compliance 

of the vessel at those nodes during systole and diastole . To increase the programs 

capabilities, for possible use in a clinical environment , add itional command options 



31 

are issued that make the user more aware of what, is avai I able as well as giving broader 

choices for out.put.. 

First., rather than limiting the user lo lwo nodes in the body for which flow and 

pressure waveforms will be plotted, up to ten nodes per inpul file may be chosen for 

their waveform information. At completion of solving the pressure and flow equations, 

the user is allowed the option of calculating indices for the selected nodes. Also, any 

number of arterial segments may be chosen for their flow velocity and pressure profiles 

as well as index and information so that an entire segment may be studied at once. 

Choosing specific segments for the minimum , maximum, and average pressure and 

flow data is more advantageous than examining da ta of the entire body. The indices 

calculated from the user specified nodes can be normalized for easier compari son to 

the control case. All the pressure and How information is already calculated in the 

program so it is only a matter of manipulating the program to output the data to a 

graphical file. 

In an effort to make the program more physiologically realist ic, a new compliance 

relat.ion is incorporated into the model as well as calculating new wall shear coeffi-

cients, Cu and cv , at every node throughout t he arterial tree. Yasodilation can be 

accounted for in the stenosis cases by entering whether there are terminal segments 

below the stenosis that must have their total terminal resistance reduced so that the 

mean flow stays constant . It is assumed that, vasod ilation will decrease the terminal 

impedance up to 20% of the original impedance (Manor et al. , 1994). 
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Flow Waveform Indices 

Non-invas ive diagnostic methods for the assessment of abnormal arteri al flow 

have been a preferred alternative to invasive techniques due to reduced ri sk and ex-

pense. Ultrasonic devices have been the most frequently used non-invasive diagnostic 

tool in a clinical environment since t hey can be used quickly and safely on a regular 

basis for routine screening of arteries close lo t he surface of the skin . Such arteries 

include the carotid arteries in the neck, the brachia), radial , and ulnar a rteries in the 

a rm, and the femoral , popliteal , tibial a nd dorsali s pedis arteries in the leg and fool . 

The use of Doppler ul t rasound along wit h the facilitation of calculated dimensionless 

indices can be very instrumental in detect ing an arterial stenosis and is the method 

that will be discussed in depth here. 

There are several types of ultrasonic Aow meters and techniques used to de-

termined peripheral arterial blood Aow at a specific point. A Doppler flow meter 

can display all frequencies occurring in the Doppler signal versus t ime . T wo specific 

Doppler flow meters of note are t he pulsed Doppler flow meter and the continuous 

wave Doppler flo w m eter. The pulsed Doppler flow meter produce audio signals for 

a restricted area of the total arterial lumen while the continuous wave Doppler Aow 

meter determines an average velocity over t he total arterial cross section . In general, 

for laminar blood Aow, the Doppler energy is concentrated in a narrow frequency 

band, whereas for turbulent Aow indicating a possible slenosis, the energy is spread 

over a wider frequency range. Each artery has a unique a udio signal and velocity 

waveform characteristic which the Doppler flow meter can detect . An experienced 

clinician can distinguish if the ar tery is normal or abnormal from these audio signals 

and waveform recordings. In order to decrease subjectivity of interpretation , wave-
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form indices have been developed to accompany the energy frequency spectrum data 

to make comparisons between velocity waveforms easie r. 

Various indices have been developed by researchers which are useful for different 

arteries. The measurement and calculation of indices from chart recordings is rat her 

tedious and is the main reason why they have not gained world wide acceptance. 

With the advent of computers, calculation of indices has become relatively simple and 

instantaneous. One of the most commonly known and used indices is the pulsatility 

index. In 1971, Gosling et al. defined the pulsati lity index (PI) as the total oscillatory 

energy in the flow velocity divided by the energy of the mean forward flow velocity 

during a cardiac cycle. Gosling could arrive at a quantitative comparison of the 

arterial pathway capabilit ies of different patients by looking at the variat ion of the 

PI from the abdominal aorta to the tibial arteries. Later studies by Gosling and King 

(1974) showed that this pulsatility index could be represented by a simple formula 

of peak-to-peak velocity divided by mean velocity: 

( 4.1) 

Arterial obstructions damp the velocity waveform and reduce the pulsatility of blood 

flow along the artery, thus reducing the the peak-to-peak value and the Pl. Also high 

mean flow rates decrease the Pl. 

The inverse damping factor, IDF, was introduced by Johnston et al. (1978) and is 

defined as the the ratio of the distal measured PI to proximal measured Pl. T he results 

showed that IDF increases toward the periphery and decreases wit h the severity of 

disease. This was in agreement with other methods' assessments of relating pressure 

drop to flow such as arm/calf pressure difference and strain gauge plethysmography. 

Also plotting the IDF with a fixed proximal PI and a varying distal PI against the 
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arterial segment length demonstrates t he behavior of t he normalized pulsatil ity index 

in proportionate detail making t he plot easy to in te rpret. 

Other flow related indices that can be applied to all arteries are t he Fourier pul-

satility index, P J1, the systolic-to-dias tolic index, Pl 3 , the acceleration index, A C I , 

which is a measure of the flow acceleration during systole, half-width index, HW I , 

and the segmental systolic flo w index, ARI , which is the ratio of systolic flow in an 

artery containing a stenosis to a referen ce systoli c flow not effected by t he stcnosis. 

For convenience in this study, the reference systolic flow will be taken from the prox-

imal end of the brachia! artery where the effect of a femoral s te nosis is conside red at 

the ankle . T ypically the ARI is of use only in cases of vary ing stenoses rat her than 

heart disease. T he mathematical definition of these indices are: 

n Q; 
Pl1 = ?; Q~ (4 .2) 

Pl~= Qp 
Qd 

( 4.3) 

ACI = Qp - Qd T 
( 4.4) 8t p Qa 

IIW J = 8tw ( 4.5) 
T 

ARI = Qp 
Qp(arm) 

(4.6) 

where Qi is the ampli t ude of the ith harmonic of the waveform , Qa is the average flow , 

Q P is the peak flow , Q d is the diastoli c flow value just before systole, T is the period, 

8tw is the width of the waveform halfway between Qp and Qd, Olp is the width of the 

waveform between QP and Qd, and Qp(arm) is the peak flow in the brachia! artery. 

Clinical results have also revealed that these are useful sensitive indices (Fronek et 

al. , 1973; Johnston and Taraschuk, 1976) in the case of severe stenosis. To determine 
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Figure 4.1: T he effect of increasing stenosis severity in t he L. femoral artery on 
various normalized flow indices measured in the L. posterior ti bi al artery 
(Stergiopulos et al. , 1993) 

each index's sensitivity to a particular stenosis or disease, t he values are normalized 

to the cont rol case to increase diagnosis objectivity for any individual person. In the 

graphs that follow the y-axis is denoted as X/Xn, where Xn is the value of a particular 

index under normal flow conditions, and X is the value of a particular index for any 

case. Stergiopulos et al. (1993) found that Eq. 4.5 is the least sensitive flow index to 

stenoses and that Eq. 4.1 and Eq. 4.2 are the most sensit ive based on stenoses alone 

(Figure 4.1). One should note that the Pis index would be ineffective for zero-flow 

cases. 

Flow indices that are more sensitive to specific arterial regions, such as t he 

carotid arteries, have also been developed. The carotid arteries have gotten the most 
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attention since these are the arteries that supply the brain. Pourcelot's (1974) pul-

satility index is used for the the common and internal carotid arteries as a resistance 

index. Since the vessels of the brain normally have a very low resistance to blood 

now, thi s index can detect a t hrombosis if the value increases with increas ing distal 

resistance. Arch ie's index (1981) involves a comparison between the two common 

carotid arteries and is very specific in predicting carotid disease, and Roederer et 

al. (19 2) developed an index to predict disease in the carotid bifurcation. In this 

research, only the indices that may be used generally throughout the body will be 

more closely examined. 

Since flow tracings are much easier to obtain non-invasively than pressure trac-

ings, flow indices alone were investigated in this research . Indices can be very helpful 

in detecting the presence of arterial disease, but they must be applied judiciously. In 

determining indices from a flow waveform it is essential that no artifacts are present 

in the waveform so that index calculations are not inaccurate. For instance a false 

maximum or minimum flow velocity due to instability in the flow may be taken as 

t he actual maximum or minimum value, which could severely alter the index cal-

culations. Index values should be compared to established confidence values based 

on the equipment and techniques used in each investigator's research , as well as to 

the pressure and flow waveforms. When more than one index is used for the same 

diagnosis, it is important to keep in mind what each index measures because each is 

sensitive to different flow values. 
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CHAPTER 5. METHODS AND RESULTS OF STENOSIS AND 

HEART DISEASE CASES ON WAVEFORMS AND INDICES 

Methods 

Using the arterial model of Stergiopulos et al. (1992) modified by incorporating 

the new compliance-pressure relationship and t he inclusion of the appropria te flow 

indices discussed below, the following will be studied: 

l. A comparison of flow and pressure waveforms using a pressure proximal bound-

ary condition (Balar et al. , 19 9) versus a fl ow proximal boundary condition 

used by Stergiopulos et al. (1992). 

2. A compa ri son of waveform solu t ions using different wall shear coefficients. 

3. A comparison of flow indices using different proxima l boundary conditions and 

different wall shear coeffi cients with a stenosis in t he femoral artery. 

4. A compa rison of flow index values of different heart pulses for various diseased 

conditions. 

(Note: The model parameters were not changed for the hypertensive case where com-

pliance and terminal impedance would normally be affected . Instead , a hypertensive 

pressure waveform was used for the proximal boundary condition and the sta te of the 
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remaining arterial system was maintained at normal conditions, which would affect 

the accuracy of this model for hypertension. ) 

Several clinically significant cases were run to show the effectiveness of various 

indices detecting cardiovascular diseases or disorders at various points in the body. 

These cases included stenoses of 60%, 75%, 85%, and 90%, hypertension (HYP ), 

valvular aortic stenosis (AS), pure ao rtic regurgitation (AI), and a combination of 

aortic regurgitation and valvular aort ic stenosis (AS/ Al). The indices selected to 

observe their sensitivities to the various flow abnormalities are the pulsatili ty index 

(PI), the Fourier pulsatility index (PI1 ), the systolic-to-diastolic index (Pis), the 

acceleration index (ACI), and the segmental systolic flow index (ARI) for stenosis 

only. These indices were normalized to the control case at its respective node to show 

the sensitivity of each index to a change in the initial flow waveform. 

To validate the sensitivity of the indices, the pressure and flow pulses are taken 

at the distal left posterior tibial artery for a stenosis in the left femoral artery . 

Measurements are taken at a variety of locat ions for the other disease cases. The 

points that were arbitrarily chosen to represent the extremities include the right 

external carotid artery (neck), the distal right radial artery (wrist) , and the distal 

left posterior tibial artery (ankle) . All of these points represent locations where flow 

can easily be measured by ultrasonic flow meter devices. Although Stergiopulos et al. 

(1992) used the same general concepts as Porenta et al. (1986), Balar et al. (1989), 

and Weerappuli (1987) on which to base his blood flow model, these other authors 

placed t he proximal boundary condition at the beginning of the arterial segments 

they were investigat ing. Thus their data may look somewhat different from that of 

this research since t hey did not take into the account effects of the pulse waveform 
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emanating through the body before reaching a particular segment of interest . Also, 

the new compliance relationship used in this study will change some of the data 

when comparing Stergiopulos' original work to that in this paper. Hence, an index 

baseline (see Figure 4.1) will be established using his original data where the proximal 

boundary condition was a flow input and wall shear stress coefficients equal to 1.0. 

All variations between their normalized indices and those calculated by this program 

under the same conditions may then be attributed to the new compliance relationship. 

Control Case 

Flow and pressure waveforms for the left and right external carotid artery (nodes 

74 and 56), the left and right distal node of the radial artery (nodes 101 and 35), and 

the left and right distal node of the posterior tibial artery (nodes 195 and 231) are 

shown in Figures 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6, respectively. These are shown over 

three cycles using a pressure input at the ascending aorta for the proximal boundary 

condition, a time step of flt = 0.0001, and varying the wall shear coefficients Cu and 

Cv along each segment under normal flow conditions. Stergiopulos et al. (1992, 1994) 

have validated the accuracy of this program using a flow input, wall shear coefficients 

of 1.0, and a non-linear compliance-pressure relationship. Ini t ial comparisons in the 

waveforms seem to be similar in general trend (also see section on pressure vs. flow 

input later in this chapter). 

Since flow indices are the primary emphasis of this research, flow waveforms will 

be of more importance for discussion. General characteristics that are commonly 

found in the systemic circulation are exhibited in the computed waveforms. Wave 

reflection is evident during diastole in the peripheral pressure pulses, back flow is ex-
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hibited for a small fraction of the cycle, there is a definite time delay as the pressure 

and flow pulses emanate to the periphery, flow pulse is damped as the pulse propa-

gates along the vascular tree and mean flow is reduced as a direct effect of branching, 

and there is significant amplification of the pressure pulse (although mean pressure 

drops) as the pulse propagates to the periphery. Since there is no smooth transition 

from one segment to another at branches in this model, over-amplification of the 

wave is evident. Again, some variations in the data throughout the body may occur 

when comparing these simulations to other authors' values as a result of the proximal 

boundary condition emanating from the heart rather than beginning at a particular 

limb, as well as artery geometries being slightly different. Other deviations between 

experimental in vivo waveforms and simulated waveforms are mainly attributed to the 

incomplete description of the full arterial tree (where only major arteries are included 

in this model), errors in assumptions of branch condi t ions, boundary conditions, and 

model parameter estimations. 

R esults 

Sensitivity Comparisons 

Flow Input vs. Pressure Input Comparisons of trends of a normal pressure 

input to a normal flow input at the root of the ascending aorta are shown in Figures 

5. 7 and 5.8 for a prescribed or calculated pressure and flow waveform, depending on 

the proximal boundary condition. The Fourier coefficients for the normal proximal 

flow waveform were taken from a waveform from Nichols et al. (1977) while the 

Fourier coefficients for t he normal proximal pressure waveform were taken from a 

waveform from Mason et al. (1964). In both cases the wall shear coefficients are 
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Figure 5.1: Flow pulses in R. and L. external carotid using pressure input 
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taken to be Cu = 1.0, Cv = 1.0 and the waveform is taken from the the third cycle, 

where the effects of the erroneous initial condi t ions are completely damped out and 

the solution is assumed to converge. As can be seen, t he t rends in a ll waveform s 

are similar although the flow input exhibits a more stable flow waveform. The zero-

fl.ow portion of t he ascending aort ic flow t hat normally takes place during diastole 

was not accurately resolved using pressure as the proximal boundary condition, and 

amplitude of the flow tends to be amplified. Nevertheless, pressure will be used as the 

proximal boundary condition since aorti c pressure inputs for va rious cases of heart 

disease were readily available from the literature (Mason et a l. , 1964). Stergiopulos et 

al. (1992) do verify that their progra m is qualitatively accura te in repli cating actual 

arterial pulse shapes using a pressure input. 

Constant Wall Shear Coefficients vs. Variable Wall Shear Coefficients 

The wall shear coeffi cients are never consta nt values in the arterial systems, hence, 

the effect these coeffi cients have on the waveforms, especially the flow, is an important 

consideration. Figures 5.9 and 5. 10 show the effect that calculating Cu and Cv for 

each node has on t he waveforms for a pressure input as opposed to keeping these 

coeffi cients constant at 1.0 throughout the entire arterial tree. Stergiopulos e t al. 

(1992) already determined that increasing the Cu will cause a phase shift of the 

waveform , whereas an increase in Cv will dampen the flow magnitude. The ascending 

aorta, the calculated wall shear coefficients of which are Cu = 1.1 and Cv = 3.5, has 

the largest a parameter and thus is where the Cv would be the largest . As a result , 

one would expect more damping in t he aorta flow waveform if the a parameter is 

allowed to change rather than setting it at a constant value of 1.0. Figure 5.9 shows 
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that t he peak fiow is damped by approximately 30 mL/s. Damping is not very 

noticeable since the area is so large, which disperses the shear stress. In the tibial 

arteries, the a parameter is very small (Cu and Cu are calculated to be 1.3 and 1.0, 

respecti vely), t hus Cu is larger t han 1.0, which acts to shift t he waveform. It is 

interesting to note that there is some residual damping of the posterior t ibial artery 

waveform by 1 mL/s. This may be due to the fact that the unsteady and viscous wall 

shear coefficients are allowed to change as the pulse propagates through the systemic 

circulation a nd affects the periphera l waveforms. As stated in Stergiopulos et al. 

(1992), the effects of recalculating the wall shear coefficients at each node as opposed 

to keeping the values constant makes a negligible difference on the flow waveforms. 

The main benefit of varying the wall shear coeffi cients at this point in the study is a 

more realisti c computer model. Its effect on the flow indices will be di scussed in the 

section on stenoses. 

Stenosis and Indices 

A stenosis chosen to be 2 cm in length and varying in area occlusion percentage 

is placed 20 cm from the proximal end of the left femoral a rtery. The pressure and 

flow waveforms are simulated in the distal left posterior tibial artery for cases of 

60%, 75%, 5%, a nd 90% occlusion as shown in Figures 5.11 and 5.12 for pressure 

input. Vasodilat ion comes in to effect beginning at approximately 60% and is no 

longer effective in maintaining the mean flow after approximately 75% in the posterior 

tibial artery when terminal resistance has reached its maximum reduction of 20%. 

Otherwise, for 90% stenosis, the peripheral resistance would have to decrease by 

+60% to maintain constant mean flow (Fig. 5.13). The particular percentage of the 
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criti cal stenosis depends on the location of t he stenosis. T hus it is important that 

vasodilation be accounted for in the model before taking the flow indices from the 

waveforms. An example of the effect of keeping the terminal peripheral resistances 

constant as opposed to incorporating autoregu lation on the flow indices is shown in 

Fig. 5.14 for PI. The normalized indices are slightly la rger in the case of constant 

terminal resistance as a result of the mean flows being allowed to decrease by keeping 

peripheral resistance constant . 

Wall shear coefficients and using a Aow inpu t versus a pressure input for the 

proximal boundary condit ion affect the flow indices each in their own way. Since the 

validity of the original computer model was based on a quadratic pressure-area rela-

tion, and using a flow input case with all wall shear coefficients set to 1.0 (Stergiopulos 

et al., 1993), thi s will be used as a base line to measure the accuracy of indices taken 

from waveforms that use a pressure input with both wall shear coeffi cients set to 1.0, 

as well as varying wall shear coefficients for both flow and pressure inputs. Figures 

5.15, 5. 16, 5. 17, 5.18, and 5.19 compare each case for the normalized indices, P I , 

P l_,, P I1, ACI, and ARI, respect ively. Vasodilation is accounted for in each case and 

a line is drawn between each point to emphasize sensitivity. 

In a ll cases, the normalized indices reveal that with increasing stenosis severity, 

each index decreases in a nearly exponential fashion , and that the new compliance 

rela tionship does affect the indices since all are less than the baseline. The special ex-

ception was the acceleration index. ACI was the most difficult to calculate accurately 

because its sensitivity is dependent on a very precise reading of the time between peak 

systole and end diastole. An increase or decrease in time of 0.01 can dramatically 

increase or decrease the value of ACI. The Fourier pulsatility index stands out as 
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being the most sensitive to stenosis since it decreases the most. Varying wall shear 

coefficients tend to increase the values of the indices and decrease the overall sensitiv-

ity of each index . Thus it is important, when using the new compliance relationship 

(Eq. 2.22), to vary the nodal wall shear coefficients accordingly because it will affect 

the sensitivity and accuracy of the indices even though the waveform does not seem 

to change much. The effect of using a flow input as opposed to a pressure input for 

the proximal boundary condition is inconsequential on the index results, as expected, 

since both index values are nearly identical using sim ilar wall shear coefficients. 

Diseased Heart Conditions and Indices 

Figures 5.20 displays the pressure waveforms for various types of heart disease, 

and 5.21 shows the resulting flow waveforms at the proximal root of the ascending 

aorta where the wall shear coefficients were varied according to the alpha parameter. 

These waveforms vary dramatically from the normal flow case in their shape and 

size. Tables 5.1, 5.2, 5.3 reflect the effect the var ious disease cases have on the 

flow indices PI, PI/, PI~, and ACI at the external carotid, radial, and posterior tibial 

artery (see. Figures 5.22, 5.23, 5.24, 5.25, and 5.26 for flow pulses of diseased 

heart conditions). In the following sections, each disease case will be discussed for 

the selected indices and extrem ity locations to validate their predicting ability, as 

well as to see if any particular index is more sensitive to a disease case than another. 

The normalized diseased case index value is subtracted from the normalized control 

value (equal to one) when discussing a percent change: 

Control - Diseased c l x 100. ontro 
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Table5.l: ormalized flow indi ces for various cases of heart disease calculated at 
the R. external carotid artery 

Case PI ..!.....:L _E.f_:_ AC / 
Pin Pl n Pim AC In 

Control 1.0000 1.0000 1.0000 1.0000 
IIYP 0.1965 0.0685 0.3154 0.17 9 
AS 0.4471 0.3467 0.5340 0.390 
Al 1.3299 1.6702 15.7004 1.8357 
AS/AI 0.9890 1.5006 1.0076 1.5037 

Table 5.2: Normalized flow indices for various cases of heart disease calculated at 
the R. radial artery 

Case P l ..!.....:L .El.L A C / 
Pl,. PI n Pl,n A C / ,. 

Control 1.0000 1.0000 1.0000 1.0000 
HYP 0.4070 0.1 70 0.464 7 0.1952 
AS 0.5356 0.4532 0.6574 0.24 6 
AI 0.9771 0.6690 1.8293 1.2543 
AS/ AI 0.5763 0.2905 0. 9755 0.92 0 

Table 5.3: Normalized flow indices for various cases of heart disease calculated at 
the L. posterior tibial artery 

Case Pl _::_:_j_ .El.L AC / 
Pin Pl n P lan A C / ,. 

Control 1.0000 1.0000 1.0000 1.0000 
HYP 0.5460 0.2258 0.5691 0.2250 
AS 0.7602 0.7100 0.680 0.471 
AI 1.0514 1.2175 1.375 1.3 23 
AS/ AI 0.6460 1.9192 1.0192 0.8099 
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Figure 5.19: Effect of severity of L. femoral stenosis on L. posterior tibial ankle/arm 
flow index, ARI. 

Hypertension During hypertension, heart rate is decreased to approximately 

71 beats/min from control. Hypertension creates an aortic flow pulse that is char-

acterized by a reduced maximum and minimum flow (back flow) amplitude, an in-

creased mean flow , a reduced end diastolic flow magnitude, a slower ri se in systolic 

flow (slope) , and a prolonged systolic phase, although the systolic and diastolic pres-

sure are greatly elevated from the control case. As the pulse travels further from 

the heart, mean flow continues to increase because peak flow amplitude approaches 

that of the control case. It should be noted that in this model no parameter values 

such as compliance or terminal impedance data were changed, but probably should 

change for hypertension. The systolic duration also approaches that of the cont rol 

case as the pulse travels further from the heart . From the index tables for the case of 
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Figure 5.26: Flow pulses measured at various locations for AS/ AI. 

hypertension, all the index values have a minimum percent change of 69% in the ex-

ternal carotid artery, 54% in the radial artery, and 44% in the posterior tibial artery. 

The PI1 index seems to be the most sensitive to hypertension with ACI being a close 

second, especially as the pulse proceeds down the arteri al tree. 

Valvular Aortic Stenosis Patients with valvular aortic stenosis have heart 

rates of approximately 65 beats/min. The maximum and minimum flow (back flow) of 

all flow waveforms is decreased dramatically while the end diastolic flow magnitudes 

decrease only slightly from the normal flow. As in the hypertensive case, the increase 

of the slope along systolic flow is less steep, and the systolic phase lasts longer for 

AS than for the normal case. The index that would generally seem to be most 

sensitive to this diseased condition is ACI since the values measured for this index 
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change the most from the control values. From the index tables for the neck , the 

indices most dramatically affected are Pl1 and ACI which decreased by 65% and 60% 

from control , respectively. The normali zed Pis value is greater t han the control case 

which may be due to the the end diastoli c flow being decreased the same magni t ude 

in relation to t he maximum flow. If the end diastol ic flow were approximately the 

same as the control value, then the Pis index would have decreased 46% from control 

and would have been more in line with the other indices all of which decreased by 

approximately 4.0% ± 5% from control. For the wrist and ankle, t he ACI index seems 

to be particularly affected by the heart condition , decreasing by 75% from control 

at the wrist and 50% from cont rol at the ankle . All other indices varied less than 

553 from control at the wrist and 40% from control at the ankle. Also, PI and Pl1 

appear to decrease as the pulse moves toward the periphery. 

Pure Aortic Regurgitation The heart disease condition of pure aortic re-

gurgitation increases heart rate to approximately 9 beats/min to compensate for 

the blood that flows backwa rd through the incompetent heart valve. Other results 

of aortic regurgitation are an increase in the magnitude of all maximum, minimum, 

and end diastolic flows, and a decrease in t ime between end diastole and peak sys-

tole, resulting in a steeper slope. Aortic regurgita tion would be expected to have the 

most dramatic effect on Pl., and ACI since they are calculated from values that have 

changed the most from the control values. From the index tables, all index values 

increase at the neck , especially t he Pl., index. This may be due to the fact that the 

end diastolic flow value is very small compared to the control value. For the wrist , 

PI., again varies the largest (83%) from control with PI1 varying the second largest 
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percentage at 33%. T he indices calculated at the ankle react similarly to the way 

they reacted in the carotid , with PI 5 and ACI deviating the most, from control at 

3 %. 

Combination of Aortic Stenos is and R egurgitation A combination of 

valvular aortic stenosis and aortic regurgitation exhibit an elevated heart rate of 4 

beats/min. The aortic flow waveform is rather pecul iar in that t,here is an extra 

hump after systolic flow. This is typ ical of the waveform of this type of patient. The 

values of mean flow and pressure in this case are qu it,e high compared to the normal 

case. The aort ic flow waveform shows an large increase in peak positive flow and 

in t he end d iastolic value, a slight increase in maximum back flow, a slight decrease 

in the syst,olic slope, and a very large increase in systolic durat, ion. As the pulse 

proceeds down the arterial t ree, the maximum flow and end diastol ic flow decrease 

and eventually are less than the cont rol case values. From the index tables for the 

case of combined aortic stenosis and regurgitation, the indices increase and decrease 

d ifferent amounts at different points on the body. PI1 appears to generally be t,he 

most sensitive to this waveform , varying by as much as 91 % from cont rol at the wrist 

and at least by 50%. The least sensit ive index appears to be Pl.,. This would be 

accurate s ince t he maximum flow decreases approximately the same percentage as 

the end dias t,olic flow . 

By examining the waveforms as well as inspecting the indices at a particular point, 

in the body, a patien t could be diagnosed with eit,her a stenosis or heart ailment with 

a high percentage of confidence. The severity of stenosis could also be determined. 

Again , each index should be used with d iscretion since each index is a measure of 
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different waveform values to describe different traits. When used Ill combinat ion, 

they could resolve a n unclear heart disease diagnosis. 
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CHAPTER 6. CONCLUSIONS 

In this study, a non-linear computer model of most of the human systemic cir-

culation has been adapted and modified with the goal to examine the effects of ar-

terial stenosis and, more importantly, various heart diseases on various flow indices. 

The modifications made to the model included a new compl iance relationship to im-

prove emulation of arterial compliance and nodal wall shear coefficient calculations 

throughout the arterial tree. Aortic pressure waveforms were used for the proximal 

boundary condition rather than a flow input since aorti c pressure inputs for various 

cases of heart disease were readily available. Flow waveform indices designed to de-

tect changes in certain properties of the waveform, such as minimum, maximum, and 

average flow values, were incorporated to measure the gross changes in the flow pat-

terns of severe stenoses and heart diseases and were examined as a way of detecting 

such arterial and aortic diseases early on. Thus, flow indices could prove beneficial as 

a non-invasive diagnostic tool in a clinical environment. The com putational model 

could also be used as an instructional aid to show the effects of varying different 

hemodynamic parameters for comparison with the results of in vivo experiments. 

Such parameters as the type of proximal boundary condition used and varying 

wall shear coefficients rather than keeping them constant were given much consid-

eration as to how they affected index sensitivity since they were not investigated in 
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previous studies with t his model and indices. It was determined that wall shear co-

efficien ts make a difference on the indices calculated in th is paper and that the type 

of proximal boundary condition did nol. The indices chosen to study in the case 

of stenoses were the pulsatility index (PI), Fourier pulsatili ty index (PI1 ), systolic-

to-diastol ic flow index ( PI ~), acceleration index (ACI), and segmental systolic flow 

index (ARI). Each decreased with increasing stenosis severity as expected. When 

applied to the heart disease cases of hypertension, HYP, valvular ao rtic stenosis, AS, 

pure aor tic regurgi tation, AI, and a combination of aortic stenosis and regurgitation 

AS/ AI , the indices gave varying results based on how each was defined. Generally, 

PI1 and AC I were most consistently sensitive for hypertension and aortic stenosis , 

PI~ was generally most sensiti ve for aortic regurgitation , and PI1 was generally t he 

most sensitive index for AS/ AI. Each particular index would at times vary greatly 

depending on the point at which it was measured since each waveform shape is dif-

ferent . For instance, PI f fluctuated from 50% above control at the external carotid, 

to 70% below control at the right radial artery, then to 90% above control at t he 

posterior t ibial artery for AS/ AI. Thus, one must avoid hastily diagnosing a disease 

from a particular flow waveform at only one location in the body. 

Recommendations 

There are several improvements that could be made to the program as well as 

to make the model more valid. 

• More peripheral ar terial segments could be included in the model. Venous and 

cardiac dynamics could be included to make the model a closed loop system 

which would resul t in fewer deviations between experimental and simulated 
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pressure and A.ow waveforms. 

• The physiological effects that various heart diseases have on autoregulat.ion 

when a stenosis is present could be investigated and poss ibly modeled. 

• A point.-and-click style of user interaction t.o easily access data could be incorpo-

rated. A pictoral representation of a ll the arterial segments could be produced 

with all the segments numerically labeled. Upon using a mouse to point and 

click on a segment a description of that segment would be produced including 

a graphical display of pressure and A.ow running in real time. Comparative 

graphs of various cases could then be overlayed. 
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APPENDIX A. SAMPLE INPUT DATA - CONTROL CASE 

NUMBER OF SEGMENTS 
55 

SEG# BRAN PARNT STN #NOD SEGMT LENGTH INPUT AREA OUTPUT AREA 
1 2 0 0 2 4 . 00000E-2 6.78866E-4 6 . 51440E-4 
2 14 1 0 2 2.00000E-2 3.94081E-4 3 . 94081E-4 
3 4 1 0 3 3 . 40000E-2 1.20763E- 4 1.20763E-4 
4 6 3 0 3 3.40000E-2 5.62122E-5 5.10223E-5 
5 12 3 0 5 1 . 77000E-1 4.30084E-5 4 . 30084E-5 
6 0 4 0 5 1.48000E-1 1.11036E-5 1.05209E-5 
7 8 4 0 9 4.22000E-1 5.10222E-5 1.74974E-5 
8 0 7 0 6 2.35000E-1 9.51148E-6 6.33470E- 6 
9 10 7 0 4 6.70000E-2 1.45220E-5 1.29462E-5 

10 0 9 0 4 7 . 90000E-2 2 .60155E-6 2.60155E-6 
11 0 9 0 5 1 . 71000E-1 1.29462E-5 1.05209E-5 
12 0 5 0 5 1.77000E-1 9.84229E-6 2 . 16424E-6 
13 0 5 0 5 1 . 77000E-1 9.84229E-6 2.16424E-6 
14 18 2 0 2 3.90000E-2 3.59681E-4 3 . 59681E-4 
15 16 2 0 6 2 . 08000E-1 4.30084E-5 4.30084E-5 
16 0 15 0 5 1.77000E-1 9.84229E-6 2 . 16424E-6 
17 0 15 0 5 1.77000E-1 9 . 84229E-6 2.16424E-6 
18 26 14 0 3 5.20000E-2 3 .13531E-4 1.43139E-4 
19 20 14 0 2 3.40000E-2 5.62122E-5 5.10223E-5 
20 0 19 0 5 1.48000E-1 1 . 11036E-5 1 . 05209E-5 
21 22 19 0 9 4 . 22000E-1 5 .10222E-5 1.74974E- 5 
22 0 21 0 6 2.35000E-1 9.51148E-6 6.33470E-6 
23 24 21 0 4 6 .70000E-2 1 . 45220E-5 1.29462E-5 
24 0 23 0 4 7 . 90000E-2 2.60 155E-6 2.60155E-6 
25 0 23 0 5 1.71000E-1 1 . 29462E-5 1.05209E-5 



72 

26 0 18 0 4 8.00000E-2 1.25664E-5 7.06858E-6 
27 28 18 0 5 1 . 04000E-1 1.43139E-4 1.16899E-4 
28 34 27 0 3 5.30000E-2 1.16899E-4 1.05683E-4 
29 30 27 0 2 1.00000E-2 4.77836E-5 4.77836E-5 
30 32 29 0 2 1.00000E-2 4.77836E-5 4.77836E-5 
31 0 29 0 3 6.60000E-2 1.52053E-5 1.52053E-5 
32 0 30 0 3 7.10000E-2 1.01788E-5 1. 01788E-5 
33 0 30 0 3 6.30000E-2 2.37583E-5 2.37583E-5 
34 0 28 0 4 5.90000E-2 5.94467E-5 5.94467E-5 
35 36 28 0 2 1.00000E-2 1 . 05683E-4 1.04586E-4 
36 0 35 0 2 3.20000E-2 2 . 12371E-5 2.12371E-5 
37 38 35 0 2 1.00000E-2 1.04586E-4 1.03494E-4 
38 0 37 0 2 3 . 20000E-2 2.12371E-5 2 . 12371E-5 
39 40 37 0 5 7.06000E-2 1 . 03494E-4 9.53856E-5 
40 0 39 0 3 5 . 00000E-2 8.04247E-6 8.04247E-6 
41 42 39 0 2 1.00000E-2 9.53856E-5 9.43433E-5 
42 44 41 0 3 5 . 82000£-2 4 . 25447E-5 3 . 69605E-5 
43 50 41 0 3 5 . 82000E-2 4.25447E-5 3.69605E-5 
44 46 42 0 4 1.44000£-1 3 . 69605E-5 2 .29022£-5 
45 0 42 0 3 5.00000E-2 1.25660E-5 1.25660E-5 
46 48 44 0 9 4.43000£-1 2.29022E-5 1 . 13411£-5 
47 0 44 0 4 1 . 26000£-1 2.04282E-5 1 . 08686£-5 
48 0 46 0 8 3.21000£-1 1.01788£-5 6.24580E-6 
49 0 46 0 8 3.43000£-1 5 . 30929E-6 3.14159E-6 
50 52 43 0 4 1.44000E-1 3.69605£-5 2.29022E- 5 
51 0 43 0 3 5 . 00000E-2 1 . 25660E-5 1 . 25660E-5 
52 54 50 0 9 4.43000E-1 2 . 29022E-5 1. 13411E-5 
53 0 50 0 4 1 . 26000E-1 2 . 04282E-5 1.08686E-5 
54 0 52 0 8 3 . 21000E-1 1. 01788E-5 6.24580E- 6 
55 0 52 0 8 3 . 43000E-1 5.30929E-6 3 .14159E-6 

SEG# COMPLIANCE SEEPAGE ORIENTATION ANGLE 
1 2.610000-08 0.000000+0 0.090000+3 
2 1.480000-08 0 . 000000+0 0.000000+3 
3 3 . 970590-09 0.000000+0 0.135000+3 
4 1.647060-09 0.000000+0 0.180000+3 
5 1 . 206780-09 0 . 000000+0 0.090000+3 
6 1. 136490-10 0.000000+0 0.120000+3 
7 8 . 026070-10 0.000000+0 0.240000+3 
8 7.987230-11 0.000000+0 0.240000+3 
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9 1.656720-10 0.000000+0 0.240000+3 
10 1. 139240-11 0 .000000+0 0.240000+3 
11 1.292400-10 0.000000+0 0.240000+3 
12 5.327680-11 0.000000+0 0.090000+3 
13 5. 327680-11 0.000000+0 0.135000+3 
14 1.335900-08 0.000000+0 0.000000+3 
15 1.206730-09 0.000000+0 0.060000+3 
16 5. 327680-11 0.000000+0 0.090000+3 
17 5. 327680-11 0.000000+0 0.045000+3 
18 1.148080-08 0.000000+0 0.270000+3 
19 1.647060-09 0 . 000000+0 0.045000+3 
20 1.136490-10 0.000000+0 0.060000+3 
21 8.026070-10 0.000000+0 0.300000+3 
22 7.987230-11 0.000000+0 0.300000+3 
23 1.656700-10 0.000000+0 0.300000+3 
24 1.139200-11 0.000000+0 0.300000+3 
25 1. 292400-10 0.000000+0 0.300000+3 
26 3 . 750000-10 0.000000+0 0.000000+3 
27 4.576900-09 0.000000+0 0.270000+3 
28 3.849060-09 0.000000+0 0.270000+3 
29 1.360000-09 0.000000+0 0.000000+3 
30 1.000000-09 0.000000+0 0.000000+3 
31 3.484850-10 0 . 000000+0 0.315000+3 
32 2.126760-10 0 . 000000+0 0.450000+3 
33 5.936510-10 0.000000+0 0.000000+3 
34 1.762710-09 0.000000+0 0.225000+3 
35 4.000000-09 0.000000+0 0.270000+3 
36 5.218750-10 0.000000+0 0.000000+3 
37 3.800000-09 0.000000+0 0.270000+3 
38 5.218750-10 0.000000+0 0 . 000000+3 
39 3 .198110-09 0.000000+0 0 .270000+3 
40 1 . 584000-10 0.000000+0 0.270000+3 
41 3.500000-09 0.000000+0 0 . 270000+3 
42 7.869420-10 0.000000+0 0.315000+3 
43 7.869420-10 0.000000+0 0.225000+3 
44 1. 084720-09 0.000000+0 0.315000+3 
45 6.600000-10 0.000000+0 0.270000+3 
46 3 . 079010-10 0 . 000000+0 0.270000+3 
47 8 . 968250-11 0 . 000000+0 0.315000+3 
48 6 . 872270-11 0.000000+0 0 .270000+3 
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49 2 .454810-11 0.000000+0 0.270000+3 
50 1.084720-09 0.000000+0 0.225000+3 
51 6.600000-10 0.000000+0 0.270000+3 
52 3.079010-10 0.000000+0 0.270000+3 
53 8.968250-11 0.000000+0 0.225000+3 
54 6.872270-11 0.000000+0 0.270000+3 
55 2. 454810-11 0.000000+0 0.270000+3 

SEG RES1 RES2 CT 
6 .12020E+10 .48080E+10 .30955E-10 
8 .10560E+10 .42240E+10 .35235E-10 

10 .16860E+11 . 67440E+11 .22069E-11 
11 .10560E+10 .42240E+10 .35235E-10 
12 .27800E+10 .11120E+11 .13384E-10 
13 .27800E+10 .11120E+11 .13384E-10 
16 .27800E+10 .11120E+11 .13384E-10 
17 .27800E+10 .11120E+11 .13384E-10 
20 .12020E+10 .48080E+10 .30955E-10 
22 .10560E+10 .42240E+10 .35235E-10 
24 .16860E+11 .67440E+11 . 22069E-11 
25 .10560E+10 .42240E+10 .35235E-10 
26 .27800E+09 .11120E+10 .13384E-09 
31 .72600E+09 .29040E+10 .51251E-10 
32 .10820E+10 .43280E+10 .34389E-10 
33 .46400E+09 .18560E+10 .80191E-10 
34 .18600E+09 .74400E+09 .20005E-09 
36 .22600E+09 .90400E+09 .16464E-09 
38 .22600E+09 .90400E+09 .16464E-09 
40 .13760E+10 .55040E+10 .27041E-10 
45 .15872E+10 .63488E+10 .23443E-10 
47 .95400E+09 .38160E+10 .39003E-10 
48 .95400E+09 .38160E+10 .39003E-10 
49 . 11180E+10 .44720E+10 .33281E-10 
51 .15872E+10 .63488E+10 .23443E-10 
53 .95400E+09 .38160E+10 . 39003E-10 
54 .95400E+09 .38160E+10 .39003E-10 
55 . 11180E+10 .44720E+10 .33281E-10 

DENSITY VISCOSITY 
0.105000+4 0.450000-2 
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CYCLES FREQUENCY TIME INCREMENT 
3 1 . 00000000 0.500000-3 

NPB NQB 
0 21 

Q COS TERM 
0.86393E-4 
-.88455E-4 
-.52515E-4 
0.86471E-4 
-.26395E-4 
-.12987E-4 
0.20133E-5 
0.70896E-5 
0.32577E-5 
- .56573E-5 
-.19302E-5 
0.22387E-5 
0.23050E-5 
0 .11909E-5 
-.39818E-5 
0.58176E-6 
0 . 19556E-5 
0.48907E-6 
-.66338E-6 
-.21719E-5 
0.19705E-5 

ACC. GRAV. 
9.81000000 

Q SIN TERM 
O.OOOOOE+O 
0.13368E-3 
-.12280E-3 
0.22459E-4 
0.22693E-4 
0.22398E-5 
-.22315E-4 
0.10065E-4 
-.21066E-5 
0.90633E-5 
-.85422E-5 
0.14770E-5 
-.32397E-5 
0.59775E-5 
-.18464E-5 
-.14751E-5 
-.12112E-5 
0.24434E-5 
0.50967E-6 
-.23241E-6 
- .20190E-5 

GRAV. LOAD ANGLE 
0.000000+0 0.270000+3 
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APPENDIX B . SAMPLE INPUT DATA - 90% STENOSIS IN LEFT 

FEMORAL ARTERY 

NUMBER OF SEGMENTS 
55 

SEG# BRAN PARNT STN #NOD SEGMT LENGTH INPUT AREA OUTPUT AREA 
1 2 0 0 2 4.00000E-2 6.78866E-4 6 . 51440E-4 
2 14 1 0 2 2.00000E-2 3.94081E-4 3.94081E-4 
3 4 1 0 3 3.40000E-2 1.20763E-4 1.20763E-4 
4 6 3 0 3 3.40000E-2 5.62122E-5 5.10223E-5 
5 12 3 0 5 1.77000E-1 4.30084E-5 4.30084E-5 
6 0 4 0 5 1 .48000E-1 1 . 11036E-5 1 . 05209E-5 
7 8 4 0 9 4.22000E-1 5 . 10222E-5 1.74974E-5 
8 0 7 0 6 2 . 35000E-1 9.51148E-6 6.33470E-6 
9 10 7 0 4 6.70000E-2 1.45220E-5 1. 29462E-5 

10 0 9 0 4 7.90000E-2 2.60155E-6 2 . 60155E-6 
11 0 9 0 5 1.71000E-1 1 . 29462E-5 1.05209E-5 
12 0 5 0 5 1 . 77000E-1 9 .84229E-6 2.16424E-6 
13 0 5 0 5 1.77000E-1 9 .84229E-6 2.16424E-6 
14 18 2 0 2 3.90000E-2 3.59681E-4 3.59681E-4 
15 16 2 0 6 2.08000E-1 4 . 30084E-5 4.30084E-5 
16 0 15 0 5 1.77000E-1 9.84229E-6 2.16424E-6 
17 0 15 0 5 1.77000E-1 9 .84229E-6 2 . 16424E-6 
18 26 14 0 3 5.20000E-2 3.13531E-4 1.43139E-4 
19 20 14 0 2 3 .40000E-2 5 . 62122E-5 5.10223E-5 
20 0 19 0 5 1.48000E-1 1.11036E-5 1.05209E-5 
21 22 19 0 9 4.22000E-1 5 . 10222E-5 1 .74974E-5 
22 0 21 0 6 2.35000E-1 9 . 51148E-6 6.33470E-6 
23 24 21 0 4 6 . 70000E-2 1 . 45220E-5 1.29462E-5 
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24 0 23 0 4 7.90000E-2 2.60155E-6 2 . 60155E-6 
25 0 23 0 5 1.71000E-1 1.29462E-5 1.05209E-5 
26 0 18 0 4 8.00000E-2 1.25664E-5 7.06858E-6 
27 28 18 0 5 1.04000E-1 1 .43139E-4 1.16899E- 4 
28 34 27 0 3 5.30000E-2 1.16899E-4 1.05683E-4 
29 30 27 0 2 1.00000E-2 4.77836E-5 4.77836E- 5 
30 32 29 0 2 1.00000E-2 4.77836E-5 4.77836E-5 
31 0 29 0 3 6.60000E-2 1.52053E-5 1.52053E-5 
32 0 30 0 3 7. 10000E-2 l.01788E-5 1. 01788E- 5 
33 0 30 0 3 6.30000E-2 2.37583E-5 2.37583E-5 
34 0 28 0 4 5.90000E-2 5.94467E-5 5.94467E-5 
35 36 28 0 2 1.00000E-2 1.05683E-4 1.04586E-4 
36 0 35 0 2 3.20000E-2 2.12371E-5 2 . 12371E-5 
37 38 35 0 2 1.00000E-2 1.04586E-4 1.03494E-4 
38 0 37 0 2 3.20000E-2 2.12371E-5 2.12371E-5 
39 40 37 0 5 7.06000E-2 1.03494E-4 9.53856E-5 
40 0 39 0 3 5.00000E-2 8.04247E-6 8 . 04247E-6 
41 42 39 0 2 1.00000E-2 9.53856E-5 9.43433E- 5 
42 44 41 0 3 5.82000E-2 4.25447E-5 3.69605E- 5 
43 50 41 0 3 5.82000E-2 4.25447E-5 3.69605E-5 
44 46 42 0 4 l.44000E-1 3.69605E-5 2.29022E-5 
45 0 42 0 3 5.00000E-2 1.25660E-5 1.25660E-5 
46 48 44 4 9 4.43000E-1 2.29022E-5 l.13411E-5 
47 0 44 0 4 1.26000E-1 2 . 04282E-5 1.08686E-5 
48 0 46 0 8 3.21000E-1 1.01788E-5 6.24580E- 6 
49 0 46 0 8 3.43000E-1 5.30929E-6 3.14159E- 6 
50 52 43 0 4 1.44000E-1 3.69605E-5 2.29022E-5 
51 0 43 0 3 5.00000E-2 1.25660E-5 1.25660E- 5 
52 54 50 0 9 4.43000E-1 2.29022E-5 1.13411E-5 
53 0 50 0 4 1.26000E-1 2.04282E-5 1 .08686E-5 
54 0 52 0 8 3.21000E-1 1. 01788E-5 6.24580E-6 
55 0 52 0 8 3.43000E-1 5.30929E-6 3.14159E-6 

SEG# COMPLIANCE SEEPAGE ORIENTATION ANGLE 
1 2.610000-08 0.000000+0 0.090000+3 
2 1.480000- 08 0.000000+0 0.000000+3 
3 3.970590-09 0.000000+0 0.135000+3 
4 1.647060-09 0.000000+0 0 . 180000+3 
5 1.206780-09 0 . 000000+0 0.090000+3 
6 1.136490-10 0.000000+0 0 . 120000+3 
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7 8.026070-10 0.000000+0 0.240000+3 
8 7.987230-11 0.000000+0 0.240000+3 
9 1.656720-10 0.000000+0 0.240000+3 

10 1 .139240-11 0.000000+0 0. 240000+3 
11 1. 292400-10 0.000000+0 0.240000+3 
12 5 .327680-11 0.000000+0 0 . 090000+3 
13 5. 327680-11 0.000000+0 0. 135000+3 
14 1.335900-08 0.000000+0 0.000000+3 
15 1.206730-09 0.000000+0 0.060000+3 
16 5.327680-11 0.000000+0 0 .090000+3 
17 5 .327680-11 0.000000+0 0 .045000+3 
18 1.148080-08 0.000000+0 0.270000+3 
19 1 . 647060-09 0.000000+0 0.045000+3 
20 1.136490-10 0.000000+0 0.060000+3 
21 8.026070-10 0.000000+0 0 .300000+3 
22 7. 987230-11 0.000000+0 0.300000+3 
23 1.656700-10 0.000000+0 0.300000+3 
24 1.139200-11 0.000000+0 0 .300000+3 
25 1.292400-10 0.000000+0 0 .300000+3 
26 3.750000-10 0.000000+0 0.000000+3 
27 4.576900-09 0.000000+0 0.270000+3 
28 3.849060-09 0.000000+0 0.270000+3 
29 1.360000-09 0.000000+0 0 . 000000+3 
30 1 .000000-09 0.000000+0 0.000000+3 
31 3.484850-10 0 .000000+0 0.315000+3 
32 2.126760- 10 0.000000+0 0.450000+3 
33 5 . 936510-10 0.000000+0 0.000000+3 
34 1.762710-09 0 .000000+0 0.225000+3 
35 4.000000-09 0 .000000+0 0.270000+3 
36 5.218750-10 0.000000+0 0.000000+3 
37 3.800000-09 0.000000+0 0.270000+3 
38 5.218750-10 0 . 000000+0 0.000000+3 
39 3 .198110-09 0.000000+0 0.270000+3 
40 1.584000-10 0.000000+0 0.270000+3 
41 3.500000-09 0 .000000+0 0.270000+3 
42 7.869420- 10 0.000000+0 0 .315000+3 
43 7.869420-10 0.000000+0 0.225000+3 
44 1.084720-09 0.000000+0 0.315000+3 
45 6.600000-10 0.000000+0 0.270000+3 
46 3.079010-10 0.000000+0 0.270000+3 
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47 8.968250-11 0.000000+0 0 .31 5000+3 
48 6.872270-11 0.000000+0 0.270000+3 
49 2 .454810-11 0.000000+0 0.270000+3 
50 1.084720-09 0.000000+0 0.225000+3 
51 6.600000-10 0.000000+0 0 . 270000+3 
52 3.079010-10 0 . 000000+0 0.270000+3 
53 8.968250-11 0.000000+0 0.225000+3 
54 6.872270-11 0.000000+0 0.270000+3 
55 2.454810-11 0.000000+0 0.270000+3 

SEG RES1 RES 2 CT 
6 .12020E+10 .48080E+10 .30955E-10 
8 . 10560E+10 .42240E+10 .35235E-10 

10 .16860E+11 . 67440E+11 . 22069E-11 
11 .10560E+10 .42240E+1 0 .35235E-10 
12 .27800E+10 .11120E+11 .13384E-10 
13 .27800E+1 0 . 11120E+11 .13384E-10 
16 .27800E+10 .11120E+11 .13384E-10 
17 .27800E+10 .11120E+11 .13384E-10 
20 .12020E+10 .48080E+10 .30955E-10 
22 .10560E+10 .42240E+10 .35235E-10 
24 .16860E+11 .67440E+11 .22069E-11 
25 .10560E+10 . 42240£+10 .35235£-10 
26 .27800E+09 .11120E+10 .13384E-09 
31 .72600E+09 .29040E+10 .51251E-10 
32 .10820E+10 .43280E+10 .34389E-10 
33 .46400£+09 .18560£+10 . 80191E-10 
34 .18600E+09 .74400£+09 .20005E-09 
36 .22600E+09 .90400£+09 .16464E-09 
38 .22600E+09 .90400E+09 .16464E-09 
40 .13760E+10 .55040£+10 .27041E-10 
45 . 15872E+10 .63488E+10 .23443E-10 
47 .95400£+09 .38160E+10 .39003£-10 
48 .95400E+09 .38160E+10 . 39003E-10 
49 .11180E+10 . 44720E+10 . 33281£-10 
51 .15872E+10 .63488£+10 .23443£-10 
53 .95400£+09 .38160£+10 .39003E-10 
54 .95400E+09 . 38160£+10 . 39003E-10 
55 .11180E+10 .44720£+10 .33281E-10 



SEG 
46 

X STENOSIS 
.20000E+OO 

DENSITY 
0.105000+4 
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STEN. LENGTH % 
.02000E+OO .90000E+OO 

VISCOSITY 
0 .450000-2 

CYCLES FREQUENCY TIME INCREMENT 
3 1.00000DOO 0 . 500000-3 

NPB NQB 
0 21 

Q COS TERM 
0.86393E-4 
-.88455E-4 
-.52515E-4 
0.86471E-4 
-.26395E-4 
-.12987E-4 
0.20133E-5 
0.70896E-5 
0.32577E-5 
-.56573E-5 
-.19302E-5 
0.22387E-5 
0 .23050E-5 
0.11909E-5 
-.39818E-5 
0.58176E-6 
0.19556E-5 
0.48907E-6 
-.66338E-6 
-.21719E-5 
0.19705E-5 

ACC. GRAV. 
9.81000000 

Q SIN TERM 
O.OOOOOE+O 
0 . 13368E-3 
- . 12280E-3 
0 . 22459E-4 
0.22693E-4 
0.22398E-5 
-.22315E-4 
0.10065E-4 
-.21066E-5 
0.90633E-5 
-.85422E-5 
0.14770E-5 
-.32397E-5 
0.59775E-5 
-.18464E-5 
-.14751E-5 
- .12112E-5 
0.24434E-5 
0.50967E-6 
- . 23241E-6 
-.20190E-5 

GRAV. LOAD 
0.000000+0 

ANGLE 
0.270000+3 


