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CHAPTER 1: INTRODUCTION 

Artificial Neural Networks 

The field of neural computation has been rapidly growing over the past few years. "In 

a recent survey, the trade paper Electronic Engineering Times found that 85% of the 

engineers it questioned in the U.S., Europe, and Japan ranked neural computation as the 

hottest emerging computer technology" [5](p. 96). This research in neural computation has 

led to the development of many different artificial neural networks (ANNs). ANNs are 

computer programs which came about as a result of scientists attempting to model the thought 

process of the human brain. Most ANNs are used to model the relationship between a vector 

of inputs and a corresponding output vector by adjusting a set of numerical weights after the 

repeated presentation of a series of examples. ANNs are currently being applied to projects in 

such diverse areas as medical diagnosis, credit risk assessment, process control, speech 

recognition, and optical character recognition [26]. This recent surge of research in ANNs is 

due in part to several advances in the technology which occurred in the 1980's, which 

included in part, the development of the backpropagation algorithm [37]. 

Many users currently use backpropagation neural networks, but as of late many new 

ANN architectures and algorithms have been developed. Unfortunately, choosing the correct 

ANN to model a particular problem can be a daunting task. Besides selecting the correct type 

of neural network, each user must correctly set network parameters such as learning rate, 
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momentum, number of nodes in the network and sometimes additional variables such as 

transfer function minimums and maximums, biases, and gain [32](p. 73). Currently the 

development of an ANN model is more of an art than a science because there are no 

guaranteed methods for setting network parameters and architecture. There are, however, 

problem specific heuristics that every expert uses. 

Expert Systems 

Rule-based expert systems are computer programs which mimic the decision making 

process of an expert by encoding knowledge into a set of if/then rules. Expert systems often 

try to capture the knowledge of a human expert in the form of rules which are heuristic in 

nature, rather than absolute. This coding of decision making rules can often be time 

consuming and difficult due to the nature of human decision making. The performance of an 

expert system is usually evaluated by comparing the accuracy of the output with the output 

from the domain specific expert that the system is attempting to mimic. 

Expert systems consist of two major parts, the knowledge-base and the inference 

engine. The knowledge-base contains rules which are executed based on facts which are input 

by a user. These facts relate to the specific case of the problem that the user is trying to solve. 

The knowledge-base for an expert system should be subject to correction as the problem 

solving rules may change over time. The inference engine, on the other hand, controls how 

the facts entered by the user will be searched and matched with the rules in the knowledge­

base. 
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Problem Statement 

This work describes the development of a rule-based expert system, hereafter referred 

to as the ANNex pert, which incorporates the author's knowledge in neural computation. The 

rules for the ANNexpert were developed by comparing the performance of many variations of 

neural networks, from public domain and commercial software packages, on a series of 

benchmark problems. The expert system described herein is capable of guiding a novice user 

through the steps of selecting the proper network architecture and learning algorithm to 

develop a model for a general data set In addition, the ANNexpert can instruct the user in 

the selection of an appropriate software package for model development The ANNex pert 

will also act as a training tool for the user by providing educational comments about the use of 

ANNs. The incorporation of this knowledge into an expert system is an important tool which 

engineers and scientists can use to select the proper ANN model for their specific applications. 
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CHAPTER 2: BACKGROUND ON ANNS AND EXPERT SYSTEMS 

Introduction 

The study of neural networks began many years ago and was inspired by scientists 

attempting to model the behavior of neurons found in the human brain [18](p. 2). The first 

successful adaptive computing element was developed by Frank: Rosenblatt in 1957 and is 

referred to as "the perceptron" [9](p. 22). Today, however, the science has shifted toward the 

construction of adaptive computing networks which are designed to solve engineering 

problems. With recent advances in computer hardware, neural networks have become more 

economical. 

"A neural network is a parallel, distributed information processing structure consisting 

of processing elements (which can possess a local memory and can carry out localized 

information processing operations) interconnected together with unidirectional signal channels 

called connections" [17](p. 593). Most neural networks have their processing units 

(neurodes or nodes) organized into layers, with each node containing a single output which is 

then channeled to the next layer of nodes via individual connections( or weights). Neural 

networks function by processing input vectors through this structure and producing a 

corresponding output vector. Before a neural network can be used, the series of connections 

must be adjusted, or trained so that the ANN gives the correct output. This is done by 

presenting the network with a series of training examples and adjusting the interconnecting 
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weights. This is usually very time consuming, but not always. Adjusting these weights gives 

the neural network the ability to learn the relationship between the desired variables. 

One of the advantages of ANNs is that they are able to correctly model data sets that 

they have not been trained on. This is known as the ability to generalize. Often when training 

an ANN, a subset of the training data is not used during training but is set aside to test the 

network. If the ANN has been trained correctly, it should be able to correctly model both the 

training data and the test set. If the neural network learns the training set but does not 

perform well on the test set, then the network is said to have "memorized" the jata rather 

than learning the relationship among the input and output variables. 

There are two categories of neural networks, supervised learning networks and 

unsupervised learning networks. Supervised networks are those which require the 

presentation of both an input and an output vector during training, while unsupervised 

networks train with only an input vector. The scope of this research involves exploring the 

capabilities and use of supervised artificial neural networks. 

Backpropagation 

Delta Rule Backpropagation 

''Without question, backpropagation is currently the most widely applied neural 

network architecture" [17](p. 593). It was developed by Werbos and published in his 

doctoral dissertation in 1974, but didn't become widely known until it was rediscovered by 

Rumelhart, Hinton, and Williams [37]. Backpropagation is a supervised ANN architecture in 

which the nodes are arranged in a series of layers. The ftrst layer contains a number of nodes 

equal to the number of values in the input pattern. The ftrst layer is often referred to as the 

input layer because each node receives an input directly from the input vector for each training 
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pattern. Each backpropagation network will usually contain from one to three hidden layers, 

. so called because they have no direct contact with the input or output of the network. The 

top or outermost layer of a neural network has a number of nodes equal to the number of 

desired output variables. The number of nodes in the hidden layer is usually a function of the 

number of inputs and outputs and will vary depending on the problem at hand. 

Each layer in a backpropagation network is fully connected to the previous layer 

through the use of numerical weights. For example, each node in the hidden layer is 

connected to each node in the input layer, and each node in the output layer is connected to 

each node in the previous hidden layer. Figure 2.1 shows an example of the connection 

scheme for a backpropagation network with four input nodes, three hidden nodes, and two 

output nodes. In addition, each node in the network will usually be connected to itself by a 

weight with a constant input of one, known as a threshold weight. 

Backpropagation requires a two step process to update the weight connections. 

During the first step, known as feed forward, an input pattern in presented to the network and 

the corresponding output is calculated. Random weights are used during this step to start the 

network off. The network processes the input from bottom to top as shown by the arrows in 

Figure·2.1. The input nodes do not perform any type of computation in the network, but 

simply output the value corresponding to the input for that node. The hidden nodes will sum 

up the value of the product of the input nodes and the corresponding weights and pass this 

value through a differentiable, continuous function such as the hyperbolic tangent, linear, or 

sigmoid function. This process continues through each hidden layer until the output layer is 

reached. The output layer nodes 
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Figure 2.1: Connection Scheme for a Backpropagation ANN 

sum up and process the output from the previous hidden layer to give an output value for the 

network. 

The second step of operation for the backpropagation network is known as the 

backward error propagation stage. During this step the output from the feed forward stage of 

the network is compared with the desired value for that data pattern. The error for each data 

pattern is calculated and the corresponding weights for each node in the network are 

corrected by performing a gradient decent search on the error function of the network. The 
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network distributes the error evenly amongst all the nodes in the network and will update 

weights accordingly. 

A clear concise derivation of the backpropagation algorithm is presented in Rumelhart, 

Hinton, and Williams [37]. In general, the process can be summed up in a few simple 

equations. Assuming a network uses sigmoidal activation functions, the output for the Jth 

node, OJ is typically of the form 

0. ___ 1 __ 
J - 1 + e -(II~(j+Q;) (2.1) 

where Qj is the threshold and netj is the input to node j which is calculated using the following 

formula. 

netj = L WjiOi (2.2) 

Here, Wji is the weight of the connection from node j to node i of the previous layer and OJ is 

the output of node i of the previous layer. The error term to be minimized for each pattern is 

represented by 

1" 2 E=-L.)TI:-Ol:) 
2 I: 

(2.3) 

where 01: is the kth element of the actual output for the pattern, TJ: is the kth element of the 

target output value for the pattern, and E is the total error for the pattern. Equation 2.3 is 

differentiated using the chain rule to determine the error which is associated with each weight 

in the network The weights are then updated by using the delta rule which performs a 
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gradient decent to minimize the error function. The changes for weights in the network may 

be expressed by 

(2.4) 

where 11 is called the step size or the learning rate which is specified by the user and 

Ok is the error associated with node k. The error for an output node k may be calculated by 

Ok = (Tk - Ok)OI:(1- Ok) (2.5a) 

and the error for all other nodes, j may be calculated by 

OJ = OJ(l- OJ) IOkWkj (2.5b) 
k 

Backpropagation networks are trained until a specified tolerance reached. One such measure 

is the root mean squared (RMS) error, which is summed up across all output nodes using the 

following fonnula 

RMS= (2.6) 

where tkp represents the target output for the kth output node of pattern p, Xkp is the actual 

output for the kth output node of pattern p, np is the number of patterns and nk is the number 

of output nodes. Observing the RMS error during training can help detennine if training is 

occurring properly. If learning rates are set correctly, then a plot of the RMS should slowly 
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converge to zero [30](p. 22). An ANN is often considered to be a good model if it has an 

RMS below .05 on both the training set and the test set. 

One problem with the backpropagation algorithm is that it doesn't always guarantee 

an optimal solution and can become trapped in local minimum on the error surface [7](p. 58). 

Like any gradient descent technique, backpropagation seeks to find a local minimum on the 

error surface and will head in that direction. However, if there is a local minimum, or a gully 

on the error surface, the neural network could get stuck in it and fail to converge to an 

appropriate minimum error. Adding small random "jogs" to weights, the use of a momentum 

term, or using different random seeds to generate the initial set of weights are some typical 

ways to reduce the probability of getting stuck in a local minimum. 

One last concern when dealing with training a backpropagation network is the order of 

the data examples as they are presented to the network. Each pattern should be presented in a 

random order, rather than sequentially, to insure proper training. If a network is trained on 

data in a sequential fashion and the data is grouped in patterns than the network may train to 

learn one group of patterns only to lose what it has learned as it moves to another group of 

data [42](p. 151). 

Batch Training 

Batch or cumulative learning .is often used to speed the convergence of 

backpropagation networks. In cumulative backpropagation the changes in weights are 

accumulated over a certain epoch, usually the number of patterns in the training set, and then 

applied to the individual weights. This approach may increase convergence speed depending 

on the size of the epoch because using individual updates may only decrease error for a 

particular pattern but may increase error for other patterns [29](p. 69). 
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Learning Rate 

One of the problems with backpropagation is that learning perfonnance can vary 

drastically depending on the value of the learning rate 11 in Equation 2.4. The learning rate 

should always be a small positive constant, usually between zero and one. If the learning rate 

is too small, the network could take an extremely long time to converge. If the learning rate is 

too large, the network weights can grow too large and become saturated [29](p.152). 

Usually, the network is less likely to fall into a local minimum near the beginning of training. 

so it is often desirable to start off with a large learning rate, say .9 during the initial stages of 

training and reduce this as training continues. With smaller learning rates, a network is more 

likely to perform a true gradient descent on the error surface rather than jumping around 

sporadically. Some problems may be impossible to learn with large learning rates. In general, 

the leaning rate should be reduced if the network has a large number of weights and increased 

for networks with fewer weights [32](p. 79). 

Using different learning rates in each layer of a multi-layer network can reduce training 

time. "In particular, having a larger learning coefficient at the hidden layer than for the output 

layer allows the hidden layers to fonn feature detectors during the early stages of training. 

These feature detectors can then be combined to fonn more complex detectors at the output 

layer" [30](p. 54). 

Momentum 

Another tenn, momentum, is often added to equation 2.4 to speed convergence of a 

backpropagation neural network. "It has been empirically shown that one way to increase the 

convergence rate without causing the error function to oscillate is to include a momentum 

tenn ... " [4](p. 330). The momentum tenn increases the speed of descent on the error curve 

just as it adds speed to a skier gaining momentum down a slope. It is usually a small constant 
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between zero and one which carries over a small portion of the previous weight change and 

adds it to the current weight change. Adding a momentum tenn to equation 2.4 would 

change it to 

(2.7) 

where n indicates the iteration number and a. represents a multiplier to the momentum tenn. 

Hidden Layer(s) 

The perfonnance of the backpropagation algorithm may also vary depending on the 

number of hidden layers and nodes used in the network architecture. There is no maximum 

number of hidden layers, but there will usually be only one or two in each network. 

Researchers have discovered that many pattern classification problems can be solved with only 

one hidden layer [26](p.242). Kudrycki has determined by experimentation that if two hidden 

layers are used, the optimum ratio of first layer nodes to second layer nodes is three to one 

[26](p. 242). 

A theorem stated by the Soviet mathematician Andrei Kolmogorov, and applied to 

neural networks by Robert Hecht-Nielsen states that any vector of dimension m may be 

exactly mapped to another vector of dimension n through the use of a three-layer neural 

network, provided that the components of the input vector are scaled in the range [0 .. 1]. 

"Furthermore, the network will have exactly m neurodes in its input layer, n neurodes in its 

output layer, and 2m+ 1 neurodes in its hidden layer" [7](p. 57). If too few nodes are used in 

the hidden layer(s), then the network may be unable to classify the data and may not converge, 

or may take an extremely long time to converge. However, if too many hidden nodes are 
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used, the network may tend to memorize the data, rather than learn to recognize features in 

the data [7](p. 54). 

NeuralWare, a neural network software company, proposes in their literature a 

heuristic for determining the number of hidden nodes in problems involving the modeling of 

behavioral data. The number of hidden nodes should be small compared to the number of 

training patterns since the data is likely to contain noise [30](p. 19-20). They consider 

behavioral data to be that which involves fluctuations based on the influence of humans such 

as credit risk assessment or stock market prediction. NeuralWare recommends the following 

heuristic when dealing with such data: 

h= P 
5.(m:+-n) 

(2.8) 

where p is the number of training patterns, m is the number of inputs, and n is the number of 

outputs, and h is the number of nodes in the hidden layer. 

Ward Systems Group, the makers of the Neuroshe1l2 software package, propose the 

following formula for the number of hidden nodes in a network [42](p. 35): 

I 
h =-(m+n)+"[p 

2 
(2.9) 

This formula is intuitively appealing because many researchers feel that the number of nodes in 

an ANN should be somewhere between the number of inputs and the number of outputs. The 

fonnula satisfies this requirement for problems with few data patterns but will allow an 

increase in the number of hidden nodes for complicated problems where large training sets are 

needed to learn the relationship among the data. 
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Another heuristic used for diagnosis problems is to use the geometric mean of the 

number of inputs and outputs [26](p. 243). The geometric mean is the square root of the 

product of the number of inputs and outputs in this case. This technique can often be used to 

give a reasonable number of hidden nodes when the number of inputs is much larger than the 

number of outputs. Additional information on the selection of hidden nodes can be found in 

the Handbook of Neural Computing Applications [26]. 

Transfer Functions 

As stated above, any differentiable continuous transfer function can be used in the 

nodes of a backpropagation network. Typical candidates are the sigmoid, hyperbolic tangent, 

and linear functions. A clear discussion of the different types of transfer functions and 

guidelines for when they should be used can be found in the literature [42](p. 129). One of 

the considerations when choosing a transfer function is the range of the transfer function. 

Training data for an ANN is often preprocessed to fit within a certain range, often 0 to 1 or -1 

to + 1. The transfer function used should be scaled slightly larger than the input data. For 

example, if the data is scaled between.l and .9, and a sigmoid transfer function is used, then 

the transfer function should be scaled between 0.0 and 1.0. Certain neural network software 

packages such as DynaMind Developer ask the user to input this information. 

Another consideration when dealing with S-shaped functions like the sigmoid function 

is the gain of the function. 'The gain of the transfer function is a measure of how sensitive the 

neuron is to an input" [32](p. 77). A large gain will tend to produce a binary output from the 

network, while a 'small gain will tend to produce linear analog output Using a gain of 1.0 can 

be practical for most problems. However, the gain should be increased (perhaps to around 

10) if the problem requires a mapping from analog inputs to binary outputs and decreased (to 

around .1) if the problem requires a continuous analog output. 
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A fairly uncommon transfer function is a radial basis function, such as the Gaussian. It 

has been suggested that this function may be better suited for continuous function mappings 

because multiple parameters such as width and center may be adjusted, thus making radial 

basis functions more adaptive to complex mappings [26](p. 51). A problem which may 

require two hidden layers with sigmoid transfer functions might be able to be learned by a one 

layer network with radial basis transfer functions. 

Preprocessing of Data 

One important aspect of using ANNs that is often overlooked by the novice is the 

preprocessing of data. To function correctly the range of training data should be slightly 

smaller than the range of the transfer function used in the nodes of the network [42](p. 127). 

This is done as a safety measure in case the network encounters data outside of the maximum 

and minimum values found in the training set Each input should be normalized to the same 

interval, otherwise the ANN will receive a bias from certain inputs and will tend to weight the 

larger inputs as more important Preprocessing of data can be done using many mathematical 

techniques, from simple linear interpolation to logarithmic transformations. 

Variants of Backpropagation 

Fully Connected Networks 

Fully connected backpropagation networks are those in which the hidden and output 

layers are fully connected to all previous layers in the network [42](p. 123). For example, in a 

three layer network, the output layer would be connected to the hidden layer and the input 

layer. These ANNs are sometimes referred to as 'jump networks", since the weight 

connections appear to jump over layers. The learning takes place as in nonnal 
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backpropagation, but there are simply more weights. Jump networks tend to take longer to 

. train than nonnal backpropagation networks due to the increase in the number weights. 

Recurrent Networks 

Recurrent networks are a special version of back propagation which are often used for 

analyzing time series data such as stock market prediction [42](p. 123). Recurrent networks 

are usually trained in a sequential order, rather than in a random order. The networks function 

by having an additional input vector to the network from a previous pattern, so that as the 

network goes to the next pattern, it will retain the influence from a previous pattern. One 

problem with recurrent networks is that the infonnation from the first few patterns may be lost 

since there is nothing to input to the network from previous training patterns. Adding a few 

"dummy" data examples to the beginning of the set of training examples is recommended to 

alleviate this problem [42](p. 124). Recurrent networks should not be used on data that does 

not contain a time influence as this will just add random noise to each pattern as it is presented 

to the network. 

Multiple Activation Functions 

Ward Systems Group Inc., incorporates an architecture in their Neuroshell2 software 

package which features a backpropagation architecture, named "Ward Networks", which has 

multiple groups of hidden layers with different transfer functions. For example a three layer 

network might have a hidden layer with 12 nodes in which 6 have a Gaussian transfer function 

and 6 have a sigmoid transfer function. Different types of transfer functions might be able to 

recognize different features from the input data and pass these along to the output layer, thus 

leading to a better prediction [42](p. 125). The total number of hidden nodes used should be 

chosen as for a backpropagation network. 
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Cascade Correlation 

Cascade correlation is a variation of backpropagation which was developed by Scott 

Fahlman and Christian Lebere [11]. Cascade correlation works by building up a hidden layer 

by adding one hidden node at a time until a desired accuracy is obtained. It starts off without 

any hidden nodes and will incrementally add hidden units which are fully connected to the 

input and output layers [25](p. 74). The network will then train each new node until a fix 

number of iterations have elapsed or the network converges. If the network does not learn, 

another node is added and the previous node's connections remain fixed. PreviouSly trained 

hidden nodes are referred to as 'tenured' nodes, and are no longer trained. The general idea is 

that each node is responsible for a certain portion of the desired output. As new nodes are 

added they are used to develop connections to explain the remaining error in the output and 

thus reduce the total error on the output. 

Cascade correlation has advantages over backpropagation because it will select the 

fewest number of nodes needed to model a certain problem and then cease training. This 

would tend to lead to better generalization abilities of cascade correlation networks. Training 

times are typically longer than standard backpropagation however due to the number of 

additional steps involved in training, such as training, adding a node, retraining, etc .. 

Two variants of cascade correlation currently exist The first allows the training of 

several 'candidate' nodes before adding a node to the network. This allows for a small group 

of nodes to be trained separately with different random seeds, and the node that produces the 

lowest error is added to the network. Another option of cascade correlation allows the 

network to retrain tenured hidden layer units, rather than leaving their connections fixed. 

Each of these variants of cascade correlation will increase training time, but might lead to 

better performance during recall. 
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Modular Neural Networks 

A modular neural network (MNN) is a variation of the backpropagation architecture in 

which several separate groups of hidden layer units are used to solve the same problem. This 

can be thought of as using several different competing backpropagation networks to generate 

a solution to a problem. This is referred to as the use of "adaptive mixture of local experts" as 

proposed by Jacobs, Jordan, Nowlan, and Hinton [22]. Each of these local experts is a group 

of hidden layer nodes which are competing with each other to produce the correct output for 

a given input vector. An additional layer of nodes, referred to as a gating network, is used to 

decide which of the local experts outputs should be used for each pattern presented to the 

network [25](p. 235). Both the gating network and the local experts are fully connected to 

the input layer. The gating network is connected to a layer known as the gating layer which 

has as many outputs as there are local networks. Each local expert will give an output 

between 0 and 1 which is normalized in the gating layer and then summed to produce the 

network output. 

MNNs function by separating the input space into several different regions, each of 

which one local expert is responsible for learning. Training in the MNN is achieved by the 

backpropagation of error, similar to a typical backpropagation network. "In general, any 

problem that can be solved with an error-based network, such as a backpropagation network~ 

can be solved at least as well by a modular neural network" [29](p. 237). If a problem is 

simple and can be learned by a single backpropagation network then one of the local experts 

will take over and always be chosen as the winner by the gating network and the MNN will 

behave as a single backpropagation network. One problem with MNNs is that training times 

will be longer than standard backpropagation due to the fact that several layers of nodes are 

being trained at the same time. 
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Probabilistic Neural Networks 

Probabilistic neural networks (or PNNs) are not actually ANNs in the classical 

definition as proposed by Hecht-Nielsen [17], but have an architecture similar to an ANN and 

incorporate the idea of feed-forward parallel processing of information through a set of simple 

computation elements. They are actually a relative of a statistical technique developed by 

Specht to develop decision boundaries to classify data, and a complete derivation can be 

found in his work [38]. Since they are applied to some of the same problems as neural 

networks, they are relevant to the discussion here. 

PNNs are only applicable to applications which can be formulated as a pattern 

classification problem in which only one output node generates a positive value for each 

training example. The PNN clusters training data to develop statistical probability 

distributions to decide the probability of an input being in a certain class. This can be thought 

of as the network summing up all the input vectors for all the inputs that belong to the same 

output class and generating a probability density function (pdt) for each class. An input 

vector presented to the network during recall is evaluated by a distance metric to determine 

which class it belongs in. 

The PNN does not use an iterative approach to train like other networks, but rather 

trains in one pass through the data. This training can be done in real time, allowing many 

advantages over backpropagation. In tests by Maloney, the PNN performed comparatively to 

backpropagation while offering a speed improvement of 200,000 to 1 [38]. 

Setting up a PNN is slightly different than other networks. Instead of a hidden layer, 

the PNN has what is known as a pattern layer, which should have at least as many nodes as 

there are training patterns for the network. Each input vector used for training in the PNN 
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should be nonnalized to a unit length of one [38](p. 112). One way to accomplish this is to 

nonnalize the input vectors between zero and one and then divide each field by the square 

root of the number of training patterns. This process can be avoided by adding the length of 

the training vector to the pattern layer as outlined by Tseng [40]. 

There is no learning rate or momentum which the user must specify in a PNN, but 

rather a constant called a smoothing factor. The smoothing factor detennines how the data 

points will be clustered into the pdfs which are formed for each class. A small smoothing 

value will cause the pdf function for each class to have many individual humps corresponding 

to the locations of the training samples, whereas larger values will allow for a greater degree 

of interpolation between the training classes making the pdf appear to be smoother [38]. 

Usually, smoothing factors can take on small positive values, usually from .01 to 10, but this 

depends on the implementation used. Since the smoothing factor is used during recall which 

is not very time consuming, it is often easier to experiment with the smoothing factor to 

determine an appropriate value [42](p. 181). 

General Regression Neural Networks 

General regression neural networks (GRNNs) are a generalization of the PNN and 

were also developed by Donald Specht. A mathematical derivation of the learning method of 

GRNNs can be found in his work [39]. They also train in just one pass of the training data 

and have training times which are orders of magnitude smaller than those required for 

backpropagation. GRNNs generate an estimate of a continuous output vector by developing 

a nonparametric regression surface of the elements of the input vectors used in the training 

examples. 
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The GRNN is used for prediction and system modeling. While the GRNN may be also 

. used for pattern classification problems, it is best to use a PNN for these types of problems, as 

the PNN is better suited to solve classification problems [29](p. 171). The inputs and outputs 

of a GRNN may take on continuous values, but the training data should be normalized before 

training. 

GRNNs have both advantages and disadvantages when compared to backpropagation. 

Two main advantages are that they learn much faster than backpropagation, and they can be 

used effectively with sparse data [39](p. 572). The disadvantages are that the recall of a 

GRNN takes longer than backpropagation recall and the network is memory intensive when 

dealing with large training sets [29](p. 171). 

Similar to the backpropagation architecture, the GRNN has multiple layers: an input 

layer, hidden layer, and an output layer. The input layer should contain a number of nodes 

equal to the number of fields in the input vector for each training example, while the output 

layer should contain one node for each output in the training patterns. Like the PNN, the 

middle layer of the GRNN should have at least one node for each training example. There is 

only one parameter for a GRNN that needs to be set by the user. This is a similar to the 

smoothing factor used for PNNs, and controls the interpolation of the fit of the output 

function. Since training times for the GRNN are so small, this can often be determined by 

experimentation. 

The inputs to a GRNN should be scaled such that all inputs variables have 

approximately the same mean and range. Preprocessing becomes less important as the 

number of training examples gets large or with smaller smoothing factors [39](p. 570). A 

rough way to approximate this scaling would simply be to normalize all of the input variables 

to a certain range, say between 0 and 1, by using a linear interpolation. 
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Radial Basis Function Networks 

"A radial basis function network (RBFN) in most general terms is any network which 

has an internal representation of hidden processing elements (pattern units) which are radially 

symmetric" [29](p. 265). This means that each hidden node (pattern unit) must have a vector 

in the input space which acts as a center, a distance measure to determine how far an input 

vector is from the center, and a transfer function which determines the output of the node by 

mapping the output of the distance measure. According to this definition PNNs and GRNNs 

would also belong to the class of RBFNs. Typically however, the name RBFN refers solely to 

an architecture developed by Moody and Darken [29](p. 266). 

A RBFN consists of an input layer, a hidden layer, and an output layer. The number of 

nodes in the input and output layers is configured as for a backpropagation network, while the 

number of pattern units must be determined by experimentation. The input layer is fully 

connected to the hidden layer nodes by means of a series of weights. These weights are 

adjusted during training by using a clustering algorithm which determines the distance 

between the pattern unit and the input vector. This occurs during the initial phase of learning 

which is considered to be unsupervised because there is no feedback from the output layer. 

Each hidden layer node is connected to the output layer by a set of weights which are updated 

during the later phases of training by linear regression or a backpropagated error technique. 

The RBFN has advantages and disadvantages when compared to standard 

backpropagation. One advantage is that it tends to train faster than a backpropagation 

network. It can also lead to better decision boundaries for the input space when used with 

classification problems. A disadvantage of RBFN is that sometimes important information is 

lost during the initial phases of unsupervised learning. RBFNs also tend to have problems 
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with regression tasks since regression may require4:he ANN to have asymptotic transfer 

functions [29](p. 268). 

Learning Vector Quantization 

Learning vector quantization (L VQ) networks were originally developed by Kohonen 

for the classification of data into groups of similar data [26](p. 142). LVQ networks can only 

be used for pattern classification tasks and work best on problems with multiple outputs in 

which only one output node has a positive value for each training example. The goal of an 

L VQ network is to memorize a set of example training patterns known as exemplars. When 

presented with a new input vector, the network should produce the output pattern for the 

exemplar which is closest to the input vector. The middle layer of an L VQ network is actually 

a Kohonen layer which has a group of nodes which compete with each other to learn the 

training vectors. 

L VQ training starts by computing the Euclidean distance between a training example 

vector and each node's weight vector. This is done by using the formula [26](p.I44) 

(2.10) 

where distjrepresents the Euclidean distance between the input vector x and each of the j 

hidden nodes' weight vectors w. The node with the weight vector closest to the input pattern 

has its weights adjusted so that its weight vector moves closer to the input vector, whereas the 

other nodes' weight vectors are moved farther away from the input vector. 

LVQ networks consist of an input layer, a Kohonen layer, and an output layer. There 

is no clear method of determining the number of Kohonen layer units to use for an L VQ 
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network. One heuristic proposed by NeuralWare is that the Kohonen layer should have a 

number of nodes equal to ten percent of the number of training examples [30](p. 97). 

However the number of nodes in the Kohonen layer needs to be a multiple of the number of 

output nodes due to the dynamics of the L VQ network [30](p. 98). Therefore the heuristic 

should be modified such that the number of nodes is ten percent of the number of training 

examples rounded to the nearest multiple of the number of output nodes. Each hidden node in 

the Kohonen layer is fully connected to the input nodes, while each output node is connected 

to a group, or pool of Kohonen layer units. 

Like most ANNs, the performance of an L VQ network relies heavily on the quality of 

the data used for training. Since the L VQ functions by grouping data vectors based on 

distance, it does not perform well on input vectors which are far removed from the training 

data. In these cases it is best to retrain the network with new data that is better representative 

ofthe problem the network is attempting to classify. 

Directed Random Search Networks 

Directed random search (DRS) networks are networks with architectures similar to 

backpropagation networks but with a completely different method of learning developed by 

Norio Baba [1]. While many ANNs use a gradient descent method to adjust the network 

weights to reduce error, DRS networks use random fluctuations of weights to search the 

weight space in order to determine the optimal weights for a particular problem [25](p. 145). 

These random fluctuations, or steps through the weight space are accompanied by a 

directional component which guides the steps in a direction to minimize the total network 

error. They have the same connectivity as a standard backpropagation network with input, 

hidden, and output layers. 
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DRS learning has some advantages over error backpropagation, especially with small 

to medium size networks. DRS networks tend to provide good results over a problem with a 

small weight space. DRS networks perform iterations faster than backpropagation networks 

since there is no error term to be calculated for the hidden nodes in the network. Only the 

total output error of the network is calculated. There are only two key parameters for the 

user of a DRS network to adjust. One is the upper bound on the size of the weights which 

defines the boundary of the weight space that the network will search. If this is set reasonably 

high there is a good chance that the optimum solution will be found in the weight space. The 

implementation of the DRS in the NeuralWorks Professional II Plus software package uses a 

default of 15 for the upper bound on the weight space for most problems [29](p. 154). The 

second parameter is the initial variance of the random distribution which controls the step size 

of fluctuations in the network weights. This parameter is not too critical and success has been 

found by giving an initial variance of 1.0 [29](p. 146). 

One disadvantage of DRS networks is that training may take a long time for large 

problems. If the network contains more than about 200 weights, the weight space which must 

be searched will be large and will take a long time to converge to an appropriate error [29](p. 

145}. With these large networks it is probably more effective to use the backpropagation 

algorithm or some other ANN. 

DRS networks minimize the total error in the network adding a random fluctuation to 

each weight and calculating the new total error. If the new error is lower than the previous 

error, then the new set of weights is saved. This process is repeated until the total error 

converges below an acceptable level. The directed component of the network records which 

previous step directions have provided success and uses these as a guide for the search. The 

size of each step varies in accordance with the success of the search. If the network 

encounters several successive improvements, the step size will be increased. If the network 
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encounters several failures, the step size will be decreased. Bartlett [3] modified and extended 

. the original DRS algorithm to create the stochastic learning algorithm for neural networks. 

Self-Organizing Maps 

The self-organizing map (SOM) is an unsupervised learning network which was 

originally developed by Teuvo Kohonen between 1979 and 1982 [29](p. 294). It can often be 

linked with hidden layers of other ANNs to perform supervised learning. The SOM maps an 

n- dimensional input space into a 2-dimensional map [24]. This map clusters data into groups 

which can be used as an input to other layers in a network. The layer which performs this 

mapping is known as a Kohonen layer. 

Each node is a Kohonen layer is fully connected to the input layer. The Kohonen layer 

weights are adjusted by computing the distance between each node's weights and the input 

vector. This can be accomplished by taking the dot product of the input vector and each 

weight vector [8](p. 62). The node with the closest distance to the input vector is declared 

the winner for that vector and has an output of one while all the other nodes will have an 

output' of zero. The winner and all the nodes in a small neighborhood around it will have their 

weights adjusted so that they move closer to the input vector. This process is completed 

when all the input vectors have been presented to the network. 

One of the advantages of the Kohonen layer is that it can bring out features in the 

inputs which might not be noticed by a gradient descent technique. After the unsupervised 

phase, the output of the nodes in the Kohonen layer can be used as input into other layers for 

additional processing. Training in these networks occurs in two phases. The first is the 

unsupervised learning phase in which the Kohonen layer organizes itself into a feature map. 

Next is the supervised learning phase where weights from the Kohonen layer to the rest of the 
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network layers are trained by a technique such as error backpropagation. Preprocessing the 

inputs in this way can lead to better decision boundaries and reduced training times. 

MadaUneill 

The madaline III (MRIII) rule is an extension of the ADALINE (ADAptive LINear 

Element) network which was developed by Widrow [26](p. 90). A madaline is a network 

composed of multiple adalines, which are processing elements similar to the nodes in a 

backpropagation network. MRIll is one of several improvements on the original madaline 

networks. MRIII networks are similar in architecture to the backpropagation network and 

use the delta rule learning algorithm. 

The main difference between backpropagation and MRIII is the method by which the 

weights in the network are updated. Backpropagation uses analytical equations based on the 

derivative of the output error, whereas the MRIII network uses a more experimental approach 

to update the weights. The MRIII network functions by changing, or perturbing, an input to a 

node by adding a small positive constant. The network then evaluates the effect that this 

perturbation has on network output error. If the overall error was reduced, the network will 

change the weights to increase the input of the node. If the network error was greater than 

before the perturbation, then the network will reduce the pre-node sum. This is repeated for 

each neuron in the network [32](p. 75). 

The MRIII uses an additional parameter, the perturbation parameter, which must be 

defined by the user of the network. This reflects the magnitude of the change applied to each 

node during the training. A value of.l is recommended for activation ranges between -1.0 

and + 1.0. This value should be increased for larger ranges and decreased for transfer 

functions with smaller ranges [32](p. 79). 
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The MRIII rule offers both advantages and.disadvantages over the standard 

backpropagation network. A typical backpropagation network requires fewer operations than 

MRIII and thus will have shorter training times [44](p. 1437). When dealing with computer 

simulations of ANNs it is probably best to use backpropagation rather than MRIII. However, 

MRIII offers a better algorithm for analog hardware design due to variances in hardware 

[44](p. 1437). ''These variances are easily accommodated using Madaline III because they are 

reflected automatically in the output values of the system for a given input, and hence 

incorporated into the training" [32](p. 75-76). 

Expert Systems 

"An expert system is a program that supports high level tasks such as decision-making, 

classification, and forecasting, by using specific domain knowledge" [4](p. 324). Usually 

expert systems are built to provide solutions for specific applications in a certain domain, for 

example medical diagnosis, credit-risk assessment, etc. An expert system will usually 

recommend a decision or action to answer some problem based on inputs from a user. Rule­

based expert systems function by executing, or firing, a set of rules which have been 

programmed to represent the problem solving logic of an expert, usually human, in a 

particular field. 

Expert systems have three main characteristics [25](p. 309). They are "open to 

inspection" meaning that the user of the expert system has a method of determining how the 

expert system has reached its decision. Expert systems should also be easily modified since 

the rules which are programmed into them may need to be changed over time. Finally, the 

rules in an expert system are often heuristic in nature, similar to many human decision making 

processes. 
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Rule-based expert systems have two main parts, the knowledge-base and inference 

engine. The knowledge-base is programmed by the developer of an expert system and 

contains the rules which are used to solve a domain specific problem. The rules for the 

knowledge-base are developed by a knowledge engineer by consulting with domain experts to 

try to identify how they make decisions to solve problems. This information is encoded into a 

set of rules which have the following format: 

if conditions then fire 

Each rule will only fire, if all the conditions for that rule are satisfied. A rule firing will usually 

result in some kind of action, such as triggering another rule or generating an output for the 

user. Conditions are usually determined using data which have been provided by the user or 

added to the knowledge-base by another rule. The inference engine controls how the rules in 

the expert system will be fired by determining how facts and rules in the knowledge-base will 

be matched and executed. 

Two basic strategies of performing the search through the knowledge-base are 

forward-chaining and backward chaining. With forward chaining, also known as data-driven, 

expert systems, facts are input to the system as evidence which are used to come up with 

some hypothesis. With backward-chaining, or goal-driven expert systems, a hypothesis is 

entered into the system and the system tries to come up with the most likely evidence leading 

to the hypothesis. 

Today, many software packages are available to develop expert systems. These 

development environments, known as expert system shells, usually contain an inference engine 

and a knowledge~base editor which the programmer can use to set up rules for the 

knowledge-base. Many different types of applications may be programmed in these shells by 

simply modifying the knowledge-base, which can greatly reduce the time required to develop 

an expert system. 



30 

CHAPTER 3: EXPERT SYSTEM RULE DEVELOPMENT 

Overview 

To develop the rules for the ANNex pert, it was decided that a survey of the 

capabilities of several different types of neural networks would be needed in order to evaluate 

which networks were best suited for various applications. To facilitate this, five ANN 

simulators were chosen to allow for a large variety of neural network architectures and 

algorithms. A series of nine benchmark problems were chosen to evaluate the different 

ANNs. The problems were chosen to represent various applications which might be found in 

industry such as pattern classification, continuous function mapping and time series analysis. 

The degree of difficulty of these problems ranged from trivial such as the exclusive-or 

problem, to challenging problems such as complex visual pattern recognition. Over 150 

neural networks were trained and tested on the benchmark data sets and the results were 

recorded for the expert system rule development. 

An expert system shell package was chosen to implement the expert system. A 

decision tree was constructed using the results of the benchmark tests and the input of experts 

in the field of neural computation. This decision tree was then encoded into a set of rules 

which were programmed into the expert system shell. The resulting expert system, called 

ANNe"xpert, was developed and implemented on a DOS based computer. The ANNexpert 

was then evaluated using a series of additional problems to insure its validity. 
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Neural Network Simulators 

A survey of ANN simulators and similar products was done in order to evaluate as 

many different neural network architectures as possible. A potential list of current products 

on the market was developed and a list compiled. These companies were contacted by phone 

to obtain information and promotional literature for their products and this information was 

reviewed in order to choose a set of simulators appropriate for this study. Five were chosen 

as outlined below. 

Nets version 2.01 

Nets version 2.01 is a public domain neural network simulator created by COSMIC, a 

software development group at the University of Georgia which is funded by NASA [2]. It 

was included in this study because of its widespread availability and negligible cost. Nets is 

designed to run under DOS on an mM compatible personal computer. It provides a standard 

backpropagation algorithm with user defmed learning rate and momentum, as well as options 

for the scaling of transfer functions. The user interface is archaic, with only text menus. 

Before setting up a network, the user must fIrst write a short file, which tells the software how 

many nodes and layers are in the network. Training and test files for Nets must be written in 

ASCn text with parentheses around each data pattern, which can be very time consuming for 

a user to set up. Statistics for each network trained can be collected by using a "dribble" 

feature included in the package. The documentation for Nets is simple and easy to 

understand. 
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Neuroshell2 

Neuroshe1l2 is a neural network simulator which is available from Ward Systems 

Group Inc., for approximately $450.00 [42]. It incorporates several basic network 

architectures including backpropagation, recurrent backpropagation, fully connected 

backpropagation, Ward nets, PNN, GRNN, and a Kohonen network. Of these, all were 

evaluated except the Kohonen network, which is an unsupervised network and was not 

compatible with the benchmark data sets or the objective of this work. Neuroshe1l2 is easy to 

use with a mouse driven user interface featuring icons and pull down menus. The particular 

version evaluated ran on an mM PC with Microsoft Windows operating system. . 

Neuroshe1l2 has many nice features including a variety of tools to incorporate data 

from training fIles into networks. It offers an import feature that brings in data from ASCII, 

Lotus, or Excel formats and incorporates data into a spreadsheet format. Neuroshell2 also 

offers a beginner's system for ANN novices and an advanced system for experienced users. 

The beginner's system allows for a backpropagation model with program defined defaults for 

learning rate, momentum, and number of hidden nodes. With the advanced system, the user 

may alter many learning parameters or accept defaults from the program. Neuroshe1l2 also 

allows the user to select from several different transfer functions such as sigmoid, linear, 

hyperbolic tangent, Gaussian, and sine. Another special feature of Neuroshe1l2 is Netperfect, 

which is used to prevent over training of networks. Netperfect works by removing a subset of 

data and using it to test during training so that the network does not lose its ability to 

generalize. This function in Neuroshe1l2 perfonns what is known as cross validation. 

Neuroshe1l2 also offers a Run-time facility for generating output code to imbed an ANN in 

another application. The documentation for Neuroshe1l2 is well organized but a bit remedial 

for an experienced user. 
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NeuraIWorks Professional II Plus 

NeuralWorks Professional II Plus is available from NeuralWare, Inc. for 

approximately $1,895.00 for a personal computer [29] and contains many popular ANN 

architectures. Most of the architectures which involve error backpropagation can use any of 

several learning algorithms including standard delta rule, normalized-cumulative-delta, 

extended-delta-bar-delta, quickprop, and maxprop. The NeuralWorks architectures included 

in this study were the following: 

• standard backpropagation with sigmoid transfer functions 

• norm-cum-delta backpropagation with hyperbolic transfer functions 

• cascade correlation 

• general regression neural network 

• learning vector quantization 

• modular neural network 

• probabilistic neural network 

• radial basis function network 

• directed random search network 

• self-organizing map 

NeuralWorks also offers several different transfer function options including sigmoid, 

hyperbolic tangent, linear and sine functions. Learning parameters such as learning rate and 

momentum may be set by the user to change over time, allowing for better convergence for 

some problems. NeuralWorks utilizes a mouse driven graphical user interface to make 

network development quick and easy. It allows incorporation of standard ASCII fIles for 

training and testing. It also has a feature called Flashcode to generate recall code for trained 

networks in C for either MS-DOS or UNIX operating systems. NeuralWorks provides 
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several books which outline the algorithms used in detail while providing simple tutorial 

manuals for users unfamiliar with ANNs [30]. 

BrainMaker Professional Development Edition version 3.1 

BrainMaker Professional is available from California Scientific Software for $795 [23] 

and contains one basic algorithm, backpropagation, with many variations. BrainMaker runs 

under Windows on IBM personal computers and uses a mouse driven user interface. The 

backpropagation algorithm offered in the software has many features which can be set by the 

user. These include a dynamic node scheme by which nodes are added to the hidden layer 

during training if a network fails to converge. BrainMaker also offers a pruning feature to 

remove the least significant node after training to improve the generalization ability of a 

network. Another interesting feature of BrainMaker Professional is sensitivity analysis, by 

which each input is analyzed to determine its effect on the output of the network. BrainMaker 

comes with ample documentation to aid both the beginner and an expert user. 

For an additional $275.00, the Genetic Training Option (GTO) is available to provide 

a means of optimizing network performance. The GTO helps to create an optimal network 

configuration by training several networks simultaneously with different learning parameters. 

Unfortunately, this is computationally intensive and takes large amounts of CPU time due to 

the large numbers of networks created by this feature. 

DynaMind Developer version 4.0 

DynaMind Developer 4.0 may be obtained for $1,295.00 from NeuroDynamX, 

Inc.[32]. It features three main algorithms including backpropagation, madaline ITI, and True 

Time. True Time is a version of a recurrent network which is used for time series analysis. 

True Time was not evaluated during testing. DynaMind allows the user to control a few 
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parameters such as transfer function gain, transfer function limits, learning rate, momentum, 

and perturbation (for madaline nn. DynaMind only allows two types of transfer functions, 

sigmoid, and linear. The user interface is menu driven but fairly primitive. One problem with 

DynaMind is that the recall of a test set after training is time consuming because it is linked to 

a graphics output which is printed to the screen during recall. Another problem with 

DynaMind is that the user must preprocess training and test files by using a separate program 

before entering DynaMind. The documentation available with the software is relatively simple 

but needs elaboration in some areas. 

Benchmark Data Information 

Nine data sets were used to evaluate the capabilities of the various architectures from 

each ANN simulator software package in order to come up with rules for the expert system. 

They were chosen to represent problems in pattern classification, continuous function 

mapping, visual pattern recognition, and time series analysis. These problems were chosen to 

represent actual problems which ANNs might be used to solve in real world applications. 

. The first benchmark test is a simple binary problem invoiving the logical exclusive-or 

(exor) problem, which has a simple non-linearly separable solution space. This problem can 

be thought of as a simple pattern classification problem. The training set consists of 4 

patterns, each with 2 inputs and I output The network is trained to output a 0 if both inputs 

are the same and a I if they are different. The data used as a validation set consisted of 400 

patterns with five percent uniform noise added to each input value. 

The second benchmark test is a more complex pattern classification problem which 

contains 8 training patterns each with 3 inputs and 8 outputs. The problem represents a binary 

decoder in which the inputs are 3 bit patterns representing the numbers zero through seven. 
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Each of the eight output nodes is trained to fire when the corresponding input bit pattern is 

. presented. For example, if the network is presented with the pattern {O 0 O} the network 

should respond with {O 0 0 0 0 0 0 I} , where a one is output in the column representing zero. 

The network was tested on 160 sets of points with five percent uniform noise added to the 

input values. 

The third benchmark is a continuous function mapping of a cosine curve. Each ANN 

was trained on 50 data patterns, with one input and one output which were generated 

randomly from a cosine function y=cos(x). The input is a value of x between zero and one 

and the output is the cos(x). The test set for this problem consisted of 500 test patterns which 

were generated from a cosine curve and had five percent uniform noise added to each input 

The fourth problem was a more complex continuous function mapping. Each ANN 

was trained to learn a shifted two input cosine hump given by the following formula 

z = (0.5 + 0.5 * cos(1t + 27tX)) * (0.5 + 0.5 * cos(1t + 27ty)) (3.1) 

Each ANN was trained with 50 randomly selected patterns with two inputs and one output. 

This problem is slightly more complex than the one input cosine function due to the increased 

number of variables involved. Each network was tested using 900 test patterns with 3 percent 

uniform noise added to the inputs. 

The ftfth benchmark problem represents a time-series analysis problem using real 

world data. The training set consists of 400 hourly air temperature observations from the 

Omaha Nebraska area for the month of January 1990 which were obtained from the High 

Plains Climatic Center. The network is given five previous observations and is trained to 

output the next (sixth) air temperature reading, thus each data vector has ftve inputs and one 
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output. Each network was tested on 339 additional observations from the month of January 

of 1990. 

The sixth benchmark problem represents a challenging pattern classification problem 

where the objective is to calculate from which of two random distributions a set of data points 

was generated from. This is an interesting problem as it can be used as a method to solve 

process control problems. For example, when a process is running correctly a measured 

output will correspond to a certain statistical distribution. When the process has gone out of 

calibration then the generated outputs will follow a different distribution. Thus if an ANN can 

recognize which distribution a set of outputs came from, then it can determine when a process 

is running correctly and when it is producing an incorrect output. The training data set 

consisted of 200 patterns with ten inputs and two outputs, in which the inputs were ten 

random points which come from one of two distributions. The fIrst noise distribution is 

Gaussian with a mean of twenty and a standard deviation of five, while the second is Gaussian 

with a mean of twenty and a standard deviation of two. Each data pattern output contained a 

flag to determine which of the two distributions the noise came from. The network is trained 

to output the corresponding distribution from which the ten inputs were generated. Each 

network was tested with a separate set of 200 randomly generated patterns. 

The seventh problem represented a complex visual pattern recognition problem in 

which an ANN must decide which of two intertwined spirals a point lies upon [29](p. 221). 

Each network was trained on 194 patterns with two inputs and two outputs. The inputs 

corresponded to the coordinates of points in the xy plane and the outputs were binary values 

which act as flags to identify which spiral each point lies on. The network was tested on 194 

patterns with two percent uniform noise added to the inputs. A graph of the normalized 

training data is shown in Figure 3.1, while a graph of the testing data is shown in Figure 3.2. 
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The eighth benchmark is a problem in which a network must classify iris flowers into 

three categories based on four indicator variables: sepal length, sepal width, petal length and 

petal width. This taxonomy problem was originally proposed by Fisher in 1936 [13], and is 

used by many researchers to test ANNs. The training set consisted of 100 patterns with 22 

inputs and three outputs. The inputs are all binary and consist off a code which records an 

approximation of the four indicator variables. Each output is an indicator to tell which class 

of flower (Setosa, Versicolor or Virginica) the inputs belong to. Each network was tested on 

a test set consisting of 150 real world data patterns. 

The final benchmark problem is a visual pattern recognition in which a network must 

learn to recognize and classify the capital letters of the English alphabet Each of the 26 data 

patterns consists of 49 binary inputs which correspond to a 7x7 grid in which one capital letter 

is embedded. The network outputs a five digit binary code, which gives a number from one to 

twenty-six, to identify the corresponding letter. The test set contained 260 patterns with five 

percent uniform noise added to each input. 

Benchmark Testing 

Hardware 

All benchmark tests were done on an APEX IDM compatible 486 PC. Each neural 

network simulator was loaded onto the hard drive. The system had a speed of 66 MHz and 8 

megabytes of RAM. The operating system was MS-DOS version 6.0 and MS-Windows 

version 3.1. A SAMPO Alphascan 15 high-resolution monitor was used to interface with the 

system. 



40 

Methodology 

Experiments were run with the benchmark data sets to evaluate the ANN algorithms 

and architectures in the 5 neural network simulators. Each data set was normalized between 

.1 and .9 to preprocess them before running the experiments. A few of the pattern 

classification problems such as the iris classification and the noise classification problem, had 

the output vector of each training pattern normalized between 0 and 1 so that they could be 

used with ANNs which require binary outputs. 

Each ANN model was run using the default settings available in those p·ackages. The 

number of hidden nodes used for gradient descent networks was 2m+ 1, where m is the 

number of inputs. The exceptions to this were the networks developed using the Neuroshe1l2 

package, in which the default number of nodes specified by the software was used. On the iris 

classification problem only 10 hidden nodes were used since the 22 inputs only correspond to 

4 actual variables. Most networks tested had a single hidden layer except those used for the 

two-spirals problem. For this problem, all the backpropagation networks where given two 

hidden layers with 10 nodes each due to the complexity of the problem. Other algorithms 

such as the PNN and GRNN had a number of hidden nodes equal to the number of training 

examples. Each neural network which used a gradient descent on the network error was 

trained down to an RMS between .03 and .055, and the training times were recorded. 

Networks which couldn't reach an error of .055 in a reasonable time were given the label 

"does not converge", and were no longer tested. Networks which had an RMS between .03 

and .055 had their training RMS recorded and then were tested using the test set for each 

benchmark test For those networks that train in only one pass, such as the PNN and GRNN, 

only one pass was made through each training me and the RMS was recorded if it was below 

.055. If the network failed to reach an RMS below .055 it was given the label "does not 
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converge", and was not tested. Those with an errQr below .055 were then tested using the 

testing data. 

Evaluation Criteria 

Since some networks had a lower training RMS than others, a method of normalizing 

the results was needed. This normalization was intended to remove any unfair bias which 

networks might have due to being trained down to a smaller RMS error than other networks. 

This term is known as the generalization score and is computed by dividing the testing RMS 

by the training RMS. The generalization score shows how well the network can generalized 

what it was trained on. A low score would indicate that the network generalizes well, while a 

high score would indicate that the network has only memorized the training set This score 

was only used to compare ANNs which used the RMS error as a stopping criteria for training. 

The score was not used for the PNN and GRNN since they do not use RMS error as a 

stopping criteria but rather train in one pass of the training set. The generalization score was 

also not used for the L VQ network since it often had a RMS error of zero on the training set, 

making the calculation invalid. 

Other criteria, in addition to the generalization score, for evaluating how well each 

network performed were training time, training RMS error, and testing RMS error. When 

comparing software packages two additional criteria were used to determine which software 

package to recommend. These were ease of use and consistency of performance. 

As an example of how the network architectures were evaluated, consider the two 

spirals problem. The PNN from Neuroshe1l2 was considered to be the best network sInce it 

was the only network to learn the training set to an RMS error below .055. On the 2 input 

cosine problem different criteria were used. The Ward Net from Neuroshell2 was selected as 

the best architecture for this type of problem even though two other architectures (Nets 
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version 2.01 backpropagation and DynaMind Developer backpropagation) had lower 

generalization scores. For this problem, the Ward Net was chosen as the best network 

because the generalization score was good and it also had the fastest training time. In 

addition, the Neuroshell2 software package is much easier to use than either of the other two 

packages. 

Results 

The results for all benchmark tests are shown in Table A.l in Appendix A. The table 

shows the number of hidden nodes, training RMS error, testing RMS error, generalization 

score and training time for those networks which converged to an RMS below .055. 

By looking at the results of the experiments and by comparing the performance of the 

networks many interesting results were discovered. The results of these tests 

were used along with knowledge of ANNs to develop a set of heuristics for using neural 

networks for different types of applications. As can be seen from the tests, certain neural 

networks do indeed perform better and solve problems faster than other ANNs. 

For the continuous function mapping problems such as the cosine and two input cosine 

problems, backpropagation networks performed the best. Since there is usually only one 

output for most function mapping problems, certain ANNs such as the LVQ and PNN are not 

applicable to this class of problems. On the cosine problem, the best network turned out to be 

the fully connected back propagation algorithm. This ANN had a generalization score of 1.09 

which was about 2.2 standard deviations below the mean of 1.74 for all the applicable 

networks. On the two input cosine problem, one of the best networks was the 

backpropagation network with multiple hidden layer slabs with different transfer functions 

developed by using the Neuroshell2 software package. This network had a much faster 

training time then all other networks and was still able to learn the problem sufficiently. These 



43 

results would indicate that backpropagation networks are best at continuous function mapping 

problems. On the two input cosine problem some networks were not even able to converge 

such as the self-organizing map, general regression neural network, cascade correlation, and 

radial basis function network. 

LVQ networks, PNNs, and GRNNs performed well on most of the pattern 

classification problems. One problem, however, is that the implementation of the LVQ 

network and PNN analyzed in this study are only applicable to problems with more than one 

output in which the outputs are binary and only one output fires for each trainirlg pattern. 

Due to this criteria, neither network was applicable to the exor problem. The GRNN, 

however, performed exceptionally on the exor problem. The Neuroshe1l2 version of the 

GRNN was able to train on the exor problem to an RMS of .006 in a matter of seconds. 

When tested the network performed favorably with an RMS of .008. On multiple output 

pattern classification problems such as the iris classification or the binary decoder problem, the 

L VQ network and the PNN performed better than the other networks tested. The version of 

the PNN from Neuroshe1l2 outperformed the version from NeuralWorks on the iris problem. 

This is due to the fact that the NeuralWorks version requires special normalization of the input 

vectors to insure good training. The PNN from Neuroshe1l2 did well on the iris flower 

classification problem and was able to train down to an RMS of 0.000 and had a test RMS of 

.115. The LVQ network performed better with a training RMS of 0.000 and a testing RMS 

of .092. The backpropagation network from Neuroshe1l2 also performed well on this 

problem. The L VQ and PNN also performed extremely well on the binary decoder problem, 

producing both a training and testing RMS of 0.000. For the noise classification problem, the 

best network was the backpropagation network from BrainMaker. It had a training RMS of 

.038 hut only a .188 RMS on the test set It would appear that the network only memorized 
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the data rather than generalizing it. Since this problem could not be learned well by most of 

. the ANNs studied, it is probably best solved by using other methods. 

For the time series analysis problem, most of the networks did well. This is probably 

because many data values were used to train each network and the data had a high correlation 

over time. The GRNN network did not converge for this problem so it is evident that this 

architecture is not well suited for time series analysis. Most of the other networks performed 

well although backpropagation networks performed faster than the DRS, cascade correlation, 

and RBFN networks. 

For the visual pattern recognition problems, networks which were good at pattern 

recognition performed well. The two-spirals problem turned out to be extremely difficult for 

most ANNs. The only architecture which performed well was the PNN architecture available 

from Neuroshell2. For the character recognition problem, backpropagation networks did 

well, but the GRNN performed better by almost completely learning both the training and test 

set. The LVQ network and the PNN were not applicable to the character recognition problem 

since more than one output has a positive output for certain training patterns. If the problem 

was restated such that only one output fired for each pattern, than it is assumed that the PNN 

and L VQ network would also perform well on this problem. 

Expert System Implementation 

Eclipse Expert System Shell 

An expert system shell package was chosen to aid in the implementation of the expert 

system. Mter a brief survey of expert system shells on the market and after consulting with 

experienced users, Eclipse version 3.2c was chosen due to its flexibility and low price 

(approximately $1,(00)[16]. Eclipse is provided by The Haley Enterprise and is a shell which 
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supports an MS-Windows graphical interface and both backward and forward chaining. It is 

based on a language known as CLIPS, which is a language written in C which is derived from 

LISP. One desirable feature of both CLIPS and Eclipse is that they allow the system 

developer to write C based subroutines which may be incorporated into the expert system. 

For this application, the forward chaining method of operation was utilized. 

Figure 3.3 shows a typical rule in Eclipse. This rule, example-rule, would correspond 

to the following logic: iJa and b then c. Every fact above the symbol, "=>", corresponds to 

conditions which must be true to satisfy the ijportion of the rule while everything below the 

symbol are actions carried out in the then portion of the rule. In this case, if the two facts, 

fact a andJact b are found in the fact-list, then the rule example-rule will then be fIred and the 

fact,fact c, will also be added to the fact-list. The addition ofJact c to the fact-list may then 

trigger the fIring of another rule. In this way a hierarchy of rules may be built in a tree-like 

fashion in which the fIring of one rule will lead down the branch of a decision tree leading to a 

fmal solution. 

(defrule example-rule 
(fact a) 
(fact b) 

=> 
(assert (fact c))) 

Figure 3.3: Sample Eclipse Rule 
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Discussion of Rules 

By examining the results of the benchmark tests and by consulting with experts in the 

field of ANNs, a decision tree was developed (see Figure 3.4) to decide how to select an 

ANN model for a particular problem. The decision tree was then encoded into a set of rules 

which form the core of the knowledge-base of the ANNex pert. The Eclipse code for the 

expert system is shown in Appendix C. This code not only selects the appropriate ANN 

architecture, but will also select an appropriate software package to implement the network. 

Helpful tips are also provided by the expert system to aid the user in model development. The 

ANNexpert assumes that the user already has a problem configured into data patterns with 

inputs and outputs already defined. 

After benchmark testing of 20 variations of ANNs, it was shown that 9 of the 

algorithms contained in the commercial software packages were particularly useful. By 

traversing the rule tree of Figure 3.4, the ANNexpert will decide which of these 9 ANNs is 

most appropriate for a specific problem. As can be seen from Figure 3.4, the decision process 

is quite complex. The key to the rule tree is to use a priori knowledge about the problem to 

decide which ANN to apply. For example, backpropagation performs well for continuous 

function mapping problems while PNNs and LVQ networks perform well for pattern 

classification problems. 

The expert system starts out with a menu which asks the user which type of 

application the problem resembles. The user has six choices: continuousJunction_mapping, 

pattern_classification, time_series_analysis, visual...patternJecognition, 

none_of_the_above, and more_information. If the user selects more_information, then 

informative windows describing each type of application will be displayed followed by a 

repetition of the initial menu. If the user selects the other 5 options then one of the branches 

A through E of the decision tree will be traversed, as shown in Figure 3.4. 
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H the user selects continuousJunction_mapping as the application, then branch A will 

be traversed to determine the appropriate network. Next the user will be prompted for 

information on the number of inputs, outputs, and training examples in the training set. Since 

backpropagation networks performed well on the function mapping benchmarks such as the 

cosine and 2 input cosine problems, the ANNexpert will choose a backpropagation network to 

solve these types of problems. In order to choose an appropriate number of hidden nodes for 

the backpropagation network the expert system uses two rules, bphidden and choosehid. 

These rules select the number of hidden nodes by calculating the minimum of 2m+ 1, where m 

is the number of hidden nodes, and the result of Equation 2.9. Before comparing the two 

values, 1 node is added to the result of Equation 2.9 to account for round-off error and to 

handle problems with extremely sparse data. Using these two rules, the ANNex pert will 

generate a reliable number of hidden nodes for most problems. 

After choosing the number of hidden nodes, the ANNexpert will look at the number of 

inputs to decide which version of backpropagation is appropriate. If there is only one input, 

the expert system will choose the fully connected backpropagation algDrithm implemented by 

the Neuroshe1l2 software package since this algorithm performed best on the single input 

cosin.e benchmark test. If there is more than one input, than the ANNexpert will choose the 

backpropagation algorithm with mUltiple transfer functions from Neuroshe1l2 since this 

network trained the fastest and performed well on the 2 input cosine problem. 

Should the user of the ANNexpert select pattern_classification as the application, 

then branch B of the rule tree will be traversed. Again the user will be prompted for the 

number of inputs, outputs, and training examples. First the ANNexpert will look at the 

number of outputs for each data pattern. If the number of outputs is one, then the GRNN 

architecture will be chosen to solve the problem, since the PNN and L VQ network 

architectures used in this study were not applicable to problems with only one output. A 
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single output pattern classification problem would be similar to the exclusive-or benchmark 

. problem, which the GRNN performed extremely well on. 

If the user states that the problem has more than one output, than the expert system 

will ask the user if the application involves the classification of noise distributions. If the user 

replies "no" then the ANNexpert will ask if the outputs are binary. Certain networks such as 

the PNN and LVQ network perform best on data sets with multiple binary outputs in which 

only one output node has a positive output Therefore, if the problem has multiple binary 

outputs in which more than one output fires, the GRNN algorithm will be chosen due to the 

inappropriateness of the L VQ network or PNN. If the outputs are binary with only one 

output having a positive value, then the number of training examples will be examined to 

detennine if a PNN or L VQ network should be used. PNNs can be used well with sparse 

data, whereas L VQ networks cannot generalize well when testing vectors vary far from 

training vectors. Therefore, a PNN should be used in cases where data is sparse and an L VQ 

network should be used in cases where data is plentiful. A simple heuristic is used to 

determine whether the data is sparse or plentiful. If the number of training examples is less 

than 5 times the number of inputs, then the data is considered to be sparse. Otherwise, the 

data is considered plentiful. If the data is sparse then the PNN architecture will be selected 

whereas if data is plentiful the LVQ network will be chosen to solve the problem. 

If the problem has multiple outputs, is not a noise distribution, and has continuous 

outputs then the ANNexpert will suggest a backpropagation network. This is done because 

backpropagation networks are good at solving problems with continuous outputs. The expert 

system will then ask the user about the nature of the data that the network is attempting to 

classify. As stated earlier, behavioral problems often contain large amounts of noise and thus 

need large amounts of data to train. For these problems, the number of hidden nodes in the 

network should be small compared to the number of training examples. Other problems use 
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physical data which does not generally contain as much noise so more hidden nodes can be 

used to help lower the network RMS error. The expert system will ask the user to state 

whether the training data is behavioral or physical. If the user selects behavioral, then the 

number of hidden nodes will be calculated using equation 2.8. If the user selects physical 

data, then the rules bphidden and choosehid will be utilized to determine the number of hidden 

nodes as outlined above. 

Mter the number of hidden nodes is selected, the expert system will choose the fully 

connected backpropagation model, also known as a jump network. The selected software 

implementation is that found in Neuroshell2. The fully connected backpropagation model is 

chosen because it performed well on the exor, binary decoder, and iris pattern classification 

problems. The additional number of weighted connections found in the jump network also 

increases the classification power of the network. 

The sub-branch of branch B deals with the classification of noise distributions similar 

to the noise classification benchmark test When this branch is selected, the ANNex pert will 

first ask the user if the means of the distributions are equal. If the user answers "yes" then the 

rules bphidden and choosehid will be fired to determine an appropriate number of hidden 

units. The ANNex pert will then suggest the BrainMaker version of backpropagation to solve 

the problem since it had the best results on the benchmark problem. 

If the user states that the means are not equal than the problem is much easier for an 

ANN and is trivial for a PNN to solve. The expert system will ask the user about the nature 

of the outputs to determine if a PNN is applicable. If a PNN is applicable, the ANNex pert will 

suggest it. Otherwise, the GRNN network will be the chosen architecture. In either case the 

suggested software will be Neuroshe112 since the GRNN and PNN implementations performed 

better on most of the benchmark problems than the versions provided in the NeuralWorks 

package. 
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Selecting time_series_analysis from the initial menu will cause branch C of Figure 3.4 

to be traversed. Next, the user will be prompted for the number of inputs, outputs, and 

training patterns as above. As with the pattern classification branch, the user will be asked if 

the data is behavioral or physical and an appropriate number of hidden nodes will be chosen 

based on their response. Next the user is presented with a prompt requesting the type of 

model that is preferred, a quick_model or a slow _bucaccurate model. The cascade 

correlation model is the best network for time series analysis according to the benchmark tests 

but it can have longer training times than other models. If the user states that a 

slow _buCaccurate model is desired, then the cascade correlation network from NeuralWorks 

will be suggested. If the user desires a quick_model then the backpropagation model with 

multiple transfer functions will be chosen since this network also perfonned well on the time 

series benchmark test The suggested software to implement this model will be the 

Neuroshe1l2 software package. 

If the user selects visuatpattem_classification at the initial menu then branch D of 

Figure 3.4 will be used to determine which ANN to use to solve the problem. As with the 

other branches, the user will fIrst be prompted for the number inputs, outputs, and training 

examples. Next the user, will be asked how the data is arranged, grid or coordinates. Visual 

pattern recognition problems are typically arranged in these two ways. With a grid system, 

the inputs to the network fonn an MxN grid, in which there are M*N input nodes. With a 

coordinate confIguration, the inputs to the network will be the coordinates of a pixel in M­

dimensional space, where M is the number of inputs. If the user answers coordinates when 

prompted then the problem is similar to the two spirals benchmark test. If the data is 

structured such that a PNN may be used to model it, then the ANNexpert will suggest the 

PNN architecture from Neuroshe1l2 since it was the only network which could solve the two 

spirals benchmark problem. If the PNN is not applicable, than a standard backpropagation 
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model with batch learning will be selected by the expert system since backpropagation has 

been shown to work well for visual pattern recognition in many applications. The suggested 

software is the norm-cum-delta backpropagation algorithm from NeuralWorks. 

If the user stated that the data was arranged in a grid then the problem is similar to the 

character recognition benchmark problem. Next the user is asked if the outputs are binary. If 

the user answer "yes" than the ANNexpert will suggest a GRNN since it performed well on 

the character recognition benchmark. If the outputs are continuous than bphidden and 

choosehid are flred to determine the appropriate number of nodes for a modular neural 

network to solve this problem. A MNN was chosen because it also performed well on the 

character recognition problem and can be more powerful than backpropagation for complex 

problems. The recommended software for the MNN is NeuralWorks, while the recommended 

software for the GRNN is Neuroshel12. 

The last major branch of the decision tree, branch E, is used when the user of the 

ANNexpert does not know what type of problem is trying to be modeled. Should the user 

choose none_of _the_above when prompted by the initial menu then branch E will be 

traversed and the user will be prompted for information on the number of inputs, outputs, and 

training examples. The next rule flred will ask the user if the outputs for the training patterns 

are binary. If the problem contains binary outputs, it is most likely similar to a pattern 

classiflcation problem and should be solved with a PNN, GRNN, or LVQ network. These 

ANNs are particularly good at dividing training patterns into classes, but work best when the 

outputs are binary. If the user selects non-binary outputs, then a completely different branch 

of the decision tree will be traversed. If the outputs are continuous rather than binary then the 

problem is closer to a continuous function mapping problem or a time series analysis problem 

and should be solved by a network which is good at solving such problems, such as a 

backpropagation network. 
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If the user chooses binary outputs, the next rule to be fired will ask if only one output 

fires for each training pattern to detennine if an L VQ network or PNN is applicable to the 

problem. If there is only one output then the ANNexpert will choose the GRNN network 

since the PNN and L VQ network architectures evaluated in this study were only applicable to 

problems with mUltiple outputs. If there are multiple outputs and only one output fires, then 

the expert system will choose a PNN or an L VQ network, depending on the amount of data 

provided in the training examples. If there is plenty of data, then an L VQ network will be 

used, since it works well when the data includes examples from nearly every possible training 

vector. If the data is sparse however, a PNN will be chosen since the PNN can be used 

effectively in situations where data is incomplete. 

If the user answered "no" when asked if the problem had binary outputs then the 

ANNexpert will then use the rules bphidden and choosehid to detennine the appropriate 

number of hidden units for a backpropagation network to solve the problem. If the problem 

has more than one output, then a MNN will be chosen since it is generally more powerful than 

standard backpropagation for solving complex problems. The MNN essentially acts like 

several backpropagation networks all trying to solve the problem together and will act like a 

single backpropagation network if the problem is simple. If the problem only has one 

continuous output, then it is most likely a function mapping or a time series problem. A 

Ward network is suggested by the ANNexpert to solve these problems since this network 

perfonned well on both of these types of benchmark tests. 
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CHAPTER 4: DISCUSSION OF RESULTS 

Overview 

The rules for the ANNexpert were incorporated into the expert system and were 

tested to insure that all the rules in the decision tree were firing correctly. The rules 

functioned correctly but there was still a need to test the capabilities of the ANNexpert to 

insure that the rules in the knowledge base were logical and applicable to actual real world 

problems. Toward this purpose, two examples from real world applications were selected and 

a model for each was developed based on the output from the ANNex pert. The first validation 

problem involves sonar pattern recognition while the second involves time series analysis of 

electric load forecasting. In addition to these real world problems, a third validation problem 

was generated which involves the function mapping of a 3-dimensional damped cosine 

function. These models were compared with alternative networks created by previous 

researchers and ANNs created using commercial software packages to determine if the 

ANNexpert models were better than a typical ANN model that a researcher might blindly use 

for a problem. 
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Sonar Pattern Recognition 

Problem Description 

The ftrst validation problem involves the classiftcation of sonar data by using an ANN. 

The data used was originally used by Gorman and Sejnowski in their work [15]. This is a 

pattern classification problem in which the neural network must classify the sonar signals into 

two groups, those bounced off a metal cylinder and those bounced off a cylindrical rock. The 

data set consists of 208 patterns which are divided in half to form a training set and a test set. 

Each pattern has 60 inputs and 2 outputs. The 60 inputs correspond to sonar signal inputs 

and the two outputs act as a flag to discriminate whether the signal is a metal cylinder or a 

rock. If the ftrst output has a 1, than the object is a metal cylinder. If the second output is a 

1, than the object is a rock. All the patterns in the data set are normalized between 0 and 1. 

ANNexpert model 

The characteristics of the sonar classiftcation problem were input into the ANNex pert 

so that it could tell what type of ANN to use to model the problem. The number of inputs, 

number of outputs, number of training examples, and the type of problem (pattern 

classification) were prompted for by the system. The output of the ANNexpert was a report 

which gave a description of an ANN which could be used to solve the problem. 

The recommendation of the ANNexpert was to use a probabilistic neural network to 

solve this problem. Furthermore, it specified that the number of input nodes should be 60 and 

that the number of output nodes should be 2. The ANNex pert suggested one hidden layer for 

this problem with 104 nodes. The expert system also recommended the Neuroshell2 software 

to implement the PNN and gave hints for developing, training, and testing the network. The 

network was trained following the instructions and then tested. Training the network took 
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only about 7 seconds since the PNN trains in only one pass of the data set. The default 

smoothing factor of .6 was used for this problem. 

The network specified by the ANNexpert performed very well for this problem. Mter 

a few seconds of training, the network was able to correctly classify all 104 training patterns 

in the training set, corresponding to an RMS of zero. The default smoothing factor was again 

used for network testing. Again the network performed well, correctly classifying 94 of the 

104 patterns which corresponds to 90% accuracy. 

Other Models 

When Gorman and Sejnowski ran their experiments on the sonar classification data 

[15], they used a slightly modified version of the backpropagation network. They used a 

learning rate of 2.0 and a momentum of 0.0. Initial weights were uniform random values from 

-0.3 to +0.3. They ran several different experiments in which they varied the number of 

hidden units, using a single layer with 0, 2, 3, 6, 12, and 24 units. Each network was trained 

by 300 epochs over the entire training set. The test results they reported varied from 73.1 % 

to 90.4% accuracy on the test set depending on the number of hidden units used. The best 

model was found to have 12 hidden nodes. They performed further tests using a nearest 

neighbor classifier and achieved an 82.7% probability of correct classification. They also 

tested 3 trained humans on 100 signals randomly chosen from the 208 patterns. The accuracy 

of the human experts ranged from 88% to 97% correct. 

A further test was run to determine how a typical backpropagation model would do on 

the sonar classification problem. This was done to compare the network created by using the 

ANNexpert with a typical network that someone might try without consulting the expert 

system. NeuralWorks Professional II Plus was chosen to implement this model since it 
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performed reasonably well on most of the benchmark tests and is one of the most well known 

neural network simulators available. 

Using NeuralWorks, a backpropagation network was set up with hyperbolic tangent 

transfer functions and the norm-com-delta learning rule. The network had 60 input nodes and 

2 output nodes. The network had I hidden layer and 12 hidden nodes, the number determined 

to be best by Gorman and Sejnowski. The network was trained for 104,121 iterations, at 

which point the RMS bottomed out and reached a local minimum. Training took 

approximately 11.2 minutes and the network was able to learn the training set to an RMS 

error of .077. The network was then tested on the testing set to determine how well it learned 

to generalize with the information it learned from the training data. The RMS was .373, 

indicating that the network did not generalize well. The output from the network was 

analyzed to determine the classification accuracy of the network on the test data. The 40-20-

40 rule was used to determine the classification of the output. With this designation, an 

output is considered a 0 if it is below 0.4, and a I if above 0.6. If either node had an output 

between 0.4 and 0.6 then the pattern was considered as a failed classification. When this was 

done, the network classified 84 patterns correctly and 20 patterns incorrectly, corresponding 

to an accuracy of 80.8% correct. 

Electric Load Forecasting 

Problem Description 

The second validation problem used to test the ANNex pert involves the time series 

analysis of electric load data for the area around Omaha, Nebraska. The objective of the 

problem is to predict the next hourly electric load through the use of the past 6 hourly 

readings along with information on the month and day that the data comes from. The training 
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set consists of 3,941 examples of readings from the Omaha Public Power district taken during 

the winter months of 1990. The test set has 1,909 patterns also taken from the winter months 

of 1990. Each data pattern has 26 inputs and 1 output. The first 6 inputs correspond to the 

past 6 hourly observations of the electric load. The next 7 inputs are binary values which act 

as a flag to indicate the day of the week that the readings were taken. The 14th input is also a 

binary flag which indicates whether or not that day is a major holiday, since electric demand is 

lower on holidays. The remaining 12 inputs act as binary flags to indicate which month of the 

year the readings were taken. The single output for each training pattern is the·next hourly 

electric load that the network is attempting to predict. 

ANNexpert Model 

The characteristics of the electric load forecasting problem were input into the expert 

system when prompted by the program. The type of problem (time series analysis), number of 

inputs(26), number of outputs(l), number of training patterns(3,941), and the nature of the 

data (behavioral, continuous) were input into the system. The resulting model suggested by 

the ANNexpert was the cascade correlation version of the backpropagation algorithm. The 

expert system stated that the network should have 26 inputs, 30 hidden nodes, and I output. 

Furthermore, it suggested that the NeuralWorks software package be used to implement the 

cascade correlation network. The network suggested by the expert system was created using 

NeuralWorks and was then trained and tested. The cascade correlation learning algorithm 

starts out with zero hidden nodes and trains several nodes in series and then inserts them into 

the network one at a time until a suitable RMS error is reached. The network trained for 2.7 

hours before reaching an RMS error of .037. By this time, the network had added 5 nodes to 

the hidden layer. When tested the network did well, recalling the test data with an RMS error 

of .038, indicating that the network generalized well. 
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. Other Model 

As with the sonar data recognition problem, a typical backpropagation network was 

used to compare with the network created using the ANNex pert. This backpropagation 

model was intended to represent a model which a researcher might use without consulting the 

expert system. This model was also implemented using the NeuralWorks software package 

and featured norm-cum-delta learning with hyperbolic tangent transfer functions. The 

network had 26 inputs and 1 output. Using Kolmogorov's 2m+l formula, it was calculated 

that 53 hidden nodes should be used. This network was trained and tested using 

NeuralWorks. Mter training for approximately 9.8 hours, it was apparent that the network 

had reached a local minimum which corresponded to an RMS error of .056 on the training set 

The network had an RMS error of .057 on the test set, showing that it learned the training set 

relatively well, but it did not learn as well or as fast as the ANNexpert network. 

Continuous Function Mapping 

Problem Description 

The third validation problem consists of a continuous function mapping application 

with 2 inputs and 1 output. The output z of the function must be computed by the network 

based on the input values x and y. The function to be mapped represents a 3 dimensional 

damped cosine curve given by the following equation 

z = (0.5 +0.5* cos(7t + 47tX» * (0.5 + 0.5 * cos(1t + 41ty» * (exp-(x + y» (4.1) 
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The training data set consists of 100 random points in which the x and y values were 

uniformly distributed between 0 and l. The test set contains 500 similarly generated points 

with 5% uniform noise added to each input. Both the training and testing set were normalized 

using a linear interpolation between .1 and .9. 

ANNexpert Model 

The model suggested by the ANNexpert was a Ward Net, a variation of 

backpropagation with a hidden layer composed of slabs of hidden layer nodes. Each slab in 

the hidden layer contains nodes with different transfer functions. The configuration specified 

by the ANNexpert was a 3 layer network with 2 input nodes and 1 output node. The hidden 

layer was formed of 2 slabs of 3 nodes each for a total of 6 hidden nodes. One slab used the 

Gaussian transfer function while the other was composed of nodes which use the complement 

of the Gaussian as a transfer function. Hints were given by the ANNexpert for training the 

network with the Neuroshe1l2 software package using the Netperfect training option. 

The network specified by the ANNexpert performed well on the 3-dimensional 

damped cosine function mapping problem. The network was able to train down to an RMS of 

.048 in only 3.7 minutes. When the testing set was recalled, the RMS error was .090, which is 

respectable considering the complexity of the function and the amount of noise in the test set 

Other Model 

A standard 3 layer backpropagation network was created with Neuroshe1l2 to 

compare with the model generated with the aid of the expert system. The network had 2 

inputs and 1 output with a hidden layer of 5 nodes as specified by Kolmogorov's theorem. 

The hidden layer nodes used sigmoid transfer functions. 
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The standard backpropagation model perfonned poorly for this problem. After . 
trairiing for approximately 102.5 minutes the network had apparently fallen into a local 

minimum which corresponded to an RMS error of .108 on the training set When tested it 

was apparent that the network did not learn the problem well, as the RMS error on the test set 

was only .142. 

Results 

The results of the sonar pattern recognition problem (see Table 4.1) as proposed by 

Gorman and Sejnowski [15] show how the ANNexpert can help a user to generate a good 

ANN model for a typical application. With an accuracy of 90%, the PNN suggested by the 

ANNexpert performed comparatively with the best model which was painstakingly developed 

by Gorman and Sejnowski, who are experts in using ANNs for pattern classification problems. 

They also had to use a specially modified algorithm and perform many experiments with 

different hidden nodes to obtain their best model. Furthermore, the PNN took only seconds 

to train compared to the considerable time it took for Gorman and Sejnowski to develop their 

best model. 

Table 4.1: Sonar Pattern Classification Results 

Model 
ANNexpert 

model 
Backpropagation 

Gorman & 
Sejnowski 

stmodel) 

Training 
Classification Rate 

100.0% 

100.0% 
99.8% 

Testing 
Classification Rate 

90.0% 

80.8% 
90.4% 
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The ANNex pert model also outperfonned a typical backpropagation model from one 

of the best neural network simulators on the market with almost a 10% better classification 

rate. The ANNexpert network also trained 100 times faster than the NeuralWorks 

backpropagation model, offering a viable solution in seconds, rather than minutes. 

The results from the electric load forecasting data (see Table 4.2), although not as 

dramatic, also show promise for the capabilities of the ANNex pert. The network proposed by 

the expert system had a training time which was 3 times faster than a typical backpropagation 

model which a user might use to solve the problem. Both models perfonned well on the test 

set, although the ANNex pert model did have a lower RMS error, .038, than the 

backpropagation model which had a testing RMS of .057. 

Table 4.2: Electric Load Forecasting Results 

Training Training Testing 
Model Time RMS RMS 

ANNexpert 2:43:33 .037 .038 
model 

Backpropagation 9:48:17 .056 .057 

On the 3-dimensional cosine continuous function mapping problem, the network which 

was generated and trained based on the advice of the ANNexpert also outperfonned a 

standard backpropagation model (see Table 4.3). The standard model could not converge to 

an RMS below .05 after over 1.5 hours of training, while the ANNexpert model converged in 

less than 5 minutes. The ANNexpert model also had a substantially lower RMS on the test 

set. 
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Table 4.3: Function Mapping Results 

Training Training Testing 
Model Time RMS RMS 

ANNexpert 00:03:39 .048 .090 
model 

Backpropagation 1:42:48 .108 .142 

These results show that it is feasible to incorporate knowledge regarding artificial 

neural networks into an expert system, and that by using this expert system a better ANN 

model can be developed. A priori knowledge of the problem is entered by the user of the 

system and this infonnation then triggers a set of rules which make up the knowledge-base of 

the expert system. The expert system then produces an ANN model which correctly suits the 

given problem and is based on the advice of experts in the field. The results of the validation 

tests are also similar to the results of the benchmark tests, showing that the results of the 

benchmark tests can be extrapolated to real world problems. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

Conclusions 

This work has shown that it is possible and beneficial to create a rule-based expert 

system to advise a user in the creation of an artificial neural network model to solve various 

types of problems. This expert system, ANNex pert, was created by incorporating the 

knowledge of experts in neural computation. The rules for this expert system were 

supplemented by running experiments on over 150 neural networks to determine which ANNs 

were best suited to various applications. The ANNexpert was then tested on a series of 

validation problems to insure that the system was producing correct results. These validation 

problems have shown that by using the ANNex pert. a better ANN model can be generated 

than by using a random ANN architecture. 

·While experimenting on the benchmark data sets several interesting results were 

discovered. First, it appeared that the backpropagation model did relatively well for most 

applications, therefore in situations of uncertainty it is probably best to use a backpropagation 

model. This may explain why backpropagation is currently the most widely used and 

publicized ANN architecture. Certain other architectures, such as PNNs and L VQ networks 

were shown to outperform backpropagation in problems which involved pattern classification 

or visual pattern recognition. The PNN in particular has training times which are orders of 

magnitude smaller than backpropagation. Another model which showed promise was the 

GRNN. 
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. The ANNexpert was written using an expert system shell package known as Eclipse. 

The ANNexpert features a forward chaining structure of if/then rules which lead the user 

through all phases of model development and implementation. It features an easy to use 

graphical user interface as well as helpful informative tips for the novice user. It is not only a 

useful tool for the utilization of ANNs but can also be used as an educational tool. 

Future Work 

There are many avenues of future work which can be explored and implemented to 

continue the development of the ANNex pert. Further validation tests should be done to 

insure that the expert system produces good results for all types of problem. Currently the 

ANNexpert is aimed toward solving problems in four areas: pattern classification, time series 

analysis, visual pattern recognition, and continuous function mapping. Additional tests could 

be performed on problems in different areas, such as optimization or signal processing, to 

develop heuristics which could be implemented into the expert system to solve problems of 

specific interest to an industrial user, for example an electric power utility. 

Another area of future work would be to explore even more ANN architectures to 

determine their capabilities. This information could be incorporated into the ANNex pert by 

the addition of rules to the knowledge-base. For example, various forms of unsupervised 

ANN models could be tested to determine rules for applying them to solve problems. Due to 

the modular nature of the expert system knowledge base, new rules could be added without 

too much further development. 

Eventually the ANNex pert could grow and be linked to several types of neural 

networks automatically to form a hybrid system. Rather than selecting a network and 
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instructing the user on the setup of the network, the expert system could read in inputs from 

the user and automatically generate an ANN model for the problem and begin training it 

This could be done by dynamically linking the expert system to several software packages or 

by imbedding several neural network codes into the expert system by creating user-defmed 

subroutines in C. With these and other future changes the ANNex pert will be an even more 

vital tool for capturing the computational power of artificial neural networks. 
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APPENDIX A. BENCHMARK TEST RESULTS 

The following is a spreadsheet showing the results of all the benchmark tests which 

were used to supplement the rules for the expert system. 

TableA 1: Results of Benchmark Tests 

Training Test 

Bench Mark Software Model Hidden RMS lime(min) RMS Test/Training 

exor NW Pro II + BPGD 5 0.038 0.63 0.045 1.18 

NWPro II + BP NCDTanh 5 0.033 ".07 0.039 1.18 

NWPro II + CC 2 0.034 2.33 0.063 1.85 

NWPro II + DRS 5 0.045 .13 0.055 1.22 

NW Pro II + GRNN 4 0.042 0.02 0.044 1.05 

NWPro II + lVQ N/A --------------------
NW Pro II + MNN 5 0.039 0.03 0.042 1.08 

NWPro II + PNN N/A -----------------------
NW Pro II + RBF 5 0.031 0.23 0.040 1.29 

NWPro II + SOM 5 0.039 2.00 0.038 0.97 

Neuroshell2 BP 4 O.osa .97 0.054 1.08 

Neuroshell2 MHBP 2(x2) 0.055 .08 0.060 1.09 

Neuroshell2 FCBP 4 0.053 .58 0.045 0.85 

Neuroshell2 RBP 4 0.044 2.75 O.osa 1.14 

Neuroshell2 GRNN 4 0.006 .02 0.008 1.33 

Neuroshell2 PNN N/A ----------------------
Nasa Nets BP 5 0.046 .03 0.051 1.10 

BrianMaker BP 5 0.037 .68 0.038 1.03 
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Table A.I: Results of Benchmark Tests(Cont.) 

NeuroDynamX BP 

NeuroDynamX Madaline III 

NWPro + BPGD 

NWPro + BP NCDTanh 

NWPro + CC 

NWPro + DRS 

NWPro + GRNN 

NWPro + LVQ 

NWPro + MNN 

NWPro + PNN 

NWPro + RBF 

NWPro + SOM 

Neuroshell2 BP 

Neuroshell2 MHBP 

Neuroshell2 FCBP 

Neuroshell2 RBP 

Neuroshell2 GRNN 

Neuroshell2 PNN 

Nasa Nets BP 

BrianMaker BP 

NeuroDynamX BP 

NeuroDynamX Madaline III 

NWPro + BPGD 

NWPro + BP NCDTanh 

NWPro + CC 

NWPro + DRS 

NW Pro + GRNN 

NW Pro + LVQ 

NWPro + MNN 

NWPro + PNN 

NWPro i' RBF 

NWPro i' SOM 

Neuroshell2 BP 
Neuroshell2 MHBP 

Neuroshell2 FCBP 

4(x2) 

N/A 

N/A 

N/A 

4(x2) 

5 

5 

7 

7 

0.038 

0.045 

0.042 

0.043 

1.12 

8.55 

1.45 

0.65 

0.065 

0.050 

0.046 

0.047 

1.71 

1.11 

1.10 

1.09 

7 (does not converge)----------------------------

7 (does not converge)-----------------------

8 0.038 0.03 0.039 1.03 

8 0.000 0.08 0.000 

7 0.040 0.10 0.042 1.05 

8 0.000 0.02 0.000 

7 (does not converge)-----------------------------

7 0.051 0.58 0.053 1.04 

8 0.042 .52 0.044 LOS 

0.055 .18 0.056 1.02 

8 0.041 1.15 0.045 1.10 

8 0.037 3.83 0.040 1.08 

8 0.004 .02 O.OOS 1.25 

8 0.000 .02 0.000 

7 (does not converge)-----------------

7 0.053 .18 0.055 1.04 

7 0.051 29.72 0.053 1.04 

7 0.047 69.90 0.049 1.04 

3 (does not converge)-------------

3 0.036 0.20 0.073 2.03 

3 (does not converge)-------------------

3 0.038 0.13 0.072 1.89 

50 0.035 0.07 0.070 2.00 
-----------------.. -------------------

3 0.041 0.32 0.073 1.78 

3 0.037 0.32 0.074 2.00 

------
8 0.047 1.28 0.075 1.60 

0.041 .10 0.072 1.76 

8 0.053 1.08 0.060 1.13 



80 

Table A.I: Results of Benchmark Tests(Cont.) 

Neuroshell2 RBP 8 0.044 2.10 0.072 1.64 
Neuroshell2 GRNN sa (does not converge)--------------------------

Neuroshell2 PNN N/ A---------------------------------------------------------

Nasa Nets BP 3 O.osa .27 0.067 1.34 

BrianMaker BP 3 0.032 .27 0.068 2.13 

NeuroDynamX BP 3 0.044 5.25 0.074 1.68 

NeuroDynamX Madaline III 3 0.047 9.93 0.078 1.66 

2cos NWPro II + BPGD 5 (does not converge)---------------------------
---

NWPro II + BPNCDTanh 5 0.030 5.51 0.059. 1.97 

NWPro II + CC 5 (does not converge)-----------------------
-------

NWPro II + DRS 5 O.osa 2.95 0.073 1.46 

NW Pro II + GRNN sa (does not converge) ._--------
NWPro II + LVQ N/A-- ----------------------
NWPro II + MNN 5 0.045 121.00 0.089 .. 1.98 

NWPro II + PNN sa (does not converge)--------------------

NWPro II + RBF 5 (does not converge)-------------------

NWPro II + SOM 5 0.046 0.88 0.084 1.83 

Neuroshell2 BP 9 0.053 3.52 0.093 1.75 

Neuroshell2 MHBP 4(x2) 0.046 .13 0.067 1.46 

Neuroshell2 FC BP 9 0.054 2.43 0.082 1.52 

Neuroshell2 RBP 9 0.040 4.33 0.067 1.68 

Neuroshe1l2 GRNN sa (does not converge)-------------

Neuroshell2 PNN N/A --------------
Nasa Nets BP 5 O.osa .55 0.063 1.26 

BrianMaker BP 5 0.032 .67 0.083 2.59 

NeuroDynamX BP 5 0.046 22.38 0.065 1.41 

NeuroDynamX Madaline III 5 0.047 23.65 0.083 1.77 

char NWPro II + BPGD 30 0.041 1.62 0.052 1.27 

NWPro II + BPNCDTanh 30 0.036 0.67 0.039 1.08 

NWPro II + CC 30 (does not converge) ------
NWPro II + DRS 30 (does not converge) 

NWPro 11+ GRNN 26 0.006 0.07 0.006 1.00 
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Table A.l: Results of Benchmark Tests(Cont.) 

NW Pro II + LVQ Nt A -----------------------------------------------------------------
NW Pro II + MNN 30 0.037 36.00 0.039 1.05 

NW Pro II + PNN Nt A------------------------------------------------
NW Pro II + RBF 30 (does not converge)---------------------------

NW Pro II + SOM 30 (does not converge)--------------------------

Neuroshell2 BP 34 0.034 2.3 0.039 1.15 

Neuroshell2 MHBP 17(x2) 0.039 .83 0.042 1.08 

Neuroshell2 FC BP 34 0.034 2.33 0.045 1.32 

Neuroshell2 RBP 34 0.032 8.88 0.041 1.28 

Neuroshell2 GRNN 51 0.000 .02 0.000 

Neuroshell2 PNN Nt A-------------------------------------
Nasa Nets BP 30 0.046 2.78 0.053 1.15 

BrianMaker BP 30 0.030 .42 0.034 1.13 

NeuroDynamX BP 30 0.045 12.65 0.052 1.16 

NeuroDynamX Madaline III 30 0.046 11.33 0.052 1.13 

spir NWPro + BPGD 10 10 (does not converge)--

NWPro + BPNCDTanh 10 10 (does not converge)-----------

NWPro + CC 10 10 (does not converge)---

NWPro + DRS 10 10 (does not converge)---------------------

NWPro + GRNN 194 (does not converge)------------

NWPro + LVQ 19 (does not converge)---------

NWPro + MNN 10 10 (does not converge) ---------

NWPro + PNN 194 (does not converge)-----------

NWPro + RBF 10 10 (does not converge) 

NWPro + SOM 10 10 (does not converge)------------

Neuroshell2 BP 88 (does not converge) ---------

Neuroshell2 MHBP 8(x2) (does not converge)----------------

Neuroshell2 FC BP 8 8 (does not converge)------------

Neuroshell2 RBP 16 (does not converge)---------------------

Neuroshell2 GRNN 199 (does not converge)-- -------

Neuroshell2 PNN 194 0.000 .02 0.070 

Nasa Nets BP 10 10 (does not converge)----------------

BrianMaker BP 10 10 (does not converge)- ----
NeuroDynamX BP 10 10 (does not converge) -------

NeuroDynamX Madalinelll 10 10 (does not converge)--- ------------
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Table A.I: Results of Benchmark Tests(Cont.) 

irs NWPro II + BPGD 10 0.054 3.02 0.102 1.89 
NWPro II + BP NCO Tanh 10 0.032 0.33 0.091 2.84 

NWPro 1+ CC 10 (does not converge)------------------------------

NWPro + DRS 10 (does not converge)------------------------------

NWPro + GRNN 10 0.002 0.05 0.161 66.26 

NWPro + LVQ 10 0.000 O.SO 0.092 

NWPro + MNN 10 0.040 46.00 0.095 2.38 

NWPro + PNN 100 (does not converge)----------------------------

NWPro + RBF 10 (does not converge)----------------------------

NWPro + SOM 10 (does not converge)-----------------------

Neuroshell2 BP 27 0.032 1.8 0.087 2.72 

Neuroshell2 MHBP 14(x2) 0.030 .27 0.094 3.13 

Neuroshell2 FCBP 27 O.OSO 2.28 0.094 1.88 

Neuroshell2 RBP 27 0.030 .25 0.094 3.13 

Neuroshell2 GRNN 100 0.000 .02 0.136 

Neuroshell2 PNN 100 0.000 .02 0.115 

Nasa Nets BP 10 (does not converge)---------------------------

BrianMaker BP 10 0.030 .25 0.100 3.33 
NeuroDynamX BP 10 0.039 21.70 0.124 

NeuroDynamX Madaline III 10 (does not converge)-----------------------

wthr NWPro II + BPGD 11 0.043 0.72 0.035 0.81 

NW Pro II + BPNCDTanh 11 0.054 0.43 0.052 0.96 

NW Pro II + CC 11 0.038 4.97 0.027 0.71 

NWPro + DRS 11 0.042 28.SO 0.031 0.74 

NWPro + GRNN 21 (does not converge)------------------

NWPro + LVQ N/A-- ------------------------------~-

NWPro + MNN 11 0.040 1.05 0.030 0.75 

NWPro + PNN N/A 

NWPro + RBF 11 0.048 2.SO 0.036 0.75 

NWPro + SOM 11 (does not converge)-------------

Neuroshell2 BP 23 0.044 .52 0.037 0.84 

Neuroshell2 MHBP 12(x2) 0.044 .2 0.032 0.73 

Neuroshell2 FCBP 23 0.044 .17 0.035 0.80 

Neuroshell2 RBP 23 0.046 .65 0.047 1.02 

Neuroshell2 GRNN 400 (does not converge)- -------



noiz 

BPGD 
BPNCDTanh 

CC 

DRS 
GRNN 
LVQ 

MNN 
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Table A.I: Results of Benchmark Tests(Cont.) 

Neuroshell2 
Nasa Nets 
BrianMaker 

NeuroDynamX 

NeuroDynamX 

NWPro + 

NW Pro + 
NW Pro + 

NWPro + 
NW Pro + 
NWPro + 
NWPro + 
NWPro + 

NWPro 1+ 
NWPro II + 
Neuroshell2 

Neuroshell2 

Neuroshell2 
Neuroshell2 

Neuroshell2 

Neuroshell2 

Nasa Nets 

BrianMaker 

PNN 
BP 
BP 

BP 
Madalinelll 

BPGD 
BPNCDTanh 

CC 
DRS 
GRNN 
LVQ 
MNN 
PNN 
RBF 
SOM 

BP 
MHBP 
FCBP 
RBP 
GRNN 
PNN 

BP 
BP 

NeuroDynamX BP 
NeuroDynamX Madaline III 

N / A ------------------------------------------------------------------

11 0.035 .53 0.040 1.14 

11 0.037 4.6 0.035 0.95 

11 0.043 2.62 0.032 0.74 

11 0.043 2.67 0.033 0.77 

21 (does not converge)------------------------------

21 (does not converge)----------------------------
21 (does not converge)------;-------------------

21 0.051 497.00 0.738 14.47 
21 (does not converge)------------------------------
21 (does not converge)------------------------------
21 (does not converge)--------------------------
21 (does not converge)-----------------------
21 (does not converge)-------------------------
21 (does not converge)---------------
26 (does not converge)---------------------

10(x2) (does notconverge)----------------------
19 (does not converge)------------------
19 (does not converge)--------------------

200 (does not converge)----------------

200 (does not converge)-----------------------
21 (does not converge)--------------------------

21 0.038 1.70 0.188 4.95 

21 0.055 711.00 0.269 4.89 
21 (does not converge)-------------------------

: Back Propagation with Generalized Delta Leaming and Sigmoid Transfer Functions 

: Back Progation with Norm-Cumulative-Delta Learning and Tanh Transfer Functions 

: Cascade Correlation with Norm-Cum-Delta and Tanh Transfer Functions 

: Directed Random Search with Tanh Transfer Functions 

: General Regression Neural Network 
: Leaming Vector Quantization 

: Modular Neural Network 



PNN 

RBF 

SOM 

BP 

MHBP 

FC BP 

RBP 

GRNN 

PNN 

Madaline III 

exor 

bdec 

cos 

2cos 

char 

spir 

irs 

wthr 

noiz 
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Table A.I: Results of Benchmark Tests(Cont.) 

: Probabalistic Neural Network 

: Radial Basis Function Network 

: Self Organizing Map 

: Standard Back Propagation 

BP wI Multiple hidden layers with different activation functions 

: Fully Connected BP 

: Recurrent BP wI dampened 
feedback 
: General Regression Neural Network 

: Probabilistic Neural Network 

: Back Propagated error using the Madaline 3 training algorithm 

: the exclusive or problem 

: a 3 to 8 binary decoder problem 

: continuous function mapping of a cosine 
function 
: continuous function mapping of a 2 input cosine hump 

: character recognition 

: pattern recognition of intertwined spirals 

: pattern classification of iris flowers 

: time series weather analysis problem 

: noise classification problem 
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APPENDIX B. ANNEXPERT CODE 

The following is the Eclipse code which was used to generate the ANNEx pert. 

;====================================================== 
;******** ANN EXPERT: Artificial Neural Network Expert System 
;********Matthew L. Reid 
;********Nuclear Engineering Department 
;********Iowa State University 
;********Copyright © Matthew L. Reid. 1994. All rights reserved. 
;====================================================== 

(defrelation rule2 (?» 
(defrelation menu (?» 
(defrelation application (?» 
(defrelation inputs (?» 
(defrelation outputs(?» 
(defrelation fm (?» 
(defrelation examples (?» 
(defrelation hidl (?» 
(defrelation hid2 (?» 
(defrelation hid3 (?» 
(defrelation path (?» 
(defrelation path2 (?» 
(defrelation hid (?» 
(defrelation bp (?» 
(defrelation pathl (?» 
(defrelation outtype (?» 
(defrelation outtype2 (7» 
(defrelation outfired (?» 
(defrelation behave (?» 
(defrelation noise (7» 
(defrelation stat (?» 
(defrelation stat2 (7» 
(defrelation choice (?» 
(defrelation visual (?» 
(defrelation vout (?» 
(defrelation vout2 (?» 



(defrule start 
(initial-fact) 

=> 
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(notify "Welcome to the A.N.N. Expert, a product of the Adaptive 
Computing Laboratory oflowa State University.") 
(notify "Neural networks can be used to solve a large number of problems 
in industry. These problems usually fall into one of the following 
categories: ") 
(assert (menu start))) 

(defrule application-description 
(application more_information) 

=> 
(notify "CONTINUOUS RJNCTION MAPPING problems usually consist of finding the mathematical 
relationship between an output variable and one or several input variables. Examples would be trying to 
predict a process output based on input variables.") 
(notify "PATTERN CLASSIFICATION problems assign an input pattern to one of several different output 
categories. Examples include credit risk assessment, fault diagnosis, Boolean logic functions and binary 
decoders." ) 
(notify "TIME SERIES ANALYSIS problems attempt to predict a future event based on recent history. 
Examples include stock market prediction, and demand forecasting. ") 
(notify "VISUAL PA TIERN RECOGNITION These problems attempt to classify patterns into groups based 
on visual features.") 
(assert (menu again))) 

(defrule menu! 
(menu start) 

=> 
(assert (application =(select "Which of the following does your application resemble?" 
continuous_function_mapping pattern_classification time_series_analysis visual_pattern_recognition 
none_oCthe_above more_information)))) 

(defrule menu2 
(menu again) 

=> 
(assert (application =(select "Which of the following does your application resemble?" 
continuousjunction_mapping pattern_classification time_series_analysis visual_pattern_recognition 
none_oCthe_above »» 
(defrule function-mapping 

(application continuous_function_mapping) 
=> 
(printout t "You have selected a continuous function mapping problem" crlf) 
(printout t "These types of problems typically contain one or many inputs and 
try to model the behavior of a single output variable. "crIf erlf erlO 
(assert (path fm))) 

(defrule read-info 
(path ?) 

=> 
(assert (inputs =(ask "How many input variables are there in your data set?"))) 
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(assert (outputs =(ask "How many output variables are there in your data set?"») 
(assert (examples =(ask "How many training examples are there in your data set?"»))) 

(defrule fm2 

=> 

(path fm) 
(outputs ?outp) 

(if (> ?outp 1) 
then (notify "If a function mapping has more than one output variable, it is often easier to set up multiple 
networks, with eacb network responsible for learning 1 output"» 
(assert (bp hidden») 

(defrule bphidden 

=> 

(bp hidden) 
(outputs ?out) 
(inputs ?inp) 
(examples ?tra) 

(assert (hidl =(+ (* 2 ?inp) + 1») 
(assert (hid2 =(+ (I (+ ?inp ?out) 2) (+ 1 (sqrt ?tra»))))) 

(defrule choosehid 
(hid 1 ?hid 1) 
(hid2 ?bid2) 

=> 
(if «= ?hidl ?hid2) 
then (assert (hid ?hidl» 
else (assert (hid ?hid2)))) 

(defrule fm4 

=> 

(path fm) 
(inputs ?inp) 
(outputs ?outp) 
(hid ?hid) 
(test (= ?inp 1» 

(printout t "================--====" erlO 
(printout t "ANN EXPERT SUMMARY REPORT' crlO 
(printout t " " crlO 
(printout t "Use a Fully Connected Back Propagation neural network 
with 1 hidden layer" erlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The hidden layer should have %d nodes %n" ?hid ) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software for this type of problem is the 
fully connected backpropagation architecture provided by Neuroshe1l2 
from Ward Systems Group, Inc." erIC» 

(defrule fm5 
(path tID) 
(inputs ?inp). 



=> 

(outputs ?outp) 
(hid ?hid) 
(test (!= ?inp 1» 
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(printout t "==============================" crlO 
(printout t "ANN EXPERT SUMMARY REPORT" crlO 
(printout t "==============================" crlO 
(printout t "Use a Back Propagation neural network with 
2 slabs of hidden nodes with different transfer functions." crlO 
(fonnat t "The input layer should have %d nodes %n" ?inp) 
(fonnat t "Each hidden layer slab should have %d nodes %n" (+ 1 (I ?hid 2))) 
(fonnat t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended architecture for this problem 
is the Ward Net. provided by Neurosbe1l2, available 
from Ward Systems Group, Inc." crlf» 

(defrule pattern-classification 

=> 
(application pattern_classification) 

(printout t "You have selected a pattern classification problem" crIO 
(assert (path pc))) 

(defrule pc1 

=> 

(path pc) 
(examples ?tra) 
(inputs ?inp) 
(outputs ?out) 
(test (= ?out I» 

(notify "Most pattern classification problems are set up with multiple outputs, with each output node 
representing a class or a code to classify a class") 
(assert (path 1 pcl) 
(assert (bp hidden») 

(defrule pclb 

=> 

(pathl pel) 
(bid ?bid) 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 

(printout t " - " crlO 
(printout t "ANN EXPERT SUMMARY REPORT" crlO 
(printout t "- " crlO 
(printout t "Use a General Regression Neural Network with 1 bidden 
layer" crlO 
(fonnat t "The input layer sbould bave %d nodes %n" ?inp) 
(fonnat t "The hidden layer should bave %d nodes %n" ?tra) 
(fonnat t "The output layer sbould bave %d nodes %n" ?outp ) 
(printout t "This architecture is provided in both the NeuralWare 
Professional II Plus software and in Neuroshe1l2" crlO 
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(printout t "The recommended software for this type of problem is the 
General Regression Neural Network provided by NeurosheU2 
from Ward Systems Group, Inc." crlf» 

(defrule pc2 

=> 

(path pc) 
(outputs ?ouO 
(test (> ?out I» 

(notify "Sometimes, ANN's are used to classify which of several statistical distributions a set of data was 
generated from tt) 
(assert (noise =(no "Are you trying to determine which statistical distribution that data patterns belong to?"»» 

(defrule pc3 

=> 

(path pc) 
(noise I) 

(notify "Most pattern classification problems work best with binary outputs, in which each output 
node corresponds to a distinct class and only one output has a positive value for each pattern.") 
(assert (outtype =(yes "Are the outputs binary"»))) 

(derrule pc4 

=> 

(path pc) 
(outtype 0) 

(notify "Often, ANN's are used to classify behavioral data, which involves people and therefore contains large 
amounts of noise. Examples are stock market prediction and credit risk assessment.") 
(notify "Other types of classification involve physical data, where a functional relationship is involved") 
(assert (behave =(select "What is the nature of your data?" physical behavioral»))) 

(defrule pc5a 

=> 

(behave physical) 
(path pc) 

(assert (bp bidden» 
(assert (pathl pelO))) 

(defrule pc5b 
(path pc) 

=> 

(behave behavioral) 
(inputs ?inp) 
(outputs ?out) 
(examples 7tra) 

(assert (hid =(+ I (/?tra (* 5 (+ ?inp ?out»)))) 
(assert (pathl pclO))) 

(derrule pclO 
(pathl pclO) 
(hid ?hid) 
(inputs ?inp) 
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(outputs ?outp) 
=> 
(printout t "==============================" crlO 
(printout t "ANN EXPERT SUMMARY REPORT' erlO 
(printout t "==============================" crlO 
(printout t "Use a Fully Connected Back Propagation Network 
with 1 hidden layer" crlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The hidden layer should have %d nodes %n" ?hid ) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "This architecture is provided in both the NeuralWare 
Professional II Plus software and in Neuroshe1l2" crlO 
(printout t "The recommended software is the Fully Connected Back Prop 
provided by Neuroshel12 from Ward Systems Group, Inc." crlf» 

(defrule pc6 
(noise 0) 

=> 
(assert (stat =(yes "Do the statistical distributions have the same mean?"»» 

(defrule noise 
(stat 1) 

=:> 
(assert (bp hidden))) 

(defrule noisea 

=:> 

(stat 1) 
(inputs ?inp) 
(outputs ?outp) 
(hid ?hid) 

rmtout t ==================== cr (p . " " If) 
(printout t "ANN EXPERT SUMMARY REPORT" erlO 
(printout t "==== .. erlf) 
(printout t "The classification of patterns into their corresponding 
statistical distributions is very difficult for an ANN when the means 
are the same. This problem is probably best solved by a rule based technique." erlf crlO 
(printout t "However, if an ANN is going to be used:" erlf) 
(printout t "Use a Back Progation Network with 1 hidden layer." crlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The hidden layer should have %d nodes %n" ?hid ) 
(formal t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software is the default Back Prop 
provided by BrainMaker Professional from California Scientific Software." erlf» 

(defrule pc 17 
(path pc) 
(noise 0) 
(stat 0) 

=:> 
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(notify "Most pattern classification problems work best with binary outputs, in which each output 
node corresponds to a distinct class and only one output has a positive value for each pattern. ") 
(assert (outtype2 =(yes "Are the outputs binary?"»» 

(defrule pc 18 
(outtype2 1) 
(path pc) 

=> 
(assert (stat2 =(yes "Does only one output have a positive value?"»))) 

(defrule pc19 

=> 

(path pc) 
(outtype20) 

(assert (outftred 0))) 

(defrule pc20 
(path pc) 
(stat2 0) 

=> 
(assert (outftred 0))) 

(defrule noiseb 

=> 

(stat 0) 
(stat2 1) 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 

(printout t "=======================" crlf) 
(printout t "ANN EXPERT SUMMARY REPORT" crlf) 

rmtout t ====================--= cr (p . " "If) 

(printout t "Use a Probabalistic Neural Network with I hidden layer." crlf) 
(format't "The input layer should have %d nodes %n" ?inp) 
(format t "The hidden layer should have %d nodes %n" ?tra) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software is the PNN 
provided by NeuroshelI2, from Ward Systems Group, Inc." crlf» 

(defrule pc12 

=> 

(path pc) 
(outtype 1) 

(assert (outftred =(yes "Does only one output have a positive value for each training pattern?"»))) 

(defruJe pcl3 ;sparse data so use PNN 
(outftred 1) 
(or (path pc) (path none» 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 
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(test « ?tra (* 5 ?inp))) 
=> . 

(printout t "==============================" crlt) 
(printout t "ANN EXPERT SUMMARY REPORT" crlt) 
(printout t "=============================" crlt) 
(printout t "Use a Probabalistic Neural Network with 1 hidden layer." crlt) 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The bidden layer sbould bave %d nodes %n" ?tra) 
(format t "The output layer should have %d nodes %n" ?outp) 
(printout t "The recommended software is the PNN 
provided by Neuroshel12, from Ward Systems Group, Inc." crlf» 

(defrule pc14 ;plenty of data so use LVQ 

=> 

(outfrred 1) 
(or (path pe) 

(path none» 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 
(test (>= ?tra (* 5 ?inp))) 

(assert (bid =(1 (* .10 ?tra) ?outp))) 
(assert (path2 round))) 

(defrule pe15a 

=> 

(path2 round) 
(hid ?bid) 

(assert (hid3 =(round ?bid))) 
(assert (path2 next))) 

(defrule pe16 ;plenty of data so use LVQ 
(outfrred 1) 
(path2 next) 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 
(hid3 ?hid) 

=> 
(printout t " " erlt) 
(printout t "ANN EXPERT SUMMARY REPORT" erlt) 
(printout t " " erlt) 
(printout t "Use a Learning Vector Quantization network with 1 bidden layer." erlt) 
(format t "The input layer sbould have %d nodes %n" ?inp) 
(format t "The Kohonen hidden layer should bave %d nodes %n" (* ?outp ?bid» 
(format t "The output layer sbould have %d nodes %n" ?outp) 
(printout t "The recommended software is the LVQ 
provided by Professional II Plus, from NeuralWare, Inc." erlf» 

(defrule pe15 ; multiple outputs firing so use GRNN 
(outfll'ed 0) 



=> 

(or (path pc) (path none» 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 
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(printout t "==============================" crlO 
(printout t "ANN EXPERT SUMMARY REPORT' crlO 
(printout t "===========================" crlO 
(printout t "Use a General Regression Neural Network with 1 bidden layer." crlO 
(format t "The input layer sbould bave %d nodes %n" ?inp) 
(format t "The bidden layer sbould bave %d nodes %n" ?tra) 
(format t "The output layer sbould bave %d nodes %n" ?outp ) 
(printout t "The recommended software is the GRNN 
provided in the NeurosbeU2 software package by Ward Systems, Inc .. " crlf» 

(defrule timel 
(application time_series_analysis) 

=> 
(printout t "You have selected a time series analysis problem" crlf crlf ) 
(notify "Time series analysis problems usually try to predict an output based on the past few outputs, for 
example using the past five values to predict a 6th value. Data files should be structured accordingly.") . 
(notify "Often it is easier to use data that spans long time periods, for example weekly versus daily, because it 
contains less fluctuation.") . 
(notify "With time series prediction it is usually easier to predict the change in an output. such as a stock price, 
rather than predict an actual value.") 
(notify "If the network is trained on actual values, it will have a hard time generalizing outside of the range it 
was trained on.") 
(assert (path ts))) 

(defrule timela 

=> 

(path ts) 
(outputs ?ouO 

(notify "Often, ANNs are used to classify behavioral data, which involves people and therefore contains large 
amounts of noise. Examples are stock market prediction and credit risk assessment. ") 
(notify "Other types of classification involve physical data. where a functional relationship is involved") 
(assert (behave =(select "What is the nature of your data?" physical behavioral»))) 

(defrule timelb 
(path ts) 
(behave physical) 

=> 
(assert (bp hidden))) 

(defrule timelc 
(path ts) 

=> 

(bebave behavioral) 
(inputs ?inp) 
(outputs ?out) 
(examples ?tra) 



(assert (hid =(+ 1 (I?tra (* 5 (+ ?inp ?out))))))) 

(defrule time2 
(path ts) 
(hid ?hid) 

=> 
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(notify "A good algorithm exists for time series analysis but it takes longer to train than other methods.") 
(assert (choice =(select "Do you bave time to wait, or would you like a quick, less accurate model?" 
slow _buCaccurate quick_model»» 

(defrule time3 ;Cascade Correlation model 
(choice slow_bucaccurate) 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 
(bid ?bid) 

=> 
(printout t "============================" erlO 
(printout t "ANN EXPERT SUMMARY REPORT" erlt) 
(printout t "=============================" erlO 
(printout t "Use a Back Propagation Neural Network with 1 bidden layer 
and Cascade Correlation training" erlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The bidden layer should have %d nodes %n" ?hid ) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software is the Back Propagation code 
provided by Professional II Plus, from NeuralWare, Inc." erlf) 
(printout t "Use Norm-Cum-Delta Learning with Tanh transfer functions and 
Cascade Correlation training." erlf » 
(defrule time4; Ward nets model 

(choice quick_model) 
(inputs ?inp) 

=> 

(outputs ?outp) 
(examples ?tra) 
(hid ?hid) 

(printout t "- ========" erlO 
(printout t "ANN EXPERT SUMMARY REPORT" erIO 
(printout t " -- =========--==" erlO 
(printout t "Experiments have shown that networks with multiple slabs 
of bidden layer neurons, each with different transfer functions perform 
well for time series analysis" erlO 
(printout t "Use a Back Progation Neural Network with 2 slabs of bidden 
layer nodes. " erlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "Eacb bidden layer slab should have %d nodes %n" (+ 1 (I ?hid 2))) 
(format t "The output layer should have %d nodes %n" ?outp) 
(printout t "The recommended software is the Back Propagation code 
with multiple bidden slabs provided by Neuroshe112. available from 
Ward Systems Group, Inc. " erIC» 
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(defrule visuall 
(application visuaCpattern_recognition) 

=> 
(printout t "You have selected visual pattern recognition" erlf erlf) 
(assert (path vis))) 

(defrule vis2 

=> 

(path vis) 
(inputs ?inp) 

(notify "When dealing with visual pattern recognition the data is usually organized in one of two ways, the 
ftrst is to have 2 inputs corresponding to the XY coordinates of a pixel, or feature.") 
(notify "The second method is to have an MxN grid with M*N input nodes, where each input node 
corresponds to a pixel, or feature.") 
(assert (visual =(select "How is your data arranged?" coordinates grid»))) 

(defrule vis3 ; The coordinate path 
(visual coordinates) 

=> 
(assert (vout =(yes "Is the output a binary value, with only one node ftring for each pattern?"»))) 

(defrule vis4 

=> 

(vout 1) 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 

(printout t "=========================" crlf) 
(printout t "ANN EXPERT SUMMARY REPORT" erlf) 
(printout t "==================" erlf) 
(printout t "Use a Probabalistic Neural Network with 1 hidden layer." erlf) 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The hidden layer should have %d nodes %n" ?tra) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software is the PNN 
provided by Neuroshel12, from Ward Systems Group, Inc." erIf) 
(printout t "For these types of problems, a low smoothing factor 
2is recommended, between .05 and .1" erlf erlf » 
(defruIe vis5 

(vout 0) 

=> 
(assert (bp hidden») 

(defruIe vis6 
(vout 0) 
(hid ?hid) 
(inputs ?inp) 
(outputs ?outp) 
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=> 
nn ou ========================== cr (p . t t t" " 10 

(printout t "ANN EXPERT SUMMARY REPORT" erIO 
rmtoutt ============================= cr . (p . " " 10 

(printout t "Use a Back Propagation Neural Network with 2 hidden layers" crlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The first hidden layer should have %d nodes %n" ?hid ) 
(format t "The second hidden layer should have %d nodes %n" ?hid ) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software is the Back Propagation code 
provided by Professional II Plus, from NeuralWare, Inc." erlf) 
(printout t "Use Norm-Cum-Delta Learning with Tanh transfer functions." erlf) 
(printout t "Depending of the complexity of the patterns, this can be a 
tough problem for Back Propagation" crlf) 
(printout t "If problems develop, try to convert the output 
to a binary form with only one node giving an output at a 
time and use a PNN ." erlf crlf » 

(defrule vis7 ; input grid 
(visual grid) 

=> 
(assert (vouQ =(yes "Are the outputs binary?"»))) 

(defrule vis8 

=> 

(vouQ 1) 
(examples ?tra) 
(inputs ?inp) 
(outputs ?outp) 

(printout t "=============--========" erlO 
(printout t "ANN EXPERT SUMMARY REPORT" erlO 
(printout t "============" erlO 
(printout t "Use a General Regression Neural Network with 1 hidden layer." crIO 
(forman "The input layer should have %d nodes %n" ?inp) 
(format t "The bidden layer should have %d nodes %n" ?tra) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software is the GRNN 
provided in NeurosheU2 by Ward Systems, Inc .. " crlf» 

(defrule vis9 
(vouQO) 

=> 
(assert (bp hidden))) 

(defrule visl0 

=> 

(vouQO) 
(hid ?hid) 
(inputs ?inp) 
(outputs ?outp) 

nntout t ================== er (p . " " 10 
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(printout t "ANN EXPERT SUMMARY REPORT" crlt) 
(printout t "============================" erlt) 
(printout t "Use a Modular Neural Network with 1 bidden layer." crlt) 
(format t "The input layer sbould bave %d nodes %n" ?inp) 
(format t "The hidden layer should have %d nodes %n" ?hid) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended software is the MNN 
provided by Professional II Plus, from NeuralWare, Inc." crlf» 

(defrule nonel 
(application none_oCthe_above) 

=> 
(assert (path none») 

(defrule none2b 

=> 

(path none) 
(inputs ?inp) 

(assert (outtype2 =(yes "Are the outputs binary?"»» 

(defrule none3 
(outtype2 1) 
(path none) 

=> 
(assert (stat2 =(yes "Does only one output have a positive value?"»» 

(defrule none4 

=> 

(path none) 
(outtype20) 

(assert (bp hidden») 

(defrule noneS 

=> 

(path none) 
(stat2 0) 

(assert (outfrred 0))) 

(defrule none6a 

=> 

(outputs ?outp) 
(test (> ?outp 1) 
(path none) 
(stat2 1) 

(assert (outflfed 1)) 

(defrule none6b 
(outputs ?outp) 
(test (= ?outp 1) 
(path none) 
(stat2 1) 



=> 
(assert (outfIred 0))) 

(defrule none7 

=> 

(path none) 
(hid ?hid) 
(inputs ?inp) 
(outputs ?outp) 
(test (> ?outp 1) 
(bp hidden) 
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(printout t "==========================" crlO 
(printout t "ANN EXPERT SUMMARY REPORT" crlO 
(printout t "===========================" crlO 
(printout t "Use a Modular Neural Network with 1 hidden layer." crlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "The hidden layer should have %d nodes %n" ?hid) 
(format t "The output layer should have %d nodes %n" ?outp) 
(printout t "The recommended software is the MNN 
provided by Professional II Plus. from NeuralWare. Inc." crlf) 
(printout t "If this doesn't work. try using Back Prop with the 
BrianMaker Software System from California Scientific Software." crlf» 

(defrule noneS 

=> 

(path none) 
(inputs ?inp) 
(outputs ?outp) 
(hid ?hid) 
(test (= 1 ?outp» 

(printout t "=========================" crIO 
(printout t "ANN EXPERT SUMMARY REPORT" crlO 
(printout t "====--============" crlO 
(printout t "Use a Back Propagation neural network with 
2 slabs of hidden nodes with different transfer functions." crlO 
(format t "The input layer should have %d nodes %n" ?inp) 
(format t "Each bidden layer slab should have %d nodes %n" (+ 1 (I ?hid 2))) 
(format t "The output layer should have %d nodes %n" ?outp ) 
(printout t "The recommended architecture for this problem 
is the Ward Net. provided by Neuroshe1l2. available 
from Ward Systems Group. Inc." crlf» 



(deCrule error 
(inputs ?inp) 
(outputs ?outp) 
(examples ?tra) 
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(or (test « ?inp 0» (test « ?outp 0» (test « ?tra 0))) 
=> 
(printout t "Invalid input number, please reset the program" eriC eriC) 
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APPENDIX C. ANNEXPERT USER MANUAL 

Installing Eclipse 

In order to run the ANNexpert, the Eclipse v3.2c expert system shell must first be 

installed on your computer's hard drive. First, a directory must be created in order to install 

eclipse. To make a directory on the c drive named eclipse type the following at the DOS 

prompt: md eclipse. Next the eclipse system must be installed into this directory. Insert the 

floppy disk in drive a on your computer and type the following: install a: c: \eclipse. Once 

eclipse is installed, copy the fIle annxpert.c1p to the directory in which you will be working by 

using the DOS copy command. 

Initializing Eclipse 

Once Eclipse has been installed on your hard drive (assuming drive c) the executable 

fIle to start the program will be found in the following directory 

c:\eclipse\windows\msc\toolkit. The name of the executable file is ewin2tk.exe. This me 

may be executed by selecting it with the mouse in the MS Windows File Manager and double 

clicking on it The directory also contains a fIle called ewin2tk.dll which contains icons which 

may be used to set up an Eclipse program item in the MS Windows Program Manager. 

Once the ewinltk.exe file is executed a window will be brought up which will be 

labeled T.H.E. Eclipse. This window will have a menu bar across the top with the following 

menus: 
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• File 

• Execute 

• Knowledge 

• Breakpoints 

• Window 

• Fire 

• Stop 

Loading the ANNexpert 

Using the mouse select Load from the from menu, followed by Eclipse. A window 

will be brought up labeled Load Eclipse. In this window select the path for the directory in 

which you copied the file annxpertclp. Select this file from the menu and click OK. 

A file window will pop up asking to Reset the knowledge base? Select yes. This 

will be followed by a window asking Run the knowledge base? Again select yes. This will 

begin execution of the ANNexpert program. 

Using the ANNexpert 

Two introductory windows will appear on the screen. Select OK to dismiss them. 

These will be followed by a series of menus and questions about the problem you are 

attempting to model. Simply follow the directions and answer the questions posed by the 

expert system and the program will generate a description of the appropriate model to use for 

the given problem. 

The ANNexpert assumes that the user already has a problem to be modeled which has 

been formulated into a set of inputs and outputs which are contained in a training fIle. Data 

patterns in the training file should be arranged sequentially with inputs followed by outputs for 
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each training vector. It is best to have an independent file for testing the resulting ANNs. 

Many researchers set aside about one third of their data for a particular problem and reserve it 

to test the generalization ability of the neural network model. Both training and test files 

should be saved in an ASCII format 

When the expert system is done reading in the description of the problem from the 

user, then an output report will be printed to the Standard Output window. If a problem 

developed while executing the program, select Stop from the menu bar to end execution. 

When done with a program run, it is helpful to clear the Standard Output window between 

runs by selecting Wipe from the pull-down menu in the top left comer of the Standard 

Output window. 

To run the program again, select Reset from the Execute menu. When this is done all 

previous problem characteristics will be erased from memory and the program will be 

executed again. 

By selecting the command Update ecIipse.ini from the File menu, the path you 

selected to load the annxpert.c1p file will be set as the default saving time when loading the 

program during future runs. 

To exit Eclipse, select Exit from the File menu. 


