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I. INTRODUCTION 

/ 

The calculation of flux profiles and spatial power distribution in 

a nuclear reactor is a central problem of nuclear engineering and reactor 

physics. These calculations are required for the solution of a broad 

range of design and operational problems. They necessarily involve a 

high degree of accuracy and considerable spatial detail. For the most 

part, such calculations are carried out with computer programs that 

utilize the finite difference approximation to the group diffusion 

equations. These programs imply a minimum of 20000-30000 mesh points 

for a two-dimensional problem and the cost of using these fine mesh 

computer programs is not insignificaht. In addition, there are the 

problems of data management and data retrieval associated with the use 

of these programs. 

On the other hand, and in general, the power distribution calcula-

tions required for in- core fuel management decision studies do not re-

quire the same spatial detail as a design verification problem. With 

this end in view, there has been a major effort in developing computa-

tional models that cost less to use and still yield results with a 

degree of accuracy satisfactory for fuel management purposes. 

Typically, in a fine mesh diffusion theory program, a mesh point 

is located on each fuel pin of an assembly. In the latter models, 

the storage requirements and computer run times are considerably re-

duced by employing a coarse mesh and by associating a mesh point 

with each assembly, and thereby dividing the reactor into nodes. In 
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this case, the mesh spacing for the difference equations is of the order 

of the fuel assembly center-to-center distance; 15 to 20 ems. 
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II. PROPOSED OBJECTIVE AND SCOPE 

In the last decade, coarse mesh and nodal methods have become in-

creasingly popular as a thermal reactor core analysis and design 

calculational tool. This has been due, in part, to the ever-increasing 

size of thermal reactors and the economic emphasis on operational 

optimization, especially in the area of nuclear fuel management. 

The objective of the research described in this dissertation will 

be to develop a 2-group, !-dimensional coarse mesh diffusion theory 

model for calculating the power distribution and flux profiles in an 

array of PWR fuel assemblies which simulate a slab reactor. 

A one- dimensional case study will be undertaken to establish the 

feasibility of the method and to investigate the stability and con-

vergence criteria involved; suggestions for extending the method to 

higher-order dimensions will be presented. 

The model will be developed with the assumption that the core 

synnnetry line bisects the central assembly, Figure 1. The mesh spacing 

considered will be equal to the fuel assembly center-to-center spacing, 

i.e., a node will be associated with a fuel assembly. 

The flux distribution over a fuel assembly will be approximated 

by a second-order polynomial and the polynomial coefficients for each 

fuel assembly will be determined by using conditions derived from dif-

fusion theory. The flux profiles will be obtained by evaluating the 

polynomial at differ ent locations within each fuel assembly. 

Discrepancies in the power and flux distributions can be expected 

in the assemblies on or near the core-reflector interface, since these 



Figure 1. Core geometry showing core nodes (fuel assemblies) 
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assemblies differ widely in their fast scattering and thermal absorption 

cross sections. This causes a steep flux gradient which a coarse 

mesh model cannot accurately predict. To overcome this problem, the 

water reflector nodes are eliminated and an albedo boundary condition 

will be used to determine the coefficients for the assembly on the core-

reflec tor interface. 

Also, the flux near the edge of a fuel assembly tends to increase 

or decrease depending on the flux in the adjacent nodes. This will be 

taken into account by using empirical weighting factors to obtain an 

intra-nodal flux matching . 

Finally, the results will be compared with those obtained from a 

fine mesh diffusion theory program. 
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III. LITERATURE REVIEW 

Tile primary objective of this study is to develop a 2-group, 1-

dimensional coarse mesh diffusion theory model to obtain the flux pro-

files and assembly power distributions in a slab reactor core. 

Extensive work has been conducted in this aspect of nuclear engi-

neering, especially in the area of in-core fuel management. Since many 

shuffling iterations may be necessary to find an optimal loading pattern, 

considerable effort has been devoted to the development of 1-, 1.5- and 

2-group coarse mesh models which can predict the radial power distribu-

tion using a few seconds of computer time. Coarse mesh calculations 

usually refer to those in which the mesh spacing for the difference 

equations is of the order of the fuel assembly center-to-center spacing 

in a reactor. In the 1.5-group model, the fast flux distribution is 

solved using diffusion theory and the thermal flux is calculated as-

swning zero buckling in the thermal group. Tilis model, described by 

Borresen [l] and subsequently used by Stout and Robinson [2], Lin, 

Zolotar and Weisman [3] uses empirically obtained weighting factors for 

the fast and thermal groups to adjust the net current at the assembly 

interfaces. nieir results show moderate agreement with fine mesh PDQ-7 

calculations. Lin, Zolotar and Weisman [3] have extended their model 

to BWRs. Chitkara and Weisman [4] have described a coarse mesh, 1-group 

model with one mesh point per assembly. 

Stout and Robinson [2] indicate that the use of albedo boundary 

conditions in place of the water reflector nodes can improve their 

results. Much of the information on the fitting of albedo values at 
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the core-reflector interface is proprietary and not described in the open 

literature; however, Becker and Celnik [5) have described one procedure. 

An alternative approach is to construct a nuclear model using the 

nodal method. In this case, the reactor is treated as an array of 

nodes, each of which is a source and sink for neutrons. Neutron inter-

change between these nodes is treated with empirical coupling coefficients, 

transport-kernels and albedos which are all functions of core geometry 

and material properties. Steinke [6] has developed a coarse nodal 

method for solving the diffusion equation in its integral Green's 

function operator form. Graves [71 used a two-group nodal method to 

evaluate reactor power distribution. The FLARE [8] program is the 

evolutionary starting point for several nodal computer codes. CYREP-II 

[9) is a PWR nodal code which uses a two-dimensional FLARE type model 

to calculate the power distribution and criticality factors. A 

recently developed PWR nodal code is CYCLOPS [10) in which the CYREP-II 

model was improved by including neutron transmission from corner as-

semblies and leakage in the axial direction by the use of an axial 

buckling term; CYCLOPS uses the transport kernel defined for the FLARE 

model. Fairly accurate results are obtained from a nodal method, al-

though these methods do not accurately model the core baffle at the core-

reflector interface [7]. Improved, but proprietary versions of nodal 

codes are known to exist [11) and they are believed to yield better 

results than the codes described in the open literature. 



8 

IV. THEORETICAL DEVELOPMENT OF THE MODEL 

The general form of the 2-group diffusion equations in I-dimensional 

geometry is given by 

d2 1 
Dl dx2 ¢1 (x) - (~al + ~) ¢1 (x) + };: [ ( vEf) 1 ¢1 (x) + ( v~f) 2¢2 (x)] = O 

d2 
D2 -2 ¢2(x) - Ea2¢2(x) + ;_cpl (x) = O 

dx 
(4.1) 

Subscripts 1 and 2 will be used to denote quantities in the fast and 

thermal groups, respectively and ¢(x) is the flux at point x. 

Consider the 1-dimensional nodal geometry, Figure 2, where node i 

is shown with its nearest neighboring nodes (i - 1) and (i + 1), 

respectively. 

Equation (4.1) can be written for node i and with the x-dependence 

implied but not written, one has 

(4.2) 

In Equation (4.2), 

flux (at point x) in the fast and thermal groups, 

respectively, for node i 

diffusion coefficients for the fast and thermal 

groups, respectively, for node i 

Eali' ~aZi: absorption cross sections for the fast and thermal 

groups, respectively, for node i 
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Figure 2. Geometry for flux distribution calculation 
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( v~f)li' ( v~f) 2i: fission cross sections times the neutron 

yields per fission for t he fast and thermal 

groups, respectively, for node i 

removal cross section for the fast group 

in node i. 

As Equation (4.2) indicates, the input to this 2-group model is 

simply the values of the diffusion coefficients , absorption cross 

sections, fission cross sections times the neutron yields per fission, 

the removal cross section from the fast to the thermal group for the 

fast and thermal groups, respectively. These seven values must be 

determined for each node of the problem. 

For this study, the above values were obtained from the Southern 

California Edison Company version of the EPRI-CPM code [12]. These 

values were a part of the input data for the CYCLOPS nodal code. 

A. Polynomia l Flux Representation 

The flux distribution over an assembly will be approximated by a 

second-order polynomial, i.e., 

¢(x) = a + bx + dx2 

Then the assembly averaged flux can be defined as 

¢ = 
j¢(x)dx 

J dx 

where ¢has the same units as ¢(x). 

(4. 3) 

(4.4) 

In Equation (4~3), there are three coefficients to be evaluated; 
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therefore, three conditions must be specified in order to evaluate these 

coefficients. 'nlree conditions can be determined if one assumes that 

Equation (4.3) can be extended over the three regions shown in Figure 2. 

A coordinate system, centered on assembly i will be used to define 

the function for assembly i only; however, to determine the flux 

coefficients it will be assumed that the flux can be extended into the 

surrounding assemblies, Figure 3. 

Using Equations (4.3) and (4.4), the flux distributions can be 

integrated over the assembly i in Figure 2, i.e., 
/j 

-L 
¢6, i+l 

/j - -
= 11 2 ¢ dx 

0 /j 0 i --- -2 2 
/j 6 

= 1 r2+2 
6 }_t>. 

2 

(4. 5) 

where the i i -;;:R -L quant t es ~6 , 1 _ 1 and ¢6,i+l in Equation (4 .5) are average 

fluxes in assemblies (i - 1) and (i + 1), respectively, Figure 3, i.e., 

(4.6) 
/j 0 --+-

= 11 2 2 
6 /j 

-2 
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i 

6 
2 

I 
0/2 I 

i+l 
-;L I 

¢ 6 .~+l 

6 6 - - + -2 2 



13 

and 6 is a small fraction of the fuel assembly center-to-center distance 

6, Equation (4.3) can be written for assemblies (i - 1) and (i + 1), 

respectively, and the resulting expressions can be used in t he integra -

tion of Equation (4 . 6) , i.e ., 

where 
_Q p = 
2 

Q - f:l6 - 6
2 

- 4 8 

f:l26 M 2 63 
R=a-S+ 24 

(4.7) 

(4.8) 

In a similar way, Equation (4.3) can be used to integrate and solve for 

the unknown coefficients in Equation (4.5), i . e . , 

where 

a = p {A(::;R + n.L ) 
i 2(AP - C) ¥'6,i-1 ¥16,i+l 

f:l2 
A--12 

f:l6 62 
B ,.,-+-4 8 

f:l26 662 63 
C=-+-+-8 8 24 

(4.9) 

(4.10) 
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Equations (4.7) and (4.9) can be used to evaluate the flux coefficients 

for any assembly not on the core-reflector interface. By using core 

symmetry on the central assembly, the 1 6-regions' on the right side of 

the central assembly can be superposed on its left, Figure 1. With 

this symmetry condition, the flux coefficients for the central assembly 
-R -L 

can be determined with ¢o,i-l = ¢o,i+l in Equations (4.7) and (4.9). 

'lbe assembly on the core-reflector interface is treated with an 

albedo boundary condition and will be described in a later section. 

B. Assembly Average Fluxes 

To derive an expression for the average flux in an assembly, 

Equation (4. 2) is integrated over assembly i of Figure 2, i . e., 

6 

12 d2 
dx[Dli 2 

6 dx -2 

(4.11) 

If the material composition of a fuel assembly is considered homogeneous, 

Equation (4.11) yields 
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6 

::2 l\idx - (Eali + 1,il f ~ 
2 

(4. 12) 

Integrating Equation (4.12) over assembly i, Figure 2 and using Equation 

(4.4) yields 

+ ( \l~f) 2i ¢2i = 0 

6 

D2i J 2 d2 -
6 _A dx 2 ¢2i dx - L: a2i ¢2i + 

2 

Lai ¢ii = 0 (4.13) 

To integrate the leakage terms of Equation (4.13), consider the 

reactor equation 

d 2 2 - 2 ¢(x) = - B ¢(x) 
dx 

(4.14) 

Since the reactor core has been decomposed into large size nodes, in 

which the material composition and flux are assumed uniform then, as 

a first approximation, Equation (4.14) can be extended to any 



assembly i, i.e., 

2 - B . ¢ . 
1 1 

16 

(4.15) 

2 where B. (the group notation is implied but not written) is now the 
1 

average radial buckling in assembly i . 

Using Equation (4.4), the above relation can be integrated over 

assembly i, Figure 2, i.e., 

!:!> lf 2 d2 2-- ¢ dx = - Bi¢
1
. 

ti ti dx2 i 
-2 

(4.16) 

Equation (4 . 16) may now be used for the leakage terms in Equation 

(4.13), i.e., 

If one defines the assembly fission source 

and the core eigenvalue 

A. - neutron sources 
neutron losses 

then Equation (4.17) yields 

(4.17) 

(4.18) 

(4.19) 
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1 where the fission source has been multiplied by ~ to retain neutron 

balance. 

Equation (4.19) can now be solved for the average fluxes in any 

assembly i, i.e., 

s . 
¢li 

l. = 2 
( ~ali + ~iu> DliBli + 

(4. 20) 

¢2i 
fai 

¢li = 2 
Ea2i D2iB2i + 

C. Assembly Average Bucklings 

To evaluate the assembly average bucklings in Equation (4.20), a 

coordinate system centered on each assembly is used, Figure 4. Equation 

(4.16) can be integrated by using Equations (4.3) and (4.4), i.e . , 

B2 6 • (ai + di · A) 
d 

¢i 
d 

¢i (4. 21) . =- -i dx 6 dx 6 
2 2 

Because of the polynomial approximation for the assembly flux and the 

assumption that Equation (4.3) can be extended into the surrounding 

assemblies, continuity of neutron currents at the interfaces of as-

semblies (i - 1), i and i, (i + 1) respectively will not be pre-

served, i.e. , 

D .!L <Pi-1 I- d 
Di dx ¢i i-1 dx 6 6 

2 2 
(4. 22) 

d 
¢i ;: Di+l 

.!L 
Di dx dx ¢i+l 

t:i. 6 
2 2 
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However, empirical weighting factors will be used to preserve 

continuity of neutron currents at the assembly interfaces. To do this, 

Equation (4.21) can be expressed as a net current by multiplying with 

D., the diffusion coefficients in node i, i.e., 
1 

(4.23) 

Then the net current across the interface between assemblies (i + 1) 

and i is now expressed as a weighted average of the currents at the 

interface between these assemblies, i.e., 

(4.24) 

where Wl, WZ are empirical weighting factors. Equation (4.3) can be 

used to evaluate the above expression, i.e., 

= 

(4. 25) 

In a similar way, the net current across the interface between as-

semblies (i - 1) and i can be expressed as a weighted average of the 

currents at the interface between these assemblies, i.e., 

= W l Di -1 (b i-1 + di -1 A) + W 2D i (bi - di A) = :f 
L\ wl + w2 

(4. 26) 

2 

where w1 , w2 is another set of empirical weighting factors. 

Equations (4.25) and (4.26) can now be used in Equation (4.23) to 
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estimate the buckling, i.e., 

(4. 27) 

D. The Albedo Model 

The detailed solution of the diffusion equations in the water 

reflector nodes is replaced by an equivalent albedo boundary condition 

at the core-reflec~or interface. For this analysis, the albedo, a 

is defined as the ratio between the neutron current out of the reflecting 

region to the neutron current into the reflecting region (13]. 

For the coordinate system centered on the end assembly, Figure 5, 

the effective boundary condition (13] on the flux in the region x <1 
is given by 

o.s<i ~ :> = ,. (4. 28) 

Using Equation (4.3) in the above relation, evaluating at the 

core-reflector interface and simplifying, one has 

(4. 29) 

With Equation (4.29) and the first two expressions in Equation 

(4.5), one can solve for the flux coefficients in the end assembly. 

They are found in the form 
-R 

(APG) cp0 i-l - (BH + CG) ¢1 a. = 
l. A(PG + B) - (BH + CG) 



i-1 

I 
I 
I 
I 
I • : 6/2 
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• •-R 
'¢0 , i-1 

Figure 5. Geometry for albedo model for end assembly 
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-R 
(HP - AP)¢0 i-l - (HP - C)¢i 

A(PG + B) - (BR + CG) 

-R 
(GP+ B) ¢i - (GP) ¢ 5 i-l 
A(PG + B) - (BH + CG) 

A D. 
u _!. 

G = 2 - T 

(4.30) 

(4.31) 

Equations (4.28) with Equation (4.29) can now be used to solve for 

the flux coefficients in the end assembly. 

To determine the buckling in the end assembly, the same procedure, 

described earlier is adopted, except that Equation (4.28) is now 

written as 

T</J. 
l. 6 

(4.32) 

2 

Using Equation (4.3), the above expression can be evaluated at the core-

reflector interface, i.e., 

d l:i. t:i. 2 E 
Di dx ¢1 = T(ai + bi 2 + di 4> = J 

l:i. 
(4.33) 

2 

Equation (4.31) can now be used in Equation (4.27) to evaluate the 

buckling in the end assembly, i.e., 

(~ - ;.) (4. 34) 
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V. COMPUTATIONAL PROCEDURE 

The overall calculation process is illustrated in Figure 6 . 

An iterative technique is adopted to obtain the flux profiles and 

power distribution. 

Computations begin by assuming an initial fission source guess, 

Equation (4.18); and the assembly fluxes are computed by using Equation 

(4.20). At each stage of the iteration process, the fission sources and 

fluxes are normalized over the core volume and the normalized fluxes 

used to evaluate an improved fission source distribution. The nor-

malized fluxes are also used in Equations (4.7), (4.9) and (4.28) to 

compute the flux polynomial coefficients. The coefficients are in turn 

used to evaluate the assembly bucklings in Equations (4.27) and (4.32). 

The iterative procedure is continued until the fission sources and 

assembly fluxes do not change by more than a preset tolerance limit. 

For faster convergence, the normalized fluxes are overrelaxed after 

each iteration with the exception of the first, by using the relation 

where v = iteration index 

w = overrelaxation parameter. 

The iterative procedure is stopped when the fission sources and 

flux distributions satisfy the convergence criteria. The flux profiles 

are then obtained by evaluating the flux polynomial, Equation (4.3) at 

specific locations in each assembly and the assembly power is calculated 

using the relation 
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where (ki:f) li and (kl:f) 2i are the fission cross sections times the energy 

yields per fission for the fast and thermal groups, respectively for 

node i. 
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VI. TESTS AND RESULTS 

The validity and feasibility of the coarse mesh model developed in 

the preceding chapters was checked by using a fine mesh, 2-group dif-

fusion theory program, DODMG [14] as a reference calculation. 

The one-dimensional slab reactor core used in this study consisted 

of nine PWR fuel assemblies, each 20 ems in width. The partial width 

6 was equal to 4 ems and the value of the albedo at the core-reflector 

interface was set equal to 0.3 in all the test cases . 

The cross section data input to the model was obtained from the 

EPRI-CPM code [12]. For illustrative purposes, the input data and 

fuel type identification according to weight percent enrichment and 

number of burnable poison pins for the beginning of core life (BOL) 

case are listed in Table 1. The same data were used in the fine mesh 

reference calculations. 

The fast and thermal flux profiles obtained from the coarse mesh 

model for the three cases of beginning of core life (BOL), middle of 

core life (MOL) and end of core life (EOL) are compared, in each case 

with those obtained from the fine mesh reference calculations. The 

results are illustrated in Figures 7-12 and show good agreement with 

the fine mesh calculations. 

The model was also used to evaluate the assembly power distribu-

tions in all three cases and were found to agree reasonably well with 

the fine mesh calculations. These results are illustrated in Tables 

2-4. The percent error between the two calculations is defined as 



Table 1. Two-group EPRI-CPM data for fuel assemblies at beginning of core life (BOL) 

Fuel type Enrichment 
ID (BPP)a (wt . percent) 

A (16) 2.38 

B (12) 2 . 88 

c (0) 1.87 

D(cms) 

0.12744E + 01 
0.37814E + 00 

0.12574E + 01 
0. 38252E + 00 

0.12577E + 01 
0. 38112E + 00 

-1 E (cm ) a 

0.94204E - 02 
0 . 93235E - 01 

0 . 94461E - 02 
0.95448E - 01 

0.87667E - 02 
0.71844E - 01 

Core loading: c B c 

a BPP: burnable poison pins. 

0.17263E - 01 0 . 53441E - 02 
0.00 0.98190E - 01 

0 . 17261E - 01 0.61220E - 02 
0.00 0 . 11632E + 00 

0.17857E - 01 0 . 49878E - 02 
0.00 0.85144E - 01 

B c B c B A 

0.67386E -
0 . 12910E -

0 . 77687E -
0 . 15319E -

0.62439E -
0 . 11179E -

13 
11 

13 
11 

13 
11 

N 
CX> 
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' Table 2. Comparison of fine and coarse mesh calculations. Power distributions at beginning of 
core life (BOL) 

Fine mesh 1.4775 1. 6354 1.3740 1.4355 1.0813 1.0057 0.6387 0.4335 0.1271 

Coarse mesh 1.4548 1.5917 1. 3256 1.3448 1. 0529 0.9759 0.6596 0 . 4578 0 .1367 

% error +1.54 +2.67 +3. 52 +6. 32 +2.63 +3.00 -3 . 27 -5.61 -7 . 55 

Table 3 . Comparison of fine and coarse mesh calculations. Power distributions at middle of core 
life (MOL) 

Fine mesh 1.6362 1.4451 1.5250 1. 2534 1.2142 0.8957 0.7434 0.4163 0 . 1888 

Coarse mesh 1. 6675 1. 3626 1. 5238 1.1972 1. 2234 0.8461 o . 7122 0.3659 0.1614 w 
V1 

% error -1. 91 +5. 71 +0.08 +4.48 -0.76 +5 . 54 +4 . 20 +12 . 11 +14.51 

Table 4. Comparison of fine and coarse mesh calculations. Power distributions at end of core life 
(EOL) 

Fine mesh 1.3241 1 . 4563 1. 2563 1.3071 1.0596 1. 0234 0.75 37 0.6315 0 . 3502 

Coarse mesh 1. 3260 1.4524 1 . 2294 1.2694 1. 0283 0.9993 0. 7392 0 . 6180 o .. 3380 

% error -0.14 +o. 21 +2.14 +2.88 +2.95 +2.35 +l.92 +2.14 +3.48 
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Fine mesh - Model x 100 Fine mesh 

and is also indicated in Tables 2-4. 

It is seen that there is good agreement as regards the flux profiles, 

especially in the case of fast flux for all three cases. The thermal 

flux profiles are more difficult to simulate by using a coarse mesh 

model due to the varying thermal absorption cross section in the reactor 

core . This can be seen in Figures 10 and 11 where the model cannot ac-

curately simulate the strongly varying thermal flux behavior in the core 

interior. In the EOL case, Figure 12, the thermal flux is less strongly 

varying and there is reasonably good agreement between the two calcula-

tions. 

It was found that the partial width 6 had an effect on the performance 

of the model. The number of iterations required for convergence in-

creased as o increased and large values of 6 also yielded less intra-

nodal flux matching at the fuel assembly interfaces. The value of 6 

equal to 4 ems was taken as a limiting value; below this value the model 

developed numerical instabilities. 

The model was also found to be dependent on the choice of weighting 

factors. The weighting factors that gave the best agreement with the 

fine mesh calculations were obtained by a trial-and-error method. This 

procedure required a prior knowledge of the flux profiles and was ob-

tained from the fine mesh calculations. The optimum weighting factors 

are indicated in Figures 7-12. It was also found that for a given set 

of weighting factors, the error difference between two successive itera-

tions was oscillatory at first, decreased rapidly and then became stable. 
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The assembly power distributions obtained from the fine and coarse 

mesh calculations are compared in Tables 2-4. It is seen that there is 

reasonably good agreement (on an average, within 5% of the fine mesh 

value) between the two calculations except for the assemblies near the 

core-reflector interface. The large discrepancies can be attributed 

to the uncertainty in the value of the albedo used in the boundary condi-

tion at the core-reflector interface. 
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VII. SUMMARY AND CONCLUSIONS 

The coarse mesh model developed in this research has proven to be 

effective in simulating the neutron flux profiles and assembly power 

distributions in a slab reactor core. The results are comparable to 

those obtained from fine mesh diffusion theory calculations. The model 

is simple and can be easily implemented on a digital computer. In the 

fine mesh calculations, ten mesh points were located in each fuel as-

sembly; the model required only one mesh point per assembly and thereby 

reduced the storage requirements on the computer. 

The assumption that the flux in an assembly can be extended into 

the o-regions of the surrounding assemblies and the use of empirical 

weighting factors to obtain the intra-nodal flux matching at the fuel 

assembly interfaces has proven to be very effective in simulating the 

fine mesh calculations. The use of an albedo boundary condition at the 

core-reflector interface is seen to be a very feasible substitute for 

the reflector nodes outside the reactor core. 

The coarse mesh model described in this study was limited to a 

slab reactor core in one-dimensional geometry. The model can be easily 

extended to a quarter core geometry in two- and even three-dimensional 

geometry. This would only involve solving for more unknown coefficients 

in the polynomial representation for the flux in an assembly. The 

process of using empirical weighting factors to obtain flux matching 

can be extended to the higher-order dimensions also. It should be 

noted that the present study required a prior knowledge of the flux pro-

files to obtain the optimum weighting factors that yielded the best 
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agreement between the two calculations. Further study must be done to 

determine an analytical solution that will yield the optimum weighting 

factors directly. It should also be investigated if separate weighting 

factors apply to the fast and thermal fluxes. It is also suggested 

that an inner and outer iteration scheme be employed to improve the 

feedback between the assembly averaged flux calculations and the 

evaluation of the assembly polynomial coefficients. 

Another area for further study is to determine a procedure to fit 

the correct albedo values at the core-reflector interface. Also, an 

adjustment for variations in the albedo value with coolant control 

poison concentration must be determined. It would also be desirable to 

simulate the effects of the core baffle by taking into account its ef-

fect on the albedo and flux profiles in the baffle region. 
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