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ABSTRACT 

A TGEV isolate, VMRI 5 170, and a PRCV isolate, NVSL 5 I 70, originating 
from a TGE outbreak on a swine farm in J 995, were characterized biologically , antigenically 

and genetically. Their growth characteristics were compared with the standard Miller strain of 
TGEV. The growth curves for the three viruses were similar. However, the average plaque 
size of the PRCV isolate NVSL 5 I 70 (0.99 +/- 0.3 1 mm) was smaller than that for the TGEV 

isolate VMRI 5170 (2.33 +/- 0 .56 mm) and the TGEV isolate Miller (2 .47 +/- 0.50 mm). 

These isolates reacted in virus neutralization tests with both hyperimmune sera raised against 
Miller strain of TGEV and the MAbs against the conserved epitopes on the S glycoprote in of 

TGEV. For genetic characterization of these isolates, the Sand 3/3. 1 genes were sequenced 
and compared with known sequences of TGEV and PRCV isolate . The S gene of the TGEV 

isolate VMRI 5 170 showed a 96- 97 % homology with the published sequences ofTGEV, 
with 120 - 169 nucleotide differences. The identity between the S gene sequence of the PRCV 
i olate NVSL 5170 and that of other PRCV isolates was al o 96 - 97 %. The PRCV isolate 

NVSL 51 70 had a truncated S gene with a 7 14 nucleotide de letion. This is the largest deletion 

detected thus far in PRCV i olates. Without accounting for the de letion, TGEV isolate VMRI 
5 170 and PRCV isolate NVSL 5 J 70 showed a very high level of homology in the S gene with 
only 6 nucleotide differences between all 4353 nucleotides. At the amino acid level, the 
difference wa only 4 amino acids. The protein profiles of these isolates by 

radioimmunoprecipitation assay also confirmed that the M and N proteins of TGEV isolate 

YMRI 5170 and PRCV isolate NYSL 51 70 were similar in size but the S glycoprotein of 
PRCV iso late NVSL 51 70 was smaller. The ORF 3 and 3. 1 genes of PRCV i olate NVSL 

5 170 were intact with only 2 nucleotide differences in this region when compared to TGEV 

isolate VMRI 5170. However, the first di fferent nucleotide in the 3. 1 gene of NVSL 5 I 70 
created a top codon which may have resulted in a truncated 3. 1 protein. In conclusion, TGEV 
isolate VMRI 5170 and PRCV isolate NVSL 5 170 are closely related to each other in both 
antigenic and genetic properties as well as biological characteristics. In addition, Phylogenetic 
analys is of the sequences demonstrated a very close relationship among these two isolates and 
pre ented trong evidence that PRCV isolate NVSL 5 170 emerged from TGEV isolate VMRI 
5 170 by a s ingle deletion. This de letion could possibly be the cause of the smaller S 
glycoprote in and the smaller p laque size of PRCV isolate, NVSL 5170. 



1. INTRODUCTION 

Transmissible gastroenteritis (TGE) disease in swine was first detected by Doyle in 
1946. The causative agent was referred to as transmissible gastroenteritis virus (TGEV) which 
was shown to be in the family of coronaviridae (Siddell et al. 1983a). TGEV produces watery 
diarrhea in swine of all ages; however, the disease is most severe in pigs less than 3 weeks of 
age. The severity of disease depends on the immune status and the age of the piglets (Hill, 
1988). By negative stainjng electron microscopic examination, coronavirus particles are 60 -
160 nm in diameter and are spherical to pleomorphic (Holmes, 1990; Saif and Wesley, 1992). 
The TGEV is enveloped with widely spaced club-shaped peplomers, 12 - 25 nm in length (Saif 
and Wesley, 1992). The TGEV has 3 major structural proteins, the nucleocapsid protein (N), 
the integral membrane glycoprotein (M) and the peplomer glycoprotein (S) (Spaan et al., 
1988). The N protein is a basic phosphoprotein to which the genomic RNA binds to form a 
helically symmetrical nucleocapsid. The M and S proteins are glycosylated transmembrane 
proteins. 

As a member of coronaviridae, TGEV contains a large, positive - sense, single stranded 
RNA genome (Siddell et al., 1983). During productive infection, TGEV synthesizes at least 8 
subgenomic mRNAs (Sethna et al. , 1989; Wesley et al., 1989), arranged as a nested set which 
have a common 3' poly-A terrruni, with different base sequences on the 5' end (Spaan et al., 
1988). The products of 8 subgenomic mRNAs are: polymerase from mRNA l, the peplomer 
or spike protein (S) from mRNA 2, a 7.9 kD protein from mRNA 3, a 27.7 kD protein from 
mRNA 4, a 9.3 kD protein from mRNA 5, an integral membrane from mRNA 6, nucleocapsid 
from mRNA 7 and a 14 kD polypeptide from mRNA 8. 

The TGEV is closely related to porcine respiratory coronavirus (PRCV), because 
PRCV was neutralized in vitro by antiserum against TGEV (Callebaut et al., 1988). However, 
some of the monoclonal antibodies against the S protein epitopes of TGEV do not recognize 
PRCV. The close antigenic relatedness between these viruses is due to the similarity of their 
genomic RNAs. The differences that have been observed between TGEV and PRCV are 
deletions in the S gene and the nonstructural ORF 3 gene of PRCV (Laude et al., 1993; 
Russchaert et al., 1990; Vaughn et al., 1995). Thus, PRCV may be regarded as a TGEV 
variant. However, TGEV and PRCV isolates from the same pigs are not available to 
conclusively determine if PRCV originated from TGEV. 
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The TGEV isolate, VMRI 5170, and the PRCV isolate, NVSL 5170, provide the 
opportunity to study the genetic and antigenic relationship between TGEV and PRCV. The 
VMRI 5170 and NVSL 5170 isolates originated from the same TGE outbreak in a swine herd. 
However, they were later determined to be different viruses. Therefore, the hypothesis of this 
study is that the PRCV isolate, NVSL 5170, emerged from the TGEV isolate, VMRI 5170, 
caused by a deletion mutation. In addition, the purpose of the study is also to determine how 
the mutation influences some biological properties of the viruses. To achieve the objective, the 
two viruses will be characterized in comparison to the standard Miller strain of TGEV. The 
characteristics to be examined include: 

I. growth characterization 
1.1. one step growth curve 
1.2. plaque size measurement 

2. antigenic characterization using viral neutralization test 
3. viral protein profiles by radioimmunoprecipitation assay 
4. genetic characterization by PCR and sequence analysis 

It is expected that this study should present strong evidence of the emergence of PRCV isolate, 
NVSL 5170, from TGEV isolate, VMRI 5 I 70, caused by a deletion mutation. 
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2. LITERATURE REVIEW 

Corona viruses 
Coronaviruse are large pleomorphic single - stranded positive RNA viruses (Tyrrell et 

al., 1978). The viruses in this genus have an un ique morphology which is a pleomorphic 

spherical virion with club - shaped peplomers, when examined by negative stained 
electronmicroscopy. Their genomic nucleotides are plus - stranded RNAs which replicate by a 
unique mechanism. Coronaviruses infect humans and a wide range of animals causing either 

systemic or local diseases. However, the viruses can be divided into 3 antigenic groups (Table 
I) in which there are some degrees of cross - reactivity with in each group. 

Table 1: Coronaviruses, antigenic groups and diseases. (from Holmes and Lai , 1996, 
Coronaviridae: The Virus and Their Replication) 

antigenic Virus Host Respirawry Enleric Hepatitis Neurologic 
group infection infection infection 

I HCV-229E Human x 
TGEV Pig x x 
PRCV Pig x 
CCV Dog x 

FECV Cal x 
FIPV Cat x x 
RbCV Rabbit x x x 

2 HCV-OC43 Human x 
MHV Mouse x x x x 
SDAV Rat x 
HEY Pig x x x 
BCV Cow x 

BRCV Cow x 
RbEVC Rabbit x 

TCV Turkey x x 
3 IBV Chicken x x 

BOY Turkey x 

Note: HCY-229E, human respiratory coronavirus; TGEY, porcine transmiss ible gastroenteriti 
virus; PRCV, porcine respiratory coronavi rus; CCV, canine coronaviru ; FECV, Feline enteric 

coronavirus; FIPV, feline infectiou peritonitis virus; TCY, turkey coronavirus; HCV-OC43, 
human respiratory coronavirus; MHV, mouse hepatitis virus; SDAV, sialodacryoadenitis virus; 
HEY, porcine hemagglutinating encephalomyeliti s virus; BCV, bovine coronavirus; BRCY, 
bovine respiratory coronavirus; RbCY, rabbit coronavirus. 
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Coronavirus Properties 
Coronaviruses are separated from other groups of viruses according to their distinct 

morphology. Their genomes are single plus stranded RNAs, 27 - 32 kb in size, which are 5' 
end capped and 3' end polyadenylated (Spaan et al., 1988; Lai, 1990). The genomic RNA of 
coronavirus is associated with nucleocapsid phosphoprotein to form a helical ribonucleoprotein 
about 9 - 11 nm in diameter. The ribonucleocapsid is surrounded by an envelope, derived from 
a host intracellular membrane and viral structural proteins. All coronaviruses possess 3 major 
structural proteins; a nucleocapsid protein (N; 50 - 60 kD), a membrane glycoprotein (Mor El; 
23 - 29 kD) and a spike glycoprotein (S or E2; 170 - 220 kD). Trimers of S glycoproteins held 
by a noncovalent bond form long petal - shaped spikes which are embedded in and projected 
from the viral envelope. Therefore, the morphology of the coronaviruses is similar to a solar 
corona when examined by negative staining EM. The size of coronavirus particles is about 100 
nm. However, they are pleomorphic and range in size from 75 - 160 nm. 

Antigenic group II coronaviruses also have a fourth structural protein, hemagglutinin -
esterase glycoprotein (HE, E3 or gp65; 62 - 65 kD) (Holmes and Lai , 1996). The HE dimer 
protein linked by a disulfide bond forms a short spike on the envelope which is homologous to 
that of influenza C virus. Coronaviruses that possess HE have hemagglutination, 
hemadsorption and acetylesterase activities. 

Virions attach to receptors on the host cell membrane via the S protein. Coronaviruses 
are endocytosed into the cytoplasm where they replicate (Fenner et al., 1993). The genomic 
RNA is transcribed to a minus - stranded RNA which in turn is transcribed to a nested set of 
mRNA with a common 3' end. The translated proteins mature in the endoplasmic reticulum 
followed by assembly in and budding from Golgi cysternae. The budding viruses do not 
contain RNA - directed RNA polymerase (Siddell et al., 1981 ). 

Transmissible Gastroenteritis Virus 

Virion structure 
TGEV is a virus in the genus coronaviruses, under the family coronaviridae (Siddell et 

al. l 983a) with pleomorphic spherical morphology and a diameter of about 60 - 160 nm 
(Okaniwa et al., 1968; Philip et al., I 971 ). Like other coronaviruses, TGEV also has a corona 
like morphology because the S glycoproteins form club - shaped surface projections, 12 - 25 
nm in length which are scattered on the virus envelope. Without projections, the size of the 
viral particle is around 65 - 90 nm. (Thake, 1968; Pensaert et al., I 970b; Wagner et al., 1973). 
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Intact virions have a buoyant density of 1.18 - 1.20 g/ml in a sucrose gradient (Briton et al., 

1980; Jimenez et al., 1986). 
The genomic RNA of TGEV encodes 4 structural proteins which include the small 

integral protein (sM), nucleocapsid protein (N), membrane glycoprotein (M), and the spike 
glycoprotein (S) (Spann, 1988; Laude et al., 1993; Holmes and Lai, 1996). These structural 
proteins incorporate into the virion and have different functions, as discussed below. 

Small integral protein (sM) 
Godet et al. (1992) reported that ORF 4 of genomic RNA encodes a 10 kD polypeptide 

called the small integral membrane (sM). This sM is incorporated into the virus envelope as an 
integral protein, however, its function is unknown. 

Nucleocapsid Protein (N) 

The N protein is a 47 kD phosphoprotein bound with RNA to form the 
ribonucleoprotein (Laude et al., 1990). These proteins are basic as they contain clusters of 
basic residues, but their C termini are acidic (Kapke and Brian, 1986; Spaan, 1988). Around 8 
- 10 % of the total amino acid residues are serine. In fact, most of the serine residues on the N 
protein are phosphorylated. The N protein has 3 structural domains; the middle domain binds 
to the RNA (Master, 1992) to form a helical nucleocapsid. In vitro studies reveal that N binds 
to the intracytoplasmic domain of the M protein during virus budding (Sturman et al., 1980). 
This leads N to facilitate encapsidation of the genomic RNA. In addition, it is now known that 
N protein also participates in RNA replication since antibody against N significantly inhibits 
genomic RNA synthesis (Compton et al. , 1987; Spaan et al., 1988). The N protein is also 
known to elicit cell - mediated immunity (Holmes and Lai, 1996). 

Membrane Glycoprotein (M) 
The Mis a 29 - 36 kD protein which functions as a matrix protein (Laude et al., 1993). 

It is composed of a 245 amino acid residue polypeptide that folds into 3 domains; hydrophilic 
N terminal domain, transmembrane domain, and C terminal intracytoplasmic membrane 
domain (Spaan et al., 1988). The N terminus domain of M, about 10 % of the M molecule, is 
N - linked glycosylated and is exposed on the outer surface of the envelope. Around 17 
residues of the N - terminus of the M glycoprotein form a signal peptide which is recognized 
by the signal recognition particle for membrane insertion. This signal peptide targets M protein 
to the golgi complex. 

The transmembrane domain is about one third of the M protein. It spans 3 times in the 
envelope while folding into 3 hydrophobic alpha helices (Spaan et al., 1988). This domain 
functions as the matrix for the viral envelope. Approximately half of the M molecule is a C 
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terminus intracytoplasmic domain which lies under the intracellular bilayer. This part associates 
with the N protein during viral budding. 

The M protein not only serves as a matrix protein, but also participates in other TGEV 
properties. Hydrophilic N terminus which is exposed on the outer surface is responsible for 
mediating complement - dependent neutralization and interferon induction (Charley and Laude, 
1988; Woods et al., 1988). M is also important for viral maturation, assembly and budding of 
the virus. The supportive evidence is that M appears to accumulate in the golgi apparatus where 
the virus buds in infected cells. 

Spike Glycoprotein (S) 
Spike or peplomer is a large membrane - anchored glycoprotein which is 220 kD of 

relative mass (Laude et al., 1993). S glycoprotein contains 1447 amino acid residues which 
form the N - to C - terminus containing a 16 amino acid residue, long N - terminal signal 
sequence, two large external domains (SJ & S2), a transmembrane domain, and a short C -
terminal intracytoplasmic domain. S protein contains a large number of N - linked 
glycosylation sites (Rasschaert and Laude, 1987; Jacob et al., 1987). The Intracytoplasmic 
domain which is rich in cysteine residues may direct S glycoproteins to be incorporated into the 
viral envelope and interact with other structural proteins (Holmes and Lai, 1996). The S2 

segment, which connects to the cytoplasmic domain, is the carboxyl half of the S molecule. 
This part forms the alpha helix secondary structure with 2 heptad repeated motifs that tend to 
fold to an intra - chain coiled coil structure of the peplomer. Unlike antigenic group II 
coronaviruses, TGEV does not have a trypsin cleavage motif between S2 and SJ. The SJ is a N 
terminal polypeptide which forms a globular glycoprotein. Trimers of SJ and S2 hold together 
by non covalent bonds to form petal - shaped spikes projecting from the envelope. 

S glycoprotein has many biological functions (Holmes and Lai , 1996). It binds to 
aminopeptidase N, a specific host cell surface receptor glycoprotein, during viral attachment. 
Inhibition of cell fusion by monoclonal antibodies against S glycoprotein suggests that S 
induces cell fusion of infected cells (Spaan et al. , 1988). Furthermore, S glycoprotein 
possesses neutralizing epitopes as antibodies raised against it can neutralize the viruses at 
multiple steps in the viral replication cycle (Nguyen et al., I 986; Sune et al. 1990). 
Presentation of the S protein on infected cells also induces cellular mediated immune response 
(Holmes et al., 1986; Welsh et al. , 1986). 
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Genomic Structure and Organization 
The genome of coronavirus is a large single stranded RNA of positive polarity (Spaan 

et al., 1988; Laude et al., 1993). It is about 27 - 30 kb in length, which is the largest known 
genome of all RNA viruses (Spaan et al., 1988). The genomic RNA is 5' capped and 3' 
polyadenylated, therefore, it is infectious when introduced into host cells (Lai, 1990). TGEV 
genome contains 7 genes and a 60 - 80 nucleotide leader sequence at its 5' end. Each gene may 
have 1 or more ORFs which are separated by intergenic sequences (IS) which contain signals 
for transcription of a nested set of subgenornic RNAs (Spaan et al. , 1988). The first gene from 
the 5' end is about 20 kb long consisting of 2 ORFs that encode viral RNA polymerase, 
protease, and other nonstructural proteins (Holmes and Lai, 1996). The rest of the genomic 
RNA is approximately 8.5 kb made up of 6 genomic regions; 2 (S), 3, 4 (sM), 5 (M), 6 (N) 
and 7. TGEV also shares the common gene order for coronaviruses, Pol - S - M - N, (Laude et 
al., 1993). In addition to region 1 of the genomic RNA, gene 3 of TGEV is also bicistronic. 
(Spaan et al, 1988; Lai 1990). 

Growth Characteristics and Physicochemical Properties 
TGEV can be propagated in primary and secondary pig kidney cell s, pig kidney cell 

line (Laude et al. 1981 ), and McClurkin swine testicle (ST) cell line (McClurkin and Norman, 
1966). The virus also replicates in organ cultures from pig esophagus, ileum and colon 
(Rubenstein et a l. , 1970). Cytopathic effect ( CPE) may not be observed in the primary isolate, 
so a higher viral passage may be required for CPE production. The CPE includes fusion of 
infected cells, rounding, enlargement or elongation of infected cells, ballooning effect of the 
infected cells and detachment of cells (McClurkin and Norman, 1966; Kemeny, 1978; Vaughn 
and Paul , 1993). TGEV can be isolated from freezing and thawing of the infected cell culture, 
and the titer of TGEV isolates range from 1 x 105 to 5 x 107 pfu/ml (Vaughn and Paul , 1993). 

TGEV is sensitive to heat and light but is resistant to the intestinal environment. TGEV 
is very stable when stored frozen but is labile at room temperature (Bay et al. , 1952; Young et 
al. , 1995). The virus can be kept at -20° C for 6 months without loss of infectivity. In contra t, 
at 37°C, the infectivity titer of the viruses will decrease 10 fold at every 24 hour interval. In 
addition, TGEV is inactivated by exposure to both sunlight and UV light (Haelterman, 1963; 
Cartwright et al., 1965). TGEV is resistant to trypsin and bile and is stable at pH 3 (Harada et 
al., 1968; Moscari 1980a). Resistance of TGEV to trypsin and bile allows it to pass from the 
stomach to the small intestine without degradation. 
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Replication Strategy 
The replication cycle of coronaviruses has been extensively studied for mouse hepatitis 

viru (MHV). The events from the very beginning to the end of the cycle include; attachment 

and penetration, primary translation, transcription, replicati on, late translation and assembly, 

and release. The following section summarizes a TGEV replication strategy based on a MHV 

replication model. 

Attachment and Penetration 
The first step of the replication cycle is the binding of S glycoprotein to a specific 

receptor on the host cell me mbrane. For TGEV, S glycoprotein binds with aminopeptidase N 

(APN), a zinc binding protease (Delmas et al., I 992a) which is abundantly pre ent on the 

brush border membrane of small intestinal villi (Delmas et al., l 992a). However, protease 

activity i not required for viral attachment. It wa found that some monoclonal antibodie 

against porcine and human APN can inhibit binding of S to APN. The cells that are normall y 

re istant to TGEV become susceptible to infection when cDNA coded for APN glycoprotein 

was inserted in the cells (Tung et al ., 1992). Yiru es enter into cell by fusion of the viru 

enve lope with either a plasma membrane or an endosomal membrane (Gallagher et al., 199 1; 

Kooi et al., 199 1 ). 

Primary Translation 
After viruses penetrate into cells, they start trans lation of the ir genomic RNA. The first 

tran lated gene encode RNA directed RNA polymerase (Holmes and Lai , 1996). It contains 2 

ORFs which are translated into a polyprotein by a ribosomal frame - shifting mechanism 

(Brierley et al ., 1989; 1991 ). The po lyprotein is co - translationally modified to multiple 

proteins including RNA directed RNA polymerase by viral and host protease. The polymerase 
is synthesized continuously during the replication cycle. 

Transcription and replication 

Po iti ve sen e stranded genomic RNA is transcribed into a minus - strand RNA which 

in turn serve as the template for either subgenomic mRNA or genomic RNA synthesis. All 

minus stranded RN As appear as double stranded RNA in replicative intermediate forms and no 

free minus tranded RNA is found (Perman et al., 1986). All mRNA and genomic RNA are 

5 ' capped and 3' polyadenylated. TGEV have 7 subgenomic mRNA which form a nested set 

of rnRNA with a common 3' end. They are numbered I to 7 according to their sizes which 

decrease by the increasing number (Lai , 1990). Mo t of the subgenomic rnRNA except the 

smallest one are polycistronic. Howeve r, on ly the ORF at the 5 ' end of each mRNA is 

translated, with the exception of mRNA I and 3 which are translated into 2 proteins (Spaan et 
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al, 1988; Lai 1990). The subgenomic mRNAs are synthesized in unequal but constant amounts 
during the replication cycle (Siddell et al. , 1983). The mRNAs are not processed by splicing 
because the replication talces place in the cytoplasm, and mRNAs are transcribed independently 
(Siddell et al. , 1983). 

As a coronavirus member, TGEV mRNAs have some specific characteri stics. 
Although the leader sequence is on the 5' end of the genomic RNA only, all subgenomic 
rnRNAs have the leader sequence at their 5' end. However, at the 5' end of each ORF of the 
TGEV genome, there is a consensus intergenic sequence of 6 - 8 nucleotides, AACUAAAC 
(Spaan, 1986; Laude et al., 1993). This sequence is complementary to that of the 3' end of the 
leader sequence. 

Two mode ls can explain how coronaviruses synthesize their subgenomic mRNAs 
(Holmes and Lai, 1996). The first model is the discontinuous, nonprocessive leader - primed 
transcription (Holmes and Lai, 1996). In thi s model, the full length minus - strand RNA is 
translated from the genomic plus strand RNA. Thereafter, polymera e transcribes the antileader 
sequence at the 3' terminus of the full length minus - strand RNA, and then terminates with 
dissociation of the leader from the template. The leader with or without polymerase jumps to 
bind with an intergenic sequence (IS) down stream of the template, which serves as the pri mer 
for mRNA ynthe i . Thus, an IS acts as the core promoter for mRNA transcription (Joo et 
al. , 1992; Kim et al. , 1993). However, the upstream sequence from the leader and 5' end 
sequence of subgenomic rnRNA are also required for transcription initiation (Liao and Lai, 
1994). Within the TGEV genome, there is a conserved sequence of 10 nucleotides, around 80 
bases from the 3' end of the genomic RNA that may re late to minus - stranded template 
synthesis (Kapke and Brian, 1986). 

Another synthesis model is discontinuous transcription during minus - tranded RNA 
synthesis (Sawicki and Sawicki , 1990). Tran cription of minus - stranded RNA terminates 
when the polymerase complex reaches the 3' end of an IS, which then jumps to bind to the 3' 
end of the leader sequence at the 5' end of the genomic RNA. Subsequently, the minus -
stranded subgenomic and genomic RNA with an antileader at their 3' end can be continuously 
transcribed into subgenomic or genomic mRNAs. Therefore, ISs serve as termination sites and 
bind with leader equences for j umping of RNA polymerase during minus - strand 
transcription (Holmes and Lai, 1996). However, this model is controversial. S ince loop 
structures have never been found on the Replicative Intermediate molecules, therefore, jumping 
of po lymerase by looping out of the negative - stranded template and co - or post -
transcriptional ligation of subgenomic minus - stranded RN As to leader , should not occur. 
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Furthermore, by coinfection of 2 strains of coronaviruses, the combination of mRNA of one 
strain and the leader of another strain may occur (Spaan et al. , 1988). 

In vitro transcription studies suggest that RNA polymerase complexes with some 
proteins. These proteins may be the product of the gene I and N protein (Brayton et al. , 1982; 
Dennis and Brian, 1982). The po lymerases for minus and plus stranded RNAs synthes is are 

different (Brayton et al., 1982; Brayton et al. , 1984). The two RNA polymerase complexes, 
the early and the late polymerases, involved in the negative - stranded RNA synthesis and the 

mRNA synthesis, respectively. 

For replication of coronaviruses to occur the Replicative Intermediate form of the full 
length RNA is needed (Holmes and Lai , 1996). The genomic RNA must be transcribed 
continuously to the full length minus - stranded RNA which in tum wi ll serve as the template 
for the plus - stranded genomic RNA synthes is. The studies on defective interfering RNA of 
coronavirus (mouse hepatitis virus) suggest that the replication also requires a leader sequence. 

However, the nucleotide in the IS for genomic RNA synthesis may differ from those for the 

subgenornic mRNA synthesis. In addition , about 200 nucleotides at the 3' and the 5' termin i of 
the genomjc RNA may participate in the replication. 

Late Translation 
During late tran lation, coronaviru e synthesize all structural proteins and ome non 

structural proteins from their corresponding mRNA. Most subgenomic mRNAs of TGEV are 

polycistronic , but on ly the ORF at the 5' end i translated (Holmes and Lai , 1996). However, 

mRNA I and 3 are bic istronic (Rasschaert et al. , 1987). The mRNA 3 of TGEV has 2 ORFs 
which are translated into 2 non structural prote ins. In non viru lent Purdue - J 5, and virulent 

Briti h FS772 trai n of TGEV, the genomic RNA possess the ORF 3a and 3b which are 
bici tronic (Spaan et al , 1988; Laude et al. , 1993). Unlikely, upstream of the ORF 3b of the 

viru lent Miller strain of TGEV exists a hexameric IS, CUAAAC. The beginning of the ORF 
al so has a start codon to signal for mRNA production (Laude et al , 1993). Therefore, ORF 3 of 
Miller strain is transcribed into 2 mRNAs, so called ORF 3/3- 1 instead of ORF 3a/3b. The IS 

of ORF 4 is also a hexamer, CUAAAC, while those of the ORF M, N and 7 are the heptameric 
ACUAAAC (Britton et al., 1991 ). 

The translated proteins are processed and transported to their target sites. N is trans lated 
on free polysomes, rapidly phosphorylated in cytosol and then bound to the genomic RNA 
(Sta hlman et al., 1983; Barie et al. , 1988). M is translated and inserted into the RER and post -
translationally modified by N - linked glycan (Spaan et al. , 1988). The processed M 

glycoprote ins then accumulate in the golgi apparatus where the budding virions are located. S 
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prote ins are N - linked glycosylated, reduced and non covalently linked to form trimers. Mature 
S g lycoproteins also accumulate in the golgi apparatus. However, some of the excess S 
glycoprotein is transported to the host cell membrane which may mediate cell to cell fusion 
(Vennema et al., 1990; Griffiths and Rottier, 1992). 

Assembly and Release 
Assembly and budding of viruses takes place in specific compartments fo llowed by 

release of virions by exocytosis (Holmes and Lai, 1996). N phosphoproteins may bind to 
specific sequences, possibly leader sequences (Stohlman et al. , 1988), on the genomic RNAs 
to initiate the helical structure. The successive binding may not require the specific binding 
between the RN As and the N prote in (Robbin et aJ., 1986; Stohl man et al., I 988). 
Encapsidation of RNA may be associated with a specific sequence within gene I b, 
approximately 20 kb from the 5' end of the genomic RNA (Van der Most et al. , 199 1; Fosmire 
et a l. , 1992). The nucleoproteins of the encapsidated particles bind to M glycoproteins 
incorporated on to the intracellular membrane. Thereafter, they develop from a budding 
compartment between the RER and the golgi apparatu (Holmes and Lai, 1996). S 
glycoproteins which are incorporated at the time of budding, are not necessary for viral 
as embly but S - naked virions are non infectious (Holme et al. , 198 1 ). 

Genetics 
RNA recombination is common among coronav iruses because of their unique 

replication trategy (Lai, 1992). During discontinuous transcription, RNA polymerase 
sometimes dissociates from a RNA template and jumps to attach to a homologous region on a 
different RNA template (Lai, I 992). RNA recombination leads to evolution of different strains 
of the ame specie or to different pecies of coronaviru es. For example, feline infectious 
peritonitis virus (FIPV) may have originated from the combination between TGEV and related 
viru es (Jacobs et aJ., I 987) because one domain of the S protein of FIPV and the S prote in of 
TGEV is 93% homologous where as the other domains are somewhat different. Moreover, the 
homology between the amino acid equence of the HA I domain of MHV - 59 and the amino 
acid sequence of the S protein of influenza C could be evidence of RNA recombination 
between 2 types of viruses (Spaan et al. , 1988). 

Like other RNA viruses, which have no proof - reading mechanism in their replication 
process, mutation frequently occur among coronavi ruses (Holmes and Lai , 1996). The 
mutations are e ither point mutations or large genomic deletions. The point mutations in the S 
gene of MHV lead to alteration of CPE and ti ue tropi m (Dalziel et al. , 1986; Fazakerley et 



12 

al., 1992; Gombol et al., 1993). The incidence of deletion mutations among coronaviruses is 
also high. The most distinctive deletion mutation is the emergence of porcine respiratory 
coronavirus (PRCV) from TGEV (Holmes and Lai , 1996). 

Antigenicity 
Antigenic Determinants 
Studies on the monoclonal antibodies against TGEV tructural proteins have allowed 

characterization of the antigenic map of TGEV. The structural S, M and N proteins are 
antigenic but the S glycoprotein i the primary protein that induces neutralizing antibodies 
(Jimenez et al., 1986; Laude et al., 1986). Antibodies against the M protein can neutralize 
TGEV in the pre ence of complement (Woods et al ., 1988; Laude e al. , 1988; Callebaut et al. 
1988; Laude et al., 1990). There are 4 major antigenic sites on the S glycoprotein defined as 
site A, B, C and D (Gebauer et al., 1991 ). All antigenic sites are located in the N terminal half 
(543 amino acid residues) of the S glycoprotein (Correa et al. , 1990). Only antigenic site A 
elicit neutrali zing antibodies ( Callebaut et al., 1988; Laude et al. , 1988; Sanchez et al., 1990). 

Antigenic s ite A is complex and is divided into 3 subsites, Aa, Ab and Ac (Correa et 
al., 1988). The amino acid residues in site A are intracellular, glycosylated and are located on 
the surface of TGEV. Amino acid residues involved in site A are 538, 591, and 543 for 
subs ites Aa, Ab and Ac, respectively (Gebuaer et al., 199 1 ). In addition, subsites Aa and Ab 
may overlap in residue 586 because change in residue 586 effects the conformation of both 
subsites. The amino acid sequence, 537 - MKSGYGQPIA - 547, which is highly conserved 
among TGEV may contribute partially to subsite Ac. This subsite may also contribute to 
protective immunity and is most likely crucial for diagnosis (Sanchez et al., 1990; Gebauer et 
al., 1991 ). Antigenic site A represents group specific epitopes which are shared by enteric 
TGEV and respiratory PRCV isolates (Sanchez et al., 1990). 

Other antigenic sites are also characterized. Antigenic site B contains type specific 
epitopes which are represented by enteric TGEV isolates (Sanchez et al., 1990). It consists of 
at least 3 conformational epitopes two of which overlap to each other (Gebauer et al., 1991 ). 
The residues involved in antigenic ite Bare glycosylated residues 97 and 144. Antigenic site C 
contains linear epitopes which are non glycosylated (Correa et. al., 1990; Gebauer et al., 
1991 ). The amino acid residues invo lved in ite C are residues 50 and 51. However, the 
con ensus sequence of s ite C, deduced by PEPSCAN, is possibly 48 - P - PIS - N - S - DIE -
52 (Gebauer et al., 199 J ). In contrast to site A, B and D, antigen ic site C is not accessible in 
the native form. Most TGEV i olates are conserved at antigenic sites B and C but vary in site D 
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(We ley et al. , 1990a). The res idues involved in site D are residues 38 1 (Gebauer et al. , 1991) 
to 392 (Pothumus et al. , 1990; De lmas et al. , 1990). 

Antigenic Relationship 
There i only one serotype of TGEV; however, TGEV is re lated to other corona viruses 

(Saif and Wesley, 1992). TGEV and PRCV are closely re lated because hyperimmune serum 
against TGEV can neutral ize PRCV. In contrast, TGEV shows no antigenic relationship to 
other porcine coronaviruses, porcine epidemic diarrhea virus or hemagglutinating 
encephalomyelitis virus. TGEV is related to feline infectious peritonitis virus (FIPV) and 
canine coronavirus (CCV) showing cross reactivity with TGEV to some degree by IFA and 
VN. However, they can be differentiated using a two way cross neutrali zation test (Reynolds et 
al. , 1986). The monoclonal antibodies against non neutralizing epitopes of the spike protein of 
TGEV can recognize TGEV; however, it does not recognize FIPV, CCV or PRCV (Laude et 
al. , 1988; Callebaut et al. , 1988; Sanchez et al. , 1990). 

Porcine Respiratory Coronavirus (PRCV) 
History 
From the early l 980's, the incidence of TGE, the disease cau ed by TGEV, has 

decreased considerably in Europe. However, the serostatus of swine herd for TGEV increased 
without evidence of any clinical enteric disease (Pensaett et al. , 1986; Jestin et al. , 1987b). A 
coronavirus, isolated from nasal swabs, was neutralized by antiserum to TGEV (Penseart et 
al., 1986), and was found to infect cells of the respiratory tract (Pensaert et al. , 1989). In 
1990, the TGEV-like virus was also isolated from swine herds in the US (Hill , 1989; Wesley 
et al. , l 990a). Recent studies revealed that the virus seemed to be a TGEV like - mutant since 
there were deletion mutations of the viral genome when compared with those of TGEV. The 
virus was named porcine respiratory coronavirus because of its respiratory tropism (Pensaert et 
al. , 1986; Wesley et al. , I 990a; Paul et al. , 1995). It is not clear whether PRCV emerged from 
the recombination of TGEV and related viruses or a mutation within the TGEV genome itself. 
Nevertheless, the evidence from genetic sequencing suggests that PRCV originated from 
TGEV (Laude et al. , 1993). In fact, the defective RNAs, discontinuous parts of the genomic 
RNA , are normally found in in fected cells. Thus, it is poss ible that dissociated RNA 
polymerase together wi th a nascent RNA may reassociate with the template downstream of the 
pause site, resulting in a deletion. 
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Genetic Relationship between TGEV and PRCV 
The pairwise alignments of the genomic RN As and the translated ORFs of TGEV and 

PRCV show only a 3 % nucleotide and amjno acid difference (Laude et al., 1993). This 
diversity results from deletion mutations and point mutations which are limited within the 5' 
half of the S gene and ORF 3a (Rasschaert et al., 1990; Britton et al., 1991; Page et al., I 99 1). 

Indeed, there are some differences in the mutations between European PRCV and USA PRCV 
isolates. Subsequently, both USA and European PRCV may have emerged from different 
mutational events (Laude et a l. , I 993; Paul et al. , 1995). However, both of them possess S 

genes encoding the N terminus truncating S glycoproteins, and non - translated ORF 3a 
psuedogenes (Laude et a l. , I 993). The evolutionary tree of 6 European PRCV and 5 TGEV 
isolates suggests that PRCV and TGEV have a common ancestor (Sanchez et al., I 992). 

The mutation within the S gene of PRCV i a large deletion of 672 - 68 I nucleotides at 

the 5' end of the S gene of TGEV (Laude et al., I 993). All European PRCV isolates have a 
672 nucleotide deletion of the S gene (Sanchez et al. , I 992). The deletions occur in the same 

po ition and cause a 224 amino acid truncated S glycoprotein. The number of deleted ba e 

within the S gene of USA PRCV vary greatly. It is a 681 nucleotide deletion within the S gene 
of USA PRCV, ISU I, which corre ponds to 227 arruno acid res idue (Laude et al., 1993). 
Other USA PRCV isolates have 621 - 681 nucleotide deletions within the S gene (Vaughn et 
al. , 1994; Vaughn et al., I 995). Without accounting for the deleted amino acids, the S proteins 

of PRCV and TGEV how a 98 % homology (Britton et al. 1991 ). Therefore, the S protein of 

PRCV and TGEV contain about 1206- 1209 and 1431 - 1433 arruno acid residues, 
respectively (Laude et al. , 1993). Subsequently, the S glycoprotein produced by PRCV has a 
relative mass of 190 kD compared with that of 220 kD for TGEV (Ras chaert et at., 1990). 

The mutation within the ORF 3a of European PRCV and USA PRCV are also different, 
but the ORF 3b are the same (Laude et al., 1993). The ORF 3a of European PRCV has 3 
mutation events; a 13 nucleotide deletion including the hexameric IS, a 22 nucleotide deletion 

covering the AUG initiation codon, and a 36 nucleotide deletion (Laude et al., I 993). These 
deletions destroy the transcription start site in which, consequently the ORF 3a is a 
pseudogene. In the ORF 3a of USA PRCV, there is a 5 nucleotide deletion, but IS or the 
initiation codon is intact which does not effect transcription. However, the consensus sequence 

is CUAAAU instead of CUAAAC which may cause ineffective transcription. In contrast, the 
ORF 3b of the PRCV genome has both IS and the start codon like that of TGEV. Thus, it can 
be transcribed into the 3 - I non structural protein (Wesley et al., I 989). In fact, gene 3 of 
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Purdue - 115, and FS 772 TGEV do not have the CUAAAC equence downstream of the ORF 
3b but their ORF 3b encodes the same 3 - I products by a RNA framshifting mechanism. 

The ORF 4, M, N and 7 of PRCV and TGEV are 98 % homologous (Britton, 1991 ). 
The ORF 4 of PRCV shows 96 % homology lo FS 772 and Purdue I 15, but 100 % identity to 

Miller TGEV (Rasschaert et al. , 1987; Britton et al., 1989; Wesley et al., 1989). There is no 
deletion or insertion within the N and 7 gene of PRCV when compared with those of TGEV. 

The relative mass of the M and N protein produced by PRCV and TGEV infected cells are 

similar (Rasschaert et al. , 1990). 
Antigenic Relationship between TGEV and PRCV 
It has been known since 1984 that TGEV and PRCV are closely related , as polyclonal 

antibodies were not able to distinguish between TGEV and PRCV. By one way and two way 
viral neutralization tests , both viruses showed complete cross reactivity (Callebaut et al., 
1988). By immunoblotting using polyclonal anti serum, their antigenicities could not be 

differentiated using S , Mand N antigens (Callebaut et al., 1988). However, monoclonal 

antibodies elicited to some epitope of TGEV were unique for TGEV which would therefore 
differentiate PRCV from TGEV. 

TGEV and PRCV have several common antigenic determinant , but recent studies 

show that some epitopes are not present on PRCV. Antigenic site A with neutralizing activity is 
fully shared between TGEV and PRCV because monoclonal antibodies against these antigenic 
sites neutralize both TGEV and PRCV (Callebaut, 1988; Laude et al. , 1988; Sanchez et al. , 
1990). PRCV po sesses the deleted S gene whose product are the truncated S glycoprotein 

(Rasschaert et al., 1990; Britton et al. 1991 ; Wesley et al., 1991 ). The deletions are 224 to 227 

amino acid residues which may include antigenic sites B, C and D ince the monoclonal 
antibodies against the epitopes within these site do not recognize PRCV (Callebaut, 1988; 
Laude et al., 1988; Sanchez et al., 1990). Indeed, Laude et al. (1988) found that there is some 
cross reactivity at site D between TGEV and PRCV, as some residues involved in the 
conformational epitopes of site D come from outside the truncated domain. 

In addition to the S antigen, TGEV and PRCV also exhibit Mand N antigens. 

Monoclonal antibodies against the epitopes within the M and N protein of TGEV can recognize 
PRCV (Callebaut, 1988; Laude et al. , 1988; Sanchez et al. , 1990). However, about 30 
residues of the N terminus of the M protein of TGEV which are extruded from the virion 
envelope do not react with 3 PRCV isolates (Laude et al., 1988). On the other hand , the 
epitopes within the C terminus of the M protein are conserved between TGEV and PRCV 
because of their cross reactivities. 
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Tissue Tropism 
TGEV causes an enteric disease because the virus itself has a tropism for the 

gastrointestinal tract, but some strains of TGEV replicate in other organs. TGEV receptors on 
the host cell membrane are aminopeptidase N (APN) which are abundant on the brush border 
of the intestinal vi lli (Delmas et al., I 992a). Therefore, TGEV can infect the mucosa! epithelial 
cell s of intestinal viii i. However, most of TGEV strains also rep I icate in the cells of the 
respiratory tract and alveolar macrophage (Wesley, 1990b; Britton, 1992; Laude et al., 1993). 
The Nebraska strains of TGEV are found to have respiratory tropism, so called respiratory 
TGEV (Underdhal et al. , 1978; Laude et al., 1993). The antigenic sites of TGEV for APN 
receptors are likely to be antigenic sites ND and B/C on the globular domain or N - terminal 
haJf of the S g lycoprotein (Sanchez et al. , 1992) because monoclonal antibodies against s ite A 
and D inhibit virus binding (Sanchez et al., 1992) and decrease multiplicity of TGEV in ST 

cells (Sune et aJ., 1990). 
The cell receptor for PRCV seems to be APN, as it is for TGEV (Laude et al., 1993). 

The APN is also expressed on epithelial cells of the respiratory tract. In fact, anti APN 
monoclonal antibodies can inhibit the multiplication of PRCV (Delmas et al., 1992b). 
Additionally, cells resistant to PRCV replication when transfected with cDNA encoded for 
APN could support growth of PRCV (Laude et al., 1993). Interestingly, PRCV has resp iratory 
tropism instead of enteric tropism. However, it can replicate to a Iimjted extent in epithelial cells 
of the intestinal vi lli (Paul et al, 1995) . 

The mechanism of the difference in tissue tropism of TGEV and PRCV is unclear but it 
may be due to genetic deletions. The deletion region in the S gene of PRCV includes B and C 
antigenic sites (Sanchez et al., 1992) which may be the enteric receptor binding sites that 
TGEV uses for attachment. The four residue changes in the S protein of respiratory TGEV 
(residue 219 of NEB 72 and residues 92, 94 and 218 of TOY 56) are located within the 
deletion region of the PRCV S protein . This assumption rrught not be true since receptors on 
host cell membrane for both TGEV and PRCV are APN which are expressed in either 
respiratory tract or enteric tract (Laude et al. , 1993). However, the deletion in the S gene of 
PRCV may result in an unstability of the globular part of the S glycoprotein in gastroenteric 
tract (Laude et al. 1993) which could effect the attachment of viruses to cells. In addition, the 
deletion of ORF 3a may lead to respi ratory tropism of PRCV (Laude et al. J 993) since the 
TGEV adapted strains, which produce small plaque (SP) size, have a reduced ab ility to grow in 
intestinal cells (Wesley et al., I 990b). SP strains of TGEV also have a deletion of 462 
nucleotides downstream of the S gene including ORF 3a but have a normal S gene (Wesley et 
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al., l 990b; Britton et al., 1992). Indeed, several cell types, which are conducted to stably 
express APN, could support growth of TGEV in different levels (Delmas et al., 1992b). Other 
factors that influence the replication cycle of the viruses may effect tissue tropism of viruses 
(Laude et al., 1993). 

Transmissible Gastroenteritis (TGE) 
Transmjssible Gastroenteritis (TGE) is a disease caused by TGEV. Thjs disease is 

classified in to 2 forms, epizootic and enzootic TGE (Saif and Wesley, 1992). The epizootic 
feature seems to be seasonal in appearance which is most prevalent in winter. This may be due 
to the characteristics of the virus which is easily labile at warm temperature and to sun light 
(Hae1tennan, 1962). The susceptible herds may become infected by addition of carrier pigs 
from infected herds. The infected pigs can shed TGEV in their feces for up to 2 weeks 
(Pensaert et al., I 970a) and via respiratory tract for up to 11 days (Kemeny et al., 1975). 

Clinical Signs 
Epizootic TGE occurs in swine herds in which most or all animals are susceptible (Saif 

and Wesley, 1992). The disease spreads rapidly to swine of all ages, but high mortality occurs 
in suckling pigs under 2 weeks of age. However, pigs over 3 weeks of age normally survive. 
The typical clinical signs in piglets are; transient vomiting, concorrutantly or rapidly followed 
by profuse watery diarrhea, rapid weight loss and dehydration (Saif and Wesley, 1992). 
Clinical signs in growing and finishing pigs are inappetance and diarrhea for a few days. Some 
lactating sows may show a very sick appearance with fever, agalactia, vomiting, inappetance 
and diarrhea (Saif and Wesley, 1992). The incubation period of the virus is approximately 18 
hours to 3 days. Therefore, most of the pigs in the herd will be affected within 2 - 3 days. 

Enzootic TGE refers to a persistence of the virus and disease in a herd which 
periodically results in an outbreak in susceptible animals such as weaning piglets and 
replacement swine (Saif and Wesley, 1992). The susceptibility of animals and severity of the 
disease are associated with the immune status of those animals. In herd replacements, TGEV 
spreads slowly among adult swine. The outbreak in piglets after weaning is common because 
viral exposure exceeds the passive immunity of pigs (Saif and Wesley, l 992). The pigs will 
show signs of TGE after weaning from 6 days to 2 weeks. Clinical signs of enzootic TGE are 
sirrular to but are less severe than those of epizootic TGE. Mortality is also low. The disease 
will perpetuate in the herd as long as susceptible animals or immune deprived piglets are 
exposed to TGEV. 
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Pathogenesis 
In the gastrointestinal tract, TGEV can survive in acidic condition and in the pre ence of 

proteolytic enzymes (Saif and Wesley, 1992). Subsequently, virus particles attach to epithelial 

cells of the villi of the small intestine. The infected cells are rapidly destroyed and lose the ir 

function in digestion and ab orption (M oon, 1978), resulting in diarrhea. The extensive 

destruction by viruses results in atrophy of villi which is most severe in jejunum and ileum, but 

is seldom found in the proximal part of duodenum (Hooper and Haeltennan , l 966). Both virus 

production and villous atrophy are severe in newborn piglets rather than in piglets over 3 

weeks of age (Moon et al. , 1973) because the 3 - week old pigs replace villous epithelial cells 3 

times more rapidly than neonatal pigs (Moon, 1978). The immune status also plays an 

important role in protecting cell s from viral infection since the older pigs are more resistant to 

TGE. 

Although the enteric tract is the most important replication site of TGEV, virus can 

multiply in other organs. TGEV was found in alveolar macrophages of infected neonatal pigs 

and cell culture adapted TGEV can replicate in alveolar macrophage cultures (Laude et al., 

1984). Some TGEV such as a highly attenuated strain of TGEV has been found in the 

respiratory tract of pigs. TGEV can also replicate in the mammary glands and is shed in milk 
(Ke meny and Wood , 1977) , which serves as a source of infection for piglets. 

The most severe TGEV - induced lesions are found in the gastrointestinal tract of 

suckling piglets with evere dehydration (Saif and Wesley, 1992). The stomach are full of 

curdled milk. The small intestine is distended with yellow and foamy fluid and the intestinal 

wall is thin due to vi llous atrophy. A lack of chyle absorption is observed in lacteal s of 

me entery. The shortened villi appear in both the jejunum and the ileum. The ratio of the length 

of jejuna) vi lli , and the depths of crypts of Lieberkuhn, decreases from 3: 1 to I : l in severe 

cases ofTGEV - induced villous atrophy. Transmi ion EM of TGEV infected epithel ial cells 

reveals that the viral particles are in cytoplasmic vacuoles within vi llous enterocytes, as we ll as 

in M cells, lymphocytes and macrophages in Peyer' s patches (Thake, 1968; Wagner et al. , 
1973; Chu et a l. , l 982a). 

PRCV Associated Disease 
Although PRC V wa first isolated from normal swine and thought to be non -

pathogenic, some experiments and fi eld observation have shown that, in young pig lets, it can 

cause a mild to moderate respiratory di sease without enteric signs (O' Toole et al ., 1989; Cox 

et al., l 990a; Laval et al., 1991; H albur et a l. , 1993). Anorexia, fever and coughing are the 

main clinical s igns. In severe cases, dyspnea, polypnea, short lasting fever and prostration may 
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appear (Vannier, 1990). Young piglets are much more susceptible to the disease than adults. 
Therefore, the older pigs may be asymptomatic fo llowing aerosal infection (Cox et al., 1990b). 

The virus can be isolated from nasal mucosa, tonsils, trachea, lung, stomach and small 
intestines (O' Toole et al., 1989; Cox et al., I 990a). However, in aero ol infected piglets, the 
viruses are found in mesenteric lymph nodes and in the colon. The virus particles may reach 
the intestine via ingestion or viremia from the respiratory tract (Laude et al. , 1993). 

Diagnosis 
TGE shows very distinctive clinical signs and characteristic lesion of villous atrophy 

(Bohl 1981 ). Differenti al diagnosis should include rota virus, porcine epidemic diarrhea virus 

and coccidia which may produce profuse watery diarrhea with villous atrophy. Laboratory 

diagnosis of TGEV may be achieved by one or more methods, such as detection of viral 
antigen, detection of viral nucleic acid, identification of the virus or detection of antibody 
response. Yet, PRCV is closely related to TGEV in both genetic and antigenic properties which 

requires more specific differential procedures. 
The viral particles can be detected in feces and in the inte tinal contents of infected 

animals by negative - contrast transmission EM (Saif et al., 1977). Sensitivity of diagnosis 

may be enhanced using immune EM (IEM) to differentiate TGEV from other enteric viruses. 
TGEV and PRCV may be distinguished using monoclonal antibodies. 

TGEV antibodies have been detected by several different serological tests (Saif and 
Wesley , 1992). The most common serological method is the VN test. However, polyclonal 
antibodies and some monoclonal antibodies can not discriminate between TGEV and PRCV. In 
addition, a variety of serological techniques such as IFA, immunodiffusion, passive HA and 

ELISA have been applied for diagnosis. Other recently developed methods are, blocking 
ELISA, indirect immunoperoxidase, radioimmunoprecipitation and modified autoradiography 
(Saif and Wesley, 1992). 

A competitive inhibition ELISA or blocking ELISA can differentiate antibodies to 

PRCV from tho e to TGEV with the same ensitivity as when detected by a viral neutralization 
(VN) te t (Callebaut et aJ., 1989). The competitive inhibition ELISA has been developed using 
TGEV as the coating - antigen. The dilutions of test sera are reacted with the fixed antigen. Anti 
- TGEV serum blocks the binding of mouse monoclonal antibody raised against antigenic site 

B of S glycoprote in (CaJ lebaut et al., 1988). Therefore, it gives a negative result when detected 

with peroxidase - mouse IgG conjugate. In contrast, anti - PRCV serum does not recognize the 
antigenic site B of S glycoprotein, giving a positive signal. By this method, pigs infected with 
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PRCV can be differentiated from those infected with TGEV (Callebaut et al., 1989; Laude et 

a l. , 1993). 
Viral antigen can be detected in epithelial cell s of the small intestine (Saif and Wesley, 

1992). Infected pigs should be euthanized at the early stages of diarrhea for collection of 
mucosa! scrapings or frozen sections from jejuni and ileum. These specimens are examined by 
FA, IFA or a immunoperoxidase method. Cross reactions may occur among TGEV, PRCV, 
FIPV and CCV. 

TGEV could be differentiated from PRCV based on genetic differences. Both PCR and 
hybridization techniques have been developed to detect TGEV genomic RNA in fecal samples 
or infected tissues (Shockley et al. , 1987; Benfield et al. , 199 1; Vaughn et a l. , 1994). Since 
PRCV has a 672 - 681 nucleotide deletion in the S gene, the relative mass of the PCR product 
of the PRCV S gene is lower than that of the TGEV S gene (Vaughn et al. , 1994). Moreover, 
RNA probes for hybridization have al o been derived from the 5' end of the S gene of TGEV 
which can differentiate between TGEV and PRCV. Recently, in situ hybridization (ISH) has 
been developed that can detect nucleic acid of TGEV in formalin - fixed tissue (Sirinarumitr et 
al., 1995). This technique applies not only to diagnostic testing for the differentiation of TGEV 

and PRCV, but also in studies of virus pathogenesis. 
Isolation and Identification of Virus 
A swine testicle cell line has been used for detecting field strains of TGEV and PRCV 

(McClurkin, 1966; Kemeny, 1978; Bohl , 1979; Pensaert and Cox, 1989; Vaughn et al., 
1993). The presence of the virus in the cells may be observed by CPE, plaque production, VN 
and IFA. The CPE or plaque formation may be enhanced by using older cells (Stark et al. , 
1975) and adding pancreatin or trypsin to the cell culture media (Bohl, 1979; Woods, 1982). 
The CPE produced by PRCV re embles that of TGEV plus syncytia formation (Pensaert and 
Cox, 1989). 

Immunity 
Adult wine infected with TGEV are immune against TGEV but only local immunity i 

protective (Saif and Wesley, 1992). Swine infected orally develop both serum and mucosa! 
antibodies. Serum antibodies can be detected in serum for 6 months to several years after 
infection (Stepanek et al., 1979), but serum antibodies provide little protection against TGEV 
reinfection (Haelterman, 1965; Harada, 1969). In contrast, local mucosa! immunity, induced 
by oral but not parenteral inoculation with TGEV can protect swine from sub equent TGEV 
exposure (Kodama, 1980; Sprino and Ristic, 1982). The prominent clas of local 
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immunoglobulin is secretory IgA (slgA) which covers along the gut mucosa (Kodama, 1980). 
CMI aJso appears in infected swine but no direct evidence has been presented as to the role of 
CMI in the re istance of swine against TGEV (Saif and Wesley, 1992). However, it is believed 
that CMI may play a role in either recovery from TGEV infection or resistance to reinfection. 

Sows recovered from TGE can transmit passive immunity to their suckling piglets via 
colostrum (Saif and Wesley, 1992). Since newborn piglets lack immunity to TGEV, passive 
immunity is important for immediate protection against TGEV. In the first week of parturition, 

the IgG class is dominant in colostrum which crosses piglets' enterocytes and provides serum 

antibodies (Porter and Allen, 1972; Bourne, 1973). The circulatory antibod ies protect against 
systemic infection but not intestinal infection (Hooper and Haelterman, 1966). After a week, 
IgG in milk decreases while slgA in milk is predominant (Porter and Allen, 1972). Secretory 
IgA will not be absorbed by the piglet but provides locaJ immunity against TGEV in the gut 

tract (Roux et al. , 1977), by neutralizing ingested TGEV. IgA clas is produced only by oral 

immunization of sows but not by parenteral or systemic infection. 
Vaccine have been developed to induce protective immunity for both piglets and sow . 

Live attenuated and inactivated TGEV vaccines are available for oral or intraperitoneal 

administration after birth (Saif and Wesley, J 992). Orally vaccinated newborn piglets require 5 

days for acti ve immunity development which obviously can not provide immediate protection 
against TGEV for the first few days o f life (Pensaert, 1979). Immunization of suckling or 
feeder pigs could decrease mortaJ ity rate of enzootic TGEV. However, the pre ence of maternal 
antibodies in the e pigs can suppress active immunity (Furuuchi et al. , 1978; Hess et aJ. , 
1982). Vaccination of pregnant swine increases passive immunity for suckling piglets via 

colo trum and milk. There are several vaccine preparations for immunization of pregnant dams 

such as virulent, attenuated, inactivated and subun it vaccines which may be inoculated via oraJ, 
intranasal, intramuscular and intramammary routes (Saif and Wesley, 1992). OraJ 

administration of virulent autogenous viruses induces the highest level of immunity, 
consistently producing higher ti ters of persisting IgA in milk (Saif and Wesley, 1992; Paul et 
al. , 1988). 

The wide prevaJence of PRCV in swine herds seem to overcome the prevalence of 

epizootic TGE, since TGE outbreaks have declined concomitantly with the increases in the 
occurrence of PRCV infection (Pensaert and Cox, 1989). This suggests that PRCV infected pigs 

are partially immune to TGEV infection (Pensaert, 1989; Pensaert and Cox, 1989). Sows 
oronasaJiy infected with PRCV after natural exposure to PRCV secrete slgA in their milk but the 
level of antibody rapidly decrease approximately 24 week after infection (Laude et al., 1993). 
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However, natural infection of sows with TGEV followed with PRCV infection during pregnancy 
stimulates slgA production against TGEV which can protect offspring (Duen et al ., 1990). Sows 
first infected with PRCV develop rapid secondary immune response against TGEV with higher 
lactogenic IgA (Pen aert, 1989, Pensaert and Cox, 1989). Lactogenic protection in piglets from 
TGEV immune sow is higher than in piglets from PRCV immune sows (De Diego et al. , 1992). 
However, Paton and Brian ( 1990) reported that no cross protection occurs between PRCV and 
TGEV via sow' milk. 
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3. MATERIALS AND METHODS 

Cell Culture 
The swine testis (ST) cell line (McClurkin and Norman, 1966) was used to propagate 

TGEV and PRCV. The ST cells were cultured in Eagle's minimum essential medium (MEM; 
Gibco BRL, Grand Island, NY) supplemented with 10 % fetal bovine serum (FBS ; Gibco 
BRL, Grand Island, NY), sodium bicarbonate (2 .0 g/1) (Fisher Scientific, Fair Lawn, NJ), 2 
% L - glutamine (Gibco, Grand Island, NY) and lactalbumin enzymatic hydrolysate (5 .0g/l) 
(Sigma, St. Louis, MO). The ST cell lines were grown in 75 cm2 flasks (Corning, Cambridge, 
MA) at 37° C in a humid 5 % C02 atmosphere and subcultured every 3 - 4 days. 

Viruses 
The Miller strain (American Type Culture Collection, Rockville, MD) was used as the 

standard TGEV strain in this study. The VMRI 5170 and NVSL 5 170 isolates were obtained 
from diarrheic pigs. 

VMRI 5170 and NVSL 5170 isolates are the viruses isolated from suckling pigs in a 
herd with enteric disease in 1995 (Halbur et al. , 1995). Approximately 15 - 20 % of sows and 
almost l 00% of weaned pigs had diarrhea which suggested periodical TGE since November, 
1994. However, the causative agent was still unclear. The fecal samples and tissues from 
neonatal pigs with diarrhea were then sent to Iowa State University - Veterinary Diagnostic 
Laboratory for definitive identification of enteric pathogens. Microscopic examination of 
intestinal section demonstrated severe atrophic enteritis. Electron microscopic examination of 
feces demonstrated a large number of atypical coronavirus like particles. Fluorescent antibody 
examination of frozen tissues demonstrated weak positive staining using anti - TGEV 
polyclonal antibodies. The fecal samples were also cultured on ST cells at Veterinary Medical 
Reseach Institute and National Veterinary Service Laboratory. Cytopathic effect typical of 
TGEV was observed in both laboratories. The isolates were called VMRI 51 70 and NVSL 
5170. By Jn situ hybridization , performed at VMRI, the tissue sample demonstrated a weak 
positive s ignal. Finally, RT - PCR was performed on RNA isolated from the viruses 
propagated on ST cells. Initial results revealed that the VMRI 51 70 isolate was TGEV while 
NVSL 5170 isolate was PRCV. 
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Virus Plaque Purification 
The 2 viral i olates and a standard virus, Miller strain of TGEY, were plaque purified a 

totaJ of three times. Ten - fold serial dilutions of the viral isolates were prepared as inoculum. 

Four-day-old ST cell mono layers in ix-well plates were inoculated with 0.5 ml of each viru 

and then incubated at 37° C for I hour. After incubation, the inoculum was re moved, and the 

ST cell monolayers were overlaid with 2 ml of a mixture of Eagle's basal medium (BME; 

Gibco BRL, Grand I land, NY) and 2% agarose (FMC Bioproducts, Rockland, ME) 

containing 0.0016% neutraJ red (Fisher Scientific, Fair Lawn, NJ) and 30 mM sodium 

bicarbonate. The plate were placed in the dark at room temperature until the agaro e became 

solid and then incubated at 37° C for 2 days. The virus was collected from individual plaques 

by aspirating infected cells and agarose with a sterile Pasteur pipette . The agarose plugs 

containing TGEV-infected cells were transferred into tubes containing I mJ of MEM with 2 % 
FBS and 1 % antibiotics - antimycotics (GibcoBRL, Grand I land, NY). The tubes were 

frozen and thawed three times and clarified by centrifugation at 2,000 rpm for I 0 minutes. The 

viral u pen ion wa diJuted ten - fo ld for further plaque purification. This procedure was 

replicated three times. The viral stocks were stored at -70° C. 

One Step Growth Curves 
Each train o f virus was inoculated on 4 day old ST cell cultured in 12 well plate 

(Corning, Cambridge, MA) at a MOI of 1 pfu/cell. At each time point from 0 to 96 hours post 

inoculation, the media was collected and the infected cell were scraped and transferred into a 

tube. T he virus - cell suspension was frozen at -70° C and thawed 3 times and then clarified by 

centrifugation at 2,000 rpm for 10 minute . The virus suspen ion wa inoculated on 2 - 3 day 

old ST cells eeded in 96 - well plates, 8 wells each, and then incubated at 37° C in a C02 

incubator. After 72 hours po t inoculation, the culture were ob erved for CPE. The reciprocal 

of the highest dilution that was infectious for ce ll cultures was the virus titer. One step growth 
curves were generated for each viru . 

Plaque Size Measurement 
Four to five day old ST cell s cultured in 6 - well plates (Corning, Cambridge, MA) 

were inoculated at a 0.001 MOI for each strain of virus. One hour post inoculation, the 

inoculum was removed and replaced with 2 % Sea Plaque agarose (FME bioproduct , 

Rockland, NY) in an equal amount of BME (Gibco, Grand Island, NY) containing 0 .001 6 % 

neutral red (Fisher Scientific, Fair Lawn, NJ) and 30 mM sodium bicarbonate. The plates were 
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placed in the dark for 15 minutes and then incubated at 37° C. At 48 hours post inoculation the 
diameters of plaques were randomly measured in one direction. Sixty plaques of each strain of 
v1ru e were recorded and analyzed statistically using the ANOV A procedure. 

Virus Neutralization Test 
Hyperimmune serum or monoclonal antibodies, MH I I and MH5, directed against 

con erved epitopes on the S glycoprotein of TGEV were e ri ally diluted two - fold in 96 - well 
plates from 1: 100 to I: I 02,400. Eight well were used for each serum dilution. Diluted serum 
or monoclonal antibodies were mixed with 50 µI of MEM containing I 00 pfu of the virus and 

incubated for 1 hour at 37° C. One hundred µI of ST cell suspension at a concentration of 5 x 

I 05 cells/ml were di pensed into each well. The plates were incubated at 37° C for 48 hours 
and the cultures were observed for CPE. The experiment wa replicated 6 times. The VN titer 
of the tested serum, resulting from the la t dilution of serum neutralizing TGEV, was calculated 

fro m the average of the 6 values by the regression analysis procedure. 

Radioimmunoprecipitation Assay (RIP) 

Metabolic Labeling 
Radioimmunoprecipitati on was used to determine differences in the migration of viral 

tructural proteins. The ST cells infected with the Miller strain , the NVSL 5 170 or the VMRI 
5 170 isolate, and mock-infected cells were labeled with 35S-methionine-cysteine. The viruses 
were inoculated into 3-day-o ld ST cells in 25 cm2 flasks at a MOI of 0 . 1 pfu/cell. Inoculum 
was removed after 16 hours post inoculati on and Met - Cys defi cient DMEM (ICN, Costa -

Me a, CA) was added. After I hour of incubation at 37°C, the spent media wa decanted and 

replaced with fresh Met - Cy free DMEM containing I 00 µCi/ml35S-methionine-cy teine 
(ICN, Costa Mesa, CA). Four hours after add ing 35S-methionine-cy te ine, the spent media 
was removed and the in fected cell monolayer were washed 3 times with cold PBS. 
Sub equently, I ml of lysis buffer (Cellu lar labe ling and immunoprecipitation kit, Boehringer 

Mannheim, Ind ianapolis, IN) was added into each flask. ST cells were then scraped from the 
surface of the fl a k and transferred into 1.5 ml microfuge tubes. The cell - lysis buffer 

suspensions were vortex mixed vigorously for I minute and then incubated on ice for 30 
minutes. Then, the suspensions were centrifuged at high peed at 4° C for 15 minute . The 
supernatant was collected and stored at -20° C unti l needed. 
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Immunoprecipita tion 
Lysate (50 µI) was clarified by incubating with 20 µI of protein A coated sepharo e 

beads (S igma, St. Loui , MO) for 1 hour at 4° Con a rocking platform. The clarified lysate 

was allowed to react with 1 µI of the hyperimmune serum or monoclonal antibody , MH 11, for 

3 hours at 4° Con a rocking platform. Immune complexes were collected by adding protein - A 

- coated sepharose beads (Sigma. St. Louis, MO) and incubated overnight at 4° C on a rocking 

platform. The antigen-antibody complexes were washed by rinsing twice with wa h buffer I, 
twice with wash buffer II, once with wash buffer ill and twice with deionized distilled water as 

the method described in the cellular labeling and immunoprecipitation kit (Boehringer 

Mannheim, Indianapolis, IN). These immune complexes were resuspe nded in 30 µI Laemmli 

sample buffer (Bio - Rad, Hercules, CA) and heated for 3 minutes in a boiling water bath. The 

protein - bead mixtures were centrifuged at high speed for 30 econds, and the supe rnatants 

were electrophore e ed through a 10 % SDS-polyacrylamide gel at I 00 vo lt for 15 minute , 

and 150 volts for 1 hour, respectively . 

Autoradirography 
The e lectrophoresed gel was fixed in acid - methanol ( I % formic acid and 3 1.25 % 

methanol) for 15 minutes and then washed 3 times with deionized water. The radioactive 

signals were e nhanced by incubation of the fixed gel in 50 volu me of Enlighteningn.1 (NEN, 

Boston, MA) fo r 30 minutes on rocking platform. Subsequently, the gel was vacuum dried for 

90 minutes at 65° C, and was then expo ed to biomax film (Kodak, Rochester, NY) overnight 
at-70° C. 

Sequence Analysis 

RNA Extraction 
Viral RNAs were isolated from TGEV or PRCV infected ST cells by using a RNA 

isolation kit (S trategene, La Jolla, CA). Four day old ST cell s grown in 75 c m2 fl asks were 

inoculated with NVSL 5170 or VMRI 5 170 i olates and then incubated unti l approx imately 50 

% CPE was observed. The spent media was decanted and replaced with 2 mJ of cold solution 

D (provided by the kit) in each fl ask. The flasks were swirled gently for 30 econds at room 

temperature to lyse the cells and denature all proteins. The suspensions in 5 fl asks were 

transferred into a chilled polypropylene tube. Then 0.5 mJ of 2 M sodium acetate and 5 ml of 

phenol were added into each tube immediately, and thoroughly mixed. Subsequently, I ml of 
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chloroform : isoamyl alcohol was added into the mixture, vortex mixed vigorously for 10 
seconds and incubated on ice for 15 minutes. The suspension was transferred into a prechilled 
thick - wall Nalgene 50 - ml round - bottom centrifuge tube and centrifuged at 10,000 x g for 
20 minutes at 4°C. The aqueous phase was transferred to a tube and mixed with an equal 
volume of isopropanol. The RNA was precipitated by chilling the RNA - isopropanol mixture 
at -20°C for 1 hour. The mixture was centrifuged at 10,000 x g for 20 mjnutes at 4° C and then 
the supernatant was discarded. The quality of RNA was improved by dissolving the pellet in 3 
ml of solution D and precipitating with 3 ml of isopropanol. The RNA - isopropanol mixture 
was dispensed in I 00 µl volumes into 0.5 ml microfuge tubes and stored at -20° C for 1 hour 
or until used. The chilled RNA - isopropanol mixture was thawed and pelleted at 10,000 rpm 
for 10 minutes at 4° C. The supernatant was removed and the pellet was dried under vacuum 
for 3 - 5 minutes. The RNA pellet was resuspended in IO µI of sterile DEPC - treated water. 

cDNA Synthesis 
cDNA was synthesized using the cDNA cycle kit for RT-PCR (lnvitrogen, San Diego, 

Calif). RNA samples in the previous step were transferred using 7 µl of each into 0.5 ml 
microfuge tubes. Then, I µl of random primer and 4 µl of DEPC - treated water was added into 
the tubes and mixed well. The tubes were placed in a 65° C water bath for I 0 mjnutes to 
denature the secondary structure of RN As. The tubes were then left at room temperature for a 
few minutes to let the primer anneal. Subsequently, 4 µI of 5 x RT buffer, l µl of dNTP, 1 µl 
of 80 mM sodium pyrophosphate, 1 µI of RNase inhibitor and I µl of reverse transcriptase 
were added into each tube and mixed well. For cDNA synthesis, the mixture was then 
incubated in a 42° C water bath for 60 minutes. 

Polymerase Chain Reaction (PCR) and Sequence Analysis 
PCR-amplified fragments were obtained using cDNA-RNA heteroduplexes as 

templates and following the basic PCR protocol (Gibco BRL, Gaithersburg, MD). The 
components of the PCR mixture in each reaction were 10 µI of 5 x PCR buffer (Gibco BRL, 
Gajthersburg, MD), 2 mM dNTP, 6 µI of 50 mM MgCl2, IO µI of 2 mM forward primer, JO µI 
of 2 mM reverse primer, 4 µI of cDNA template, 5 units of Taq DNA polymerase (Gibco BRL, 
Gaithersburg, MD) and sterile distilled water to 100 µI. Thirty cycles of 92° C for 30 seconds 
for denaturation , 48° C for 30 seconds for annealing and 72° C for 45 seconds for primer 
extension were performed in a thermocycler (Gene Amp PCR system 2400, Perkfa Elmer). 
The primers used in the PCR reaction are shown in Table 2. The PCR products were 
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e lectrophoresesed through a 0.8% agaro e gel and then extracted from the gel using the QIAEX 
II Gel Extraction kit (QIAGEN, Germany). The extracted DNA was sequenced using the 
primers presented in Table 3, by an automated fluorescent method using ABI 377 at the DNA 
equencing facility, ISU. The po ition and primer u ed in PCR and equence analys is are 

presented in Figure I. The base equences were analyzed and DNA fragment were combined 
using the Mac Vector program. The combined fragments were compared by the Gene Works 

program. 

Table 2: primers and their sequences used for amplification 

name sequence( 5 ' --> 3' ) direction base range 

I 185 AGG GTA AGT TGC TCA TIA G forward -50 - -32 

2 2F CAA ACA ACG GTI AAA CGT forward 297 - 316 

AG 

3 5FC CGC TIC ATA CCA AGA CCA reverse 1599- 1616 

4 4FF GTA TCT AGG AAC ATI ACC A forward 1224-1242 

5 6RR GTI AGA ATA GGT TAT GAC AG rever e 2393-24 12 

6 6FF TIA CAC ATC ACT ATC AGG T forward 2130-2148 

7 4RR CCT TGT GGG TIG ACA ACA T reverse 3308-3326 

8 4RC AGA TGT TGT CAA CAC ACA A forward 3306-3324 

9 2R GCC TAT TAG TAG CCA CAC reverse 4 171-4188 

10 5RC CGT TGT ACA GGT GGT TAT G forward 2941-2959 

11 3RR CTG GAC ATC TTT AAC GAC reverse 3736-3573 

12 3RC GTC GTI AAA GAT GTC CAG forward 3736-3753 

13 662 ATIGATGCT AATGACCATTC reverse 5495-5514 

Note: The primer 2F was used for VMRI 5170 gene ampl ification only 
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Table 3: Primers used for DNA sequencing 

name sequence(5'-->3 ' ) direction ba e range 

1 185 AGG GTA AGT TGC TCA TT AG forward -50 - -32 

2 2F CAA ACA ACG GTT AAA CGT AG forward 297 - 316 

3 3FF GATCAATGTGCTAGTTATG forward 657-675 

4 5FC CGC TIC ATA CCA AGA CCA rever e 1599-1616 

5 4FF GTA TCT AGG AAC ATT ACC A forward 1224-1242 

6 5FF CAG GAT AAC AAC ACC GAT forward 1672- 1689 

7 6RR GTT AGAATAGGTTATGACAG reverse 2393-2412 

8 6FF TIA CAC ATC ACT ATC AGG T forward 2130-2148 

9 6RC CGT CAC ACA ITC TGA TGG forward 2451 -2468 

10 GAP! GCT CIT GGC TAG AAG GTC forward 2807-2824 

11 4RR CCT TGT GGG ITG ACA ACA T revere 3308-3326 

12 4RC AGA TGT TGT CAA CAC ACA A forward 3306-3324 

13 2R GCC TAT TAG TAG CCA CAC rever e 4171-4188 

14 5RC CGT TGT ACA GOT GGT TAT G forward 294 1-2959 

15 3RR CTG GAC ATC ITT AAC GAC rever e 3736-3573 

16 3RC GTC GIT AAA GAT GTC CAG forward 3736-3753 

17 583 CT A ITG AAA AAG TGC ACG TC rever e 

18 662 ATTGATGCT AATGACCATTC reverse 5495-5514 

19 EV048 GCA TAG GTC CT A AAA GTG TCJ forward 
ITG 

Note : The primer 2F wa used for VMRI 5170 gene sequencing only 
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S GENE AND ORF 3/3.1 REGIONS 

-·-·> --·-> ·-··> -···> 
185 2F 4FF 6FF 

5FC 6RR 
<-··· <--·· 

-·-·> <-··-
185 SFC 

--·> <---
4FF 6RR 

--> 
5FF -·-> 

6Ff 
--·> -··> 
6RC GAP! 

-···> 
4RC 

4RR 
<·---

<--
4RR 

----> 
4RC 

<--
3RR 

-----> 
3RC 

---·> <··· <·-· 
SR' 4 88 3 8 B 

---> 
4RC 

2R 662 
<--·- <·--

<----
2J1 

--·> <---- <----
J RC EVQ48 667 

---> 
538 

Figure 1: The positions and the primers used in DNA amplification and sequence analysis. 
The thick line indicates S gene and ORF 3/3. l regions of the genome of TGEV. Each thin line 
shows the amplified fragment. The letters and numbers are the names of the primers while the 
arrows indicate the direction of the amplification leaded by the primers. 
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4 .RESULTS 

One Step Growth Curve 
The titers of the three viruses exhibited the same pattern at each time point. The average 

titers that represented the TCID50 of each virus and time points are shown in Table 4. 
However, the highest titer of each virus at a certain time point is d ifferent. The Miller strain of 
TGEV reached the highest titer, 10625 , at 30 hour post inoculation while those of PRCV isolate 
NVSL 5170, and TGEV isolate VMRl 5170 were 106·63 and 10563 at the time points of 46 and 
54 hour post inoculation respectively. The log10 of the virus titers were plotted to create 3 
growth curves demonstrated in Figure 2. There was no difference among the growth curves of 
the three viruses (p = 0.63) using one way ANOV A. 

Plaque Size Measurement 
The Miller strain of TGEV, TGEY i olate VMRl 5 170, and PRCV isolate NVSL 5170 

produced almost round plaques at 48 hour post inoculation. The diameters of the plaque of 

Table 4: The average titers of the Miller strain of TGEV, the TGEY isolate, YMRI 5170, and 
the PRCY i olate, NYSL 5170, at each time point. 

Virus Strain 

Time(h.p.i.) TGEV Miller PRCV NVSL 5 170 TGEV VMRJ 5170 

0 0 0 0 

5 102s I 0215 I OJ 25 

11 1040 I 0315 I 04 13 

18 I 05 13 I 04 5 I 04 38 

22 1060 I 0s5 1050 

30 106 25 I 055 I 050 

38 I 0s.3s I 06.13 I 05 63 

46 I 05 63 10663 I oss 

54 I 0s 25 I 065 I 0~63 

66 104 75 10613 I 04 1s 

80 I 03 2s I os 5 10375 

90 I 02 52 I 04 ss I 03 2s 

Note: Cell culture were inoculated with TGEV or PRCY at 1 MOI 
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Figure 2: Growth curves of the Miller train ofTGEV, VMRI 5170 isolate ofTGEV and NVSL 5170 of PRCV. 
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Table 5: Diameters of plaques of the Miller train of TGEV, the TGEV isolate, YMRI 5170, 
and the PRCV isolate, NVSL 5170. 

Plaque No. TGEV Miller PRCV NVSL 5 170 TGEV VMRI 5170 
I 1.925 0.950 2.650 
2 2.500 0.950 3.200 
3 2.400 0.825 2.300 
4 3.375 0.500 2.900 
5 2.425 1.300 3.450 
6 2.400 0.400 1.600 
7 2.725 1.050 2.675 
8 2.575 0.850 2.700 
9 2.450 0.700 2.575 
10 2.975 1.200 3.000 
11 3.050 1.450 2.675 
12 2.000 0.975 2.000 
13 2.425 1. 175 3. 175 
14 2.450 1. 175 2.200 
15 3.400 l.675 2.300 
16 3.175 l.000 2.450 
17 2.000 1.025 2.850 
18 3.350 1.000 2.800 
19 3.200 1.025 1.650 
20 l.925 1.500 2.000 
21 2.000 1.000 2.200 
22 2.500 0.900 2.900 
23 2.950 1. 150 1.750 
24 2.225 1.500 2.200 
25 2.975 1.075 2.500 
26 2.600 1.175 2.600 
27 2.475 1.125 2.750 
28 2.400 0.900 2.700 
29 2.200 1.075 3.050 
30 2.700 0.575 1.975 
3 1 2.375 0.750 2.IOO 
32 2.875 0.575 3.425 
33 2.975 0.825 2.725 
34 3. 125 1.000 3.900 
35 2.975 0.900 2.275 
36 2.125 1.250 2.350 
37 2.500 1.000 2.850 
38 2.000 0.800 2.300 
39 2.000 1.350 2.050 
40 2.325 0.650 1.975 
41 2.475 0.500 1.975 
42 2.125 0.700 2.600 
43 1.000 0.950 2.000 
44 2.250 1.000 2.525 
45 2.575 1.300 1.600 
46 2.725 1.300 1.500 
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Table 5: (continued) 
Plaque No. TGEY Miller PRCY NYSL 5 170 TGEY YMRJ 5 170 

47 3.050 0.750 1.575 
48 1.525 0.800 2.250 
49 2.325 1.600 1.825 
50 2.075 0.900 2.000 
51 2.975 1.000 1.500 
52 3. 100 0.525 2.525 
53 3.200 0.800 2.425 
54 2.500 0.725 1.800 
55 2.075 1.500 1.500 
56 2.400 0.825 1.425 
57 2.050 0.950 1.400 
58 2.000 1.450 1.375 
59 2.100 0.500 1.975 
60 1.100 0.350 2.200 
6 1 1.975 - -
62 2.700 - -
63 2.500 - -
n 63 60 60 

each virus is included in Table 5. Average size of plaques of Miller strain, VMRI 5170 isolate 
and NVSL 5170 isolate were 2.47 ± 0.50, 2.33 ± 0.56 and 0.987 ± 0.31 , respectively. The 
raw data calculated by the ANOV A procedure revealed that the plaque sizes of these 3 viruses 
were different (p < 0.0001 ). However, comparison of the plaque sizes of the Miller strain and 
VMRI 5170 isolate showed that they were not distinguishable (p = 0.13). In contrast, the 
plaque size of the TGEV isolate, Miller strain and VMRI 5170, were significantly larger than 
that of PRCV isolate NVSL 5170 (p < 0.0001 ). 

Virus Neutralization Test 
The virus neutralization titer of the TGEY hyperimrnune sera or monoclonal antibodies 

was calculated from an average of the replications of the highest dilution of the serum or ascites 
fluid that resulted in neutralization of TGEV. The YN titers are shown in Table 6. The TGEV 
isolate VMRI 5170 and PRCV isolate NVSL 5 I 70 were neutralized by hyperimmune sera 
raised against the Miller strain of TGEY, as well as Mab against the S glycoprotein of TGEV. 
However, TGEV hyperimmune sera, MAb 3H l I and MAb 5A5 had lower VN titers for TGEV 
isolate VMRI 5170 and PRCY isolate NVSL 5 I 70 than for the TGEV Miller strain. VN titer of 
MAb 5A5 for TGEV isolate VMRI 5170 was an exception. 
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Table 6: Neutralization of the Miller strain of TGEV, the TGEV isolate VMRI S 170, and the 
PRCV isolate NVSL S 170 by TGEV hyperimmune sera, and anti - TGEV MAbs, 3H 11 and 
SAS . 

Antibodies 

Viruses MAb 3Hl 1 MAb SAS Polyclonal anti - TGEV 

Ab 

TGEV - Miller 1:32,948 1:34,261 1: 16,S74 

TGEV - VMRI 1:27,199 1:64,710 1 :12,761 

PRCV - NVSL 1: I 2,29S 1: 12,162 1:4,S7S 

Radioimmunoprecipitation Assay 
In the radioimmunoprecipitation assay, the three viruses demonstrated the similar 

pattern of protein profiles (Figure 3) when reacted with hyperimmune sera, against TGEV. The 
molecular mass of M (28 k.D) and N ( 46 k.D) proteins were similar for the Miller strain of 
TGEV, the TGEV isolate VMRI S 170 and the PRCV isolate NVSL S 170. The molecular mass 
of the S glycoprotein of the TGEV isolate VMRI S 170 was 220 kD and was similar for the 
Miller strain. In contrast, the S glycoprotein of the PRCV isolate NVSL S 170 was 
approximately 190 kD which was less than that for the TGEV isolates Miller and VMRI S 170 
(Figure 3&4). 

Sequencing Analysis 
The pairwise alignment of the S gene of TGEV isolate VMRI S 170 and PRCV isolate 

NVSL S 170 compared to other strains of TGEV are presented in Figure S. The S gene of 
TGEV isolate VMRI S 170 consisted of 4353 bases while that of PRCV isolate NVSL S 170 
was 3639 bases, including start and stop codons. The PRCV isolate NVSL 5170 had a 714 
and 711 nucleotide deletion when aligned with the VMRI 5170 isolate and Miller strain; FS772; 
TFl ; Purdue and NEB 72. The nucleotide and deduced amino acid homology S gene of TGEV 
isolate VMRI S 170 compared with those of other TGEV s are shown in Table 7. It was found 
that the S gene of TGEV isolate VMRI 5170 exhibited 96-97% identity to the published 
sequences of the S genes of TGEV with 120-169 nucleotide differences. Without accounting 
for the 714 nucleotide deletion, the S genes of TGEV isolate VMRI S 170 and PRCV isolate 
NVSL 5170 are markedly identical with only 5 nucleotide differences. 
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Figure 3: lmmunoprecipitation of35S trans 
methionine - cy teine labeled tructural 
proteins of the Miller strain of TGEV, the 
TGEV isolate VMRI 5170 and the PRCV 
isolate NYSL 5 l 70 by hyperimmune anti -

TGEY erum. The S glycoprotein of the 
Miller train ofTGEV and the YMRJ isolate 
ofTGEV have a molecular ma of220 kD 
and that of PRCV isolate NVSL 5170 is 
l 90 kD. The M and N proteins of the three 
viruses had molecular mass of 28 and 46 
kD re pectively. 

Note: A = mock infected cell lysate. 

A B c D 

kD 198 -
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Figure 4: Jmmunoprecipitation of35S trans 
methionine - cyste ine labe led S g lyco-
protein of the Miller strain ofTGEV, TGEY 
i ·e late VMRI 5 l 70 and PRCY isolate 
NYSL 5170 by MAb 3Hll against 

S g lycoprotein of TGEY. The S g lyco-

protein of the MilJer train of TGEY and 
the TGEV isolate VMRI 5170 have Mr of 
220 kD and that of PRCV isolate NVSL 
5170 is 190 kD. 

B =Miller strain of TGEY infected cell lysate. 
C = PRCV isolate NYSL 5 170 infected cell lysate. 
D = TGEY i elate VMRI 5170 infected cell ly. ate. 
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Likewise, the sequence of the S gene of the TGEV isolate VMRJ 5170 and the PRCV 
isolate NVSL 5170 were also compared with other published sequences of the S genes of 
PRCV. The pairwise alignments are shown in Figure 6. The S gene of NVSL 5170 isolate had 
a 96 - 97 % nucleic acid identity with that of the published sequences of PRCV isolates (Table 
8). The position of the deletions within the S gene of PRCV isolate NVSL 5170 and that of 
other PRCVs are summarized in Table 9. 
Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 
Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 
Consensus 
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VMRI S 
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Figure 5: Pairwise alignments of S genes of the TGEV isolate VMRI 5170, the PRCV isolate 
NVSL 5170 and other TGEV isolates. 
Note: The sequences begin with the start codons and are shown as underlined bases. The 
position having identical nucleotides are presented as dots and the positions of deleted 
nucleotides are exhibited as dashes. The 5 bases that are diferent between TGEV isolate VMRI 
5170 and PRCV isolate NVSL 5 J 70 are presented as bold letters. 
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Figure 5: (continued) 
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Figure 5: (continued) 

547 
547 
547 
547 
547 
27 
550 
550 

597 
597 
597 
597 
597 
27 
600 
600 

647 
647 
647 
647 
647 
27 
650 
650 

697 
697 
697 
697 
697 
27 
700 
700 

747 
747 
747 
747 
747 
36 
750 
750 

797 
797 
797 
797 
797 
86 
800 
800 



Purdue S 
NEB72 S 
TFl S 
Miller s 
FS772 S 
NVSL S 
VMRI S 
Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller s 
FS772 S 
NVSL S 
VMRI S 
Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 
Consensus 

Purdue s 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 
Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 
Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 
Consensus 

. ...... G.T 

..... . . G.T 

... . .. . G.C 

.... .. . G.C 

....... G.C 

...... . G . C 

40 

... .. .. T .C . .. ........... · · .. · · · · · · · · · · · · · · · · · · · · · · 
GCCAGGAKGY Tl'TATACCAT CAGATI'TTAG Tl'TTAATAAT TGGTI'CCTTC 

......... G 

. . ....... G 

. ... ..... A 

......... G 

......... A 

......... A 
. . . ... ... . ............... . .............. ... ...... A 

TAACTAATAG CTCCACGTI'G G'ITAGTGGTA AA'ITAG'ITAC CAAACAGCCR 

'ITA'ITAGTI'A ATTGC'ITATG GCCAGTCCCT AGC'ITTGAAG AAGCAGCTI'C 

. . . . T .......... G ...... . G ..... . ... G .... T . 

.... T .......... G ...... . G .... . . . .. G .... T. 

. . . . T .... . ..... A ....... A ..... . ... G .... C . 

... . C ... ...... . A ....... G ..... . . .. C .... T. 

. . . . T ..... . . ... A . . . . ... G ..... . . .. G .... T . 

... . T . .. . .... . . A ....... A ..... . . .. G .... C. 

.... T .......... A . .... . . A . . .... .. . . ......... G ... . C . 
TACAYTTI'GT Tl"l'GARGGTG Cl'GRC'ITTGA TCAATGTAAT GGTSC'TGTYT 

....... T ... . .... C ..... T ..... C. 

....... T ........ C ..... T ..... C. 

... . ... T . ....... C ..... C ..... T. 

... . ... C ........ C . .. .. C . . . .. T . 

....... T ........ C ..... C ..... T . 

....... T ........ T ..... C ..... T. 

....... T ........ T . . . .. C . .... T. 
TAAATAAYAC TGTAGAYGTC ATYAGGITYA ACC'ITAAT!'T TACTACAAAT 

......... A 

. ........ A 

........ . G 

. . ....... A 

.. ....... A 

........ . A 
............ .. . .... .. . . . . . ............. A ......... . 
GTACAATCAG GTAAGGGTGC CACAGTGT'IT TCA'ITGAACR CAACGGGTGG 

Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Table 7: Percent nucleotide and deduced amino acid homology between S gene of TGEV 
isolate VMRI 5170 and that of other TGEV isolates. 

% homology with S gene of TGEV isolate VMRI 51 70 

Virus Strains Nucleic Acid Homology Amino Acid Homology 

Miller 97% 97% 

FS772 97% 97% 

NEB72 96% 96% 

Purdue 96% 96% 

TFI 97% 97% 

In addition , the ORF 3/3. 1 genes of VMRI 5170 and NVSL 5170 isolates were 
compared with those of other PRCY isolates as depicted in Figure 7. The ORF 3 of TGEV 
isolate VMRI 5170 and PRCV i olate NVSL 5170 were comprised of 219 base while ORF 
3. 1 had 736 ba es including start and stop codons. Like other coronaviruses, the ORF 3/3.1 
genes of TGEV isolate VMRI 5170 and PRCV isolate NYSL 5 170 had an intergenic sequence, 
of CUAAAC, up tream of the start codon. The base compositions within the ORF 3 of VMRI 
5170 and NVSL 5170 isolates were completely identical, whereas ORF 3. 1 had only 2 
nucleotide djfferences. The first nucleotide difference within the 3. 1 gene of NVSL 5170 
iso late was T instead of C. Therefore, it created a stop codon which may have resu lted in a 
truncated product of ORF 3.1 in NVSL 5 170 i olate. The ORF 3/3.1 genes of TGEY i o late 
VMRI 51 70 and PRCY isolate NVSL 5170 were shown to be similar to those of other PRCV 
i olates except that the ORF 3 of TGEV isolate VMRI 51 70 and PRCY isolate NVSL 5 170 
were intact (Figure 7). 
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Figure 6: Prurwi e alignment of S genes of TGEV isolate, Mi ller strain and VMRI 51 70, 
PRCV isolate NVSL 5170 and other PRCY's S genes. 
Note: The sequence begin with the start codons and are shown as underlined base . The 
position having identical nucleotides are presented as dots and the positions of deleted 
nucleotides are exhibited as dashes. The 5 bases that are d iferent between TGEV isolate VMRI 
5170 and PRCV isolate NVSL 5 J 70 are presented as bold letters. 
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C .. G ..... -
C .. G ..... -
C .. G ..... -
T .. T . .... . .. A ...... . 

C .. T ..... . .. c ...... . 
YAAKTTTCCT TGTI'CTAAAT 'roACTAATAG AACTATAGGT AAMCATI'GGA 

T ..... T ... A ............. C ...... C ....... . 

A ..... C ... C ............. T ...... T ....... . 
ATCTCATI'GA WACCITYCTT ~AAATTATA GTAGYAGGTI' AYCACCTAAT 

TCAGATGTGG TGTTAGG'roA TTATTTI'CCT ACTGTACAAC C'TTGGTITAA 
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TTGYATTCGC AATRATAGTA AYGACCTTTA TGTTACATTG GAAAATCTTA 
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...... T ... ...... GA ........... T 
AAGCATKGTA TI'GGGATTAT GCTACARRAA ATATCACTTK GAATCACAAG 

GACCAACGGT TAAACGTAGT CGTTAATGGA TACCCATACT CCATCACAGT 

Figure 6: (continued) 

59 
59 
59 
100 
27 
100 
100 

59 
59 
59 
150 
27 
150 
150 

59 
59 
59 
200 
27 
200 
200 

59 
59 
59 
250 
27 
250 
250 

59 
59 
59 
300 
27 
299 
300 

59 
59 
59 
350 
27 
347 
350 

59 
59 
59 
400 
27 



Miller S 
Consensus 

86 / 137004 s 
HOL87 S 
RM4 S 
VMRI S 
NVSL S 
Miller S 
Consensus 

86 / 137004 s 
HOL87 S 
RM4 S 
VMRI S 
NVSL S 
Miller S 
Consensus 

86 / 137004 s 
HOL87 S 
RM4 S 
VMRI S 
NVSL S 
Miller s 
Consensus 

86 / 137004 s 
HOL87 S 
RM4 S 
VMRI S 
NVSL S 
Miller s 
Consensus 

86 / 137004 s 
HOL87 S 
RM4 S 
VMRI S 
NVSL S 
Miller S 
Consensus 

86 / 137004 s 
HOL87 S 
RM4 S 
VMRI S 
NVSL S 
Miller S 
Consensus 

86/ 137004 s 
HOL87 S 

54 

TACAACAACC CGCAATTTTA ATTCTGCTGA AGGTGCI'ATT ATATGCATTT 
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............ . ............... A .. A .......... . ...... . 
GCAAGGGCTC ACCACCTACT ACCACCACMG ARTCTAGTTT GACTTGCAAT 
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TGGGGTAGTG AGTGCAGGTT AAACCAYAAG TTCCCTATAT GTCCTI'CTAA 
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ATGCGGTTGT TGCTTATTTA CATGGTGCTA GTTACCGTAT TAGTTTTGAA 

.. c ...... . . ...... G .. 

.. T ...... . . ...... A . . 
AAYCAATGGT CTGGCACTGT TACACTTGGT GATATGCGTG CGACTACRTT 

.C ............ T .... . ......... c 

.G ............ C .... . . ........ T 
ASAAACCGCT GGCAYGCITG TAGACCTTTG GTGGTTTAAY CCTGTTTATG 

------ ---- ---------- ---------- ---- .... T. 
---------- - -- - ------ -- - - ------ - --- .... T. 

Figure 6: (continued) 
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Figure 6: (continued) 
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Table 8: Percent homology of nucleotide and deduced amino acid of S gene of PRCV isolate 
NVSL 5170 compared to that of other PRCV isolates. 

% homology with S gene of PRCV isolate NVSL 5170 

Virus Strains Nucleic Acid Homology Amino Acid Homology 

8711 37004 96% 96% 

Hol87 96% 96% 

RM4 96% 96% 

Table 9: The deletion positions and number of deleted nucleotides within S genes of PRCV 
isolates when compared to S gene of TGEV isolate VMRI 5170. 

PRCV Strains 

NVSL 5 170 

87/1 37004 

Hol87 

RM4 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (2 4-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (2 4-876) 
Consensus 

NVSL5170 (3681-4824) 
VMRI 5170 (4418-5561 ) 
PRCV-IA1894 (2 4-1138 ) 
PRCV-LEPP (24-1165 ) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 

Consensus 

Number of deleted nucleotides with in S Base Range of 

genes of PRCV Deletion 

7 14 28 - 741 

675 60 - 734 

675 60 - 734 

675 60 - 734 

.. . .. . A ....... T ... . . 

. . . .. . A . . ..... T . ... . 

. . .. .. A ....... T .. .. . 

...... A ..... . . T ... . . 
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.. .... G .. . . ... C . . . . . 
TAAAT'ITAAA ATGTI'ARTTI' TATCYGCTAT AATAGCAT'IT GTI'ATI'AAGG 

3730 
4467 
73 
73 
73 
53 
so 

. .. A . .. .. . 

... A ..... . 

. . . A .. . .. . 

... T ..... . 

. . . A ..... . 

••••• 
ATGATGAATA AAGTCCITAA GAA~T Tl'CWGGTCAT TACAGGTCCT 

3780 
4517 
123 
123 
123 
53 

100 

Figure 7: Comparison of the nucleotide sequences of the ORF 3/3 .1 region of the TGEV 
isolate, VMRI 5 170, the PRCV isolate, NVSL 5170, and other PRCV isolates. 
Note : The positions of intergenic sequences are underlined and marked with the symbol • . 
The start codons and stop codons of each ORF are underlined and labeled with I--> and <--1, 
respectively. The positions having identical nucleotides are presented as dots and the positions 
of deleted nucleotides are marked by dashes. The 2 different nucleotides among VMRI 5170 
and NVSL 5170 isolates are bold letters. 
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PRCV-AR310 (24-1165) ..... A ... . 
PRCV-ISUl (24-876) ..... A ... . 
Consensus TGGTARATTA Cl'TGTGTGTA TAGGTTTTGG TGACACACTT CTTGCGGCTA 

NVSL5170 (3681- 4824) ... A ..... . 
VMRI5170 (4418-5561) ... A ..... . 
PRCV-IA1894 (24-1138) ... G ..... . 
PRCV-LEPP (24-1165) ... A ..... . 
PRCV-AR310 (24-1165) ... A ..... . 
PRCV-ISUl (24-876) ... A ..... . 
Consensus GGGRTAAAGC ATATGCTAAG CTTGGTCTCG CCACTATTGA AGAAGTAAAC 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV- LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 

Consensus 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV- IA1894 (24- 1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24- 1165) 
PRCV-ISUl (24-876) 

Consensus 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 

stop ORF3 <--1 

........ A. 

....... . A. 

........ G. 

........ A. 

........ A. 

........ A. 

ACACAAAATC CAAAGCAT1A AGTGTTACAA AACAATTAAA GAGAGATTRT 

.... . ... G. 

........ G. 
......... - - --- .... T. 

........ G. 

........ G. 

........ G. 

"'"'"'"' • 1- - > start ORF3 .1 
AGAAAAAc::rG TCATTQ!'.MA Ql"ITGTGTKA ~ATTGG TGGACI"ITIT 

...... . T .. 

....... T .. 

Figure 7: (continued) 
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4767 
350 
373 
373 
200 
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4817 
395 
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400 

4130 
4867 



PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

....... T .. 

....... G .. 

.... .. . G •. 

....... T .. 

68 

CTTAATACI'C TGAG'ITI'KGT AATTGTTAGT AACCATTCTA TTGTTAATAA 

445 
473 
473 
300 
450 

NVSL5170 (3681-482 4 ) C . ..... . . ..... . C . . C . . . . .. .. . ...... . ........ T ... . G. 4180 
VMRI5170 (4418-5561) C .... . . .. . .. .. . C . . C ................ .. ... ... C .. . . G. 4917 
PRCV-IA1894 (24-1138) T .. .... . .. .. . .. T .. T ........ . ......... . ..... C .. .. T. 495 
PRCV-LEPP (24-1165) C .............. T .. T ........................ C .. . . G. 523 
PRCV-AR310 (24-1165) C .. . ........... T .. T ........................ C .... G. 523 
PRCV-ISUl (24-876) C......... . .... T .. T. . ........ - ---------- ---------- 329 
Consensus YACAGCAAAT GrGCAYCAYA CACAACAAGA CCGTGTTATA GTAXM.CAKC 500 

NVSL5170 (3681-4824) ........ G. A ............. C ... G . 
VMRI5170 (4418-5561) .. .. .... G. A .... .. ....... C ... T . 
PRCV-IA1894 (24-1138) ........ A. G ............. T ... G. 
PRCV-LEPP (24-1165) ... . .. . . G. A ............. C ... G. 
PRCV-AR310 (24-1165) . . .. . . .. G. A ............ . C . .. G. 

PRCV-ISUl (24-876) ------ ----
Consensus ATCAGGTTRT TAGTGCl'AGA RCACAAAATT ATTAYCCAKA G'ITCAGCATC 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24- 1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (2 4-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

CT ....... T ..... T ... A 
CT ....... T ..... T . . . A 
TC ....... G ..... C . .. C 
CC ....... G ..... T ... A 
CC ....... G ..... T ... A 

GCI'GTACI'TI' TTGTATCTIT YYTAGCI'TI'K TACCGYAGI'M CAAACI'TI'AA 

GACGTGTGTC GGTATCM'AA TGTITAAGAT TITATCAATG ACACTTTTAG 

GACCTATGCI' TATAGTATAT GGTTACTACA TTGATGGCAT 'K5rTACAACA 

NVSL5170 (3681-482 4 ) . . . G .... . . 
VMRI5170 (4418-5561) ... G .. ... . 
PRCV-IA1894 (24-1138) ... G ..... . 

... G ..... . 

... G ..... . 

... T .... . . 

PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus ACTKTCTTAT CI'TI'AAGATT CGCCTACTTA GCATACTTTT GGTATGTTAA 

Figure 7: (continued) 
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NVSL5170 (3681-4824) C ........ . 
VMRI5170 (4418-5561) C .. .. .... . 
PRCV-IA1894 (24-1138) T ........ . 
PRCV- LEPP (24-1165) T ........ . 

T ........ . 
T ........ . 

PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus YAGTAGGTI'T GAATTTATTT TATACAACAC AACGACACTC ATGTTTGTAC 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 

PRCV-ISUl (24-876) 
Consensus ATGGCAGAGC TGCACCGTTT AAGAGAAcn:T CTCACAGCTC TATTTATGTC 

NVSL5170 (3681-4824) . . . . . A .... ......... c . .. c ..... . 
VMRI5170 (4418-5561) ..... A ... . . ........ c ... c ..... . 
PRCV-IA1894 (24-1138) ..... G ... . ......... c ... c ..... . 

. . . . . A ... . ......... c ... c ..... . 

. . . . . A ... . ......... c ... c ..... . 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

..... A ................................. T ... T ..... . 
ACATTRTATG GTGGCATAAA TTATATGTTT GTGAATGACY TCAYG'ITGCA 

... AA .... . 

... AA .... . 

... GC .... . 

. . . AC .... . 

... AC .... . 

... AC .... . 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus TTTTGTAGAC CCTATGCTTG TAAGCATAGC AATACGTGGC TTARMl'CATG 

NVSL5170 (3681-4824 ) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus CTGATCTAAC TGTAcn:TAGA GCAGTTGAAC TTCTCAA'roG TGATTTTATT 

....... GC. C ..... C . . . 

....... GC . C ..... C .. . 

....... TT. T ..... T .. . 

....... GC. C ..... C .. . 

....... GC . C ..... C .. . 

....... GC. C ..... C .. . 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV- AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus TATATATTTT CACAGGAK:'!C YGTAGTYGGT GTTTACAATG CAGCCTTTTC 

NVSL5170 (3681-4824) ...... G .. . 
VMRI5170 (4418-5561) ...... G .. . 
PRCV-IA1894 (24-1138) ...... A .. . 
PRCV-LEPP (24-1165) ..... . G .. . 

Figure 7: (continued) 

....... A .. 

....... A .. 

.... . .. G .. 
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4480 
5217 
795 
822 
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800 

4530 
5267 
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872 
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900 
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945 
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733 
1000 
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1045 
1072 
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783 
1050 

4780 
5517 
1095 
1122 



70 

PRCV-AR310 (24-1165) . .. . . . G ............................ . . G.. . . . . . . . . . . 1122 
PRCV-ISUl (24-876) .. . ... G ...................... . ....... G.. . . . . . . . . . . 833 
Consensus TCAGGCRGTI' CTAAACGAAA Tl'GACTI'AAA AGAAGAARAG GGAGACCGTA 1100 

NVSL5170 (3681-4824) .c . . c 4824 
VMRI5170 (4418-5561) .c . . c 5561 
PRCV-IA1894 (24-1138) - .T . . c 1138 
PRCV-LEPP (24-1165) - .T. .c 1165 
PRCV-AR310 (24-1165) - .. .T . . c 1165 
PRCV-ISUl (24-876) - .T . . T 876 

stop ORF3.l <--1 
Consensus CCTATGACGT TTCCCTAGGG CAT'.mAC'I'GT CATAGAYGAY AATG 1144 

Figure 7: (continued) 
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5. DISCUSSION AND CONCLUSIONS 

In this study we have shown that PRCV iso late NVSL 5170 differed from TGEV 
VMRI 5 I 70 isolate and the standard Miller strain of TGEV. The VMRI 5170 strai n was similar 
to the Miller strain of TGEV in growth characteristics and protein profiles. However, there was 
some degree of genetic and antigenic diversity when compared to other TGEV strains. 

It has been indirectly proven that the TGEV variant, PRCV, has evolved from TGEV 
by a dele tion mutation of the S gene (Rasschaert et al., 1990; Wesley et al., 1990; Wesley et 
aJ. , 199 I ). This study presents strong ev idence that the PRCV isolate NVSL 5170 is a 
truncated version of the TGEV isolate VMRI 5 I 70 by a single deletion of the S gene. It should 
be noted that both viruses were isolated from the same TGE outbreak in a swine herd (Halbur 
et al., 1995). Furthermore, the pairwise alignment of the S gene and ORF 3/3. l regions of 
both i olates when compared with other TGEV and PRCV isolates showed that VMRI 5170 
and NVSL 5 I 70 i olates are highly identical. With the exception of the large deletion, the 
homology of these regions is more than 99 %. Interestingly, the 714 nucleotide deletion of the 
NVSL 5170 isolate was the largest single deletion of all publi hed sequences among PRCV 

isolates. Deletions in all other PRCV isolates to date range from 672 - 68 1 nucleotides (Laude 
et a l. , 1993; Vaughn et al. , 1995). 

The ORF 3/3. l region of TGEV and PRCV isolates is normally diverse. The number of 
deleted bases and the positions of deletions vary among PRCV isolates (Rasschaert et al. , 
1990; Britton et al. , 199 1; Wesley et al., 199 1; Vaughn et al., 1995). Some of the PRCV 
isolates, AR310 and LEPP, have complete ORF 3/3. I region (Vaughn et al ., 1995). Likewise, 
the PRCV isolate NVSL 51 70 had intact ORF 3/3. l region including the perfect IS elements 
and start codons. However, the first ubstituted nucleotide within the ORF 3.1 of the NVSL 
51 70 isolate created a top codon which may have resulted in a truncated 3. l gene product. 
These diversities could be a consequence of that as each PRCV isolate originates from a 
different TGEV ancestor. For instance, the European PRCV and the USA PRCV aro e 
independently from different trains of TGEV (Laude et al. , I 993). In this case, the TGEV 
isolate, VMRI 5170, seemed to be the ancestor of the PRCV isolate NVSL 5170, because their 
genomic sequences within the S gene and ORF 3/3. 1 regions were much more alike than those 
of other TGEV or PRCV isolates. 

The one step growth curves depict the multiplication of the three viruses in cel l culture. 
The growth curve of VMRI 5 170 and NVSL 5170 isolates were similar to that of the Miller 
strain of TGEV. There were differences in the plaque size of the TGEV and PRCV i olates. 
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The PRCV isolate NVSL S 170 had an average plaque size that was significantly smal ler than 
that of VMRI and the Miller train ofTGEV. The mall plaque ize i possibly associated with 
the mutation within the S gene or the ORF 3/3. 1 gene. It is believed that the small plaque size 
variants are due to the mutation within the S gene (Holmes and Lai, 1996) or the ORF 3/3. 1 

regions (Wes ley et al., 1990; Vaughn et al., l 99S). Thus, it is possible that the deletion within 
the S gene o f NVSL S 170 isolate or the truncated 3.1 gene products may contribute to the small 

plaque size of the NVSL S 170 isolate. 
Antigenic diversity among TGEV and PRCV has been demon trated u ing a viral 

neutralization (VN) test (Kemedy, 1967; Vaughn and Paul , I 993). However, only one 
serotype of TGEV i recognized. In thi study, the three viruses were neutralized by 
hyperimrnune sera and monoclonal antibodies rai ed against the Miller strain of TGEV with 

different VN titers. Callebaut et al. ( 1988) , also reported the antigenic differences between 

TGEV and PRCV. In addition, there are alterations of amino acid re idues within the antigenic 
site which arose from changes of nucleotides within the S gene of TGEV and PRCV, and the 

re idues within antigenic sites A and D how a high number of amino acid changes (Gebauer et 

al., 1991 ; Sanchez et al., 1992). The Miller strain reacted with hyperimmune sera and MAb 
3H I I and SAS with high VN titer , with the exception of the reaction between VMRI S 170 and 
MAb SAS. This is possibly due to the substitution or deleti on of nucleotides within the S genes 
of the VMRI S 170 and NVSL S 170 isolates. However, the alterations of the re idue in the S 
glycoprotein of VMRI S 170 isolate that react with MAb SAS may increase the affinity of 

antigenic sites on the S gene of VMRI S 170 and MAb SAS. Thus, the reaction between VMRI 
S 170 and MAb SAS gives very high VN titers. 

Radioimrnunoprecipitation assay (RIP) provides information on the major structural 
prote ins, S, Mand N, of TGEV and PRCV. Our data confirms that the S glycoprotein of 
PRCV is smaller than that of TGEV and i caused by the large deletion within the S gene 
(Rasschaert et al., 1990). 

Thi study presented strong evidence that the PRCV i olate NVSL S 170 originated 
from the TGEV isolate VMRI S 170 caused by a single de letion within the S' half of the S gene, 
resulting in a truncated S glycoprotein. The deletion mutation within the S gene of PRCV 

i olate NVSL S 170 may be the result of genetic recombination as reported for mouse hepatiti 
virus and other coronaviruses because the repeated IS e lements along the genomic RNA could 
facilitate genetic recombination during RNA symhesi u ing a copy - choice mechanism (Lai, 
1992). Therefore, deletion mutation and genetic recombination tend to play an important role in 
the evolution of coronaviru es and other plus - stranded RNA vi ruse . 
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