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INTRODUCTION 

In 1978, cardiovascular diseases accounted for 51.3% of all deaths 

in the United States (U.S. Department of Health and Human Services, 

1980, p. 26), and to date they still pose the country's most serious 

health problem. The direct economic cost of illness for these diseases, 

that touch the life of virtually every American, amounted to 50 billion 

dollars in 1975 (U.S. Department of Health and Human Services, 1980, p. 

33). Consequently, a major research effort has been directed towards 

the study of var{ous forms of cardiovascular disease, such as 

atherosclerosis, cerebrovascular disease, coronary heart disease, and 

peripheral vascular disease. As a result, important research advances 

have contributed to a significant decrease in the cardiovascular death 

rate. 

Arterial diseases are the subject of many investigations, as they 

are closely related to many other cardiovascular diseases. For example, 

the partial occlusion of a coronary art"ery can reduce the blood supply 

to the heart and lead to a myocardial infarct. A constriction of 

arteries supplytng the brain with blood can result in a cerebral 

accident (stroke). Frequently, the narrowing of an arterial lumen 

(stenosis) causes a reduction of blood supply, but the process of the 

initiation and development of a stenosis is not completely understood. 

Much research is still .in progress to advance the basic knowledge of 

cardiovascular diseases and. to generate the most effective methods of 

clinical management and prevention. 
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Identification of risk factors has made possible an improvement of 

preventive actions over the past years. It appears that the public has 

become more aware of known cardiovascular risk factors and has adjusted 

behavior and lifestyle to reduce a number of risks such as the use of 

tobacco products and the consumption of high saturated fat-high 

cholesterol foods (U.S. Department of Health, Education, and Welfare, 

1979, p. 2). Many aspects of the etiology of cardiovascular diseases, 

however, remain unknown, so that the implementation of a comprehensive 

and effective prevention program has been impossible to achieve so far. 

Once a disease develops, successful therapy and cure often depend 

on an early and accurate diagnosis, not yet available for many 

cardiovascular diseases. Peripheral arterial diseases, which frequently 

do not exhibit clinical symptoms during the early stages, can remain 

undetected until more than 90% of the artery's lumen is occluded. At 

this late stage in the disease process the treatment is usually a 

surgical procedure, as compared to pharmacological treatment that could 

be used if the dJsease were diagnosed during the early stages. Today 

several diagnostic techiliques are available, differing in two usually 

mutually exclusive aspects: efficacy and patient safety. 

Arteriography, an invasive diagnostic technique, is generally 

considered to be more reliable than various noninvasive methods, but has 

a disadvantage since it involves a surgical procedure with an associated 

risk. Ultrasonic techniques, on the other hand, are noninvasive and can 

be used safely on a regular basis for routine screening of arteries, or 

in cases where arteriography would impose too high a risk for a 
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particular patient. 

One diagnostic method utilizing ultrasound is based on the changes 

in the flow waveform that occur in diseased arteries. A puisatility 

index, commonly defined as the r!ltio of the peak to peak ve1ocity 

excursion to the mean velocity, is measured distal and proximal tq the 

obstruction. The ratio of these. two indices, called the inverse damping 

factor, or simply the magnitude of a given pulsatility index can 

presumably provide some indication of the presence of a pathological 

situation. This. method has been used successfully in clinical 

situations, but a detailed analysis of the effect of various parameters 

such as taper and branchi11-g': _of arterie'>, measurement site, and blood 

viscosity on the pulsatility index has not yet been accomplished. 

The purpose of this thesis is to develop a computer model of the 

human femoral artery and to use this ·model to (1) study the influence of 

various flow situations on generalized pulsatility indices and their 

corresponding inverse· damping factors, and (2) investigate the 

feasibility of usin_g these indices to predict the presence of a s.tenosed 

arterial segment. 

In the literature review, I will (1) summarize different approaches 

taken in modeling arterial blood flow, (2) comment on the 

instrumentation available to m_easure blood flow in arteries, and (3) 

provide info.rmation on clinical applications which utilize pulsatility 

indices to detect abnormal flow situations. I will then present the 

basic equations of th<> theoretical model_, explain the numerical 

procedure used to implement the model on a digital computer, and define 
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the pulsatility indices investigated in this study. The chapter on the 

physiological model will contain a description of geometry and 

properties of the human femoral artery and the values of system 

parameters. A discussion of results followed by a suminary will conclude 

this thesis. 

} 
' 
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LITERATURE REVIEW 

The following literature review is not meant to be comprehensive, 

as the literature on the three topics presented is so extensive that it 

would be far beyond the scope of this thesis to provide a complete 

review. Rather I will present the basic equations used in 

cardiovascular modeling, establish a frame of reference relating my 

model to its predecessors, and focus mainly on publications· stressing· an 

interrelation between modeling and clinical situations. 

Models of Blood Flow in Arteries 

Most of the model studies are based on three types of equations: 

the Navier-Stokes equation, the continuity equation, and an equation of 

state. 'Therefo:re, this review first provides a general discussion of 

these equations followed by a presentation of different applications 

appearing in the literature. 

·For more than 2000 years, blood flow in arteries has been a major 

point of research for many investigators with very different 

professional origins. But progress was very slow, and many functional 

features of the arterial system were still unknown in the 16th century 

when the classical Galeµical teaching that blood was created in the 

liver and absorbed by the tissues to which it was conveyed with 

oscillatory motion mainly in the veins prevailed (McDonald, 1974, p. 4). 

Essential discoveries did not come about until the 19th century 

when experiments were conducted more meticulously and mechanical 

principles were app1ied to cardiovascular flow situations. Using 

,- / 
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theoretical considerations, Navier and Stokes derived an equation 

describing both steady and unsteady laminar flow of a Newtonian fluid. 

In formal mathematical terms, the Navier-Stokes equation can.be written 

as: 

m ( V) 1v B µV2 0 at + q. q + "P P - - ; q = (1) 

where q is the flow vector, p the pressure, p the fluid density, µ the 

fluid viscosity, and B an external body force vector. This nonlinear 

partial differential equation, capable of describing very general flow 

situations, still defies an analytical solution in its most general 

form, more than 130 years after the first publication. 

Another basic law in fluid mechanics is the continuity equation 

stating that fluid mass' flowing through~ control volume cannot be lost 

or transformed within the control volume, or in other words: mass 

flowing into a control volume must be balanced by the mass flowing out 

of it. The mathematical notati?n is given by 

V.q ·= 0 (2) 

If applied to laminar flow of an incompressible fluid in a tube with 

rigid walls, the continuity equation indicates that the volume rate of 

flow is independent of position and therefore changes with time 

uniformly along the tube. 

Blood -flow in arteries can be simulated by assuming that (1) blood 

is an incompressible Newtonian fluid (generally considered to be a good 

assumption), and (2) arteries behave like linearly elastic tubes. For 

this special case, Womersley (1957) used the continuity equation to· 

simplify the Navier-Stokes equation and obtained an analytical solution 
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for the flow problem. The resulting velocity profiles provide an 

approximation to pulsatile blood flow and correctly indicate that flow 

reversal (arterial flow from the periphery to the heart) can. occur 

during the cardiac cycle, a finding well documented by in vivo studies. 

Womersley's solution cannot be written in terms of explicit 

functions; it requires that the driving pressure be specified as a 

Fourier series, and each term in the Fourier series yields a 

corresponding flow term containing Bessel functions. That makes the 

solution somewhat awkward to work with. Nevertheless, Womersley's· work 

is one of the milestones in modeling blood flow in arteries and has 

provided the foundation for an improved understanding of processes in 

the cardiovascular system. Shortly after Womersley published. his 

research, analog and digital computers became more widely available, and 

many investigators took advantage of these new tools giving rise to a 

new branch of cardiovascular modeling presented later in this section. 

A different approach to modeling originated from the science of 

maj:erial properties, which started in the first half of the 19th century 

when Thomas Young the famous biophysicist did work on the nature of 

elas.ticity. He was particularly interes.ted. in the relation between the 

elastic properties of arteries and the velocity of propagation of the 

arterial pulse. A similar problem is to find a relationship between the 

cross sectional area of an artery and its distending pressure. An 

equation of this kind, relating area and pressure, is usually referred 

to as an equation of state and_ can be obtained by both theoretical and 

experimental means. 
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Experimental studies (Roach and Burton, '19.59; Boughner and Roach, 

1971) relate the circumferential tension T and the percent increase in 

circumference of an a:i::.tery, With the use of Laplace's law 

T = pR 

wh.ere p is ·the distending pressure and R the arterial radius, the 

tension strain curves can then be rewritten in terms of area and 

pressure if the value for the radius of the unstrained. artery is known. 

A theoretical analysis can deduce an equation 'of state· from 

mechanical principles valid for thin walled vessels. Depending on the 

assumptions made during the derivation, different results will be 

obtained. Streeter et al. (1963) assumed the vessel to have a constant 

volume per unit length and the vessel material to be incompressible 

(Poisson's ratio = O. 5) and presented an equation of state in the 

following form: 

(3) 

where A(p,x) is the area as a function of pressure p and arterial length 

x, E is the modulus of elasticity, and d0 , h0 are the values of vessel 

diameter and thickness at a reference pressure p0 . For clinical 

application, this equation is of limited value since equipment to 

measure the modulus of elasticity in vivo is not yet available. 

Equatidn .(3) can be modified by introducing a new parameter, which 

is clinically accessible: the pressure pulse wave velocity a0 . A 

simple and very useful formula for a0 is the famous·Moens-Korteweg 

equation 
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= (Eh/· d) 0 ' 5 
ao o P o (4) 

which originated from work on wave propagation in the last century. The 

Moerts-Korteweg equation in.a strict sense is valid only for nonviscous 

fluids., but it does .provide a good approximation for blood :flow. A 

substitution of equation (4) into equation (3) yields 
2 -1 A(p,x) = A(p0,x)(l-(p-p0)/pa0 ) 

leaving only two parameters, the fluid density and the pulse wave 

velocity. 

(5) 

Another· parameter easily obtainable in clinical situations is a 

pressure strain modulus E defined as E = (R/LIR)llp. Mozersky et al. 
p p 

(1972) transcutaneously measured E on patients classified in three p 
different age groups· and found an increase of E with age. They also 

p 

observed large variations within the age groups. By integrating the 

definition of E , an equation of state in t~e form . p 

A(p,x) = A(p
0

,x)e2(p-po)/EP (6) 

can be obtained. Equations (3), (5), and (6) all relate the distending 

pressure and the cross sectional area and therefore represent different 

realizations of an equation of state. As a common feature, they only 

concentrate on the elastic behavior of arterial walls and neglect any 

viscoelastic behavior which would give rise to the possibility of phase 

differences between pressure and area. For many modeling situations, 

departures from elastic behavior are not of prime interest, in which 

case the elastic theory yields adequate results. 
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Efforts to model one dimensional arterial flow on computers started 

two decades ago on analog computers where simplified and linearized 

equations were implemented. As more sophisticated algorithms became 

available to solve partial differential equations on digital computers, 

the research emphasis shifted towards digital computers, partly because 

nonlinearities can be included with relative ease. 

Snyder et al. (1968) set up a linear model of the systemic arterial.-

tree on an analog computer and obtained results that agree with 

physiological data ·such as distal delay and peaking of pressure pulse 

waves. Moreover, several clinical parameters such as cardiac output and 

cardiac work were investigated with respect to variations in the -heart 

rate. 

Westerhof et al. (1969) used a linear model to build an electric 

analogy of the total human systemic arterial tree. They discuss several 

concepts of vascular impedance and wave travel and prove that a s-imple 

aortic model .consisting of a single tube with only one distal reflection 

site at its end does not accurately represent the physiological 

situation. The peripheral peaking of the pressure pulse is attributed 

to reflections for lower harmonics at the peripheral beds simulated by a 

lumped pure _resistaI1ce. Westerhof et al. neglect viscoelastic behavior 

and, for clinical comparisons, simulate effects of essential and old age 

hypertension. 

Schaaf and Abbrecht (1972) compare linear and nonlinear models on a 

digital computer and conclude that the higher fidelity obtained with 

nonlinear models is due to the effects of vessel taper and the 
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convective acceleration term in the Navier-Stokes equation. In more 

detail, Schaaf and Abbrecht attribute the main differences to the 

nonlinear effects of finite wall displacements and only small influences 

to the terms in the Navier-Stokes equations corresponding to convective 

acceleration and fluid friction. The influence of the peripheral beds 

are accounted for by including-a distal lumped resistance. 

Wemple and Mockros (1972) used the methods of characteristics to 

implement a nonlinear model' on a digital computer by including 

convective acceleration and fluid friction for steady and first harmonic 

sinusoidal flow in the Navier-Stokes equation and by allowing the 

modulus of elasticity in the equation of state to be a function of cross 

sectional area (elastic taper). Simulation of.the peripheral beds in 

this model is more e_laborate than in the models presented above, as it 

provides for both resistive and .compliant components. Like Snyder _et 

al. (1968), Westerhof et al. (1969), and Schaaf and Abbrecht (1972), 

Wemple and Mockros concentrate on the behavior of the pressure pulse 

wave and try to determine its governing factors. From their results, 

Wemple and Mockros conclude that reflections at the distal end are 

mainly responsible for pulse wave amplification, whereas geometrical 

taper does not exhibit a major influence. Wemple and Mockros also 

suggest that elastic taper and nonlinearities in the wall elasticity do 

not significally alter pressure and flow profiles. For low frequencies, 

their nonlinear model deviates only slightly from the linear model. 

Raines et al. - (1974) limit their model based on a finite-difference 

numerical technique to the .human femoral artery and try to stay very 
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close to the in vivo situation. In assessing the various effects of 

paramete:i; variations on almost exclusivly the pressure waveform, they 

retain the nonlinearities in the governing equations. Many diffen:nt 

physiological conditions are simulated during the sensitivity analysis. 

Networks of a resistance in s.eries with a parallel combination of a 

resistance and a compliance account for the effects of two branches and 

the a~terial tree distal to the popliteal artery. The terminating 

networks can be physiologically interpreted by attributing the effects 

of the first resistanc;e to. the flow resistance located in the arterioles 

and the effects of the parallel combination to the influences of the 

capillary bed. From the sensitivity.analysis, Raines et al.. deduce that 

the pressure waveform ·.is only moderately affected by the convective 

acceleration, blood viscosity, and branching, but that vessel elasticity 

and' distal reflections strongly determine the behavior of the pressure 

pulse. These results are in good agreement with Schaaf and Abbrecht 

(1972) and Wemple .and Mockros (1972). 

Overall, the basic model of the human femoral artery as presented 

by Raines et al. (1974) includes all the main features known to 

determine flow and pressure waveforms, and at the same time provides a 

model geometry and a set of parameters that simulates rather closely the 

in vivo situation. Therefore, the control case of Raines et al. will be 

adopted as the basis for the· model in this thesis. 
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' 
Diagnostic Metliods for Measuring Arterial Flow 

The most common diagnostic method is arteriography, an invasive 

method where a radioactive tracer material is injected into the artery 

and x-ray pictures are taken providing information about the presence of 

a constriction. This method is considered to be the most reliable 

diagnostic technique; however, it is relatively time consuming, 

expensive, cannot be used repeatedly for routine screening and followup 

examinations, is associated with a certain degree of morbidity and 

mortality, and may indicate less arterial obstruction than is present 

(Lee et al., 1980). In an attempt to overcome these difficulties, 

noninvasive techniques have been developed based on the abnormal flow 

characteristics that develop in stenosed arteries. 

Electromagnetic flowmeters, in the past used only on exposed 

arteries during surgery, now are used noninvasively by creating the 

magnetic field exterior to the body. Lee et al. (1980) reported on the 

successful application of a noninvasive calibrated electromagnetic 

flowmeter in assessing arterial peripheral flow. 

Ultrasonic devices are the most frequently used noninvasive 

diagnostic instruments in a clinic~l environment. One ultrasonic 

technique produces scans of arteries by colouring images according to 

the peak velocity at each point in the artery. Abnormalities are 

identified by change of flow velocity rather than direct visualization 

of vessel narrowing. Another device displays all frequencies occurring 

in the Doppler signal versus time. For smooth blood flow, the Doppler 

energy is concentrated in a narrow frequency spectrum, whereas for 
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turbulent flow, energy is spread over a wider frequency range. The 

physician then deduces from the distribution of energy the flow 

situation. 

Ultrasonic flowmeters which provide a measurement of the flow 

waveform at one specific point of the artery during a cardiac cycle have 

been used extensively to assess peripheral arterial.flow (Gosling et 

al., 1971, Harris et al., 1974, Johnston et al., 1978, Baird et al., 

1979). Two techniques, the continuous wave Doppler flowmeter (CW 

Doppler) and the pulsed Doppler flowmeter, differ in the way the flow 

waveform fa obtained. The CW Doppler measures velocity comp.onents over 

the total arterial cross section, which are used to generate a 

representative wave sample. Johnston et al. (1977) point out problems 

associ11ted with the use of CW Dopplers and present solutions to overcome 

these problems. Pulsed Doppler flowmeters concentrate on a restricted 

area of the total arterial lumen, and depending on the size of an 

artery, can be used to obtain flow waveforms at several sites between 

the ·arterial wall and the arterial center. Baird et al. (1979) measured 

flow waveforms with a 30 channel pulsed Doppler flowmeter at 4 points 

across the section of the femoral artery. 

At the present time, .both CW and pulsed Doppler flowmeters are 

difficult to calibrate. accurately, and their output waveforms are 

usually graded by qualitative means to provide a comparison of data from 

different patients. 
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Noninvasive, Assessment of Arterial Flow 

All of the following methods for assessing arterial flow are based 

on the evaluation.of flow waveforms obtained with uncalibrated 

ultrasonic equipment. 

Arterial obstruct,ions cannot be detected by ultrasonic· methods 

unless they cause changes in the flow behavior. Often, stenoses are 

thought to dampen the flow waveform and reduce the pulsatility of blood 

flow along the artery. During the past ten years, several methods have 

been introduced to associate a pulsatility index with flow waveforms and 

to deduce the flow situation from variations of the pulsatility index 

along the artery. Because of easy accessibility, the arteries in the 

human legs have served as a benchmark for the different methods. 

Gosling et al. (1971) were the first to use a pulsatility index 

(PI) defined as the total oscillatory energy in the flow velocity 

waveform divided by the energy of the mean forward flow velocity during 

a cardiac cycle. 'By looking at the variation of the PI from the 

abdominal aorta to the tibial arterie,s, Gosling et al. could arrive at a 

quantitative comparison of the arterial pathway capabilities of 

different patients. 

Woodcocl<; et al. (1972) introduced the damping factor (DF) as the 

ratio of proximal and dis~al measured Pis and tried to relate the DF 

with pressure drop and flow. Their results indicate that the DF method 

is in agreement with other methods (arni/calf pressure difference, 

strain-gauge plethysmography) and could be useful in the assessment of 

arterial flow. However, Wo9dcock et al. did not present a method that 
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could quantitatively correlate the DF with the degree of arterial 

obstruction. 

Harris et al. (1974) studied the relationship between an assessment 

using the pulsatility index and angiography in occlusive arterial 

diseases in the human limbs. Their work led to the conclusion that 

assessments of disease by the 2 methods correlate, but that the 

ultrasound method could incorrectly disclose a severe disease which was 

not apparent in the angiography. 

According to the original definition of the PI, its evaluation 

requires the flow waveform to be presented in Fourier coefficients, 

thereby making necessary a conversion of flow data from the time to the 

frequency domain. Thus, Gosling and King (1974) trying to overcome this 

computational disadvantage defined a pulsatility index as the ratio of 

peak to peak flow excursion to the mean flow. This PI with the same 

information content as the previous one (Gosling and King, 1974; 

Johnston et al., 1978) is easier to evaluate. Subsequent studies 

(Johnston and Taraschuk, 1976; Johnston et al., 1978; Baird et al., 

1979, Evans et al., 1980) made use of this new definition of the PI. 

Johnston and Taraschuk (1976) compared the PI method with graded 

arteriograms and ankle systolic pressure measurements. Their results 

suggest that the PI method is capable of detecting clinically 

significant stenoses (more than 50% area obstruction) and may be 

sensitive enough to detect lesions graded by arteriograms as less than 

50% stenosis. However, the authors recommend that a precise sensitivity 

analysis, not included in their study, be carried out on the 
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investigated patient group. 

In a later study, Johnston et al. (1978) comment on problems 

associated with the CW Doppler device hardware, present an improved 

system, and demonstrate that clinically significant peripheral arterial 

occlusive disease can be quantified and regionally localized with the PI 

method. Also, the authors prefer to use the inverse damping factor 

(IDF) because like most clinical measurement indices it decreases with 

increasing disease state. Moreover, the IDF (with a fixed proximal PI 

and a:·varying distal PI) plotted against arterial tube length shows the 

behavior of a normalized pulsatility index along the artery in a 

proportionate fashion (independent variable in the numerator of the' 

ratio) as opposed to the inverse proportional plot of the DF along the 

artery .. For most people, proportional curves are easier to interpret. 

For these two reasons, I chose t'o investigate the behavior of the IDF 

instead of the DF which is more common in the literature. 

Baird et al. (1979) working with a 30-chaimel pulsed Doppler 

flowmeter scanned the pr9funda branch of human femoral arteries and 

found that a stenosis of more than 50% was invariably associated· with a 

IDF of 'less than 0.67. For normal limbs, the IDF was always greater 

than 0. 71. 

Evans et al. (1980) conducted an analysis of the relationship 

between ultrasonic PI and proximal arterial stenosis in a canine model. 

After implanting stenoses of varying lengths and cross sectional areas, 

the authors were able to show that the reduction of the PI (= IDF of 

less than 1. 0) correlates broadly with the stenos is severity, but that 
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at the same time all but the tightest stenoses exhibit a wide scatter in 

the results, an effect attributed to the influence of peripheral 

resistance. Therefore,, the dependency of the PI on the peripheral 

resistance is much more marked in the case of mild st;enosis, whereas 

tight stenoses always result in a low PI. In the animal model, only 

stenoses greater than 86% produced an PI low enough to be diagnostic of 

inadequate flow. 

The study of Evans et al. (1980) shows clearly that the diagnostic 

value of the PI method depends significantly on an accurate knowledge of 

its sensitivity to parameter variations. A detailed sensitivity 

analysis, however, cannot be performed in animal models. Therefore, I 

studied the sensitivity of the PI method on a computer model and 

investigated the feasibility of using PI and IDF to assess arterial 

flow. 
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THEORETICAL MODEL 

Governing Equations 

· Three equations describing general fluid flow situations were 

presented in the previous·chapter: momentum equation, continuity 

equation, and ail equation of state. The three independent variables in 

these equations are the three dimensional flow vector q(x,t), the 

pressure p(x,t), and the cross sectional area A(p,t). For.the purpose 

of th:i.s study, all ·three equations were modified to obtain a description 

of arterial blood flow that can be treated numerically with relativt;) 

ease. 

The Navier-Stokes equations can be reduced to an equation of·the 

form 

(7) 

by integrating equation (1) over the arterial cross section and making 

the following assumptions: 

L ·Arterial flow is axisymmetric. 

2. The blood layer adjacent to the arterial wall follows the 

wall motion ('no slip' condition). 

3. The pressure is uniform across the arterial cross section. 

4. The wall stress for arterial .flow can be approximated by the 

wall shear stress for steady flow. 

5. The second derivative of the axial flow component with 

respect to axial location is small compared to other terms in 

the Navier-Stokes equations and can be neglected. 
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The second and third term in equation (7) are the convective 

acceleration terms, and the last term is the fluid friction term. In 

the following, equation (7) will be referred to as momentum equation. 

The continuity equation c.an also be integrated over the arterial 

cross section. By neglecting flow through the arterial wall (seepage) 

and using the'' first two assumptions from above, the following equation 

can be obtained·: 

~ + aA = 0 ax at (8) 

The two forms of an equation of state given in equations (5) and 

(6) include a type of nonlinearity that is not well-suited for the 

numerical algorithm of finite elements used in this study. Therefore, I 

chose to work with' an approximation in the form of a second order 

polynomial 

A(p,x) (9) 

The coefficients of the polynomial C~ and C~ can be found by rewriting 

equation (5) as a geometrical series or expanding equation (6) into a 

Taylor series and neglecting terms of higher order. Alternatively, 

fitting equation (9) t'o pressure area curves from experimental studies 

also yields values fqr the coefficients. In any case, the resulting 

approximation has· to be examined carefully with respect to accuracy. 

For example, the validity of equation. (5) in a rigorous sense is. assured 

only for small pressure variations around a reference pressure p 0 . An 

approximation of the equation of state based on equation (5) will 

therefore not be equally precise over the full range of arterial 
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pressure where the mean arterial pressure is taken as p0 . Compared to 

the assumptions included in the derivation of· equations (7) and (8), the 

approximation of the ~quation of state by equation (9) probably 

introduces the most significant deviation from the physiological 

situation. 

To obtain two equations containing partial derivatives with respect 

to only two independent variables,. equation (9) can be used to eliminate 

the area derivative in equation (8). After the substitution, the 

continuity equation has the form 

(10) . 

where 

C = 2Ca 
1 1 

Equations (7) and (10) constitute the governing equations of blood 

flow in unobstructed arteries without branches. 

To simulate an arterial sectioJ;I that includes a branch diverting 

from the main stem, two equations are needed to replace equations (7) 

and (10). The effects caused by a branch are usually lumped into 

equations containing parameters that account only for the overall 

hemodynamic behavior and do not provide a detailed'flow description such 

as equations (7) or (10). As a good approximation, the small pressure 

drop across the branch location can be neglected. 

~ = 0 ax 

Thus, 

(11) 
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takes the place of the momentum equation. The form of the second 

equation which includes the effect of branch flow depends on the model 

adopted for the peripheral beds. In many studies, this is chosen to be 

a pure lumped resistance'. However, Raines 'et al. (1974) stated that the 

compliant contribution' of the. peripheral beds plays a role in 

determining the distal pulse wave form; consequently they used a network 

which includes a resis.tance R1 in series with the parallel combination 

of a resistance RZ and a co~pliant element C to simulate peripheral 

beds. t also considered this constellation to be more realistic and 

incorporated it into my model. With the assumption that the venous 

pressure is· zero, the equation for the branch flow B is 

(12) 

From the continuity principle, it follows that B is the difference 

between the flow before and after .the branching point in the main 

arterial stem. At the distal end, the flow rate in the main artery 

obeys the same equation as B in equation (12). 

In addition to unobstructed arteries, stenosed arter.ies will also 

be simulated in this study. Thus, two more equations are needed that 

involve the pressure drop across the stenosis and the corresponding 

volume rate of flow. If the stenosed arterial section is considered to 

be noncompliant, the, continuity equation (8) reduces to 

aq = o (13) ax 
which gives the first of two required equations. The second equation is 

taken from Young and Tsai (1973) who studied unsteady flow through rigid 
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tubes with different types of obstructions and combined theoretical and 

experimental data to develop the relationship 

and 

where llp is the pressure drop across the stenosis, A0 , D and A1 , D1 are 

the areas and diamete~s of the unobstructed and obstructed arterial 

lumen, respectively; and 1 is the length of the stenosis. In my model, 

Kt and K were assigned the values 1.5 and 1.2. These empirical values u . 

correspond to stenos es having the shape ·of blunt ended, holli;>wed plugs. 

A derivation of this equation and a discussion of various hemodynamic 

factors pertaining to blood flow in stenosed arteries are given in Young 

(1979). 

In summary, a pair of equations containing the partial derivatives 

of flow and pressure with respect to time and position have been 

presented for three different model situations: unobstructed artery 

without a branch, unobstructed artery including a branch, and 

obstructed artery. Given a description of the model geometry and a 

specification of proper boundary values, a numerical solution to these 

equations will yield values of pressure and flow at selected points 

along the. artery. 
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Numerical Procedure 

The ·governing equations of the model include nonlinear terms and 

thus cannot be solved.analytically. Instead, numerical methods that can 

be implemented on a· digital computer have to be used to provide an 

approximate solution. Most numerical methods are based on a 

discretization process where the derivative terms in the partial 

differential equations are replaced with algebraic expressions. lf the 

discretization process is carried out in accordance with certain 

restrictions, the solution to the system of algebraic equations 

represents an accurate approximation to the analytical solution of the 

partial differential equations. 

In my model, several sets of partial differential equations 

interact with each other, corresponding to the differences in arterial 

sections (without a branch, with a branch, and with a stenosis). 

Inhomogenous model geometry like this can be treated with relative ease 

by the numerical method of finite elements. Rooz (1980) gives a 

detailed step by step description of applying the finite element method 

using the Galerkin method to.equations simulating blood flow. Over~ll, 

this method is not only well-suited to discretize flow equations, but it 

is also relatively easy to implement. Therefore, I extended his 

approach to the more general equations of this study. 

In the Galerkin method, the domain of the independent variables, 

location and time, is divided into rectangular elements with four nodes 

situated at the corners of an element. The dependent variables, 

pressure and flow, ·are assumed to be of the form 
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Q(x,t) = [N(x,t)]{q} (15) 

and 

p(x,t) = [N(x,t)]{p} (16) 

where {q} and {p} are four dimensional column vectors consisting of the 

unknown flow and pressure values at the four nodes, and [N(x,t)] is a 

four dimensional row vector of the shape functions N.. The N. are 
l. l. 

chosen so· that they assume the value 1 at node i and 0 at the three 

other nodes. After substitution of equations (15) and (16) into a pair 

of corresponding differenti'll equations such as (7) and (10), the 

i:e~ulting differential forms are multiplied by each of the four shape 

functions and integrated over the element area. The result is a set of· 

8 homogeneous algebraic equations for the 8 unknown values of pressures 

{p} and flow rates {q} at the four element nodes~ 

According to the underlying geometry, the element equations are 

then inserted into ·a global matrix using the direct stiffness assemblage 

with respect to arterial position. This yields a homogeneous system of 

algebraic equations 

A'{o} + B'{o} = o (17) 

where A' and B' are 4(n+l) dimensional matrices with A' independent and 

B' dependent on o. The quantity 6 is a 4(n+l) dimensional row vector 

containing the unknown values of pressure and flow at the nodes of n 

elements representing a discretization of the flow problem at times T 

and T+At; Note that system (17) is singular unless proper boundary 

conditions are inserted. 

The complexity of system (17) can be reduced by assuming that the 
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values of pressure and flow at time T are already known and performing 

the appropriate substitution in system (17). The number of unknown 

values reduces to 2(n+l) and half of the equations in system (17) can be 

discarded. A review of the Galerkin process reveals that this reduction 

can actually be accomplished during the derivation of the element 

equations by taking only two of four shape functions as multiplication 

factors prior to the integration step. Appendix 1 contains the element 

equations for the three different pairs of differential equations in the 

reduced form. After reduction, (17) can be written as 

A{o} + B{o} = {f} (18) 

where the dimension of A, B, and {O} is now 2(n+l), and {f} consists of 

the terms originating from the substitution of the initial values at 

time T. The reduction .in dimension of system (17) brings about an 

increase in required time steps. For a fixed time span, system (18) has 

to be solved twice as often as system (17). 

Contributions to matrix B which is a function of {p} and {q} 

originate from three sources: the convective acceleration term of the 

Navier-Stokes equation (7), the second order term in the equation of 

state (9), and the nonlinear term in the formula for the pressure drop 

across a stenosis (14). The dependency of Bon values of the solution 

{O} makes necessary the utilization of an iterative method to obtain a 

solution to system (18). An iteration can be defined by 

A{o } + B 1{o } = {f} (19) n n- n 

where Bn-l is B evaluated at {On-l}. Equation (19) represents a linear 

system. For the first iteration step, the values of pressure and flow 



27 

from the previous time step serve as initial values to evaluate B0 . 

Iteration (19) is terminated if the relative difference of two 

successive iterations becomes smaller than a given tol_erance or if the 

number of iterations exceeds a preset value. I chose 0 .1% as an 

accuracy threshold and terminated the program execution if more than 10 

iterations w.,re required. 

The computer program to solve system (18) was written in FORTRAN 

for implementation on a high-speed digital computer, the ITEL6. The 

input file contains 

• a description of the flow problem geometry including 

specifications of the R1, R2, and C values for the branches and 

the distal end, 

• ·flow _parameters such as fluid density and fluid viscosity, 

• numerical control variables such as number of time steps, 

number and ·length of elements, and required accuracy, 

• tlie proximal ·boundary. values represented by the pressure 

waveform in the form of Fourier coefficients. 

The program output includes values of pressure and flow at the proximal 

and distal end at selected time ·steps, the numerical values of all 

general pulsatility indices along the artery as defined in tqe next 

section, and multicolored plots of selected data curves to help with the 

interpretation oJ; results. 

A short outline of the program procedure follows. After data input 

and initialization of parameters, matrix A of system (18) is assembled 

and permanently stored in a global array as it remains unchanged for all 
' 
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following tinie steps. Matrix A 'can be made a sparse matrix with a 

bandwith of 7 (for the reduced system (18)) if a certain sequence in 

numl.>ering the element nodes is followed. Then, initial values are 

arbitrarily assigned to the pressure and flow variables. The influence 

of.these arbitrary initial conditions is eliminated in the final 

solution by executing the program for three successive heart cycles s9 

that a stable solution is obtained. 

Then for each time step At, an iteration is performed according to 

equation (19) until the preset accuracy requirement is achieved. 

Fortunately, the linear system (19), which has to be solved for each 

step of the iteration, consists of two band matrices with a bandwith of 

7 resulting in a considerable reduction of memory space and computation 

time for the solution process as compared to a full size system. In my 

program, I used a subroutine of the LINPACK library package to perfo~m 

the solution of system (19). A rough estimate for the execution time 

required by the subroutine SGBFA shows that execution time is a linear 

function of the order of the matrix and a quadratic function of the 

bandwith. Thus, system (19) with a bandwith of 7 is superior to systell! 

(18) with a bandwith of 15 even in co_mputation time. A different 

version of this subroutine also provides an estimation of the condition 

number, which can "be interpreted as an error amplification factor. For 

an element length of -0.02 m and a time -step of 0.0025 s, the condition 

number turned out to be 42, which can be considered a good value (the 

optimal value would be 1). 
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Pulsatility and Area Indices 

Originally, the pulsatility inde)C was defined as the ratio of the 

oscillatory energy of the flow waveform to the energy in the steady flow 

component. However, at the present time the pulsatility index usual,ly 

refers to the ratio of the peak to peak velocity excursion to the mean 

flow. In both cases, the pulsatility index represents a dimensionless 

parameter associated with flow that is presumably changed through the 

presence of arterial obstructions. Of course, dimensionless quantities 

can be re.lated to waveforms in many different ways, and it is the 

purpose of this study to investigate whether different measures of 

pulsatility could provide a better diagnostic tool to discern arterial 

obstructions. 

One alternate measure arises fr~m the mathematica1 theory of 

functional analysis which furnishes many different possibilities to 

assign to functions a numeric value, called the norm of a function. 

With that concept in mind, I defined dimensionless L -norms of the flow n 

Q as 

L (Q) = (l/Qn(t)dt)l/n/Q 
n T , m 

where Q is the mean flow defined as m 

and included the cases n=2,3,4. in my investigation. 

(20) 

The dis.tribution of the area under the flow curve provides another 

measure of pulsatility. A 50% area index can be defined as the ratio of· 

the areas between 50% and 100% of the maximal and minimal f lowrate to 
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the area under the mean flow rate. Figure 1 illustrates graphically 

this definition. Area indices considered in this study were .the 50%, 

70%, 80%, and 90% area indices. For a flat and dampened wavefo_rm, the 

.area i~dex will be greater than for a pulsatile waveform with sharp 

peaks provided that the mean flow rate is equal. Thus, an inverse 

damping factor based on the area indices when plotted versus arterial 

length may also be .diagnostic of flow obstructions. 

In summary, the eight different general pulsatility indices 

considered in this study are the conventional pulsatility index, !'he 12 , 

13 , and 14 norms, and the 50%, 70%, 80%, and 90% area indices together 

with their corresponding inverse damping factors. 
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50% AREA INDEX = 

Fl:OW 

0. 5 • QMAX 

FIGURE 1. .. Definition of the 50% Area Index 
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PHYSIOLOGICAL MODEL 

Raines et al. (1974) present a model 6f the human arterial tree 

from the iliac bi"furcation to the point where the popliteal artery meets 

the tibial branches. i:n my study, I retained the salient feature.s of 

their model, especially the model geometry, but chose a different 

representation of ·the equation of state for numerical reasons. A 

schematic of the ~odel geometry is given in Figure 2. 

The branches occurring in vivo along the total arterial section are 

lumped together into two model branches, the hypogastric artery and the 

profunda branch of the femoral artery. The peripheral beds of the 

branches and the arterial tree distal from the popliteal artery are each 

accounted for by a lumped model conta·ining two flow resistances R1, R2 
and one flow compliance C. 

From measurements on arteriograms, Raines et al. (1974) obtained a 

relationship between the arterial area A(p0 ,x) at a reference pressure 

p0 and the distance x from the iliac bifurcation 

A(p0 ,x) = 0.505exp(•0.192x0 ·5 ) O<= x <o:14 (21) 

0.327exp(-0.0206x) 14<= x <=60 

where xis measured in .cm and A in cm2 . 

Table 1 provides a summary of the system parameters in the control 

case. The coefficients for the equation of state were obtained by 

expanding (5) into a geometrical series and neglecting terms of higher 

than second order. The value for the blood density was assumed to be 
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1050 kg/m3 . All other parameters are from Raines ·et al. (1974). 

TABLE 1. Model Parameters for the Control Case 

parameter description symbol value units 

·heart rate 0.75 102 beats/min 
blood density 0.105 104 kg/m 3 

p 

blood viscosity 0.45 10-2 Ns/m 2 µ 

pulse wave velocity ao 0.104 102 m/s 
equation of state 

linear compliance term co 0.67 10-5 2 m /sN 

nonlin·ear compliance term c1 0.16 10-9 4 2 m /sN 
hyPogastric artery 

first resistance l1i1 0.43 109 Ns/m 5 

second resistance l1i2 0.17 1010 Ns/m 5 

compliance CH o .15 10-9 m5/N 
profunda branch 

first res·istante RPl 0.85 109 Ns/m 5 

second res-ista.Ilce RP2 0.34 1010 Ns/m5 

compliance cP 0.75 10-10 m5/N 
distal end 

first resistance Rui 0.85 109 Ns/m 5 

second·resistance 11>2 0.34 1010 Ns/m 5 

compliance CD 0.75 10~ 10 m5/N 

To complete the mod.el, boundary values have to be specified at the 

proximal end of t·he artery. For thi,s purpose, I chose to use the 

pressure waveform since it is probably less affected than the flow 
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waveform by changes in the flow situations downstream from the iliac. 

bifurcation. The proximal boundary condition in my model was unchanged 

for .all sensitivity tests. An approximation to ·the .Pressure waveform 

was obtained by performing a Fourier transform on the pressure curve 

given in Raines et al. (1974). Only the first 7 coefficients for .sine 

and cosine terms, as 'listed in Table 2, were·used in the computer 

program to reconstruct the pressure waveform. 

TABLE 2. Fourier Coefficients for the Proximal Pressure Wave 

harmonics cosine coef f icienta sine coef f icienta 

0 0.1056 105 0.0 
1 0. 7665 103 0 .2059 104 

2 -0.4450 103 0.1752 104 

3 -0.1246 104 0.5360 103 

4 -0.6321 103 -0.3442 103 

5 -0.1365 103 -0. 3161 103 

6 0 .1211 102 -0.1285 103 

a The coefficients have as unit ,N/m2 . 
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RESULTS AND DISCUSSION 

Control Case 

The control case is specified by the data given in Table 1 a.nd 

Figure 2. Figures 3 and 4 contain pressure and flow .waveforms; 

respectively, at four different sites along the artery: at the proximal 

end, at .two 1ocations immediately following the branching points of the 

hypogastric artery (first branch) and the profunda artery (second 

branch), and at the distal end. 

The pressure wave travelling along the artery shows both an 

amplification in the distal direction and the occurrence of a hump at 

the distal end, general:ly attributed to the effects of reflections. 

These findings are in good agreement with Raines et al. (1974); however,. 

in my model the increase in. the pressure wave is more marked 

corresponding favorably with data from physiological studies (Remington 

and Wood, 1956). This quantitatively different behavior is probably 

caused by the different form of the equation of state in my model. 

The flow waveform exhibits a decrease in the distal direction as 

the .mean flow reduces after each branch. A phase of flow reversal 

occurs along the total arterial section. The mean flow rates are 

slightly higher than those given in Raines et al. (1974). 

Figure 5 shows the inverse damping factors (IDF) of the pulsatility 

index (PI) and of the L2 , L3 , and L4 norms. The IDF is defined as the 

ratio of a dis.tal index measurement to a proximal measurement. In the 

figures showing the behavior of the IDF along the artery, such as Figure 
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5, the proximal measurement site remains fixed at the iliac bifurcation, 

and the distal measurement site varies along the artery. Note in Figure 

5, that the IDF of the PI remains clearly above 0.67, a value which has 

been correlated with arterial disease by Baird et al. (1979). Instead 

of the IDF, Baird et al. (1979) use the damping factor which is found to 

be greater than 1.5 for arteries with more than 50% stenosis; As shown 

in Figure S, branching causes an increase in the IDF as the reduction in 

niean flow exceeds the reduction in the difference between .maximal and 

minimal flow rates (compare the definition of the pulsatility index}. 

The IDFs for. the area indices are depicted in Figure 6. As is. the 

case for the IDF of the pulsatility index, the IDFs of the area indices 

increase at branchi~g points _and decrease slowly along the normal 

arterial sections". The ·graphs of the IDFs for all area indices are 

almost identical showing only small variations at the distal end which 

could be caused by numerical errors. At the present time, I do not have 

a pertinent hemodynamic interpretation for this unexpected behavior. 

A linear model version, which excluded the nonlinear convective 

acceleration term of the momentum equation and the nonlinear term of the 

equation of state, shows different results. The pressure pulse wave is 

not amplified in the distal direction, and the hump in the pressure 

curve is less obviotis. However, if the convective acceleration term is 

retained and a linear equation of state is used, both phenomena 

(pressure amplification and distal hump) appear regardless of whether 

the model geometry includes area taper or not. In the case of equal 

taper, a smaller arterial area causes a larger distal amplification. I 
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did not investigate the effects of elastic taper and possible changes in 

the state of the peripher~l beds on the pressure waveform. 

In summary, I concluded that the nonlinear model shows features not 

present in a linear model, since the convect.ive acceleration term in the 

momentum equation appears. ·to be a significant factor in determining the 

pressure pulse wave behavior in both a straight and a tapered elastic 

tube. 

Sensitivity Analysis 

With the control case as basis, a sensitivity analysis .was 

conducted by investigating the influences of fluid properties, 

properties of the arterial wall, branching, and distal resistance on the 

different generai pulsatility indices. 

Changes in the blood density by 1% did not bring about significant 

changes in the. Pis. Similarly, setting the blood viscosity to 0, 

thereby neglecting the friction term in the momentum equation, also had 

no significant effect. -2 However, an increase of viscosity to 1.2 10 
2 . 

Ns/m ,. which corresponds to a hematocrit of 70%, dampened the curves of 

the Pis and brought them close to values indicative of pathological· 

situations. 

The values of E , the pressure s-train modulus, given in Mozersky et 
p ' . 

al. (1972) served as primary data to study the influence of properties 

of the arterial wall. For this simulation, an approximation of (6) by 

the second order Taylor polynomial was used as an equation of state. 

The changes· in the value of E reflect the variations in stiffness of 
p 
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the arterial wall. For the E values of three different age groups, the p 
corresponding PI curves show only slight differences and fall well into 

the range- considered to be normal. Therefore, the stiffness of arterial 

walls seems to be only of minor importance in determining the PI 

behavior. 

-To· assess the effects- of branches, I simulated the occlusion of 

both model branches by increasing the four resistance values ten times. 

Naturally, the steep rise occurring· at the ·branching points in the 

control case disappeared, but at the same time the rate of decrease 

along normal arterial section was reduced. However, the drop in the IDF 

values was large enough to bring the curve of the pulsatility index 

below the threshold of 0.67 which is correlated with the occurrence of 

stenotic obstructions. Therefore,- low IDF values can also be indicative 

of reduced blood flow through the branches. 

Changes in the distal resistance by factors of 2 and 0.5 brought 

about significant variations in the Pis, but·did not shift the curves to 

low values that might be correlated with pathological situations. 

Doubling the distal peripheral resistance resulted in very large rises 

of the IDF across the two branching points and also in increased curve 

slopes. Decreasing the peripheral resistance to half the value of the 

control case diminishes the step size of the IDF across the branching 

points and also diminishes the curve slopes. 

Another point of interest is the behavior of the IDFs close to the 

distal end. In a clinical environment, the measurement sites for the 

flow waveform might not be anatomically identical for all patients. 
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Therefore, dislocating the probe by several centimeters should not 

result in significantly different measurements if the IDF method is to 

be of practical value: Except for the case of an increased peripheral 

resistance', the rate of cha.nge in the distal reg:>on, away from branches, 

is small enough so that results obtained at two locations only 

centimeters apart cqrrelate very closely. 

Stenosed Arteries 

To investigate the effect of obstructions, stenoses with different 

degrees of occlusion were placed into the main artery 0 ,4m ·from th.e 

iliac bifurcation. 

Figures 7 to 10 show the results for the case of an obstruction 

which provides a 90% lumen area reduction,. A large pressure dtop occur_s 

across the stenosis, so that the distal·pressure is very low. Also, the 

flow waveform distal to the stenosis is dampened and does not exhibit a 

phase of flow reversal. The IDFs for the pulsatility index and the 

1 -riorms drop very suddenly in the vicinity of the stenosis and stay n 

approximately constant downstream of the stenosis. Also, the IDFs for 

the area indices ar.e ~hifted to lower values and differ significantly 

from the control case. 

In summa.ry, the hemodynamic effects of a 90% stenosis are severe 

and recognizable in the IDFs of all pulsatility indices considered. 

Therefore, a diagnosis of stencitic obstructions seems to ·be feasible for 

a severely occluded artery. 

A less severe stenosis was considered next. Figures 11 to 14 
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contain the data curves obtained for a 75% stenosis. Still, the distal 

pressure ·is reduced, and the distal flow wave is dampened, but compared 

to the 90% stenosis, these effects are less pronounced. The drop in the 

IDF of the pulsatility index is also present; however, it takes place 

more slowly and continues also after the stenosis location. Therefore, 

different results will be obtained at different measurement sites 

downstream of the stenosis. The more distal from the stenosis the 

waveform is evaluated; the more indicative of an obstruction it will be. 

Thus, from the model results it follows that less severe stenoses 

are best detected if the distal PI measurement is taken at some distance 

distal from the stenosis. Moreover it is important that measurements 

are not t~ken in the vicinity of.branches since big fluctuation of the· 

PI occur around branches. For practical purposes, these two 

requirements are probably hard to meet, as the exact location of 

stenosis and branches are generally not known. 

Evans et· al. (1980) indicate that in experimental animaI.s the state 

of the peripheral beds play an important role in determining the IDF for 

nonsevere stenoses (<86%). To clarify this point, I placed a 50% 

stenosis into my model and let the resistances of the peripheral bed 

vary by a factor of 2. For an increased peripheral resistance, the IDF 

curves remain above 1, and are not significantly different from curves 

without a steno~is. However, if the distal resistance was decreased, 

.the drop in the IDF was large enough to bring the IDF of the PI below 

0.67 at the distal end_. A stenosis would then be diagnosed correctly. 

Thus, an high peripheral resistance tends to cover the effects of 

.. 
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stenoses which are not severly constricting the arterial lumen. 

From the model results, I concluded that (1) a low peripheral 

resistance is essential to allow the diagnosis of less severe stenoses 

with the PI method, and· (2) the eight general pulsatility indices in alr 

situations show the same qualitative behavior, with the pulsatility 

index being the most sensitive index. Therefore, in a diagnostic method 

it should be sufficient to concentrate on the behavior of the 

pulsatility index. 
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SUMMARY AND CONCLUSION 

A model of blood flow in the arteries of the human leg has been 

developed based on three equations: the continuity equation, the 

momentum equation, and an equation of state. The model geometry 

together with the· system parameters in the control case were taken from 

Raines et .al. (197,4). Because of the nonhomogeneous model .geometry, the 

finite element method was used to solve the nonlinear model equations on 

a high-speed digital computer. 

A comparison of the nonlinear model and a corresponding linear 

model showed that the nonlinear convective acceleration term in the 

momentum equation causes significant changes in the solution for both 

straight and tapered elastic vessels, and therefor.e should not be 

neglected. 

Eight dimensionless quantities called general pulsa.tility indices 

were associated with the flow waveform and investigated in this study: 

the conventional pulsatility index, the L2, t 3 , and L4 norms, and the 

SO%, 70%, 80%, and 90% area indices. 

A sensitivity .analysis conducted to reveal the influences of 

various system parameters on the pulsatility indices showed that the 

information contained in the eight .indices was equivalent, with the 

pulsatility index as presently used in the clinical environment being 

the most sensitive index. Also, from results of the sensitivity 

analysis, I concluded that a diagnostic method using the pulsatility 

index is not significantly affected by changes in blood density, by 

differences in the arterial stiffness likely to be encountered, or by 
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low values of blood yiscosity. However, high blood vis.cos·ity, branches, 

and the condition of the peripheral beds can exhibit a considerable 

influence. 

A simulation of the effects of stenoses with various degrees of _ 

severity, and located in the popliteal artery, seems to indicate that 

severe arterial stenoses (more than 90% area -occlusion) can be diagnosed 

by a method using pulsatility indices if the peripheral beds are in a 

normal condition. Less severe stenoses are only detected if the 

peripheral resistance is 10•1. 

In summary, a noninvasive method for detecting arterial 

obstructions using the PI method seems to be feasible if the following 

guidelines are observed: 

1. The measurement site should not be located in the vicinity of 

a branch. 

2. The blood viscosity should be normal or low rather than 

elevated. 

3. The peripheral resistance should be made as low as possible. 

4. If possible, the measurements should not be taken close to 

the stenosis location. 

These recommendations are drawn from a computer based study and 

presently do not have support from clinical studies. Other than an 

agreement of the pressure and flow curves of the model with 

physiological findings, I do not have an assessment of how well my model 

approximates the in vivo situation. Thus, it would be of interest to 

conduct animal experiments in which all system parameters can be 
1, 
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01onitored to verify the validity of the model equations. Also, a 

clinical study based on my results could be useful in determining if the 

recommendations given above are of practical use in a clinical setting. 



58 

.BIBLIOGRAPHY 

Baird, R. N., R. J. Lusby, D. R. Bird, A. E. B. Giddings, R. Skidmore, 
J. P· .. Woodcock, R. E. Horton, and J. H. Peacock. 1979. Pulsed 
Doppler angiography in lower limb arterial ischemia. Surgery 
86(6):818-825. 

Boughner, D. R. , and M. R. Roach. 
vibration on the artery wall. 

1971. Effect of low frequency 
Circ. Res. 29:136-144. 

Evans, D. H., W. W. Barrie, M. J. Asher_, S. Bentley, and P. R. F. Bell. 
1980. The relationship between ultrasonic pulsatility index ·and 
proximal arterial stenosis 

0

in a canine model. Circ. Res. 
46(4):470-475. 

Gosling, R. G., G. Dunbar, D. H. King, D. L. Newman, C. D. Side, J. P. 
Woodcock, D. E. Fitzgerald, J. S. Keates, and D. MacMillan. 1971. 
The quantitative analysis of occlusive peripheral arterial disease by· 
a non-intrusive ultrasonic technique. Angiology 22:52-55. 

Gosling; R. G., and D. H. King. 1974. Continuous wave ultrasound as an· 
alternative and complement to x-rays in vascular examinations. Pages 
266-282 in R. S. Renemart,. ed. Cardiovascular applications of 
ultrasound. Am. Els·evier Publications, Inc., New York. 

Harris, P. L., L.A. Taylor, F. D. Cave, and D. Charlesworth. 1974. 
The relationship between Doppler ultrasound assessment and 
angiography in occlusive arterial disease of the lower limbs. Surg. 
Gynecol. Obstet. 138:911-914. 

Johnston, K. W., and I. Ta.raschuk. 1976. Validation of the role of 
j:mlsa:tility index in quantitatfon of the severity of peripheral 
arterial occlusive disease. Am. J. Surg. 131:295-297. 

Johnston, K. W., B. C. Maruzzo, and R, S. C. Cobbold. 
artifacts of Doppler flowmeters and their solution. 
112:1335-1342. 

1977. Errors and 
Arch. Surg. 

Johnston, K. W., B. C. Maruzzo, and R. S. C. Cobbold. 1978. Doppler 
methods for quqntitative measurement and localization of peripheral 
arterial occlusive disease by analysis of the blood flow velocity 
waveform. Ultrasound in Med. & Biol. 4:209"223. 

Lee, B. Y., F. S. Trainor, W.R. Thaden, D. Kavner, and J. L. Madden. 
1980. Use of noninvasive electromagnetic flowmetry in the assessment 
of peripheral arterial disease. Surg. Gynecol. Obstet. 150:342-346. 

McDonald, D. A. 1974. Blood flow in arteries. 2nd ed. The Williams & 
Wilkins Company, Baltimore. 



59 

Mozersky, D. J., D.· S. Sumner, D. E .. Hokanson, and D. E. 
Jr. 1972. Transcutaneous measurement of the elastic 
the human femoral artery. Circulation 46:948-955. 

Strandness, 
properties of 

Raines, J.· K., M. Y. Jaffrih-, and 4. H-. Shapiro. 1974. A computer 
simulation of ar.teria1 .dynamics in· the h,uman leg. J. Biomechanics 
7:77-91. 

Remington, J. W.,. and·E. H. Wood. 1956. Formation of peripheral.pulse 
contour in man. J. Appl. Physiol. 9:433-442. 

Roach, M. R., and A. C. Burton. 1959. 
elasticity of human iliac arteries. 
37:557-570. 

The effect· of age on the 
Can. J. Biochem. Physiol. 

Rooz, E. · 1980. A finite-element 
flexible· tubes. Ph.D. Thesis. 

simulation of pulsatile flow in 
Iowa. _State University. 

Schaaf, B. W., and P. H. Abbrecht. 1972. Digital computer simulation 
of human systemic arterial pulse wave transmission: a nonlinear 
model. J. Biomechanics 5: 345-364. 

Snyder, M. F., V. C. Rideout, and R. J. Hillestad. 1968. Computer 
modeiing of the human arterial tree. J. Biomechanics 1:341-353. 

Streeter, V. L. , W. F. Keitzer, and D. F. Bohr. 
pressure and flow through distensible vessels. 

1963. Pulsatile 
Circ. Res. 13:3-20. 

U.S. Department of Heal th and Human Services. 1980. National heart, 
lung, and blood institute' s fact book for fiscal year 1980. NIH 
Publication No. 81-2105. 

U.S. Department of Health, Education, and Welfare. 1979. Seventh 
report of the director, national heart, lung, and bl_ood institute. 
NIH Publication No. 80-1672. 

Wemple, R. R., and L. ·F. Mockros. 1972. Pressure and flow in the 
systemic arterial tree: J. Biomechanics 5:629-641. 

Westerhof, N. , F. Bosman, C. J. de Vries, and A. Noordergraaf. 1969. 
Analog studies of the human systemic arterial tree. J. Biomechanics 
2: 12"1-143. 

Womersley, J. R. 1957. An elastic tube theory 
and oscillatory flow in mammalian arteries. 
Center Technical Report TR 56-614. 

of pulse transmission 
Wright Air Development 

Woodcock, J. P., R. G .. Gosling, and D. E. Fitzgerald. 1972. A new non-
invasive technique for assessment of superficial femoral artery 
obst!'uction. Br. J. Surg. 59(3):226-231. 



60 

Young, D .. F., and F. Y·. Tsai. 1973. Flow characteristics in models of 
arterial stenosis-II. unsteady flow. J. Biomechanics 6:547-559. 

Young, D. F. 1979 .. Fluid mechanics of arterial stenoses. J. Biomech. 
Eng. 101:157-175. 



61 

ACKNOWLEDGEMENTS 

The present thesis would not have been possible without the gentle 

guidance and the unlimited support that I received from my heavenly 

Father, from the Lord Jesus Christ, and from the Holy Spirit, who filled 

my often doubtful heart with optimism, confidence, and endurance. Also 

invaluable was the patience and the tutorship of Professor D. F. Young, 

who introduced me to the fascinating field of hemodynamics and provided 

me with optimal working conditions. Moreover, he edited this ·thesis and 

eliminated numerous idiomatic expressions bearing a quite noticeable 

resemblance to Austrian idioms. I am grateful to Professors T. R. Rogge 

and R. C. Seagrave for serving on my committee. Finally, I would like 

to thank the Austrian-American Fulbright Commission and the Lewis G. 

Smith Trust of Philadelphia for providing part of my financial support. 



62 

APPENDIX 

This appendix details the element equations obtained by applying 

the Galerkin method to the partial differential equations simulating 

three different flow .situations: An arterial section without a branch, 

an arterial section with a branch, and a stenosed arterial section. The 

element representation has the form 

t s 
21-1,11 

T 
••• 

~-~-1----- 411,11 

2b '----.I--+ r 

1 
11-1.-11 l<1 ----2a •I 

'--------------~3 .. l!,-11 

giving the following relations: 

where 

Q(r,s) = [N(r,s)]{q} 

p(r,s) = [N(r,s)]{p} 

{q} = [ql, q2, q3, 

{p} = [pl, Pz' P3' 

[N(r, s)] = Cll4) [ (1-r) (1-s), (1-r) (l+s), (l+r)(l-s), (l+r)(l+s)J 

The vectors {p} and {q} contain the values of pressure and flow at the 

four element ·nodes. [N(r, s)] is the shape function vector in its 

dimensionless form resulting from a transformation of the (x,t) 

coordinates to the (r, s) coordinates to facilitate the integration step 

included in the Galerkin method. 
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If the values of pressure and flow at node 1 and 3 are assumed to 

be known, only two algeb~aic equations have to be formed for each 

partial differential equation. . Therefore, it is sufficient to multiply 

the differential forms by only two shape functions. For this step, I 

·arbitrarily chose to include the two shape functions corresponding to· 

node 2 and 4: 

[N]R = [(1-r)(l+s), (l+r)(l+s)]T 

For a normal arterial section without a branch, the Galerkin method 

applied to equations (7) and (10) yields in its dimensionless form with 

the reduced multiplication factor 

and 

Jf[N]R(A[N]s{q} + 2[N]{q}[N]r{q} - Ci/A) [N]{q}[Nj{q}:! + 

+ (A2/p)[N] {p} + Bnµ[N]{q}) ab dr ds = 0 
r P 

where [N] indicates the differentiation of [NJ with respect to x 

x (x = r ,.s). 

For notational convenience used throughout the appendix, the equations 

are multiplied by 18 and then integrated term by term. For the 

continuity equation the three terms evaluate as 

Jl[N]R[NJ {q} a b· dr ds = b 
r 

r -3 -6 

L -3 -6 

3 

3 

6 l 

{q} 

6 J 
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r -6 6 -3 3 l 

//[N]RC0 [N]
5

{p} ab dr ds = (c0a)I {p} 

L -3 3 -6 6 J 

I I [NJRC1 [N].{p} [NJ 
5 

{p} a b dr ds = (C1a/2) B{p} 

where B = (bij) is given by 

.bll = -3p 1 + 3p2 __ P3 + P4 

b12 = -6p + 6p - 2p3 + 2p4 1 2 

bl3 = -- p- + p - P3 + P4 1 2 

b14 = -2p + 1 2p2 - 2p 3 + 2p4 

b21 = - p + 1 p -2 P3 + P4 

b22 = -2pl + _2p2 - 2p + 2p4 3 

-023 = - p + P2 3p3 + 3p4 1 

For the momentum equation, only the three terms that cannot be derived 

by analogy from terms appearing in the continuity equation will be 

listed below. 

JJ[N]R2[N]{q}(N]r{q} ab dr ds = b B'{q} 

where B' =_ (b ij) is given by 
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bll, = -2q 1 2q2 + 2q3 + 2q4 

b12 - -2q 6q2 + 2q3 + 2q4 1 

b13 = - ql - q2 + q3 + q4 

b = -14 ql - 3q2 + ·q3 + 3q4 

b21 = - q - q2 + q3 + q4 1 

b22 = • ql " 3q2 + q3 + 3q4 

b23 = -2q 2q2 + 2q3 + 2q4 1 

b24 = -2q 6q2 + 2q3 + 6q4 1 
R . aA JJ[N] (l/A)[NJ{q}[NJ{q}ar ab dr ds = (Kab/2) B"{q} 

where K is a factor arising from the application of the mean value 

theorem of integral calculus .to the two factors involving the area A. 

Thus, the very tedious integration over the area is avoided. The matrix 

B' I = (bij) is given by 

bll = 3ql + 3q2 + q3 + q4 

b12 = 3ql + 9q2 + q3 + 3q4 

b13 - ql + q2 + q3 + q4 

b14 = ql + 3q2 + q3 + 3q4 

b21 = ql + q2 + q3 + q4 

b22 = ql + 3q2 + q3 + 3q4 

b23 = ql + q2 + 3q3 + 3q4 

b24 = ql + 3q2 + 3q3 + 9q4 
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r4 8 2 4 1 

JJ[N]R(B'llµ)[N]{q} ab dr ds = K' I 
p 

where K' = B'l!µab. 
p 

{q} 

For an arterial section with a branch, Galerkin' s method applied 'to 

equations (11) and (12) yields 

Ji[N]R([N] {p}) ab dr ds = 0 
r 

and 

JJ[N]R(C[N]s{p} - R1C[N]:{q} + (l/R1)[N]{p} -

- (l+R1/R2 ) [N]B{q}) a b dr ds = 0 

where B, the branch flow, is written in terms of nodal flows as. 

with 

B [NJ = (1/2)[(1-s), (l+s), -(1-s), -.(l+s)] 

The two terms involving the pressure can be developed by analogy from 

terms in the normal continuity and momentum equations. The two terms 

involving the branch flow evaluate as follows 

r 9 -9 -9 9 1 
J/[N]~1C[Nj:{q} a b dr ds = R Ca 1 

{q} 

L 9 -9 -9 9 J 

r -6 -12 6 12 1 
JJ[N]\i[N]B{q} a b dr ds = (Wah) I I {q} 

L -6 -12 6 12 J 

where W = (l+R/R2). 
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At the distal end, the boundary condition for pressure and flow has the 

same form as the continuity equation for branch flow. Thus, the 

Galerkin method yields 

where 

!(l+s)(C[NJ~{p} - R1C[N]~{q} + (1/R2)[N]D{p} -

- (1+R/R2)[NJD{q}) b ds = 0 

[N]D = (1/2)[0, 0, (1-s), (l+s)] 

The integration is straight forward. 

For an obstructed arterial section, the differential forms corresponding 

to equations (13) and ( 14) ar<> 

and 

where 

JJ [N]R[N] {q} a b dr ds = 0 
r 

R !![NJ (-K1[N]a{p} + K2 [N]{q} + K3 [N]{q}[N]{q} + 

+ K4 [N]s{q}) a b dr ds = O 

[Nia= (1/2)[(1-s), (l+s), -(1-s), -(l+s)] 

and K., i=l,4, constants for the integration process, are given in 
1 

d.,tail in equation (14). The. matrix for the pressure drop term is 

r 6 12 -6 -12 1 
!l[NJ~1 [N]a{p} ab dr ds = (K1ab)J 

L 6 12 -6 -12 J 

{p} 




