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CHAPTER 1. BIOMEDICAL ENGINEERING, SIGNAL 

PROCESSING, AND THE FOURIER TRANSFORMS 

1.1 Introduction 

The processing and analysis of biological signals are of crucial importance in 

biomedical engineering for the detection of physiological abnormalities in a biological 

system. The development of signal processing software and hardware has enabled 

doctors to diagnose a patient's condition without using invasive surgical operations. 

Today, it is often possible to tell whether a patient has a physiological disorder by 

analyzing the relevant biological signals. For instance, a cardiovascular disease can 

often be detected by analyzing the electrocardiogram (ECG), or a neurological disease 

can often be detected by analyzing the electroencephalogram (EEG), etc. Therefore, 

the applications of signal processing are of immense value to the medical community. 

There are many bioelectric signals that can be detected from the body. How

ever, signal processing of biological signals is not limited to bioelectric signals. Non

electrical signals can be easily converted to electrical signals by transducers and can 

be analyzed thereafter. 

This study presents an investigation of the feasibility of time-frequency analysis 

of non-stationary biological signals consisting of EEG waveforms from patients with 

Alzheimer's disease. The processed EEG signals are input to\...a classification algo-
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rithm to distinguish EEGs from patients with the neurological disorders, from EEGs 

from healthy people. Both neural networks and clustering algorithms were used for 

classification. 

In the last few decades, many signal processing techniques have found applica

tions in biomedical engineering especially after the development of fast computers 

and fast algorithms. 

The ultimate goal of signal processing is to extract information from a signal 

which is not obvious, or which can not be seen, when the signal is in its raw form. 

Fourier transform based techniques are most often used for analyzing a signal in 

terms of its spectral information, i.e., to extract one particular type of information 

from the signals, namely the frequency or spectral information. 

Late in the 17th century, a French mathematician Joseph Fourier showed that 

any periodic signal can be written as an infinite sum of sine and cosine terms [1]. This 

theory has been developed and generalized, first for non-periodic functions, and then 

for discrete functions (or signals). The mathematical definition of Fourier transform 

is expressed as 

00 

X(J) = J x(t).e-2j1rft dt (1.1 ) 
-00 

00 

x(t) = J X(J).e2j
r.t f df (1.2) 

-00 

where X(J) is the Fourier transform and x(t) is the time domain signal. 

Equation (1.1) computes the Fourier transform of the signal, and Equation (1.2) 

computes the inverse Fourier transform to recover the original signal from the trans

form. The time domain and the frequency domain representations give different 
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perspectives of the same signal. 

A signal is said to be stationary, if the spectral components are constant at all 

times, requiring all spectral components to exist at all times. However, if the signal 

is not stationary, then the spectral content varies in time suggesting that different 

spectral components exist at different times. The Fourier transform (FT) of such 

signals only provides what spectral components exist in the signal and does not 

include where in time these spectral components exist. In other words, the Fourier 

transform gives a global frequency representation of the signal, which is inadequate 

for fully describing non-stationary signals. 

Figures 1.1 and 1.2 demonstrate this concept. The time domain signal in Figure 

1.1 consists of three frequency components of 50, 100 and 150 Hz. These spectral 

components exist in the signal at all times during the entire duration of the signal. 

The FT of this signal is shown below the time domain signal. Figure 1.2 shows a 

different signal, again formed with the sinusoids of the same frequencies. However, 

in this signal the spectral components are localized in time, i.e., different frequency 

components exist at different times. The plot below the time domain signal shows 

the FT of this signal. Note that the frequency domain representations are very 

similar to each other. The ripples in the second plot are due to sudden changes in 

frequencies. Other than these ripples, the two frequency representations are almost 

identical, whereas the signals are not. 

The distinguishing information between these two signals can only be observed 

by a time-frequency representation. 

An important point that needs to be made clear at this time is addressed by the 

following natural question: 



4 

2 

CD 

~ 1 
C. 
~ 0 

-1 

-2~----~------~----~------~----~------~ 

CD 
"0 
::l 

o 50 100 150 200 250 300 
Normalized time, number of samples 

200r---~--~--~--~--~--~----~--~--~--~ 

150 

~100 
E 
< 

50 

Ob===~~~~--~~·~~~~--~--~----L---~--~--~ 
o 50 100 150 200 250 300 350 400 450 500 

Frequency, Hz. 

Figure 1.1: A stationary signal with three spectral components at all times and its 
FT 

If FT gives (almost) the same transform for two different signals, how can it 

recover the two entirely different originals from similar looking transforms? 

Fourier transform uses complex exponentials, and therefore, it is a complex val-

ued transform. The FTs shown in Figure 1.1 and 1.2 are the magnitudes of these 

complex-valued transforms. For almost all practical applications, the magnitude of 

the FT is used since it can be interpreted very easily. The phase of the signal, how-

ever, is usually difficult to interpret, and therefore, it is seldomly used, unless the 

signal needs to be reconstructed. For the above example, the inverse transforms will 

yield the correct original signals in each case, because the distinguishing information 

between the two time domain signals lies in the phase of the Fourier transform which 

is utilized when computing the inverse Fourier transform. 
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Figure 1.2: A non-stationary signal with three spectral components at different 
times and its FT 

In summary, FT can be used to analyze any signal regardless of stationarity, 

if one is only interested in the spectral content of a signal. All bioelectric signals 

especially the EEG, are highly non-stationary with time varying spectra. 

One of the first techniques that allowed researchers to deal with non-stationary 

signals is the short-time Fourier transform (STFT) which consists of the Fourier 

transform of segments of a signal that are windowed in time. A constant window 

function is used to partition the signal into segments, short enough to satisfy condi-

tions of stationarity, and the Fourier transform of every segment is then computed. 

The end result of this procedure is a time-frequency representation of the signal. Al

though this technique found extensive applications in speech processing, a drawback 

of this technique is the use of a constant length window which leads to a limited (and 
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constant) resolution in time and frequency. 

An alternative to the STFT, namely the wavelet transform, was developed 

and introduced to the signal processing community by Meyer [2] , Mallat [3], and 

Daubechies [4], [5] in the mid and late eighties. The resolution problem of the STFT 

was solved by using a variable length window in the analysis. The wavelet transform 

simply calculates the correlation between the signal and a window function at dif

ferent scales (or frequencies), providing different time and frequency resolutions at 

different scales, in contrast to the constant time and frequency resolutions provided 

by the short time Fourier transform. The name "wavelet analysis (transform)" was 

thought to be appropriate since the kernel of this transform is a "little wave" . 

Thakor et al. [6] and Trejo and Shensa [7] have recently reported promising 

results for the application of the wavelet analysis on evoked potentials. 

A brief overview of the short time Fourier transform will be discussed in Chap

ter 2 to present the time and frequency resolution concepts including the effects of 

window length on these resolutions. 

The continuous wavelet transform will be introduced in Chapter 3, emphasizing 

its capability to solve the resolution problem of the STFT. A number of examples 

will be presented to demonstrate the effects of different parameters on time and fre

quency resolutions. The discrete wavelet transform, for obtaining the time-frequency 

representation of a discrete signal, will be introduced in Chapter 4. 

The classification and clustering algorithms used in this study, namely, the mul

tilayer perceptron with backpropagation algorithm and the k-means algorithm for 

clustering are discussed in Chapter 5. 

Since the EEG signals are used in this study, electroencephalography (the electri-
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cal activity of the brain) and its features that are used to detect neurological disorders 

are presented in Chapter 6. The properties of event-related potentials that are used 

to detect dementias such as Alzheimer's disease are employed. 

The experiment performed to obtain the data, the implementation of the overall 

algorithm to distinguish the signals from dementic and normal patients are explained 

in Chapter 7. Finally the results obtained are discussed along with some concluding 

remarks. 
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CHAPTER 2. TIME-FREQUENCY REPRESENTATIONS AND THE 

SHORT TIME FOURIER TRANSFORM 

2.1 Time Frequency Representations 

In the first chapter the Fourier transform was briefly introduced and the inade

quacy of Fourier transforms for the analysis of non-stationary signals was illustrated. 

If the signal is non-stationary, i.e., it has a time varying spectrum, it is essential that a 

transform be used that provides both time domain and frequency domain information 

at the same time. A number of time-frequency transforms have been developed over 

the years. A discussion of these time-frequency representations is presented here. 

Time-frequency representations (TFR) are used to analyze signals with time 

varying spectra. There are many TFRs available, and they can be categorized as 

linear TFRs and quadratic TFRs [8]. Two main linear TFRs, namely, the STFT 

and the wavelet transform (WT) were used in this study. Linear TFRs satisfy the 

linearity condition 

In this equation, T(.) represents the transformation, x{t} represents the signal, 

al and a2 any two constant numbers, and t and fare the time and frequency variables, 

respectively. As can be seen from Equation (2.1), the transformation T(.} transforms 
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a one dimensional signal x{t} into a two dimensional signal of time and frequency 

The STFT will be explained in some detail in this chapter since it provides the 

underlying principle to the wavelet transform. 

2.2 The Short Time Fourier Transform (STFT) 

Consider the following approach for obtaining a two-dimensional time-frequency 

representation. 

If a short segment of the signal is windowed out and the FT of this segment 

is computed, the frequency information obtained would be local, corresponding to 

the time location of the window. If this window is narrow enough, the signal in the 

segment can be assumed to be stationary and the computed FT will be an acceptable 

frequency representation of that portion of the signal. If this window is shifted in 

time to window other portions of the signal, the computation of Fourier transforms 

of each portion results in a time - frequency representation of the signal. This is the 

underlying principle of the short-time Fourier transform (STFT). 

The window used is a function of compact support in time, i.e., it has a finite 

duration in time. When this signal is multiplied by the window, all information 

that falls outside the window is suppressed, retaining only the part of the signal 

overlapping the time duration of the window. The simplest window is the rectangular 

window defined as 

{

I, 
w(t) = 

0, 

0< t < T 
(2.2) 

otherwise 
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where T is the duration of the interval, i.e., window length in time. 

However, the rectangular window is very seldom used because of the high fre

quency components introduced by the sharp transitions, when the window function 

goes from zero to one and from one to zero. This causes ripples, an unwanted noise 

like effect. This effect is known as the Gibb '8 Phenemonon, and it can be reduced to 

a great extent if the window is a smoothly changing function. The Gaussian, Bartlett 

and Hamming windows are some of the most commonly used window functions. 

The short time Fourier transform is defined by the following equation 
00 

ST FT;(to, f) = J [x(t).w*(t - to)].e-2j
7l"f

t dt (2.3) 
-00 

In the above equation x{t} is the signal to be transformed, w (t) is the win-

dow function centered at time t = to, and "*" represents the complex conjugate. 

ST FT;(to, f) is read as: Short time Fourier transform of x(t) with respect to the 

windowing function w(t) at time to, and frequency f. Note that although the integral 

is over all values of time, for every to, the non-zero contribution comes only from the 

time duration of the window function. 

By sliding the window in time and computing the Fourier transform of the win

dowed segment for different values of to, the time-frequency representation of the 

signal can be obtained. 

Figure 2.1 shows an arbitrary discrete-time, time-domain signal x(t). The x-axis 

indexes the sample numbers of the signal. In other words, the signal in the figure runs 

from t = -20 to t = 20 with integer increments resulting in a total of 41 samples. 

Three windows are superimposed on the signal to demonstrate the shifting of the 

window. The first window is centered around to = -12 and the window function, 

w(t), can be mathematically denoted as w(t + 12). At this instant the part of the 
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Figure 2.1 : Short time Fourier transform 

signal that falls outside the window will not contribute to the integral in Equation 

(2.3). The STFT at this time instant will be the Fourier transform of the function 

within the compactly supported window. 

At time instant t = -11 the window function will shift to the right by one sample, 

and the above procedure will be repeated . Figure 2.1 shows two more windows 

centered at t = 0 where the window function is simply w(t), and t = 12 where the 

window function is w(t - 12) . At every time instant different segments of the signal 

are selected by the window, and the corresponding Fourier transforms are computed. 

The STFT is dependent on the choice of the window function. This window is 

called the analysis window and must be chosen wisely according to the signal to be 

analyzed. 
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If a wide window function is chosen, the FT will correspond to a long time 

interval, and therefore, it will yield poor time resolution. In contrast, narrow window 

functions will result in more accurate time resolution. 

Can the window to be chosen be infinitely narrow so that a frequency repre-

sentation for every time instant will be obtained? The answer is no as explained 

below. 

Although choosing an arbitrarily narrow window will give very good time res

olution, all frequency information will be lost. To demonstrate this, consider the 

extreme case, where the window function is the delta function 8(t). The definition 

and the important properties of the delta function are given below. 

{ 

00 for t=O, 
8(t) = 

o otherwise 

{ 

00 for t=to , 
8(t - to) = 

o otherwise 

00 J x(t).8(t) dt = x(O) 
-00 

00 J x(t).8(t - to) dt = x(to) 
-00 

When we use the delta function for windowing: 

00 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

w(t) = 8(t) ::::} ST FT';(t, J) = J [x(t).8*(t - to)].e-2j
.,-jt dt (2.8) 

-00 
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From the property of the delta function given in Equation (2.6), the integral in 

Equation (2.7) will only have a non-zero value at t=to. The transformed signal at 

t = to will be the signal itself at t = to, with a phase factor. 

w{t) = 8(t - to) ~ ST FT':(t, f) = x(to).e-j27r!to (2.9) 

Since, we are interested in the magnitude of the transforms, and the magnitude 

of the complex exponential term is "1", the magnitude of the transformed signal, and 

the signal itself will be exactly the same, i.e, ST FT';'{t, f) = x{to). In other words, 

the time information is fully retained, but all frequency information is lost. Figure 

2.2 illustrates this concept. 

A random signal 

lMfJ . .... . .. .. .. . 

o.:~~ 
o 10 20 30 40 50 60 70 80 90 100 

TIme 
Magn~ude 01 the STFT 01 the above signal at 1=10 

1 

Magn~ude 01 the STFT 01 the above signal at 1= 100 
1 .. .. ... . .. 

0.5 

00 10 20 30 40 50 60 70 80 90 100 

Magn~ude 01 the exponential signal, at any 1 

;1 : : : : i I I I : 1 
o 10 20 30 40 50 60 70 80 90 100 

Figure 2.2: Sample transforms for w{t) = 8(t) 
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The first plot in Figure 2.2 is a random signal to be transformed using the delta 

function for windowing. The second and third plots are calculated using Equation 

(2.8). In the second plot "f" was taken as ten, and in the third one it was taken as 

one hundred, to show that the frequency information is really lost. This follows from 

the following identity 

for all x (2.10) 

where i = .J=T. 
Now, consider the other extreme condition where the window function is in

finitely long, e.g., w(i) = 1. In this case, the STFT will be no different from FT, 

where all the frequency information is kept perfectly, but all the time information 

is lost. Note that the FT of an infinitely long time window is an infinitely narrow 

frequency window. (x(i) = 1 => X(f) = 8(f)). Therefore, in order to get a good 

frequency resolution, the window should be as wide as possible in the time domain 

which corresponds to a narrow window in the frequency domain. 

From the above discussion, it follows that the wider the window function, the 

better the accuracy in frequency information (frequency resolution), and the narrower 

the window function, the better the accuracy in time information (time resolution). 

This paradox is the biggest handicap of the STFT. What kind of window should be 

chosen? The answer is application dependent. 
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2.3 Heisenberg Inequality, Uncertainty Principle, and the Limitations 

of the STFT 

The uncertainty principle was first introduced by the German physicist Heisen

berg to explain the relationship between the momentum and the location of a moving 

particle. The original Heisenberg's inequality is as follows 

27rhD.T ~ h/2 (2.11) 

where, T and 27rhD are the uncertainties in the position and the momentum of the 

particle, respectively, and h is the Planck's constant. The above equation states that 

it is not possible to know exactly the momentum and the location of a moving object 

and that the product of the uncertainties in the position and the momentum of the 

particle cannot be less than a constant number (h/2). This argument can be applied 

to the computation of the STFT. 

Two spikes in the time domain can only be distinguished from each other if they 

are .tlt apart, and two spectral components in the frequency domain can only be 

distinguished from each other if they are .tlf apart. The uncertainty principle states 

that .tlt and .tlf cannot be arbitrarily small. Their product is lower bounded: 

(2.12) 

.tlt and .tlf are measures of time and frequency resolution, respectively . .tlt and .tlf 

are defined as follows for windows centered around the origin [9] 

(2.13) 
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(2.14) 

where, n(J) is the Fourier transform of the window function w( t) that is used in 

the STFT. In the case of STFT, w(t) is usually a Gaussian function since Gaussian 

functions satisfy Equation (2.12) with the equality. 

The implication of Equation (2.12) is that good time resolution can only be 

obtained at the expense of good frequency resolution and vice versa. 

In summary, the STFT provides a time-frequency representation of the signal by 

using a moving window to modulate the signal and computing the Fourier transform 

for each position of the window. If the window is narrow then the procedure will 

result in good time resolution and poor frequency resolution, whereas wider windows 

will result in poor time resolution and good frequency resolution. 

The examples presented in the following section will make the above discussion 

clear. 

2.4 Examples 

A computer program for a discrete implementation of the continuous transform 

was developed. Although there is a discrete STFT, it will not be explained here, since 

a similar discussion will take place in Chapter 4, where discrete wavelet transform is 

introduced. 

The examples given in this part will correspond to simple test signals, mainly 

composed of sinusoids of different frequencies, occuring at different times. 

The Gaussian window function defined by 
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(2.15) 

was used where the constant "a" determines the width of the window. 

2.4.1 Example 1 

The first example considers a single frequency sinusoidal signal. Figure 2.3 shows 

a 100 millisecond long, 250 Hz pure sinusoidal signal, sampled at 1 kHz. 

O.B 

0.6 

0.4 

02 

o 

-0.4 

-0.6 

.10 10 20 30 40 50 60 70 eo 90 100 
Tll!le,ms. 

Figure 2.3: Single frequency cosine signal at f 250 Hz 

Figure 2.4 shows the window function. The width of this function was chosen as 

20 ms. However, for this particular example, it really does not matter since the signal 

is stationary. The width is changed by using different values of a, in the definition of 

the window function given above. The effect of "a" will be shown in a later example. 
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10 

Figure 2.4: The window function 

Figu:e 2.5 shows the STFT of this signal. The two peaks seen on the graph cor

respond to 250 Hz. The two peaks in Figure 2.5 are a result of the symmetry property 

of the Fourier transform and are due to the fact that discrete Fourier transforms are 

always periodic in 27I'. It should be noted that the Fourier transforms computed here 

are actually discrete Fourier transforms. The frequency axis corresponds to 27I' radi

ans. For discrete time signals, frequency is measured in terms of radians, rather than 

Hz. The frequency axes in the plots are given in terms of Hz for easy interpretation 

only. The sampling frequency for this signal was 1000 samples/sec, and therefore the 

STFT is periodic around 500 Hz (or 7I'radians). The frequencies corresponding from 

7I' to 27I' are sometimes referred as negative frequencies. 

For single frequency sinusoids as in this case, the Fourier transform integral will 
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result in two impulses: 

xCi) = cos 211"250t <=> XU) = .!.8( -250) + .!.8(250) 
11" 11" 

(2.16) 

Note, however, that the two peaks corresponding to 250 Hz are not impulses 

in Figure 2.5. They include other spectral components around 250 Hz. This is a 

result of using a finite length window in the STFT (as opposed to the infinite length 

window in the Fourier transform) which smears the impulses as seen in Figure 2.5. 

The other spectral components around 250 Hz are introduced due to the transition 

edges of the window. 

Figure 2.6 is the same graph as the previous one, except that it shows the plot 

from a different angle. There are two angular parameters used for this purpose. The 

first one is azimuth, or horizontal rotation. The plot in Figure 2.5 had a rotation of 

-37.5° and the plot in Figure 2.6 has a rotation of 90°. Azimuth rotates the plot 

about the z-axis, with positive values indicating counter-clockwise rotation of the 

viewpoint. The second parameter is vertical elevation. Positive values of elevation 

correspond to looking at the plot from above, negative values correspond to looking 

from below. The elevation was 30° in Figure 2.5 and 20° in Figure 2.6. These 

parameters will be denoted by "HR" (for horizontal rotation) and "VE" (for vertical 

elevation). 

Figure 2.7 corresponds to another view of the same plot with the viewing pa

rameters HR=-120°, VE=50°. 
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Fjgure 2.5: STFT of the given signal 
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Figure 2.6: STFT of the signal in Figure 2.3, HR=-90°, VE=20° 
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Figure 2.7: STFT of the signal in Figure 2.3 , HR=-120°, VE=50° 
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2.4.2 Example 2 

The following example is intended to show the effects of the window length on 

the short time Fourier transform of a stationary signal with more than one spectral 

component. A stationary signal is chosen for this example so that the effect of window 

length on the frequency resolution only can be seen without worrying about the time 

resolution. 

Figure 2.8 shows the test signal chosen for this example. This signal has two 

spectral components at 50 Hz and at 250 Hz. These frequencies exist through out 

the entire duration of the signal, i.e., the signal is stationary. 

1.5 

0.5 

o 

-0.5 

-1 

-1.5 

-20 10 20 30 40 50 60 70 80 90 100 
Tune, ms. 

Figure 2.8: A simple, sinusoidal signal with two spectral components at 50 and 250 
Hz 
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Figure 2.9: The window function, a=O.OI 

The STFT of this signal was computed for two different window lengths. Figure 

2.9 shows the first window which is relatively wide in time. This window function 

can mathematically be expressed as 

(2.1 i) 

Figures 2.10 and 2.11 show two views of the computed STFT for the signal 

using the window given by Equation (2.17). Note that the peaks correspond to 50 

and 250Hz. The two peaks are well separated from each other which shows that 

the window used was "wide" enough in time domain or narrow enough in frequency 

domain to give the desired frequency resolution. 
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Figure 2.11: STFT of the signal in Figure 2.8 , HR=-90°, VE=20° 
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Figure 2.12: The window function, a=O.5 

If the signal contains spectral components that are relatively close to each other, 

a wider window (in time) is necessary to capture them in the frequency domain. 

However, a large value for a (wide window) may violate the stationarity condition. 

Consider next the window function with a=O.5 which is defined as in Equation 

(2.18) and plotted in Figure 2.12. This makes the window narrower in the time 

domain but wider in the frequency domain relative to the window in Figure 2.9. 

The transform results are presented in Figures 2.13 and 2.14. Note that the peaks 

corresponding to two frequencies are not distinguishable. 

(2.18) 

Figures 2.13 and 2.14 suggest that the new value of "a" was inadequate to give 

the frequency resolution needed to separate two peaks. From the given examples, it 

follows that it may be necessary to sacrifice time resolution in order to obtain good 

frequency resolution or vice versa. 
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Figure 2.13: Same STFT with Figure 2.10 with a new window, HR=-90°, VE=20° 
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Figure 2.14: Same STFT with Figure 2.11 with a new window, HR=-90°, VE=20° 
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2.4.3 Example 3 

This example demonstrates the performance of the STFT on non-stationary 

signals. The previous example was given to demonstrate the basic principles of STFT 

using the stationary signals. However, STFT is hardly ever used for stationary signals 

since the conventional FT gives a perfect frequency resolution, and time resolution 

is not necessary since the spectral components do not change in time for stationary 

signals. 

100 200 300 400 500 600 700 800 900 1000 
TIme, ms. 

Figure 2.15: A non-stationary signal with four spectral components at different 
times 

From the previous discussions, it is known that the window function should be 

chosen according to the signal. For the particular signal shown in Figure 2.15 three 

STFTs will be shown corresponding to three different windows. These windows are 

shown in Figure 2.16. 
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Figure 2.16: The window functions used to transform the non-stationary signal 

The narrowest window (with a=O.5) will show a good time resolution, but a 

poor frequency resolution. The widest window (with a=O.OOOl) will produce the 

opposite effect, where the different spectral components can be distinguished very 

well in frequency, but not so well in time. The spectral components of this signal 

were chosen to be quite far from each other so that a suitable window could be easily 

found. For many practical purposes, however, choosing a suitable window can be 

quite challenging. 

Figures 2.17 and 2.18 are the STFTs computed by usmg the window with 

a=O.OOl. The two viewing parameters were chosen to make the time and frequency 

resolutions as observable as possible. The four frequency components can be easily 

seen. Figure 2.17 shows that the spectral components are well separated in time. 
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However, some superposition can also be seen. This means that the spectral compo

nents are not perfectly separated in time. 

Figure 2.18 is the same plot with different viewing parameters. The spectral 

components are well separated from each other in frequency. No spectral component 

corresponding to a center frequency spreads into a spectral component of another 

center frequency, even though each component has a variance of itself around their 

center l.i.'~quencies (as a result of the uncertainty principle). When the variance of a 

spectral component does not smear the other components, that small variance can 

be neglected, and that resolution is considered to be good enough for most practical 

purposes. Therefore, this particular window provides a good frequency resolution for 

this particular signal. 

Figures 2.19 and 2.20 correspond to the STFTs of the same signal with the 

widest window. Figure 2.19 shows the view from the time axis of the transformed 

signal. The overlapping of the spectral components in time is clearly seen in this 

figure. This, of course, is the result of the wide window covering a large time interval 

which results in poor time resolution. 

Figure 2.20 shows the transformed signal from the frequency axis. A very good 

frequency resolution, even better than the previous one, is seen here, due to the wider 

window. This choice of the window function demonstrated an extreme situation in 

which there was a very good frequency resolution, but very poor time resolution. 
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Figure 2.17: STFT of the signal in Figure 2.15, HR=-37.5°, VE=30° 
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Figure 2.19: STFT of the signal in Figure 2.15 ,with window with a=O.OOOl 
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Finally, the narrowest window was used to compute the STFTs of the same non-

stationary signal. Figures 2.21 and 2.22 illustrate the time-frequency representation 

of the non-stationary signal with respect to this narrow window. 

Following the same order, the transformed signal as viewed from the time axis is 

shown first in Figure 2.21. The spectral components corresponding to four different 

time intervals can be easily seen in this figure. For this case, every FT computed cor-

responds to a very short interval of time and yields good time resolution. Figure 2.22, 

showing the frequency axis side of this plot, dramatically illustrates the price paid 

for the good time resolution: The spectral components are hardly distinguishable. 

For the practical signal, the choice of the best window can be quite challenging, 

particularly if the signal contains a variety of different spectral components. This 

is the main handicap of the STFT, and this made researchers look for alternative 

methods. 

2.5 Signal Reconstruction and Inverse Transform 

The short time Fourier transform is a reversible transform, and therefore, the 

transformed signal can be reconstructed under certain conditions. For continuous 

time STFT, the only major condition is on the choice of the window function. This 

condition is not very restrictive and can be formulated as [18] 

00 J ~(t).w*(t) dt = 1 (2.19) 
-00 
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The function ~(t) is known as the synthesis (reconstruction) window as opposed 

to the analysis window w(t). Recall that the inverse FT formula (Equation (1.2)) 

is very similar to the forward transform formula (Equation (1.1)), with the only 

difference in the sign of the exponent of the kernel. This similarity holds for the 

STFT with one major difference. Note that STFT maps a univariate function onto a 

bivariate function. This requires the use of a double integral in the inverse transform 

(reconstruction) formula. The inverse transform is given by the following equation. 

x(t) = J J ST FT;(t', j').~(t - t').ei27r
/

t dt' dj' (2.20) 

t' l' 

2.6 Discrete STFT 

For computer applications, the STFT algorithm can be discretized by sampling 

the time (translation) and frequency parameters on the time-frequency plane. Let the 

time interval between each sample (time sampling period) be T, and the frequency 

interval (frequency sampling period) be F. Two indexes are needed to keep track of 

the discrete variables. Let m be the index to time, and n be the index to frequency. 

The discrete time-frequency plane can be represented by a grid of points that are T 

apart in time, and F apart in frequency. Note that the intervals in time and frequency 

are constant for the entire plane. 

According to the above explanation, discrete time STFT analysis can be written 

as follows [8]. 

ST FT;(mT, nF) = 1 x(t).w*(t - mT).e-i27r(nF)t dt (2.21) 
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Similarly, the reconstruction formula can be discretized in time and frequency. 

The synthesis formula will then be 

x(t) = L L ST FT;(mT, nF).~(t - mT).ei27r(nF)t (2.22) 
m n 

where w(t) is the analysis window, and ~(t) is the synthesis window. 

For perfect reconstruction, a similar condition to the continuous time case is 

required. However, this condition is more restrictive than that for the continuous 

case. 

~ L~ (t + n ~ - mT) w*(t - mT) = b(n) 
m 

(2.23) 

where b(n) is the delta function, as defined in Equation(2.3) . Two points must be 

noted in the application of STFT to non-stationary signals: 

1. If only signal analysis but not synthesis is of importance, then it is not 

necessary to select window functions that satisfy the above equation. In many appli

cations, signal reconstruction may not be required, and any window that is compactly 

supported in time (finite in time) can be used for signal analysis. 

2. The above definition of discrete STFT is not a discrete transform, but a 

discrete implementation of the continuous transform. However, for all practical pur

poses, the integral can be changed to summation, and the sum can be taken over 

a finite interval. This will result in a good approximation of the continuous time 

STFT. The program that was written to compute the given examples was coded in 

this manner. 
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2.7 An Alternative Interpretation for STFT 

The following is a slightly different approach to STFT computations. It will be 

relevant in explaining the wavelet theory. 

The STFT defined by Equation (2.2) is thought of as a correlation between the 

window function and the signal to be analyzed. The window function has a constant 

width, and it is modulated by the complex exponential term e-j27rft. For every 

value of f the frequency of the kernel function is varied and the window function 

is modulated at that frequency and multiplied by the signal. If the signal has a 

component at that particular f, the product and the integration result in a large 

(relatively) value. If the signal does not have a major spectral component at f, the 

product of the signal and the window modulated at frequency f followed by the 

integration will give (relatively) a small value. This means that the signal and the 

modulated window are not correlated. 

This interpretation is illustrated next. Figure 2.23 shows four different plots. 

The first one corresponds to a window function, similar to the ones that have been 

used so far. The other three plots show the product of this window function with 

a complex exponential kernel, e-j27rft. Note that the plots illustrate the real parts 

of the products. Recall that the magnitudes of the products of the window function 

with all exponential kernels will look exactly like each other, since the magnitude 

of the complex exponential is constant and 1. The second, third, and fourth plots 

correspond to products of the window function, with the kernel of frequencies f=10 

Hz, f=50 Hz, and f=100 Hz, respectively, i.e., these plots illustrate the modulated 

window function at three different frequencies. 
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Figure 2.23: The modulated windows at different modulation frequencies 

For instance, if the signal has a major 10 Hz component, the STFT computed 

for 10 Hz will be relatively large, since the harmonics corresponding to 10 Hz in the 

signal, and the modulated window will have a large correlation. In contrast, if the 

signal does not have a major 10 Hz component, the STFT computed for 10 Hz will 

be relatively small. This interpretation is also true for the Fourier transform. 

In the next chapter the wavelet transform will be discussed from a similar per

spective, namely, the correlation between a window function (which will be called the 
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"wavelet") and the signal at different times and frequencies. 

2.8 Applications of the STFT 

STFT has been used for many applications in signal processing, mainly for the 

analysis of time-varying signals. System identification, spectral estimation, signal 

detection, parameter estimation, determination of group velocity, speech analysis, 

speaker identification, speech coding, compression of acoustic signals are some of 

these applications (as cited in[8]). 

In summary, the major drawback of the short time Fourier transform is related 

to its resolution in the time-frequency plane. The resolution is determined by the 

width of the window, which is kept constant throughout the process once it is chosen. 

Consequently, the resolution is also constant in time and frequency over the entire 

time-frequency plane. 

A plausible solution to this problem is to consider the use of a different window at 

different frequencies. A wide window (in time) is needed for good frequency resolution 

and a narrow window is needed for good time resolution. It turns out that, for most 

practical applications, high frequency components (spikes) occur from time to time 

for short durations in a signal which has low frequency components of long durations. 

In this case, very good time resolution for low frequencies is not needed since it is 

already known that they exist over almost the entire duration of the signal. However, 

good time resolution for the spikes (high frequency components) is needed. 

Good time resolution at high frequencies and good frequency resolution at low 

frequencies, sacrificing the good time resolution at low frequencies and good frequency 

resolution at high frequencies, will be satisfactory. Such a feature is offered by the 
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wavelet transform, and it IS achieved by changing the window width at different 

frequencies. 
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CHAPTER 3. CONTINUOUS WAVELET TRANSFORM 

3.1 Multiresolution Analysis 

Although the time and frequency resolution problems are results of a physical 

phenomenon (the uncertainty principle) and exist regardless of the transform used, it 

is possible to analyze any signal by using an alternative approach called the multireso

lution analysis (MRA). Multiresolution analysis, as implied by its name, analyzes the 

signal at different frequencies with different resolutions. Every spectral component 

is not resolved equally as was the case in the STFT. 

Multiresolution analysis is designed to give good time resolution and poor fre

quency resolution at high frequencies and good frequency resolution and poor time 

resolution at low frequencies. This approach makes sense especially when the signal 

at hand has high frequency components for short durations and low frequency com

ponents for long durations. Fortunately, the signals that are encountered in practical 

applications are often of this type. For example, Figure 3.1 shows a signal of this 

type. It has a relatively low frequency components throughout the entire signal and 

relatively high frequency components for a short duration somewhere around the 

middle. 
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Figure 3.1: A non-stationary signal with high frequency components of short dura
tion 

3.2 The Continuous Wavelet Transform 

The continuous wavelet transform (CWT) was developed as an alternative ap

proach to the short time Fourier transform to overcome the resolution problem. The 

wavelet analysis is done in a similar way to the STFT analysis, in the sense that the 

signal is multiplied with a function, the wavelet, similar to the window function in 

the STFT, and the transform is computed separately for different segments of the 

time-domain signal. However, there are two main differences between the STFT and 

the CWT: 

1. The Fourier transforms of the windowed signals are not taken, and therefore 

single peak will be seen corresponding to a sinusoid, i.e., negative frequencies are not 
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computed. 

2. The width of the window is changed as the transform is computed for every 

single spectral component, which is probably the most significant characteristic of 

the wavelet transform. 

The continuous wavelet transform is defined as follows 

CWT!(T, s) = \ji~(T, s) = M J x(t),p' C ~ T) dt (3.1) 

As seen in Equation (3.1), the transformed signal is a function of two variables, 

T and s, the translation and scale parameters, respectively. 'l{J(t) is the transforming 

function, and it is called the mother wavelet. The term mother wavelet gets its name 

due to two important properties of the wavelet analysis as explained below: 

The term wavelet means a small wave. The smallness refers to the condition 

that this (window) function is of finite length (compactly supported). The wave refers 

to the condition that this function is oscillatory. The term mother implies that 

the functions with different regions of support that are used in the transformation 

process are derived from one main function, or the mother wavelet. In other words, 

the mother wavelet is a prototype for generating the other wavelets. 

The term translation is used in the same sense as it was used in the STFT; it is 

related to the location of the window, as the window is shifted through the signal. 

This term, obviously, corresponds to time information in the transform domain. How

ever, we do not have a frequency parameter, as we had before for the STFT. Instead, 

we have a scale parameter which is defined as 1/ frequency. The term frequency is 

reserved for the STFT. Scale is described in more detail in the next section. 
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3.2.1 The Scale 

The parameter scale in the wavelet analysis is similar to the scale used in maps. 

As in the case of maps, high scales correspond to a non-detailed global view (of the 

signal), and low scales correspond to a detailed view. Similarly, in terms of frequency, 

low frequencies (high scales) correspond to a global information of a signal (that 

usually spans the entire signal), whereas high frequencies (low scales) correspond to 

a detailed information of a hidden pattern in the signal (that usually lasts a relatively 

short time). Cosine signals corresponding to various scales are given as examples in 

Figure 3.2 . 
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Figure 3.2: Sample cosine signals at different scales 
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Fortunately in practical applications, low scales (high frequencies) do not last for 

the entire duration of the signal, unlike those shown in Figure 3.2, but they usually 

appear from time to time as short bursts, or spikes. High scales (low frequencies) 

usually last for the entire duration of the signal. 

Scaling, as a mathematical operation, either dilates or compresses a signal. 

Larger scales correspond to dilated (or stretched out) signals and small scales cor

respond to compressed signals. All of the signals given in Figure 3.2 are derived 

from the same cosine signal, i.e., they are dilated or compressed versions of the same 

function. In Figure 3.2, "8 = 0.05" is the smallest scale, and "8 = 1" is the largest 

scale. 

In terms of mathematical functions, if J(t) is a given function JUt) corresponds 

to a contracted (compressed) version of J(t) if J > 1 and to an expanded (dilated) 

version of J(t) if J < l. 

However, in the definition of the wavelet transform, the scaling term is used 

in the denominator (in Equation (3.1), JC:r
)), and therefore, the opposite of the 

above statements holds, i.e., scales 8 > 1 dilates the signals whereas scales 8 < 1, 

compresses the signal. This interpretation of scale will be used throughout this text. 

3.2.2 Computation of the CWT 

Interpretation of Equation (3.1) will be explained in this section. Let x(t) be the 

signal to be analyzed. The mother wavelet is chosen to serve as a prototype for all 

windows in the process. All the windows that are used are the dilated (or compressed) 

and shifted versions of the mother wavelet. There are a number of functions that 

are used for this purpose. The Morlet wavelet and the Mexican hat function are 
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two candidates, and they are used for the wavelet analysis of the examples which are 

presented later in this chapter. 

Once the mother wavelet is chosen the computation starts with s = 1 and the 

continuous wavelet transform is computed for all values of 5, smaller and larger than 

"1". However, depending on the signal, a complete transform is usually not necessary. 

For all practical purposes, the signals are bandlimited, and therefore, computation of 

the transform for a limited interval of scales is usually adequate. In this study, some 

finite interval of values for 5 were used, as will be described later in this chapter. 

For convenience, the procedure will be started from scale 5 = 1 and will continue 

for the increasing values of 5, i.e., the analysis will start from high frequencies and 

proceed towards low frequencies. This first value of s will correspond to the most 

compressed wavelet. As the value of 5 is increased, the wavelet will dilate. 

The wavelet is placed at the beginning of the signal at the point which corre

sponds to time=O. The wavelet function at scale "1" is multiplied by the signal and 

then integrated over all times. The result of the integration is then multiplied by 

the constant number Ta. This multiplication is for energy normalization purposes so 

that the transformed signal will have the same energy at every scale. The final result 

is the value of the transformation, i.e., the value of the continuous wavelet transform 

at time zero and scale s=1. In other words, it is the value that corresponds to the 

point (T = 0 , s = 1) in the time-scale plane. 

The wavelet at scale s = 1 is then shifted towards right by T amount to the 

location t = T, and Equation(3.1) is computed to get the transform value at (t = T , 

S = 1) in the time-frequency plane. 

This procedure is repeated until the wavelet reaches the end of the signal. One 



52 

row of points on the time-scale plane for the scale s = 1 is now completed. 

Then, s is increased by a small value. Note that, this is a continuous transform, 

and therefore, both T and s must be incremented continuously. However, if this 

transform needs to be computed by a computer, then both parameters are increased 

by a sufficiently small step size. This corresponds to sampling the time-scale plane. 

The above procedure is repeated for every value of s. Every computation for 

a given value of s fills the corresponding single row of the time-scale plane. When 

the process is completed for all desired values of s, the CWT of the signal has been 

calculated. 

Figure 3.3 illustrates the entire process step by step. 

5=1 

0.4 

O~2 ........... . 

50 100 150 200 
to=2 

50 100 150 200 
to=90 

5=1 

0.8 ... . ......................... . 

0.2 ...... . 

50 100 150 200 
to=40 

0.2 .. 

0
0 50 100 150 200 

to=140 

Figure 3.3: The CWT computation at s=1 
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In Figure 3.3, the signal and the wavelet function are shown for four different 

values of T. The signal is a truncated version of the signal shown in Figure 3.1. The 

scale value is 1, corresponding to the lowest scale, or highest frequency. Note how 

compact it is. It should be as narrow as the highest frequency component that exists 

in the signal. Four distinct locations of the wavelet function are shown in the figure 

at to = 2, to = 40, to = 90, and to = 140. At every location, it is multiplied by the 

signal. Obviously, the product is nonzero only where the signal falls in the region of 

support of the wavelet, and it is zero elsewhere. By shifting the wavelet in time, the 

signal is localized in time, and by changing the value of s, the signal is localized in 

scale (frequency). 

If the signal has a spectral component that corresponds to the current value 

of s (which is 1 in this case), the product of the wavelet with the signal at the 

location where this spectral component exists gives a relatively large value. If 

the spectral component that corresponds to the current value of s is not present in 

the signal, the product value will be relatively small, or zero. The signal in Figure 3.3 

has spectral components comparable to the window's width at s = 1 around t=100 

ms. 

The continuous wavelet transform of the signal in Figure 3.3 will yield large 

values for low scales around time 100 ms, and small values elsewhere. For high 

scales, on the other hand, the continuous wavelet transform will give large values for 

almost the entire duration of the signal, since low frequencies exist at all times. 

Figures 3.4 and 3.5 illustrate the same process for the scales s=5 and s=20, 

respectively. Note how the window width changes with increasing scale (decreasing 

frequency). As the window width increases, the transform starts picking up the lower 
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Figure 3.4: The CWT computation at s=5 

frequency components. 

As a result, for every scale and for every time (interval), one point of the time

scale plane is computed. The computations at one scale construct the rows of the 

time-scale plane, and the computations at different scales construct the columns of 

the time-scale plane. 

Figure 3.6 is the computed two dimensional CWT of this signal. Note that the 

axes are translation (time) and frequency, not scale. Time-frequency representation 

is relatively easy to interpret. In contrast, time-scale plots are usually more difficult 

to interpret as shown later in this chapter. 

The axes in Figure 3.6 are normalized and should be evaluated accordingly. 

Roughly speaking, the 50 points in the translation axis correspond to 200 ms, and 
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Figure 3.5: The CWT computation at 8=20 

small values on the frequency axis correspond to lower frequencies. Higher values 

of the frequency axis correspond to higher frequencies. Note that the zero on the 

frequency axis is not necessarily the DC value, but simply the lowest frequency value 

used in the analysis. From this perspective, notice the relatively small peak that 

occurs at a translation of 20-25 units (which corresponds to time around 100 ms.) 

indicates a high frequency component. Also note that low frequency components are 

located at all times (translations). 



56 

.. " . 

o 

Translation 
o 100 Frequency 
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57 

3.2.3 Time and Frequency Resolutions 

The most important characteristic of the wavelet transform is the time and 

frequency resolutions. The illustrations in Figures 3.7 and 3.8 are commonly used to 

explain how time and frequency resolutions should be interpreted. Figure 3.7 shows 

the time-frequency discretization of the STFT. The time and frequency planes are 

divided into equal size rectangles which indicates that time and frequency resolutions 

are constant. Every box corresponds to one computed value of the STFT. For the 

time-frequency plane given in Figure 3.7, there is one value computed for the region 

covered by each box. That value represents all the points that fall into that box. The 

value that is actually computed usually corresponds to the center of the rectangular 

box. 

In contrast, Figure 3.8 shows how wavelet transform discretizes time and fre

quency variables (as covered in more detail in Chapter 4). In this case, the width 

of the rectangles decreases with increasing frequency, which shows the increasing 

time resolution at high frequencies. However, heights of the rectangles increase with 

increasing frequency which indicates decreasing frequency resolution. The opposite 

holds for low frequencies. Heights of the rectangular boxes decrease, indicating in

crease in frequency resolution. Widths of the boxes increase, which indicates decrease 

in time resolution. Similar to the case of STFT, each box corresponds to one com

puted value of the continuous wavelet transform integral. 

However, regardless of the dimensions of the boxes, the areas of all boxes both 

in STFT and WT, are the same and determined by Heisenberg's inequality. The 

area of a box is fixed for each window function (STFT) or mother wavelet (CWT), 

whereas different windows or mother wavelets can result in different areas. However, 
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Time 

Figure 3.7: The partition of the time-frequency plane for the STFT 

all areas are lower bounded by 1/41(. On the other hand, for a given mother wavelet 

the dimensions of the boxes can be changed, while keeping the area the same. This 

is exactly what wavelet transform does. 

3.3 Introduction to The Wavelet Theory: A Mathematical Approach 

This section describes the main idea of wavelet analysis theory, which can also 

be considered to be the underlying concept of most of the signal analysis techniques. 

The FT defined by Fourier (1] use basis functions to analyze and reconstruct a func-

tion. Every vector in a vector space can be written as a linear combination of the 

basis vectors in that vector space, i.e., by multiplying the vectors by some constant 
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Time 

Figure 3.8: The partition of the time-frequency plane for the WT 

numbers, and then by taking the summation of the products. The analysis of the 

signal involves the estimation of these constant numbers (transform coefficients, or 

Fourier coefficients, wavelet coefficients, etc). The synthesis, or the reconstruction, 

corresponds to computing the linear combination equation. 

All the definitions and theorems related to this subject can be found in [10], but 

an introductory level knowledge of how basis functions work is necessary to under-

stand the underlying principles of the wavelet theory. Therefore, this information 

will be presented in this section. 
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3.3.1 Basis Vectors 

A basis of a vector space V is a set of linearly independent vectors, such that 

any vector VEV can be written as a linear combination of these basis vectors. (Note 

that vectors are typed in bold face.) There may be more than one basis for a vector 

space. However, all of them have the same number of vectors, and this number is 

known as the dimension of the vector space. For example in two-dimensional space, 

the basis will have two vectors. 

v = Lvkbk (3.2) 
k 

Equation (3.2) shows how any vector v can be written as a linear combination 

of the basis vectors bk and the corresponding coefficients vk 
• 

This concept, given in terms of vectors, can easily be generalized to functions, 

by replacing the basis vectors bk with basis functions ¢k(t), and the vector v with a 

function J(t). Equation (3.2) then becomes 

J(t) = L ]Lk¢k(t) (3.3) 
k 

The complex exponential (sines and cosines) functions are the basis functions for 

the FT. Furthermore, they are orthogonal functions, which provide some desirable 

properties for reconstruction. 

Let f(t) and get) be two functions in L2[a, b]. ( L2[a, b] denotes the set of square 

integrable functions in the interval [a,b]). The inner product of two functions is 

defined as follows: 
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< f(t),g(t) >= lb f(t).g"(t) dt (3.4) 

According to the above definition of the inner product, the CWT can be thought 

of as the inner product of the test signal with the basis functions 'lj;-r,s(t): 

CWT!(T,S) = W~(T,S) = J x(t).'lj;;jt)dt (3.5) 

where, 

1 (t - T) 'lj;-r,s = y'S1/J -s- (3.6) 

This definition of the C\VT shows that the wavelet analysis is a measure of simi

larity between the basis functions (wavelets) and the signal itself. Here the similarity 

is in the sense of similar frequency content. The calculated CWT coefficients refer to 

the closeness o,f the signal to the wavelet at the cu!rent scale. 

This further clarifies the previous discussion on the correlation of the signal 

with the wavelet at a certain scale. If the signal has a major component of the 

frequency corresponding to the current scale, then the wavelet (the basis function) 

at the current scale will be similar or close to the signal at the particular location 

where this frequency component occurs. Therefore, the CWT coefficient computed 

at this point in the time-scale plane will be a relatively large number. 
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3.3.2 Inner Products, Orthogonality, and Orthonormality 

Two vectors v, ware said to be orthogonal if their inner product equals zero: 

< v,w >= LVnW~ = 0 
n 

(3.7) 

Similarly, two functions f and 9 are said to be orthogonal to each other if their 

inner product is zero: 

< f(t),g(t) >= lb f(t).g*(t) dt = 0 (3.8) 

A set of vectors {VI, V2, .... , vn } is said to be orthonormal, if they are pairwise 

orthogonal to each other, and all have length "1". This can be expressed as: 

(3.9) 

Similarly, a set of functions {9k(t)}, k=1,2,3, ... , is said to be orthonormal if 

lb <Pk(t)¢i(t) dt = 0 k =I- I (orthogonality cond.) (3.10) 

and 

(3.11) 

or equivalently 

(3.12) 

where, 8kl is the Kronecker delta function, defined as follows. 
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{

I if k = I 
bkl = 

o if k =II 
(3.13) 

As stated above, there may be more than one set of basis functions (or vectors). 

Among them, the orthonormal basis functions (or vectors) are of particular impor

tance because of the nice properties they provide in finding these analysis coefficients. 

The orthonormal bases allow computation of these coefficients in a very simple and 

straightforward way using the orthonormality property. 

For orthonormal bases, the coefficients, J.Lk, can be calculated as 

J.Lk =< f, <Pk >= J f(t).<p'k(t) dt (3.14) 

and the function f can then be reconstructed by Equation (3.3) by substituting the 

J.Lk coefficients. This yields 

f(t) - L J.Lk<Pk(t) 
k 

L < f, <Pk > <Pk(t) 
k 

(3.15) 

(3.16) 

Orthonormal bases may not be available for every type of application where a 

generalized version, biorthogonal bases can be used. The term "biorthogonal" refers 

to two different bases which are orthogonal to each other, but each do not form an 

orthogonal set. 

In some applications, however, biorthogonal bases also may not be available in 

which case frames can be used. Frames constitute an important part of wavelet 

theory, and interested readers are referred to [10]. 
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Following the same order as in chapter 2 for the STFT, some examples of con-

tinuous wavelet transform are presented next. The figures given in the examples were 

generated by a program written to compute the CWT. 

3.4 Examples 

All of the examples that are given below correspond to non-stationary signals. 

For easy understanding, the test signals are chosen so that their CWT can be pre

dicted and thus compared with the actual results that are computed by the program. 

3.4.1 Example 1 

The window function used for this analysis was the Mexican hat wavelet which 

is defined as the second derivative of the Gaussian function. 

1 _t2 

w(t) = --e2<T2 

V'iia 
(3.17) 

(3.18) 

The function resembles a Mexican hat. Two of its important properties are that 

it is real and that it has a zero integral. The implication of these properties, as 

opposed to the Morlet wavelet which is complex and does not has a zero integral, 

will be explained below. 

Figure 3.9 shows the test signal used in this example. It contains two spectral 

components at different times. The high frequency component is four times the low 

frequency one. The signal is 512 ms long. 
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Figure 3.9: Non-stationary signal with two frequency components 

Figure 3.10 shows the continuous wavelet transform of the sample signal given 

above. This figure actually plots the absolute value (magnitude) of the CWT coef-

ficients. The wavelet used for this transform is real, and therefore, there is actually 

no reason for plotting the magnitude. However, the time-frequency (scale) represen

tation can be interpreted more easily from the magnitude plot. (The original CWT 

is given in Figure 3.11 for comparison.) 

The two different frequencies can be easily seen in Figure 3.10 (or in Figure 

3.11). In the time interval between zero and 256 ms, a peak occurs where frequency 

is marked as 10, and in the time interval between 256 ms to 512 ms, a peak occurs 

on the frequency axis at 2-3. This shows exactly what frequency components exist 
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at what times. 

Two important features can be seen immediately in this figure. The first one is 

the difference in amplitudes. The reason why the amplitude at the lower frequency 

is higher follows from the fact that, when the frequency is low, the window is wider 

in time and takes more terms into integration. This can be changed by using an 

amplitude scaling factor. 

The second feature is the difference in the widths of the peaks. The wavelet 

transform corresponding to high frequencies is more spread out in frequency compared 

to the low frequencies. This is exactly what was expected. At higher frequencies there 

is good time resolution, but poor frequency resolution. At lower frequencies, there is 

good frequency resolution, but poor time resolution. 

Until now, the time-frequency representations of the CWT were given, although, 

the CWT is a time-scale analysis. Figure 3.12 shows the continuous wavelet transform 

of the same signal in the time-scale plane. 

Now, low scales correspond to high frequencies, and high scales correspond to low 

frequencies. Therefore, scale 1 corresponds to the highest frequency in the analysis, 

whereas scale 50 corresponds to a lower frequency in the analysis. The lower bound 

of the range of the scales covered by the analysis depends on the parameters of the 

initial window (the mother wavelet), which is given by ()" in the above equation of the 

Mexican hat function. Every window function can be started from an initial scale by 

introducing a scaling term in the equation of the window function. 
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The resolution properties of the transform in Figure 3.12 should be interpreted 

with care. As opposed to what is explained in the previous sections, the transform 

seems to produce poor frequency resolution at low frequencies and good frequency 

resolution at higher frequencies. Note that the portion of the transform correspond

ing to the lower frequencies (high scales) is spread out in frequency, whereas that 

portion of the transform corresponding to the high frequencies (low scales) is compact 

in frequency. 

Although the high frequencies look more compact, it should be noted that they 

are actually compact in scale, not in frequency. The low scale (high frequency) 

portion is compact in scale which means that it is not compact in frequency, since 

scale and frequency are reciprocals of each other. 

The time resolution, on the other hand, is the same as that in Figure 3.10, 

since time'is the same in both cases. The time resolution properties looks even more 

obvious in Figure 3.12. Note how the low scale (high frequency) portions are well 

bounded in time, whereas at higher scales (lower frequencies) the transform gets 

smeared in time. The spread corresponds to poor time resolution. 

Finally, Figure 3.13 shows the same signal's CWT using a Morlet wavelet. The 

Morlet wavelet is defined as 

(3.19) 

where a is a modulation parameter, and l7 is the scaling parameter that affects the 

width of the window. 

It is given here to show that some differences may occur from one wavelet trans-

form to another. Some wavelets may resolve some frequencies better than others. 
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However, it should be noted that there are no criteria for selecting the optimum 

wavelet for an application. It is usually chosen by trial and error. In some cases, 

using a different wavelet may result in significant changes. 

3.4.2 Example 2 

In the second example, a rectangular pulse is introduced between two cosine 

waves of different frequencies. The rectangular region represents a major discontinu-

ity. 

-10 SO 100 150 200 250 300 3SO 400 450 500 

Figure 3.14: The signal used for Example 2 
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The signal has a 300 Hz component for the first 128 ms, then it is zero for the 

next 128 ms with a steep discontinuity, a rectangular pulse of width about 45 ms, 

followed by another 50 ms of zero, and 160 ms of a 100 Hz sinusoid. 

The continuous wavelet transform of this signal is computed with Morlet and 

Mexican hat wavelets. Different Morlet wavelets, with different starting scales were 

used in the computation. The following figures illustrate the results. 

Figure 3.15 is the CWT of the signal with respect to the Morlet wavelet. The 

high frequency components are seen first in time, then there is a zero region, then 

comes the rectangular region, followed by another zero region, and the low frequency 

components, as expected. 

Figure 3.16 is the CWT of the same signal with a different Morlet wavelet. The 

initial scale value has been changed to obtain the spectral components that might 

have been missed by the first wavelet. However, it looks like the first Morlet wavelet 

localized the signal better in time. 

The signals chosen for these examples are relatively non-complicated, composed 

of sinusoids and/or simple discontinuities, and therefore, a significant difference be

tween the transforms with different wavelet functions cannot be seen. However, for 

practical signals which are considerably more complex than the ones used in these 

examples, a major improvement can be made in the signal analysis if a better wavelet 

is chosen. Unfortunately, as stated before, there is no deterministic way of choosing 

the right wavelet, or even the right initial parameters of a specific wavelet. 

Figure 3.17 shows the real part of this CWT (Morlet wavelet is complex). Note 

the outline of the rectangular region at the lowest frequency, which draws the real 

part of the Morlet window. 
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The continuous wavelet transform using the Mexican hat wavelet is shown in 

Figure 3.18. Note the differences from the one computed by the Morlet wavelet. 

Significant differences can be seen at the lowest frequency, and in the times cor

responding to the rectangular discontinuity. There is the outline of the rectangle, 

corresponding to the transition edges, and the in-between area is zero. 

This is actually more accurate than the previous CWT with the Morlet wavelet 

because the region between the two sides of the rectangle is constant in time, which 

corresponds to the zero frequency. The Mexican hat wavelet localized the spectral 

components corresponding to that region better than the Morlet wavelet. 

3.5 The Wavelet Synthesis 

The continuous wavelet transform is a reversible transform, provided that Equa-

tion (3.21) is satisfied. Fortunately, this is a very non-restrictive requirement. The 

continuous wavelet transform is reversible if Equation (3.21) is satisfied, even though 

the basis functions are in general not orthonormal. The reconstruction is possible by 

using the following reconstruction formula: 

1 11' 1 (t - T) x(t) = 2" W~(T,S)2~ -- dTds 
C1/JST S s 

(3.20) 

where C'I/J is a constant that depends on the wavelet used. The success of the recon

struction depends on this constant called, the admissibility constant, to satisfy the 

following admissibility condition: 
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(3.21) 

where ~(~) is the FT of 1/;(t). Equation (3.21) implies that ~(O) = 0, which is 

(3.22) 

As stated above, Equation (3.22) is not a very restrictive requirement since 

many wavelet functions can be found whose integral is zero. For Equation (3.22) to 

be satisfied, the wavelet must be oscillatory. 

3.6 Discretization of the Continuous Wavelet Transform: The Wavelet 

Series 

In today's world, computers are used to do most computations. It is apparent 

that neither FT, nor STFT, nor CWT can be practically computed by using analytical 

equations, integrals, etc. It is therefore necessary to discretize the transforms. As 

in FT and STFT, the most intuitive way of doing this is simply sampling the time

frequency (scale) plane. And, again intuitively, sampling the plane with a uniform 

sampling rate sounds like the most natural choice. However, in the case of CWT, the 

scale change can be used to reduce the sampling rate. 

At higher scales (lower frequencies), the sampling rate can be decreased, accord

ing to Nyquist's rule. In other words, if the time-scale plane needs to be sampled with 

a sampling rate of Nl at scale 51, the same plane can be sampled with a sampling rate 

of N2, at scale 52, where, 51 < 52 (corresponding frequencies fl > f2) and N2 < Nl · 

The actual relationship between Nl and N2 is 
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12 
N2 = 11 NI 

(3.23) 

(3.24) 

In other words, at lower frequencies the sampling rate can be decreased which 

will save a considerable amount of computation time. 

It should be noted at this time, however, that the discretization can be done in 

any way without any restriction, as far as the analysis of the signal is concerned. If 

synthesis is not required, even the Nyquist criteria is not necessary to be satisfied. 

The restrictions on the discretization and the sampling rate become important if the 

signal reconstruction is desired. Nyquist's sampling rate is the minimum sampling 

rate that allows the original continuous time signal to be reconstructed from its 

discrete samples. The basis vectors that are mentioned in section 3.3 are of partic-

ular importance for this reason. 

As mentioned earlier, the wavelet '1/;( T, s) satisfying Equation (3.21), allows re

construction of the signal by Equation (3.20). However, this is true for the continuous 

transform. The question is: can we still reconstruct the signal if we discretize the 

time and scale parameters? The answer is "yes", under certain conditions. 

The scale parameter s is discretized first on a logarithmic grid. The time param-

eter is then discretized with respect to the scale parameter, i.e., a different sampling 

rate is used for every scale. In other words, the sampling is done on the dyadic 

sampling grid shown in Figure 3.19. 

Think of the area covered by the axes as the entire time-scale plane. The CWT 
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Figure 3.19: The dyadic sampling grid 

assigns a value to the continuum of points on this plane. Therefore, there are an 

infinite number of CWT coefficients. First consider the discretization of the scale 

axis. Among that infinite number of points, only a finite number are taken, using a 

logarithmic rule. The base of the logarithm depends on the user. The most common 

value is 2 because of its convenience. If 2 is chosen, only the scales 2, 4, 8, 16, 32, 

64, ... etc. are computed. If the value was 3, the scales 3, 9, 27, 81, 243, ... etc. would 

be computed. The time axis is then discretized according to the discretization of 

the scale axis. Since the discrete scale changes by factors of 2, the sampling rate is 

reduced for the time axis by a factor of 2 at every scale. 

Note that at the lowest scale (s=2), only 32 points of the time axis are sampled. 

At the next scale value, s=4, since the scale is increased by a factor of 2, the sampling 
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rate of time axis is reduced by a factor of 2, and therefore, only 16 samples are taken. 

At the next step, s=8 and 8 samples are taken in time, and so on. 

Although it is called the time-scale plane, it is more accurate to call it the 

translation-scale plane because "time" in the transform domain actually corresponds 

to the shifting of the window in time. For the wavelet series, the actual time is still 

continuous. 

Similar to the relationship between continuous Fourier transform, Fourier se-

ries and the discrete Fourier transform, there is a continuous wavelet transform, a 

semi-discrete wavelet transform (also known as wavelet series) and a discrete wavelet 

transform. 

Expressing the above discretization procedure in mathematical terms, the scale 

discretization is S = s~, and translation discretization is T = k.S~.TO where So > 1 

and TO > O. Note, how translation discretization is dependent on scale discretization 

with So. 

The continuous window function 

1 (t - T) 
'lj;-r,s = .Js'lj; -s- (3.25) 

becomes 

.1. () -j/2.t.( -j k) 
o/j,k t = So 'f/ So t - TO (3.26) 

b ·· j d k j y msertmg S = So, an T = .SO.TO· 

If {'lj;j,d constitutes an orthonormal basis, the wavelet series transform becomes 

(3.27) 



if {'Ij;j,k} are orthonormal. 
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x(t) = C1/J L L W:i,k'lj;j,k(t) 
j k 

(3.28) 

A wavelet series requires that {'Ij;j,k} are either orthonormal, or biorthogonal, or 

frame. If {'Ij;j,d are not orthonormal, Equation (3.27) becomes 

(3.29) 

where 'lj;J,k(t) is either the dual biorthogonal basis or dual frame. 

If {'Ij;j,d are orthonormal or biorthogonal, the transform will be non-redundant, 

where as if they form a frame, the transform will be redundant. On the other hand, 

it is much easier to find frames than it is to find orthonormal or biorthogonal bases. 

The following analogy may make this concept more clear. Consider the whole 

process as looking at a particular object. The human eyes first determine the coarse 

view which depends on the distance to the object. That corresponds to adjusting the 

scale parameter 5~j. When looking at a very close object, with great detail, j is neg

ative and large (low scale, high frequency, analyses the detail in the signal). Moving 

the head very slowly, and with very small increments (of angle, of distance, depend

ing on the object that is being viewed), corresponds to small values of T = k.S~.TO. 

Note that when j is negative and large, it corresponds to small changes in time, T, 

(high sampling rate) and large changes in 50 j (low scale, high frequencies, where the 

sampling rate is high). The scale parameter can be thought of as magnification too. 

How low can the sampling rate be and still allow reconstruction of the signal? 

This is the main question to be answered to optimize the procedure. The most 

convenient value (in terms of programming) is found to be "2" for So and 1 for T. 
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Obviously, when the sampling rate is forced to be as low as possible, the number of 

available orthonormal wavelets is also reduced. 

The continuous wavelet transform examples that were given in this chapter were 

actually the wavelet series of the given test signals. The parameters were chosen 

depending on the signal. Since the reconstruction was not needed, the sampling 

rates were sometimes below the critical value where So varied from 2 to 4, and TO 

varied from 2 to 8, for different examples. 

The discrete wavelet transform is discussed in the next chapter in detail. 
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CHAPTER 4. THE DISCRETE WAVELET TRANSFORM AND 

MULTffiESOLUTION ANALYSIS 

4.1 Why is the Discrete Wavelet Transform Needed? 

Although the discretized continuous wavelet transform enables the computation 

of the continuous wavelet tr; .sform by computers, it is not a true discrete transform. 

As a matter of fact, the wavelet series is simply a sampled version of the CWT, 

and the information it provides is highly redundant, as far as the reconstruction of 

the signal is concerned. This redundancy, on the other hand, requires a significant 

amount of computation time and resources. 

The discrete wavelet transform (DWT) is sufficient for most practical applica

tions as well as the reconstruction of the signal. The discrete wavelet transform 

provides enough information, and offers an enormous reduction in the computation 

time. 

The DWT is considerably easier to implement when compared to the continu

ous wavelet transform. In this chapter the mathematical foundation of the discrete 

wavelet transform will be introduced, along with its properties and the algorithms 

used to compute it. As in the previous chapters, examples are provided to aid in the 

interpretation of the discrete wavelet transform. 
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4.2 The Discrete Wavelet Transform (DWT) 

The foundations of the DWT go back to 1976 when Croiser, Esteban, and Galand 

devised a technique to decompose discrete time signals [11]. A similar work was done 

by Crochiere, Weber, and Flanagan on coding of speech signals in the same year 

[12]. They named the analysis subband coding. In 1983, Burt defined a technique 

very similar to sub band coding [13] and named it pyramidal coding which is also 

known as multiresolution analysis. Later in 1989, Vetterli and Le Gall made some 

improvements to the subband coding scheme, removing the existing redundancy in 

the pyramidal coding scheme [14]. Both of these techniques are explained below. 

A detailed coverage of the discrete wavelet transform and theory of multiresolution 

analysis can be found in [4], [15], [16], [9] and [17]. 

4.2.1 The Pyramidal Coding and The Multiresolution Analysis 

The main idea is the same as it is in the CWT. A time-scale (frequency) repre

sentation of a digital signal is obtained, using digital filtering techniques. Recall that 

the CWT is a correlation between a wavelet at different scales and the signal, with 

the scale (or the frequency) being used as a measure of similarity. The continuous 

wavelet transform is computed by changing the scale of the analysis window, shifting 

the window in time, multiplying by the signal, and integrating over all times. In the 

discrete case, filters of different cutoff frequencies are used to analyze the signal at 

different scales. The signal is passed through a series of high pass filters to analyze 

the high frequencies, and it is passed through a series of low pass filters to analyze 

the low frequencies. 

The resolution of the signal which is a measure of the amount of detailed infor-
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mation in the signal is changed by the filtering operations, and the scale is changed 

by upsampling and subsampling or downsampling operations. 

Subsampling a signal corresponds to reducing the sampling rate, or removing 

some of the samples of the signal. For example, subsampling by two refers to dropping 

every other sample of the signal. Subsampling by a factor n reduces the number of 

samples in the signal n times. 

Upsampling a signal corresponds to increasing the sampling rate of a signal by 

adding new samples to the signal. For example, upsampling by two refers to adding 

a new sample, usually a zero, between every two samples of the signal. Upsampling 

a signal by a factor n increases the number of samples in the signal by a factor of n. 

Although it is not the only possible choice, the standard discrete wavelet trans

form, where the DWT coefficients are sampled from the C\VT on a dyadic grid, i.e., 

So = 2 and 70 = 1, yielding s = 2i and 7 = k2i , as described in Chapter 3 is used in 

this study. 

Since the signal is a discrete time function, the term function and sequence will 

be used interchangeably in the following discussion. This sequence will be denoted 

by x[n], where n is an integer. 

The procedure starts with passing this signal (sequence) through a half band 

digitallowpass filter with impulse response h[n]. Filtering a signal mathematically 

corresponds to convolving the signal with the impulse response of the filter. The 

convolution operation in discrete time is defined as follows 
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y[nJ x[nJ * h[nJ 

L x[kJ.h[n - kJ 
k 

L h[kJ.x[n - kJ 
k 

( 4.1) 

(4.2) 

(4.3) 

A half band lowpass filter is a filter which removes all the frequencies that are 

above half of the highest frequency in the signal. For example, if a signal has a 

maximum of 1000 Hz component, then half band lowpass filtering removes all the 

frequencies above 500 Hz. 

The unit of frequency is of particular importance at this time. In discrete signals, 

frequency is expressed in terms of radians. Accordingly, the sampling frequency 

of the signal is equal to 271" radians in terms of radial frequency. Therefore, the 

highest frequency component that exists in a signal is 71" radians, if the signal is 

sampled at Nyquist's rate (which is twice the maximum frequency that exists in the 

signal). Therefore using Hz is not appropriate for discrete signals. However, Hz is 

used whenever it is needed to clarify a discussion, since it is very common to think of 

frequency in terms of Hz. It should always be remembered that the unit of frequency 

for discrete time signals is radians. 

After passing the signal through a half band lowpass filter, half of the samples 

can be eliminated according to the Nyquist's rule, since the signal now has a highest 

frequency of 71"/2 radians instead of 71" radians. Simply discarding every other sample 

will subsample the signal by two, and the signal will then have half the number 

of points. The scale of the signal is now doubled. Note that the lowpass filtering 

removes the high frequency information, but leaves the scale unchanged. The scale 
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is changed only by the subsampling process. 

Resolution, on the other hand, is related to the amount of information in the 

signal, and therefore, it is affected by the filtering operations. Half band lowpass 

filtering removes half of the frequencies, which can be interpreted as losing half of the 

information. Therefore, the resolution is halved after the filtering operation. Note, 

however, the subsampling operation after filtering does not affect the resolution, since 

removing half of the spectral components from the signal makes half the number of 

samples redundant anyway. Half the samples can be discarded without any loss of 

information. 

In summary, the lowpass filtering halves the resolution, but leaves the scale 

unchanged. The signal is then subsampled by 2 since half of the number of samples 

is redundant. The scale will be doubled after the subsampling. 

This procedure can mathematically be expressed as 

00 

y[n] = L h[k].x[2n - k] (4.4) 
k=-oo 

Equation (4.4) is simply the convolution of the signal x[n] with the filter h[n] followed 

by subsampling. 

The original signal is then separated into two parts, one corresponding to the 

detail information in the signal, and the other corresponding to a coarse approxima

tion of the signal. For coarse approximation, the opposite procedure is followed, that 

is, the filtered and subsampled signal is upsampled by a factor of two and passed 

through another half band lowpass filter, with impulse response h'[n]. 

The upsampling is done by simply inserting zeros between every sample of the 

signal y[n]. This can be expressed as y'[2n] = y[n] , y'[2n + 1] = O. which creates 
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an array of numbers whose even indexed terms are equal to terms of the previously 

obtained signal y[n], and the odd indexed terms are equal to zero. Filtering the 

upsampled signal with a new filter h'[n] will provide an approximation to the original 

signal. Call this approximation of x[n] as x[n]: 

00 

x[n] = L h'[k]y'[n - k] (4.5) 
k=-oo 

Note that the filter h'[n] is not a reconstruction or synthesis filter. It just inter

polates the zero samples to the best approximation. Therefore the obtained signal 

x[n] is not equal to x[n]. The difference d[n] = x[n] - x[n] is the detail information 

that is lost by lowpass filtering the signal. This shows that the original signal can 

be obtained by adding the detail and the coarse approximation signals. The overall 

operation is shown in Figure 4.1 . 

This process separates the signal into two parts, namely a lowpass coarse ap-

proximation of the signal, and a detail (high pass) signal. The approximation of 

the signal contains frequencies from zero to 7r /2, and the detail information contains 

the frequencies from 7r /2 to 7r. Both signals have only half of the information, and 

therefore, they are at half the resolution. 

The same procedure is then repeated for both half resolution signals. That 

is, both of them are passed through a halfband lowpass filter, subsampled by two, 

then upsampled by two, followed by a highpass filter. The signals obtained will 

have one fourth of the original information. The second level approximation will 

have frequencies from zero to 7\ /4, and the detail of the (previous) approximation 

will have the frequencies from 7r /4 to 7\/2. The approximation of the (previous) 

detail signal will have the frequencies from 7r /2 to 37r / 4, and finally, the detail of the 
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Figure 4.1: Pyramidal Coding (modified from [9]) 

(previous) detail signal will have the frequencies from 37r / 4 to 7r. 

By continuing this process, it is possible to zoom into a signal and analyze every 

frequency band separately. This process, however, is usually iterated only with the 

approximation parts, and it produces lower resolution signals at higher scales. 

4.2.2 Subband Coding 

The above algorithm is a fast way of obtaining the time-scale representation of 

a signal, but it still has redundant information as far as the total number of samples 

is concerned. Every level of pyramid decomposition generates two signals. The first 

part contains half the number of points, and it is a low resolution signal (that was 

labeled as y[nJ). The second is a detail of the signal, but it contains the same number 
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of samples as the original signal. The total number of samples is 50% more than the 

number of samples in the original signal. 

The following technique, however, does not cause any redundancy and, therefore, 

is used very often for the computation of the DWT. 

As in pyramidal coding, the low resolution, subsampled signal y[n] is first ob

tained. But instead of computing the detail signal as a difference from the upsampled 

and interpolated signal, the other half of the signal is computed using a half band 

highpass filter g[n]. In other words, the signal x[n] is passed through a lowpass filter 

and then it is subsampled. The output signal has the information from zero to 7r /2 

as explained above. Then x[n] is also passed through a half-band highpass filter, 

followed by subsampling. The output is a signal that contains the frequencies from 

7r /2 to 7r. 

Note in this case that both of the signals are subsampled by 2 and that both of 

them have half the total information. Therefore, two signals at half the resolution 

and twice the scale are obtained. More importantly, the total number of samples is 

unchanged, i.e., there is no redundant information. The above procedure is one level 

of DWT computation. The output of the highpass portion is called levell, DWT 

coefficients. 

The procedure is repeated by using the level 1 lowpass output. That is, the 

output of the lowpass filter at level 1 is again divided into two by passing it through 

halfband lowpass and highpass filters, and subsampling by two. The end result is two 

more signals, at one fourth of the resolution and four times the scale. The output 

of the highpass portion of this level is called level 2 DWT coefficients. The lowpass 

portion is then taken and further decomposed. The procedure continues until only 
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one sample is left. 

An alternative interpretation of subband coding is explained next with an exam

ple. As stated above, filtering a signal (lowpass and highpass), and then subsampling 

the outputs, yields two signals with half the number of samples each. Note that, 

although the number of the samples is halved, the signals still correspond to the 

entire duration of the original signal, which means that half the number of points are 

available to represent the signal. Therefore, time resolution is halved by two. 

Suppose the procedure was started with a 1024 points long signal which has 

frequencies from 0 to 7r. At the end of the first level, there would be two 512 samples 

long signals, both corresponding to a 7r /2 long frequency interval; one of them from 

zero to 7r /2, and the other from 7r /2 to 7r. Then the low frequency portion would be 

decomposed again. Therefore, in the second layer, there would be two 256 samples 

signals, both of them corresponding to a 7i / 4 long frequency interval, one of them 

from zero to 7r /4 and the other from 7r /4 to 7r /2. 

At the beginning there was a 1024 points signal corresponding to a frequency 

interval of 7r radians. In the first level 512 points represent the original 1024 points 

signal, and in the second level 256 points represent the original signal. Therefore, 

the time resolution is halved at level 1 and it is further halved (to the one fourth of 

the original) at level 2. In other words, the time resolution at level 0 (the original 

signal), is twice as good as the one at levell, and it is four times as good as the one 

at level 2 and so forth. 

The frequency resolution, on the other hand, gets better as the algorithm pro

gresses. In the first level, the two signals correspond to a 7r /2 radians long interval, 

and in level 2, the signals correspond to a 7r /4 radians long interval. Therefore, the 
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frequency resolution at level 0 is the poorest since it is the original time-domain signal, 

and there is no discriminating frequency information. The signal corresponds to a 7r 

radians long interval, i.e., all the frequencies that exist in the signal. The frequency 

resolution at level 1 is twice the frequency resolution at level 0, and the frequency 

resolution at level 2 is twice the frequency resolution at levelland so forth. 

In summary, at higher levels (higher scales, lower frequencies) there is better 

frequency resolution since the frequency range gets narrower and narrower; however, 

the time resolution gets worse since only half of the number of samples are used to 

characterize the signal at each level. 

The change in the time and the frequency resolutions of the discrete wavelet 

transform are exactly the same as those of the continuous wavelet transform. (see 

Figure 3.8). Figure 4.2 illustrates the subband coding procedure. 

One important property of the discrete wavelet transform is the relation between 

the impulse responses of the highpass and lowpass filters. The highpass and lowpass 

filters are not independent of each other, and they are related by 

g(L - 1 - n] = (-lth[n] (4.6) 

where g[n] is the highpass, h[n] is the lowpass filter, and L is the filter length (in 

number of points). Note that the two filters are odd index alternated reversed versions 

of each other. Lowpass to highpass conversion is provided by the (-It term. 

The two filtering and subsampling operations can be expressed by 

Yhigh[k) = L x[n).g[-n + 2k) (4.7) 
n 



95 

N=1024 
f=O -'It N=512 

~=1t/2 -'It N=256 X[nY: Cr:ll _ ~ J=1t/4 -'lt12 N-128 
~~ -
~~l. ~8-1tI4 

N=512 h[n] 

f=O-nI2 ~ 

N : number of samples 
f:frequency interval 

N=256 
f=O-'lt/4 

Figure 4.2: Subband coding block diagram 

Ylow[k] = L x[n].h[ -n + 2k] 
n 

N=128 
f=O -7tl8 

( 4.8) 

The reconstruction in this case is very easy since halfband filters form orthonor

mal bases. The above procedure is followed in reverse order for the reconstruction. 

The signals at every level are upsampled by two, passed through the synthesis filters 

g'[n], and h'[n] (highpass and lowpass, respectively), and then added. The interesting 

point here is that the analysis and synthesis filters are identical to each other, except 
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for a time reversal. Therefore, the reconstruction formula becomes (for each layer) 

00 

x[n] = L [Yhigh[k]g[-n + 2k] + Ylow[k]h[-n + 2k]] (4.9) 
k=-oo 

However, if the filters are not ideal halfband, then perfect reconstruction cannot 

be achieved. Although it is not possible to realize ideal filters, under certain condi

tions [18], it is possible to find filters that provide perfect reconstruction. These filters 

will be named wavelet function and scaling function for the highpass and lowpass 

filters, respectively. However, the relation between the wavelet and scaling functions 

will be similar to the relation between the highpass and lowpass filters. The most 

famous ones are known as Daubechies wavelets [4]. These are used in the examples 

given below. 

4.3 Examples 

The plots for the examples in this chapter will be somewhat different from the 

ones in the previous chapters, and they should be interpreted as explained below. 

The program written for the computation of DWT accepts signals whose lengths 

are powers of two. If the signals' length is not a power of two, then the signal is 

extended periodically to a length which is a power of two, or the decomposition stops 

whenever the number of samples can not be divided by 2. The number of levels that 

the signal is decomposed is determined by the length of the signal. For example, 

if the signal length is 1024, ten levels of decomposition are possible. However, it is 

quite unnecessary to go that far since the number of samples in the signal decreases 

by a factor of "2" at every level. For example for a 1024 sample signal, there are 

only 32 points left at the fifth level to represent the 1024 sample signal, and the time 
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resolution gets very poor. The typical number of levels depends on the signal length. 

Recall that the DWT coefficients are the outputs of the highpass filters followed 

by subsampling. However, both outputs of the last level are included in the trans

formed signal. 

The DWT is displayed in two different ways. The first is used most often. In 

this display technique, all the computed coefficients are simply concatenated one 

after the other. For example, suppose we have a 200 points long signal. This will 

be decomposed into 3 levels. In the first level it will be decomposed into two 100 

points signals. The highpass 100 points will be the level 1 DWT coefficients. The 

lowpass 100 points are then decomposed into two 50 points signals. The highpass 50 

points become the level 2 DWT coefficients, and the lowpass 50 points are further 

decomposed into two 25 points signals. The decomposition will stop here since the 

total number of points is not divisible by 2. The level 3 coefficients will be the 25 

highpass and 25 lowpass transform coefficients placed one after the other. Therefore, 

the transformed signal will be 25 lowpass points at level 3, 25 highpass points at level 

3, 50 highpass points at level 2 and 100 highpass points at levell, concatenated 

in this order. Note that the total number of samples adds up to 200, which is the 

number of samples in the original signal. 

This display method is usually difficult to interpret since it gives a one-dimensional 

plot in which both time and frequency information are embedded. However, the sig

nal in this format is more suitable for use by a neural network, and therefore, it is 

commonly followed. 

The other display method is placing these coefficients in a matrix where the 

rows represent the frequency and the columns represent the translation. The matrix 
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is then color coded on a gray scale according to the amplitude of the values. This 

display method creates a two dimensional time-frequency representation. 

4.3.1 Example 1 

The first example is a chirp signal, whose frequency changes continuously. The 

chirp signal is shown in Figure 4.3. 

0.8 \ 0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 
0 50 100 150 200 250 300 350 400 450 500 

Time, ms. 

Figure 4.3: The chirp signal 

For this signal, there is a constant increase of frequency along the time axis. The 

computed DWT coefficients are displayed in Figures 4.4 and 4.5 in the two models 

described above. 

Figure 4.4 is the DWT of the chirp signal in augmented time format created with 
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Figure 4.4: DWT of the chirp signal 

the first method. The horizontal axis corresponds to time. Note that the frequency 

information can not be seen in this figure easily; although, it is embedded in the 

plot. Recall that the last 512 points correspond to level 1 (7r /2 to 7r). The 256 points 

preceding level 1 correspond to level 2 (7r /4 to 7r /2), the 128 points preceding level 2 

correspond to level 3 (7r /8 to 7r /4), and so forth. 

Figure 4.5 is the DWT of the chirp signal in matrix display format. The formation 

of this display matrix in Figure 4.5 can be of special interest. The matrix has N 

columns and rows where N is the signal length, provided that N is a power of 2. In 

this example, the signal is of length 1024. (Half of the signal is shown in Figure 4.3.) 

The first row is filled with the single value of the last level's lowpass output. 

That is, the entire first row is filled with one number. The second row is filled with 
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Translation. 

Figure 4.5: DWT of the chirp signal, matrix display format 

highpass output of the last level, again the same value for the entire row, since there 

is only one coefficient at the last level. The time axis is 1024 points long (as the 

original signal), and the rows are only 1 point wide. 

The third and fourth rows are filled with the highpass output of the number of 

layers-2 (the second before the last) layer. There are two coefficients at this layer; 

the first 512 points of the third and the fourth rows are filled with the first of the 

two coefficients, and the second 512 points are filled with the second coefficient. Note 

that , the frequency resolution is decreased, (frequency interval increased to 2 rows) 

and the time resolution is increased (the time interval decreased from 1024 to 512) 

by a factor of 2. 

The next "4" rows (5 ,6,7,8) are filled with the "4" coefficients of the highpass 
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output of the number of layers-3 (third from the end) layer. The four coefficients at 

this level are placed on the four consecutive regions of the time axis similar to the 

previous level. The first coefficient is placed through columns 1 to 256, the second 

coefficient is placed through columns 257 to 512, the third coefficient is placed through 

columns 513 to 768 and the fourth coefficient is placed through columns 767 to 1024. 

Finally, the last 512 rows( very poor frequency resolution at high frequency) 

are filled with the 1024 coefficients (very good time resolution) one value for every 

column. The result is displayed in Figure 4.5 (for the first 512 rows). 

One can see the increasing height of the columns at higher frequencies, indicating 

decreasing frequency resolution. The time resolution properties cannot be seen from 

this figure. 

o 

Translation. 
o 100 Frequency 

Figure 4.6: DWT of the chirp signal, matrix display format 
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The 3-D plot corresponding to the display matrix format (i.e., the amplitudes are 

not color coded) is given in Figure 4.6. It is not possible to tell much from this figure, 

except that the sinusoids are seen corresponding to different frequencies at different 

times. Among the above given three displays, the matrix format (the second) gives 

the best interpretation when viewed in color. 

4.3.2 Example 2 

The second example is the same as Example 2 used in the continuous wavelet 

transform given in chapter 3 (Figure 3.14). Again the augmented time and matrix 

format displays are given. The signal is 512 points long, and therefore, nine levels 

are used. 
2.5,---...----~--r---r--......,..--_r_-__r-__,_-___.-__,r_1 

150 200 250 300 350 400 450 500 
Time 

Figure 4.7: DWT of the signal in Figure 3.14, augmented time format 
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Figure 4.7 shows the augmented time format. Similar to the previous example, 

the last 256 points corresponds to the first level. The preceding 128 points correspond 

to level 2 and so forth. The maximum energy can be seen at level 2 and level 4 signals 

give information about the existence of the corresponding frequencies. 
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Figure 4.8: DWT of the signal in Figure 3.14, matrix format 

Figure 4.8 shows the matrix format. The high frequency components at early 

times and low frequency components at later times can easily be seen from the figure. 

Also notice the height of lines increasing and the width decreasing at high frequencies. 

This once again indicates good time resolution and poor frequency resolution. At low 

frequencies, lines are shorter but wider, which is due to good frequency resolution 

but poor time resolution. 



104 

CHAPTER 5. ARTIFICIAL NEURAL NETWORKS 

Signal classification and clustering have always been of special interest in signal 

processing. Signal classification is the second step after processing the signal, and this 

step is usually accomplished by conventional pattern recognition techniques. More 

recently artificial neural networks, or simply neural nets, have found considerable 

application for signal classification. 

Neural networks try to simulate the pattern recognition capabilities of the human 

brain. Neural networks, physically realized by silicon chips, are five to six (a factor of 

105 
- 106 ) orders of magnitude faster than the neurons in a human brain. However, 

a neural network cannot get close to the performance of the brain because the brain 

typically contains nearly 10 billion neurons with 60 trillion synapses or connections 

[19]. This, of course, is not possible for a physically realizable network, where the 

number of neurons and connections are around six orders of magnitude less than that 

of the brain. 

One of the main objectives of this study was to investigate the performance of 

wavelet transforms on biological signals, specifically EEG signals. The wavelet trans

form processed signals were presented to two different neural network architectures 

to be classified or clustered. (The difference between classification and clustering will 

be described in the following sections.) 
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There has been an enormous amount of work on neural networks in the last 50 

years, and there have been many books, articles and tutorials [21], [22] published. 

Therefore, only a brief overview of neural networks will be given in this chapter, 

emphasizing the multilayer perceptron with backpropagation learning rule and the 

k-means clustering algorithm. 

5.1 Components of Basic Neural Networks 

Neural networks consist of layers of simple prorc.ssing units called neurons or 

nodes. These nodes perform simple mathematical operations, similar to the oper

ations performed by real neurons. A finite set of inputs, also called input nodes, 

constitute the first layer of the neural network. However, the input nodes basically 

feed the data into the neural network; they perform no mathematical operations. 

Therefore, the input layer is usually not counted when the number of layers are 

specified for a particular network. 

Every neural network also has output nodes which perform mathematical oper

ations. The nodes which perform computations are also called processing elements 

(PEs). Every processing element has a state associated with it. This state is a scalar 

number which changes during the learning procedure. 

The input and output nodes exist in every neural network. However, most neural 

networks also have one or more hidden layers which also include a set of nodes. The 

hidden layer nodes are processing elements like the output nodes. All the nodes in all 

the layers are connected to each other. The connection scheme determines the flow 

of the information between the nodes. For example, if all the nodes of one layer are 

connected to all the nodes of the next layer, the neural network is said to be fully 
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Figure 5.1: Single layer neural network 

interconnected. Every connection is usually directed from one node to another, and 

every connection has a weight associated with it. A single layer neural network is 

illustrated in Figure 5.1. 

The N input nodes are named Xi, i = 0,1, ... , N - 1. All the input nodes 

are connected to the output node Y, and every connection has a weight value, Wi, 

i = 0,1, ... , N - 1 . The only node in Figure 5.1 that performs a computation is the 

output node. This node basically adds the weighted values of the input nodes. If 

applicable, a threshold value, 0, is subtracted from the weighted input value. The 

resulting value is passed through a non-linear activation junction, f(x). This final 

value becomes the new state of the output node. The activation function is usually 

selected to be one of three popular functions, namely, the threshold function (hard-
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limi ter), piecewise linear function, or the sigmoid function. 

5.2 Activation Functions 

5.2.1 The Hard Limiter (Threshold Function) 

The input-output characteristic of the hard-limiter function is illustrated in Fig

ure 5.2 . The hard-limiter function is defined as 

f(x) = { ; 
if x >0 

if x < 0 
(5.1) 

The hard limiter function is often used in classification problems in many neural 

networks, such as Hopfield networks, where binary outputs are needed. 

1.5.----r----r---.----.---r--....----,-----r----r----, 

~ 0.5 

o~----------~ 

o 
x 

....... : .................... : ......... .: ....... . 

2 4 6 8 

Figure 5.2: The hard limiter function 

10 
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5.2.2 The Piecewise Linear Function 

The piecewise linear function has an output value equal to the input value in a 

given interval. The piecewise linear function is plotted in Figure 5.3 and defined as 

follows; 

1 if x > 1/2 

f(x) = x if -1/2 < x < 1/2 

o if x < -1/2 

The piecewise linear function is usually used for function approximation. 

1.5..----.....,...----,r-----.-----r---~--__, 
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01---------'··· ............................................................. . 

~.5~--~--~---~----~----~--~ 
-1.5 -1 ~.5 0 0.5 1.5 

x 

Figure 5.3; The piecewise linear function 

(5.2) 
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5.2.3 The Sigmoid Function 

The sigmoid function, the most commonly used function, forces any value be-

tween minus and plus infinity into the [0 1] range. The multilayer percept ron with 

backpropagation usually uses the sigmoid function because it is differentiable. This 

is useful for implementing the backpropagation algorithm. 

The input-output characteristics of the sigmoid function are given in Figure 5.4, 

and it is defined as follows: 

1 
f(x) = 1 + e-kz (5.3) 

The parameter k determines the slope of the sigmoid function; as k approaches 

infinity, the sigmoid function approaches the hard limiter. 

k::O.95 • 
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Figure 5.4: The sigmoid function 
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5.3 The Learning Process 

Neural networks can be classified into two classes according to their learning 

rule. The majority of neural networks are trained with a set of data of known classes. 

This data is passed through the network many times through an iterative procedure. 

At every iteration the network learns more about the data and changes the weight 

and/or node values, accordingly. This data, with known classes, is called training 

data, and this type of learning is called supervised learning. The Hopfield network, 

the Hamming network, and single and multilayer perceptrons (with backpropagation) 

use supervised learning algorithms. 

The iterative learning procedure continues until the training is complete. The 

training ends when the neural network can classify all the training data correctly 

and/or when the weights do not change from one iteration to the next. This is called 

the convergence of the learning algorithm. After training is over, the network is 

presented a set of test data for validation and classification. The weights calculated 

during the training are used for this classification. 

The learning rules for neural networks are somewhat random procedures. The 

initial selection of the weights, the number of hidden layers, and the number of nodes 

in the hidden layer all affect the performance of the neural network. However, there 

are no criteria for the selection of the number of nodes, number of hidden layers, or 

initial selection of the weights. Therefore, neural networks with various parameters 

are implemented a number of times to get the optimum performance. 

There are many other learning algorithms and network architectures available, 

and many books and articles have been published in this area. Simon Haykin's recent 

book, Neural Networks, A Comprehensive Foundation is an excellent reference guide 
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[19]. 

However, training data of known classes may not always be available. Even 

the number of classes may not be known. In these cases the learning procedure 

is said to be unsupervised. The networks using unsupervised learning rules usually 

cluster the data into groups. Self organizing feature maps (Kohonen network), the 

k-means clustering algorithm, and the minimax clustering algorithm are examples of 

unsupervised learning rules. 

5.4 The Perceptron Model 

The perceptron model, developed by Rosenblatt in the early sixties [23] is a 

single layer network similar to the one shown in Figure 5.1. It uses the hard limiter 

activation function. It accepts continuous valued inputs, and outputs binary values. 

The perceptron is a feedforward network in which the information flows only from 

input towards the output. 

The perceptron model is a supervised learning rule which is guaranteed to con

verge, if and only if, the data are linearly separable. This is a very restrictive re

quirement since this is not the case in many applications. An example of linearly 

separable and not linearly separable data sets is given in Figure 5.5 . 

For two sets of N dimensional data to be linearly separable, a decision bound

ary of dimension N - 1 should be found. In the upper plot of Figure 5.5 the two 

dimensional data sets can be separated with a one dimensional decision boundary, 

a line. However, the data sets in the bottom plot cannot be separated with a one 

dimensional decision boundary; therefore they are not linearly separable. Multilayer 

perceptrons, however, are theoretically capable of classifying sets having arbitrary 



(not necessarily linear) decision boundaries. 

5.4.1 Perceptron Convergence Algorithm 

The single layer perceptron algorithm is given below. The network architecture 

is identical to the one given in Figure 5.1 if there is one output node. If there is more 

than one output, all the input nodes are connected to all the output nodes. The 

network is, therefore, fully interconnected. 

1. Randomly initialize all the weights to some small numbers. 

2. Present input to the input nodes. There must be as many input nodes as the 

number of samples in the data. This is called the dimension of the data. 

3. Calculate the output value for each output node: 
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(5.4) 

where f is the activation function, k is the iteration number, N is the number of input 

nodes, ai is the current value of the ith input node, Wi is the weight that connects 

the ith input node the output node, and e is a threshold value. If there is more than 

one output node, the above equation is repeated for every output node. 

4. Adapt the weights according to Equation (5.5), where the weight values at 

the (k + l)ih iteration are written in terms of the learning rate 71, current values of 

the input and output nodes, the correct output value d, and the weight values at the 

kth iteration. 

i=1,2, .... ,N (5.5) 

Increasing the learning rate, 71, may reduce the convergence time, but increasing 

it too much may yield incorrect results. The pair (a,d) is called a training pair. 

5. Continue iteration by returning to step 2 (increase k by one) until convergence. 

The network is said to be converged when the weight values do not change from one 

iteration to the next. In other words, continue iteration until Wi(k + 1) = Wi(k). 

As mentioned above, the single layer perceptron will not converge if the data 

are not linearly separable. Therefore, it is seldom used. However, the percept ron 

algorithm becomes extremely powerful if one or more hidden layers are added to 

the network architecture. The resulting network architecture is called the multilayer 

perceptron. 
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5.5 Multilayer Perceptron (MLP) 

A multilayer perceptron (MLP) is a feed-forward network with one or more 

hidden layers between the input and the output nodes. At each level, the node 

values are computed exactly as they are computed in the single layer percept ron 

(with Equation 5.4). The MLP network architecture is given in Figure 5.6. 

Input 
layer 

First 
hidden 
layer 

Second 
hidden 
layer 

Output 
layer 

Figure 5.6: The MLP with two hidden layers (from [19]) 

The MLP uses the backpropagation learning algorithm for updating the weights. 

This is a supervised learning rule where there is a set of training data with known 

classes available. Multilayer perceptron/ backpropagation (MLP /BP) uses the sig-

moid activation function because it can produce continuous output values, and it can 
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be differentiated. 

The weight update rule for the backpropagation algorithm will be explained 

below, followed by the step by step algorithm. The derivation of this algorithm will 

not be given here since it can be found in many books and articles such as [19] and 

[23]. 

5.5.1 Backpropagation Learning Rule for the MLP 

For most practical applications only one hidden layer (two layers in total with 

the output layer) are used in MLPs. Three hidden layer MLPs are considerably more 

difficult to code, and their performance is not necessarily better. Three hidden layer 

MLPs are usually used to realize very complex decision boundaries. 

Figure 5.7 shows a two layer MLP with nodes and weights. This is a generic 

MLP architecture used in many MLP implementations. The algorithm presented 

below uses the notation for nodes and for weights as illustrated in Figure 5.8. 

Xi, i = 1,2, .. .1, are the input nodes, hj, j = 1,2, ... ,m are the hidden layer 

nodes, and the Ok, k = 1,2, ... , n are the output nodes. Also note that one more 

node is added to both input and hidden layers with a constant value of 1. This node 

serves as the threshold 0, in Equation (5.4). This node always has the same state, 1, 

and does not change throughout the training process. It is usually faster to include 

the threshold term as an extra node instead of subtracting it every time as seen in 

Equation (5.4). The state of this extra node is chosen as 1 for convenience. 

The weights connecting the input nodes to the hidden layer nodes are named 

Wij and interpreted as weights connecting the input node Xi to the hidden layer node 

hj. The weights connecting the hidden layer nodes to the output nodes are named 
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Input nodes xi 

Hidden nodes h j 

Output nodes £1 

Figure 5.7: One hidden layer MLP architecture, from [24] 

Vjk and interpreted as weights connecting hidden layer node hj to the output node Ok. 

Again, for convenience, Equation (5.4) is re-evaluated in terms of Xi, hj, Ok, Wij, 

and Vjk in Equation (5.6) and Equation (5.7). Since the network architecture given 

in Figure 5.7 is a two layer network (one hidden layer and one output layer network), 

Equation (5.4) J:?eeds to be evaluated for both hidden layer nodes, hj, and output 

nodes, Ok. 

hj = f (WOj + t Wij.Xi) 
,=1 

j=1,2, ... ,m (5.6) 
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Ok = j (VOk + t Vjk. hj ) 
3=1 

k = 1,2, ... ,n (5.7) 

The activation function, j, used in the above equations is the sigmoid function 

as defined by Equation (5.3). The difference between Equation (5.4) and the above 

equations should be noted: the threshold value, 0, is replaced by WOj and VOk. Also 

note that the index value of the weights, WOj and VOk is zero. Recall that i = 1,2, ... , I 

and j = 1,2, ... , m. In other words, there is no input or hidden layer node with index 

number O. The index 0 is used to characterize the extra node added, to replace the 

threshold value, O. 

The correct classes will be denoted with a n-dimensional binary valued vector. 

A binary valued vector is a vector whose elements are 0 or 1. For example, if there 

are 5 classes there will be 5 output nodes, and if the correct class for a signal is, for 

example 3, then the correct class vector for that input will be (0 0 1 0 0). 

Since the activation function is a sigmoid, rather than a hard limiter, the actual 

outputs computed by the net will converge towards 0 for incorrect classes, and towards 

1 for the correct classes, but they will not be exactly 0 or 1 (they will be close to 

these numbers). Therefore, a thresholding is used at the output. Usually, if the value 

of the output node is above 0.95, it is accepted as 1, and if it is below 0.05 it is 

accepted as O. This thresholding should not be confused with the thresholding used 

in Equation (5.4), e. 

A correct classes vector, c, is required for every input vector, p, since backprop-

agation is a supervised learning rule. Assume there are s input patterns in which 

case {(pt, ct) }:=1' s input-output pairs are needed. The training process starts with 

feeding the input nodes with the first input signal (vector), pl. Note that subscripts 
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are used to show the index number of an element of a vector, whereas superscripts 

are used to show index to the vector. In other words, pI is the first input signal, 

and p~ is the first element of the first input vector. The node values of the hidden 

layers are then computed by Equation (5.6). These values are used to compute the 

node values (states) of the output nodes by Equation (5.7). The output vector is 

then subtracted from the correct classes vector (corresponding to the current input 

vector) to compute the error at the output level with Equation (5.8) given in the 

algorithm below. This error at the output layer is backpropagated to the hidden layer 

and used in the computation of the error at the hidden layer with Equation (5.9). 

Once the errors at both levels are computed, the weights are updated according 

to the errors at each level. The weights at the second layer, Vjk, are updated by using 

the current weight values, hidden node values and the error at the second layer. Then 

the first layer weights, Wij, are updated by using the current weight values, input node 

values (input signal), and the error at the first layer. 

Once the weights are updated, the next input is fed to the net, and the same 

procedure is repeated until all the inputs are passed through the net. It takes many 

passes of the input data for the net to converge. The algorithm is summarized in the 

steps below. 

5.5.2 Backpropagation Algorithm 

1. The weights are initialized randomly to some values. Typically initial values 

are randomly chosen from the interval [-0.1,0.1]. 

2. The input vector pt=(pi, p~, ... , pD from the training pair {(pt, Ct)}:=l is fed 

to the net and the node values (node states) are computed first for the hidden layer 
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nodes and then for the output nodes from Equations (5.6) and (5.7), respectively. 

This is the forward pass of the input signal from the network. 

3. The error at the output layer, 80k , for k = 1,2, ... , n , is computed from 

Equation (5.8): 

(5.8) 

Recall that ct = (ci, c~, ... , c~) is the correct class vector for the input vector 

pt=(pLp~, ... ,pn, and Ok is the current value of the kth output node. 

4. The errors computed at the second layer (output) are backpropagated to the 

first level to compute the error, 8hj , j = 1,2, ... , m, at the hidden layer nodes: 

n 

8hj = h j (l - hj) L 80k ·vjk (5.9) 
k=l 

where hj, for j = 1,2, ... , n are the current values of the hidden layer nodes, and 80k , 

for k = 1,2, ... , n , are the errors computed at the output layer by using Equation 

(5.8). 

5. After computing the errors at both layers, the weights are updated. First the 

weights between the hidden and output nodes, Vjk, are computed by 

(5.10) 

where t shows the pattern index (tth input), and 0 < TJ :::; 1 is the learning rate. Note 

that to update weights at iteration t, the weight values at iteration (t - 1) are used. 

This is called a recursion. 

6. Finally the weights between the input and hidden layer nodes are updated: 
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(5.11) 

7. Steps 2 through 6 are repeated for every training pair, {(pt, ct ) }:=1. However, 

the iteration does not end here, and the above steps are repeated starting from the 

first input vector, pI, but the weights are not initialized again, and the previous 

weight values are used to compute the new ones. The learning continues until the net 

converges, i.e., all the training data vectors are classified correctly. Usually, training is 

terminated when the errors computed by Equations (5.9) and (5.8) (especially error 

using (5.8)), are less than a predefined value, or the weight values do not change 

from one iteration to the other. The convergence proof of the above algorithm can 

be found in [19]. 

The backpropagation algorithm searches for the minimum of the error surface 

and, therefore, it is a gradient descent method. In this error surface there may be 

more than one minimum, called local minima, and the backpropagation algorithm 

is expected to find the global minimum of the error surface rather than the local 

minima. However, the backpropagation algorithm often gets stuck in one of the local 

minima. The error in the local minimum mayor may not be satisfactory. If it is 

not satisfactory, the algorithm can be repeated with different initial weight values or 

a different number of layers and/or different number of nodes. This will start the 

search for the minimum of the error surface from a different point, and the local 

minimum which caught the algorithm could be skipped. 

Although the backpropagation algorithm given above is the most commonly 

used neural network supervised learning rule, it is very seldomly used in the way it is 

explained above (plain backpropagation) since it is slow, and the algorithm is often 
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trapped into local minima. Fortunately, there are ways to improve the performance 

of the backpropagation, as explained in the next section. 

5.5.3 Improving Backpropagation 

There are three methods for improving the performance of the backpropagation 

algorithm [25]. These are including a momentum term, choosing initial values more 

wisely (rather than randomly), and using a variable learning rate. 

Learning With A Momentum Term: A momentum term is used to reduce 

the sensitivity of the backpropagation to the small details in the error surface, and 

thus prevent the network from getting trapped in small local minima. Using a mo

mentum term in the training can be thought of as using a lowpass filter, ignoring the 

minor changes in the error surface. 

The momentum term can be included in the algorithm by replacing Equation 

(5.11) with the Equation (5.12): 

(5.12) 

The momentum term, Q, can be chosen from the interval [0,1]. If Q = 0 the 

weight change is based only on the gradient, and it is the same as the plain back

propagation. When Q = 1, the weight change is basically mainly set to the last 

change in the weights, and the gradient is mostly ignored. The typical value for the 

momentum term is 0.95. 

Learning With A Smart Choice of Initial Weights: As cited in [25], 

Nguyen and Widrow showed that the backpropagation algorithm will converge faster 
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if the initial weights are not chosen randomly but according to the input vector length, 

number of layers and number of nodes in each layer. Random choice of initial weights 

may start the learning far from the local/global minimum. By choosing the initial 

weights wisely, the learning can be started from a point closer to the error surface 

minimum and, therefore, the learning time may be reduced [25J. 

Learning With an Adaptive Learning Rate: As mentioned earlier, there 

are no criteria for choosing the learning rate, TJ. Choosing TJ too small will increase 

learning time considerably, whereas choosing it too large may cause the net to jump 

over, or miss, the error surface minimum. 

An alternative is using an adaptive learning rate. In this method, the learning 

rate is constantly changed according to the change in the error from one iteration 

to the next. If the new error is more than a predefined ratio (typically 1.04) times 

the previous error, the new weights, output values, and errors are discarded, and the 

learning rate is decreased by a predefined factor (typically 0.7). The learning then 

continues with the previous weights, error values, and node values. If the new error is 

less than the predefined ratio times the previous error, the learning rate is increased, 

again by a predefined factor (usually 1.2) [25J. 

As a summary, backpropagation with multilayer perceptron can be used for 

pattern recognition, function approximation, and pattern classification. However, 

optimum network structure is not predefined for a specific problem. Usually a two 

layer network (one hidden layer) can create any decision boundary provided that it 

has enough nodes. Different results can be obtained from one learning session to 

the other, but generally the performance of the backpropagation algorithm can be 
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improved by using the momentum term, adaptive learning rate, and carefully chosen 

initial weight values. 

Frequently, this powerful algorithm cannot be used because the correct classes 

of patterns may not be available. In this case a supervised learning can not be 

performed. However, unsupervised learning rules can be used for these types of pat

terns. One major difference between supervised and unsupervised learning is that 

supervised learning can be used for classification, whereas unsupervised learning can 

be used for clustering. In the present study on evoked potentials, the correct classes 

were not available until the final stages of the study, and therefore, an unsupervised 

clustering algorithm was first used to cluster the signals. The next section will de

scribe one of the most commonly used clustering algorithms which was also used in 

this study. 

5.6 Unsupervised Learning and K-means Algorithm 

Unsupervised learning algorithms are used in pattern recognition applications 

when training data of known classes are not available. A conventional clustering 

algorithm, namely the k-means clustering algorithm, was used in this study. 

One of the most popular network architectures for unsupervised learning is the 

Kohonen net and Kohonen learning rule [26], [27]. The Kohonen net forms a self 

organizing feature map where each input vector is mapped into a cluster center. The 

main idea in self organizing feature maps and clustering algorithms is to transform 

the data from a high dimensional pattern into a lower dimensional feature space. 

The Kohonen network architecture and the learning rule are discussed in detail in 

[19] and [27]. The k-means algorithm is a special case of the Kohonen network [19]. 
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Every N samples long signal is considered as a point in N-dimensional space or, 

equivalently, as an N dimensional vector. In unsupervised learning, output data is 

arranged in clusters based on a similarity measure. The cluster is characterized by 

its cluster center which is also an N dimensional vector. Originally, the clusters that 

represent the data are not known, but the number of clusters is usually known. 

There are many similarity measures, such as Euclidean distance, Mahalanobis 

distance, and angular measure of similarity [28J. Euclidean distance is used most 

often. The Euclidean distance between two vectors A = {aI, a2, ... , aN} and B = 

D(A,B) - II A - B II 

(5.13) 

and Mahalanobis distance between vectors A = {at, a2, ... , aN} and m = {mt, m2, ... , mN} 

is defined as: 

D = (A - m)'C-I(A - m) (5.14) 

where A is a pattern vector, m is the mean of the pattern vector A, and C is the 

covariance matrix of a pattern population. 

A measure of similarity itself is not sufficient to describe a clustering algorithm. 

A clustering criterion is also required. This can be a heuristic scheme or based on 

the minimization (or maximization) of a performance index. The performance index 

(as used by the k-means algorithm) is the sum of squared errors, defined as [28] 
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Nc 

J = L L II x - mj 112 (5.15) 
j=l XESj 

where J is the performance index, Nc is the number of clusters, x is the input pattern 

(a vector), mj is the sample mean (a vector) of Sj (the set of input patterns clustered 

into the cluster j, j = 1,2, ... , Nc at the current iteration), 

1 
mj = - L x (5.16) 

N j xES} 

where N j is the number of input patterns clustered into the cluster j at the current 

iteration. The index J is the sum of squared errors between the patterns in a cluster 

and their corresponding mean. The following is the step by step k-means algorithm 

(adopted from (28]). 

5.6.1 K-Means Clustering Algorithm 

The k-means algorithm clusters signals according to the distance between the 

signals and corresponding cluster centers to minimize the performance index (sum of 

squared error between the patterns in a class and the cluster centers). Initially, Nc 

number of cluster centers are randomly chosen. Usually, the first Nc signals are taken 

as the initial cluster centers. Then, the Euclidean distance between each signal and 

each cluster center is calculated. Every signal is clustered into the nearest cluster 

whose cluster center was chosen as the first Nc signals. This separates the data into 

Nc initial classes, Sj(t), for j = 1,2, ... , Nc , where Sj(t) represents the set of signals 

clustered into the ph class, and t is the iteration index. 

Then new cluster centers are computed at the (t + 1)th iteration such that the 

performance index is minimized. The cluster center that minimizes this error is the 
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mean of Sj(t), mj . The number of patterns clustered into a specific cluster changes 

throughout the process but stays constant when the cluster centers remain unchanged 

from one iteration to the next. The iteration terminates when the cluster centers 

remain unchanged. The k-means algorithm is guaranteed to converge as shown in 

[29], [30]. 

1. Ne initial cluster centers, zl(I),z2(1)"",z3(1), are chosen as the first Ne pat-

terns from the input set. 

2. Distribute the signals into Ne number of classes according to the Euclidean 

distance between signals and cluster centers. 

x E SAt) if II x - Zj(t) 11<11 x - Zi(t) II (5.17) 

for all i, j = 1,2, ... , Ne , i -:I j. x is the input pattern and Zj( t) is the ph cluster 

center at the tth iteration. 

3. The new cluster centers, zAt + 1), for all the j = 1,2, ... , Ne classes are 

computed such that the squared distances from all of the points in signals in SAt) 

to the new cluster center are minimized. This corresponds to the new cluster center 

which minimizes the performance index given in Equation (5.15). It can be shown 

that the new cluster center, Zj(t + 1), that will minimize Jj is the mean of Sj(t). 

Therefore, the new cluster center is 

1 
Zj(t+ 1) = 7\f I: x j = 1,2, ... ,Ne 

1 j XESj 

(5.18) 

where Nj is, as in Equation (5.16), the number of patterns in cluster j at the current 

iteration t. 
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4. The iteration is continued from step 2 until the cluster center at t + 1 is equal 

to the cluster center at t, i.e., Zj(t + 1) = Zj(t). 

The performance of the k-means clustering algorithm depends on the initial 

choice of the cluster centers, number of cluster centers, and the order in which the 

input patterns are presented. The k-means algorithm has been used for over 30 years 

because of its simplicity and generally good performance. 
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CHAPTER 6. ELECTROENCEPHALOGRAPHY,EVOKED 

POTENTIALS AND ALZHEIMER'S DISEASE 

.. .feeble currents of varying direction pass through the multiplier when the elec

trodes are placed on two points of the external surface, or one electrode on the grey 

matter, and one on the surface of the skull. 

Caton, 1877 

6.1 Electroencephalography 

The above sentence originally appeared in the British Medical Journal in 1877, 

after Caton's experiments on more than 40 rabbits, cats, and monkeys, and it is 

regarded as an indication of the birth of the electroencephalography, the study of 

the electrical activity of the brain. The human electroencephalogram was discovered 

by Hans Berger in early the 1920's. However, the major increase in interest in the 

electroencephalogram (EEG) signals have occured in the last 30 years. It parallels 

the increase in interest in signal processing [31]. 

EEG signals have been used in many clinical applications to diagnose neurologi

cal disorders. In this study, EEG signals were used to detect a well-known dementia, 

Alzheimer's disease. This chapter will give basic background information on how 

EEG signals have been used in diagnosing dementias. Readers interested in other 
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aspects of electroencephalography are referred to [31]. 

In recording the EEG signals, the international 10-20 system is used for electrode 

placement. Ten pair of electrodes are placed on the cranium and named according 

to their positions with a letter and a number. The letter, usually P, F, C, T, or 

o represents an area of the brain, namely, parietal, frontal, central, temporal, and 

occipital, respectively. The number represents the relative position of the electrode 

in that area. Odd numbered electrodes are placed on the left, and even numbered 

electrodes are placed on the right. The midline electrodes are numbered zero, and 

the numbers increase from left to right for even numbered electrodes, and from right 

to left for odd numbered electrodes. The standard international 10-20 system is 

illustrated in Figure 6.1 . 

Figure 6.1: International 10-20 electrode placement system 
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6.1.1 The Evoked Potentials 

Evoked potentials is a generic term given to that part of the EEG which occurs 

in response to a certain stimulus. The stimulus can be auditory, visual, or electrical. 

For example, if one hears a short beep, an evoked potential will be generated in the 

EEG in response to that beep. 

Evoked potentials are usually separated into two categories as stimulus-related 

and event-related (ERP) potentials. The stimulus related evoked potentials are gen

erated when an external stimulus (e.g., auditory or visual) is perceived by the indi

vidual, and event-related evoked potentials are generated when the individual delib

erately responds to a stimulus. For example, pressing the fire button on a video game 

when an enemy plane appears on the screen generates an event-related potential. 

Event-related potentials have been used for several years in diagnosing demen

tia, a condition of deteriorated mentality. Dementia is a syndrome that consists of 

a decline in cognitive and intellectual abilities occuring in an awake and alert pa

tient. The decline is severe enough to interfere significantly with work, usual social 

activities, or relationships with others (American Psychiatric Association, 1987, as 

cited in [31]). Dementia is a general name for a group of diseases which affect the 

patient's ability to remember, think, and make judgments. The dementias include 

Alzheimer's disease, Pick's disease, Parkinson's disease, Huntington's disease, and 

number of others. Dementias are seen frequently in elderly people. 

The effect of dementia on the EEG was first studied by Goodin et al. [32] in 

1978. They demonstrated that the dementias have a distinct effect on the P300 

component of the event-related potential. 
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6.2 The P300 Component of the Event-Related Potentials 

One of the most 'videly and popularly known components of event-related po

tentials is a positive peak occuring at a latency of approximately 300 ms to 500 ms. 

The Positive peak at a latency of 300 ms is named the P300 or the P3 component of 

the ERP. The P300 component is generated when an individual is asked to discrim

inate a less frequently occuring stimulus from a more frequently occuring stimulus 

in a series of stimuli involving both. The P300 is, therefore, considered a cognitive 

ERP. The oddball paradigm is a simple experiment that is used to record the P300 

component. 

In the oddball paradigm (as explained in detail later in this chapter), the subjects 

are asked to perform a simple task, such as tapping their right index finger, pushing 

a button, or counting every time they hear a high tone (2000 Hz) in a series of beeps 

with high and low tones (1000 Hz). 

Many studies have showed that this experiment can be used to distinguish pa

tients with dementias from patients with other neurological diseases [32], [34]. Many 

other studies considered the effects of different aspects of this experiment on the P300 

component [33], [35], [36], [37], [38], [39]. These aspects included the intensity of the 

stimuli, the interval between the stimuli, and the probability of occurrence of the two 

sets of stimuli. 

Studies have shown that the latency and the amplitude of the P300 component 

are subject to change due to age and the existence of dementia. As cited in [31], 

Fabiani et al. [40], Noldy et al. [41], Paller et al. and [42] showed that the P300 

amplitude increases with better memory performance. It has also been shown that 

there is a close relationship between the information provided by the stimulus and the 
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amplitude of the P300. This is related to how often the target stimulus occurs. As 

discussed later in this chapter, if the frequency of occurrence of the target stimulus 

decreases, the amplitude of the P300 increases. This is related to a well known rule 

of the probability theory which states that a less likely event has more information. 

Another parameter that affects the amplitude is the interstimulus interval. Gen

erally speaking, the amplitude of the P300 component increases when the interval 

between the stimuli increases [39]. These findings suggest that whenever attentional 

resources are required to recognize a stimulus that is different from other stimuli, an 

ERP (P300) occurs at a latency of 300 ms to 500 ms. 

Another important parameter of the P300 is the exact latency of the peak, i.e., 

how long after the stimulus is given does the response occurs. Generally speaking, 

shorter P300 latencies indicate better mental performance. Therefore, the P300 la

tency is related both to age and existence of a dementia. This relationship is shown 

in Figure 6.2, where the age versus P300 latency is given for normal subjects, pa

tients with neurological diseases, both dementias and non-dementias, and psychiatric 

patients. 

It should be noted at this time that although a strong relationship has been 

found between mental performance and the P300 component, large variations in 

latency and amplitude have been reported for different experiments. Therefore, a 

generalization regarding the relationship between the amplitude and latency of the 

P300 and the mental performance of an individual can not be made. This variation 

in the amplitude and latency is interpreted [31] as: "Variation in the P300 amplitude 

can be considered as a consequence of attentional resource allocation, and variations 

in latency can be considered as a consequence of the speed with which those resources 
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Figure 6.2: Relationship between the age and the P300 latency for different groups 
of patients (from [43] as cited in (311). 

can be allocated when immediate memory is updated." 

It should also be noted that the variations in the P3DD components of normal 

people are large enough to prevent generalizing the relationship between the P3DD 

and mental abilities. Furthermore, there are a number of variables that affect an 

individual's P3DD measurements. These include body temperature, age, recency of 

food intake, season of the year, personality of the individual, etc. Therefore, the 

subjects chosen for the experiment should have similar internal (age, food intake, 

body temperature) and external (season of the year, time of the day) conditions. 



134 

The specific effects of these variables can be found in [31]. 

6.3 The Oddball Paradigm 

The most prominent experiment for detection of the P300 component of the ERP 

is the oddball paradigm experiment. The subject is asked to respond to a target tone 

of 2000 Hz, the oddball tone, which occurs relatively infrequently compared to the non

target tone of 1000 Hz, the regular tone. Although auditory stimuli are usually used 

to generate the P300, other stimuli can be used. Auditory stimuli have been found to 

be advantageous since they are easy to produce and do not cause an electrooculogram 

(EOG) artifact. 

Four major peaks are observed in the ERP: N1, P2, N2 and P3. N1 is a negative 

peak that occurs approximately 100 ms after the stimulus. P2 is a positive peak that 

occurs at a latency of approximately 200 ms. N2 is a negative peak that occurs at a 

latency of approximately 200 ms, and finally, P3 is the positive peak that occurs at a 

latency of approximately 300 ms. Typical ERPs generated by the oddball tone and 

by the regular tone are plotted in Figure 6.3. Note that N1, PI, and N2 are present 

in both ERPs, but P300 is only present in response to the oddball tone. The axis 

below the ERPs shows the stimulus type; S being the standard (regular) tone and T 

being the target ( oddball) tone. 

As mentioned earlier, there are a number of parameters that affect the ERPs 

formed by the oddball paradigm experiment. The frequency of the tones, frequency 

of occurrence of the tones, duration and intensity of the tones, and interstimulus 

interval are the parameters related to the stimulus. There are also other factors such 

as the electroencephalograph used for recordings, the task that the subject was told 
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Figure 6.3: ERPs in respond to the standard( regular) and target (oddball) tones 
from [31J 

to perform, etc. There is not a set of parameters that are internationally agreed on, 

but the parameters given in table 6.1 are commonly used [31J. 

The specifications given in Table 6.1 have been chosen to give the most robust 

P300 components. The tone frequencies are chosen as 1 and 2 kHz since these are 

frequencies generated by human speech and they are easy to perceive. The proba

bilities of 20% target tone and 80% non-target tone are chosen to generate a high 

amplitude P300. The intensity, duration, and rise/fall times were also determined to 

be the optimum values after many experiments. 

It is recommended that the subjects sit in a comfortable position 50 they can 

concentrate on the task. The eyes should be closed to prevent the artifacts of the 

EOG. The task can be any of number of tasks, but finger tap/button press have 
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Table 6.1: Typical parameters for the oddball experiment 

II Parameter Typical Value II 
Stimulus factors 

Tone frequency 2000 Hz. at 20% (target) 
1000 Hz. at 80% (standard) 

Rise/fall 10 ms. 
Duration 50 ms. 
Intensity 60 dB 

Interstimulus interval 2 s. 

Subject and task 

Position Seated 
Eyes Closed 
Task Finger tap/button press 

Electrophysiological recording 

Electrodes Fz, Cz, Pz, EOG 
Reference Al/A2 
Ground Forehead 

Bandpass 0.01-0.5 to 30 Hz. 
Epoch Length 750 ms. 

Artificial rejection ±100 Ji V 
Target trials in average 20 (or more) 

Replications 2 Blocks of 20 trials 
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been found to be most efficient. In the original experiment in 1978, Goodin asked 

his patients to count the number of the target tones [32], but today this is not 

recommended because patients with dementia may get confused and cannot perform 

the task. 

The Fz, Cz, and pz electrodes are usually used to capture the P300, and all of 

them should be used for correct identification. This is especially important for elderly 

people for whom the amplitude of the peak may not be adequate to be noticed from 

one electrode only. Monopolar active electrodes with reference to All A2 (earlobes 

or mastoids) are recommended. 

One of the key parameters in capturing the P300 components is the bandpass 

filter used. The P300 has relatively low frequency components, around 3 Hz. Normal 

EEG signals can have frequency components from 0.01 Hz to 100 Hz, and therefore, 

the bandpass filter should pass at least the 0.01 Hz-30 Hz band. 

The recommended recording time (epoch) per session (per beep) is 750 ms since 

this should be long enough to capture any P300 latency. 

Artifacts constitute a major problem in EEG recordings. They should be re

moved prior to processing the data. For all practical purposes, any signal with an 

amplitude over ±100 microvolts is assumed to be an artifact, and therefore, it should 

be automatically rejected. 

The P300 component of the ERPs can not be seen without averaging. Therefore, 

at least 20 artifact-free trials should be recorded and averaged for a stable P300 

component. 

Under the above conditions, the P300 should not be very difficult to identify 

since it is the largest component of the ERPs. However, since the amplitude of the 
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peaks decreases considerably for elderly people, it can be difficult to identify. For the 

three main electrode combinations given, the amplitude of the P300 tends to increase 

from the front to the back of the scalp; therefore, the P300 with the largest amplitude 

is usually the one captured by the pz electrode (Figure 6.4). 

In summary, the largest positive going peak occuring after the Nl, PI, and N2 

from the target stimulus, and increasing in amplitude from the frontal to the parietal 

part of the brain is considered to be the P300 component of the event-related potential 

[31] . 

Figure 6.4 shows typical P300 recordings from normal patients and Alzheimer's 

disease patients for each of the Pz, Cz, and Fz electrode combinations. Note that the 

plots are grand averages of many patients' P300 components. 

The left column of plots shows the responses to the oddball tones, and the right 

column of plots shows the responses to the regular tone. The solid lines represent the 

normal patients' responses, and the dashed lines represent the Alzheimer's disease 

patients'responses. Note that the P300 peak has a considerably lower amplitude and 

longer latency for Alzheimer's disease patients compared to the normal patients. 

Figures 6.5 - 6.8 show some of the signals used in this study. The detailed 

discussion of the experiment and the results obtained are presented in Chapter 7. 

The time axis is normalized, and the entire axis corresponds to approximately 1 

second. The original signals contained 750 samples, sampled at 600 Hz, and they are 

truncated to remove the prestimulus artifacts. All the figures correspond to the grand 

average of a session for that particular patient. Usually 40-50 ERPs are averaged for 

each patient for every channel. In this study signals acquired from the pz and Fz 

electrodes are used. Figures 6.5 to 6.8 are obtained by averaging the signals from the 
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Figure 6.4: Typical P300 responses of normal and Alzheimer's patients to the odd
ball paradigm experiment (from [44] as cited in [31]). 

pz electrode (since amplitudes are higher in the signals acquired from this electrode) 

for two patients (one with Alzheimer's disease and one normal). 

Figure 6.5 shows the event-related potential recorded from an elderly normal 

individual. The ERP in this figure is in response to an oddball tone, and the Nl, P2, 

N2, and P3 components can be clearly observed. 

Figure 6.6 is an example of an ERP recorded from an Alzheimer's disease patient 

in response to an oddball tone. All the components, including the P300 (marked as 

P3), are clearly visible. Also note that the latency of the P300 component is larger 
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Figure 6.5: An ERP recorded from an elderly normal patient In response to an 
oddball tone. 

for the patient with Alzheimer's disease, compared to the normal patient. However, 

it should be noted that ERPs are not always as obvious as they are in Figures 6.5 

and 6.6. (Compare the complete set of ERPs given in Appendix A.) 

Figure 6.7 is an example of an ERP recorded from an elderly normal person in 

response to a regular tone. As mentioned earlier in this chapter, one of the char

acteristic properties of the P300 component of the event-related potentials is that 

it can only be seen in the ERPs recorded in response to a less frequently occuring 

target stimulus. In the experiment from which these signals were acquired, 80 % of 

the tones were regular tones; only 20 % of them were target (oddball) tones. As 
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Figure 6.6: An ERP recorded from an Alzheimer's disease patient in response to an 
oddball tone. 

expected, Nl, P2, and N2 components are clear, but the P300 component can not be 

seen. 

Finally, Figure 6.8 is the ERP from an Alzheimer's disease patient in response 

to a regular tone. As in the previous figure, the P300 component can not be seen in 

the figure, but all the other, Nl, P2, and N2, components can be clearly observed. 

6.4 Electroencephalography and Dementia 

As defined earlier in this chapter, dementi as are a group of diseases in which 

the patients lose their cognitive and intellectual abilities. EEG signals are used 
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Figure 6.7: An ERP recorded from an elderly normal patient in response to a regular 
tone. 

to distinguish the dementi as from other neurological disorders, such as psychiatric 

abnormalities. Harner, as cited in [31], noticed that the EEG patterns show significant 

abnormalities for the treatable neurological disorders, whereas they show only slight 

abnormalities for the non-treatable dementias. Therefore, EEG signals are usually 

suggested to give a clue about the individual's mental state, rather than diagnosing 

any abnormalities. 

Dementias are generally classified into two main groups, cortical and subcortical 

dementia. Alzheimer's disease, Pick's disease, Creutzfeldt-Jakob disease are exam-

pIes of cortical dementia, where as Parkinson's disease and Huntington's disease are 
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Figure 6.8: An ERP recorded from an Alzheimer's disease patient in response to a 
regular tone. 

examples of subcortical dementia. The following section is devoted to general char-

acteristics of Alzheimer's disease. 

6.4.1 Alzheimer's Disease 

Alzheimer's disease is the most common cortical dementia. The first symp

toms usually appear at 50-60 years of age. Today, there are approximately 2 million 

Alzheimer's disease patients, and 100,000 Alzheimer's disease patients die every year 

in the United States (451. 

Alzheimer's disease causes a gradual deterioration of the mental abilities, includ-
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ing losing memory and losing verbal and reading skills. In its early stages, it causes 

moodiness, depression, and lack of energy, and, unfortunately, these symptoms are 

usually ignored. However, as the disease progresses, the patient starts losing first 

the short term memory, then the mid-term memory, and, eventually, the long-term 

memory. This makes him/her totally dependent on others. Patients in late stages 

of the disease forget how to perform basic tasks, forget their home addresses, and 

eventually forget even their own names. 

Patients with Alzheimer's disease lose a significant number of neurons especially 

from the frontal and temporal lobes, and this loss is suspected to be related to the 

inadequate production of acetlylcholine, a neurotransmitter in the nucleus basalis (a 

cerebral nucleus which plays an uncertain role in memory storage and retrieval) of 

the cerebrum. 

Worst of all, Alzheimer's disease can not be 100% diagnosed unless the patient 

has died because the disease is characterized by the unusually large concentrations of 

plaques and neurofibrillary tangles in the nucleus basalis and other related portions 

of the brain. This can only be detected with an autopsy. In addition to plaques and 

tangles, an unusual protein, called Alzheimer's disease associated protein (ADAP), 

also appears in the memory related portions of the brain. Fortunately, this protein 

also appears, in small amounts, in the cerebrospinal fluid of many Alzheimer's disease 

patients, and therefore, a blood screening test may be available to detect this condi

tion in the near future [45]. Unfortunately, there is currently no cure for Alzheimer's 

disease. 

There has been number of books written on different aspects of Alzheimer's 

disease, including the recent developments in the research and the social consequences 
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of the disease. Barry Reisenberg [46] and Ezio Giacoboni with Robert Becker [47] 

edited a number of papers on the current research in Alzheimer's Disease. Bick et 

al. [48] edited other papers discussing the early history of Alzheimer's disease. This 

includes a short preface by Alois Alzheimer. Powell [49J and Light and Lebowitz [50] 

have recently authored books discussing the social consequences of the Alzheimer's 

disease. 

6.5 Summary 

In this chapter some background information on the use of electroencephalogra

phy in diagnosing dementias is given. It was shown that the P300 component of the 

event-related potential from an oddball paradigm experiment can be useful in the 

diagnosis of cognitive disorders, especially Alzheimer's disease. 

The potential to use the EEG for diagnosis have mostly been based on visual 

analysis of the signals by the neurologists. Recently, researchers have studied the 

spectral properties of the ERPs of demented patients, and their findings have been 

consistent with the visual analysis of the neurologists. Many references using spectral 

analysis are cited [31]. 

A number of studies showed that the amplitude and the latency of the P300 

component are related to the cognitive abilities of the individuals. Therefore, a 

spectral analysis technique may not be adequate since the information that is being 

searched for might be hidden in the frequency, amplitude, or latency. Therefore, the 

feasibility of using a time-frequency analysis technique for diagnosing Alzheimer's 

disease was proposed. The next chapter will explain the procedure of the experiment, 

the analysis techniques used for feature extraction, and the classification results. 
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CHAPTER 7. RESULTS AND DISCUSSION 

In the previous chapters, the major issues related to this study were discussed. 

The ultimate objective of this study was the development of a neural network for the 

classification of the event-related potentials, preprocessed using a wavelet transform 

based technique for feature extraction. 

This chapter describes the overall implementation procedure including the data 

acquisition, the preprocessing techniques, the neural network and clustering algo

rithms used, the problems encountered, and finally, the results of the implementation. 

7.1 Obtaining the Data 

In response to a request on Internet for normal and abnormal EEGs in an elec

tronic format, the data used in this study were released to us by scientists at the 

Georgia Institute of Technology Research Institute and Emory University School 

of Medicine. These data were collected from patients with and patients without 

Alzheimer's disease for use in the spectral analysis of event-related potentials. 



147 

7.2 Data Acquisition 

7.2.1 Background and Summary 

The goal of the original study was to develop a method for distinguishing subjects 

with Alzheimer's Disease from those without the disease through the analysis of EEG 

evoked potential data, neuropsychological measures, or through reaction time data. 

The primary emphasis was directed toward the analysis of EEG data. The analyses in 

the study were performed on EEG data obtained from 30 subjects, 15 of whom were 

known to have Alzheimer's Disease (AD), and the remaining (control) subjects were 

known to be free from the disease. Four EEG analysis methods, all frequency-based, 

have been used at Georgia Institute of Technology Research Institute, namely, power 

spectral density estimation, cross-spectral density estimation, coherence estimation 

and bispectral analysis. Subject testing and data acquisition and the statistical 

analysis of the results were performed by researchers at Emory University. Of these 

30 records only 28 sets of signals, 14 from Alzheimer's patients and 14 from normal 

control patients, were used and the other two subjects' data were discarded. 

7.2.2 Experimental Setup and Methodology 

The EEG data were obtained from auditory oddball tests in which subjects 

listened to a sequence of tones. The sequence consisted of 200 millisecond beeps 

repeating at a 1.5 second interval. The non-target tones were 1 kHz, and the target 

(oddball) tones were 2 kHz. The subjects reacted by pressing a button when they 

heard the target tone. Eighty percent of the beeps were regular tones, and the 

remaining 20% were oddball tones. 
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EEG recording began 0.25 seconds before each tone occurred and ended one 

second after the tone started. The sampling rate for the data collection was 600 Hz, 

or one sample for every 1.667 milliseconds. 

For all experiments, data were recorded from the frontal and parietal locations, 

and, in a few sessions, central data were also captured. After sampling, the data were 

hand-scored by a neuropsychologist, and the artifactual trials were removed. [51] 

7.3 Preprocessing 

7.3.1 Removing the Prestimulus 

All of the programs used for this study were written for MATLAB, and all the 

programs were run using MATLAB. The reason for choosing MATLAB was its high 

efficiency in manipulating large amounts of data in matrix operations. Also many 

built-in functions were utilized in the programs, especially for the backpropagation 

algorithm. All source codes are included in appendices. 

The data consisted of 56 files, two files for each patient, corresponding to the 

responses to the oddball tones and responses to the regular tones. Each data file was 

in matrix format with 8 columns and 32000-45000 rows. (All total row numbers were 

divisible by 750, suggesting that individual responses to every beep, each consisting of 

750 samples, 1250 ms at 600 Hz, were concatenated.) Therefore, each file contained 

approximately 40 to 64 responses. Each column corresponded to a different lead 

combination. As suggested in the Chapter 6, two of these electrodes were of particular 

interest, namely, the pz and Fz electrodes. 

First, these columns are separated from the rest of the matrix for further prepro

cessing. The first 150 of the 750 samples were removed since this part corresponds 
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to the prestimulus. The mean of the prestimulus was removed from the rest of the 

data to remove the presitimulus artifacts. 

7.3.2 Averaging 

Recall the original proposal was to analyze the signal usmg the continuous 

wavelet transform and the discrete wavelet transform. The codes for all of these 

transformations were written in advance and were ready before the data were re

ceived. However, the correct classification of the signals was not received with the 

data. The approach used consisted of obtaining the continuous wavelet transform 

of the waveform followed by attempting visual pattern recognition. The continuous 

wavelet transform provides a two dimensional time-frequency (or time-scale) repre

sentation of the signals. It was expected that a pattern would be found in 14 of the 

transforms that was significantly different from that in the other 14. 

The continuous wavelet transform is very dense (redundant), and therefore, takes 

a relatively long time to compute. The removal of the prestimulus reduced the data 

size by 20%, but it was still too large for processing. The continuous wavelet trans

form program has the capability of computing the transform at as many frequency 

(or scale) values as desired. Using trial and error procedures it was decided to com

pute the transform at around 80 frequency points. This requires the transform to be 

computed at 80x35000 to 80x45000 points. 

The discrete wavelet transform is much faster and can easily handle this amount 

of data, since it is a one to one transform. However, for an efficient discrete wavelet 

transform, the signal length needs to be a power of two, or at least a multiple of 

a power of two. N one of the data files had a length equal to a power of two (or a 
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multiple of it). 

It was then decided to average the signals before transforming them. The av

eraging was performed on all 56 files, reducing every file length to 600 samples, a 

manageable size for any transformation technique. After the averaging, the P300 

components in most of the responses to the oddball tones were apparent. Averaged 

evoked potentials for every patient are given in Appendix A, where four plots are 

given for each patient. Two of these plots are the pz and Fz electrode recordings in 

response to the oddball tone, and the other two are the same recordings in response 

to the regular tone. 

7.4 Transforming The Data: Feature Extraction 

7.4.1 Continuous Wavelet Transform 

The continuous wavelet transforms of each data file was then computed at 80 

frequency points. This number was decided by trial and error. The transforms for 

two patients are shown in Figures 7.1 - 7.4. The complete set of continuous wavelet 

transforms on signals in the database is given in Appendix B. 

The time and frequency axes of the plots are normalized. The beginning of 

the frequency axis marked zero does not necessarily represent the DC value, but 

it simply represents the lowest frequency analyzed in that particular computation. 

Furthermore, the first five or so frequencies were eliminated from the plots since 

they did not contain any relevant information. The time axis corresponds to the 

translation of the wavelet function along the signal. Recall that the preprocessed 

data had 600 samples. The continuous wavelet transform was computed by shifting 

the wavelet function by steps of 5 samples (T = 5) resulting in 120 samples along the 
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Figure 7.1: CWT of an ERP of an elderly normal person, oddball tone 

time axis. A more dense computation was also performed, but it did not provide any 

additional information. Hence to reduce the computational effort, a value of T = 5 

was used. 

Figure 7.1 is the continuous wavelet transform of an ERP of an elderly normal 

person's response to an oddball tone. The first thing that is observed in the plot is 

the relatively high peak at low frequencies and at time t ::::: 40. Also note that no 

significant information is present at high frequencies. 

Figure 7.2 is the continuous wavelet transform of the same patient's response to 

a regular tone. Note that the peak that occured at low frequencies and time t ::::: 40 in 

the previous case did not appear in the response to regular tone. It is also observed 

from this plot that the major information lies in the lower frequencies. 
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Figure 7.2: CWT of an elderly normal person, regular tone 

Figure 7.3 is the continuous wavelet transform of the ERP recorded from an 

Alzheimer's disease patient in response to an oddball tone. The large peak at lower 

frequencies can be observed. Note, however, that this peak occurs at a later time, 

t ~ 100, relative to the normal patient. This may be due to the higher latency of the 

P300 component of the ERP from the Alzheimer's disease patient compared to the 

P300 component of the ERP from the normal patient. 

Finally, Figure 7.4 shows the continuous wavelet transform of the ERP recorded 

from the same patient with Alzheimer's disease in response to a regular tone. Note 

that the large peak did not appear in this plot. The relatively large peak that is seen 

at lower frequencies and at time t ~ 120 is not distinguishing information since a 

similar peak can also be seen in Figure 7.2 which corresponds to the transform of the 
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Figure 7.3: CWT of an ERP of an Alzheimer's disease patient, oddball tone 

ERP of a normal patient. 

From the above observations it might be concluded that the continuous wavelet 

transform may show a pattern that is significantly different for the ERPs recorded 

from normal patients and Alzheimer's disease patients. However, not all of the trans

formed signals showed a similar distinct difference between normal and diseased pa

tients. For complete comparison of the continuous wavelet transformed signals, please 

refer to Appendix B. Correct classification of the transformed signals by visually an

alyzing these plots was not possible, particularly when the classification information 

of the signals was not known. 
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Figure 7.4: CWT of an ERP of an Alzheimer's disease patient, regular tone 

7.4.2 Discrete Wavelet Transform 

For a computerized classification of the signals by a neural network, training 

data, for which the correct classes are known, is needed. However, as described 

in Chapter 5, there are some clustering algorithms which separate the signals into 

different classes according to a similarity measure. The continuous wavelet transform 

is not suitable for a neural network classification or clustering since it has redundant 

information. For neural network classification (or clustering), the data should be 

as concise as possible. This can be accomplished using a suitable transformation 

technique to extract the relevant features from the raw data. 

Supervised and unsupervised classifications were performed on the discrete wavelet 

transform data. The discrete wavelet transform was taken at 640 points, after the 



155 

signal was augmented by the first 40 samples to increase the signal length to 640, a 

multiple of a power of two. 

The discrete wavelet transform was used in the augmented signal format (see 

Chapter 4), in which the entire time domain signal at different frequency bands was 

concatenated. Since the interpretation of the discrete wavelet transform in augmented 

format is especially difficult a visual pattern recognition cannot be performed. How

ever, this format of the discrete wavelet transformed signal is particularly suitable for 

use with clustering algorithms and neural networks. Therefore, this signal was input 

to the k-means clustering algorithm and into a multilayer perceptron (see Chapter 

5). Two examples are given in Figures 4.5 and 4.6. Figure 4.5 is the discrete wavelet 

transforms of the four signals from an Alzheimer's disease patient, and Figure 4.6 

shows the transforms of the signals from a normal patient. Note that discriminating 

information is not readily obvious. The neural network however is capable of finding 

the discriminating information between these signals. The complete set of discrete 

wavelet transform signals is given in Appendix C. 

7.5 Unsupervised Clustering with K-Means Clustering Algorithm 

Since the signal was oversampled at 600 Hz, the data length was reduced to 50 

samples by taking the first 50 samples of the discrete wavelet transform. The 50 

sample long signals were then clustered by the k-means algorithm into two classes. 

The clustering procedure was implemented on all four sets of signals per patient. 

Only the signals from electrode pz were clustered into two even classes of 14 signals 

each. At that time the correct classification was still unknown, and therefore, the 

performance of the clustering algorithm was also unknown. 
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The original, non-transformed, averaged signals were also used with this cluster

ing algorithm. A similar data reduction was performed for the original (time-domain) 

signals by decimating and taking every twelfth sample. Thus, 50 samples of the time 

domain signal were input to the k-means algorithm. Interestingly, transformed and 

original signals were clustered exactly the same for every set of signals. This suggested 

that the discrete wavelet transform did not provide any additional information. It 

should be noted, however, that the intercluster distance between the two clusters was 

larger for the transformed signals. This can mean that transformed signals are some

what better separated than the non-transformed signals, which would be of significant 

value for larger data bases with larger intercluster variance. 

The correct classes of the signals were obtained after the completion of this 

unsupervised clustering. As expected, the responses to the oddball tones recorded 

from thePz electrode gave the best classification performance. Table 7.1 summarizes 

the results of the k-means clustering algorithm. As seen in Table 7.1, the k

means clustering algorithm performed at 71.42 % by classifying 20 of the 28 signals 

correctly. The clustering algorithm classified the signals as belonging to class1 or 

class2 which were mapped to Alzheimer's disease and normal. Considering that it 

was a completely blind experiment, the 71.42% performance was considered to be 

very promlsmg. 

7.6 Supervised Learning with MLP / Backpropagation 

A multilayer perceptron neural network was trained with the supervised back

propagation learning rule, in order to improve the classification. As discussed in 

Chapter 5, multilayer perceptrons are theoretically able to generate complex decision 
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Table 7.1: Results of the K-means clustering algorithm 

Patient ID Class Classified As Correctly Classified? 

s048al ALZHEIMER'S ALZHEIMER'S YES 
s049al ALZHEIMER'S NORMAL NO 
s070al NORMAL NORMAL YES 
s072al ALZHEIMER'S ALZHEIMER'S YES 
s074al NORMAL ALZHEIMER'S NO 
s077al NORMAL NORMAL YES 
s080al NORMAL NORMAL YES 
s08lal NORMAL ALZHEIMER'S NO 
sll1al ALZHEIMER'S ALZHEIMER'S YES 
s115al ALZHEIMER'S ALZHEIMER'S YES 
s120al ALZHEIMER'S NORMAL NO 
s12lal NORMAL ALZHEIMER'S NO 
s124al NORMAL NORMAL YES 
s127al ALZHEIMER'S ALZHEIMER'S YES 
s129al ALZHEIMER'S ALZHEIMER'S YES 
s132al NORMAL NORMAL YES 
s133al NORMAL NORMAL YES 
s134al NORMAL NORMAL YES 
s144al NORMAL NORMAL YES 
s148al NORMAL NORMAL YES 
s149al ALZHEIMER'S NORMAL NO 
s224al NORMAL ALZHEIMER'S NO 
s236al NORMAL NORMAL YES 
s270al ALZHEIMER'S ALZHEIMER'S YES 
s271al ALZHEIMER'S ALZHEIMER'S YES 
s272al ALZHEIMER'S NORMAL NO 
s273al ALZHEIMER'S ALZHEIMER'S YES 
s276al ALZHEIMER'S ALZHEIMER'S YES 
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boundaries. However, their performance depends on many parameters, such as the 

number of nodes in the hidden layer(s), initial selection of the weights, selection of 

the learning rate, momentum term, etc. The performance of the MLP jBP is also de

pendent on the choice of the training data. Recall that a training data set is required 

with known correct classes for the MLP to learn. 

Half of the signals were chosen randomly (seven with Alzheimer's disease and 

seven normal) to train the multilayer perceptron. The remaining 14 signals were 

kept for testing and were not shown to the neural network. Many different multilayer 

perceptron architectures were tried with different parameters and different initial 

weight selections to get as close as possible to the perfect classification. 

7.6.1 Selection of the Training Data 

Fourteen training data pairs were randomly chosen from the 28 sets of discrete 

wavelet transform signals. As explained below, this initial selection of the training 

data classified 11 of the 14 signals correctly. Then the three misclassified signals were 

added to the training data, and three of the signals used earlier in the training data 

were moved to the test data base. After this replacement, all the weight values were 

initialized randomly to reset the network. Note that the net was not trained with 

an additional three signals, but three pairs of signals of the previous data set were 

replaced by another three pairs of signals. In effect, the net was trained with a better 

random set of fourteen pairs of signals. The second set of the training data enabled 

the network to generalize better than the first one. The final training data consisted 

of the signals shown in Table 7.2. 
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Table 7.2: Training data 

Patient ill Class 

s048al ALZHEIMER'S 
s049al ALZHEIMER'S 
s070al NORMAL 
s081al NORMAL 
s120al ALZHEIMER'S 
s124al NORMAL 
s129al ALZHEIMER'S 
s132al NORMAL 
s133al NORMAL 
s144al NORMAL 
s224al NORMAL 
s149al ALZHEIMER'S 
s270al ALZHEIMER'S 
s276al ALZHEIMER'S 

7.6.2 MLP /BP Parameters 

All MLP architectures used had one hidden layer. The length of the input vector 

was varied from 50 samples to 150 samples. The number of hidden nodes was varied 

from 10 to 50. For every different set of parameters, the network was trained at least 

twenty times (with different initial weight selections). 

Other parameters of the MLP /BP are given in Table 7.3. The meanings of the 

terms in Table 7.3 are explained in Chapter 5. The parameters given in Table 7.3 are 

the ones which gave the best performance. The program was run many times with 

different parameters to get the best performance. 
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Table 7.3: MLP /BP Parameters 

Parameter Value 

Error goal 0.01 
Initial learning rate 0.1 

Increase rate in learning rate 1.25 
Decrease rate in learning rate 0.6 

Momentum term 0.95 
Error ratio for variable learning rate 1.04 

Number of input nodes 150 
Number of hidden layers 1 

N umber of hidden layer nodes 30 
Number of output nodes 2 

Activation function logarithmic sigmoid 
N umber of signals in the training data 14 
N umber of signals in the testing data 14 

Correct classification % of the training data 100%{14/14) 
Correct classification % of the testing data 92.87% (13/14) 

Number of iterations for convergence 71 
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7.6.3 Performance of the MLP /BP 

In all cases the multilayer perceptron generally converged very quickly to a (pos

sibly local) minimum. When only 50 samples of the signal were used with 10 hidden 

layer nodes, the net had difficulty in converging. But even under these conditions, 

the net was able to classify 11 of the previously unseen 14 signals, a classification 

performance of 78.57%. 

The best performance was obtain when 150 samples of the transformed signal 

were used with 30 hidden layer nodes. However, the training data was also slightly 

changed. As explained above, the three incorrectly classified signals in the previ

ous experiment were replaced by three other signals. The ratio of 7 signals from 

Alzheimer's patients to 7 signals from normal people was kept. In this case the net 

classified 13 out of 14 of the previously unseen signals, a correct classification perfor

mance of 92.87%. The only signal that was misclassified was s270a1 which belonged 

to an Alzheimer's disease patient. 

As in the case of unsupervised learning, the multilayer perceptron was also 

trained with the non-transformed time domain data for comparison purposes. Unlike 

the k-means algorithm, the MLP /BP did not give similar results for both transformed 

and non-transformed signals. 

The non-transformed data were more likely to trap the network into a local 

minimum, since the net frequently failed to converge during training. When it did 

converge, the classification performance was usually poor compared to that obtained 

using the transformed signal. The typical average correct classification percentage for 

the non-transformed data was around 64.28% (usually 9/14), whereas for transformed 

data this average was 78.57% (usually 11/14). 
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7.7 Conclusion and Recommendation For Future Study 

In this study the wavelet transform based time-frequency representation methods 

were used to analyze the ERPs from patients with and without Alzheimer's disease. 

ERPs, or generally speaking EEGs, are highly non-stationary signals, and wavelet 

analysis is a suitable technique for processing such signals. 

Although the original time domain signal can be classified with reasonable ac

curacy, the initial results show that a wavelet transform based technique can further 

improve the classification of a supervised trained neural network. 

However, the number of patient responses available for this experiment is too 

small to make statistically valid generalizations. Future work on this topic must 

extend the analysis to a bigger database. Also a selected portion of the continuous 

wavelet transform could be interfaced with a neural network to allow it to be used 

for neural network classification purposes. 

It appears that a well trained neural network with an adequate number of signals 

might be useful for diagnosing Alzheimer's disease. As a matter fact, since discrete 

wavelet transform is particularly fast, this diagnosis could be done on-line. The result 

of the analysis could be made available while the patient is still connected to the EEG 

machine. Moreover, a well trained neural network could be implemented in hardware, 

and a small Alzheimer's Detector could be realized. Initial results of this study are 

found to be very promising, making further work in this area worth pursuing. 
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APPENDIX A. AVERAGED SIGNALS 

The event-related potentials recorded in response to oddball tones and regular 

tones from channels pz and Fz are given in this appendix for each patient. Each 

signal is averaged and the prestimulus is removed from all of them. The mean of 

the prestimulus, and the mean of the entire signal is subtracted from each signal. 

The time axes shows the index to the sample number. Every signal has 600 samples 

(after removing the first 150 samples corresponding to the prestimulus). The entire 

signal was 1250 ms with 750 samples. Removing the first 150 samples corresponds 

to removing the first 250 ms from the data. Therefore 600 samples on the time axis 

corresponds to 1 second of data, sampled at 600 Hz. 
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Figure A.18: Patient ID: 5134, Normal 
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Figure A.20: Patient ID: 5148, Normal 
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Figure A.23: Patient ID: 8236, Normal 
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Figure A.24: Patient ID: s270, Alzheimer's 
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s273,oddball,channeIPz 
300 ............ ; ............. : ........... . 

200 ..... . 

~ 100 .... . 
:::J 

:!:::: a. 0 .... 
E « 

tD 
"0 
:::J 

."t:: 

a. 

-100 .... 
· . 

-200 ............ ~ ............ : ............. . 

o 200 400 600 
Time 

s273, regular, channel pz 

· . . · . . 
100 ............ ; ............. ; ............. ; .. 

50 ......... -: ............ < .......... :-. 
· . . 

o ..... 

~ -50 .... 

-100 ... 

-150 ............... . 

o 200 400 600 
Time 

199 

tD 
"0 
:::J .-::: 
a. 
E 

s273,oddball,channeIFz 

· . 
400 ............ : ............ : ........... . 

-200 ........... -: .. . 

o 200 400 600 
Time 

s273, regular, channel Fz 
200 ............ ~ ............ : ............ .. 

· . . · . . · . . · . . 

« -100 .. 

-200 ..... . 

o 200 400 600 
Time 

Figure A.27: Patient ID: s273, Alzheimer's 
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Figure A.28: Patient ID: s276, Alzheimer's 
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APPENDIX B. CONTINUOUS WAVELET TRANSFORMS OF THE 

ERPs 

This appendix presents the 3-D plots of the continuous wavelet transforms of 

the four signals that are acquired from each patient, namely, responses to oddball 

and regular tones recorded from pz and Fz. The time-frequency representations are 

calculated at 80 frequency and 120 translation values. The TFRs corresponding to 

the first 5 frequency values are removed since they did not contain any information. 

The plots given in this appendix are the sampled versions of these TFRs. Every 

other frequency value and every third translation value ars shown it the plots. The 

transformed signals are sampled to reduce the printing time of these plots, and the 

original transformed signals are available from the aut hour. 
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Figure B.l: Patient ID: 5048, Alzheimer's 
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Figure B.3: Patient ID: s070, Normal 
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Figure B.6: Patient ID: 8077, Normal 
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Figure B.7: Patient ID: s080, Normal 
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Figure B.8: Patient ID: 5081, Normal 
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Figure B.12: Patient ID: 5121, Normal 
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Figure B.13: Patient ID: 8124, Normal 
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Figure B.19: Patient ID: sl44, Normal 
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Figure B.21: Patient ID: s149, Alzheimer's 
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Figure B.22: Patient ID: 5224, Normal 
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Figure B.23: Patient ID: 8236, Normal 
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Figure B.24: Patient ID: s270, Alzheimer's 
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Figure B.27: Patient ID: s273, Alzheimer's 
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APPENDIX C. DISCRETE WAVELET TRANSFORM SIGNALS 

The discrete wavelet transform of the signals as used by the k-means cluster

ing algorithm and the multilayer perceptron neural network are presented in this 

appendix. As in the previous appendices four plots are given for each patient corre

sponding to the two channels (pz and Fz) and two tones (oddball and regular). The 

first 150 of the 640 samples of the transform are given in the figures, since the other 

samples do not provide any additional information due to the oversampling of the 

original signals. 

The DWTs are displayed in augmented time format as described in Chapter 4. 

Seven layers of decomposition are made since there are 640 samples. The first five 

samples correspond to the lowest frequency analyzed. The next 10 points analyzes 

the next octave (twice the previous frequency), and the next 20 samples analzes the 

third octave and so forth. The last 320 samples correspond to the highest frequency 

analyzed with this procedure. 
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Figure C.3: Patient ID: 5070, Normal 
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Figure C.4: Patient ID: s072, Alzheimer's 
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Figure C.5: Patient ID: 8074, Normal 
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Figure C.8: Patient ID: s08!, Normal 
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Figure C.9: Patient ID: s111, Alzheimer's 
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Figure C.IO: Patient ID: s115, Alzheimer's 
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Figure C.ll: Patient ID: s120, Alzheimer's 
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Figure C.12: Patient ID: 8121, Normal 
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Figure C.13: Patient ID: 8124, Normal 
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Figure C.14: Patient ID: s127, Alzheimer's 
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Figure C.15: Patient ID: 5129, Alzheimer's 
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Figure C.16: Patient ID: s132, Normal 
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Figure C.17: Patient ID: s133, Normal 
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Figure C.18: Patient ID: s134, Normal 
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Figure C.19: Patient ID: 5144, Normal 
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Figure C.20: Patient ID: s148, Normal 
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Figure C.21: Patient ID: s149, Alzheimer's 
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Figure C.22: Patient ID: s224, Normal 
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Figure C.23: Patient ID: s236, Normal 
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Figure C.24: Patient ID: s270, Alzheimer's 
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Figure C.25: Patient ID: s271, Alzheimer's 
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Figure C.26: Patient ID: s272, Alzheimer's 
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Figure C.27: Patient ID: s273, Alzheimer's 
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Figure C.28: Patient ID: s276, Alzheimer's 
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APPENDIX D.CONTINUOUS WAVELET TRANSFORM 

%CONTINUOUS WAVELET TRANSFORM SCHEME 

Y.02/12/1995 

Y.ROBI POLIKAR 

close all 

clear 

load s048wt.pzo 

plot (f) 

figure 

timestepsize=input('Please enter the time step size: '); 

scalestepsize=input('Please enter the scale step size: '); 
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filesize=750; 

numberofsteps=750/timestepsize; 

integral=zeros(1,numberofsteps); 

scale=input('Please enter the max scale: '); 

WT=zeros(scale/scalestepsize,numberofsteps); 

%to=-255; 

%t1=-255:256; 

to=-(filesize/2)+1; 

t1=(-filesize/2)+1:filesize/2; 

a=1; 

counter=1 ; 

for s=l:scalestepsize:scale; 

%numberofsteps=round(512/stepsize(s)); 

for n=l:numberofsteps 

morlet=exp(-i*«tl-to)/(O.2*s))-«(tl-to)/(O.2*s)).-2)/2); 

ff=f.*(morlet); 

integral(n)=sum(ff); 

to=to+timestepsize; 

end 

WT(counter,:)=(l./sqrt(s))*integral; 

s 

to=-(filesize/2)+1; 

integral=O; 

counter=counter+l; 



end 

mesh(abs(WT)); 

figure 

mesh(real(WT)) 
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title('CWT OF THE TEST INPUT SIGNAL') 

xlabel('Translation') 

ylabel('Frequiency') 

zlabel('Amplitude') 
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APPENDIX E. DISCRETE WAVELET TRANSFORM 

%DISCRETE WAVELET TRANSFORM OF THE AVERAGED SIGNALS 

%02/22/1995 

%by ROBI POLIKAR 

%This program computes the discrete wavelet transforms of all the 

%averaged signals in the EEG database. The DWT computation is continued 

%up to 7 levels. The DWT of each signal is stored in a file having the same 

%length with the original signal. Augmented format is used for the 

%transformed signals. The actual DWT computation is performed by the 

%lIfwt II funct ion called from this program.. The fwt 0 and daubechies 0 

%functions are written by Fritz Keinert. 

%pzo:oddball files from lead pz 

%fzo:oddball files from lead Fz 

%pzr:regular files from lead pz 

%pzr:regular files from lead Fz 
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clear 

poddfiles = ['s048alv.pzo';'s049alv.pzo';'s070alv.pzo';'s072alv.pz0'; .. . 

's074alv.pzo';'s077alv.pzo';'s080alv.pzo' ;'s081alv.pzo' ;'slllalv.pzo'; .. . 

'sl15alv.pzo';'s120alv.pzo';'s121alv.pzo' ;'s124alv.pzo' ;'s127alv.pzo'; .. . 

's129alv.pzo';'s132alv.pzo';'s133alv.pzo' ;'s134alv.pzo' ;'sl44alv.pzo'; .. . 

's148alv.pzo';'s149alv.pzo';'s224alv.pzo' ;'s236alv.pzo' ;'s270alv.pzo' ; .. . 

's271alv.pzo';'s272alv.pzo';'s273alv.pzo';'s276alv.pzo,]; 

foddfiles = ['s048alv.fzo';'s049alv.fzo';'s070alv.fzo';'s072alv.fz0'; .. . 

's074alv.fzo';'s077alv.fzo' ;'s080alv.fzo' ;'s081alv.fzo' ;'slllalv.fzo'; .. . 

's115alv.fzo';'s120alv.fzo';'s121alv.fzo' ;'s124alv.fzo' ;'s127alv.fzo'; .. . 

's129alv.fzo';'s132alv.fzo';'s133alv.fzo' ;'s134alv.fzo';'s144alv.fzo'; .. . 

's148alv.fzo';'s149alv.fzo';'s224alv.fzo' ;'s236alv.fzo' ;'s270alv.fzo'; .. . 

's271alv.fzo';'s272alv.fzo';'s273alv.fzo' ;'s276alv.fzo']; 

pregfiles = ['s048alv.pzr';'s049alv.pzr';'s070alv.pzr';'s072alv.pzr'; .. . 

's074alv.pzr';'s077alv.pzr';'s080alv.pzr' ;'s081alv.pzr' ;'slllalv.pzr' ; .. . 

'sl15alv.pzr';'s120alv.pzr' ;'s121alv.pzr' ;'s124alv.pzr' ;'s127alv.pzr'; .. . 

's129alv.pzr';'s132alv.pzr';'s133alv.pzr' ;'s134alv.pzr' ;'s144alv.pzr'; .. . 

's148alv.pzr';'s149alv.pzr';'s224alv.pzr' ;'s236alv.pzr';'s270alv.pzr'; .. . 

's271alv.pzr';'s272alv.pzr' ;'s273alv.pzr' ;'s276alv.pzr']; 
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fregfiles = ['s04Sa1v.fzr';'s049a1v.fzr';'s070a1v.fzr';'s072a1v.fzr'; .. . 

's074a1v.fzr';'s077a1v.fzr';'sOSOa1v.fzr' ;'sOS1a1v.fzr' ;'s111a1v.fzr'; .. . 

's115a1v.fzr';'s120a1v.fzr';'s121a1v.fzr' ;'s124a1v.fzr' ;'s127a1v.fzr'; .. . 

's129a1v.fzr';'s132a1v.fzr';'s133a1v.fzr' ;'s134a1v.fzr' ;'s144a1v.fzr'; .. . 

's14Sa1v.fzr';'s149a1v.fzr' ;'s224a1v.fzr' ;'s236a1v.fzr' ;'s270a1v.fzr'; .. . 

's271a1v.fzr';'s272a1v.fzr' ;'s273a1v.fzr' ;'s276a1v.fzr']; 

[nrow ncol]=size(poddfiles); Y.nrow=2S, for each set 

for i=1:nrow, 

fnamePo = poddfiles(i,1:find(poddfiles(i,:) -- '.')-1); 

fnameFo = foddfiles(i,1:find(foddfiles(i,:) -- '.')_1); 

fnamePr = pregfiles(i,1:find(pregfiles(i,:) -- '.')_1); 

fnameFr = fregfiles(i,1:find(fregfiles(i, :) -- '.')-1); 

out_fnameFo = [fnameFo, 'dt. fzo'] 

out_fnamePo = [fnamePo,'dt.pzo'] 

out_fnameFr = [fnameFr, , dt. fzr'] 

out_fnamePr = [fnamePr,'dt.pzr'] 

[h,g]=daubechies(4); Y. Use a daubechies wavelet with four vanishing moments 
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y'**LOAD THE pz CHANNEL FOR ODDBALL FILES** 

eval(['load ' poddfiles(i,:)]); 

oddp=eval(fnamePo); 

f1=[oddp oddp(1:40)]; 

W1=fwt(h,g,f1); 

savestr=sprintf('save Yes W1 -ascii', out_fnamePo); 

eval(savestr); 

clear oddp W1 f1 

clearstr=sprintf('clear Yes',fnamePo); 

eval(clearstr); 

y.*************************************** 

y'**LOAD THE fz CHANNEL FOR ODDBALL FILES** 

eval(['load ' foddfiles(i,:)]); 

oddf=eval(fnameFo); 

f2=[oddf oddf(1:40)]; 

W2=fwt(h,g,f2); 
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savestr=sprintf('save %s W2 -ascii', out_fnameFo); 

eval(savestr) ; 

clear oddf W2 f2 

clearstr=sprintf('clear %s',fnameFo); 

eval(clearstr); 

%****************************************** 

%**LOAD THE pz CHANNEL FOR REGULAR FILES** 

eval(['load ' pregfiles(i,:)]); 

regp=eval(fnamePr); 

f3=[regp regp(1:40)]; 

W3=fwt(h,g,f3); 

savestr=sprintf('save %s W3 -ascii', out_fnamePr); 

eval(savestr) ; 

clear regp W3 f3 

clearstr=sprintf('clear %s',fnamePr); 

eval(clearstr); 
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%********************************************* 

%**LOAD THE fz CHANNEL FOR REGULAR FILES** 

eval(['load' fregfiles(i,:)]); 

regf=eval(fnameFr); 

f4=[regf regf(1:40)]; 

W4=fwt(h,g,f4); 

savestr=sprintf('save %s W4 -ascii', out_fnameFr); 

eval(savestr); 

clear regf W4 f4 

clearstr=sprintf('clear %s' ,fnameFr); 

eval(clearstr); 

%********************************************* 

i 

end; ** the loop over i 
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APPENDIX F. K-MEANS ALGORITHM 

%03/01/1993 

%K-MEANS ALGORITHM FOR EEGDATAS 

%ROBI POLIKAR 

Y.This program clusters the given EEG signals into two classes 

Y.by using the k-means algorithm. All the signals from each electrode 

Y.are concatenated to produce a matrix of 28*600. The program that 

Y.creates the matrix is creatematrix.m . 

clear 

load oddp. dat 

W1=oddp(2,:); Y.Initialize the cluster centers 

W2=oddp(1,:); 

W1N=zeros(1,200); 

W2N=zeros(1,200); 

iteration=O; 
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while 1 

for i=1:28 

distancel(i)=dist(oddp(i,:),Wl'); Y.Calculate the distance between the 

distance2(i)=dist(oddp(i,:),W2'); Y.signal and cluster center 

if (distancel(i) < distance2(i)) Y.minimum distance determines the class 

class(i)=l; 

clusterl=[clusterl; oddp(i,:)J; %signals in this cluster gathered 

end 

if (distancel(i) > distance2(i)) 

class(i)=2; 

end 

cluster2=[cluster2; oddp(i,:)J; 

end 

Nl=nnz(class(:)-2); Y.number of signals in cluster 1 

N2=nnz(class(:)-1); Y.number of signals in cluster 2 

W1N=1/Nl *(sum(clusterl)); Y.calculate new cluster centers 

W2N=1/N2 *(sum(cluster2)); 
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if(W1N==Wl & W2N==W2), break, end; 

Wl=W1N; 

W2=W2N; 

iteration=iteration+l; 

iteration 

clusterl=[]; 

cluster2=[]; 

end 
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APPENDIX G. CREATE MATRIX 

%CONVERT THE FILES INTO MATRICES FOR EACH ELECTRODE COMBINATION 

%02/24/1995 

% by ROBI POLIKAR 

%This program concatenates the 28 files from each electrode combination 

%to create one matrix per electrode combination. This matrix is used in 

%k-means clustering algorithm and neural network classification with 

%multilayer percept ron backpropagation 

%pzo:oddball files from lead pz 

%fzo:oddball files from lead Fz 

%pzr:regular files from lead pz 

%pzr:regular files from lead Fz 
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poddfiles = ['s04Sa1vd.pzo';'s049a1vd.pzo' ;'s070a1vd.pzo' ;'s072a1vd.pzo'; .. . 

's074a1vd.pzo' ;'s077a1vd.pzo';'sOSOa1vd.pzo' ;'sOS1a1vd.pzo';'s111a1vd.pzo'; .. . 

's115a1vd.pzo' ;'s120a1vd.pzo';'s121a1vd.pzo';'s124a1vd.pzo';'s127a1vd.pzo' ; .. . 

's129a1vd.pzo';'s132a1vd.pzo';'s133a1vd.pzo' ;'s134a1vd.pzo';'s144a1vd.pzo'; .. . 

's14Sa1vd.pzo' ;'s149a1vd.pzo';'s224a1vd.pzo' ;'s236a1vd.pzo';'s270a1vd.pzo'; .. . 

's271a1vd.pzo';'s272a1vd.pzo';'s273a1vd.pzo' ;'s276a1vd.pzo']; 

foddfiles = ['s04Sa1vd.fzo';'s049a1vd.fzo' ;'s070a1vd.fzo';'s072a1vd.fzo'; .. . 

's074a1vd.fzo';'s077a1vd.fzo';'sOSOa1vd.fzo' ;'sOS1a1vd.fzo';'s111a1vd.fzo'; .. . 

's115a1vd.fzo';'s120a1vd.fzo';'s121a1vd.fzo' ;'s124a1vd.fzo';'s127a1vd.fzo'; .. . 

's129a1vd.fzo';'s132a1vd.fzo';'s133a1vd.fzo' ;'s134a1vd.fzo';'s144a1vd.fzo'; .. . 

's14Sa1vd.fzo';'s149a1vd.fzo';'s224a1vd.fzo' ;'s236a1vd.fzo';'s270a1vd.fzo' ; .. . 

's271a1vd.fzo';'s272a1vd.fzo';'s273a1vd.fzo' ;'s276a1vd.fzo']; 

pregfiles = ['s04Sa1vd.pzr';'s049a1vd.pzr' ;'s070a1vd.pzr';'s072a1vd.pzr'; .. . 

's074a1vd.pzr' ;'s077a1vd.pzr';'sOSOa1vd.pzr' ;'sOS1a1vd.pzr';'s111a1vd.pzr'; .. . 

's115a1vd.pzr';'s120a1vd.pzr';'s121a1vd.pzr';'s124a1vd.pzr';'s127a1vd.pzr' ; .. . 

's129a1vd.pzr' ;'s132a1vd.pzr';'s133a1vd.pzr';'s134a1vd.pzr';'s144a1vd.pzr ' ; .. . 

I s 14Sa1vd.pzr l ;'s149a1vd.pzr ' ;'s224a1vd.pzr' ;'s236a1vd.pzr';'s270a1vd.pzr ' ; .. . 

's271a1vd.pzr';'s272a1vd.pzr';'s273a1vd.pzr' ;'s276a1vd.pzr']; 

fregfiles = ['s04Sa1vd.fzr';'s049a1vd.fzr';'s070a1vd.fzr' ;'s072a1vd.fzr'; .. . 

's074a1vd.fzr';' s077a1vd.fzr';'sOSOa1vd.fzr' ;'sOS1a1vd.fzr';'s111a1vd.fzr' ; .. . 
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'sllSalvd.fzr';'s120alvd.fzr';'s121alvd.fzr' ;ls124alvd.fzrl;ls127alvd.fzr'; .. . 

's129alvd.fzrl;'s132alvd.fzr';'s133alvd.fzr' ;'s134alvd.fzr l ;'s144alvd.fzr'; .. . 

's148alvd.fzr';'s149alvd.fzr';'s224alvd.fzr' ;' s236alvd.fzr';'s270alvd.fzr ' ; .. . 

' s 271alvd.fzr';' s272alvd.fzr ' ;' s273alvd.fzr';'s276alvd.fzr']; 

[nrow ncol]=size(poddfiles); Yonrow=28, for each set 

for i=l:nrow, 

fnamePo = poddfiles(i,l:find(poddfiles(i,:) 

fnameFo = foddfiles(i,l:find(foddfiles(i,:) 

fnamePr = pregfiles(i,l:find(pregfiles(i,:) 

fnameFr = fregfiles(i,l:find(fregfiles(i,:) 

Yo LOAD THE pz CHANNEL FOR ODDBALL FILES 

eval(['load' poddfiles(i,:)]); 

oddp=[oddp; eval([fnamePo 'alvd'J)J; 

-- 'a')-l); 

-- 'a')-l); 

-- 'a')-i); 

-- 'a')-l); 
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%*************************************** 

% LOAD THE fz CHANNEL FOR ODDBALL FILES 

eval(['load ' foddfiles(i,:)]); 

oddf=[oddf; eval([fnameFo 'a1vd'])]; 

%****************************************** 

% LOAD THE pz CHANNEL FOR REGULAR FILES 

eval(['load ' pregfiles(i,:)]); 

regp=[regp; eval([fnamePr 'a1vd'])]; 

%***************************************** 

% LOAD THE fz CHANNEL FOR REGULAR FILES 

eval(['load ' fregfiles(i,:)]); 

regf=[regf; eval([fnameFr 'a1vd'])]; 

%****************************************** 

i 

end; % the loop over i 



oddp=oddp(:,(1:200)); 

oddf=oddf(:,(1:200)); 

regp=regp(:,(1:200)); 

regf=regf(:,(1:200)); 

save oddp.dat oddp -ascii 

save oddf.dat oddf -ascii 

save regp.dat regp -ascii 

save regf.dat regf -ascii 
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APPENDIX H. TRAINING MULTILAYER PERCEPTRON WITH 

BACKPROPAGATION 

%BACKPROPAGATION MLP, EEGDATAS 

%03/02/1995 

%ROBI POLIKAR 

%This program trains a multilayer perceptron with backpropagation 

%learning rule using Matlab's built-in function. 

clear 

load oddp. dat 

P=oddp(:,(1:150))'; 

P1=[P(:,1) P(:,3) P(:,4) P(:,8) P(:,10) P(:,13) P(:,15) P(:,16) P(:,17) 

P(:,19) P(:,20) P(:,21) P(:,24) P(:,26)]; 

%P1 is the randomly chosen an arbitrary training data. "class" is the 

%cortresponding classes vector. 



class=[1 0 ; 0 1 ; 1 0 ; 0 1 

o 1 ; 1 0 ; 1 0 ; 10]; 
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1 0 o 1 1 0 o 1 o 1 o 1 

Yo [1 0] shows Alzheimer's disease, [0 1] shows normal patients. 

class=class' ; 

R=size(P,1); 

Q=size(P,2); 

[S1]=15; Yonumber of hidden layer nodes 

[S2]=size(class,1); 

[W1,B1]=rands(S1,R); Yorandomly inialized weights 

[W2,B2]=rands(S2,S1); 

disp_freq=20; 

max_epoch=1000; 

err_goal=0.01; 

lr=0.12; 

lr_inc=1.25; 

lr_dec=O.6; 

momentum=O.95; 

err_ratio=1.04; 

Yo 

Yo 

Yo 

Yo 

Yo 

Yo 

error goal 

learning rate 

increase in learning rate 

decrease in learning rate 

momentum 

error ratio 

J ••• 
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[NW1,NB1,NW2,NB2,TE,TR]=trainbpx(W1,B1,11ogs ig l ,W2,B2,llogsig l ,P1,class,TP)j 

outputlayerl=logsig(NW1*Pl,NB1); 

outputlayer2=logsig(NW2*outputlayerl,NB2)j 

[a b]=max(outputlayer2)j 

save Wltriall.wgt NWl -ascii Yosave the calculated weights 

save W2triall.wgt NW2 -ascii 

save Bltriall.wgt NBl -ascii 

save B2trial1.wgt NB2 -ascii 

Yo TESTING 

classtest=[l 1 2 1 2 2 2 2 1 1 1 2 2 1 1 2 2 2 2 2 1 2 2 1 1 1 1 1 ] j 

Yoclasstest is the vector that holds the correct classes for each signal. 

Yo "1" represents Alzheimer1s disease, 112" represents normal patients 

outputlayerl=logsig(NW1*P,NB1)j YoUse all 28 signals to test 

outputlayer2=logsig(NW2*outputlayerl,NB2)j 

[a bl]=max(outputlayer2); 

[a b]=max(classtest)j 
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classification=b-b1; 

% "bi" holds the network classification, "b" holds the correct 

% classification. The difference between them is zero for correctly 

% classified signals and plus/minus 1 for incorrer~ly classified signals. 
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APPENDIX I. FAST (DISCRETE) WAVELET TRANSFORM 

SCHEME 

Y.This program computes the discrete wavelet transform by subband 

Y.coding scheme. The code belongs to Frizt Keinert. Used with permission. 

function w = fwt(h,g,f,larg) 

Y. w = fwt(h,g,f,l) = fast wavelet transform of f through 1 levels 

Y. 

% Computes the fast wavelet transform of a vector f through 1 levels, 

% using the wavelets defined by the coefficients h, g. g and 1 are 

% optional arguments. 

Y. 

% If g is missing, it is calculated by taking the h coefficients in 

Y. reverse, with alternating sign. 

Y. 

Y. If the last number in h or g is an integer, it is assumed that it 
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Yo is not a part of the coefficients, but the subscript of the first 

Yo element of h or g. (This is a kludge to get around the MATLAB 

Yo restriction of having all arrays start with index 1). 

Yo 

Yo The length of f must be a number m*2-power, where power >= 1. If 1 

% is not given, the maximum permissible 1 is computed and used. 

% 

% The results are stored ~n a vector w as 

% 

Yo 1 1-1 1-2 

Yo w = [H f; GH f; GH f; ... , GHf; GfJ, 

% 

% 

Yo 

where 

andG 

H is the filter defined by the coefficients h, 

is the filter defined by the coefficients g. 

% Fritz Keinert 

% June 22, 1993 

% fill in optional arguments, if necessary 

if (nargin < 2) 

error(1FWT: must have at least two arguments1); 

end 
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if (nargin == 2) Yo arguments are h, f 

f = g; 

g = qmf(h); 

larg = power2(length(f)); 

end 

if (nargin == 3) 

[d1,d2] = size(f); 

if Cd1 * d2 == 1) 

larg = f; 

f = g; 

Yo arguments are h, f, larg 

g = qmf(h); 

else Yo arguments are h, g, f 

larg = power2(length(f)); 

end 

end 

Yo make sure we can do 1 levels of decomposition 

n = length (f) ; 

lmax = power2(n); 

if (larg > lmax) 

error('FWT: 1 is too large for data vector length'); 

end 
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% determine lengths, offsets of h, g 

hlen = length(h); 

hmin = 0; 

if (isint(h(hlen))) 

hmin = h(hlen); 

hlen = hlen - 1; 

h = h(1:hlen); 

end 

glen = length(g); 

gmin = 0; 

if (isint(g(glen))) 

gmin = g(glen); 

glen = glen - 1; 

g = g(1:glen); 

end 

len = max(hlen,glen); 

% flip h, g to use with filter program (which flips them back) 

h = h(hlen:-1:1); 
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g = g(glen:-l:l); 

% Do the decomposition through larg levels 

w = f; 

if (len > 2) 

f(n+len-2) = 0; 

end; 

for 1 = 1: larg 

if (gmin -= 0) 

f(l:n) = shiftleft(f(l:n),gmin); 

end 

for i=1:len-2 

f(n+i) = f(i); 

end 

d = filter(g,l,f); 

if (hmin -= gmin) 

f(l:n) = shiftleft(f(l:n),hmin-gmin); 

for i=1:hlen-2 

f(n+i) = f(i); 

end 

end 

s = filter(h,l,f); 



end 
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f(1:n/2) = s(hlen:2:hlen+n-2); 

w(n/2+1:n) = d(glen:2:g1en+n-2); 

n = n/2; 

w(l:n) = f(l:n); 
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APPENDIX J. COMPUTATION OF THE DAUBECHIES WAVELET 

COEFFICIENTS 

%This program computes the Daubechies wavelet coefficients with any 

Yogiven number of vanishing moments. Daubechies wavelets with 4 vanishing 

Yomoments were used in thsi study. The following modified code belongs to 

YoFritz Keinert. Used with permission. 

runction [h,g] = daubechies(N) 

YoDAUBECHIES - returns coefficients for Daubechies wavelet 

Yo 

Yo [h,g] = daubechies(n) 

Yo 

Yo Calculates the coefficients for the Daubechies wavelet with N 

Yo vanishing moments. The coefficients are normalized so that 

Yo sum(h) = sqrt(2). 

Yo JCK: September 9, 1991 
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% Copyright (c) 1991 Jeffrey C. Kantor 

% minor modifications by Fritz Keinert, November 15, 1993 

if round(N)-=N I (N<1) , 

error('Order must be an integer >=1'); 

end 

% Compute coefficients of polynomial P(y) of order N-1, store 

% in vector pN is ascending order 

p = 1; 

pN = [pJ; 

for j=1:N-1, 

p = (N+j-1)*p/j; 

pN = [pN,pJ; 

end 

% Now compute polynomial abs(Q(z))-2, z = exp(iw) 

f = [-1 2 -1J/4; 

fc = f; 
q2 = pN(l); 

for k=1:N-1, 

q2 = [O,q2,OJ + pN(k+l)*fc; 



fc = conv(fc,f); 

end 
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% q2 is a polynomial with coefficients in ascending order of 

% powers ranging from l-N to N-l. The coefficients of zA-k and 

% z-k are the same. Roots are eigenvalues of a companion matrix. 

r = eig([-q2(2:length(q2))./q2(1);eye(2*N-3),zeros(2*N-3,1)]); 

% Construct q from the roots outside the unit disk 

q = poly(r(find(abs(r»l))); 

% Normalize phase so that q(O) is real 

qO = q(length(q)); 

q = q*(conj(qO)/abs(qO)); 

% Everything should be real, so drop the imag parts 

q = real(q); 

% Now compute h by multiplying with (O.5(1+z))AN 



for k = 1:N, 

q = conv(q,[1/2 1/2]); 

end 
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Yo Normalize, since the normalization was lost in the factoring 

Yo and reconstruction of q 

h = sqrt(2)*q/sum(q); 

% Report result in ascending order 

h = h(length(h):-1:1); 

Yo Compute the quadrature mirror filter from h 

g = qmf(h); 


