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1. INTRODUCTION

One of the many design considerations in a nuclear power plant
is pressurized thermal shock (PTS). In order to prevent brittle
(i.e. sudden) failure of the pressure vessel as a result of thermal and
mechanical stresses within the wall, the Nil Ductility Tramsition
(NDT) temperature of the steel is designed to be below the lowest
temperature the vessel will ever experience. However, as the vessel
is irradiated by fast neutrons, the ductility of the steel is
decreased and the NDT temperature (which represents the temperature
at which the metal changes from ductile to brittle behavior) is
increased markedly. This increase in NDT temperature leads to the
possibility that when the reactor is being shut down, the vessel
temperature could fall below the NDT value. If this occurs while the
internal pressure remains high, brittle fracture may result [25].

While PTS always has been of concern, the Three Mile Island
incident showed the industry that contrary to what was believed
previously, the large break loss-of-coolant accident (LOCA) is not
always the limiting transient. In particular, in the case of PTS,
the limiting transient can be a small break in one of the hot legs
of the primary coolant circuit. This could result in sustained high-
pressure safety injection (HPSI) into the cold leg with no natural
circulation in the breached primary coolant loop (see Figure 1.1} [26].

Two parameters which strongly influence the degree of thermal shock
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Figure 1.1 Schematic for HPSI problem



are the temperature and flow rate of the water adjacent to the vessel.
These depend on the degree of mixing between the cold HPSI flow and
the warm, stagnant fluid in the cold leg and downcomer.

Due to the significance of this problem, three aspects of the
mixing phenomena are being investigated concurrently by the industry.
These include:

® an experimental phase to provide both a qualitative
understanding of flow and temperature distributions and
quantitative empirical correlations.

® the use of nodal solutions to the Navier-Stokes equations
to provide a theoretical prediction for fluid and thermal

mixing.

e the development of a simpler, semi-empirical model to predict
mixing.

The ultimate goal of any of these three approaches is to be able to
generate accurate temperature and velocity profiles in the cold leg
and downcomer. These profiles would be used along with plant-
specific neutron-fluence and materials properties to predict the
number of years a plant could withstand specified PTS conditioms
without danger of brittle fracture.

Only one aspect of this large PTS problem was investigated in
this work. That aspect was the theoretical prediction of the temper-

ature profiles in the cold leg by using a computer code to solve the

time-averaged Navier-Stokes equations.



2. A DESCRIPTION OF THE PROBLEM

Because the thermal stresses due to the rapid cooling of the
reactor vessel wall combined with the mechanical stresses due to
repressurization may initiate or propagate cracks in the vessel if
the vessel materials properties have been sufficiently degraded by
long-term irradiation [6], experiments were performed by Creare
Inc. of Hanover, NH under contract to EPRI [7,8,9] to visualize the
flow patterns. A schematic of their results is presented in Fig. 2.1.
It shows the following phenomena due to the mixing of cold HPSI fluid
with the warmer stagnant fluid in the cold leg of the primary coolant
loop:

® Buoyancy-induced flow and fluid stratification

¢ Shear fluid entrainment and growth of the HPSI jet

® Counter-current flow of warm water into the cold leg

The phenomena of stratification have been investigated both
experimentally and theoretically [19,21,22,27]. Reference 22
describes stratification as:

"a change of density along the vertical, the direction

of gravity force. 1In a stratified fluid, vertical

displacements of fluid particles from their equilibrium

positions produce buoyancy forces (p,-p)g where o, is

the density of the fluid particle, p is the densi%y of

the surrounding medium and g is the acceleration due

to gravity."

The buoyant force generates an exchange between the potential energy

of the stratified fluid in the gravity field and the kinetic energy
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Figure 2.1 Experimentally observed mixing phenomena

of fluid motion. A stratified fluid is either stably or unstably
stratified. In a stably stratified fluid, 5p/3z is positive and

the work of the buoyancy forces transforms the kinetic energy into
potential energy. An unstably stratified fluid has a negative value
for 9p/9z. 1In that case, the work of the buoyancy forces transforms a
part of the potential energy into kinetic energy of motion; thereby,
generating convection. This leads to an increase in turbulence
intensity which, in turn leads to an increase in mixing because the
lack of density uniformity is a source of shear in the fluid.

Referring again to Figure 2.1, it is obvious that the injection point



is an area of unstable stratification because the higher density
fluid enters at the top causing the density to increase with increasing
height.

The mechanism of entrainment is the process by which the turbulence
of the HPSI jet spreads into the initially quiescent fluid in the cold
leg. The area of fluid entrainment by jets has been extensively
studied [1,2,10,13,17,23,33] but usually in the context of the jet
flowing into an infinite reservoir. Reference 13 describes entrain-
ment as ''the apparent unilateral transport of mass across a density
interface which is brought about by the turbulent velocity fluctuations
of the turbulent fluid."

In principle, the calculation of these complex flow phenomena
involves the solution of the time-dependent Navier-Stokes equations.

In turbulent flow, these equations can not be solved without numerical
methods. Because it was only recently that progress in numerical
methods and the increasing calculational speed of computers allowed
the analytical solutions to be economically feasible, much of the
earlier work prior to 1970 focused on the experimental determination
of entrainment coefficient. Such studies are described in references
1, 2, 10, 13, 17, 23, 29, and 33. These studies concern either
channel flow or jet discharge into an infinite reservoir. These are
of interest in the area of thermal discharge from power plants. While
these experiments are of importance in understanding the fundamental
behavior of entrainment and statification, they are not directly

applicable to the problem considered here, because of the differences



in geometry and flow conditions. No previous experimental studies
performed for a cylindrical pipe geometry were found and few studies
in any geometry were found which included the counter-current flow
depicted in Figure 2.1.

One concept which was clearly established by all experiments was
the densimetric Froude number -as the governing dimensionless parameter.
This is discussed further in Chapter 5.

The progress in both computational speed and size of computers
has made it possible to get accurate solutions to complex flow
situations. This work investigated the use of a nodal solution to
the time averaged Navier-Stokes equations as a means of predicting
thermal mixing between the HPSI fluid and the stagnant fluid in the
cold leg. The computational scheme used was a code entitled ULYSSE
developed by Electricite/de France. It is described in reference 12
and was verified experimentally as described in references 3, 30, 31
and 32. It is based on statistically averaged Navier-Stokes equations
which are, in themselves, an approximation since as is described in
reference 11, '"the averaging process itself may mask some character-
istic patterns in the flow field.'" This averaging process leads to
correlations between fluctuating quantities such as Reynold's stress,
p-E;T_E;T and the turbulent heat flux, p'G;TET where u is velocity
and T is the temperature. The overbar indicates the averaging process
while the prime indicates the fluctuations in mean quantities due to

turbulence. The subscripts indicate the direction of the component.



These quantities must be modeled. A detailed discussion of the
evolution of turbulence modeling is found in reference 23 and is
summarized briefly in Section 3.4. The computational model used
in this work closes the turbulence model with the.k—e equations
proposed by reference 23.

The numerical methods include the Gauss-Seidel technique to
solve the diffusion portion of the Navier-Stokes equations and the
method of characteristics to solve the non-linear advection terms. The
method of characteristics is used because it is believed to minimize
numerical diffusion. These methods are described in more detail in
Chapter 4.

The objectives of the present work can be summarized as:

® to solve the time averaged Navier-Stokes equations using the
k- turbulence model for the HPSI scenario.

e to compare the trends generated by the computational model
with the results generated by the Creare experiments in an
effort to determine the adequacy of the computational model.



3. THE EQUATIONS TO BE SOLVED

3.1. Development of the Equations of Change

The derivation of the equations of change has been presented in
great detail by several authors [4,16]. A summary of the derivation
of these equations in Cértesian coordinates follows based primarily on
reference 4.

The equation of continuity is developed by writing a mass balance
over a stationary volume element of dimensions AxAyAz through which the
fluid is flowing (see Figure 3.1). The equation is merely a statement

of the conservation of mass and is of the form:

rate of
mass = rate of rate of :
= (3.1)
accumulation mass in ass out

(X,Y+AY,Z+AZ)

AZ (Z+AX, Y+AY ,Z+AZ)

X, Y+AY,Z
&, ) (X+AX,Y+AY,2Z)
AY .(X,Y,Z-H\Z)
EEAE  (X+AX,Y, Z+AZ)
&
*
X,Y,2) ¢ (X+AX,Y,2)
B e
AX

Figure 3.1 Volume element for mass, momentum and energy balance



10

The rate of mass accumulation within the volume is (8p/0t) (Ax Ay Az)
where p is fluid density and t is time. Assuming the flow is in the
positive x, y, and z directions, then the rate of mass in is equal to
the sum of the rates at which mass enters through the yz face at’

x, the xz face at y and the xy face at z. Similarly, the rate of mass
out is equal to the sum of the rates at which mass exits through the yz
face at x + Ax, the xz face at y + Ay and the xy face at z + Az. This

yields:

3p
—_— = - + AA o
Ax Ay Az ot AyAz[(pux) > (pux)|x+Ax] b:q z[puy g

- 3.2)
0uY'Y-i-Ay] * AXAy[puzlz uz|z+Az] (

where u s uy and uz are the instgntaneous values of the fluid velocity
in the x, y, and z directions, respectively. When this equation is
divided by AxAyAz and the limit is taken as the volume of the cube
approaches zero, the equation of continuity results.

3p

3 3 3
el EE(OuK) - Eg(Puy) _-Ez(puz))

which can be written in vector notation as:

3

o]

= - (Vepu) (3.3)

l

Q2

t

where the superscript indicates a vecter quantity.

The second of the equations of change is the equation of motion and

is developed from a momentum balance on the volume element of the form:
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rate of rate of rate of sum of the
momentum = [momentum |- |momentum |+ | forces acting (3.4)
accumulation in out on the system

The equation of motion is basically a statement of Newton's second
law: mass times acceleration equals the sum of the forces.

Working first with the x - component of momentum, the accumulation
term is (Ax Ay Az)(apuxfat). Momentum enters the volume by both bulk
fluid flow (convection) and by molecular transfer. Convective
terms for the x-component of momentum are of the form pu_ uj : Ay Az

(entering) or p u Ay Az (exiting). There are six of these

u,
X J|x+ﬂx
convective terms, one for each face. There are also six molecular

transport terms (again for the x-component only) of the form zjlx

Ay Az (exiting) where j equals x, y and z.

AyAz (entering) and zj‘x+Ax

The body forces on the system are usually only those arising from

fluid pressure and/or gravity. These forces are written AyAz

(Px - Px+Ax) + pg AxAyAz. When these expressions are substituted into
equation 3.4, and the expression is divided by AxAyAz and the limit is
taken as the volume approaches zero, then the x component of the

equation of motion results:

3 3 ) 3
2 - = +—
Bt(pux) (axgjuxuxi-ayp uxuy 0z Ouzux)
3 : 3 il (3.5)
- (— — e - =+ :
(Bx Txx+-3y Tyx 3z 'zx X P8y

L. in equation 3.5 represents the normal stress on the x-face and is

defined for a Newtonion fluid as:
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au s
T = =2u—=+ 2/3 ;(Veu)
XX ox

where V is the gradient of u and u is the bulk fluid viscosity.
Tyx and B represent the x-directed tangential (or shear) stress on

the y and z faces respectively. These stresses are:

Bux Ju
= - J— S +
T ™ T “(ay _y'ax )
and
Buz Bux
= - _ + —
sz sz “(ax oz )

Exactly similar equations can be written for the y and z components of

momentum. For simplicity, the three equations can be combined and

rewritten:
3 L (v o0 g %
= - ® -
3c° U peuu | (3.6)
E s
Rate of increase rate of momentum pressure force
of momentum per gain by convection on element per
unit volume per unit volume unit volume
——.

- [V-.r.] + o g

rate of momentum gravitational force
gain by viscous transfer on element per
per unit volume unit volume
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These two equations, 3.3 and 3.6, completely describe an iso-
thermal system. For a non-isothermal system a third equation, the
equation of energy, must be developed. As before, an energy balance
reflecting the law of the conservation of energy is written in the

following form:

rate of accum- rate of internal rate of internal
ulation of in- }=J and kinetic energ -1 and kinetic energyf(3.7)
ternal and in by convection out by convection

kinetic energy

net rate of heat net rate of work
+ ] addition by con- |- J done by system on
duction surroundings

Kinetic energy is the energy associated with observable fluid motion
(1/2052) while internal energy is that associated with random trans-
lational and internal motions of the molecules plus the energy of
interaction between the molecules (ﬁ). The rate of internal and
kinetic energy in by convection is the sum of the rates of energy

influx through the x, v and z faces of the form:

AiAk (u, (pU + l/Qp:lz‘.) J=x,y,2
h ] 1#k#j

The rate of energy efflux due to convection out the x+Ax, y+Ay and

z+Az faces is of the same form; i.e.

) 5 ,
pidk(u, (pU+1/2000)) ., ) j=x,y,z
i 3*43 i#k#]

The net rate of energy input by conduction is:
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AyAz(qxIx - qxlx+Ax) 4 AxAz(qyly - qyly"ﬂy) ¥

tetrfa, ] - ).

qz|z+Az

where Ay qy, q, are the x, v and z components of the heat flux vector
q. The rate at which work is done consists of two parts: gravity,
which is a volume force and pressure and viscosity, which are surface

forces. The rate at which work is done against gravity is:
-pAxAyAz (uxgx + uygy + uzgz)

The rate at which work is done against static pressure is:
AyAz ((P - =
yoz ((Pu ) yay = (Pu)]) + dxay ((Puy)|y+Ay (Puy)|y)

* Gxhy ((Puz)lz+Az - (Puz)lz)

The rate of doing work against viscious forces is the sum of three

terms of the following form:

AyAz((t u + T + -
yaz(( XX X xyuy szuz*x+ax (Txxux4-rxyuy ¥ szuz)‘x)

As before, these expressions are substituted into equation 3.7. The
equation is divided by AxAyAz and the limit is taken as the volume

approaches zero. The resulting equation written in vector-tensor

notation is:
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3 s *2 » '2 .
3t p(U+1/2u”) = = (Vepu(U+1l/2u)) - Veq (3.8)
rate of gain of rate of energy rate of energy input
energy per unit input per unit per unit volume by
volume volume by convectio conduction

e o (X
+ p(ueg) - (VePy) - (Ve[Tea))
rate of work done rate of work done rate of work done
on fluid per unit on fluid per unit on fluid by wviscous
volume by grav- olume by pressure forces
itational forces orces

ro—

These three equations completely describe any non-isothermal Neutonian
system since no assumptions have yet been made. The following section

will deal with the simplification of these equations.

3.2. Simplification of the Equations of Chamge -
The Navier-Stokes Equations

The following approximations will now be made in order to
simplify the problem. First, the fluid is assumed to be incom-
pressible but with small variations in density due to changes in
temperature. Following the Boussinesq approximation, it is assumed
that the only effect of density variation is in the gravitational
body force term in the momentum equation. This approximation also
assumes that the equation of state can be written R, ~ o = DB(T—Tr)
where £ is the dilatation constant [16]. Since the density is assumed
to be constant in the equation of continuity, equation 3.3 simplifies

tois
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Vsu = 0 (3.9)

If the additional assumption of constant viscosity is made and

equation 3.9 is used, equation 3.6 simplifies to:

- . - (3.10)
—= = e T + 3.10
P VP TV u, g; (5

where Du, is the substantial time derivative:

Dt

Du du Ju Ju du
—_ + - -
Dt ot Yx Tox uy oy Y2 oz

This form of the momentum equation is the Navier-Stokes equation. By
making use of these two simplified equations, 3.8 and 3.10, equation

3.8 can be reduced to:

DU _ L -c‘ .
° e - (Veq) (12 Vu)
rate of gain rate of internal irreversible rate of
of internal energy input by internal energy increase
energy per conduction per per unit volume by
unit volume unit volume viscous dissipation

The next assumption involves neglecting the viscous dissipation term

which is generally only important for high Prandtl number fluids. If
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the Prandtl number, Pr, is of the order of one, the velocity must
approach Mach 1 before the viscous dissipation term becomes important
[16]. If q is expressed in terms of temperature gradients and a con-—
stant thermal conductivity, k, if U is expressed in terms of a constant
heat capacity, Cp’ and internal temperature, T; and if wviscous

dissipation effects are ignored then (3.11) can be rewritten as:

where A is the thermal diffusivity and equals-%a.
Obviously, the turbulence problem to be solved is a three
dimensional problem (see Sketch A, Figure 3.2). 1Initially, all flow is
in the -y direction. Where the HPSI pipe intersects the cold leg, an
x—component of velocity develops. Furthermore, because of the strati-
fication which takes place in the cold leg due to temperature differ-
ences, the flow is not axisymmetric. However, since solving the prob-
lem in three dimensions is not tractable, some method of reducing it
to a two-dimensional problem must be chosen. If one works in r,z
cylindrical coordinates, a restraint of axisymmetry is implied, whereas
working with the x,y cartesian coordinates merely states that the z
direction is infinite and does not affect what happens in the x,y plane
(see Sketch B, Figure 3.2). Because of the strong asymmetry caused

by the stratification, one must work in the x,y plane. The basic

assumption is that given a certain density difference, the level
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of stratification is the same, regardless of whether the geometry is a
pipe or a closed channel. While at first glance this may not seem to
be an adequate assumption, good results have been obtained using this
approximation ([3,30,32,33].

Working only in the x,y plane, the three equations to be solved
become:

Continuity:
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du du
X oy
Momentum:;
Bux aux aux 1 3P 32ux azux
—+4+u —+u — = - =-——
ol W <k P . v ( 2 + : ) (3.12)
Q“Dr ¥
gx( z )
and
du Ju du 13 Bzu azu
__Z+u .__.I.+u = _._i3+v(__2’_+_l) (3.13)
ot X 0ox y oy p 9y sz Byz
where v is the kinematic viscosity (u/p)
Thermal Energy:
2 2
aT 3T aT 3T 3°T
—+tu —+u — = A(—+—) (3.14)
at X 9x y 3y sz ay2

Given that the above described assumptions are adequate, these four
equations are an exact and complete solution for turbulent flow
provided that instantaneous values for velocity, density, temperature
and pressure are known. Unfortunately, this is not possible since, in
turbulent flow, the velocity fluctuates in an irregular manner around a
steady time-independent velocity as does the density, pressure and
temperature. Because these fluctuating components are random and tend
to be very small relative to the respective mean values, it is

possible to treat them statistically, an approach first suggestéa by

Osbourne Reynolds.
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3.3. The Time-Averaged Navier-Stokes Equations

The instantaneous values of velocity, pressure, density and

temperature can be written:

u, =u, +u' ,p0= p+p' , P=P+P,T=T+T,

e.g. l_.'l. =
i Ez-t t i

where t2—tl is long compared to the time scale of turbulent motion and
for transient problems, short compared to the time scale of the mean
flow. The prime represents the randomly fluctuating component. It

is assumed that the turbulent flow is stationary and homogeneous and,
therefore, ergodic. This implies that the time average, space average
and ensemble average will all lead to the same result [14]. In order

to develop the time-averaged Navier-Stokes equations, the following

rules of averaging are used [14]:

If A=A+a and B=B+b, then

- SB o= -

A= Ata = Ata = A+a a=0 (3.15a)

e oo ==

AB = AB = AB (3.15b)

- - o= —-—

Ab = Ab = Ab = 0 since b=0 {3.15¢c)
and

a— -5— - = - -_ ='.-- -

AB = (A+a)(B+b) = AB + Ab + Ba + ab = AB + ab (3.154d)
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By using these rules, substituting the sum of the time-independent

plus the fluctuating quantity for the instantaneous values in equations
3.11, 3.12, 3.13 and 3.14 and taking the mean value, the time-averaged
Navier-Stokes equations are obtained [28]. The implicit assumption

in this process is that the mean values of the instantaneous quantities
will obey the Navier-Stokes equations in the same way that instan-
taneous values do. One cannot, however, substitute the mean value
everywhere one encounters the instantaneous value. One must go
through the averaging process to properly account for extra terms

which occur.

du Ju Navier-Stokes equation with
e-g. X, Yo instantaneous values
X ay
3(u +u ") 3(u +u ') Substitution of the sum of the
0= X X _ 4 g b time independent plus the fluctuating
o y component for the instantaneous
quantity
a(u4u ')  a(u +uy') Taking the average of instantaneous
K :
= + uantities
? fiD:4 3y 4
3u, su ! 3. g} Applying averaging rules
0= "x+ x + PR,
X 0x Ay oy
ou Eﬂ?
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Using the same procedure detailed in the example results in the

following time-averaged momentum equation:

— e i 2= 2- ——
3 3 d &
Eji'+ . _;i.+ a - 8 I u(a o 4N i ui) o auiaui (3.17)
t i i j 9j p oi ai2 sz .4
A TTYEIS)
1 L] = i =
aui u, PP o where % X and y
- aj + gi('T—) ]} == and y
and i # j

Similarly the resulting energy equation is:

—' R =
L ]
3T 3T ap 3y afy W, T T
et Ty TN 2T 7T T T T nli
y oy X Ay y
The extra terms in the momentum equation are of the form - pui'uj'.
For example, - pux'u,' represents the transport of x momentum in the

y direction and is called the turbulent or Reynolds stress. Similarly,

ST
the extra term in the thermal energy equation is -pui'T'. It represents

the transport of temperature due to turbulent fluctuations in the x
or y direction and is called turbulent heat flux.
These equations no longer form a closed set, since there are 4

equations and 7 unknowns, T, ﬁ}, T, 5: Uy s u&, and T'. Exact transport

equations can be derived for ui'ui', ui'uj', ui'T' and uj'T' but these

will contain turbulence correlations of the next higher order such as

uk'ui'uj‘ [11,20]. It is the introduction of models for turbulent

stress and heat flux which leads to the approximate nature of the

solution for turbulent flow.
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3.4. Closing the Turbulence Model

The turbulence model must simulate the averaged character of real
turbulence. The oldest and most widely used turbulence models
(including the model used to perform this analysis) are based on the
eddy viscosity/eddy diffusivity concept introduced by Boussinesq in
1877 [24]. The concept was originally conceived by presuming an analogy
between molecular motion and turbulent motion. Since molecular motion
is proportional to the average velocity and the mean free path of the
molecules, turbulent motion was assumed to be proportional to a velocity
characterizing the fluctuating motion and a typical length which Prandtl
called a "mixing length." The eoncept of eddy viscosity/eddy diffusivity
has been found'to work well in practice.

The eddy viscosity L is defined from:

— 3u du
2 B e BB el
uy uj vt axi + axi) 2/3 k 51j (3.19)

where 6ij is the Kronecker delta which equals 0 where i#j and where

for convenience the overbar has been dropped from the non-fluctuating

component. Introduction of the -2/3k § term makes the equation

ij
applicable to normal stresses. Equation 3.19 assumes that in analogy
to the viscous stresses in laminar flows the turbulent stresses are
proportional to the mean velocity gradients. However, the eddy
viscosity, unlike molecular viscosity, is not a fluid property; rather

it depends strongly on the nature of the turbulence. Similarly, the

eddy diffusivity is defined from:
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- ot =
uy T r BT/axi

which is a relationship directly analogous to turbulent momentum
transport (i.e. turbulent heat transport is assumed to be related to
the gradient of the mean temperature). T, like Ves is not a fluid
property but also depends on the degree of turbulence., T and Ve can
be related by the Reynold's analogy, which is based on the fact that
the phenomena of heat and momentum transport are of the same form [16]:

du
i.e. T.=p(v + vt) 5

and

dr

- 5

Reynolds postulated that since these phenomena were so closely related

then the coefficients must also be closely related. They can be

combined into a dimensionless number, the turbulent Prandtl number
vt

N
which is analogous to the usual Prandtl number Cpu/k. That is since the
usual Prandtl number represents v/A or the ratio of the diffusion of
molecular momentum to the thermal diffusivity in main flow, the
turbulent Prandtl number is the ratio of the diffusion of molecular
momentum due to turbulent fluctuations to the diffusion of thermal

energy due to turbulent flucuations. The turbulence models based on
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the eddy viscosity/eddy diffusivity concept have been divided by Rodi
[23,24] into 3 categories:

1) O-equation model

2) l-equation model

3) 2-equation model
The model used in this work is a 2-equation model but the others will
be discussed briefly.

The O-equation models do not involve additional transport equations
for the turbulent quantities. Eddy viscosity is specified directly from
experiments or empirical formulae. An example of this type of model
is the well-known Prandtl mixing length model. Prandtl assumed [16]

that

where ui' is the mean magnitude of the fluctuating velocity and lm
is a "mixing length."
Furthermore, ui' is equal to the mean velocity gradient times

the mixing length yielding

2
v, = 1% du/dy.

To account for heat transfer, the relationship I' = vt/Prt is used.
lm2 and Prt are empirically determined and are far from universal
constants. While this model can be successfully applied in simple

flows, it is not generally applicable because Y, and therefore
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[ equal zero whenever the velocity gradient equals zero. 1In a case
such as the problem discussed in this work where there is recirculating
flow, this would imply that heat is not transferred from the hot to

the cold fluid.

One-equation models give up the direct link between the fluctuating
velocity scale and the mean velocity gradients. The magnitude of the
fluctuating velocity is determined by writing an additional transport
equation. Physically, the most meaningful scale is the V& where k is
the kinetic energy of the turbulent motion. k is defined by (for a

two-dimensional problem)

e

) 2 2
k = 1/2(ux + uy

)

TheWk is a velocity scale for large-scale turbulent motion since

v a u 'Land¥k a u,' then
t 1 i

v =c'Vk L (3.20)
t

which is known as the Kolmogorov-Prandtl expression. The distribution

of k can be found by writing a transport equation for k as follows:

u "a ! — U,

ﬂ.{ i = _a_ ' _.j__j__ E _ ' 1
5t oYy i, ax, (Y4 ) Ui Yy k.
j i 3

v

rate of convective diffusive production by
change transport transport shear
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= B 8; u,'T' - Y e e e

Eiinn i
Buoyant production/ viscous
destruction d1851pat10n 7

Unfortunately, the exact k equation is of no use because new unknown

correlations appear in the diffusion and dissipation terms.

Therefore, model assumptions must be introduced for these terms. For
the diffusive transport term, the diffusive flux of k is often

assumed proportional to the gradient of k:

'
)
g, 9x
k ;: B

where Ok is an empirical diffusion constant. The entire dissipation

term is modeled as:

where CD is another empirical constant. The k-equation then reads

v u. au v

sk ok 9 t 3k 1 t T
3? + ul X - ox (E_ X ) + ( X, Y 5x. ax e i Pr gx
1 i k 1 j i ] t i
3/2
CD k

T (3.21)
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This equation still contains a length-scale L which needs to be
specified usually from simple empirical relationships like those used
for lm’ the mixing length in the Prandtl model.

The two—-equation models attempt to write a transport equation for
the length scale in addition to turbulent kinetic energy. This trans-
port equation need not have L as a dependent variable. Many authors
have proposed using €, the dissipation rate, as the dependent variable.

3/

Since € a k 2/L and k is known from the solution of the k
equation, solving for e specifies L. While an exact e-equation can
be derived from the Navier-Stokes equations, the resulting equation

contains complex correlations whose behavior is little known. The

modeled form of the ¢ equation is

v

e 9€ d t 3¢

i) + N = e A . S s RS

ar ui ox, X, (0 ax_)
i 1 € il

rate of convection diffusion

change

€ €2
+ Cle s (P+G)(l+c3ng) - CZE 07? (3.22)

l generation - destruction ]

where UE, Cls’ CZE and C3E are empirical constants and Rf is the flux
Richarson number, a dimensionless number which indicates the magnitude
of buoyancy effects.

The k-equation (3.21) and the e equation (3.22) form the basis

of the k-e turbulence model used in this study. A discussion of how
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the empirical constants were determined can be found in Rodi [24].

Suffice it to say that in the model used, the empirical constants had

the following values [30].

Table 3.1. Constants used in k= model

C c C a a c Pr

Bouyancy effects are accounted for at two levels in the k-t model:
the B term in the k equation and the flux Richardson number term in
the € equation. In both references 11 and 27, suggestions can be
found as to how to improve results by having the constants '"vary"
with parameters such as Richardson number (a dimensionless measure
of stratification) or the deceleration of centerline velocity.

In summary, the equations to be solved are:

Continuity

®
Veu

I
o

(3.23)

Momentum

' "1 (3.24)
sl S ; A . = - L L3
Vi ) v (vt v ui) B(T To) 84



30

Energy
4T . ge(k VT) (3.25)
dt
where
v = v+ v
€ t
k =K+ T
E
Vt
Prt =.i—
Kolmogorov-Prandtl
- '
vt Cu k L (3.26)
k equation
3k sk 3 Yt ok e A s Vg a1
at 1% . w ol TS YR m TR
i i "k % j i %y e 9%
- C k3/2
D (3.27)
L
= eguation
v
3e JE d t €
3¢ £ g, B - == (= ) (3.28)
at Bxi Bxi GE Bxi
+ C £ (431 52
= 45 + = S
le k CieRe) = Cp.
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C C C,.» @

e’ Cae and o_ are empirically defined

D’ Tlg’

]
Prt, CU y B Kk

constants. B, v, k and Rf are fluid properties, while g, To and
P should be defined by the problem leaving seven unknowns (ux, uy, T,

v I'n k and €) and seven equations. The method of solution for

t,

these equations is discussed in the next chapter.
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4, THE METHOD OF SOLUTION

In order to solve the differential equations developed in the
previous chapter, approximate finite difference equations must be
derived. There are a number of ways that finite difference equations
can be written which greatly influence both the magnitude of the error
introduced by the approximation and the stability of the solution. The
numberical scheme presented in this chapter was developed by the
Laboratorie National de Hydraulique of Electricite de France. It is
described in references 3, 30, 31 and 32 and is the scheme used to

analytically solve the problem of the turbulent mixing of the HPSI jet.

The primitive variables involved in the equations to be solved are
u, v and P. (In the previous section, the subscripts i and v or i and j
were used to denote the directional component of velocity. 1In the
following sections, for convenience, the subscripts are dropped and
v indicates the velocity component in the y direction.) The solution
can be found directly in terms of these variables or it can be found in
terms of the vorticitiy, w, and the stream function, {. The algorithms
which use the pressure variable have more complicated boundary conditions
because the equations require knowledge of the pressure gradient. In
cases where a solution for the pressure field is not a desired result of
the calculation it is easier to work in terms of the vorticity and stream
function because of the simpler form of the boundary condition. The
stream/function/vorticity method assumes that the main flow outside the
viscous sublayer is ideal (i.e. inviscid and irrotational). The outer

edge of the viscous sublayer is then connected to the known 'mo-slip"
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boundary condition at the wall by means of an empirical relationship
such as the "universal law of the wall" [16]. Because detailed
knowledge of the pressure field is not of interest in this problem, the
stream function/vorticity method was used.

For simplicity, only the discretization of the equations of con-
tinuity, momentum and internal energy will be discussed in detail.
The kinetic energy and viscous dissipation equations are similar and
treated analogously. The equations to be solved are:

x-component of momentum:

ou 3u du 1 3P
—— —— — —_—— — 1 a -
5 +: 1 3 + v el 3 + div (v grad u) (4.1)

y-component of momentum:

v av av 1l 2P
by 4yt = o — = 4 oad v rad v) + Bg(T-T
e E WY 5y po 5y div ( o 8 ) g( o) (4.2)

continuity:

du , 9v

b T gy =0 (4.3)

internal energy:

—+u—+v —;-= div (Ke grad T) (4.4)

where u, v, T, and P now represent the mean flow values of velocity in
the x component, y component, temperature and pressure. As before, B8
is the dilatation coefficient defined from:

Dreference —B® pB(t—treference)'
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T0 is the initial temperature, and Ke and ve are effective thermal
conductivity and kinematic viscosity which include turbulent effects.
The orientation is assumed such that gravity acts only in the upward,

vertical direction (which eliminates the bouyancy term from equation

4.1).

4.1. Discretization in Time

Assume that all values are known at time step N and that it is

desired to solve for the values at time step n+l. The method described

aux

is based on Chorin [5]. First, the auxiliary variable u and
vaux are defined such that:
aux N N N
u - u N &u N du  _ .. aux
T tu ot Sy - dlv(\)e grad u” ) (4.5)
and
aux N N . N
v - v N &v N &v aux
e =Y —_—— = T: d .
= ¥ ¥ s~ = div(y, grad v ) (4.6)

where the superscript N represents the time step at which the wvalues

of these variables are to be used. Since uN and VN are known, S

and v>"F are given by solving the two equations 4.5 and 4.6. By sub-
tracting equation 4.5 from 4.1 and equation 4.6 from 4.2, it is found

that the auxiliary variables are related to the desired variable,

N+1 N+1
u and v , in the following way:
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+
UN 1k _ uaux . l__3PN+l 5% o
t p ox (4.7)
0
+
VN 1 B vaux . 1 aPN+l -
St Py dy :

To eliminate the need for knowledge of the pressure function, the curl

of the vector V is taken. When this is done, all terms involving the

pressure, P, cancel.

+ +
“,'b’ 1 N+1 N+1 aP}\Hl . 3PN+1
= u + v, = -

1
i i oo — 8t + u o St

o
o
(o]

+
+ VO 4 (T l-To) 5t

. i il k
curl Ve o 3/ 9x 3/ 3y 3/ 23z
u v W
- ava.u:s: ) auanm . BTNH. N
ax oy X
or
N+1 N+1 aux aux BTN. +
curl (u , Vv ) = curl (u , v ) - Bg 8§t (4.9)

ax

By definition, the curl of the velocity vector is the vorticity, w.

This vorticity is related to the stream function as:

VW o= - w (4.10)

and the stream function is related to the final velocities as:
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L 3V (4.11)
oy

N+1 3V

. - (4.12)

Equation 4.9 involves the temperature at time step N+1 which can be

found from the discretization of equation 4.4:

N+1 N N N
P silalt S | N & N 6T _ +1
i.e. 3t + u o + v & div(Ke grad TN ) (4.13)

-+
Since all variables are known at time step N, TN . can be found directly
from the solution of equation 4.13.
In summary, the procedure is as follows:

e solve equations 4.5 and 4.6 for ™ and vaux

s solve equation 4.13 for TN+l
e solve equation 4.9 for the vorticity
e solve equation 4.10 for the stream function

+
® solve equations 4.11 and 4.12 for the final velocities uN 4

and vVt1,
Thus, the computation of time step N+1 is completed and the computation

of time step N+2 may be begun if desired.

4.2. Discretization in Space

The above discussion focused on the discretization of the
differential equations with time. In order to utilize the outlined
procedure, there must also be a discretization with space. This is
done by dividing equations 4.5, 4.6, and 4.13 into two parts and

solving them separately. The equations are of the general form:
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2 2
B L BE B 3°F  3f
st T8 TV " CC 2+ 2 (el
Ix ay
where f is either uaux, v or TN+1. The left-hand side of equation

4.14 represents the transport term while the right-hand side represents

the diffusion term. 1In solving such transport equatioms, the advection

and diffusion steps are separated and solved successively.

4.2.1. Diffusion term

To solve the diffusion component of equation 4.14, the following

equation must be discretized and solved:

o _ ot et
sz ox 9x
m,n m+l/2,n m-1/2,n
where
af = fwin " fmn
3ax Ax
m+l/2,n
and
of x fm,n B fm—l,n
ax Ax

m-1/2n
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Figure 4.1 Node locations for Finite Difference equations

When similar equations are written for Bzf/By2 and these are substituted

into equation 4.15 the following equation results:

fmn(ZAx + 24y) = (f s fm_l’n)ﬂy - (fm + f )Ax

mt+l,n ,n+l m,n—-1

This equation was solved with the Gauss-Seidel method. This method of
discretization is called a central difference approximation. The order
of a discretization approximation is usually determined from a Taylor's

series expansion:

) _ bx of ax” °f
mHl, 0 mkl/2,n © 2 ox

and
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) Ax f bx” °f 3
o Eiyn 0 x A T + ol

ax
1
m+l/2, el

The central difference approximation used above is obtained by subtracting
. . 2
these 2 equations. Since all terms up to Ax are retained (or cancelled),

the approximation is third order accurate.

4,2.2, Transport term

The transport term of equation 4.14 is of the form:

af of of
3e + u E;—+ v 2y (4.16)

The unknown f is defined by its value at each node. The field f is
known at time step N as is the boundary condition fO at the area where
the flow enters the domain. For the transport term, rather than
considering convection fluxes through central surfaces (as in the
diffusion term), it is more natural to follow a quantity as it is
convected along a stream line. Consider Figure 4.2 which illustrates
the method used called the Characteristic Method. Given a particle

which is at node Mj at time tN + &t, the position Pj where it was at

time ty can be calculated by solving for the pathline [3].

Along the characteristic curve C, (defined by‘%% = ui), equation

j

-+
4.16 can be written as %%—= 0. Therefore, to compute fN 1 (which is

in this case, either TN+1, Y or vaux) for any node Mj’ the following

is done:
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j

Characteristic /
Curve

Figure 4.2 TIllustration of the Method of Characteristics

+
® compute the characteristic line Cj leading to M, at time tN 1
from
dx
1 N+1
— = 4,17
dt ui s X(t ) M, ( )

g

e compute ij = fN(Pj) where Pj is the foot of the pathline

a—

+ N
The expected result is fN 1 (Mj) = f (Pj) because Pj and Mj belong to

the same characteristic. Equation 4.17 is an ordinary differential
equation. Its solution was carried out.by a Runge Kutta Method.
. " . N

In most cases Pj is not a discretized node, so the value f (Pj)

must be interpolated from the following Hermetical polynomial:
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4 2

N of o f o f
- - = g 25) wp g S

f (Pj) ?=l (Cifi Cx,i ax 3y Cxy,i axay

where £ (Pj) is the interpolated scalar at point P, Bf/Bxl i B af/ayl "

and Szf/axay |i are the derivatives of the scalar field at the nodes

C G and C are

forming the corner of the cell (i=1,4). € x,17 Uy,i xy,i

i’
cubic polynomials in x and y which relate the location of P to the
grid. The spatial discretization is, therefore, fourth order accurate.

Boundary conditions are taken into account when, between tN and
tN+l, the pathline crosses a boundary. In such a case, the integration
of equation 4.17 stops at time T and gives the intersection M between
the characteristic and the boundary. At this point, fN+l(Mj) is set
equal to the boundary value fo(T’MF)'

This method of calculation of the advection terms is very stable.

Usually the Courant number:

At u
X

Ax

Co =

must be less than unity. With this scheme, the Courant number may be
greater than 1 and the time step is dictated by the time variation
of the velocity field.

The solution to the two separated terms of the equation (advection

and diffusion) are repeated until the solution for f converges.

4.2.3. The vorticity and stream function

The above is a description of how equations 4.5, 4.6 and 4.13 are

aux _aux
solved. Once they are solved for a certain time step, the u ", v
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N+1
and T fields are known and equation 4.9, the solution for vorticity

can be found directly from:

y2UX L _ 2Vaux uaux + uaux N 2uaux
w = mtl,n m-1,n m,n m+l,n m-1,n m,n
Ax Ay
N+1 N+1 N+1
£ (T o -
_Bs (To1n ¥ Tp1,0 = 2Tyn
Ax

Equation 4.10 is discretized using nine points. Additionally the
grid for ¥ and w is offset from the grid for u, v, and T (see Figure
4.3). This is for convenience because velocity is obtained from a

simple derivative of V.

' - i
' ’ !
1a b . C
@ e e en e W e A S S P JgES 4 G wm can - R i
1 7 x ' u, or T grid
) a ! B )
- .- Y or P grid
[ ' 1
yd le |
- o - — . —— — - —— - — -
| i |
! ¥ ) 3 |
| i !
- W ;g- R et _.ht —-— - ;l-i- - -
| | 1
' ' {
i ] '
]

Figure 4.3 Staggered P,V grid
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The nine point discretization is:
A E -+ - -
V=¥, * Gl + = Gyl m Gy + Cpu + Coly

+ Cyvy - 4Cpy = W

where
¢, = —5+——
4Ax% 4Ay
and
1 1
C., =——p = 5
2 2Ay2 Zsz

Equations 4.11 and 4.12 are similarly discretized and the final veloc-
ities are found. This system of equations (the discretized approxima-
tions to 4.10, 4.11, and 4.12) are solved together using a successive
over-relaxation techique. (They are solved together because boundary
—_ N+1 N+1 ;
conditions are known for u and v rather than ¥.) The numerical
solutions to the k and ¢ equations are of the same form and are done

analogously.

4.3. The Computer Code
This solution scheme is programmed as ULYSSE, a proprietary code
of the Laboratorie National de Hydraulique de Electricite de France.

The use of the codé is described in reference 12.
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4.3.1. Boundary conditions

The boundary conditions and initial conditions which are necessary
to solve the described system of equations are introduced either as
input to the code .or within the code itself. Turbulent flow can be
bounded by either a free-surface (e.g. ocean-air interface), non-
turbulent flow (e.g. a jet injected into a large stagnant body) or by
solid walls, as in this problem. In the case of solid walls, the
boundary condition which is known for the velocity is the "no-slip"
condition; i.e. Bui/axi = 0 at the wall. Unfortunately, the equations
derived in Chapter 3 (specifically the k and & equations) assume that
the large-scale interactions predominantly responsible for scalar
transport are unaffected by the fluid's viscosity. Therefore, they
are not applicable to the viscous sub-layer next to the wall. Even
if they were applicable, there are very steep gradients near the wall
and many grid points would have to be placed there for adequate
resolution. These problems can be avoided by using an empirical law
which connects the wall conditions to the variables outside the viscous
sublayer. In this work, the "universal law of the wall" [16] is used
where:

u,s

u
*n

2
u

1n

1 5
K

*

is the frictional velocity

ug is the velocity parallel to the wall, u,

(u* = 1/p), ¥ is the von Karmen constant (.41) and SN is the boundary
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layer thickness. For the temperature boundary condition, the walls
were assumed to be adiabatic; i.e. 3T/3y = 0. Boundary conditions

for k and & were

ui 10 ui
k =— and €& =
Cu o 68N

which result from the fact that in the boundary layer region, Reynolds

stresses are nearly constant. In this region, convection and diffusion

of u, u, are negligible so that local equilibrium prevails.

Initial conditions are TO, the fluid temperature at time 0, Yo
the velocity of the fluid at time 0, and ko and £y the initial value
of turbulent kinetic energy and dissipation, respectively. ko and R

were calculated from empirical equations of the form:
2
ko = .003u,

e = .000675u
o

With these boundary and initial conditions, the equations form a closed

set which can be solved.

4.3.2. Grid spacing

The choice of Ax, Ay and At is left to the user of the code. The
X,y grid used to solve the problem considered in this thesis is shown
in Figure 4.4. The overall dimensions of the problem are based on a

1
personal letter . The modeled length of the cold leg (6.86 m) is

1D. A. Peck, Combustion Engineering Power Systems, Windsor,

Connecticut, personal letter to K.H. Sun (October 19, 1981).
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represented by 84 grid points in the x direction and 16 in the y
direction. The HPSI piping is modeled by 5 grid points in the x
direction and 8 in the y direction. The grid is non-regular but
it is rectilinear. The points on the left-hand side are .1524 m apart
in the x direction; the points in the area of intersection of the two
pipes are .0508 m apart in the x direction; the points on the right
hand side of the cold leg were .0762 m apart. The irregular spacing
results from a desire to minimize computing time and a belief that
in the stagnant end of the cold leg (left-hand side, Figure 4.4) only
the gross characteristics of the fluid flow were necessary. Spacing
in the y direction is regular throughout the cold leg at .0508 m,
while in the HPSI pipe it is .0762 m. Again these are based on the
belief that the detail in the HPSI pipe is less important than the
detail in the mixing region. The length of HPSI piping modeled was
arbitrary but intended to be long enough so that a parabolic velocity
profile could develop. In general, the grid spacing and dimensions for
this problem were based on the spacing and dimensions of grids
successfully used in other problems.

As input to the code, each point P (i,j) is designated either:

1) outside the boundary of the problem

2) a wall

3) in the flow field

4) an entering or exiting point of the fluid.
For example, points P(i,j) where i = 1 through 85 and j=1 are all

outside the boundary of the problem. Points P(i,j) where i=2 and j=2



47

(30,25) _ {36,25)

HHH
e i
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< >
L=6.9342 n

Figure 4.4 Grid used for analysis of HPSI problem

through 17 are solid wall while points P(i,j)’where i=31 through

35 and j=25 are entering points. Initial conditions are prescribed

for the velocity and temperature of the entering points and the tem-
perature of the flow field. These are discussed further in the next

chapter.
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5. THE RESULTS

The problem which was investigated using the ULYSSE code described
in Chapter 4 is one which arises due to the injection of High-Pressure
Safety Injection (HPSI) fluid into the cold leg of the reactor (see
Figure 1.1). The cold HPSI fluid does not mix completely with the
warmer stagnant fluid found in the cold leg. Instead, the fluid
stratifies with a colder, more dense layer settling at the bottom of
the pipe and a warmer, less dense layer rising to the top. The goal
of this work was to account for stratification in order to predict

-the temperature of the fluid at the reactor vessel wall as a function
of time. The results presented herein represent an attempt to
accurately model these buoyancy effects.

The region which was modeled is shown in Figure 5.1. 1In the
interest of saving computation time, only the cold leg and injection
point are modeled. The addition of the downcomer would have
increased computation time and costs by approximately a factor of
four. The transients in the cold leg are the most severe since the
fluid has had little time to entrain warmer fluid. The further the
fluid is from the point of injection, the longer the fluid has had to
mix with the warmer fluid; therefore, it is conservative to assume
that any transient the reactor vessel wall might experience would be

bound by the transient experienced in the lower half of the cold leg

piping.
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The fluid enters the modeled volume at point 1 with a volumetric
flow rate of 0.0174 m3/sec and a flat velocity profile of 0.3434 m/sec.
The fluid exits the volume at point 2 with the same volumetric flow
rate, but with the velocity profile unspecified. The temperature of
the HPSI fluid is approximately room temperature, 26.70C, while the
initial temperature of the stagnant fluid in the cold leg is 28200.
Point 3, a solid boundary, represents the loop seal which occurs in
the reactor coolant piping prior to the reactor coolant pump (backflow

through the pump will occur).

HPSI F UI£ NTERS

0.58m I @
e » st
@ 0.762m b5 5% @—-’- FLUID
jEXITS
<+

> - >
3.048m 3.58m

Figure 5.1 Region modeled for [iPSI analysis

Important dimensionless parameters which characterize this flow

are Reynolds number, densimetric Froude number, and Richardson number
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[29]. The Reynold's number, DVp/u, is a standard dimensionless number

indicating turbulence where:

D - pipe diameter

V = mean fluid velocity
p — fluid demsity

p = fluid viscosity

Based on the HPSI fluid, Re equals 102,000 - indicative of turbulent

flow. The densimetric Froude number is defined [29]:

where g is gravity (9.8 m/secz) and the subscripts m and o refer to
fully mixed and initial (ambient) densities respectively. 1In this
case, the mean fluid velocity is 0.3434 m/sec and D is the diameter of
the cold leg. The ambient demsity prior to buoyant flow is the density
of the cold leg fluid while the fully mixed density (due to the
stagnation of the coolant flow in the loop) will eventually be the HPSI
fluid density. The Froude number for this case is 0.032.
The pipe Richardson number is defined by [29]:
Dm—DD

Ri = d cos 8

g
e po V2

where all the variables have the meanings as previously defined,

Because of the horizontal orientation, cos 8 is equal to 1. The
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pipe Richardson number can be interpreted as a measure of buoyancy
flux per unit width and indicates the degree of stratification. Rip
equals 1114 for this problem. Except for the fact that Ap/p is defined
as p_-p /p_ in the Richardson number while it is defined as p =p /p

m o o m o o
in the Froude number, the Froude number is equal to the inverse of the

square root of the Richardson number.

5.1. A Qualitative Discussion of the Results

The results from the computer analysis are presented in Figures
5.2 through 5.18. At each time, isotherms and velocity profiles are
shown. The magnitude of the directional arrows indicate the relative
magnitude of the velocity vector at that point. The isotherms are
plotted every 30°¢ beginning at 30°C with the largest isotherm equal
to 270°cC. Examining Figure 5.3 shows that the recirculation patterns
set up by the entrainment of warm fluid by the colder HPSI jet are
apparent at only 3.3 seconds. The times reported here are real
time, not computation time. For example, because time steps of 0.05
seconds were used, 3.3 seconds represents the 66th time step. Since
each time step required approximately 3 seconds of C.P.U. time to
complete the calculations, 3.3 seconds represents 1.6 minutes of
computation time. Figure 5.4 demonstrates that the stratification
of the cold fluid is readily apparent by only 6.3 seconds. It also
demonstrates how the HPSI flow separates into two components - one

which flows back towards the closed end and one which flows forward
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to the open end. 1In Figure 5,5, the development of counter-current
flow into the open end of the cold leg is predicted even though the
velocity profile at this point was unspecified. Following the tempera-
ture and velocity profiles chronologically, both the growth of the cold
HPSI layer along the bottom of the cold leg and the growth of the
recirculation pattern is observable. Isolated pockets of cold or hot
fluid are also seen; these grow and dissipate with increasing time.
Throughout the transient, the HPSI jet remains intact as it falls to
the bottom of the cold leg.

In order to gain confidence in the results of the computer model
for such a complex flow situation, a comparison of the analytical results
with experimental results was undertaken. The experimental results are
from 1/5 scale tests performed by Creare, Inc. of Hanover, New
Hampshire. The results are published in references 7 through 9. In
performing these experiments, prototypical Froude numbers were preserved.
Both quantitative and qualitative data were recorded. The qualitative
data result from dye being injected with the HPSI fluid and the diffusion
of the dye being recorded with photography.

The following are some of the reported observations [7]:

"Extensive still and motion picture photography reveal the
following key phenomena. within the range of the study:

® buoyancy induced flow stratification
e turbulent mixing and entrainment

e counter current flow into the cold leg."
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Other qualitative experimental findings include those in reference 9:
"... the jet remains relatively intact as it falls. When

the injected jet strikes the bottom of the cold leg pipe,

the HPI flow spreads along the pipe wall as a thin film....

The HPI flow splits roughly equally with about half being

directed toward the vessel and the remainder, in backflow,

toward the pump.... After a time [...] a stratified layer

of cold water forms, thickens and eventually fills the pipe."

Certainly qualitatively the analytical results match the experimental

findings well. A quantitative discussion of the results follows.
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5.2. A Quantitative Discussion of the Results

There have been many quantitative investigations of buoyancy
and stratification in fluids other then the Creare experiments, such
as those described in references 10, 15, 29, and 33. Unfortunately,
the results derived in other buoyant flow situations such as thermal
discharge from a power plant into an ocean or lake, are not directly
applicable because the results are very sensitive to geometric details.
However, all of the results cited above show a strong dependence on
Froude number. This dependence on Froude number for the HPSI case can
be proven in the following way.

Much of the existing literature on buoyancy and stratification
uses the concept of an entrainment coefficient. This entrainment co-
efficient, E, is a measure of the increase in mass flux in the turbulent
layer and can be directly related to the bulk fluid temperature. It is
defined as:

(the rate of mass entrained by the jet)
(the initial jet mass flow rate)

The parameter, E, does not give any information about the temperaturé
of the fluid at the fluid-wall interface. This represents a serious
drawback since it is the temperature of the fluid at the wall which
is of prime significance in the case under investigation. This
temperature forms the boundary condition for the thermal analysis of
the reactor vessel wall. ‘

In other words, an equation of the form:
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3T aT
W 1l 3 W
r or (Kr ar )

— =

P pr ot
needs to be solved with the following boundary condition for surface
heat flux:

g =h {T .'-Tl)
fluid T wi;

where the subscript w represents the properties of the reactor vessel
wall and the subscript I represents the interface.

The more typical convection boundary condition, which involves
TBulk of the fluid, cannot be used in the conduction problem of the

reactor vessel wall because of the complex nature of the buoyancy-driven

stratification. Since the relationship between T and T can

Bulk surface
not be generally derived for complex flow situations; typically, in

cases where the entrainment coefficient method is used, E is used to

find T by an experimentally

which is then related to T

Bulk surface

determined non—-dimensional temperature profile. Such non-dimensional
profiles have been developed for many turbulent jet situatioms [1,15]
but none would be applicable in this case because of the differences in
geometry. The experimental data which are available are not sufficient
to deduce a temperature profile since only 3 radial temperatures were
measured at any one axial distance. The code-predicted temperature
profiles for 2 locations, one midway between the injection point and
the open-end of the cold leg and one at the open end of the cold leg

(both at T=59.2 sec.) are presented in Figures 5.19 and 5.20.
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An additional problem with the entrainment coefficient concept
is that since the problem under investigation is a transient problem
where bulk fluid temperature decreases with time, the entrainment
coefficient itself must be a function of time. The published correla-
tions are for steady-state problems where the entrainment coefficient
is constant.

Nevertheless, it is instructive to compare the entrainment co-
efficient as derived from the experiment and the analysis. For both
the experiment and the analysis, E can be crudely calculated by applying

a mass and energy balance to the volume shown in Figure 5.21.

Figure 5.21 Sketch for the derivation of E

One can write that:

C MT 4+C MT +C MT, =
pL 1 1 V%2t T Yuglsly v G T, + C Pt (5.1)
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This also assumes that T3 equals TZ' This assumption was experimentally

determined to be reasonable. Additionally:

M, =;41 +§12 . (5.2)

By definition:
® L ]
E - MZ + M3 _ (Mass flowrate entrained)
. (Initial jet mass flowrate)

i

By manipulating equations 5.1 and 5.2, it is found that:

B _p44” 011
¢ ,T,7C.,T, (5.3)

To arrive at an entrainment coefficient for the computer model, T4

was taken to be the temperature of grid point 60, 7 while 'I'2 was taken

to be the temperature grid point 60, 11 at time equal to 60 seconds.

Tl is, of course, 26.6700. This leads to:

E = 6.08 (at Fr = .032)

which represents an average entrainment coefficient over the first
60 seconds of the transient.

Experimentally, T, was taken to be the average of thermocouples

4

51 and 55 while TZ was taken to be the average of thermocouples 54 and

55 also at time equals 60 seconds. The results of the entrainment co-

efficients for three different Froude numbers are presented in Table 5.1.
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Table 5.1 Experimentally determined entrainment coefficient for various
Froude numbers

Froude Number .017 .025 .051

Creare Test Number 103 105 100
(Reference 9)

E 11.20 8.56 2.83

In references 10, 15, 29 and 33, the entrainment coefficient varied
either directly or inversely with the Froude number depending on the
geometry and flow conditions investigated. For the HPSI case, by
examining Table 5.1 which is plotted in Figure 5.22, it is seen that
the entrainment coefficient correlates quite closely with the inverse
Froude number. In addition, it can be seen that the overall entrain-
ment coefficient derived from the analysis shows reasonable agreement
with the experimentally derived curve. This agreement lends confidence

to the comparison of the analytical and experimental results.

While the entrainment coefficient concept does prove the
functional dependence of the thermal mixing on the densimetric Froude
number, this concept is not particularly useful in this problem because
it provides only a "bulk" fluid temperature. As discussed previously,

it is the temperature at the fluid wall interface which is required.
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Figure 5.22 Entrainment coefficient versus Froude number
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Therefore, it was desired to compare the experiment with the analysis
on the basis of a particular point of interest. However, there are
several problems which arise when an attempt is made to compare the
analytical and experimental results quantitatively. The greatest
problem is the difference in modeled geometries. The analysis modeled
only the cold leg and a portion of the HPSI pipe, whereas the experiment
included such components as the stalled pump, the loop seal, downcomer
and lower plenum (see Figure 1.1). Another problem arises because

the analysis was done using the high temperatures and pressures typical
of reactor condition. Due to the difficulties of working at these
conditions, the experiment used much lower temperatures and pressures.
The Froude numbers of the experiments were kept prototypical of reactor
Froude numbers by using both lower flow rates and salt-induced density
differences. The tests were run at Froude numbers of .017, .025 and
.051, whereas the conditions used for the analysis led to Fr = .032.
However, since it is desirable to compare the two sets of results
quantitatively some method of scaling must be found. Because of the
significant differences between the experiments and the analysis, this
comparison was not performed with the expectation that experimental
results would in any way validate the computer model or with the belief
that a direct comparison could be made. Rather, the comparison was
undertaken in order to compare the trends which the two types of data

showed.
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In a first attempt to compensate for the differences between the
analysis and the experiment a dimensionless temperature of the form:
T(e) - Ty

g~ 4y

a(t) =

was plotted versus time at various points for both the analysis and the
Creare results at various Froude numbers. An example of this type of
plot is presented in Figure 5.23 for mesh point 60, 2 in the analysis
and experimental thermocouple 51. Both of these are located midway
between the HPSI point and the open end of the cold leg at the bottom
of the cold leg piping. The basic exponential nature of both of the
experimental data at three:Froude numbers and the analytical results

is apparent. Had the experiment been performed in exactly the same
geometry as was modeled, the analytical data would be expected to fall
between the two experimental curves, Fr. = .025 and Fr. = .051.

As an attempt to remove the geometry effects, 9 was plotted
against a dimensionless time. The dimensionless time accounted for
several discrepancies. First, the Creare experiments took the time,
t(o), to occur when the HPSI fluid first enetered the cold leg, while
the analytical t(o) occurred when the HPSI fluid entered the HPSI
piping. Therefore, the dimensionless time, ¢(o), was chosen to occur
when the HPST jet first impacts the bottom of the cold leg piping.

This occurred at time equal to 3.2 seconds in the analysis,
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time equal to 1.52 in the Creare experiment where Froude number equaled
.025 and time equal to .76 seconds when Froude number equaled .051.
These variables times will be designated transit times, ttran (see
Figure 5.24). Additionally, ¢ was chosen to eliminate the effect of
different lengths of piping since the Froude number accounts for the
diameter effects, but not length effects.

To accomplish these goals, ¢ was chosen such that

e tran

¢ =1/

where L was the distance from the point of injection to the point of

interest and V was the velocity.

- e o o= o |

0 analysis

re
|

= 0 experiment

2(60,2)
t

=
|

= 1.83m analysis
0.32m experiment

=
]

Figure 5.24 Sketch for ¢ - dimensionless time
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A sample of these results are shown in Figure 5.25. Again, the basic
exponential nature is shown, but a large descrepancy still exists.
This shows that the dimensionless time was not sufficient to remove all
of the geometry effects due to the large additional volumes of the
pump, loop seal, downcomer and lower plenum. Therefore, a different
method of scaling the data was investigated.

Creare' reported that the general temperature behavior for any

point in the system could be described by [9]:

- * = - 5.4
T=T, (TL TH)exp( t/t) (5.4)
where
Ty — HPSI fluid temperature
TL - Initial loop temperature
t - Time in seconds since onset of transient

—
I

Characteristic mixing coefficient which depends on location
of the point, modeled volume and Froude number

Since this can be rewritten as:
e =
———=— = exp(- t/x) or © = exp(- )
TL Iﬁ
which is what Figure 5.23 and 5.25 show, this equation seems valid.
If the validity of this equation is accepted, one could scale the

data from a particular experiment with a given TH and T_ to any other

L
TH and TL by finding 7 from the experimental data, then substituting



= 0.025 experimental

0,051 experimental

Fr = 0.032 analytical

Figure 5,25

$ = t/(L/V)

Dimensionless temperature versus dimensionless

time
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these 1's and the desired temperatures into equation 5.1, again
assuming the same Froude number and modeled volume. This is done in
Figure 5.26 for mesh point 33, 2. For the moment, the difference
between the Froude number of the experiment (0.025) and the Froude
number of the analysis (0.032) is ignored. Point 33, 2 represents

a point on the cold leg wall directly opposite the point of HPSI

fluid injection. Because of this location, this is the point which
one would expect to have the most severe transient. Point 60 referred
to in Figure 5.26 is the number of the thermocouple in the experiment
which most closely corresponds to mesh point 33, 2. Figure 5.26 is
generated by substituting the experimental temperatures of 'I'H = 13.9°%
and TL = 66.7°C into equation 5.1 along with experimental temperatures
as a function of time in order to find 1, which varies approximately
linearly with time. These same values of T were substituted back

into equation 5.4 with the analytical Ty of 26.7°C and TL of 282°c.

In examining this figure, it is seen that the basic exponential
nature of the decay is predicted by the model but the characteristic
mixing coefficients are quite different. This is to be expected
since T is a function of both volume and Froude number. The effect
of Froude number on decay can be seen in Figure 5.27 where the results
from three experiments with different Froude numbers are plotted for
mesh point 60, 2 which represents a point midway between the HPS
injection point and the open end of the cold leg. The dashed lines
represents an estimate of where Fr = .032 might fall. The estimate

of where Fr = .032 might lie was performed by graphing t at 60 seconds



POINT 33.2
RAW EXPT DATA
POINT 60 TEMP ADJ.

. 00

+ B>+

o I | | I | I
0.ce 2.80 75 91 10. 00 1.2, 80 15.00

5. 00
TIME (SEC) (x10" )

Figure 5.26 Analytical results for mesh point 33,2 versus experimental results at
thermocouple 60

1% 5

98



POINT 60, 2 T
POINT 51 FR = .017 o
POINT 51 FR = ,.025 4
o POINT 51 FR = .050 X
|
~J
o
@ | ~
s ™
O_ — —
Q¥ — o
— = -
- ~ Approximation of
o Fr = ,032
(]
|
(=]
e
o |
o
o
" | I ! — | T | I
0. C0 2.50 5.00 T 50 10. CO 12.50 15.00 17.50
TIME (SEC) (x10' )

Fipure 5.27 Analytical results for mesh point 60,2 versus experimental results at
various Froude numbers

L8



88

versus Froude number as shown in Figure 5.28. 1 varies non-
linearly with Froude number. The 1 for Fr = .032 was interpolated

from the graph for point 60, 2 and used to calculate T(t) for the

dashed line in Figures 5.27.

® Thermocouple # 1

4OOJ A Thermocouple # 51
nThermocouple 60

300

T

200 =

100
Evaluated at 60 sec.

0 g i I 1 2

L] | } - | l
0.0 0.01 0.02 0.03 0.04 §.05
Froude number

Figure 5.28 Examples of how T varies with Froude number
at various experimental points

The effect of increased Froude number is to increase the severity

of the transient. Figures 5.29 and 5.30 also demonstrate this effect.
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The temperatures will decrease more quickly at higher Froude number
because as shown in Figure 5.22 proportionately less hot water is
entrained by the increased HPSI flow. It is obvious that this does
not completely account for the difference between the experimental
and analytical results because an additional fact - the different
modeled volumes - also has an effect.

It is difficult to account for different volumes in the two sets
of data because the volume factor is not the same as the actual
facility volume. The volume of each component has differing
effectiveness in showing the temperature decay. For example,
during experimentation [9] it was found that the 577 increase in
volume due to the addition of the lower plenum to the test geometry
led to only a 17% increase in mixing time, while the 25% increase
in volume due to the pump and loop seal led to a 437 increase in
mixing time. Therefore, the pump and loop seal are more effective
in slowing the transient than the lower plenum. The experimental
data suggest that the addition of the loop seal, pump and
lower plenum to the model would have the effect of increasing 1 by
67%. Figure 5.31 is a graph which shows the experimental transient
with the effect of less volume taken into account for mesh point 60, 2.
By comparing Figure 5.27 and Figure 5.31, it can be seen that the
experimental and analytical data agree more closely after this
adjustment but a discrepancy is still apparent. One of the most

probable reasons for this remaining discrepancy arises from the fact
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that the experimental data still include the slowing effect of the
downcomer where as the analytical data does not. A comparison of
Figure 5.29 with Figure 5.32 and Figure 5.30 and 5.33 shows the
same trends.

No experimental data exist on the quantitative effect of the
downcomer on the characteristic mixing time. The downcomer represents
an addition of 160% to the total modeled volume. If the addition
of this volume were to have the effect of increasing T approximately
60% than the extrapolated experimental results at Fr = .032 would
match the analytical results quite closely. If this were the case,

then the downcomer effectiveness factor:

£f = % increase in characteristic mixing time

E i
% increase in volume

would equal .38. Since this lies between the experimentally
determined .30 effectiveness factor of the lower plenum and the 1.7
effectiveness factor of the loop seal and stalled pump, it seems
plausible.

It is important to note that the assumption that a 2-D Cartesian
geometry can accurately model a 3-D cylindrical geometry could also
account for part of the discrepancy. 1In the 2-D geometry, a fluid
particle can not leave the plane of the paper. Perhaps the 2-D
geometry forces the particle to flow past a point in the cold leg

more quickly that the 3-D geometry would. In a 3-D geometry a
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particle can move out of the plane of the paper. This additional
freedom of movement has the effect of volume which would result in a
slower transient just as Figures 5.31 through 5.33 show. Therefore,
at least part of the discrepancy between the experimental and
analytical results could be due to the use of 2-D Cartesian geometry.
The turbulence model, itself, with all its implicit assumptions would
also lead to a discrepancy between the experimental and analytical
results. However, it is impossible to predict whether this discrepancy
would result in a faster analytical transient.
For the convenience of the reader, several other figures are
included, all of which show the same trends discussed above:
* Figure 5.34 which graphs experimental data, which has been

adjusted for the different volumes, at various Froude
numbers for mesh point 15, 2 which represents a point at the
bottom of the cold leg midway between injection point and the
closed end of the cold leg. '
Figure 5.35 which shows the results of the comparison for point
60, 9 which is a point lying on the centerline of the pipe
midway between the injection point and open end of the chosen
leg.
e Figure 5.36 which shows the Creare results for Fr = .025 at

t=60 seconds. It compares these to the analytical results

which were adjusted to account for the differing test tempera-

tures. This was done by assuming the analytical results
follow the same basic form:

T =T, + (TL—TM) exp (-t/1)

T was calculated by using the results from the ULYSSE code,
then a T, of 13.90°C _and T, of 66.7°C were substituted
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to find the value of the temperature at different points.
This allows a comparison of the total flow field. The code
predicted temperatures are always conservative, since they
represent a faster transient.

For the purpose of PTS analysis, which is the reason this situa-
tion was investigated, one would like to have a simple equation which
could be used for the boundary condition for the reactor vessel wall
analysis. It was believed that the desired equation could be derived

by assuming that the analytical results followed the equation:

T=Ty+% (TL t'TH) exp (-t/T) (5.4)

T was calculated for point 82,2 which represents the junction of the
cold leg and downcomer, since the transient it experiences would
conservatively represent the transient experienced by the reactor
vessel wall, T is plotted as a function of time in Figure 5.37.
It is obviously not a simple function of time, though it seems to vary
randomly about a curve which increases with time. Other t1's derived
from analytical results for other points in the grid showed similar
behavior. It must be concluded that equation does not apply to the.
analytical data and that there is no simple equation which can
adequately describe this complex flow situation.

As a result of these investigations, the major sources of dis-
crepancy between the experimental and analytical results arise from:

* the inability to exactly match a computational grid point
with a thermocouple location.
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® the HPSI fluid was injected exactly perpendicular to the
pipe in both the analysis and the experiment where Fr = .025.
The fluid was injected 30° off the perpendicular in the tests
where Fr = .017 and Fr = .051. This causes a difference in
the flow patterns and temperatures.

prototypical Froude numbers were preserved by using salt-induced
density differences to simulate the temperature induced
differences. Reference 29 discussed this effect. Experimental
results show large differences between the data from salt and
heat in the same range of density differences. These discrep-
ancies can only be explained by invoking the different molecular
diffusivities. Therefore, a second dimensionless number, the
Peclet number, must enter the problem. However, its functional
relationship is unknown.

e the transport properties of the fluid vary from point to point
and time to time within the grid because they are all functions
of temperature. However, all properties are considered
constant except the density which is approximated by a linear
relationship. This is an obvious idealization of such tempera-
ture dependent properties as Cp, u, k and p.

and, most importantly,

e the difference in volumes modeled. Experimental results
included the volume of the downcomer while the analytical
results did not. There is no satisfactory way to account for
the difference in these volumes since the "effectiveness"
of the downcomer has not been studied. However, in light of
the fact that the greater the volume, the slower the transient,
the results presented in Figures 5.19 to 5.36 are to be
expected.

Because of these significant differences, it is not easy to
discern whether or not the initial assumption that a three dimensional
cylindrical problem can be modeled by a two dimensional Cartesian
geometry is correct nor can the adequacy of the k-t turbulence model
be definitively determined. Nonetheless, when one considers the

factors listed above along with the inaccuracies associated with the

experiment itself and the fluctuating, random nature of turbulence,
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the similarity between the analysis and the experimental results leads
to basic confidence in the model. Additionally, since all the results
show that the model predicts a more severe transient than that
actually observed during experimentation, the model is certainly
conservative if the temperatures it generates are used to predict

thermal stresses in the reactor vessel.
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER WORK

The goal of this work was to investigate the use of a two-
dimensional nodal solution to the Navier-Stokes equations to solve the
problem of thermal mixing of the HPSI fluid with the stagnant fluid
in the cold leg during certain Small Break LOCA scenarios. The
result of interest was the temperature at the reactor vessel wall
as a function of time. The results generated by the computer model
were compared both quantitatively and qualitatively with experimental
results generated by Creare and reported in references 7-9. The
computer model successfully predicted all qualitative aspects of the
observed flow phenomena including:

® buoyancy induced stratification

e recirculation in the closed end of the cold leg

e counter current flow into the open end of the cold leg.

However, quantitatively the computer code did not match the
experimental results well. There are several major differences between
the model and the experimental system which may account for the lack
of agreement including the following:

® different modeled geometry

¢ different angles of injection for the tests with Froude
numbers equal to .017 and .051.

® the use of salt-induced density differences to preserve
prototypical Froude numbers rather than the strictly
temperature -induced density differences found in the
reactor.
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e the difficulty of exactly matching a computational mesh
point with an experimental thermocouple.

Considering these differences and the fact that stratification is
known to add a number of complicated phenomena to sheer flow such as
energy radiation, strong anisotropy and steplike density profiles
[7], none of which are accounted for in the present mathematical
model, the agreement between the theoretical and experimental results

is certainly reasonable.

Because of these differences between experiment and analysis,
one can not conclude whether the two dimensional computational solution
with averaged transport properties and a constant k-e& model of
turbulence accurately predicts a three dimensional geometry. However,
it can be concluded that the model was conservative and, therefore,
adequate for use with a thermal analysis of the reactor vessel wall.
Unfortunately, the calculations require a great deal of computational
time (e.g. the results presented herein required one hour of C.P.U.
time). Nonetheless, since '"prediction" by means of an experiment is
usually even more expensive, calculational methods are in great demand.
While the computational scheme has been validated in a number of
buoyant flow situations [30,3132], none were quite as complex as the
one investigated in this work. The results should be used with

caution.

Therefore, it seems as though future efforts should be concentrated

in the experimental investigation of the following three areas:

® the exact effect of salt versus thermally induced density
differences
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® the exact functional relationship to the Froude number
and

e the exact geometry effects of specific reactor components.
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