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1. INTRODUCTION 

One of the many design considerations in a nuclear power plant 

is pressurized thermal shock (PTS). In order to prevent brittle 

(i.e. sudden) fai lure of the pressure vessel as a result of thermal and 

mechanical stresses within the wall, the Nil Ductility Transition 

(NDT) temperature of the steel is designed to be below the lowest 

temperature the vessel will ever experience. However, as the vessel 

is irradiated by fast neutrons , the ductility of the steel is 

decreased and the NOT temperature (which represents the temperature 

at which the metal changes from ductile to brittle behavior) is 

increased markedly. This increase in NOT temperature leads to the 

possibility that when the reactor is being shut down, the vessel 

temperature could fall below the NDT value. If this occurs while the 

internal pressure remains high, brittle fracture may result [25]. 

While PTS always has been of concern, the Three Mile Island 

incident showed the industry that contrary to what was believed 

previously, the large break loss- of-coolant accident (LOCA) is not 

always the limiting transient. In particular, in the case of PTS, 

the limiting transient can be a small break in one of the hot legs 

of the primary coolant circuit. This could result in sustained high-

pressure safety injection (HPSI) into the cold leg with no natural 

circulation in the breached primary coolant loop (see Figu r e 1.1) (26) . 

Two parameters which strongly influence the degree of thermal shock 
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are the temperature and flow rate of the water adjacent to the vessel. 

These depend on the degree of mixing between the cold HPSI flow and 

the warm, stagnant fluid in the cold leg and downcomer. 

Due to the significance of this problem, three aspects of the 

mixing phenomena are being investigated concurrently by the industry. 

These include: 

• an experimental phase to provide both a qualitative 
understanding of flow and temperature distributions and 
quantitative empirical correlations. 

• the use of nodal solutions to the Navier-Stokes equations 
to provide a theoretical prediction for fluid and thermal 
mixing. 

• the development of a simpler, semi-empirical model to predict 
mixing. 

The ultimate goal of any of these three approaches is to be able to 

generate accurate temperature and velocity profiles in the cold leg 

and downcomer. These profiles would be used along with plant-

specific neutron-fluence and materials properties to predict the 

number of years a plant could withstand specified PTS condit ions 

without danger of brittle fracture. 

Only one aspect of this large PTS problem was investigated in 

this work. That aspect was the theoretical prediction of the temper-

ature profiles in the cold leg by using a computer code t o solve the 

time-averaged Navier-Stokes equations. 
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2. A DESCRIPTION OF THE PROBLEM 

Because the thermal stresses due to the rapid cooling of the 

reactor vessel wall combined with the mechanical stresses due to 

repressurization may i nitiate or propagate cracks in the vessel i f 

the vessel materials properties have been sufficiently degraded by 

long-term irradiation [6], experiments were performed by Creare 

Inc. of Hanover , NH under contract to EPRI (7,8,9] to visualize the 

flow patterns. A schematic of their results is presented in Fig. 2 . 1. 

It shows the following phenomena due to the mixing of cold HPSI fluid 

with the warmer s tagnant fluid in the cold leg of the primary coolant 

loop: 

• Buoyancy-induced flow and fluid stratification 

• Shear fluid entrainment and growth of the HPSI jet 

• Counter-current flow of warm water into the cold leg 

The phenomena of stratification have been investigated both 

experimentally and theoretically [19,21,2 2,27]. Reference 22 

describes stratification as: 

"a change of density along the vertical, the direction 
of gravity force. In a stratified fluid, vertical 
displacements of fluid particles from their equilibrium 
positions produce buoyancy fo rces ( p1- p)g where P1 is 
the density of the fluid particle, p is the densit y of 
the surrounding medium and g is the acceleration due 
to gravity . " 

The buoyant fo rce generates an exchange between the potential ener gy 

of the stratified f luid in the gravi t y field and t he kinetic ener gy 
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of fluid motion. A stratified f luid is either s tably or unstably 

stratified . In a stably stratified fluid, ap/az is positive and 

the work of the buoyancy forc es transforms the kinetic energy into 

potential energy . An unstably stratified fluid has a negative value 

for ap/az. In that case, the work of the buoyancy forces transforms a 

part of the potential energy into kinetic energy of motion; thereby, 

generating convection. This leads to an increase in turbulence 

intensity which, in turn leads to an incr ease in mixing because the 

lack of density uniformity is a source of shear in t he fluid. 

Referring again to Figure 2.1, it is obvious that the injection point 
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is an ar ea of unstable stratification because the higher density 

fluid enters at the top causing the density to increase with increasing 

height . 

The mechanism of entrainment is the process by which the turbulence 

of the HPSI jet spreads into the initially quiescent fluid in the cold 

leg . The area of fluid entrainment by jets has been extensively 

studied [1,2,10,13,17,23,33] but usually in the context of the jet 

flowing into an infin ite reservoir. Reference 13 descr ibes entrain-

ment as "the apparent unilateral transport of mass across a density 

interface which is brought about by the turbulent velocity fluctuat ions 

of the t urbulent fluid." 

In principle, the calculation of these complex flow phenomena 

involves the solution of the time-dependent Navier-Stokes equations . 

In turbulent flow, these equations can not be solved without numerical 

methods. Because it was only recently that progress in numerical 

methods and the increasing calculational speed of computers allowed 

the analytical solutions to be economically feasible, much of the 

earlier work prior to 1970 focused on the experimental determination 

of entrainment coefficient. Such studies are described in references 

1, 2, 10, 13, 17, 23, 29, and 33. These studies concern either 

channel flow or jet discharge into an infinite reservoir. These are 

of interest in the area of thermal discharge from power plants. While 

these experiments are of importance in understanding the fundamental 

behavior of entrainment and statification, they are not directly 

applicable to the problem considered here, because of the differences 
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in geometry and flow conditions. No previous experimental studies 

performed for a cylindrical pipe geometry were found and few studies 

in any geometry were found which included the counter-current flow 

depicted in Figure 2.1. 

One concept which was clearly established by all experiments was 

the densimetric Froude number "as the governing dimensionless parameter. 

This is discussed further in Chapter 5. 

The progress in both computational speed and size of computers 

has made it possible to get accurate solutions to complex flow 

situations. This work investigated the use of a nodal solution to 

the time averaged Navier-Stokes equations as a means of predicting 

thermal mixing between the HPSI fluid and the stagnant fluid in the 

cold leg. The computational scheme used was a code entitled ULYSSE 
/ 

developed by Electricite de France. It is described in reference 12 

and was verified experimentally as described in references 3, 30, 31 

and 32. It is based on statistically averaged Navier-Stokes equations 

which are, in themselves, an approximation since as is described in 

reference 11, "the averaging process itself may mask some character-

istic patterns in the flow field." This averaging process leads to 

correlations between fluctuating quantities such as Reynold's stress, 

p u ' u. ' and the turbulent heat flux, p u. 'T' where u is velocity 
i J ]. 

and T is the temperature. The overbar indicates the averaging process 

while the prime indicates the fluctuations in mean quantities due to 

turbulence. The subscripts indicate the direction of the component. 
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These quantities must be modeled. A detailed discussion of the 

evolution of turbulence modeling is found in reference 23 and is 

summarized briefly in Section 3.4. The computational model used 

in this work closes the turbulence model with the k-E equations 

proposed by reference 23. 

The numerical methods include the Gauss-Seidel technique to 

solve the diffusion portion of the Navier-Stokes equations and the 

method of characteristics to solve the non-linear advection terms. The 

method of characteristics is used because it is believed to minimize 

numerical diffusion. These methods are described in more detail in 

Chapter 4. 

The objectives of the present work can be summarized as: 

• to solve the time averaged Navier-Stokes equations using the 
k-E turbulence model for the HPSI scenario. 

• to compare the trends generated by the computational model 
with the results generated by the Creare experiments in an 
effort to determine the adequacy of the computational model. 
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3. THE EQUATIONS TO BE SOLVED 

3.1. Development of the Equations of Change 

The derivation of the equations of change has been presented in 

great detail by several authors [4,16]. A sunnnary of the derivation 

of these equations in Sartesian coordinates follows based primarily on 

reference 4. 

The equation of continuity is developed by writing a mass balance 

over a stationary volume element of dimensions 6xl>.y6z through which the 

fluid is flowing (see Figure 3.1). The equation is merely a statement 

of the conservation of mass and is of the form: 

[ 
rate of J L 1 l J mass = rate of rate of 

accumulation mass in ass out (3.1) 

(X+6X ,Y+6Y , Z+6Z) 

• 
• (x, Y, Z+6Z) • • •• • •• (X+6X, Y, Z+6Z) 

(X,Y,Z) 

• • 6X 

Figure J .1 Volume element fo r mass , momentum and energy ba l ance 
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The rate of mass accumulation within the volume is (ap/a t)(6x 6y 6z) 

where p is fluid density and t is time. Assuming the flow is in the 

positive x, y, and z directions, then the rate of mass in is equal to 

the sum of t he rates at which mass enters through the yz face at · 

x, the xz face at y and the xy face at z. Similarly, the rate of mass 

out is equal t o the sum of the rates at which mass exits through the yz 

face at x + ~x , the xz face at y + 6y and the xy face at z + 6z. This 

yields: 

pu I + A ] + 6x6y [ pu I -y y uy Z Z uz lz+t::,z] 

6x6z [ pu I -y y 

(3 . 2) 

where u , u and u are the instantaneous values of the fluid velocity x y z 

in the x, y, and z directions, respectively. When this equation is 

divided by t::,x6y6z and the limit is taken as the volume of the cube 

approaches zero, the equation of continuity results. 

l£ = 
at 

a - -( pu ) ax x 
a -;;-( pu ) 
ay Y 

a -;;---( pu ) ) 
oz z 

which can be written in vector notation as: 

ap • - = - (V • pu) at 

where the superscrip t indicates a vec t e r quantity. 

(3 . 3) 

The second of the equations of change 'is the equation of mo tion and 

is developed from a momentum balance on the volume element of the form: 
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L rate of J t a t e o:J t ate o:J ~sum of the il momentum = momentum - momentum + forces acting 
accumulation in out on the system 

(3 . 4) 

The equation of motion is basically a statement of Newton's second 

law: mass times acceleration equal s the sum of the forces . 

Working first with the x - component of momentum, the accumulation 

term is (t:..x t:..y t:..z)( op u / ot). Momentum enters the volume by both bulk x 

fluid flow (convection) and by molecular transfer. Convective 

terms for the x-component of momentum are of 

or p ux uj' x+t:..x t:..y 6. z (exiting) . 

terms, one for each face. There 

the form p u u. , t:..y t:..z x J x 
(entering) There are six of these 

convective are also six molecular 

transport terms 

t:..yt:..z (entering) 

(again fo r the x-component only) of the form T . I 
JX X 

and 1 . l A t:..y t:..z (exiting) where j equals x , y and z . 
J X x+ux 

The body forces on the system are usually only those a rising from 

fluid pressure and/or gravity . These forces are written 6.yt:..z 

(Px - Px+t:..x) + pg t:..xf:.yt:..z . When these expr essions are subs t i tuted into 

equation 3.4, and t he expr ession i s divided by t:..x6.y6.z and the limit · i s 

taken as the volume approaches zero, then the x component of the 

equation of motion results: 

(~ 0 u u + l__p u u + l__ p u u ) 
ox ' xx oy x y oz z x 

- (~ '( +.!.... '( +.!.... '( )- ~ + pg ax xx oy yx oz zx ox x 
(3 . 5 ) 

T in equation 3.5 represents the normal s tress on the x-f ace and is 
xx 

defined fo r a Newtonian fl uid as : 
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where V is the gradient of u and µ is the bulk f luid viscosity. 

T and T represent the x- directed tangential (or shear) str ess on yx zx 
the y and z faces respectively. These stresses are: 

and 

au au 
T = T = - µ (~ + ___:/_) yx xy ay ax 

T zx T xz 

au au 
µ(--z + ~) 

ax az 

Exactly similar equation s can be written for the y and z components of 

momentum. For simplicity , the three equations can be combined and 

rewritten: 

a • at? u 
•• - (Vp•uu] • v p (3 . 6) 

[ Rate of increasj 
of momentum per 
unit volume Date of momentum3 

gain by convection 
per unit volume Dressure forcj 

n element per 
unit volume 

Cate of momentum J 
gain b~ viscous transfer 
per unit volume 

+ • p g 

Oravitational fore] 
n element per 

unit volume 
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These two equat ions, 3.3 and 3. 6, completely describe an iso-

thermal system. For a non-isothermal system a third equation, the 

equation of energy, must be developed. As before, an energy balance 

reflec t ing the law of the conservation of energy is written in the 

following form: 

rate of accum-
ulation of in-
ternal and 
kinetic energy 

rate of internal 
and kinetic energ 
in by convection 

rate of internal 
and kinetic energy (3 . 7) 
out by convection 

+ ddi:ion by con- - done by ~ystem on 
et rate of heaj CTet rate of work ] 

uction surroundings 

Kinetic energy is the energy associat ed with observable fluid motion 

(l/2 p~2 ) while internal energy is that associated with random trans-

lational and internal motions of the molecules plus the energy of 

interaction between the molecules (U) . The rate of internal and 

kine t ic ene r gy in by convection is the sum of ' the r ates of energy 

influx through the x, y and z faces of the form: 

td6k <u . (pu + l/2 p~2l) 
J J 

\ 

j=x,y, z 
ifk#j 

The r ate of energy efflux due to convection out the x+6x, y+6y and 

z+Az faces is of the same form; i.e. 

~ • 2 
6i6k(u . .(pU+l/2pu ) ' . .) 

J J+6J I j =x, y, z 
ifkf j 

The ne t rate of energy input by conduction is: 
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t:i.y t:i.z(q I - q I + A.,) + t:i.x t:i.z(q_J - q I A ) + X X X X UA YI Y y y+uy 

whe r e q , q , q are the x, y and z components of the heat flux vector x y z 

q . The rate at which work is done consists of two parts: gravity, 

which is a volume force and pressure and viscosity, which are surface 

forces. The rate at which work is done against gravity is: 

- pt:i.x t:i.y t:i. z (u g + u g + u g ) x x y y z z 

The rate at which work is done against static pressure is: 

t:i.yt:i.z ( (Pu )I + A - (Pu )I ) + t:i.xt:i.y ((Pu ) I - (Pu )I ) X X uX X X y y+t:J.y y y 

+ t:i.x t:i.y ((Pu )I - (Pu )f ) z z+t:i. z z z 

The rate of doing work against viscious forces is the sum of three 

terms of the following form: 

t:J.yt:J.z ( ( T U + T U + T U 'f - ( T U + T u + T u )' ) xx x xy y xz z ' lx+t:i.x xx x xy y xz z x 

As before, these expressions are substituted into equation 3. 7. The 

equation is divided by t:i.x t:i.yt:i.z and the limit is taken as t he volume 

approaches zero. The resulting equation written in vector-tensor 

notation is: 



a 
at 

h • 2 
p (U+l/2u ) 

Date of gain oj 
energy per unit 
volume 

• • + p(ueg) 

D
ate of work done 
n fluid per unit 

volume by grav-
tational forces 
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• h • 2 
- ( Vopu(U+l/2u )) 

llite of energy J 
put per unit 
ll.llile by convectio 

•• (Vo Pu) 

te of work done;] 
fluid per unit 

lume by pressure 
rces 

(3 . 8) 

Gate of energy inp]u 
er unit volume by 
onduction 

D
ate of work done J 

on fluid by viscous 
forces 

These three equations completely describe any non-isothermal Neutonian 

system since no assumptions have yet been made . The following section 

will deal wit h t he simplification of these equations . 

3.2. Simplification of the Equations of Change -
The Navier-Stokes Equations 

The following approximations will now be made in order to 

simplify the problem. First, the fluid is assumed to be incom-

pressible but with small variations in density due to changes in 

temperature. Following the Boussinesq app r oximation, it is assumed 

that the only effect of density variation is in the gravitational 

body force term in the momentum equation . This approximation also 

assumes that the equation of state can be written p - p = p8 (T- T ) 
r r 

where 8 is the dilatation constant [16]. Since the density is assumed 

to be constant in the equation of continuity, equation 3 . 3 simpl ifies 

to: 
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• 'il• u = 0 

If the additional assumption of constant viscosity is made and 

equation 3.9 is used, equation 3.6 simplifies to: 

p~p -r g, (--) 
l. p 

where Du. is the substantial time derivative: 
l. 

Dt 

e . g. 
Du x -- = Dt 

au au au 
~+u ~+u ~+u at x ax y ay z 

and v2 is the Laplacian operator: 

au x 
az 

(3 . 9) 

(3.10) 

This form of the momentum equation is the Navier-Stokes equation. By 

making use of these two simplified equations, 3. 8 and 3.10, equation 

3.8 can be reduced t o: 

[ 
DU 

p Dt 
• ( V' oq ) 

rate of ga]in D ate of inte~rnl of internal energy input by 
energy per conduction per 
unit volume unit volume 

.. . 
( T: 'ilu) 

O
rreversible rate of:J 

internal energy increase 
per unit volume by 
viscous dissipation 

The next assumption involves neglecting the viscous dissipa tion term 

which is generally only important for high Pr andtl number fluids . If 
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the Prandtl number, Pr, is of the order of one, the velocity must 

approach Mach 1 before the viscous dissipation term becomes important 

[16], If q is expressed in terms of temperature gradients and a con-

stant thermal conductivity, k, if U is expressed in terms of a constant 

heat capacity, C , and internal temperature, T; and if viscous p 

dissipation effects are ignored then (3.11) can be rewritten as: 

DT 
Dt 

k where A is the thermal diffusivity and equals pc· 

Obviously, the turbulence problem to be solved is a three 

dimensional problem (see Sketch A, Figure 3.2). Initially, all flow is 

in the -y direction. Where the HPSI pipe intersects the cold leg, an. 

x-component of velocity develops. Furthermore, because of the strati-

f ication which takes place in the cold leg due to temperature differ-

ences, the flow is not axisymm.etric. However, since solving the prob-

lem in three dimensions is not tractable, some method of reducing it 

to a two-dimensional problem must be chosen. If one works in r,z 

cylindrical coordinates, a restraint of axisymm.etry is implied, whereas 

working with the x,y cartesian coordinates merely states that the z 

direction is infinite and does not affect what happens in the x,y plane 

(see Sketch B, Figure 3.2). Because of the strong asymmetry caused 

by the stratification, one must work in the x,y plane. The basic 

assumption is that given a certain density difference, the level 



18 

_J 
r~ 

z 

Physical Problem 
.x,y plane .. 

Sketch a 

/~ co ,, 
/ r , 

Ill 

yt 
? x 

I'~ co Sket ch b 
/ , 

~ /\ co 

/ 
" / 

Modeled Problem 
Sketch c 

co ~ ------5 co level of - ~ hot 
stratifica tion -- - -

cold 
-~~---S "' L 

Modeled Probleo 

Ske t ch d 

Figur e 3 . 2 Two dimensional modeling of three dimensi onal pr oblem 

of s tratification i s the same, regardless of whethe r the geometry is a 

pipe or a closed channel . While a t fi r s t glance this may not seem t o 

be an adequate assumption, good results have been ob t ained using this 

app r oxima t ion [3 , 30 , 32 ,33]. 

Wor king only in the x,y plane, the three equations to be solved 

become: 

Continuity: 
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au au 
~+-1.= 0 ax Cl y 

Momentum; 

au 
~+u at x 

au 
~+u 

au x 
2 2 

1 aP a ux a ux 
---+ v(--+--) 

p- p 
+ g (--r) 

x p 

ax y = Cly p ax ax2 ay2 

au au au ..!. _aR_ + 
P ay 

-1.+u-1.+u-1. at x ax y ay 

where v is the kinematic viscos ity (µ/p) 

Thermal Energy: 

~+ u lI+ at x ax u Y ay 

2 2 
:\(~+~) 

ax2 al 

(3 .11) 

(3.12) 

(3 . 13) 

(3.14) 

Given that the above described assumptions are adequate, these four 

equations are an exact and complete solution for turbulent flow 

provided that instantaneous values for velocity, density, temperature 

and pressure are known. Unfortunately, this is not possibl~ since, in 

turbulent flow, the velocity fluctuates i n an i rregular manner ar ound a 

steady time-independent velocity as does the density, pressure and 

temperature. Because these fluctuating components are random and tend 

to be very small relative to the respective mean values, it is 

possible to treat them statistically, an approach first suggested by 

Osbourne Reynolds. 
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3.3. The Time-Averaged Navier-Stokes Equations 

The instantaneous values of velocity, pressure, density and 

temperature can be written: 

u . 
l. 

U + U I > p = p + p 1 

i i P = P + P ' , T = T + T'. 

The overbar represents time-averaged quantities: 

e.g. 

where t 2-t1 is long compared to the time scale of tur bulent motion and 

for transient problems, short compared to the time scale of the mean 

flow. The prime repr esents the randomly fluctuating component. It 

is assumed that the turbulent flow is stationary and homogeneous and, 

therefore, ergodic. This implies that the time average, space average 

and ensemble average will all lead to the same r esult [14). In order 

to develop the time-averaged Navier-Stokes equations , the following 

rules of averaging are used [14): - -If A=A+a and B=B+b, then - ---- -- --- .... A = A+a = A+a = A+a a=O - ---- --- --AB = AB = AB -- --- -- -Ab = Ab = Ab = 0 since b=O 

and - -- -- ----- - - -_ ___ .. -AB = (A+a) (B+b) = AB + Ab + Ba + ab = AB + ab 

(3 . 15a) 

(3.15b) 

(3.15c) 

(3.15d) 
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By using these rules, substituting the sum of the time-independent 

plus the fluctuating quantity for the instantaneous values in equations 

3.11, 3.12, 3.13 and 3.14 and taking the mean value, the time-averaged 

Navier-Stokes equations are obtained [28]. The implicit assumption 

in this process is that the mean values of the instantaneous quantities 

will obey the Navier-Stokes equations in the same way that instan-

taneous values do. One cannot, however, substitute the mean value 

everywhere one encounters the instantaneous value . One mus t go 

through the averaging process to properly account for extra terms 

which occur. 

au au 
e.g . _2!. + _y = 0 

ax ay 

a cli +u ') 

Navier-Stokes equation with 
instantaneous values 

a cli +u I ) Substitution of the sum of the 
0 x x = + y y time independent plus the fluctuating 

ax 3y component for the instantaneous 
quantity 

a cli +u I ) a cli +u I) Taking the average of instantaneous 
0 

x x + y y quantities = ax ay 

0 
- - .- -au au I + au au I Applying averaging rules 

_2!. + __ x_ _y + _y_ 
ax ax ay ay 

- -au au 
_2!. + _y 

ax ay 0 (3.16) 
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Using the same procedure detailed in the example resul t s in the 

following time-aver aged momentum equation: 

au. 1 U . I p- p 
i J + . ( ref) 
a j gi P 

where i = x and y 
j = x and y 

and i :f j 

Similarly the r esul t ing energy equation is: -
fl + u fl + 
at x ax 

Cl T 
2 2 au 'T' 

Ai._!_ + i._!_ - __ x __ 
ax2 ay2 ax 

u Y ay 

Clu T ' y 
Cly 

au I u I 
i i 

<H 
(3 .17) 

(3.18) 

The extra terms in the momentum equation are of the form - pu. ' u . ' . 
1 J 

For example, - pu 'u.' represents the transport of x momen tum in the 
x J 

y direction and is called the turbulent or Reynolds stress . Simil arly, 

the extra term in the thermal energy equation is - pu . ' T ' . It represents 
1 

the transport of temperature due to turbulent fluctuations in the x 

or y direction and is cal led turbulent heat flux. 

These equations no longer form a closed se t, since there are 4 

equations and 7 unknowns, llx• uy, T, P, ~' u.;, , and T'. Exact transport -equations can be derived for u. 'u.', u 'u ' u. ' T' and u. 'T' but t hese 
11 ij']. J 

will contain turbulence correlat ions of the next higher order such as 

uk'u. 'u . 1 [11,20]. It is the i ntroduction of models for turbulent 
1 J 

stress and heat flux which leads t o the approximate nature of the 

solution for turbulent flow . 
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3.4 . Closing the Turbulence Model 

The turbulence model must simulate the averaged character of real 

turbulence. The oldest and most widely used turbulence models 

(including the model used to perform this analysis) are based on the 

eddy viscosity/eddy diffusivity concept introduced by Boussinesq in 

1877 [24]. The concept was originally conceived by presuming an analogy 

between molecular motion and turbulent motion. Since molecular motion 

is proportional to the average velocity and the mean free path of the 

molecules, turbulent motion was assumed to be proportional to a velocity 

characterizing the fluctuating motion and a typical length which Prandtl 

called a "mixing length." The eoncept of eddy viscosity/eddy diffusivity 

has been found to work well in practice. 

The eddy viscosity v is defined from: t 

au. au. 
= v (-1 + __J_) - 2/3 k 0 .. t ax. ax. 1] 

1 1 

U 1 U I 
i j 

(3.19) 

where oij is the Kronecker delta which equals 0 where i~j and where 

for convenience the overbar has been dropped from the non-fluctuating 

component. Introduction of the -2/3k o .. term makes the equation 
1J 

applicable to normal stresses. Equation 3.19 assumes that in analogy 

to the viscous stresses in laminar flows the turbulent stresses are 

proportional to the mean velocity gradients. However, the eddy 

viscosity, unlike molecular viscosity, is not a fluid property; rather 

it depends strongly on the nature of the turbulence. Similarly, the 

eddy diffusivity is defined from: 



- u 'T ' 
i r ar/ ax. 

l. 

24 

which is a relationship directly analogous t o turbulent momentum 

transport (i . e . turbulent heat transport is assumed t o be related to 

the gr adient of the mean t emperature) . r, like vt, is not a fluid 

pr operty but also depends on the degree of turbulence. r and v t can 

be related by the Reynold's analogy , which is based on the fact that 

t he phenomena of heat and momen tum transport are of t he same form (16 ]: 

i.e. 

and 

Q 

du T ·. = p(v + V) -
t dy 

c Cc k + r) ~Ty 
p p 

Reynolds postula ted that since these phenomena were so closely rela ted 

then the coefficients must also be closely related. They can be 

combined into a dimensionless number, the turbulent Prandtl number 

which is analogous to the usual Prandtl numbe r C µ/k . That is s ince the p 

usual Prandtl number represents v/A or the ratio of the diffusion of 

molecular momentum to the thermal diffusivity in main flow, the 

turbulent Prandtl number is the r atio of the diffusion of molecular 

momen tum due to turbulent fluctuations t o the dif fus i on of thermal 

energy due to turbulent flucua t ions. The turbulence models based on 
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the eddy viscosity/eddy diffusivity concept have been divided by Rodi 

[23,24] into 3 categories: 

1) 0- equat ion model 

2) !-equation model 

3) 2- equation model 

The model used in t his work is a 2-equation model bu t the others will 

be discussed briefly. 

The 0- equation models do not involve addi t ional transport equa t ions 

for the turbulent quantities . Eddy v iscosity is specified directly from 

experiments or empirical formulae . An example of this type of model 

is the well-known Prandtl mixing length model. Prandtl assumed [16] 

that 

L 
m 

where u . ' is the mean magnitude of the fl uctuating velocity and 1 
i m 

is a "mixing length ." 

Furthermore, U I 

i 
is equal to t he mean velocity gradient times 

the mixing length yielding 

\I 
t 

1 2 au/ ay . 
m 

To account for heat transfer, the relationship r = v /Pr is used. t t 
2 1 and Pr are empirically determined and a r e far from universal m t 

cons tants . While this model can be s uccessfully applied in simple 

flows, i t is not generally applicable because v and therefore 
t 
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r equal zero whenever the velocity gradient equals zero. In a case 

such as the problem discussed in this work where there is recirculating 

flow, this would imply that heat is not transferred from the hot to 

the cold fluid. 

One- equation models give up the direct link between the fluctuating 

velocity scale and the mean velocity gr adients . The magnitude of the 

fluctuating velocity is determined by writing an additional transport 

equa t ion. Physically, the most meaningful scale is the v'k°' where k is 

the kinetic energy of the turbulent motion. k is defined by (for a 

two-dimensional problem) 

-
k l/2(u ' 2 + u ' 2) x y 

The~ is a velocity scale for large-scale turbulent motion since 

\) 
t 

a u ' L and\G a i u. 
l. 

then 

\) 
t 

C 'Vk L µ 
(3 . 20) 

which is known as the Kolmogorov-Prandtl expression. The distribution 

of k can be found by writing a transpor t equation for k as follows: 

U 1 U I au. ak + a·k a (u. ' j j !) ) I I l. u. = u u --at l. ax. ax. l. 2 p i j ax. 
J l. J 

~te oj hange 
~nvectivj 

ans port EffusivJ ransport 
~roduction 

hear ~ 



- 8 g. u . ' T ' 
]. ]. 

~Buoyant ~roductio:;l 
LJes true ti on J 
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au ' au I 
i i 

ax. ax. 
J J 

r viscous -, 
Uissipatio~ 

Unfo rtunately , the exact k equa tion is of no use because new unknown 

corr elations appear in the diffusion and di ssipat ion terms. 

U. 1 U . I 

( '( ]. J i.e. ui 2 + ~) an d p 

Therefore, model assumptions mus t be introd uced for these terms. Fo r 

the diffusive t r ansport term, the diffusive flux of k is often 

assumed proportional to the gr adient of k: 

U 1 U I 

u ' (j jf-~) 
i 2 p 

\) t al< 
=---

Ok axi 

where ok is a n empirical diffusion constant. The entire dissipation 

term is modeled as : 

e: = 
Ou I au I 

i i -v-:-- -- = 
()x. ()x . 

J ]. 

where CD is another e mpirical con s tant. The k- equa tion then rea d s 

ak 
ax. 

]. 

- c k3 /2 
D 

L 
(3.21) 
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This equation still contains a length-scale L which needs to be 

specified usually from simple empirical relationships like those used 

for 1 , the mixing length in the Prandtl model. 
m 

The two-equation models attempt to write a transport equation for 

the length scale in addition t o turbulent kinetic energy. This trans-

port equation need not have L as a dependent variable . Many authors 

have proposed using E, the dissipation rate, as the dependent variable. 

Since E a k 312!L and k is known from the solution of the k 

equation , solving for E specifies L. While an exact E-equation can 

be derived from the Navier-Stokes equations, the resulting equation 

contains complex correlations whose behavior is little known. The 

modeled form of the E equation is 

aE aE a v 
]£_) + u. (__!. 

a.- l. ax. ax. 0 ax. 
l. l. E l. 

[ rate ~1 change 
t nvection J Liffusio'] 

(3.22) 

~eneration - destructiori:J 

where OE , cl E' c2 E and c3 E are empirical constants and Rf is the flux 

Richarson number, a dimensionless number which indicates the magnitude 

of buoyancy effects . 

The k-equation (3. 21) and the E equa tion (3 . 22) f orm the basis 

of the k- E turbulence model used in this study. A discussion of how 
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the empirical constants were determined can be found in Rodi [24). 

Suffice it to say that in the model used, the empirical constants had 

the followin g v.1lues f JO) . 

Table 3 .1. Constants used in k~E model 

c 
].J 

.09 1. 44 1. 92 

0 e: 

1.3 ] 1 

·- -------- - ·---- -------. - --- - -- ·-- - ----·----- -- --- - --

Bouyancy effects are accounted for at two levels in the k- £ model: 

the B term in the k equation and the flux Richardson number term in 

the e: equation. In both references 11 and 27, suggestions can be 

found as to how to improve results by having the constants "vary" 

with parameters such as Richardson number (a dimensionless measure 

of stratification) or the deceleration of centerline velocity . 

In summary, the equations to be solved are : 

Continuity 

Momentum 

Du. 
1 

Dt 

0 

- 'V 
P. 

1 

0 

(J . 23) 

.(3. 24) 
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Ene rgy 

dT v•(ke: VT) 
(3.25) 

-= dt 

whei;-e 

\} = \} + \} 
e: t 

k = K+ r 
e: 

\} 

Pr t =-t ::\ 

Kolmogo r ov- Prandtl 

\} 
t 

C ' k L (3. 26) 
µ 

k equation 

ak ak a v ak au. au · au. v t aT 
- + ui "'x. = -- (~ - - ) + \! (--1. + --1.) __ i + 881 Pr at o axi Ok ax. t ax . ax . ax . t ax. 

l. l. J l. J l. 

- c k3/2 
D (3 . 27) 

L 

e: equation 

a e: 
at + a e: 

ui ax. 
. l. 

\} 

a (~ _k_) 
ax. 0 ax. 

l. e: l. 

2 e: 
k 

(3 . 28) 
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Prt, Cµ', CD, Cle.' CZe' C)e' qk and ae are empirically defined 

constants . 6, v, k and Rf are fluid properties, while g, T
0 

and 

P should be defined by the problem leaving seven unknowns (u , u , T, x y 

vt, r, k and e) and seven equations. The method of solution for 

these equations is discussed in the next chapter. 
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4. THE METHOD OF SOLUTION 

In order to solve the diff erential equations developed in the 

previous chapter, approximate finite difference equations must be 

derived. There are a number of ways that finite difference equations 

can be written which greatly influence both the magnitude of the error 

introduced by the approximation and the stability of the solution. The 

numberical scheme presented in this chapter was developed by the 

Laboratorie National de Hydraulique of Electricite de France. It is 

described in references 3, 30, 31 and 32 and is the scheme used to 

analytically solve the problem of the turbulent mixing of the HPSI jet. 

The pr i mit iv e va r iables i nvol ved in the equa t ions to be solved are 

u, v and P. (In the previous section, the subscripts x and y or i and j 

were used to denote the directional component of velocity. In the 

following sections, fo r convenience, the subscripts are dropped and 

v indicates the velocity component in the y direction.) The solution 

can be found directly in terms of these variables or it can be found in 

terms of the vorticitiy, w, and the stream function, ~. The algorithms 

which use the pressure variable have more complicated boundary conditions 

because the equations require knowledge of the pressure gradient. In 

cases where a solution for the pressure field is not a desired result of 

the calculation it is easier to work in terms of the vorticity and stream 

f unction because of the simple r form of the boundary condition. The 

stream/function/vortici t y method assumes that the main flow outside the 

viscous sublayer is ideal (i . e. inviscid and irrotational). The outer 

edge of the viscous sublayer is then connected to the known "no-slip" 
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boundary condition a t the wall by means of an empirical relationship 

such as the "universal law of the wall" [16]. Because detailed 

knowledge of the pressure field is not of interest in t his problem, the 

stream function/vorticity method was used. 

For simplicity, only the dis cre tization of t he e quations of con-

tinuity, momentum and internal energy will be discussed in detail . 

The k i ne t ic energy and viscous dissipation equations are similar and 

treated analogously . The equations to be solved are: 

x- component of momentum: 

~ +u ~ + v~= 
a t ax ay 

y- component of momentum: 

1 
p 

0 

~ + div (v grad u) ax e 
(4 .1 ) 

~ + u av + v ~ = - l__ ~ + div (v grad v) + 8g(T- T ) (4 . 2) at ax ay p ay e 0 

continuity : 

au + av 
ax ay 0 

internal energy: 

0 

i'!_ + u aT + v i'!_ = div (K grad T) at ax ay e 

(4. 3) 

(4.4) 

where u, v, T, and P now represent the mean flow values of velocity in 

the x component, y component, temperature and pressure . As before , 8 

is the dilatation coefficient defined from : 

Preference - P = pS (t-treference). 
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T is the initial temperature, and K and v are effective the rmal o e e 

conductivity and· kinematic viscosity which inc lude turbulen t effect s . 

The orientation is ass umed such that gr avity ac t s on ly in the upward, 

vertical direction (which eliminates the bouyancy term from equation 

4.1) . 

4.1 . Discr e tization in Time 

Assume that alL.values are known at time s t ep N and that i t is 

desired to solve for the values at time step n+l. The metho d described 

is based on Chorin [5] . First, the auxiliary variable uaux and 

vaux are defined such that: 

aux N N N OUN u - u UN~+ div(v aux + v oy grad u ) ot ox e 
(4 .5 ) 

and 

aux N N N OVN vaux) v - v + UN ~ + div( v gr a d v = ot Ox oy e 
(4 . 6) 

where the superscript N represents the time step at which the values 

of these variables a re t o be used. N N a ux Since u a nd v are known, u 

d aux · b 1 h 4 5 d 4 6 an v are given y so ving t e two equations . a n . . By sub-

tracting equation 4. 5 from 4.1 a nd equation 4.6 from 4 . 2, it is found 

that the auxiliary variables are related to the desired variable, 
N+l N+l 

u and v , in the following way : 
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N+l aux 
u - u 

t 
(4. 7) 

N+l aux v - v 
at (4. 8) 

To eliminate the need for knowledge of the pressure function, the curl 
• 

of the vector V is taken. When this is done, all terms involving the 

pressure, P, cancel. 

or 

= 

+ Vaux + Sg(TN+l _T ) ot 
0 

1 V•N+l cur = 
i 

a/ ax 
u 

1 ( N+l N+l) cur u , v 

1 
p 

0 

j 
a/ ay 

v 

ot + uaux 

k 
a/ az 
w 

1 
p 

0 

apN+l 

""1 at 

(4.9) 

By definition, the curl of the velocity vector is the vorticity, w. 

This vorticity is related to the stream function as: 

- w (4.10) 

and the stream function is related to the final velocitie s as: 



JHl=>-~ 
ay 

N+l 
v 
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( 4 .11) 

(4 . 12) 

Equation 4.9 involves the temperature at time step N+l which can be 

found from the discretiza tion of equa t ion 4 . 4: 

i.e. (4 . 13) 

Since all variables are known at time step N, TN+l can be found directly 

from the solut ion of equation 4 . 13. 

In summary, the procedure is as follows: 
aux aux • solve equations 4.5 and 4.6 fo r u and v 

• solve equation 4 . 13 for TN+l 

• solve equation 4 . 9 for the vor t icity 

• solve equation 4 . 10 for the s t ream function 
N+l • solve eruations 4 . 11 and 4 . 12 for the final velocities u 

and yN+ . 

Thus, the computation of time s t ep N+l is completed and the computation 

of time step N+2 may be begun if desired. 

4.2 . Discretization in Space 

The above discussion focused on the discretization of the 

differential equations with time. In order to ut i lize the outlined 

procedure, ther e must also be a discr etization with space . This is 

done by dividing equations 4.5, 4 . 6, and 4.13 into two parts and 

solving t hem separately. The equations are of the general form: 
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2 2 
cci....! + i....!) 2 2 ax ay 

(4.14) 

where f is ei ther uaux vaux or TN+l. The left-hand side of equation 

4.14 represents the transport term while the right-hand side represents 

the diffusion term. In solving such transport equations , the advection 

and diffusion s t eps are separated and solved successively . 

4 . 2.1 . Diffusion t erm 

To solve the diffusion component of equa t ion 4 . 14 , the following 

equat ion must be discre t ized and solved: 

Referring to Figure 4.1, it can be seen that 

m,n 

where 

a£ -ax 
m+l/2,n 

and 

Cl f -ax 
m-l/2n 

af 
ax 

m+l/2,n 

f -m+l,n 
flx 

-

j 
m,n. 

f f m,n m-1,n 
L\x 

af 
ax 

m-1/2,n 

(4 .15) 
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m,n+l 

-m-1,n m: n m+l,n 
m-1/ ' ,n1 ;m+l/2,n 

m,~-1/2 
m,n-1 

Figure 4.1 Node locations for Finite Difference equations 

When similar equations are written for a2f/ay2 and these are subs t ituted 

into equation 4.15 the following equation results: 

f (2 6x + 26y) = (fm+l + f 1 ) 6y + (f +l + f 1) 6x mn , n m- , n m, n m, n-

This equation was solved with the Gauss- Seidel method. This method of 

discre tization is called a central difference approximation. The order 

of a discretization approximation is usually determined from a Taylor's 

series expansion: 

i.e . 

and 

6x of 
fm+l,n = fm+l/2,n - 2 ax 

m+l/2,n m+l/2,N 
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f m,n f + tix ~ I m+l/2,n 2 ax 
m+l/2,rt m+l/2,n 

The central difference approximation used above is obtained by subtractin g 

these 2 equations. Since all terms up to tix2 a r e retained (or cancelled), 

the approximation is third order accura t e . 

4.2.2 . Transport term 

The transport term of equa t ion 4 .14 is of the form: 

af + ~ + af at u 2x v 2y (4 .16) 

The unknown f is defined by its value at each node. The field f is 

known at t i me step N as is the boundary condition f 
0 

at the area where 

the flow enters the domain. For the transport term, rather than 

considering convection fluxes through central surfaces (as in the 

diffus i on term), it is more natural to follow a quantity as it is 

convec ted along a stream line . Consider Figure 4.2 which illustrates 

t he method used called the Char acteristic Method . Given a particle 

which is at node Mj at time tN + ot, the position Pj where it was at 

time t N can be calculated by solving for t he pathline [3 ]. 
dx Along the charac~eristic curve Cj (defined by dt = ui) , equat ion 

4 16 b . df 0 h f fN+l ( h. h . . can e written as dt = . T ere ore, to compute w 1c is 
N+l aux aux in this case, either T , u or v ) for any node Mj, the following 

is done: 
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Characteristic 
Curve 

Figure 4.2 Illustration of the Method of Characteristics 

• compute the characteristic line C. leading to M. a t time tN+l 
J J 

• 

from 

dx . 
l. dt = 

N compute f j 

u. ' l. 
M. 

J 

fN(P.) where P. is the foot of the pathline 
J J 

(i.e. x(tN)). 

(4 . 17) 

N+l N The expected result is f (M . ) = f (P . ) because P . and M. belong to 
J J J J 

the same characteristic . Equation 4.17 is an ordinary differential 

equation. Its solut ion was carried out by a Runge Kut t a Method . 
N In most cases Pj is not a discretized node, so the value f (Pj) 

mus t be interpolated from the following Hermetical polynomial: 



fN (P.) = 
J 

4 
E (C.f. + C i 
i=l l. l. x, 
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where fN (Pj) is the interpolated scalar at point P, 3f/3x l i , 3f/ 3y l i 

and 32f/ 3x3y I i are the derivatives of the ·scalar field at the nodes 

forming the corner of the cell (i=l,4). r C C and C . are 
~.' . ' i l. x,1 y , xy,1 

cubic polynomials in x and y which relate the location of P to the 

grid. The spatial discretization is, therefore, fourth order accurate. 
N Boundary conditions are taken into account when, between t and 

N+l t , the pathline crosses a boundary . In such a case, the integration 

of equation 4.17 stops at time T and gives the intersection Mr between 

the characteristic and the boundary . 

equal to the boundary value f
0

(T ,Mr) . 

At this point, fN+l(M.) is set 
J 

This method of calculation of the advection terms is very stable . 

Usually the Courant number: 

Co = 
t. t u 

x 

must be less than unity. With this scheme, the Courant number may be 

greater than 1 and the time step is dictated by the time variation 

of the velocity field. 

The solution to the two separated terms of the equation (advection 

and diffusion) are repeated until the solution for f converges. 

4.2.3. The vorticity and stream function 

The above is a description of how equations 4.5, 4.6 and 4.13 are 

solved. aux aux Once they are solved for a certain time step, the u , v 
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and TN+! fields are known and equation 4.9, the solution for vorticity 

can be found directly from: 

w = 
aux aux Zvaux v + v -m+l,n m- 1 , n m,n 

uaux + uaux _ Zuaux 
m+l , n m-1,n m, n 

6x fly 

gf:l t (TN+l + TN+l _ ZTN+l 
S _ m+l,n m- 1,n m n 

f:l x 

Equation 4.10 is discretized using nine points. Addi t ionally the 

grid for ~ and w is offset from the gr id for u, v , and T (see Figure 

4.3). This is fo r convenience because velocity is obtained from a 

simple derivative of ~ . 

' I I 

' I ' • b ' c I a ' .. -. . ·--- --.... - .. .. ... - --· I ' • 
Cl • s I 

I I 

' • I 
' d • e I f -· ----· --- ----· -- ~ 

' I I 
I y • a I 
I t I 
I g .h l i ·-· "" . ----- .-. 41 --

.. -- .. 
I I I 
I • I 
I • • I 

Figure 4.3 Staggered P,~ grid 

u . or T grid 
l. 

~ or P grid 
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The nine point discretization is: 

where 

and 

= w 

_l_ + -l-
4t::.x2 4 t::.y2 

1 1 -- -
21:::./ 21:::. x2 . 

Equations 4 . 11 and 4 . 12 are similarly discretized and the final veloc-

ities are found . This system of equations (the discretized approxima-

tions to 4 . 10, 4 . 11, and 4 . 12) a r e solved together using a s uccessive 

over-relaxation techique. (They are solved together because boundary 

N+l N+l conditions are known for u and v rather than ~ . ) The numerical 

solutions to the k and E equations ar e of the same fo rm and are done 

analogously. 

4.3 . The Computer Code 

This solution scheme is programmed as ULYSSE, a proprie tary code 

of the Labor a torie National de Hydraulique de Electricite de France . 

The use of the code is described in referen ce 12. 
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4.3.1. Boundary conditions 

The boundary conditions and initial conditions which are necessary 

t o solve the described sys tem of equations are introduced either as 

input to the code _or within the code itself . Turbulent flow can be 

bounded by either a f ree-surface (e . g. ocean- air interface), non-

turbulent flow (e.g. a jet injected i nto a large stagnant body) or by 

solid walls, as in this problem. In the case of solid walls, the 

boundary condition which is known for the velocity is the "no-slip" 

condition; i . e. au .J ax. = 0 a t the wall . Unfortunately, the equations 
J. J. 

derived in Chapter 3 (specifically the k and € equations) assume tha t 

the large-scale interactions predominantly responsible for scalar 

transport are unaffected by the fluid's viscosity . Therefore, they 

are not applicable to the viscous sub-layer next to the wall. Even 

if they were applicable, there are very steep gradients near the wall 

and many grid points would have to be placed there for a dequate 

reso l ution. These problems can be avoided by using an empirical law 

which connects the wall conditions t o the variables ou t side the viscous 

sublayer. In t his work, the "univer sal law of the wall" [16] is used 

where: 

u u*o o 1 ln __ n_ + 5 
U* K \! 

u
0 

is the velocity parallel t o the wall, u* is the fric tional velocity 

(u = 
* 

T/ p), K is t he von Karmen cons t ant (.41) and oN is the boundary 
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layer thickness. For the temperature boundary condition, the walls 

were assumed to be adiabatic ; i.e. ~T/ a y = 0. Boundary conditions 

for k and E were 

k and E 
c~ a 6N 

which result from the fact that in the boundary layer re gion . Reynolds 

stresses are nearly constant. In this region, convection and diffusion 

of u. u. are negligible so that local equilibrium prevails. 
1 J 

Initial conditions are T , the fluid temperature at time 0, u. 
0 10 

the velocity of the fluid at time 0, and k and £ the initial value 
0 0 

of turbulent kinetic energy and dissipation, respec t ively . 

were calcula t ed from empirical equations of the form: 

k 
0 

E 
0 

2 .003u0 

3 .000675u0 

k and E 
0 0 

With these boundary and initial conditions, the equations form a closed 

set which can be solved. 

The choice of 6x, 6y and 6t is left to the user of the code. The 

x,y grid used to solve the problem considered in this thesis is shown 

in Figure 4.4. The overall dimensions of the problem are based on a 
1 

personal letter . The modeled length of the cold leg (6.86 m) is 

10. A. Peck, Combustion Engineering Power Systems, Windso r, 
Connecticu t, personal letter to K.H. Sun (October 19, 1981) . 
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represented by 84 grid points in the x direction and 16 in the y 

directi9n. The HPSI piping is modeled by 5 grid points in the x 

direction and 8 in the y direction. The grid is non-regular but 

it is rectilinear. The points on the left-hand side are .1524 m apart 

in the x direction; the points in the area of intersection of the two 

pipes are . 0508 m apart in the x direction; the points on the righ t 

hand side of the cold leg were .0762 m apart . The irregular spacing 

results from a desire to minimize computing time and a belief that 

in the stagnant end of the cold leg (left-hand side, Figure 4 . 4) only 

the gross characteristics of the fluid flow were necessary. Spacing 

in the y direction is regular throughout the cold leg at . 0508 m, 

while in the HPSI pipe it is . 0762 m. Again these a r e based on the 

belief that the detail in the HPSI pipe is less important than the 

detail in the mixing region. The lengt h of HPSI piping modeled was 

arbitrary but intended to be long enough so that a parabolic velocity 

profile could develop . In general, the grid spacing and dimensions for 

this problem were based on the spacing and dimensions of grids 

successfully used in other problems. 

As input to the code, each point P (i ,j ) is designated either: 

1) outs ide the boundary of the problem 

2) a wall 

3) in the flow field 

4) an entering or exiting point of the fruid. 

For example, points P(i,j) where i = 1 through 85 and j=l a re all 

outside t he boundary of the problem. Points P(i,j) where i =2 and j =2 
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(30, 25) (36,25) 

(2 ,17) (85,17) 

I ·- - · I··- ··· 

(2 ,2) (fl5,2) 

L=6.9342 m 

Figure 4 . 4 Grid used for analysis of HPSI pr oblem 

through 17 a r e soli<l wall whi]e points P(i,j) where i=Jl through 

35 and j=25 are entering points. Initial conditions are prescribed 

for the velocity and temperature of the entering points and the tern-

perature of the flow field. These a re discussed further in the next 

chapter. 
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5. THE RESULTS 

The problem which was investigated using the ULYSSE code described 

in Chapter 4 is one which arises due to the injection of High-Pressure 

Safety Injection (HPSI) fluid into the cold leg of the reactor (see 

Figure 1.1). The cold HPSI fluid does not mix completely with the 

warmer stagnant fluid found in the cold leg. Instead, the fluid 

stratifies with a colder, more dense layer settling at the bottom of 

the pipe and a warmer, less dense layer rising to the top. The goal 

of this work was to account for stratification in order to predict 

·the temperature of the fluid at the reactor vessel wall as a function 

of time. The results presented herein represent an attempt to 

accurately model these buoyancy effects. 

The region which was modeled is shown in Figure 5.1. In the 

interest of saving computation time, only the cold leg and injection 

point are modeled. The addition of the downcomer would have 

increased computation time and costs by approximately a factor of 

four . The transients in the cold leg are the most severe since the 

fluid has had little time to entrain warmer fluid . The further the 

fluid is from the point of injection, the longer the fluid has had to 

mix with the warmer fluid; therefore, it is conservative to assume 

that any transient the reactor vessel wall might experience would be 

bound by the transient experienced in the lower half of the cold leg 

piping. 
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The fluid enters the modeled volume at point 1 with a volumetric 
3 f low rate of 0 . 0174 m /sec and a flat velocity profile of 0.3434 m/sec . 

The fluid exi t s t he volume a t point 2 with the same volumetric flow 

rate, but with the velocity profile unspecified. The temperature of 

0 the HPSI fluid is approximately room temperature, 26.7 C, while the 

initial temperature of the stagnant fluid in the cold leg is 282°C . 

Point 3, a solid boundary, represents the loop seal which occurs in 

the reactor coolant piping prior to the reactor coolant pump (backflow 

through the pump will occur). 

HPSI 

0.58m t 
G 10.762m 

6~.__mR-S ---
4° • .__. HPSI 
0. 254m f"':':\ _.. FLUID 

\J ::::t EXITS 

3 . 048m 3.58m 

Figure 5 .1 Region modeled for l!PSI a nalysis 

Important dimensionless paramet er s which charac t erize this flow 

are Reynolds number, densimetric Froude number, and Richardson number 
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[29]. The Reynold's number, DVp/µ, is a standard dimensionless number 

indicating turbulence where : 

D - pipe diameter 

V - mean fluid velocity 

p - fluid density 

µ - fluid viscosity 

Based on the HPSI fluid, Re equals 102,000 - indicative of turbulent 

flow. The densimetric .Froude number is defined [29]: 

Fr v 

2 where g is gravity (9.8 m/sec ) and the subscripts m and o refer to 

fully mixed and initial (ambient) densities respectively. In this 

case, the mean fluid velocity is 0.3434 m/sec and D is the diameter of 

the cold leg. The ambient density prior t o buoyant flow is the density 

of the cold leg fluid while the fully mixed density (due to the 

stagnation of the coolant flow in the loop) will eventually be the HPSI 

fluid density. The Froude number for this case is 0.032. 

The pipe Richardson number is defined by [29]: 

Ri p 

p - p 
m o 
Po 

g d cos 9 
v2 

where all the variables have the meanings as previously defined, 

Because of the horizontal orientation, cos 6 is equal to 1. The 
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pipe Richardson number can be interpreted as a measure of buoyancy 

flux per unit width and indicates the degree of stratification. Ri p 

equals 1114 for this problem. Except for the fact that 6P/ P is defined 

as P - p /p in the Richardson number while it is defined as p - p /p 
m o o m o o 

in the Froude number, the Froude number is equal to the inverse of the 

square root of the Richardson number. 

5 . 1. A Qualitative Discussion of the Results 

The results from the computer analysis are presented in Figures 

5.2 through 5 . 18 . At each time, isotherms and velocity profiles are 

shown. The magnitude of the directional arrows indicate the relative 

magnitude of the veloci t y vector at that point. The isotherms are 

plotted every 30°c beginning at 30°c with the largest isotherm equal 
0 to 270 C. Examining Figure 5.3 shows that the recirculation patterns 

set up by the entrainment of· warm fluid by the colder HPSI jet are 

apparent at only 3.3 seconds. The times reported here are real 

time, not computation time. For example, because time steps of 0.05 

seconds were used, 3.3 seconds represents the 66th time step. Since 

each time step required approximately 3 seconds of C.P . U. time to 

complete the calculations , 3.3 seconds represents 1.6 minutes of 

computation time. Figure 5.4 demonstrates that the stratification 

of the cold fluid is readily apparent by only 6.3 seconds . It also 

demonstrates how the HPSI flow separates i nto two components - one 

which flows back towards the closed end and one which flows forward 
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to the open end. In Figure 5,5, the development of counter-current 

flow into the open end of the cold leg is predicted even though the 

veloci t y profile at this point was unspecified. Following the tempera-

ture and veloci t y profiles chronological ly, both the growth of the cold 

HPSI layer along the bottom of the cold leg and the growth of the 

recirculation pattern is observable. Isolated pockets of cold or hot 

fluid are also seen; these grow and dissipate with increasing time. 

Throughout the transient, the HPSI jet remains intact as it falls to 

the bottom of the cold leg. 

In order t o gain confidence in the results of the computer model 

for such a complex flow situation, a comparison of the analytical results 

with experimental results was undertaken . The experimental results ar e 

f r om 1/5 scale t ests performed by Creare , Inc. of Hanover, New 

Hampshir e. The results are published in references 7 t hr ough 9 . In 

perfor ming these exper iment s, prototypical Froude numbers were preserved. 

Both quantitative and qualitative data were r ecorded. The qualitative 

data result from dye being injected with the HPSI fluid and the diffusion 

of the dye being recorded with photography . 

The following a re some of the reported observat ions [7]: 

"Ext ensive still and motion pictur e photography reveal the 
following key phenomena within the range of the study : 

• buoyancy induced flow stratification 

• turbulent mixing and entrainment 

• counter current flow into the cold leg." 
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Other qualitative experimental findings include those in reference 9 : 

" . . . the jet remains relatively intact as it falls . When 
t he injected jet s trikes the bottom of the cold leg pipe, 
the HPI flow spr eads along the pipe wa l l as a thin film .. . . 
The HP! flow splits roughly equally with about half being 
dir e cted t oward the vesse l and the r emainder , in backflow , 
t owa rd the pump . • . • After a time [ ... ] a s tratified layer 
of cold water forms, thickens and eventually fills the pipe." 

Certainly qualita tively the analy t ical r esults match the experimental 

findings well. A quantitative discussion of the r esults follows. 
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5.2. A Quantitative Discussion of the Results 

There have been many quantitative investigations of buoyancy 

and stratification in fluids other then the Creare experiments, such 

as those described in references 10, 15, 29, and 33 . Unfortunately, 

the results derived in other buoyant flow situations such as thermal 

discharge from a power plant into an ocean or lake, are not directly 

applicable because the results are very sensitive to geometric details. 

However, all of the results cited above show a strong dependence on 

Froude number. This dependence on Froude number for the HPSI case can 

be proven in the following way. 

Much of the existing literature on buoyancy and stratification 

uses the concept of an entrainment coefficient. This entrainment co-

efficient, E, is a measure of the increase in mass flux in the turbulent 

layer and can be directly related to the bulk fluid temperature. It is 

defined as: 

(the rate of mass entrained by the jet) 
(the initial jet mass flow rate) 

The parameter, E, does not give any information about the temperature 

of the fluid at the fluid-wall interface. This represents a serious 

drawback since it is the temperature of the fluid at the wall which 

is of prime significance in the case under investigation . This 

tempera ture forms the boundary condition for the thermal analysis of 

the reactor vessel wall. 

In other words, an equation of the form: 



p 
w 

aT c ~ = 1 a 
Pw at r ar 

aT w (Kr a;-) 
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needs to be solved with the following boundary condition for surface 

heat flux: 

where the subscript w represents the properties of the reactor vessel 

wall and the subscript I represents the interface. 

The more typical convection boundary condition, which involves 

TBulk of the fluid, cannot be used in the conduction problem of the 

reactor vessel wall because of the complex nature of the buoyancy-driven 

stratification. Since the relationship between TBulk and T f can sur ace 
not be gener ally derived for complex flow situations; typically, in 

cases where the entrainment coefficient method is used, E is used to 

~ind TBulk which is then related to T f by an experimentally s ur ace 
determined non-dimensional temperature profile. Such non-dimensional 

profiles have been developed for many turbulent jet situations [1,15] 

but none would be applicable in this case because of the differences ln 

geometry. The experimental data which a r e available are not sufficient 

to deduce a temperature profile since only 3 radial temperatures were 

measured at any one axial distance. The code-predicted temperature 

profiles for 2 locations , one midway between the injection point and 

the open- end of the cold leg and one at the open end of the cold leg 

(both at T=59.2 sec.) are presented in Figures 5.19 and 5 . 20 . 
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An additional problem with the entrainment coefficient concept 

is that since the problem under investigation is a transient problem 

where bulk fluid temperature decreases with time, the entrainment 

coefficient i t self must be a function of time. The published correla-

tions are for steady- state problems where the entrainment coefficient 

is constant. 

Nevertheless, it is instructive to compare the entrainment co-

efficient as derived from the experiment and the analysis. For both 

the experiment and the analysis , E can be crudely calculated by applying 

a mass and energy balance to the volume shown in Figure 5.21 . 

\. . 
"'"~-.-----M~2-' _T~2;..... ______ _ 

Figure 5.21 Sketch for the derivation of E 

One can write that: 

(5.1) 
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This also assumes that T3 equals T2 . This assumption was experimentally 

determined to be reasonable. Additionally: 

• • • 

By definition: 
• • 

E = ~+~ • 
(Mass flowrate entrained) = ~~~~~~~~~~~~~~.,..... 
(Initial jet mass flowrate) 

By manipulating equations 5.1 and 5.2, it is found that: 

E cp4T4~cp 1T1 

cp2T2-cp4T4 

To arrive at an entrainment coefficient fo r the computer model, T4 

(5 . 2) 

(5.3) 

was taken to be the temperature of grid point 60, 7 while T2 was taken 

to be the temperature grid point 60, 11 at time equal to 60 seconds. 

0 T1 is, of course, 26.67 C. This leads to: 

E 6.08 (at Fr .032) 

which represents an average entrainment coefficient over the first 

60 seconds of the transient. 

Experimentally, T4 was taken to be the average of thermocouples 

51 and 55 while T2 was taken to be the average of thermocouples 54 and 

55 also at time equals 60 seconds . The results of the entrainment co-

efficients for three different Froude numbers are presented in Table 5.1. 
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Table 5.1 Experimentally determined ent rainmen t coefficient for various 
Froude numbers 

Froude Number 

Creare Test Number 
(Refer ence 9) 

E 

.017 

103 

11.20 

. 025 .051 

105 100 

8 . 56 2.83 

In references 10, 15, 29 and 33, the entrainment coefficient va ried 

either directly or inversely with the Froude number depending on the 

geometry and flow conditions inves t igated. For the HPSI case, by 

examining Table 5.1 which is plotted in Figure 5 . 22, it i s seen that 

the entrainment coefficient cor relates quite closely with the inverse 

Froude number . In addition, it can be seen that the overall entrain-

ment coefficient derived f r om the analysis shows reasonable agreement 

with the experimentally derived cur ve . This agreement lends confidence 

t o the compar ison of the analytical and exper imenta l r esults . 

While the entrainment coe ffic i ent conc ep t does prove the 

functional dependence of the thermal mixing on the densimetric Froude 

number, t his concept is not particula rly useful in this problem because 

it provides only a "bulk" fluid t emperature . As discussed previously, 

it is the temperature a t the f luid wall in t erface which is required . 
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Figure 5 . 22 Entrainment coefficient versus Froude numbe~ 



79 

Therefore, it was desired to compare the experiment with the analysis 

on the basis of a particular point of interest. However, there are 

several problems which arise when an attempt is made to compare the 

analytical and experimental results quantitatively. The greatest 

problem is the difference in modeled geometries . The analysis modeled 

only the cold leg and a portion of the HPSI pipe, whereas the experiment 

included such components as the stalled pump, the loop seal, downcomer 

and lower plenum (see Figure 1.1). Another problem arises because 

the analysis was done using the high temperatures and pressures typical 

of reactor condition. Due to the difficulties of working at these 

conditions, the experiment used much lower temperatures and pressures . 

The Froude numbers of the experiments were kept prototypical of reactor 

Froude numbers by using both lower flow rates and salt-induced density 

differences. The tests were run at Froude numbers of . 017, .025 and 

.051, whereas the conditions used for the analysis led to Fr = .032. 

However, since it is desirable to compare the two sets of results 

quantitatively some method of scaling must be found . Because of the 

significant differences between the experiments and the analysis, this 

comparison was not performed with the expectation that experimental 

results would in any way validate the computer model or with the belief 

that a direct comparison could be made. Rather, the comparison was 

undertaken in order to compare the trends which the two types of data 

showed. 
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In a first attempt to compensate for the differences between the 

analysis and the experiment a dimensionless temperature of the form: 

6 (t) 

was plotted versus time at various points for both the analysis and the 

Cr eare results at various Fr oude numbers. An example of this type of 

plot is presented in Figure 5.23 for mesh point 60, 2 in the analysis 

and experimental thermocouple 51. Both of these are located midway 

between the HPSI point and the open end of the cold leg at the bottom 

of the cold leg piping. The basic exponential nature of both of the 

experimental data at three1Froude numbers and the analytical results 

is apparent. Had the experiment been performed in exactly the same 

geometry as was modeled, the analytical data would be expected to fall 

between the two experimental curves, Fr . = . 025 and Fr. = .051 . 

As an attempt t o remove the geometry effects, e was plotted 

against a dimensionless time. The dimensionless time accounted for 

several discrepancies. First, the Creare experiments took the time, 

t(o) , to occur when the HPSI fluid first enetered the cold leg , while 

the analytical t(o) occurred when the HPSI fluid entered the HPSI 

piping . Therefore, the dimensionless time, ~ (o) , was chosen t o occur 

when the HPSI jet first impacts the bottom of the cold leg piping. 

This occurred at time equal to 3 .2 seconds in the analysis , 
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figure 5.23 Dimensionless t emper a ture versus r eal time 
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time equal to 1.52 in the Creare experiment where Froude number equaled 

.025 and time equal to . 76 seconds when Froude number equaled . 051 . 

These var iables times will be designated transit times, t (see tran 
Figure 5 . 24). Additionally, $ was chosen to eliminate t he effect of 

different lengths of piping since the Froude number accounts for the 

diameter effec t s, but not length effects . 

To accomplish these goals, $ was chosen s uch that 

t-t tran 
L/V 

wher e L was the distance f r om the point of injection to t he point of 

interest and V was the velocity . 

.. -----------.1-. -_· _
1 
___ tt_ =_ O_ a_n_a_l_y_s_i_s __ _ 

0 experiment 

0 

L 

0(60,2) 

1. 83m a nalys is 
0 . 32m experiment 

Figure 5.24 Ske t ch for ~ - dimensionless t ime 
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A sample of these results are shown in Figure 5.25 . Again, the basic 

exponential nature is shown, but a large descrepancy still exists. 

This shows that the dimensionless time was not sufficient to remove all 

of the geometry effects due to the large additional volumes of the 

pump, loop seal, downcomer and lower plenum. Therefore, a different 

method of scaling the data was investigated. 

Creare · reported that the general temperature behavior for any 

point in the system could be described by [9]: 

where 

T 

TH - HPSI fluid temperature 

T - Initial loop temperature L 

t - Time in seconds since onset of transient 

(5. 4) 

T - Characteristic mixing coefficient which depends on location 
of the point, modeled volume and Froude number 

Since this can be rewritten as: 

exp(- t/-c.) or e = exp (- cp ) 

which is what Figure 5.23 and 5.25 show, this equation seems valid. 

If the validity of this equation is accepted, one could scale the 

data from a particular experiment with a given TH and TL to any other 

TH and TL by finding T from the experimental data, then substituting 
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Figure 5,.25 Dimensionless temperature versus dime,sionless time 
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these T's and the desired temperatures into equation 5.1, again 

assuming the same Froude number and modeled volume. This is done in 

Figure 5.26 for mesh point 33, 2 . For the moment, the difference 

between the Froude number of the experiment (0.025) and the ·Froude 

number of the analysis (0.032) is ignored . Point 33, 2 represents 

a point on the cold leg wall directly opposite the point of HPSI 

fluid injection. Because of this location, this is the point which 

one would expect to have the most severe transient. Point 60 referred 

to in Figure 5.26 is the number of the thermocouple in the experiment 

which most closely corresponds to mesh point 33, 2. Figure 5 . 26 is 
0 gene r a ted by subs tituting the experimental temperatures of TH= 13.9 C 

0 and TL= 66.7 C into equation 5.1 along with experimental temperatures 

as a function of time in order to find T, which varies approximately 

linearly with time. These same values of T were s ubstituted back 

into equation 5 . 4 with the analy tical TH of 26 . 7°c and TL of 282°C . 

In examining this figure, it is seen that the basic exponential 

nature of the decay is predicted by the model but the characteristic 

mixing coefficients are quite different . This is to be expected 

since T is a function of both volume and Froude number. The effect 

of Froude number on decay can be seen in Figure 5.27 where the results 

from three experiments with different Froude numbers are plotted for 

mesh point 60, 2 which represents a point midway between the RPS 

injection point and the open end of the cold leg . The dashed lines 

represents an estimate of where Fr = .032 might fall . The estimate 

of where Fr = .032 might lie was performed by graphing T at 60 seconds 
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versus Froude number as shown in Figure 5.28. T varies non-

linearly with Froude number. The T fo r Fr = .032 was interpolated 

from the graph for point 60 , 2 and used to calculate T( t) fo r the 

dashed line in Figures 5.27. 

400 . 

300 
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100 

0 

0.0 0.01 0 . 02 0 . 03 0 . 04 0 . 05 
Froude number 

• Thermocouple {;' 1 

4 Thermocouple ff 51 

C Thermocouple II 6J 

Evaluated at 60 sec. 

Figure 5.28 Examples of how t varies with Froude number 
at various experimental points 

The effect of increased Froude number is to increase the severity 

of the transient. Figures 5.29 and 5.30 also demonstrate this effect . 
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The tempera tures will decrease more quickl y a t higher Froude number 

because as shown in Fi gure 5 . 22 proportionately less ho t water is 

entrained by the increased HPSI flow. It is obvious t hat this does 

not completely account for the difference between the experimental 

and analytical results because an additional fact - the different 

modeled volumes - also has an effect. 

It is difficult t o account for different volumes in the two sets 

of da ta because the volume fac t or is not the same as t he actual 

facility volume. The volume of each component has differing 

effec tiveness in showing the temperature decay. For example , 

during experimentation [9] it was found that the 57% increase in 

volume due t o the addi tion of the lower plenum to the test geome try 

led to only a 17% increase in mixing time, while the 25% increase 

in volume due to the pump and loop seal led to a 43% increase in 

mixing time . Ther efor e, the pump and loop seal a r e mo r e effective 

in slowing the transient than the lower plenum. The experimental 

data suggest that the addition of the loop seal, pump and 

lower plenum to the model would have the effect of increasing T by 

67% . Figure 5 . 31 is a graph which shows the experimental transient 

with the effec t of less volume taken into account for mesh point 60 , 2 . 

By compari ng Figure 5 . 27 and Figure 5 . 31 , it can be s een that the 

experimen t al and analytical data agree more closely af ter this 

adj ustment but a discr epancy is still apparent . One of the most 

pr obable reasons fQr this remaining discrepancy arises from the fact 
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that the experimental data still include the slowing effect of the 

downcomer where as the analytical data does not. A comparison of 

Figure 5.29 with Figure 5 . 32 and Figure 5 . 30 and 5 . 33 shows the 

same trends. 

No experimental data exist on the quantitative effect of the 

downcomer on the characteristic mixing time. The downcomer represents 

an addition of 160% to the total modeled volume . If the addition 

of this volume were to have the effect of increasing T approximately 

60% than the extrapolated experimental results at Fr .032 would 

match the analytical results quite closely . If this were the case, 

then the downcomer effectiveness factor: 

Eff = % increase in characteristic mixing time 
% increase in volume 

would equal .38. Since this lies between the experimentally 

determined . 30 effectiveness factor of the lower plenum and the 1 . 7 

effectiveness factor of the loop seal and stalled pump, it seems 

plausible. 

It is important to note that the assumption that a 2-D Cartes i an 

geometry can accurately model a 3-D cylindrical geometry could also 

account for part of the discrepancy . In the 2-D geometry, a fluid 

particle can not leave the plane of the paper. Perhaps the 2-D 

geometry forces the particle to flow past a point in the cold leg 

more quickly that the 3-D geometry would. In a 3-D geometry a 
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particle can move out of the plane of the paper. This additional 

freedom of movement has the effect of volume which would result in a 

slower transient just as Figures 5.31 through 5.33 show. Therefore, 

at least part of the discrepancy between the experimental and 

analytical results could be due to the use of 2-D Cartesian geometry. 

The turbulence model, itself, with all its implicit assumptions would 

also lead to a discrepancy between the experimental and analytical 

results. However, it is impossible to predict whether this discrepancy 

would result in a faster analytical transient. 

For the convenience of the reader, several other figures are 

included, all of which show the same trends discussed above: 

• 

• 

• 

Figure 5.34 which graphs experimental data, which has been 
adjusted for the different volumes, at various Froude 
numbers for mesh point 15, 2 which represents a point at the 
bottom of the cold leg midway between injection point and the 
closed end of the cold leg . 

Figure 5.35 which shows the results of the comparison for point 
60, 9 which is a point lying on the centerline of the pipe 
midway between the injection point and open end of the chosen 
leg. 

Figure 5.36 which shows the .Creare results for Fr = .025 at 
t=60 seconds. It compares these to the analytical results 
which were adjusted to account for the differing test tempera-
tures. This was done by assuming the analytical results 
follow the same basic form: 

T was calculated by using the results from the ULYSSE code, 
then a~ of 13.90°C . and T1 of 66.7°c were subs tituted 



~o 
0 -Olf'I 

.-r\) 
x 

L) 

0 

c 
('J 

0 

II: 

Cl 
G 

0. 00 2. 50 5. 00 
TIME 

7. 50 
(S EC ) 

POINT 
PCJ!NT 
POINT 
PCJINT 

10. 00 l 2 . SiJ 
(X 10 I ) 

15. 2 + 
6() FR = . 017 ~ 

6G FR = . 025 ~ 

6b FR = . 050 x 

15 . Ou 17 .5') 

Figure 5.34 Analytical results for point 15,2 versus experimental results at various 
Froude numbers 



0 
CJ 

)._' 

0 
0 

N 

CL . 0 
:L o w. ,_o 

c 
0 

0 
o_ oo 2. so 5. cc 

1 IM E 
7. so 

l SEC J 
tO . 00 

PO!NT 60. g T 
POINT 55 EXP UNROJ x 
PC! NT 55 IEMP ROJ ~ 
PO!NT 55 'v & 0 RO J 4> 

l 2 . so 
( < l 0 l 

1 5 . cc l 7 . 50 

Figure 5 . 15 Analytical result s for point 60 ,9 versus expe rimental result s a t 
FR = . 025 



99 
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Figure 5.36 Experimental results versus collapseo 
analytical results 
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to find the value of the temperature a t different points. 
This allows a comparison of the t otal flow field. The code 
predicted temperatures are always conserva tive, since they 
represent a fas t e r t r ans i en t. 

For the purpose of PTS anal ysis , which is the reas.on this situa-

tion was investigated, one would like t o have a simple equation which 

could be used for the boundary condition for the reactor vessel wall 

analysis . It was believed that the desired equation could be derived 

by assuming that the analytical results followed the equation: 

T (5 . 4) 

T was calculated for point 82,2 which r epresents the junction of the 

cold leg and downcomer, since the transient it experiences would 

conser vatively r epresent the transient exper ienced by the reactor 

vessel wall . T is plotted as a function of time in Figure 5 . 37 . 

It is obviously not a simple func tion of time, though it seems to vary 

randomly about a curve which increases with time. Ot her T' s derived 

from analy t ical r esults for other points in the grid showed similar 

behavior. It must be concluded that equation does not apply t o the . 

analytical data and that there i s no s imple equation which can 

adequately describe this complex flow situation. 

As a result of these investigations, the major s eurces of dis-

crepancy between the experimental and ana l ytical r esults a r ise f rom: 

• the inability to exactly match a computati onal grid point 
with a thermocouple location. 
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the HPSI fluid was injected exactly perpendicul ar to the 
pipe in both the analysis and the experiment where Fr = . 025 . 
The fluid was injected 30° off the perpendicular in the tests 
where Fr = .017 and Fr = .051. This causes a difference in 
the flow patterns and temperatures. 

prototypical Froude numbers were preserved by using salt-induced 
density differences to simulate the temperature induced 
differences. Reference 29 discussed this effect. Experimental 
results show large differences between the data from salt and 
heat in the same range of density differences. These discrep-
ancies can only be explained by invoking the different molecular 
diffusivities. Therefore, a second dimensionless number, the 
Peclet number, must enter the problem. However, its func tiona l 
relationship is unknown. 

the transport properties of the fluid vary from point t o point 
and time to time within the grid because they are all functions 
of temperature. However, all properties are considered 
constant except the density which is approximated by a linea r 
relationship. This is an obvious idealization of such tempera-
ture dependent properties as C , µ , k and p . 

p 

and, "most importantly, 

• the difference in volumes modeled. Experimental results 
included the volume of the downcomer while the analytical 
results did not. There is no sat isf actory way t o a ccount fo r 
the difference in these volumes since the "effectiveness" 
of the downcomer has not been s tudied. However, in light of 
the fact that the greater the volume, the slower the transient, 
the results presented in Figures 5.19 t o 5.36 a re t o be 
expected. 

Because of these signi ficant dif f erences, i t i s not ea s y t o 

discern whether or not the initial assumpti on that a t hree dimens iona l 

cylindrical problem can be modeled by a two dimensional Cartesian 

ge ometry is correct nor can the adequacy of the k-E turbulence model 

be def initi vely determined. Nonetheless, when one considers the 

factors listed above along with the i naccuracies a s s ociated with the 

experiment itself and the fluc tua t i ng , r andom na ture o f turbulence , 
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the similarity between the analysis and the experimental results leads 

to basic confidence in the model. Additionally, s ince all the results 

show that the model predicts a more severe transient than that 

actually observed during experimentation, the model is certainly 

conservative if the temperatures it generates are used to predict 

thermal stresses in the reactor vessel. 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR 
FURTHER WORK 

The goal of this work was to investigate the use of a two-

dimensional nodal solution to the Navier-Stokes equations to solve the 

problem of thermal mixing of the HPSI fluid with the stagnant fluid 

in the cold leg during certain Small Break LOCA scenarios. The 

result of interest was the temperature at the reactor vessel wall 

as a function of time . The results generated by the computer model 

were compared both quantitatively and qualitatively with experimental 

results generated by Creare and reported in references 7-9. The 

computer model successfully predicted all qualitative aspects of the 

observed flow phenomena including : 

• buoyancy induced stratification 

. recirculation in the closed end of the cold leg 

• counter current flow into the open end of the cold leg . 

However, quantitatively the computer code did not match the 

experimental results well. There are several major differences between 

the model and the experimental system which may account for the lack 

of agreement including the following: 

• different modeled geometry 

• different angles of injection for the tes ts with Froude 
numbers equal to .017 and .051. 

• the use of salt-induced density differences to preserve 
prototypical Froude numbers rather than the strictly 
temperature-induced density differences found in the 
reactor. 
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• the difficulty of exactly matching a computational mesh 
point with an experimental thermocouple. 

Considering these differences and the fact that stratification is 

known t o add a number of complicated phenomena to sheer flow such as 

energy radiation, strong ani sotropy and steplike density profiles 

[ 7], none of which are accounted for in the present mathematical 

model, the agreement between the theoretical and experimental results 

is certainly rea sonable. 

Because of these differences be tween experiment and analysis, 

one can not conclude whether the two dimensional computational solution 

with averaged transport properties and a constant k-£ model of 

turbulence accurately predicts a three dimensional geometry . However, 

it can be concluded that the model was conservative and, therefore, 

adequate for use with a thermal analysis of the reactor vessel wall. 

Unfortunately, the calculations require a great deal of computational 

time (e.g. the results presented herein required one hour of C.P.U. 

time). Nonetheless, since "prediction" by means of an experiment is 

usually even more expensive, calculational methods are in great demand. 

While the computational scheme has been validated in a number of 

buoyant flow situations [30,3132], none were quite as complex as the 

one investigated in this work. The results should be used with 

caution. 

Theref ore, it s eems a s though fu ture efforts should be concentrated 

in the experimenta l i nvestigation of the fol lowing three areas: 

• the exac t ef fec t of sal t ver s us thermally induced densi t y 
dif ferences 
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• the exact functional relationship to the Froude number 
and 

• the exact geometry effects of specific reactor components . 
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