
MARS and neural netw9rks with applications

to nondestructive evaluation

by

Brett Alan Peterson

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major: Computer Science

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1992

11

TABLE OF CONTENTS

1. INTRODUCTION............................. 1

2. MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) :{

2.1 Adaptive Computation and Local Approximation

2.2 The Recursive Partitioning Algorithm.

2.3 The MARS Algorithm

2.4 Discussion..·..........

3. FEED-FORWARD NEURAL NETWORKS (FFNNs) .

3.1 FFNN Computation

3.2 No Hidden Layer Learning Algorithms

3.3 The Backpropagation Learning Algorithm

3.4 Backpropagation Improvement Techniques

3.5 Discussion..................

4. GENERATIVE LEARNING IN FFNNs

4.1 Dynamic Node Creation (DNC) ..

4.2 Neuronal Dynamic Node Creation .

4.3 Cascade-Correlation

4.4 Generative Functional-Link Net

4.5 Discussion............

:3

-1

9

18

21

21

:24

:28

111

5. APPLICATIONS OF MARS AND FFNNs TO QNDE

5.1 Eddy Current Sizing . "18

5.1.1 Comparing MARS to existing FFNN eddy current results. -18

5.1.2 Comparing MARS, FFNNs, and cascade-correlation. 56

5.2 Ultrasonic Sizing 62

5.3 Ultrasonic Classification 6:3

5.3.1 Ultrasonic classification problem one

5.3.2 Ultrasonic classification problem two

5.4 Discussion..............

6. SUMMARY AND DISCUSSION.

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

iG

i8

Table 4.1:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.8:

Table 5.9:

IV

LIST OF TABLES

Neuronal DNC results for the XOR problem 40

Performance of MARS and FFNNs on synthetic eddy current

data. -19

Eddy current flaws ·50

Results using backpropagation on the 4000 element test set 58

Results using cascade-correlation on the 4000 element test set !)!)

Results using MARS on the 4000 element test set59

Results using MARS on the 4000 element test set with testing

accuracy approximately the same as backpropagation G 1

Performance of MARS and FFNNs on ultrasonic synthetic

sizing data

MARS versus FFNN on ultrasonic classification problem one 66

MARS versus the PNN FFNN for ultrasonic classification ex-

periment 1A " 70

Table 5.10: MARS versus the PNN FFNN for ultrasonic classification ex-

periment 1B .. 71

Table 5.11: MARS versus the PNN FFNN for ultrasonic classification ex-

perimen tIC 71

v

Table 5.12: MARS versus the PNN FFNN for ultrasonic classification ex­

periinent 2A .. 72

Table 5.13: MARS versus the PNN FFNN for ultrasonic classification ex­

periment 2B .. 7:3

Table 5.14: MARS versus the PNN FFNN for ultrasonic classification ex-

periment 2C .. 7:3

VI

LIST OF FIGURES

Figure 2.1: The forward stepwise recursive partitioning algorithm . . 6

Figure 2.2: Initial recursive partitioning approximation of f(x) = x2 10

Figure 2.3: Recursive partitioning approximation of f(x) = x2 at some

midpoint of computation 11

Figure 2.4: Final recursive partitioning approximation of f(x) = x2 12

Figure 2.5: The forward stepwise MARS algorithm . . 1:3

Figure 2.6: The backwards stepwise MARS algorithm . 17

Figure 3.1: A feed-forward neural network (FFNN) .22

Figure 3.2: A functional-link net FFNN 27

Figure 5.1: Actual values and FFNN estimates of flaw depths for flaws

#2 and #4 after training on flaws #1, #3, #5, and #6 . " 52

Figure 5.2: Actual values and MARS estimates of flaw depths for flaws

#2 and #4 after training on flaws #1, #3, #5, and #6 . .. 5:3

Figure 5.3: Actual values and FFNN estimates of flaw depths for flaws

#7 and #8 after training on flaws #1 through #6 54

VB

Figure 5.4: Actual values and MARS estimates of flaw depths for flaws

#7 and #8 after training on flaws #1 through #655

Figure 5.5: MARS performance on the 4000 element test set as a function

of the maximum number of basis functions parameter ... , .57

1

1. INTRODUCTION

Dozens of interesting problems in science, engineering, and business fall into the

category of multidimensional nonlinear function approximation. In other words, a

set of input/output examples (called a training set) of a (usually unknown) multi­

dimensional nonlinear real-valued function is given. Using only the training set, the

task is to incrementally build a mathematical model that will, given an input vec­

tor, approximate the (possibly multidimensional) output of the unknown function.

(In order to standardize terminology, we will refer to the model building process as a

learning algorithm.) Not only must the model be able to approximate the training set

"successfully," it must also produce "acceptable" output in response to a set of new

input vectors (called a testing set). This ability to respond to novel inputs is often

called generalization. Comparing learning algorithms with one another typically en­

tails the use of algorithmic criteria such as run time, parallelizability, and ease of use.

However, a learning algorithm is worthless if the resultant model performs poorly.

This observation inspires a set of model criteria used to judge algorithms including

input data noise tolerance, testing set approximation accuracy, and interpretability.

Nonlinear function approximation has been studied in mathematics and statistics

[50] (under the name "regression") for many years. A new method called Multivari­

ate Adaptive Regression Splines (MARS) has been introduced recently by .Jerome

2

Friedman of Stanford University [17, 18, 19]. MARS builds a function approximation

model in the form of an expansion in product spline basis functions [11]. Basically,

MARS adds certain important features to an earlier regression procedure known as

recursive partitioning [6, 17].

The problem of multivariate function approximation has also been attacked llS­

ing feed-forward neural networks (FFNNs). Justification for this approach has been

demonstrated in numerous papers proving FFNNs to be theoretically capable of either

exact function replication [24] or approximate function realization [10,21, 2:3, 31].

Hecht-Nielsen's concise findings [24] are well known and use results by Kolmogoro\'

[36] and Sprecher [56] to prove the existence of a FFNN that implements any contin­

uous function.

This thesis explains MARS and various FFNN techniques in the context of multi­

variate function approximation. Empirical results for both contrived and actual func­

tion approximation problems are reported. Interspersed throughout the explanations

of existing FFNN methods are descriptions of both successful· and unsuccessful new

FFNN techniques we developed. Empirical comparisons between various function ap­

proximation methods are given based on the criteria stated above. Specifically, chap­

ter 2 describes and discusses MARS; chapter 3 explains various FFNN approaches to

function approximation; chapter 4 is dedicated to an important paradigm of learning

for FFNNs called generative learning; chapter 5 explains Quantitative Nondestruc­

tive Evaluation (QNDE), an important "real-world" application area for function

approximation algorithms, and gives empirical results for MARS and FFNNs applied

to QNDE; and chapter 6 presents conclusions and discussion of relevant issues.

3

2. MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

Multivariate Adaptive Regression Splines (MARS) [17, 18, 19] is a relatively new

procedure for building a function approximation model. The method deals with the

approximation of many-to-one mappings; thus, functions with n-dimensiona.l output

(n> 1) require n separate MARS invocations (one for each output). An alternative

way of dealing with multidimensional output is suggested in [18]. Problems involving

moderate training set sizes (between 50 and 1000 elements) and moderate input

dimension (between 3 and 20 inputs) are considered good candidates for the l\IARS

approach.

2.1 Adaptive Computation and Local Approximation

For purposes of this thesis, we define a local function as being comprised of

several subfunctions each defined over a specific portion of the domain. Similarly,

we define a global function as being made up of one subfunction having the entire

function domain as its domain. In essence, a global function is interchangea.ble with

its subfunction. Function approximation in statistics has traditionally attempted

to fit a global function to a training set using a method such a.s least-squares [.1O}.

MARS espouses the notion of fitting a local function to the training data. The

resultant MARS model may then be called a local upP1'Oximator.

4

Traditional function approximation defines an a priori structure to the resulting

approximation model. For example, linear least-squares regression assumes a final

fixed form model (namely a linear combination of some set of functions of the input

variables) that will not change during computation of the ideal model coefficien ts.

Adaptive approximation methods loosen the fixed form restriction of traditional meth­

ods by dynamically adjusting the form of the model during model computation. Ex­

actly when and how the model is adjusted is a distinguishing characteristic of each

adaptive method. Two general strategies have evolved in statistics for implement­

ing adaptive computation: recursive partitioning [6] and projection pursuit [16, 20].

We will concentrate on recursive partitioning since MARS can be explained as a

generalization of this method.

2.2 The Recursive Partitioning Algorithm

The goal of this section is to describe the recursive partitioning method with a se-

ries of extensions to finally arrive at the MARS algorithm. (This angle of explanation

was originally used in [17].)

Recursive partitioning (and hence MARS) is an adaptive method for computing a

local approximator to the (usually unknown) function that generated a given training

set. First define the step function H (v) as

{

I if v > 0
H(v) = -

o otherwise.
(2.1)

The final recursive partitioning approximator 1 is a linea.r expansion of the form

M
lex) = L amBm (x) (2.2)

m=l

5

where each Bm is called a basis function and is defined as products of step functions.

(The exact form of the basis functions will be given shortly.) The am (m = 1, ... , 1\1)

are coefficients of the linear combination. Recursive partitioning attempts to adjust

the values of the coefficients to give the best fit to the training set data and dynam­

ically decide on a "good" set of basis functions for the model. The number of basis

functions M and the exact form of each basis function Bm are determined by t.he

method, thus demonstrating the adaptive nature of the algorithm.

Figure 2.1 shows the forward stepwise recursive partitioning algorithm. Line

1 of the algorithm initializes the model to respond with a value of 1 for all input.s.

The for-loop of line 2 iterates AI (the number of basis functions in the model at any

given time during computation) from 2 up to the maximum number of basis functions

allowed (Mmax - a parameter of the algorithm) .. Each iteration through this loop

adds one more basis function B AI to the model by splitting an existing basis function

Bm* on dimension xv* at value t*. The notion of "splitting" one basis function into

two basis functions is accomplished in lines 18 and 19 by replacing the existing basis

function Bm* by itself times the step function II applied to the argument

(xv* - t*). (2.3)

Similarly, the new basis function BM is created by multiplying Bm* by the step

function II applied to the negation of argument 2.3. Since the step function H

has the value 0 when its argument is negative and 1 when its argument is positive,

the effect of the outermost for-loop is to narrow the scope of control of B * over m

the output of the approximator by only allowing it to respond to inputs that make

argument 2.3 positive. Inputs that make argument 2.3 negative are now affected by

new basis function Bj\!. In short, the effective domain of the original Bm* has been

6

1. B1(x) 1
2. FOR M = 2 TO Mmax DO

3. 10f* ~ 00

4. FOR m = 1 TO 1\1 - 1 DO

5. FOR v = 1 TO n DO

6. FOR t E {xvjIBm(xj) > O} DO

7. 9 ~ Ei#m ai Bi(x)+amB m(x)H(xv- t)+al\IBm(x)H(t-;rv)

8. 10f mina1,···,aMLOF(g)

9. IF 10f < 10f* THEN

10. 10f* 10f

11. m* ~m

12. v* ~ v

13. t* t
14. ENDIF

15. END FOR t

16. END FORv

17. END FORm

18. BM(X) ~ Bm*{x)H(t* - xv*)

19. Bm*(x) Bm*(x)H(xv* - t*)

20. END FORM

Figure 2.1: The forward stepwise recursive partitioning algorithm

7

"split" on dimension xv* at value t*. Note that the old Bm * is replaced by itself

times a step function. This point is important for the development of MARS in the

next section.

The obvious question at this point is: how are m*, v*, and t* chosen? In other

words we must answer three questions:

.1. Which basis function should be split (m*)?

2. On which dimension of the input should the function be split (v*)?

3. On what value of the chosen split dimension should the split take place (t*)?

Looking at Figure 2.1, we see that the for-loop of line 4 iterates over all currently

existing basis functions (of which there are M -1); the for-loop of line 5 iterates over

all possible dimensions of the input (of which there are n); and the for-loop of line 6

iterates over all those data values t that satisfy the following criteria:

1. t. is equal to a value of the vth dimension of some input vector j from the

training set. The dimension v is set by the surrounding for-loop (line 5) and j

ranges from 1 to N where N is the size of the training set.

2. The current basis function under scrutiny for possible splitting (Bm with 111 set

by line 4) must return a positive output when applied to the jth. input vector

found in the first criterion.

In short, these criteria choose possible split points directly from the training set

vectors that fall into the effective input domain of the basis function currently being

evaluated. (The effective input domain of basis function Bm are those input yalucs

x that evoke a positive response from Bm.)

8

Having seen how candidate values are chosen for m*, v*, and t*, we now look at

the heart of the recursive partitioning algorithm in lines 7 through 14 of Figure 2.l.

Line 7 builds a new model 9 with one more basis function than the current model

by splitting candidate basis function Bm on dimension v at data point t. Model 9 is

then evaluated in line 8 using the criterion LOF that gives a measure of the lack-of-fit

of 9 to the training set data. More accurately, line 8 performs a linear regression of

the model output on the current set of basis functions in 9 to achieve a minimization

of LOF(g) with respect to the coefficients (the ak's). In general, the LOF function

is a modified version of the generalized cross-validation criterion given in [9]. Cl\Iore

explanation of the LOF criterion will be provided during discussion of MARS.) Lines

10 through 14 store the current split point parameters (the m, v, and t) if 9 has a

lack-of-fit score (given in the algorithm by 10f) less than the current recorded best

score (stored in 10f*). Lines 7 through 14 repeatedly build new models through the

splitting process with the best split (as scored by LO F) being added to the set of

basis functions in lines 18 and 19. The algorithm finishes with a model consisting of

Mmax basis functions, where each basis function has the form

(2.4)

As shown by equation 2.4, recursive partitioning produces basis functions that are

products of J(m step functions. Since each step function (H) resulted from a ~~split,"

the quantity J(m can also be viewed as the number of splits that were required t.o

produce basis function Bm. Each split is parameterized by the arguments of the step

function associated with the split. The sign of the argument is given by skm (either

positive or negative), and v(k, m) specifies the input dimension on which split k

9

occurred for basis function m. Thus, Xv(k,m) indicates the split dimension while tlml

represents the split value used (from the training set) for split k of basis function m.

One drawback of recursive partitioning is the discontinuity of its final model (which

is piecewise constant). This issue is important for the development of MARS in the

next section. Figures 2.2, 2.3, and 2.4 give a graphical account of approximating

the function f(x) = x2 with recursive partitioning. The approximat.ion

starts out with one constant basis function as shown in Figure 2.2. Part way through

computation, the approximator may have the form given in Figure 2.3. Finally, t.he

piecewise constant resultant model is shown in Figure 2.4. As mentioned before, all

split points on the x-axis are chosen from the training set.

A detailed explanation of the LOF model criteria is given after the explanation of

MARS. Also, since recursive partitioning attempts to overfit a model [6], a backwards

stepwise procedure is often required to eliminate basis functions (or pairs of basis

functions, depending on the algorithm) that do not help the overall fit. \Ve will

describe the MARS version of this procedure in the next section.

2.3 The MARS Algorithm

As stated previously, the MARS algorithm can be thought of as an extension or

generalization of recursive partitioning. Three concepts form the basis for the t.rans­

formation of recursive partitioning into MARS. These ideas are best demonstrated

by looking at the MARS forward stepwise algorithm in Figure 2.5. The similarity

between the recursive partitioning algorithm (Figure 2.1) and the MARS algorithm

(Figure 2.5) reflects the similarity betw~en the methods. The MARS algorithm is

best explained by looking at the three extensions to recursive partitioning.

f(x)

10

---f

------ f - approx

Figure 2.2: Initial recursive partitioning
approximation of f(x) = x2

x

f(x)

11

---f

------ f - approx

Figure 2.3: Recursive partitioning ap­
proximation of f(x) = x2 at
some midpoint of computa­
tion

x

f(x)

12

---f

.- •• f - approx

Figure 2.4: Final recursive pa.rtitioning
approximation of f(:r) = x2

x

13

1. B1(x) +-1
2. M +- 2

3. WHILE M < Mmax DO

4. 10f* +- 00

5. FOR m = 1 TO AI - 1 DO

6. FORv ¢ {v(k,m)11 < k ~ Km} DO

7. FOR t E {xvjIBm(xj) > O} DO

8. 9 +- Ef!11 aiBi(x)+a ill Bm(x)[Xv-tl+ +a M +1 Bm(x)[t-:rvl+

9. lof +- minar, ... ,aM+l LOF(g)

10. IF lof < 10f* THEN

11. 10f* +- lof

12. m* +- m

13. v* +- v

14.t* +- t

15. ENDIF

16. END FORt

17. END FOR v

18. END FORm

19. BlvI(X') +- Bm*(X')[xv* - t*]+

20. BM+l(x) +- Bm*(x)[t* - xv*l+

21. lvI +- M + 2

22. END WHILE

Figure 2.5: The forward stepwise MARS algorithm

14

The first MARS extension of recursive partitioning forces the resulting model to

be continuous (remember that recursive partitioning results in discontinuous piece­

wise constant models). The discontinuity of recursive partitioning originates with the

use of the step function (II) as the fundamental building block of the basis functions.

MARS replaces the step function with a continuous function throughout the model to

provide model continuity. The fact that step functions are special cases of two-sided

truncated power representations of spline basis functions guides the selection of the

continuous function. A truncated power basis function is a local function that can

be given by the two component functions

b(x - t) = [x - tl~ (2 .. 5)

and

b(t - x) = [t - x] ~. (2.6)

where t is a constant "split point" and q is the spline order. The "+" subscript on

both equations indicates that only positive arguments are affected by the function.

Since Equation 2.6 only takes arguments that are the negation of Equation 2 .. 5, a

truncated power basis function effectively splits its domain into two parts with each

component function controlling one part. One can now see that the step functions

(H) of the recursive partitioning algorithm (Figure 2.1 - lines i, 18, and 19) are

truncated power basis function representations of order zero (q = 0) splines. IVIARS

generalizes these functions to first-order (q = 1) splines. This fact, is demonstra.ted in

lines 8, 19, and 20 of the MARS algorithm (Figure 2.5) in which the step functions

of recursive partitioning are replaced by first-order splines. This generalization gen­

erates a piecewise-linear continuous model. If one desires continuous derivatives for

15

the model (which it does not have with q = 1 splines), a piecewise-cubic model can

be derived from the piecewise-linear output (see [17] for details).

The second MARS extension solves a problem inherent in recursive partitioning.

The interaction order of a basis function is the number of input dimensions involved

in the formation of the basis function. If a split of a basis function occurs on a di­

mension not already used in the basis function, the recursive partitioning algorithm

eliminates the basis function and replaces it with two basis functions of higher inter­

action order. The overall effect is an increasingly higher average interaction order of

the basis functions as the algorithm progresses. One serious consequence is the inabil­

ity of recursive partitioning to build a multidimensional additive model. Functions

with low-order interactions may be difficult for recursive partitioning to approximate.

MARS solves this problem by not removing the parent basis function after a split

has taken place. This technique allows multidimensional additive models to be built

by always choosing the original basis function Bl as the function to be split. Since

Bl involves no variables (see line 1 of Figure 2.5), splitting it will always result in

basis functions of interaction order one. (The MARS 3.5 implementation provided

by Jerome Friedman allows the maximum variable interaction level of the model to

be set by the user.) This extension is implemented in lines 8, 19, 20, and 21 of the

MARS algorithm (Figure 2.5). The two new basis functions added to the current

model in line 8 do not replace any existing basis functions. Similarly, the permanen t

addition of the best split in lines 19 and 20 does not replace a basis function as is

done in recursive partitioning (Figure 2.1 - line 19).

Recursive partitioning allows basis functions to be split on any dimension of

the input (training set). Define the split history of a basis function to be the set

16

of dimensions on which a split has occurred in the formation of the basis function

at a given time in the execution of the algorithm. Since q = 0 splines are used in

recursive partitioning, splitting a basis function on a dimension already in the split

history of the basis function results in a spline function of the same order (zero). An

effect of splitting on a dimension already in the split history using splines of order q

(q> 0) is to generate basis functions composed of factors that may include individual

variables raised to a power greater than q. This phenomenon must not occur if the

procedure is to stay within the realm of product spline basis functions (see [11]).

Since MARS uses order q spline functions, a mechanism must be supplied to prevent

the phenomenon. The third MARS extension to recursive partitioning solves this

problem by restricting each basis function to products of distinct input dimensions.

The implementation ~echanism is found iJl the FOR loop of line 6 of the forward

stepwise MARS algorithm (Figure 2.5). Loop variable v is not allowed to range

over the entire set of input dimensions (as in the recursive partitioning algorithm).

Instead, v is restricted to those dimensions that are not already in the split history

of the current basis function split candidate Bm.

The three extensions to recursive partitioning given above make up the heart

of the· MARS algorithm. Two issues have yet to be addressed: the LOF function

used in both recursive partitioning and MARS, and the backwards stepwise MARS

procedure.

The backwards stepwise MARS algorithm given in Figure 2.6 takes the resultant

model from the forward stepwise procedure and eliminates one basis function at a

time. The effect is to search for the best model and model size using the LOF criterion

as a judge of model quality. Specifically, the set of basis functions that should be

17

1. J* = {1,2, .. ·,Mmax }
2. 1(* +- J*

3. 10f* +- min{ajljEJ*}LOF (LjEJ* ajBj(x))

4. FOR M = Mmax TO 2 DO

5. b +- 00

6. L +- 1(*

7. FOR m = 2 TO }vI DO

8. 1(+- L - {m}

9. 10f +- min{aklkEI(}LOF (2:kE1(akBk(x))

10. IF 10f < b THEN

II.' b +- 10f

12. K* +- 1(

13. ENDIF

14. IF 10f < 10f* THEN

15. 10f* +- lof

16. J* +- 1(

17. ENDIF

18. END FORm

19. END FORM

Figure 2.6: The backwards stepwise MARS algorithm

18

included in the final model is tracked in variable J*. Thus, line 1 initializes tbe final

model to be the entire basis function set that came out of the MARS forward stepwise

procedure. The outer FOR loop of line 4 repeatedly builds the best model with M

basis functions where M ranges from Afmax to 2. The inner for loop builds multiple

models by removing one basis function from the current set of basis functions given

in L. Each model is compared with all.others and the best model of size M is saved

in K* for use by the next iteration of the outer FOR loop. Variable J* is updated

such that the best model found of any size less than or equal to Mmax is saved. All

of this work is done in lines 8 through 17 of Figure 2.6.

The LOF function is a modified version of the generalized cross-validation cri­

terion given in [9]. The exact details of the MARS LOF function are given in [17].

To summa.rize, the MARS LOF(g) criterion is the average squared-error of the fit of

the model 9 to the training set, multiplied by a penalty function that increases as the

number of basis functions in 9 increases. Associated with the penalty function is a

parameter d, which can be regulated by the user, that assesses an increased penalty

for large numbers of basis functions. Larger values of d will tend to lead to fewer

splits in the final model.

2.4 Discussion

It should be understood that the lack-of-fit function LOF given here is one of

many possibilities. The function acts like a heuristic that decides which of a group

of models is best. Changing the heuristic may be an interesting area of exploration.

MARS has several parameters which may be set by the user during execution

including the maximum number of basis functions AIm ax , the maximum 'variahle

19

interaction within a basis function, and the d parameter from the LOF function. All

experiments reported in this thesis (in upcoming chapters) using MARS 3.5 only al­

tered the setting of Mmax. All other parameters were left at their default locations.

With this simple parameter setting scheme, MARS results were quite good. Among

other things, the results demonstrate the parameter-insensitivity of the MARS algo­

rithm.

Many features of MARS are included for computational reasons. The forward

stepwise algorithm could conceivably build a piecewise-cubic model; however, the

computational advantages inherent in piecewise-linear model building are too great

to pass up. One computational bottleneck occurs when executing the least-squares

fit (line 9 of Figure 2.5). Recursive partitioning uses characteristics of the step func­

tions to reduce the execution of the least-squares fit to a constant time operation

[6] .. MARS also uses enhanced least-squares fitting procedures resulting in a final

algorithm with a run-time linear in the number of input dimensions, linear in the

size of the training set, and approximately cubic in 111max (the maximum number

of basis functions allowed). Obviously, the key run-time parameter turns out to be

the Mmax parameter. The lower the setting of AIm ax , the faster the algorithm will

execute. Results of our experiments (given in upcoming chapters) show that MARS

gives good results with reasonably smaIi settings of Ilfmax making it a computation­

ally attractive method for function approximation. See [17] for more computational

details and considerations.

The potential parallelization of the MARS algorithm is one of its strongest ben­

efits. Friedman [18] has given a formulation of MARS targeted at neural network

researchers. We believe that a fruitful area of research is the examination of ~IARS

20

from a variety of parallel models of computation. Both the MARS algorithm and the

final MARS model may benefit from parallel implementation.

MARS is a promising approach to function approximation worthy of future re­

search. The ideas inherent in the procedure may find value in related fields including

feed-forward neural network (and general neural network) research.

21

3. FEED-FORWARD NEURAL NETWORKS (FFNNs)

As stated in the introduction to this thesis, multivariate nonlinear function ap­

proximation is justifiably a major research topic in the field of feed-forward neural

networks (FFNNs). This chapter explains the FFNN computational paradigm for

fixed architecture FFNNs. Fixed architecture FFNNs require the specification of the

number of network processors and the processor interconnection pattern before the

instantiation of the learning algorithm.

3.1 FFNN Computation

FFNNs are a distributed form of input/output computation. As shown in Fig­

ure 3.1, an FFNN is a series of layers of simple processors (called nodes). In the

most common case of a fully connected FFNN, all nodes in layer m are connected to

all nodes in layers m + 1 and m - 1. During computation, data only flows from nodes

in layer m to nodes in layer m + 1 where m ranges from 1 to L - 1 (L being the last or

output layer). No connections are allowed within a layer or between non-neighboring

layers (although these extensions are often interesting). First layer (or input layf'l")

nodes receive input from the environment, and output layer nodes send their output

signals to the environment. Thus, one can see the inherent input/output nature of

FFNNs. Layers between the input and output layers are called hidden layers.

(Output) Layer #L

Weights Layer #L-1

(Hidden) Layer #L-1

Weights Layer #L-2

•
•
•

Weights Layer #2

(Hidden) Layer #2

Weights Layer #1

(Input) Layer #1

22

OUTPUTS

•
•
•

INPUTS

Figure 3.1: A feed-forward neural network (FFNN)

23

Each node-to-node connection has a scalar weight associated with it. The weight

associated with the connection from node i in layer m - 1 to node j in layer m is

specified by the variable wji-1. Each input signal Xi to node j of non-input layer

m is the output signal of node i of layer m - 1. (The input layer receives unweighted

inputs from the environment.) Each signal Xi to node j of layer m is multiplied

by the corresponding weight wji-1. When an input vector p from the training or

testing set is presented to the network input layer nodes, a cascade of computation

proceeds through the FFNN. Letting the output of node j at layer m due to input

vector p be given by o;:}, the total (or net) input to node j in layer m due to input

vector p is then given by

net~ = "'"' w~-1o~-1
p) ~)1, pz . (3.1)

z
The weighted sum of equation 3.1 becomes the argument of some nonlinear function

f (called the activation function) to produce the output o~ of node j on pattern

p. The ability of the network to approximate nonlinear mappings requires the· use

of a nonlinear activation function. Popular activation functions include the sigmoid,

gaussian, and threshold functions.

A learning algorithm in the context of fixed architecture FFNNs must provide a

method of setting the weights such that the network "successfully" approximates the

desired function. All the FFNN learning algorithms discussed in this thesis belong t.o

the class of supervised learning algorithms. This term implies that the algorithm has

access to both input and output values in the training set. The training set output

values, in conjunction with the supervised learning algorithm, act like a "teacher"

guiding the network to an appropriate set of weights. More than one set of appropriate

weights may exist.

24

Historically, FFNNs originated with the contribution of McCulloch and Pitts

[38] in 1943. This work combined threshold elements with finite state machines in an

effort to describe forms of memory. The field advanced considerably with Rosenblatt's

proof of the famous Perceptron Convergence Theorem [46]. Basically, this theorem

stated that any two layer (Le., no hidden layers) FFNN of threshold elements (called a

Perceptron) can learn to emulate any mapping that it is capable of emulating [39, 46].

The problem is that Perceptrons can only learn mappings which are linearly separable

[39]. This discovery slowed research in neural networks for many years. However,

it was known that multilayer FFNNs (i.e., FFNNs with one or more hidden layers)

could implement some functions which were not linearly separable. The problem now

became one of finding an effective way to set the weights of a multilayer FFNN.

Not until 1986 did a method of setting the weights of a multilayer FFNN gain

wide acceptance. The backpropagation learning algorithm [47] (which is discussed

in a future section) revolutionized the field of FFNNs and set into motion a slew of

new research. One should note that Werbos [61] is often credited with the original

backpropagation idea; however, the promulgation of the method is due to [47].

3.2 No Hidden Layer Learning Algorithms

Supervised learning algorithms for FFNNs with no hidden layers (i.e., only one

layer of weights between the input and output layer) have existed for many years.

This class of learning algorithms is often significantly faster computationally than

algorithms for training multilayer FFNNs. Since only <:me layer of weights is necessary,

training the weights for each output node of a multidimensional output FFNN can

be treated as an independe.nt problem. Thus, it suffices to think of these algorithms

25

as approximating a single many-to-one function for each output node. As a result,

we need not explicitly address multiple output node FFNNs with no hidden layers.

The fixed-increment percept ron learning algorithm [39, 46] was the first super­

vised FFNN learning method to gain significant acceptance. This technique learns

to classify sets of n-dimensional inputs into one of two classes (call the classes 0 and

1). The algorithm is fairly simple:

1. Initialize the weights to random real values.

2. For each training set pattern execute steps 3 and 4.

3. Pass the pattern through the perceptron.

4. 1£ the pattern is misclassified as a 0 when it should be a 1, then add the value of

the training pattern vector to the weight vector. 1£ the pattern is misclassified

as a 1 when it should be a 0, then add the negated value of the training pattern

vector to the weight vector.

5. After each input pattern has been presented, check to see if any patterns were

misclassified. If they were, then· go to step 2. If all patterns were classified

correctly, then exit.

This algorithm has been proven to converge on a set of weights that implement any

classification that is linearly separable [39].

Another family of single-layer FFNN classification learning algorithms is based

on the relaxation method. This method, which was introduced simultaneously in [1]

and [40], is used to solve linear systems of inequalities. The input examples from the

training set can be viewed as a collection of hyperplanes with "right" and "wrong"

26

sides. The goal is to find a point on the "right" side of all the hyperplanes. This

point satisfies all the constraints imposed by the input examples; thus, it can be used

as the weights in the single-layer FFNN. This technique has been used successfully

in Hopfield networks [42], bidirectional associative memories [41], and single-layer

FFNNs.

The delta rule [47] is a no hidden layer learning algorithm with similarities to

the percept ron algorithm. The next section covers the generalized delta rule (i.e.,

backpropagation) algorithm for multilayer networks. Since the delta rule is simply

a restriction of the generalized delta rule, an explanation of the one-layer delta rule

method is not given here.

As mentioned above, single-layer learning algorithms are relatively quick com­

pared with multilayer learning algorithms. However, the fact that single layer FFNNs

can only learn linearly separable problems limits their usefulness. The functional-link

net approach [43] attempts to retain the one-layer architecture while simultaneously

providing a method of making non-linearly separable problems linearly separable.

The idea is to increase the input dimension of the problem. Adding input layer

nodes that take functions of original inputs as their inputs may provide the required

linear separability in the higher dimension. A common input function simply mul­

tiplies the original inputs together as shown in Figure 3.2. Selecting the input

functions for the new nodes can be a difficult problem. Deciding how many input

dimensions are enough is also unsolved.

We tried one possible solution to the input function selection problem based in

Fourier series [34, 59]. A functional-link net can be viewed as a function approxima­

tor made up of a linear expansion of basis functions. Suppose each functional-link

27

OUTPUT.

X2

INPUTS

Figure 3.2: A functional-link net FFNN

28

net node has one trigonometric Fourier series function as its input node function. It

has been proven that the mean squared error of the approximation of the training set

will be minimal when the coefficients (or in this case, the functional link net weights)

are given by the Fourier coefficients [59]. Our idea was to use a one-layer learning

algorithm on a functional-link net with input functions given by the trigonometric

Fourier series functions. This set of underlying input functions was a rationa.l and

theoretically sound choice. Unfortunately, \Vhen the input dimension of the prob-

lem exceeds three, the necessary formulation of the Fourier series functions becomes

almost impossible. Due to this restriction, we abandoned this thread of research.

However, if a method is found to list all of the trigonometric Fourier series functions

then this idea is certainly worth further investigation.

3.3 The Backpropagation Learni"ng Algorithm

Many supervised learning techniques are based on the concept of error minimiza.­

tion. Specifically, a learning algorithm attempts to minimize the difference between

the actual output of the FFNN and the target output given in the training set. Since

a training set consists of multiple patterns, a more appropriate and popula.r error

measure is the sum squared error. More rigorously, the sum squared error for pattern

p over all nodes j in output layer m is given by

Ep = ~ ~ (t . _ 0111.) 2
2 ~ PJ PJ

(3.2)

J

where tpj is the target output for pattern P at node j and o;} is the output of node j

for pattern p. Of course, other error measures could be used if the situation df'emed

them appropriate.

29

The backpropagation multilayer FFNN learning algorithm (also known as the

generalized delta rule) [47] utilizes approximate gradient descent in the sum squared

error as its minimization process. True gradient descent cannot be claimed unless

weights are not updated until after all training patterns have been iterated through

the FFNN. Usually, backpropagation implementations update the weights after each

training set pattern is presented thus only approximating true gradient descent.

The derivation of the backpropagation weight update formulae is based on the

first degree Taylor polynomial approximation of the sum squared error function. It

is helpful to notice that the error function can be viewed as a function of the FFNN

weight vector since all other quantities in equation 3.2 are constant. (The weight

vector is buried in the activation function a;} in equation 3.2, but it is the only

variable in the equation.) In order for the sum .squared error to always decrease (in

pure gradient descent) the change in some (m -1)-la~er weight wJi-1 due to pattern

p must be proportional to the negation of the partial derivative of Ep with resped

to w~-1.
)1, •

~ m-1 _ 8Ep
PWji - -771

8
m-1

w··
)1

(3.3)

where 771 is a parameter of the algorithm called the learning rate. The question now

is to determine an expression for calculating the partial derivative of Ep with respect

to each weight.

\Ve begin by recalling the expression for a no'de's net input given in equation :3.1.

For this derivation, we assume the popular sigmoid node activation function of node

j for pattern p at layer m given by

m 1 o . =
PJ 1 + exp(- f3j . net~j) (:3.4)

30

where f3j is a constant regulating the steepness of the function. By the chain rule,

we may break up the partial derivative of Ep with respect to weight wJi- 1:

8Ep _ 8Ep 8net;]

8 m-1 - 8netm. 8 m-1·
Wji PJ Wji

(3.5)

The goal now becomes to derive a formula for each of the factors of equation 3.5.

First, notice that the second factor of equation 3.5 is given by

8net;] 8 (~m-l m-1) m-1
8 m-l = 8 m-l L..J Wjk °pk = °pi .

Wji Wji k .

Let the negation of the first factor of equation 3.5 be denoted by

8m. =
PJ

8Ep
8net;] .

Combining equations 3.5, 3.6, and 3.7 results in

8Ep :::: 8m.0~-1
8w~-1 PJ pz

J~

(3.6)

(3.7)

(3.8)

At this point we see that equations 3.3 and 3.8 specify the weight update formula

given by

A m-l em m-1 upW.. = 1/1U '0· . J't PJ pZ (:3.9)

The 8;;} is called the backpropagation error signal. This signal takes on different

values for the weights entering the output layer nodes than for the weights entering

the hidden layer nodes. Applying the chain rule to equation 3.7 gives

8m. = _ 8Ep = _ 8 Ep 80;] .
PJ 8netm. 80m. 8netm.

PJ PJ PJ

The second factor of equation 3.10 is seen to be

80m.
PJ _ 13m m (1 m)

8netm. - j 0pj - 0pj .
PJ

(:3.10)

(:3.11)

31

The first factor is different for output layer weights than for hidden layer weights.

For weights entering the output layer, the first factor of equation 3.10 is given by

oEp (m) oom. = - tpj - 0pj . (3.12)
PJ

The first factor is derived for weights entering hidden layer nodes as follows:

-p = I: p P (3.13) oE (OE onet1+
1

)
oom. k onetm+ 100m.

PJ pk PJ

_ '" oEp a () -1; onet;k+l oo~j ~wkio~ (3.14)

-I: oEp (. m) - wk' (3.15)
k onetm+l 'J

pk

= - '" fJmk+1wmk' (3.16) .1; p' J

We combine all of the above results to form the final weight update rule for output

layer weights given by

A m-1 _ (t. m)f3m m(1 m) m-1 UpWji - 771 PJ - 0pj j 0pj - 0pj 0pi . (3.17)

Hidden layer weights have a final weight update rule given by

A m-1 pm m (1 m) ('" cm+1 m) m-1 UPWji = 771 j 0pj - 0pj 1; vpk Wkj °pi . (3.18)

The backpropagation algorithm repeatedly presents each training pattern to the

FFNN. After each pattern has passed through the network, the weights are altered

as prescribed by equations 3.17 and 3.18. (One pass through the entire training set is

called an iteration.) The sum squared error continues to decrease as more and more

iterations are run. Eventually, the network will reach an error level that the user can

tolerate (within reason).

32

3.4 Backpropagation Improvement Techniques

Backpropagation learning is plagued with excessively long run times. As a result,

a major field of investigation in the field of FFNNs is the run-time improvement of

the algorithm given in the previous section. The most prominent of the improvement

techniques is momentum [47]. This method adds the following term to the final

update formulas of equations 3.17 and 3.18:

(3.19)

where a is a parameter of the algorithm that determines the effect of previous weight

changes (notice the p - 1 subscript) on the current weight change. Dozens of other

backpropagation improvement techniques have been proposed included those in [32,

33, 57]. Interesting use has also been made of higher order (e.g., second derivatiye)

methods [5].

An interesting new approach with limited biological plausibility [7] is neuronal

learning [58]. The idea purports the existence of a tuning parameter within the

FFNN node that can be manipulated into the learning algorithm. Specifically. the

parameter Tj for node j in layer m (called the temperature) is given by

m 1
Tj = {37Jl

J

(3.20)

where Pj is the value shown in equation 3.4. This implementation of the technique is

limited to sigmoid activation functions; however, other parameters of other activation

functions may work just as well. Approximate gradient descent is used to adjust

the temperatures throughout the FFNN in a method similar to the weight update

procedure of backpropagation. The same sum squared error and net input functions

33

used in backpropagation are used in neuronal learning. The derivation of the neuronal

temperature update rules is similar to backpropagation ..

We first notice that the change in temperature for node j at layer m for pattern

p must be proportional to the partial derivative of the error with respect to the

temperature:

m_ 8Ep
6.pTj - -712 8TTJl

J
(3.21)

where 712 is a learning rate parameter of the algorithm analogous to the backpropa-

gation learning rate. Since neuronal learning is an extension of backpropagation, it

must be pointed out that the two learning rates are independently set by the user.

By using the chain rule we observe that

8Ep _ 8Ep 8o;,}
8Tm - 80m. 8TTJl .

J PJ J

The second factor of equation 3.22 is given by

8o;} _ net;,} (m) (m)
8TTJl - 2 0pj 1 - 0pj .

J (Tj)
Similar to backpropagation, we define the node error term as

Am _ 8Ep
hpj - - 80m ..

PJ

For nodes in the output layer m, the error term is

(3.22)

(3.23)

(3.24)

(3.25)

By an argument similar to the backpropagation weight update derivation, the neu-

ronal error term for non-output layer m is

(:3.26)

34

Combining all the equations we come up with the neuronal update rule

(3.27)

where 6;;] is given by equations 3.25 and 3.26. This technique is a reasonable and

well-founded extension to backpropagation.

3.5 Discussion

As stated throughout this chapter, FFNNs (especially multilayered FFNNs) of-

ten require extremely long learning times. This phenomenon is especially true of

backpropagation even though empirical studies have been undertaken to investigate

the problem [13]. On top of this rather severe run-time problem, it is often difficult

to find appropriate backpropagation parameters such as the learning rate and mo­

mentum rate. Even with these difficulties, FFNNs do have significant positive points.

They are a form of extremely distributed computation, thus FFNNs are tolerant to

possible node failure. It is also claimed that FFNNs are quite robust to noise in t.he

input (both training and testing set).

As a mapping approximation tool, FFNNs must compete with conventional tech-

niques such as MARS. As our experiments show (in upcoming chapters), FFNNs (es­

pecially backpropagation networks) train many times slower than MARS, have many

barriers to easy use, and can perform worse on testing data than ~vIARS. One must

not dismiss FFNNs altogether, however. The field is young and maturing.

Other function approximation neural network paradigms do exist other than

backpropagation. Examples include counterpropagation [2.5] and a one-shot learning

35

method given in [27]. For an excellent introduction to a large number of neural

network paradigms, please see [53].

36

4. GENERATIVE LEARNING IN FFNNs

Generative learning refers to the process of dynamically building the architecture

(number of nodes and the pattern of connectivity between them) of a FFNN during

the learning process. Two major techniques have emerged in this general area: node

pruning and node addition. Node pruning [52] concentrates on removing nodes and

weights that are contributing little to the final result. Node addition tries to "grow"

new nodes as necessary to help find a satisfactory architecture [2, 3, 15, 28, 29]. (See

[2] for a listing and description of current addition and pruning methods.) Using

both techniques in one learning algorithm would be an interesting endeavor; however,

most generative learning algorithms deal with one method at a time. Most of the

work reported in this thesis concentrated on node addition algorithms; thus, we will

concentrate solely on dynamic addition learning techniques.

4.1 Dynamic Node Creation (DNe)

The dynamic node creation (DNC) technique of Timur Ash [3] is an attempt

to incrementally build a three-layer (i.e., one hidden layer) FFNN by adding hidden

nodes one at a time to increase function approximation accuracy. Standard back­

propagation is used to train each newly generated FFNN, and nodes are added when

the sum squared error curve given by equation 3.2 becomes sufficient.ly flat over time.

37

As before, define an iteration as one pass through the training set. Let w be

the DNC window size given in iterations, ~T be the trigger slope, at be the average

squared error at time t for a given output node, mt be the maximum squared error

at time t for any output node, ea be the average squared error cutoff, and em. be

the maximum squared error cutoff. A hidden node is added to the single hidden layer

when the following conditions hold:

(4.1)

and

t - w > to (4.2)

where to is the training iteration during which the last hidden node was added. Con­

ceptually, equation 4.2 guarantees that a node is not added until w iterations through

the training set have been completed (thus the name "window size"). Equation 4.1

measures the steepness of the error curve and detects when it has become excessively

flat over time. Node addition halts when

(4.3)

and'

(4.4)

New nodes are given full connection to all input and output nodes. Ash reports slower

convergence time than standard backpropagation, but this effect was expected. The

benefit of DNC is the purported solution to the problem of finding a good network

architect ure. .

\Vith any generative learning algorithm, a variety of design questions must be

addressed including

38

1. how many nodes should be added,

2. to which layer should the node(s) be added,

3. what pattern of connectivity should be associated with the node(s),

4. when should the node(s) be added, and

5. what activation function(s) should the node(s) use.

DNe chooses relatively simple and arbitrary answers to these questions without any

formal justification. In general, no firm mathematical basis is given for the DNC

technique. The method relies mainly on heuristically formed conditions parameter­

ized by user input. Indeed, setting the various backprop and DNC parameters is a

difficult task. Severe node growth explosions can result if the parameters are not

set correctly, especially on nontrivial function approximation problems. (The simple

XOR problem is easily solved by DNC, but this benchmark is too simple to judge

the quality of any algorithm.)

4.2 Neuronal Dynamic Node Creation

Neuronal Dynamic Node Creation (Neuronal DNC) is a generative techn"ique

we invented that simply combines the neuronal lea.rning technique [58) wit.h DNC

[3]. Since both neuronal learning and DNC are based on the backpropagation weight

update algorithm, placing the methods together into one algorithm was a. natural

exerCIse.

The neuronal DNC technique possesses the attractive and intuitive appeal of

cutting back the convergence time of standard DNC by allowing more optimiza-

39

tion parameters (the neuronal temperatures associated with the sigmoid activation

function - see equation 3.20) to vary in a mathematically grounded way. Since our

underlying purpose is to approximate fairly high dimensional multivariate functions,

a reduction in learning time would be a significant advantage because the large di-

mens ion of the functions only adds to the slow convergence of backpropagation-based

algorithms.

Computer simulation code for neuronal DNC was written in C and executed on

a variety of DECstation 5000, DECstation 2100, and Sun Sparcstation platforms.

Twenty-eight parameters are input to the simulator from standard input. Twelve of

the parameters are "administrative" (input file names, random number seed, program

mode, etc ...) and the remaining sixteen are algorithmically relevant. Notice that

two separate learning rates must be considered: one for neuronal learning and one

for standard backpropagation. Both .rates remain static throughout learning. The

"momentum" parameter is used in a momentum term added to every weight update

in order to account for past weight changes.

A relatively limited number of experiments were attempted. The exclusive-or

(XOR) benchmark function was tried, and the network quickly learned the function

to the desired degree of accuracy regardless of whether neuronal learning was used.

Since XOR is a toy problem in which the training set is equivalent to the testing set,

a more interesting continuous. multivariate function was formed. The mapping from

~4 to ~2 is given by

(4.5)

(4.6)

where 0 < Xi 5 2 Vi. Testing and training cases were easily generated.

40

Table 4.1: Neuronal DNC results for the XOR problem

back initial result
prop neuron number number

Expt learn learn hidden window hidden number of
number momentum rate rate nodes SIze nodes iterations

1 0.9 0.5 0.1 1 200 4 705
2 0.9 0.5 0.0 1 200 5 2726
3 0.9 0.5 0.1 1 100 3 359
4 0.9 0.5 0.0 1 100 9 2704
5 0.9 0.5 0.1 1 50 3 277
6 0.9 0.5 0.0 1 50 22 2499
7 0.9 0.5 0.1 1 25 4 235
8 0.9 0.5 0.0 1 25 48 2145
9 0.9 0.1 0.1 1 50 3 228
10 0.9 0.1 0.0 1 50 101 9864

As mentioned previously, the addition of neuronal learning did improve the net­

work's performance over standard DNC for XOR. In fact, neuronal DNC required

significantly less training time than standard DNC in many cases.

Parameter settings were chosen based upon observed performance, and no rig­

orous justification can be given for the decisions made. All experiments for the XOR

function used the same four element training set and four element testing set. The

DNC trigger was set to 0.05. The average error cutoff was set to 0.0001, and the

maximum error cutoff was set to 0.001. Unlimited hidden node addition was allowed.

All experiments began with one hidden node. Table 4.1 summarizes a representa­

tive sample of experiments attempted. Since all experiments approximat.ed the

mapping sufficiently, the important results to observe are the number of iterations

through the training set required to obtain the approximation and the number of

41

hidden nodes generated. Experiments 6, 8, and 10 (all not using neuronal learning)

generated extreme hidden node explosions, while the corresponding neuronal DNC

experiments (5, 7, and 9) performed well. In all cases neuronal DNC significantly

outperformed regular DNC both in node growth and in the number of required it­

erations. Of course, this statement cannot be generally made because all possible

parameter settings have not been attempted. Standard backpropagation was run by

using experiment numbe~ 10 and shutting off node creation. Three hidden nodes

were initially provided. Standard backprop took 12698 iterations compared with 228

for experiment number 9 (the neuronal DNC version).

The continuous mapping problem presented above was attempted and promising

results were obtained in which neuronal DNC outperformed normal DNC and stan­

dard backpropagation. Unfortunately, this success was tempered by the excessively

long p.rocess of finding appropriate algorithmic parameters. Also, more tolerance for

error was accepted for the continuous problem, but when the tolerance was decreased

to a low yet acceptable level, no parameter settings could be found that favored neu­

ronal DNC.

The success of the neuronal DNC technique in the experiments should be tem­

pered by the difficulties experienced with the continuous mapping problem. A variety

of possible explanations for this difficulty are presented below.

First and foremost, the vast number of parameters (sixteen) used by neuronal

DNC possess an enormous 'number of possible settings. No clean method is available

to decide the appropriate values for each parameter. Indeed, this problem afflicts

most backpropagation-based algorithms to some degree; however, DNC seems to

worsen the affliction. Neuronal DNC may be a viable technique if the parameters

42

are set correctly, so calling it an outright failure may be too hasty. Parameter values

similar to those given in the original papers were used, but the same success was not

achieved. A massive "simulation· search" will need to be undertaken to solve this

problem; however, since convergence is still relatively slow (three hours for one run

on a DECstation 5000), this idea may not be possible.

Another problem may lie in the DNC technique itself. As noted earlier, a node

growth explosion sporadically occurs. The underlying problem may be the fact that

DNC has no method of rigorously controlling the growth of nodes other than the

correct setting of parameters. Thus, adding neuronal learning compounds the prob­

lem by setting loose more unregulated parameters. Even though neuronal learning is

well founded in approximate gradient descent, the changing architecture may disrupt

the sear<:h space. Moreover, a newly added node possesses no guarantee of doing

"useful" work, i.e. the weights and temperature may play little or no role in the

final approximation. Seemingly, the only way to minimize neuron growth in this

model is to enlarge the window size sufficiently enabling the existing network to be

"fine-trained" as necessary; however, a price is paid in greater convergence times.

A large number of other reasons for the experimental results are possible; how­

ever, the common threads in all of them are an excessive number of input parameters,

extreme parameter sensitivity, and relatively uncontrolled node addition.

Future directions of this work may include large simulation and diagnostic stud­

ies, the addition of novel controllers to DNC, and algorithmic optimization such as

decaying learning rates. Actually, we see more promise in studying the underlying

node basis functions. Neuronal learning is still a valuable technique that we expect

will prove fruitful in future work.

43

4.3 Cascade-Correlation

The cascade-correlation (CC) generative learning algorithm [15] creates a variant

of architecturally pure FFNNs (as understood in this thesis). Unlike DNC, CC makes

an attempt to control the usefulness of added nodes by correlating their output with

the residual error of the output nodes. It also utilizes only single-layer learning

techniques by freezing certain weights during learning. This explicit avoidance of

multilayer backpropagation of error signals is one of the most desirable properties

(from a run-time standpoint) of the CC technique. CC uses a higher order technique

called Quickprop [14] in an attempt to speed up convergence time.

The CC algorithm begins with no hidden nodes. Training ensues with the singlc­

layer learning technique until no significant change in error is observed for some pre­

set number of training iterations (called the patience parameter - set by the user).

At this point a new hidden node (called a candidate node) is given a connection from

every input node and from all other hidden nodes. The new node's output is not yet

attached to any other node. A pre-set number of iterations over the training set are

executed, and the candidate node's input weights are adjusted in order to maximize

the correlation between the candidate node's output and the error at the output

nodes. A gradient ascent procedure is. used to carry out this task. Notice again that

only a single layer of weights are being trained. In addition, one may train a group

of candidate nodes (possibly in parallel) and choose the best one. This is possible

since the weights of the existing nodes are frozen during node addition.

After a node is added, its input weights are permanently frozen. The entire

network is then trained using a single-layer training algorithm; however, only the

weights entering the output nodes are allowed to vary. \\Then the change in error

44

over time is minimal, the process of adding a node begins again. This cycle repeats

until the stopping criteria (set by the user) are met.

CC has numerous benefits including no backpropagation of error signals, a well

grounded method of ensuring that a node does useful work, and the creation of sta­

tionary feature detectors through the freezing of input weights for hidden nodes. The

main difficulty with the algorithm is its large number of seemingly sensitive param­

eters. Empirical studies of CC such as [62] were invaluable in our experimentation

with the method. (Our results are presented in upcoming chapters.) As stated in [62),

a weight update scheme other than quickprop would be worth trying in conjunction.

with CC.

4.4 Generative Functional-Link Net

Since one usually wants one-layer FFNN algorithms for run-time efficiency, gen­

erative algorithms for setting the FFNN architecture, and the ability to approxi­

mate non-linearly separable mappings, we hypothesized that a generative version of

a functional-link net [43] would provide a plausible solution. This generative algo­

rithm repeatedly adds nodes to the input layer. The input to a new node is the

product of the inputs of some number of original input nodes. The node addition

criterion is extremely simple: add a node after a certain number of iterations (spec­

ified by the user). We implemented this technique with a variant of the relaxat.ion

method [41] and with the single-layer delta rule [47].

We decided to try the technique out on the iris classification benchmark problem

from the UC-Irvine machine learning data repository [45]. The technique ~lid not

perform as well as expected. After adding over 85 nodes one at a time, the generative

45

functional-link net did not learn the classification. Either the problem did not become

linearly separable in higher dimensions or the generative learning algorithms were

insufficient for the task. We did not expect these results and cannot explain them at

this time.

4.5 Discussion

Generative learning ,provides the valuable service of automatically determining

a FFNN architecture. The variety of techniques given above all hold promise; how­

ever, the node growth control mechanism of cascade-correlation is impressive. The

understandable foundation of CC's mechanism is an advantage over the techniques

of methods like dynamic node creation. However, setting the parameters of the CC

algorithm is a difficult problem (as it is with many other methods).

46

5. APPLICATIONS OF MARS AND FFNNs TO QNDE

Testing materials for hidden defects including flaws, cracks, or corrosion is im­

portant for guaranteeing reliability. Should the defect grow and reach critical size,

an unexpected breakdown of the material could result. In certain application areas

like aerospace, the results .could be disastrous.

Until recently, reliability has been obtained by using off-line destructive testing.

Destructive tests subject a material to the equivalent of the stresses which the mate­

rial will encounter during its lifetime. If the material holds up, the test is successful.

However, this approach typically requires large "margins of safety" (at the cost of in­

creased machine weight) to reduce the risk of material breakdown caused by internal

flaws [49]. With increasing demands on performance, overly conservative "margins

of safety" are becoming less and less acceptable.

Quantitative nondestruCtive evaluation (QNDE), on the other hand, can help to

guarantee reliability by detecting, classifying, and sizing flaws without inflicting stress

on the material being examined. QNDE allows an object to emerge from a material

integrity test with no change in its chemical or physical properties [49]. The physical

techniques used in QNDE include magnetic particles, X-radiation, liquid penetrants,

eddy currents, and ultrasonics. We will concentrate on the last two techniques for

our experiments.

47

This chapter presents two flaw sizing problems and two classification problems

studied at the Iowa State Center for Nondestructive Evaluation (ISCNDE). Each

of the approaches involves the construction of a nonlinear function approximator.

Individuals at ISCNDE have already. utilized FFNNs to build approximators [8, 37,

54]. We present their results along with new results using FFNNs and MARS.

Ultrasonic and eddy current QNDE techniques involve scanning a material with

a probe and collecting signals. The signals are then analyzed and preprocessed into an

appropriate form for input to a function approximation tool (e.g., a FFNN or MARS

model). In general, the process for sizing and classification requires careful formations

of probe scan plans, precise measurement of returning signals, appropriate feature

extraction from the resulting data, and the formation of a mathematical tool to map

the·features to the flaw sizes or classes. Although the first three steps are extremely

critical, we will be concerned mainly with the last step (except one experiment in

which we undertake the feature extraction). The interested reader is referred to [37]

for a discussion ~f the uniform field eddy current probe data acquisition and feature

extraction techniques used to obtain the sizing data used in this thesis. For ultrasonic

data acquisition' information, please see [54] and [8]. Portions of this chapter are

contained in [44].

Choosing a FFNN architecture without using generative learning is not au easy

problem. All the architectures for the fixed architecture FFNNs described in this

chapter were arrived at by trial and error. Currently, educated trial and error is the

only valid way to set network architectures (for fixed architecture learning algorithms)

since a complet~ scan of all reasonable architectures would take a prohibitively long

time to accomplish.

- 48

5.1 Eddy Current Sizing

The flaw sizing problem using eddy currents requires the function approximator

to output the dimensions of of the flaw (length, width, and depth) given a set- of fea­

tures of the flaw as input. An underlying mathematical theory exists (due to Auld [-1])

describing the interaction of a uniform electromagnetic field with a three-dimensional

flaw. This model agrees with experimental results and allows the generation of "syn­

thetic" input/output data for use by the function approximator.

5.1.1 Comparing MARS to existing FFNN eddy current results

The original data described here were gathered and used initially by Jim Mann

at the Center for Nondestructive Evaluation at Iowa State University [37]. Two

approaches were taken to test the MARS and FFNN models. The first approach

used synthetic training and testing sets generated according to Auld's theory [4].

Two synthetic training sets were produced, one with 1000 elements and one with 100

elements. A single 100 element synthetic test set was used to evaluate the performance

of the approximators. The second approach used experimental data obtained by

Mann [37] from eight real flaws. Each flaw was scanned twenty times for a total data­

set of 160 measurements.

5.1.1.1 MARS versus neural nets with synthetic data A standard

fixed architecture FFNN using backpropagation was used by Jim Mann [37] on both

the 100 and 1000 element training sets. The FFNN.used for the 100 element training

set consisted of 14 input nodes, one hidden layer of 14 nodes, and 3 output nodes

(corresponding to- flaw half-length, width, and depth). The network trained on the

II

49

Table 5.1: Performance of MARS and FFNNs on syn­
thetic eddy current data

II 100 element training set II 1000 element training set II
Standard Standard
Deviation Deviation

Mean % Error % Error Mean % Error % Error

MARS 9.71 11.01 5.84 4.96
Neural
Network 16.81 12.37 3.05 2.89

1000 element training set had an additional hidden layer of 14 nodes. We applied

MARS to both training sets varying the maximum number of basis functions over

the trials. Only flaw depth was considered in the synthetic cases since it provided

the most interesting results and since Mann did not report neural network results on

width or half-length.

. The best MARS model (as measured by average percent error on the 100 element

test set) for the 100 element training set was piecewise cubic and had the maximum

number of basis functions parameter (Mmax) set at 34. The final model had 18 basis

functions. The best MARS model for the 1000 element training set was piecewise·

cubic and had Afmax set to 100. The final model had 59 basis functions. It should be

noted that setting Afmax to 50 gave almost the same results (with 31 basis functions

in the final model). Table 5.1 shows the relevant results reported in [37] for the

backpropagation FFNNs and our results with MARS. On the 100 element training

set experiment, MARS gave better results and built its model much more quickly.

The 1000 element training.sefwas handled better by the FFNNj however, an effective

study of the MARS parameter settings was not accomplished due to the long running

50

Table 5.2: Eddy current flaws

Flaw Flaw Flaw
Number Depth (mm) Type

1 1.05' Fabricated
2 0.85 Fabricated
3 0.63 Fabricated
4 0.40 Fabricated
5 0.33 Fabricated
6 0.00 Fabricated
7 0.33 Actual Crack
8 0.33 Actual Crack

times of this experiment. For completeness, it should be noted that percent error is

not the best measure to use in this case since desired output values are often close

to zero. However, to compare with Mann's results, percent error was used. A better

measure may be mean absolute error (which is used in experiments in later sections).

5.1.1.2 MARS versus neural nets with experimental data Of the eight

available real flaws, six were hand fabricated and two were actual cracks. See Ta-

ble 5.2 for flaw numbers, depths, and types. Two experiments were run by Mann

using backpropagation FFNNs to determine flaw half-length and depth. The first

experiment used an 80 element training set consisting of data from fabricated flaws

#1, #3, #5, and #6. The test set consisted of the 40 data sets from the two other

fabricated flaws (#2 and #4). The FFNN used in this experiment for flaw depth

consisted of twenty input nodes, ten nodes in the first hidden layer, three nodes in

the second hidden layer, and a single output node corresponding to flaw depth. The

best MARS model was piecewise linear with .~lmax set at 10, and the final modd

51

consisted of 5 basis functions. The second experiment used a 120 element training

set composed of the data from all six fabricated flaws (#1 through #6). The test set

was made up of the 40 elements from the two actual cracks (flaws #7 and #8), and

the FFNN architectures used for half-length and depth were unspecified in Mann's

report. The best MARS model was piecewise cubic with Mmax set at 3 (a very small

model). The final model consisted of 3 basis functions.

Mean absolute error (average of the absolute values of the differences between

the model outputs and the target outputs) will be the measurement tool of choice

for this data. Results for flaw depth only are given. Early results for flaw haH-

length were similar; however, we chose not to report them since time did not allow a

thorough and fair search of the MARS parameter space. For the first experiment, the

FFNN had a mean absolute error of 0.0254 mm with a standard deviation of 0.0161 . .

mm, and the MARS model had a mean absolute error of 0.0364 mm with a standard

deviation of 0.0122 mm. See Figures 5.1 and 5.2 for graphical views of the actual

approximations of the FFNN and MARS on the eddy current data for experiment

one. (The format of the graphs was borrowed from [37].) In the second

experiment, the FFNN had a mean absolute error of 0.0100 mm with a standard

deviation of ,0.0077 mm, and the MARS model had a mean absolute error of 0.0081

mm with a standard deviation of 0.0065 mm. See Figures 5.3 and 5.4 for graphical

views of the actual approximations of the FFNN and MARS on the eddy current

data for experiment two. As shown by the data, MARS results were better than

the neural network in the second experiment and worse in the first. The greatest

difference between MARS and FFNNs on these two experiments was running time.

MARS took much less time than the FFNNs to build its model.

0.90
0.85

0.80

]'0.75
'-" 0.70

~0.65
cu
00.60

~ 0.55
0.50
0.45

0.40
0.35

52

:~ -~ft~

• Haw #2 - actual - c Haw #2 -FFNN -

-
- • Flaw #4 - actual
. 0 Flaw #4 - FFNN

.... - ~ - .n... Icf ---- ~ v .., V

.
• I I I I I I

o 5 10 15 20 25 30 35
Scan Number

Figure 5.1: Actual values and FFNN estimates of flaw depths
for flaws #2 and #4 after training on flaws #1,
#3, #5, and #6

~

40

0.90
0.85
0.80

~ 0.75
__ 0.70

'& 0.65
C5 0.60
~ 0.55

tI:: 0.50
0.45
0.40
0.35

•
D

0 5

53

Flaw #2 - actual
Flaw #2 - MARS

10 15 20
Scan Number

• Flaw #4 - actual
o Flaw #4 - MARS

25 30 35

Figure 5.2: Actual values and MARS estimates of flaw depths
for flaws #2 and #4 after training on flaws # 1,
#3, #5, and #6

40

54

0.36...-----------~------------,

0.35

-.-
~ 0.34

'-"

.fi
fr 0.33
o
~
~ 0.32

0.31

• Flaw #7 - actual

[] - Flaw #7 - FFNN

•
o

Flaw #8 - actual

Flaw #8 - FFNN

0.3 0 -.-.--.-.-________ _r_r__r_r_'"T'_r""..,.....,.....,.....,...~_r_r__r_r_..,.....,.....,.....,..."'T""T'"""T"_r_'"T'_r""..,.....,..."'T""'T"""'I
o 5 10 15 20 25 30

Scan Number

Figure 5.3: Actual values and FFNN estimates of flaw depths
for flaws #7 and #8 after training on flaws # 1
through #6

35 40

55

Flaw #7 - actual

Flaw #7 - MARS

10 15 20
Scan Number

•
o Flaw #8 - MARS

25 30 35

Figure 5.4: Actual values and MARS estimates of flaw depths
for flaws #7 and #S' after training on flaws #1
through #6

40

56

5.1.2 Comparing MARS, FFNNs, and cascade-correlation

Given the above results, we decided to undertake another experiment using syn­

thetic eddy current data generated according to Auld's theory for flaw depth. Specif­

ically, four training sets were generated of size 100, 200, 500, and 1000. Each training

set contained all the elements of the next smallest training set plus additional new

patterns. A 4000 element test set was created to examine the generalization capabil­

ities of the techniques used. The two criteria important in this problem are learning

time and model performance on the test set. Mean absolute error was used as the

test set model performance metric.

Three techniques were applied to this problem: backpropagation, MARS, and

cascade-correlation. The only parameter allowed to vary in MARS was iHmax , which

was set from 1 to 100 in increments of 1. Figure 5.5 shows the mean absolute errol'

on the test set as a function of the Mmax parameter setting for the four training

sets. As the graph shows, good results for all training set sizes are obtained with

fairly low settings of Mmax. This observation is important since MARS run-time is

approximately cubic in Mmax.

Setting the parameters in backpropagation and cascade-correlation is a difficult

task. Exploratory runs were carried out for each of the two methods to locate "good"

parameter settings. (Guidance in the parameter search for cascade-correlation was

obtained by referring to the findings of [62].) The patience parameter and maxi­

mum growth factor were found to be critical parameters for network convergence and

performance in our experiments with cascade-correlation. In fact, one can control

the run-time of cascade-correlation significantly through parameter settings; thus,

no run-time comparison is given between cascade-correlation and the other methods.

...-
§

'-'"
g
~

C1) ...
=' -0
~

,.c
<:
fa
C1)

=s

0.06

0.05

0.04

57

I
" " ,~

"' 1,' -'----~------
_ . 100 element

,! ·ili; "
,. IH n J. "
, f'...I"; I l '- n "
~ ! J' I " I , "

. :'l' I ", L.J ~ , , 1,1, ~~ ___ _
I~ ~ ~') " ,I

I~'l I ~ ~
• ,~--l ' ,,' ..

'. I, • '. - ~ --, ; ~ . ':',
• ~ : J ••••••• !~ I.: ~ .: • ~

~, " r ' ---.: ''';~' · ",, .. , :-.... " .. ' ,"#
• 1".: '.-'

training set

200 element
training set

500 element
training set

1000 element
training set

0.03 +----r--r--oyo----r--..---r------r----r--.--~__,
o 20 40 60 80 100

Maximum Number of Basis Functions

Figure 5.5: MARS performance on the 4000 element test set as
a function of the maximum number of basis func­
tions parameter

120

58

Table 5.3: Results using backpropagation on the 4000
elemen t test set

Size of Training Set
100 200 500

Number of Hidden Nodes 14 14 28
Mean Absolute Error
During Testing (mm) 0.1160 0.0760 0.0593
Standard Deviation
of Absolute Error 0.1325 0.0757 0.0707
During Testing (mm)
Run Time 8 hours 15.5 hours 71 hours

Suffice it to say, the run-time of backpropagation was much longer than the run-time

of cascade-correlation regardless of parameter settings.

Backpropagation entails the additional burden of finding and setting an archi-

tecture prior to learning. In the exploratory runs it was found that one hidden

layer almost always provided the best results. Adding a momentum term to back­

propagation actually hindered network performance both in terms of learning time

and performance on the test set; thus, the results given in this section do not uti-

lize momentum. Simulation run-time was used to report learning time results for

back propagation and MARS. All simulations were run on a DECstation 2100 under

ULTRIX V4.1.

Results of the best model for each method are shown in Tables .5.3, 5.4, and .5.5.

All the backpropagation FFNNs were run for 100,000 iterations and had a learning

rate of 0.5. The best networks for the 100 and 200 element training sets had one

hidden layer of 14 nodes, while the best network for the 500 element training set had

one hidden layer of 28 nodes. No experiments were run on the 1000 element training

59

Table 5.4: Results using cascade-correlation on the
4000 element test set

Size of Training Set
100 200 500

Number of Hidden Nodes 25 25 40
Type of Hidden Nodes Gaussian Sigmoid Gaussian
Mean Absolute Error
During Testing (mm) 0.1451 0.0943 0.0800
Standard Deviation
of Absolute Error 0.3061 0.0742 0.0697
During Testing (mm)

Table 5.5: Results using MARS on the 4000 element test set

Size of Training Set
100 200 500 1000

Maximum Number of
Basis Functions 22 40 43 41
Final Number of
Basis Functions 12 17 27 31

Piecewise Piecewise Piecewise Piecewise
Model Type Linear Linear Linear Linear
Mean Absolute Error
During Testing (mm) 0.0456 0.0404 0.0364 0.0338
Standard Deviation
of Absolute Error 0.0428 0.0378 0.0330 0.0293
During Testing (mm)

1 min 9 min 31 min 57 min
Run Time 16 secs 25 secs 10 secs 23 secs

60·

set for backpropagation or cascade-correlation due to the long running times of the

procedures.

As the tables show, the performance of cascade-correlation on the test set did

not measure up to either backpropagation or MARS. This phenomenon could be the

result of inappropriate parameter settings; however, more time was spent fine-tuning

the cascade-correlation parameter settings than was spent on the other two methods

combined. As stated in [62], a version of cascade-correlation with a simpler learning

algorithm may be interesting.

The most significant result is the relatively small run-time of MARS compa.red

with backpropagation. Even if the backpropagation softwa.re was made significantly

more efficient, MARS would still take much less time to train. The disparity between

the run-times of MARS and backpropagation combined with the better performance

of MARS on the test set (see Tables 5.3 and 5.5) allow us to conclude that l\'IARS

is a better method for this problem. Table 5.6 shows the MARS model which, for

each training set, gives the same performance as backpropagation on the testing set.

Notice the small run-times due to the small settings of Mmax. The 1000 element

training set column in Table 5.6 is included to show the drastic cut in run-time

(without much loss in test set performance) that results from setting Mmax to 29

instead of the best MARS model setting of 41 (see Table 5.5). Figure 5.5 reinforces

graphically that good results are obtained with A/max set relatively low. The fact

that only one parameter (Mmax) was allowed to vary is another promising MARS

factor. Even better results may be obtained by utilizing some of the other MARS

parameters.

61

Table 5.6: Results using MARS on the 4000 element test set with test­
ing accuracy approximately the same as backpropagation

Size of Training Set
100 200 500 1000

Maximum Number of
Basis Functions 3 13 10 29
Final Number of
Basis Functions 3. 10 . 10 22

Piecewise Piecewise Piecewise Piec.ewise
Model Type Linear Cubic Cubic Linear
Mean Absolute Error
During Testing (mm) 0.0968 0.0679 0.0585 0.0345
Standard Deviation
of Absolute Error 0.0745 0.0584 0.0446 0.0302
During Testing (mm)

1 min 23 min
Run Time 5 secs 53 sees 4 sees 6 sees

62

5.2 Ultrasonic Sizing

The ultrasonic sizing problem discussed here involves finding the dimensions of a

best-fit equivalent circular shape for an isolated planar crack. The response wave gen­

erated by a crack is characterized by two large peaks called "flashpoints." The time

separation between the flashpoints can be related to the radius and orientation of the

crack; thus, a measurable quantity exists (time) from which the crack dimensions can"

be obtained [8]. A mathematical analysis has been carried out [8] which transforms

the problem into a three-to-three mapping with the three outputs representing the

crack radius and two angular parameters. This output scheme fully describes the

crack size and orientation. Often, crack size is the crucial factor in sizing; thus, for

the sake of comparison with existing experiments, only crack size will be discussed

here. (This implies a three-to-one mapping rather than a three-to-three.)

The data for the ultrasonic flaw sizing problem were originally generated by C.­

P. Chiou at the Center for Nondestructive Evaluation at Iowa State University [8]. A

330 element synthetic training set was generated along with a 1920 element synthetic

testing set.

A fixed architecture FFNN using an adaptive variant of backpropagation was

used by C.-P. Chiou [8] on the 330 element training set. The adaptive aspect of

the learning algorithm mainly affected the speed of the algorithm. The FFNN used

had three input nodes, twelve nodes in the first hidden layer, twelve nodes in the

second hidden layer, twelve nodes in the third hidden layer and one output node

corresponding to crack size.

We applied MARS to the training set varying the maximum number of basis

functions over the trials. The best MARS model was piecewise linear with Nlmo;r set

63

Table 5.7: Performance of MARS and FFNNs on ultrasonic synthetic
sizing data

Number Number Number Number Number
Between Between Between Between Between

o and 10% 10 and 20% 20 and 30% 30 and 40% 40 and 50%
Error Error Error Error Error

MARS 1829 0 0 87 4
Adaptive
Neural 1827 2 0 65 26
Network

to 50. The final model had 38 basis functions. The results in this case were measured

in classes of error as shown in Table 5.7. MARS and the FFNN performed ahout

the same for this experiment; however, the issue of run time is once again important.

MARS took less time than the FFNN to build its approximator. It should be noted

that all of the 30-40% and 40-50% errors occurred when the target value was close to

zero. As with the eddy current data, percent error may not be the best measurement

tool. For completeness: MARS had a 2.62% mean error with a 8.10% standard

deviation.

5.3 Ultrasonic Classification

The flaw classification problem is important in cases where knowledge of flaw

type is more important than exact flaw size. Determining the type of a flaw is often

sufficient to make crucial decisions about the material.

64

5.3.1 Ultrasonic classification problem one

The data for the ultrasonic flaw classification problem presented here were orig­

inally used by S.-J. Song of the Center for Nondestructive Evaluation at Iowa State

University and were generated from samples provided by '\Vestinghouse Corporation

[54]. Basically, the goal is to separate known welding defects into three distinct

classes: crack, porosity, or slag. A total of 239 input/output examples were selected,

120 for the training set and 119 for the testing set. 104 were known cracks; ,53 were

porosity; and 82 were slag [54].

Song [54] applied a probabilistic neural network (PNN) to this problem W5J.
This type of FFNN has its architecture determined by the number of output cla.sses

and the choice of training samples. Specifically, a PNN is a four layer (two hidden

layers) FFNN. Nodes in the first hidden layer employ a gaussian activation function

f given by

f(net) = exp ((net - 1)/0-2) (.5.1)

where 0- is a parameter of the algorithm. One node exists in this layer for each

training pattern, and the input layer and first hidden layer are fully connected. The

weight Wji from node i in the input layer to node j in the first hidden layer is sr't

to Xji, where Xji is the i-th dimension of the j-th training set pattern. One node

exists in the second hidden layer for each output class, and it simply outputs its net

sum. A connection Wji exists from first hidden layer node i to second hidden la.yer

node j if training example i belongs to class j. An such weights are set to 1. One

output node is required for each output class, and a connection ci exists from second

hidden layer node i to output node i. The ci are set by the user as parameters of t.he

system and are multiplied by the output of the second hidden layer to give the output

65

of the network. In general, a higher relative value of ci will increase the chances of

classifying a pattern as class i. The output node with the largest output value is

chosen as the class of the input pattern.

Given that there are ti training patterns from class i, the first hidden layer

produces ti gaussian distributions with centers at the training patterns. A small

setting of the q parameter generates narrow gaussian distributions while a large

setting implies wide distributions. Node j of the second hidden layer sums together

the gaussian distributions of class j. This technique approximates the. probahility

density function for each class. Please see [54] and [55] for a more detailed description

of the underlying PNN theory.

MARS was applied to the training set varying the maximum. number of basis

functions over the trials. Since MARS has a continuous output value, each of the

three categories was assigned a range of output values. We had to choose how large

each range would be with respect to the other ranges. This new MARS parameter

was found to be critical in the performance of MARS on all classification problems

attempted. The best MARS model was piecewise cubic with klmax set to 5. The

final model consisted of 4 basis functions. The second category (porosity) in the best

model had a smaller relative range of output values than cracks or slag.

The model performance evaluation criteria used by Song [.54] requires explana­

tion. The correct accept rate C Ai for class i is defined as

m· CA. =_Z
Z n.

Z

(.5.2)

where mi is the number of test set patterns from class i classified correctly and Hi

is the number of test set patterns belonging to class i. The false reject rate F Ri for

class i is given as

66

Table 5.8: MARS versus FFNN on ultrasonic
classification problem one

MARS FFNN
Correct Accept Crack (%) 69 75
Correct Accept Porosity (%) 35 42
Correct Accept Slag (%) 49 54
False Reject Crack (%) 34 31
False Reject Porosity (%) 18 10
False Reject Slag (%) 18 22

FR. = L-j mji
1 L-j nj

(5.3)

where mji is the number of test set patterns from class j classified by the model as

class i "and nj is the number of test set patterns belonging to class j.' In general,

these quantities measure fractions of samples classified correctly or incorrectly. To

compare our MARS results with Songs neural network results, we'll use the correct

accept/false reject notion.

Looking at Table 5.8 we see that the probabilistic FFNN performed better

than MARS; however, the fact that MARS is relatively competitive is worth noting.

The MARS procedure is not meant to be a classification scheme, so its performance

is admirable. One interesting point was the ease with which we were able to build

MARS models to favor one Class over another by changing the relative sizes of the class

output ranges. Thus, it seems MARS could be easily tailored to specific classification

applications as necessary.

67

5.3.2 Ultrasonic classification problem two

The second ultrasonic classification problem is based on data taken at the David

W. Taylor Naval Ship Research and Development Center. The flaws were located

in the weld zone of 36 steel plates with an approximate thickness of two inches.

Half the plates were from a decommissioned submarine, and half were manufactured

with intentional flaws placed in the material. Each defect was classified using a

consensus approach from a variety of different inspection methods. Two plat.es were

destructively evaluated to verify the accuracy of the classification. It is estimated that

85% of the data we received was classified accurately. This figure may be inaccurate;

however, we assume its validity. The data came to us in the form of sampled voltage

versus time waveforms coupled with the classes of the defects generating the waves.

Four flaw classes are present in the data: crack, lack of fusion, porosity, and slag. Of

the 736 samples, 132 were cracks, 260 were lack of fusion, 130 were porosity, and 214

were slag.

One of the most difficult (and ad hoc) steps in the processing of NDE data is

feature extraction. Eleven features were extracted from the waveforms to be used as

input to a classifier. No particular justification can be given for these features, and

we make no claim that they are in any way optimal. Other features may drastically

improve the results of the experiments. We extracted features from t.he time domain

(the raw signals) as well as from the frequency domain (via the fast fourier transform

(FFT) [12]). We generated the phase graph from the FFT output by taking the

inverse tangent of the imaginary part of the FFT divided by the real part. The

magnitude spectrum was obtained by taking the square root of the sum of the squares

of the imaginary part and the real part of the FFT output. We also translated the

68

magnitude spectrum graph onto a log scale to allow the smaller maxima of the graph

to show up. Finally, the energy of a wave is given by the sum of the squares of each

sampled point. The eleven features were:

1. maximum peak of the time domain waveform

2. maximum peak of the magnitude spectrum

3. number of maxima from the time domain waveform

4. number of maxima from the magnitude spectrum

5. number of maxima from the phase graph

6. number of "tall" maxima from the time domain waveform where "tall" is defined

with a threshold of 25.0

7. number of "tall" maxima from the magnitude spectrum where "tall" is defined

with a threshold of 250.0

8. maximum peak of the log scale of the magnitude spectrum

9. minimum peak of the log scale of the magnitude spectrum

10. the signal duration of the time domain waveform

11. the energy of the time domain waveform

All of the experiments reported in this section compare the performa.nce of the

probabilistic neural network (PNN) and MARS. Results are reported using the correct

accept/false reject notion introduced in the previous section. Deciding which results

69

to report is difficult using this metric since "good" results often depend on the needs

of the user. For example, a high correct accept rate for a particular class may be more

important than an overall high correct accept rate. In fact, a high correct accept for

a particular class almost invariably results in a high false reject rate for that class.

This tradeoff is important when deciding which results to report. Unfortunately, it

is impossible to report results from all of the runs. We report only those results

considered most important and interesting with the understanding that many other

possibly valua1?le outcomes are not included here.

For experiments lA, IB, and 1 C (below) we randomly chose half of the flaws

from each of the four classes for the training set and half for the test set. Thus, each

set contained 368 samples of which 66 were cracks, 130 were lack of fusion, 6.5 were

porosity, and 107 were slag. For experiments 2A, 2B, and 2C we randomly chose 100

flaws from each class for the 400 element training set. The test set contained the

remaining 336 defects.

5.3.2.1 Experiment 1A This experiment weighted all of the classes equally.

For MARS, this means that each class was assigned an equal range of output values.

For the PNN, each output weight ci was set to 1. The "best" MARS model was

piecewise cubic and had Mmax set to 28. The final model consisted of 13 basis

functions.

Looking at Table 5.9 we see that the PNN performed slightly better for this

experiment. The data in the table were from a PNN with q set to 0.17. For com­

pleteness, the PNN with the highest overall probability of detection had q set to

0.04.

70

Table 5.9: MARS versus the PNN FFNN for ul­
trasonic classification experiment 1A

MARS PNN FFNN
Correct Accept Crack (%) 14 20
Correct Accept Lack of Fusion (%) 34 32
Correct Accept Porosity (%) 72 72
Correct Accept Slag (%) 11 27
False Reject Crack (%) 02 06
False Reject Lack of Fusion (%) 31 14
False Reject Porosity (%) 55 50
False Reject Slag (%) 03 14

5.3.2.2 Experiment IB This experiment weighted the crack class more

heavily than the other three classes. For MARS, this means that the range of out­

put values for the crack class was greater than the other classes. For the PNN, the

output weight ciwas set t~ 3 for the crack class and 1 for the other classes. The

"best" MARS model was piecewise cubic and had Mmax set to 16. The final model

consisted of 10 basis functions.

Table 5.10 shows that the PNN performed significantly better for this exper­

iment. The data in the table were from a PNN with u set to 0.07. The PNN with

the highest overall probability of detection had u set to 0.02.

5.3.2.3 Experiment Ie This experiment put all non-crack flaws into one

class and all cracks into another class. Parameter settings for both MARS and the

PNN were set to favor the crack class. For the PNN, the ci output weight was set to

2 for the crack class and 1 for the non-crack class. The highest overall probability of

detection was achieved with u set to 0.02. Table 5.11 compares the PNN with u set

71

Table 5.10: MARS versus the PNN FFNN for ul­
trasonic classification experiment IB

MARS PNN FFNN
Correct Accept Crack (%) 94 94
Correct Accept Lack of Fusion (%) 21 42
Correct Accept Porosity (%) 11 17
Correct Accept Slag (%) 09 31
False Reject Crack (%) 54 47
False Reject Lack of Fusion (%) 22 10
False Reject Porosity (%) 11 06
False Reject Slag (%) 06 10

Table 5.11: MARS versus the PNN FFNN for ul­
trasonic classification experiment 1 C

MARS PNN FFNN
Correct Accept Crack (%) 70 79
Correct Accept Non-crack (%) 70 79
False Reject Crack (%) 30 21
False Reject Non-crack (%) 30 21

at 0.03 with the "best" MARS model (piecewise linear, Mmax = 27, and a final

model consisting of 16 basis functions). The PNN showed a significant advantage in

test set performance.

5.3.2.4 Experiment 2A This experiment weighted all of the classes equally.

For'the PNN, each output weight ci was set to 1. The "best" MARS model was

piecewise linear and had Mmax s~t to 40. The final model consisted of 21 basis

functions.

72

Table 5.12: MARS versus the PNN FFNN for ul­
trasonic classification experiment 2A

MARS PNN FFNN
Correct Accept Crack (%) 16 56
Correct Accept Lack of Fusion (%) 45 55
Correct Accept Porosity (%) 60 70
Correct Accept Slag (%) 17 43
False Reject Crack (%) 03 13
False Reject Lack of Fusion (%) 26 07
False Reject Porosity (%) 50 22
False Reject Slag (%) 06 18

Looking at Table 5.12 we see that the PNN performed much better for t.his

-experiment. The data in the table were from a PNN with (j set to 0.05 (which was

the PNN with the highest overall probability of detection).

5.3.2.5 Experiment 2B This experiment weighted the crack class more

heavily than the other thr~ classes. For the PNN, the output weight ci wa.s set

to 4 for the crack class and 1 for the other classes. The "best" MARS model wa.s

piecewise linear and had Mmax set to 19. The final model consisted of 14 basis

functions.

Table 5.13 shows that the PNN performed better for this experiment. The data

in the table were from a PNN with (j set to 0.03. The PNN with the highest overall

probability of detection had (j set to 0.02.

5.3.2.6 Experiment 2C This experime~t put all non-crack flaws into one

class and all cracks into another class. Parameter settings for both MARS and the

73

Table 5.13: MARS versus the PNN FFNN for ul­
trasonic classification experiment 2B

MARS PNN FFNN
Correct Accept Crack (%) 84 84
Correct Accept Lack of Fusion (%) 32 50
Correct Accept Porosity (%) 33 47
Correct Accept Slag (%) 16 33
False Reject Crack (%) 34 25
False Reject Lack of Fusion (%) 27 09
False Reject Porosity (%) 19 14
False Reject Slag (%) 10 18

Table 5.14: MARS versus the PNN FFNN for ul­
trasonic classification experiment 2C

MARS PNN FFNN
Correct Accept Crack (%) 88 75
Correct Accept Non-crack (%) 79 78
False Reject Crack (%) 21 22
False Reject Non-crack (%) 12 25

PNN were set to favor the crack class. For the PNN, the ci output weight was set to
3 for the crack class and 1 for the non-crack class. The highest overall probability of

detection was achieved with u set to 0.02. Table 5.14 compares this PNN (u = 0.02)

with the "best" MARS model (piecewise linear, A1max = 21, and a final model

consisting of 15 basis functions). Unlike all other experiments, MARS showed a

significant advantage in test set performance.

74

5.3.2.7 Comments Again, it must be stressed that the results reported

above were chosen for comparison purposes between MARS and PNNs. Quite of­

.ten, the overall "probability of detection was higher for different results, especially for

the PNN. Assigning a range of output values to each class for MARS is a difficult

problem. Experiment 2C shows that MARS can perform better than the PNN with

appropriate settings for the output class ranges; however, in most cases the PNN was

easier to use and gave superior results.

5.4 Discussion

For the most part, MARS and FFNNs were able to approximate the ahove

mappings to about the same level of accuracy (as measured by performance on the

" test sets). However, the greatest advantage of MARS over FFNNs is its fast training

time. For example, we were able to run a full series of MARS tests (a Scan of the

Mmax parameter) in the time it took to train one neural network for the 100 element

synthetic eddy current training set.

One must also recognize the inherent parallelism in FFNN computing. Although

most neural nets are simulated on sequential computers today, the future of VLSI

neural network chips promises real parallelism. Thus, neural nets may regain a

speed advantage over MARS and other sequential algorithms. But wit.h the currently

available neural network tools still operating sequentially, MARS is often a faster

technique. Of course, one cannot rule out the future possibility of a parallel MARS

implementation providing better run-times.

The strong mathematical foundation of MARS gives it another edge over neural

networks. Final MARS models may be analyzed for relative variable importance

75

along with a variety of other interesting information. Neural network models are

much more difficult to analyze and comprehend.

MARS also has the advantage of a fixed and predictable run-time. FFNNs

(except the PNN) iterate through the training set until a certain condition is met.

When this condition will actually occur is not predictable a priori.

For experimental applications like QNDE, one must recognize the challenge and

difficulty inherent in selecting features to use as input to the network. This concern

was of paramount importance in both ultrasonic classification problems. If the wrong

features are selected, then one feature may dominate the entire training process. \Vith

MARS this is easily identified, but with neural networks, one may not be able to see

this as easily.

MARS could be used·as a general purpose classifi~r as shown above; h9wever,

we believe sizing is a more appropriate use for the technique. Forcing MARS into the

role of classifier is sometimes clumsy, but the results are often competitive. Assigning

a range of output values to each class is not easy, especially as the number of classes

grows large.

As ·shown by' ultrasonic dassification problem two, the PNN FFNN is definitely

a useful tool for classification. The results obtained for the submarine data were not

of industrial qualitYi however, given the chosen features and 85% data classification

accuracy, no method seems to perform significantly better. Improved feature selection

techniques are necessary in order to more effectively analyze the data.

Taking into consideration all the factors discussed a.bove including run-time, test

set approximation accuracy, ease of use, and "interpretability,". we recommend MARS

as a generally better method for the given mapping approximation problems.

76

6. SUMMARY AND DISCUSSION

This thesis presented the MARS technique along with many feed-forward neural

network paradigms. Experiments utilizing all the methods were presented and dis­

cussed. The purpose of this work was to analyze the applicability of these techniques

for function approximation problems, especially in the application area of quantit.a­

tive nondestructive evaluation.

In the introduction, various measurement criteria were proposed for comparing

methods of building functi9n approximators. In .tne area of run time, MARS almost

invariably performed better than FFNNs. Nowhere was this more evident than in the

eddy current synthetic data experiment that used a 4000 element test set. FFNNs are

by definition highly parallel; thus, the sequential simulations used today are not a fair

measure of the speed of the paradigm. However, MARS seems to lend itself to parallel

implementation as well. With the extreme disparity in run time between MARS and

FFNNs shown in this thesis, it seems reasonable to predict that a parallel version of

MARS (if not the sequential version) will still run faster than most backpropagation­

based FFNNs. This fact is the impetus for research into faster multilayer FFNN

learning algorithms. With respect to ease of use, all methods seem to be about the

same; however, MARS is more parameter insensitive than backpropagation and thus

slightly easier to use. We found MARS and FFNNs to both be tolerant to noisy input

77

data; however, FFNNs always performed slightly better than MARS in the presence

of noise. This statement is based mainly on the results of the ultrasonic classification

problems in which a probabilistic FFNN is used. With respect to interpretability,

MARS is unbeatable. The variety of analysis data that is inherent in the MARS

approach gives it a firm mathematical basis for interpretation. FFNNs, on the other

hand, still remain largely a black box when trying to understand their resulting

models. Finally, most of our sizing experiments preferred MARS over FFNNs for test

set approximation accuracy. This observation is most obvious in the 4000 element

test set problem in the eddy current experiments.

Overall, MARS performed "better" than FFNNs on most of the QNDE applica­

tions. However, this statement cannot be generalized to all applications. A necessary

~rea of research entails characterizing the fe.atures of functions that may make them

suitable for FFNNs or MARS. We also see many possibilities in attempting to join

the best features of MARS with the best features of FFNNs. Exactly how this might

be done is an interesting problem.

Backpropagation-based FFNNs are one portion of the vast field of neural net­

working. A huge amount of work is being done on other neural network issues and

paradigms not discussed in this thesis. This work includes other neural network

paradigms [22, 26, 30, 35, 48], computational learning theory [60], the computability

issues of neural networks [51], and dozens of other areas.

78

BmLIOGRAPHY

[1] Agmon, S. "The Relaxation Method for Linear Inequalities." Canadian Journal
of Afathematics. Vol. 6, No.3 (1954): 382-392.

[2] Alpaydin, E. "GAL: Networks that grow when they learn and shrink when they
forget." Technical Report No. 91-032. International Computer Science Institute,
1991.

[3] Ash, T. "Dynamic Node Creation in Backpropagation Networks." Connection
Science - Journal of Neural Computing, Artificial Intelligence and Cognitive
Research. Vol. 1, No.4 (1989): 365-375.

[41 Auld, B. A., S. R. Jefferies, J. C. Moulder, and J. C. Gerlitz. "Semi-elliptical
Surface Flaw EC Interaction and Inversion: Theory." Review of Progress in
QuantitativeNDE. ed. by D. O. Thompson and D. E. Chementi, Vol. .5, 383-
393. New York: Plenum Press, 1985.

[5] Becker, S. and Y. Ie Cun. "Improving the Convergence of Back-Propagation
Learning with Second 9rder Methods." Proceedings of the 1988 Connectioni.st
Models Summer School. ed. by D. Touretzky, G. Hinton, and T. Sejnowski, 29-
37. San Mateo, CA: Morgan Kaufmann, 1988.

[6] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Belmont, CA: Wadsworth, 1984.

[7] Carley, L. R. "Presynaptic Neural Information Processing." Neural Information
Processing Systems. ed. by D. Z. Anderson, 1.54-163. New York: American In­
stitute of Physics, 1987.

[8] Chiou, C. -Po "Model-based ultrasonic flaw classification and sizing." PhD Dis­
sertation. Iowa State University, 1990.

79

[9] Craven, P. and G. Wahba. "Smoothing noisy data with spline functions: Es­
timating the correct degree of smoothing by the method of generalized cross­
validation." Numerische Mathematik. Vol. 31 (1979): 317-403.

[10] Cybenko, G. "Approximation by Superpositions of a Sigmoidal Function." ilfath­
ematics of Control, Signals, and Systems. Vol. 2, No.4 (1989): 303-314.

[11] deBoor, C. A Practical Guide to Splines. New York: Springcr-Verlag, 1978.

[12] Elliot, D. F. and K. R. Roo. Fast Transforms: Algorithms, Analyses, Applica­
tions. New York: Academic Press, 1982.

[13} Fahlman, S. E. "An Empirical Study of Learning Speed in Back-Propagation
Networks." Technical Report No. CMU-CS-88-162. Carnegie Mellon Universit.y,
1988.

[14] Fahlman, S. E. "Faster-Learning Variations on Back-Propagation: An Empirical
Study." Proceedings of the 1988 Connectionist ~Models Summer School. ed. by
D.· Touretzky, G. Hinton, and T. Sejnowski, 38-51. San Mateo, CA: Morgan
Kaufmann, 1988.

[15] Fahlman, S. E. and C. Lebiere. "The Cascade-Correlation Learning Architec­
ture." Technical Report No. CMU-CS-90-100. Carnegie Mellon University, 1990.

[16] Friedman, J. H. "Classification and Multiple Response Regression Through Pro­
jection Pursuit." Technical Report No. LCSOI2. Laboratory for Computational
Statistics, Stanford University, 1985.

[17} Friedman, J. H. "Multivariate Adaptive Regression Splines." Technical Report
No. 102. Laboratory for Computational Statistics, Stanford University, 1988.

[18] Friedman, J. H. "Adaptive Spline Networks." Advances in Neural Information
Processing Systems. ed. by R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
Vol. 3, 675-683. San Mateo, CA: Morgan Kaufmann, 1991.

[19] Friedman, J. H. "Multivariate Adaptive Regression Splines." The Annals of
Statistics. Vol. 19, No.1 (1991): 1-67.

[20} Friedman, J. H. and W. Stuetzle. "Projection Pursuit Regression." Journal of
the American Statistics Association. Vol. 76 (1981): 817-823.

[21] Funahashi, K. -I. "On the Approximate Realization of Continuolls Mappings by
Neural Networks." Neural Networks. Vol. 2, No.3 (1989): 183-192.

80

[22] Grossberg, S. "Competitive learning: From interactive activation to adaptive
resonance." Cognitive Science. Vol. 11 (1987): 23-63.

[23] Hartman, E. J., J. D. Keeler, and J. M. Kowalski. "Layered Neural Networks
with Gaussian Hidden Units as Universal Approximations." Neural Computa-
tions. Vol. 2, No.2 (1990): 210-215. "

[24] Hecht-Nielsen, R. "Kolmogorov's Mapping Neural Network Existence Theorem."
Proceedings of the IEEE First International Conference on Neural Networks. ed.
by M. Caudill and C. Butler, Vol. 111,11-13. San Diego, CA: SOS Printing, 1987.

[25] Hecht-Nielsen, R. Neurocomputing. New York: Addison-Wesley, 1990.

[26] Hinton, G., D. Ackley, and T. Sejnowski. "Boltzmann machines:" Constraint
satisfaction networks that learn." Technical Report No. CMU-CS-84-119. De­
partment of Computer Science, Carnegie Mellon University, 1984.

[27] Hoffgen, K." -U. and H. P. Siemon. "Approximation of Functions with Feedfor­
ward Nets." Report No. 346. Department of Computer Science, University of
Dortmund, 1990.

[28] Honavar, V. and L. Uhr. "Experimental Results Indicate that Generation, Lo­
cal Receptive Fields and Global Convergence Improve Perceptual Learning in
Connectionist Networks." Technical Report No. 805. Computer Sciences De­
partment, University of Wisconsin - Madison, 1988.

[29] Honavar, V. and L. Uhr. "A Network of Neuron-like Units That Learns to Per­
ceive by Generation as Well as Reweighting of its Links." Proceedings of the 1988
Connectionist Models Summer School. ed. by D. Touretzky, G. Hinton, and T.
Sejnowski, 472-484. San Mateo, CA: Morgan Kaufmann, 1988.

[30] Hopfield, J. J. "Neurons with graded response have collective computational
properties like those of two-state neurons." The National Academy of Sciences
USA. Vol. 81 (1984): 3088-3092.

[31] Hornik, K., M. Stinchcombe, and H. White. "Multilayer Feedforward Networks
are Universal Approximators." Neural Networks. Vol. 2, No.5 (1989): 359-366.

[32] Hush, D. R. and J. M. Salas. "Improving the Learning Rate of Backpropagation
with the Gradient Reuse Algorithm." Proceedings of the IEEE International
Conference on Neural Networks. Vol. 1, 441-448. San Diego, CA: IEEE, 1988.

[33] Jacobs, R. A. "Increased Rates of Convergence Through Lea.rning Rate Adap­
tion." Neu'!'al Networks. Vol. 1, No. <1 (1988): 295-307.

81

[341 Knopp, K. Theory and Application of Infinite Series. New York: Dover Publi­
cations, 1990.

[351 Kohonen, T. Self-Organization and Associative Memory. Berlin: Springer­
Verlag, 1984.

[36] Kolmogorov, A. N. "On the Representation of Continuous Functions of Many
Variables by Superposition of Continuous Functions of One Variable and Addi­
tion." Dokl. Akad. Nauk USSR. Vol. 114 (1957): 953-956.

[371 Mann, J. M. "Neural networks: Genetic-based learning, network architecture,
and applications to nondestructive evaluation." Master's Thesis. Iowa State Uni­
versity, 1990.

[38] McCulloch, W. W. and W. Pitts. "A Logical Calculus of the Ideas immanent in
nervous activity." Bulletin of Mathematical Biophysics. Vol. 5 (1943): 11.5-13:3.

[39] Minsky, M. L. and S. A. Papert. Perceptrons - Expanded Edition. Cambridge,
MA: MIT Press, 1988.

[40] Motzkin, T. S. and 1. J. Schoenberg. "The Relaxation Method for Linear In­
equalities." Canadian Journal of Mathematics. Vol. 6, No.3 {1954}: 393-40,1.

[41] Oh, H. and S. C. Kothari. "Adaptation of the Relaxation Method for Learning
in Bidirectional Associative Memory." Technical Report No. 91-25. Department
of Computer Science, Iowa State University, 1991.

[42] Oh, H. and S. C. Kothari. "A New Learning Approach to Enhance the Stor­
age Capacity of the Hopfield Model." IEEE International Joint Conference on
Neural Networks. ed. by INNS, 2056-2062. N.ew York: IEEE, 1991.

[43] Poo, Y. -H. Adaptive Pattern Recognition and Neural Networks. New York:
Addison-Wesley, 1989.

[44] Peterson, B. A., S. Kothari, and L. W. Schmerr. "Conventional and Neural
Network Techniques for Flaw Sizing and Classification in Quantitative Nonde­
structive Evaluation." Proceedings of the First Iowa Space Conference. ed. by C.
-J. Chen, 133-142. Iowa City, IA: University of Iowa, 1992.

[45] Reinke, R. "Knowledge Acquisition and RefinementTools for the ADVISE Meta­
Expert System." Master's Thesis. University of Illinois at Urbana-Champaign,
1984.

[46] Rosenblatt, F. Principles of Neurodynamics. New York: Spartan Books, 1962.

82

[47] Rumelhart, D. E. and J. L. McClelland. Parallel Distributed Processing: E:rplo­
rations in the]t,{icrostr-ucture of Cognition. Cambridge, MA: l\HT Press, 1986.

[48] Sanger, T. "Basis-Function Trees as a Generalization of Local Variable Selection
Methods for Function Approximation." Advances in Neural Information Pro­
cessing Systems. ed. by R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Vol.
3, 700-706. San Mateo, CA: Morgan Kaufmann, 1991.

[49] Schall, W. E. Non-Destructive Testing. London: Machinery Publishing Co.,
1968.

[50] Sen, A. and M. Srivastava. Regression Analysis: Theory, Methods, and Applica­
tions. New York: Springer-Verlag, 1990.

[51] Siegelman, H. and E. D. Sontag. "Neural Nets are Universal Computing De­
. vices." Technical Report No. SYCON-91-08. Rutgers Center for Systems and
Control, 1991.

[52] Sietsma, J. and R. J. F. Dow. "Neural Net Pruning - Why and How." Proceedings
of the IEEE International Conference on Neural Networks. Vol. 1, 32.5-333. San
Diego, CA: IEEE, 1988.

[53] Simpson, P. K. Artificial Neural Systems: Foundations, Paradigms, Applica­
tions, and Implementations. New York: Pergamon Press, 1990.

[54] Song, S. -J~ "Ultrasonic flaw classification and sizing." PhD Dissertation. Iowa
State University, 1991.

[55] Specht, D. F. "Probabilistic neural networks." Neural Networks. Vol. 3 (1990):
109-118.

[56] Sprecher, D. A. "On the Structure of Continuous Functions of Several Variables."
Trans. Amer. Math. Soc. Vol. 115.(1965): 340-355.

[57] Stornetta, W. S. and B. A. Huberman. "An improved three-layer, backpropa­
gation algorithm." Proceedings of the IEEE First International Conference on
Neural Networks. ed. by M. Caudill and C. Butler, Vol. II, 637-644. San Diego,
CA: SOSPrinting, 1987.

[58] Tawel, R. "Does the Neuron 'Learn' Like the Synapse?" Advances in Neural
Information Processing Systems. ed. by D. S. Touretzky, Vol. 1, 169-176. San
Mateo, CA: Morgan Kaufmann, 1989.

[59] Tolstov, G. P. Fourier Series. New York: Dover Publications, 1962.

· 83

[60] Valiant, L. G. "A Theory of the Learnable." Communications oj the ACM. Vol.
27 (1984): 1134-1142.

[61] Werbos, P. J. Beyond Regression: New Tools jor Prediction and Analysis in the
Behavioral Sciences. Master's Thesis, Harvard University, 1974.

[62] Yang, J. and V. Honavar. "Experiments with the Cascade-Correlation Algo­
rithm." Technical Report No. 91-16. Department of Computer Science, Iowa
State University, 1991.

84

ACKNOWLEDGEMENTS

First, I would like to thank the members of my committee, Dr. Suresh Kothari,

Dr. Vasant Honavar, and Dr. Les Schmerr, for helping and encouraging my research

every step of the way. I especially thank Dr. Kothari for the many years of friendship

and academic support he has given me, especially during my graduate years. I

appreciate the help and cooperation of many individuals at the Iowa State Center for

Nondestructive Evaluation including Bob Forouraghi, Jim Mann, Chien-Ping Chiou,

and Sung-Jin Song. Discussions with Jeff Clary, Heekuck Oh, and Jim Lathrop were

invaluable in formulating my research.·

I greatly appreciate the funding provided by the NASA Space Grant Graduate

Fellowship Program/Iowa Space Grant College Consortium for this research. The

administration of the program was absolutely superb.

The foIlowi?g individuals have my thanks for providing valuable materials: Vas­

ant Honavar for the backpropagation simulation code, .Jerome Friedman for the

MARS 3.5 code and sample driver, Jim Mann for the eddy current data, and Sung­

Jin Song and Chien-Ping Chiou for the ultrasonic data and PNN code. This work

was accomplished using resources from the Iowa State University Computer Science

Department, the Center for Nondestructive Evaluation at Iowa State University, and

Project Vincent of Iowa State University.

85

Of course, I must thank my parents, Ruth and Ted Peterson, for their support

and encouragement in all areas of my life.

Last but by no means least, I would like to thank my forever patient wife Jennifer.

Her understanding, love, and support were limitless throughout the many nights and

weekends I spent holed up in my office. I can never express adequately my deep

thanks for her commitment to me.

