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1. INTRODUCTION 

Dozens of interesting problems in science, engineering, and business fall into the 

category of multidimensional nonlinear function approximation. In other words, a 

set of input/output examples (called a training set) of a (usually unknown) multi­

dimensional nonlinear real-valued function is given. Using only the training set, the 

task is to incrementally build a mathematical model that will, given an input vec­

tor, approximate the (possibly multidimensional) output of the unknown function. 

(In order to standardize terminology, we will refer to the model building process as a 

learning algorithm.) Not only must the model be able to approximate the training set 

"successfully," it must also produce "acceptable" output in response to a set of new 

input vectors (called a testing set). This ability to respond to novel inputs is often 

called generalization. Comparing learning algorithms with one another typically en­

tails the use of algorithmic criteria such as run time, parallelizability, and ease of use. 

However, a learning algorithm is worthless if the resultant model performs poorly. 

This observation inspires a set of model criteria used to judge algorithms including 

input data noise tolerance, testing set approximation accuracy, and interpretability. 

Nonlinear function approximation has been studied in mathematics and statistics 

[50] (under the name "regression") for many years. A new method called Multivari­

ate Adaptive Regression Splines (MARS) has been introduced recently by .Jerome 
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Friedman of Stanford University [17, 18, 19]. MARS builds a function approximation 

model in the form of an expansion in product spline basis functions [11]. Basically, 

MARS adds certain important features to an earlier regression procedure known as 

recursive partitioning [6, 17]. 

The problem of multivariate function approximation has also been attacked llS­

ing feed-forward neural networks (FFNNs). Justification for this approach has been 

demonstrated in numerous papers proving FFNNs to be theoretically capable of either 

exact function replication [24] or approximate function realization [10,21, 2:3, 31]. 

Hecht-Nielsen's concise findings [24] are well known and use results by Kolmogoro\' 

[36] and Sprecher [56] to prove the existence of a FFNN that implements any contin­

uous function. 

This thesis explains MARS and various FFNN techniques in the context of multi­

variate function approximation. Empirical results for both contrived and actual func­

tion approximation problems are reported. Interspersed throughout the explanations 

of existing FFNN methods are descriptions of both successful· and unsuccessful new 

FFNN techniques we developed. Empirical comparisons between various function ap­

proximation methods are given based on the criteria stated above. Specifically, chap­

ter 2 describes and discusses MARS; chapter 3 explains various FFNN approaches to 

function approximation; chapter 4 is dedicated to an important paradigm of learning 

for FFNNs called generative learning; chapter 5 explains Quantitative Nondestruc­

tive Evaluation (QNDE), an important "real-world" application area for function 

approximation algorithms, and gives empirical results for MARS and FFNNs applied 

to QNDE; and chapter 6 presents conclusions and discussion of relevant issues. 
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2. MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) 

Multivariate Adaptive Regression Splines (MARS) [17, 18, 19] is a relatively new 

procedure for building a function approximation model. The method deals with the 

approximation of many-to-one mappings; thus, functions with n-dimensiona.l output 

(n> 1) require n separate MARS invocations (one for each output). An alternative 

way of dealing with multidimensional output is suggested in [18]. Problems involving 

moderate training set sizes (between 50 and 1000 elements) and moderate input 

dimension (between 3 and 20 inputs) are considered good candidates for the l\IARS 

approach. 

2.1 Adaptive Computation and Local Approximation 

For purposes of this thesis, we define a local function as being comprised of 

several subfunctions each defined over a specific portion of the domain. Similarly, 

we define a global function as being made up of one subfunction having the entire 

function domain as its domain. In essence, a global function is interchangea.ble with 

its subfunction. Function approximation in statistics has traditionally attempted 

to fit a global function to a training set using a method such a.s least-squares [.1O}. 

MARS espouses the notion of fitting a local function to the training data. The 

resultant MARS model may then be called a local upP1'Oximator. 
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Traditional function approximation defines an a priori structure to the resulting 

approximation model. For example, linear least-squares regression assumes a final 

fixed form model (namely a linear combination of some set of functions of the input 

variables) that will not change during computation of the ideal model coefficien ts. 

Adaptive approximation methods loosen the fixed form restriction of traditional meth­

ods by dynamically adjusting the form of the model during model computation. Ex­

actly when and how the model is adjusted is a distinguishing characteristic of each 

adaptive method. Two general strategies have evolved in statistics for implement­

ing adaptive computation: recursive partitioning [6] and projection pursuit [16, 20]. 

We will concentrate on recursive partitioning since MARS can be explained as a 

generalization of this method. 

2.2 The Recursive Partitioning Algorithm 

The goal of this section is to describe the recursive partitioning method with a se-

ries of extensions to finally arrive at the MARS algorithm. (This angle of explanation 

was originally used in [17].) 

Recursive partitioning (and hence MARS) is an adaptive method for computing a 

local approximator to the (usually unknown) function that generated a given training 

set. First define the step function H (v) as 

{

I if v > 0 
H(v) = -

o otherwise. 
(2.1 ) 

The final recursive partitioning approximator 1 is a linea.r expansion of the form 

M 
lex) = L amBm (x) (2.2) 

m=l 
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where each Bm is called a basis function and is defined as products of step functions. 

(The exact form of the basis functions will be given shortly.) The am (m = 1, ... , 1\1) 

are coefficients of the linear combination. Recursive partitioning attempts to adjust 

the values of the coefficients to give the best fit to the training set data and dynam­

ically decide on a "good" set of basis functions for the model. The number of basis 

functions M and the exact form of each basis function Bm are determined by t.he 

method, thus demonstrating the adaptive nature of the algorithm. 

Figure 2.1 shows the forward stepwise recursive partitioning algorithm. Line 

1 of the algorithm initializes the model to respond with a value of 1 for all input.s. 

The for-loop of line 2 iterates AI (the number of basis functions in the model at any 

given time during computation) from 2 up to the maximum number of basis functions 

allowed (Mmax - a parameter of the algorithm) .. Each iteration through this loop 

adds one more basis function B AI to the model by splitting an existing basis function 

Bm* on dimension xv* at value t*. The notion of "splitting" one basis function into 

two basis functions is accomplished in lines 18 and 19 by replacing the existing basis 

function Bm* by itself times the step function II applied to the argument 

(xv* - t*). (2.3) 

Similarly, the new basis function BM is created by multiplying Bm* by the step 

function II applied to the negation of argument 2.3. Since the step function H 

has the value 0 when its argument is negative and 1 when its argument is positive, 

the effect of the outermost for-loop is to narrow the scope of control of B * over m 

the output of the approximator by only allowing it to respond to inputs that make 

argument 2.3 positive. Inputs that make argument 2.3 negative are now affected by 

new basis function Bj\!. In short, the effective domain of the original Bm* has been 
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1. B1(x) ...... 1 
2. FOR M = 2 TO Mmax DO 

3. 10f* ~ 00 

4. FOR m = 1 TO 1\1 - 1 DO 

5. FOR v = 1 TO n DO 

6. FOR t E {xvjIBm(xj) > O} DO 

7. 9 ~ Ei#m ai Bi(x)+amB m(x)H(xv- t )+al\IBm(x)H(t-;rv) 

8. 10f ...... mina1,···,aMLOF(g) 

9. IF 10f < 10f* THEN 

10. 10f* ...... 10f 

11. m* ~m 

12. v* ~ v 

13. t* ...... t 
14. ENDIF 

15. END FOR t 

16. END FORv 

17. END FORm 

18. BM(X) ~ Bm*{x)H(t* - xv*) 

19. Bm*(x) ...... Bm*(x)H(xv* - t*) 

20. END FORM 

Figure 2.1: The forward stepwise recursive partitioning algorithm 
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"split" on dimension xv* at value t*. Note that the old Bm * is replaced by itself 

times a step function. This point is important for the development of MARS in the 

next section. 

The obvious question at this point is: how are m*, v*, and t* chosen? In other 

words we must answer three questions: 

.1. Which basis function should be split (m*)? 

2. On which dimension of the input should the function be split (v*)? 

3. On what value of the chosen split dimension should the split take place (t*)? 

Looking at Figure 2.1, we see that the for-loop of line 4 iterates over all currently 

existing basis functions (of which there are M -1); the for-loop of line 5 iterates over 

all possible dimensions of the input (of which there are n); and the for-loop of line 6 

iterates over all those data values t that satisfy the following criteria: 

1. t. is equal to a value of the vth dimension of some input vector j from the 

training set. The dimension v is set by the surrounding for-loop (line 5) and j 

ranges from 1 to N where N is the size of the training set. 

2. The current basis function under scrutiny for possible splitting (Bm with 111 set 

by line 4) must return a positive output when applied to the jth. input vector 

found in the first criterion. 

In short, these criteria choose possible split points directly from the training set 

vectors that fall into the effective input domain of the basis function currently being 

evaluated. (The effective input domain of basis function Bm are those input yalucs 

x that evoke a positive response from Bm.) 
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Having seen how candidate values are chosen for m*, v*, and t*, we now look at 

the heart of the recursive partitioning algorithm in lines 7 through 14 of Figure 2.l. 

Line 7 builds a new model 9 with one more basis function than the current model 

by splitting candidate basis function Bm on dimension v at data point t. Model 9 is 

then evaluated in line 8 using the criterion LOF that gives a measure of the lack-of-fit 

of 9 to the training set data. More accurately, line 8 performs a linear regression of 

the model output on the current set of basis functions in 9 to achieve a minimization 

of LOF(g) with respect to the coefficients (the ak's). In general, the LOF function 

is a modified version of the generalized cross-validation criterion given in [9]. Cl\Iore 

explanation of the LOF criterion will be provided during discussion of MARS.) Lines 

10 through 14 store the current split point parameters (the m, v, and t) if 9 has a 

lack-of-fit score (given in the algorithm by 10f) less than the current recorded best 

score (stored in 10f*). Lines 7 through 14 repeatedly build new models through the 

splitting process with the best split (as scored by LO F) being added to the set of 

basis functions in lines 18 and 19. The algorithm finishes with a model consisting of 

Mmax basis functions, where each basis function has the form 

(2.4 ) 

As shown by equation 2.4, recursive partitioning produces basis functions that are 

products of J(m step functions. Since each step function (H) resulted from a ~~split," 

the quantity J(m can also be viewed as the number of splits that were required t.o 

produce basis function Bm. Each split is parameterized by the arguments of the step 

function associated with the split. The sign of the argument is given by skm (either 

positive or negative), and v(k, m) specifies the input dimension on which split k 
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occurred for basis function m. Thus, Xv(k,m) indicates the split dimension while tlml 

represents the split value used (from the training set) for split k of basis function m. 

One drawback of recursive partitioning is the discontinuity of its final model (which 

is piecewise constant). This issue is important for the development of MARS in the 

next section. Figures 2.2, 2.3, and 2.4 give a graphical account of approximating 

the function f( x) = x2 with recursive partitioning. The approximat.ion 

starts out with one constant basis function as shown in Figure 2.2. Part way through 

computation, the approximator may have the form given in Figure 2.3. Finally, t.he 

piecewise constant resultant model is shown in Figure 2.4. As mentioned before, all 

split points on the x-axis are chosen from the training set. 

A detailed explanation of the LOF model criteria is given after the explanation of 

MARS. Also, since recursive partitioning attempts to overfit a model [6], a backwards 

stepwise procedure is often required to eliminate basis functions (or pairs of basis 

functions, depending on the algorithm) that do not help the overall fit. \Ve will 

describe the MARS version of this procedure in the next section. 

2.3 The MARS Algorithm 

As stated previously, the MARS algorithm can be thought of as an extension or 

generalization of recursive partitioning. Three concepts form the basis for the t.rans­

formation of recursive partitioning into MARS. These ideas are best demonstrated 

by looking at the MARS forward stepwise algorithm in Figure 2.5. The similarity 

between the recursive partitioning algorithm (Figure 2.1) and the MARS algorithm 

(Figure 2.5) reflects the similarity betw~en the methods. The MARS algorithm is 

best explained by looking at the three extensions to recursive partitioning. 
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Figure 2.2: Initial recursive partitioning 
approximation of f( x) = x2 
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Figure 2.3: Recursive partitioning ap­
proximation of f(x) = x2 at 
some midpoint of computa­
tion 
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1. B1(x) +-1 
2. M +- 2 

3. WHILE M < Mmax DO 

4. 10f* +- 00 

5. FOR m = 1 TO AI - 1 DO 

6. FORv ¢ {v(k,m)11 < k ~ Km} DO 

7. FOR t E {xvjIBm(xj) > O} DO 

8. 9 +- Ef!11 aiBi(x)+a ill Bm(x)[Xv-tl+ +a M +1 Bm(x)[t-:rvl+ 

9. lof +- minar, ... ,aM+l LOF(g) 

10. IF lof < 10f* THEN 

11. 10f* +- lof 

12. m* +- m 

13. v* +- v 

14.t* +- t 

15. ENDIF 

16. END FORt 

17. END FOR v 

18. END FORm 

19. BlvI(X') +- Bm*(X')[xv* - t*]+ 

20. BM+l(x) +- Bm*(x)[t* - xv*l+ 

21. lvI +- M + 2 

22. END WHILE 

Figure 2.5: The forward stepwise MARS algorithm 
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The first MARS extension of recursive partitioning forces the resulting model to 

be continuous (remember that recursive partitioning results in discontinuous piece­

wise constant models). The discontinuity of recursive partitioning originates with the 

use of the step function (II) as the fundamental building block of the basis functions. 

MARS replaces the step function with a continuous function throughout the model to 

provide model continuity. The fact that step functions are special cases of two-sided 

truncated power representations of spline basis functions guides the selection of the 

continuous function. A truncated power basis function is a local function that can 

be given by the two component functions 

b(x - t) = [x - tl~ (2 .. 5 ) 

and 

b( t - x) = [t - x] ~. (2.6) 

where t is a constant "split point" and q is the spline order. The "+" subscript on 

both equations indicates that only positive arguments are affected by the function. 

Since Equation 2.6 only takes arguments that are the negation of Equation 2 .. 5, a 

truncated power basis function effectively splits its domain into two parts with each 

component function controlling one part. One can now see that the step functions 

(H) of the recursive partitioning algorithm (Figure 2.1 - lines i, 18, and 19) are 

truncated power basis function representations of order zero (q = 0) splines. IVIARS 

generalizes these functions to first-order (q = 1) splines. This fact, is demonstra.ted in 

lines 8, 19, and 20 of the MARS algorithm (Figure 2.5) in which the step functions 

of recursive partitioning are replaced by first-order splines. This generalization gen­

erates a piecewise-linear continuous model. If one desires continuous derivatives for 
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the model (which it does not have with q = 1 splines), a piecewise-cubic model can 

be derived from the piecewise-linear output (see [17] for details). 

The second MARS extension solves a problem inherent in recursive partitioning. 

The interaction order of a basis function is the number of input dimensions involved 

in the formation of the basis function. If a split of a basis function occurs on a di­

mension not already used in the basis function, the recursive partitioning algorithm 

eliminates the basis function and replaces it with two basis functions of higher inter­

action order. The overall effect is an increasingly higher average interaction order of 

the basis functions as the algorithm progresses. One serious consequence is the inabil­

ity of recursive partitioning to build a multidimensional additive model. Functions 

with low-order interactions may be difficult for recursive partitioning to approximate. 

MARS solves this problem by not removing the parent basis function after a split 

has taken place. This technique allows multidimensional additive models to be built 

by always choosing the original basis function Bl as the function to be split. Since 

Bl involves no variables (see line 1 of Figure 2.5), splitting it will always result in 

basis functions of interaction order one. (The MARS 3.5 implementation provided 

by Jerome Friedman allows the maximum variable interaction level of the model to 

be set by the user.) This extension is implemented in lines 8, 19, 20, and 21 of the 

MARS algorithm (Figure 2.5). The two new basis functions added to the current 

model in line 8 do not replace any existing basis functions. Similarly, the permanen t 

addition of the best split in lines 19 and 20 does not replace a basis function as is 

done in recursive partitioning (Figure 2.1 - line 19). 

Recursive partitioning allows basis functions to be split on any dimension of 

the input (training set). Define the split history of a basis function to be the set 
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of dimensions on which a split has occurred in the formation of the basis function 

at a given time in the execution of the algorithm. Since q = 0 splines are used in 

recursive partitioning, splitting a basis function on a dimension already in the split 

history of the basis function results in a spline function of the same order (zero). An 

effect of splitting on a dimension already in the split history using splines of order q 

(q> 0) is to generate basis functions composed of factors that may include individual 

variables raised to a power greater than q. This phenomenon must not occur if the 

procedure is to stay within the realm of product spline basis functions (see [11]). 

Since MARS uses order q spline functions, a mechanism must be supplied to prevent 

the phenomenon. The third MARS extension to recursive partitioning solves this 

problem by restricting each basis function to products of distinct input dimensions. 

The implementation ~echanism is found iJl the FOR loop of line 6 of the forward 

stepwise MARS algorithm (Figure 2.5). Loop variable v is not allowed to range 

over the entire set of input dimensions (as in the recursive partitioning algorithm). 

Instead, v is restricted to those dimensions that are not already in the split history 

of the current basis function split candidate Bm. 

The three extensions to recursive partitioning given above make up the heart 

of the· MARS algorithm. Two issues have yet to be addressed: the LOF function 

used in both recursive partitioning and MARS, and the backwards stepwise MARS 

procedure. 

The backwards stepwise MARS algorithm given in Figure 2.6 takes the resultant 

model from the forward stepwise procedure and eliminates one basis function at a 

time. The effect is to search for the best model and model size using the LOF criterion 

as a judge of model quality. Specifically, the set of basis functions that should be 
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1. J* = {1,2, .. ·,Mmax } 
2. 1(* +- J* 

3. 10f* +- min{ajljEJ*}LOF (LjEJ* ajBj(x)) 

4. FOR M = Mmax TO 2 DO 

5. b +- 00 

6. L +- 1(* 

7. FOR m = 2 TO }vI DO 

8. 1( +- L - {m} 

9. 10f +- min{aklkEI(}LOF (2:kE1( akBk(x)) 

10. IF 10f < b THEN 

II.' b +- 10f 

12. K* +- 1( 

13. ENDIF 

14. IF 10f < 10f* THEN 

15. 10f* +- lof 

16. J* +- 1( 

17. ENDIF 

18. END FORm 

19. END FORM 

Figure 2.6: The backwards stepwise MARS algorithm 
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included in the final model is tracked in variable J*. Thus, line 1 initializes tbe final 

model to be the entire basis function set that came out of the MARS forward stepwise 

procedure. The outer FOR loop of line 4 repeatedly builds the best model with M 

basis functions where M ranges from Afmax to 2. The inner for loop builds multiple 

models by removing one basis function from the current set of basis functions given 

in L. Each model is compared with all.others and the best model of size M is saved 

in K* for use by the next iteration of the outer FOR loop. Variable J* is updated 

such that the best model found of any size less than or equal to Mmax is saved. All 

of this work is done in lines 8 through 17 of Figure 2.6. 

The LOF function is a modified version of the generalized cross-validation cri­

terion given in [9]. The exact details of the MARS LOF function are given in [17]. 

To summa.rize, the MARS LOF(g) criterion is the average squared-error of the fit of 

the model 9 to the training set, multiplied by a penalty function that increases as the 

number of basis functions in 9 increases. Associated with the penalty function is a 

parameter d, which can be regulated by the user, that assesses an increased penalty 

for large numbers of basis functions. Larger values of d will tend to lead to fewer 

splits in the final model. 

2.4 Discussion 

It should be understood that the lack-of-fit function LOF given here is one of 

many possibilities. The function acts like a heuristic that decides which of a group 

of models is best. Changing the heuristic may be an interesting area of exploration. 

MARS has several parameters which may be set by the user during execution 

including the maximum number of basis functions AIm ax , the maximum 'variahle 
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interaction within a basis function, and the d parameter from the LOF function. All 

experiments reported in this thesis (in upcoming chapters) using MARS 3.5 only al­

tered the setting of Mmax. All other parameters were left at their default locations. 

With this simple parameter setting scheme, MARS results were quite good. Among 

other things, the results demonstrate the parameter-insensitivity of the MARS algo­

rithm. 

Many features of MARS are included for computational reasons. The forward 

stepwise algorithm could conceivably build a piecewise-cubic model; however, the 

computational advantages inherent in piecewise-linear model building are too great 

to pass up. One computational bottleneck occurs when executing the least-squares 

fit (line 9 of Figure 2.5). Recursive partitioning uses characteristics of the step func­

tions to reduce the execution of the least-squares fit to a constant time operation 

[6] .. MARS also uses enhanced least-squares fitting procedures resulting in a final 

algorithm with a run-time linear in the number of input dimensions, linear in the 

size of the training set, and approximately cubic in 111max (the maximum number 

of basis functions allowed). Obviously, the key run-time parameter turns out to be 

the Mmax parameter. The lower the setting of AIm ax , the faster the algorithm will 

execute. Results of our experiments (given in upcoming chapters) show that MARS 

gives good results with reasonably smaIi settings of Ilfmax making it a computation­

ally attractive method for function approximation. See [17] for more computational 

details and considerations. 

The potential parallelization of the MARS algorithm is one of its strongest ben­

efits. Friedman [18] has given a formulation of MARS targeted at neural network 

researchers. We believe that a fruitful area of research is the examination of ~IARS 
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from a variety of parallel models of computation. Both the MARS algorithm and the 

final MARS model may benefit from parallel implementation. 

MARS is a promising approach to function approximation worthy of future re­

search. The ideas inherent in the procedure may find value in related fields including 

feed-forward neural network (and general neural network) research. 
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3. FEED-FORWARD NEURAL NETWORKS (FFNNs) 

As stated in the introduction to this thesis, multivariate nonlinear function ap­

proximation is justifiably a major research topic in the field of feed-forward neural 

networks (FFNNs). This chapter explains the FFNN computational paradigm for 

fixed architecture FFNNs. Fixed architecture FFNNs require the specification of the 

number of network processors and the processor interconnection pattern before the 

instantiation of the learning algorithm. 

3.1 FFNN Computation 

FFNNs are a distributed form of input/output computation. As shown in Fig­

ure 3.1, an FFNN is a series of layers of simple processors (called nodes). In the 

most common case of a fully connected FFNN, all nodes in layer m are connected to 

all nodes in layers m + 1 and m - 1. During computation, data only flows from nodes 

in layer m to nodes in layer m + 1 where m ranges from 1 to L - 1 (L being the last or 

output layer). No connections are allowed within a layer or between non-neighboring 

layers (although these extensions are often interesting). First layer (or input layf'l") 

nodes receive input from the environment, and output layer nodes send their output 

signals to the environment. Thus, one can see the inherent input/output nature of 

FFNNs. Layers between the input and output layers are called hidden layers. 
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Figure 3.1: A feed-forward neural network (FFNN) 
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Each node-to-node connection has a scalar weight associated with it. The weight 

associated with the connection from node i in layer m - 1 to node j in layer m is 

specified by the variable wji-1. Each input signal Xi to node j of non-input layer 

m is the output signal of node i of layer m - 1. (The input layer receives unweighted 

inputs from the environment.) Each signal Xi to node j of layer m is multiplied 

by the corresponding weight wji-1. When an input vector p from the training or 

testing set is presented to the network input layer nodes, a cascade of computation 

proceeds through the FFNN. Letting the output of node j at layer m due to input 

vector p be given by o;:}, the total (or net) input to node j in layer m due to input 

vector p is then given by 

net~ = "'"' w~-1o~-1 
p) ~)1, pz . (3.1 ) 

z 
The weighted sum of equation 3.1 becomes the argument of some nonlinear function 

f (called the activation function) to produce the output o~ of node j on pattern 

p. The ability of the network to approximate nonlinear mappings requires the· use 

of a nonlinear activation function. Popular activation functions include the sigmoid, 

gaussian, and threshold functions. 

A learning algorithm in the context of fixed architecture FFNNs must provide a 

method of setting the weights such that the network "successfully" approximates the 

desired function. All the FFNN learning algorithms discussed in this thesis belong t.o 

the class of supervised learning algorithms. This term implies that the algorithm has 

access to both input and output values in the training set. The training set output 

values, in conjunction with the supervised learning algorithm, act like a "teacher" 

guiding the network to an appropriate set of weights. More than one set of appropriate 

weights may exist. 
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Historically, FFNNs originated with the contribution of McCulloch and Pitts 

[38] in 1943. This work combined threshold elements with finite state machines in an 

effort to describe forms of memory. The field advanced considerably with Rosenblatt's 

proof of the famous Perceptron Convergence Theorem [46]. Basically, this theorem 

stated that any two layer (Le., no hidden layers) FFNN of threshold elements (called a 

Perceptron) can learn to emulate any mapping that it is capable of emulating [39, 46]. 

The problem is that Perceptrons can only learn mappings which are linearly separable 

[39]. This discovery slowed research in neural networks for many years. However, 

it was known that multilayer FFNNs (i.e., FFNNs with one or more hidden layers) 

could implement some functions which were not linearly separable. The problem now 

became one of finding an effective way to set the weights of a multilayer FFNN. 

Not until 1986 did a method of setting the weights of a multilayer FFNN gain 

wide acceptance. The backpropagation learning algorithm [47] (which is discussed 

in a future section) revolutionized the field of FFNNs and set into motion a slew of 

new research. One should note that Werbos [61] is often credited with the original 

backpropagation idea; however, the promulgation of the method is due to [47]. 

3.2 No Hidden Layer Learning Algorithms 

Supervised learning algorithms for FFNNs with no hidden layers (i.e., only one 

layer of weights between the input and output layer) have existed for many years. 

This class of learning algorithms is often significantly faster computationally than 

algorithms for training multilayer FFNNs. Since only <:me layer of weights is necessary, 

training the weights for each output node of a multidimensional output FFNN can 

be treated as an independe.nt problem. Thus, it suffices to think of these algorithms 
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as approximating a single many-to-one function for each output node. As a result, 

we need not explicitly address multiple output node FFNNs with no hidden layers. 

The fixed-increment percept ron learning algorithm [39, 46] was the first super­

vised FFNN learning method to gain significant acceptance. This technique learns 

to classify sets of n-dimensional inputs into one of two classes (call the classes 0 and 

1). The algorithm is fairly simple: 

1. Initialize the weights to random real values. 

2. For each training set pattern execute steps 3 and 4. 

3. Pass the pattern through the perceptron. 

4. 1£ the pattern is misclassified as a 0 when it should be a 1, then add the value of 

the training pattern vector to the weight vector. 1£ the pattern is misclassified 

as a 1 when it should be a 0, then add the negated value of the training pattern 

vector to the weight vector. 

5. After each input pattern has been presented, check to see if any patterns were 

misclassified. If they were, then· go to step 2. If all patterns were classified 

correctly, then exit. 

This algorithm has been proven to converge on a set of weights that implement any 

classification that is linearly separable [39]. 

Another family of single-layer FFNN classification learning algorithms is based 

on the relaxation method. This method, which was introduced simultaneously in [1] 

and [40], is used to solve linear systems of inequalities. The input examples from the 

training set can be viewed as a collection of hyperplanes with "right" and "wrong" 
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sides. The goal is to find a point on the "right" side of all the hyperplanes. This 

point satisfies all the constraints imposed by the input examples; thus, it can be used 

as the weights in the single-layer FFNN. This technique has been used successfully 

in Hopfield networks [42], bidirectional associative memories [41], and single-layer 

FFNNs. 

The delta rule [47] is a no hidden layer learning algorithm with similarities to 

the percept ron algorithm. The next section covers the generalized delta rule (i.e., 

backpropagation) algorithm for multilayer networks. Since the delta rule is simply 

a restriction of the generalized delta rule, an explanation of the one-layer delta rule 

method is not given here. 

As mentioned above, single-layer learning algorithms are relatively quick com­

pared with multilayer learning algorithms. However, the fact that single layer FFNNs 

can only learn linearly separable problems limits their usefulness. The functional-link 

net approach [43] attempts to retain the one-layer architecture while simultaneously 

providing a method of making non-linearly separable problems linearly separable. 

The idea is to increase the input dimension of the problem. Adding input layer 

nodes that take functions of original inputs as their inputs may provide the required 

linear separability in the higher dimension. A common input function simply mul­

tiplies the original inputs together as shown in Figure 3.2. Selecting the input 

functions for the new nodes can be a difficult problem. Deciding how many input 

dimensions are enough is also unsolved. 

We tried one possible solution to the input function selection problem based in 

Fourier series [34, 59]. A functional-link net can be viewed as a function approxima­

tor made up of a linear expansion of basis functions. Suppose each functional-link 
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Figure 3.2: A functional-link net FFNN 
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net node has one trigonometric Fourier series function as its input node function. It 

has been proven that the mean squared error of the approximation of the training set 

will be minimal when the coefficients (or in this case, the functional link net weights) 

are given by the Fourier coefficients [59]. Our idea was to use a one-layer learning 

algorithm on a functional-link net with input functions given by the trigonometric 

Fourier series functions. This set of underlying input functions was a rationa.l and 

theoretically sound choice. Unfortunately, \Vhen the input dimension of the prob-

lem exceeds three, the necessary formulation of the Fourier series functions becomes 

almost impossible. Due to this restriction, we abandoned this thread of research. 

However, if a method is found to list all of the trigonometric Fourier series functions 

then this idea is certainly worth further investigation. 

3.3 The Backpropagation Learni"ng Algorithm 

Many supervised learning techniques are based on the concept of error minimiza.­

tion. Specifically, a learning algorithm attempts to minimize the difference between 

the actual output of the FFNN and the target output given in the training set. Since 

a training set consists of multiple patterns, a more appropriate and popula.r error 

measure is the sum squared error. More rigorously, the sum squared error for pattern 

p over all nodes j in output layer m is given by 

Ep = ~ ~ (t . _ 0111.) 2 
2 ~ PJ PJ 

(3.2) 

J 

where tpj is the target output for pattern P at node j and o;} is the output of node j 

for pattern p. Of course, other error measures could be used if the situation df'emed 

them appropriate. 
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The backpropagation multilayer FFNN learning algorithm (also known as the 

generalized delta rule) [47] utilizes approximate gradient descent in the sum squared 

error as its minimization process. True gradient descent cannot be claimed unless 

weights are not updated until after all training patterns have been iterated through 

the FFNN. Usually, backpropagation implementations update the weights after each 

training set pattern is presented thus only approximating true gradient descent. 

The derivation of the backpropagation weight update formulae is based on the 

first degree Taylor polynomial approximation of the sum squared error function. It 

is helpful to notice that the error function can be viewed as a function of the FFNN 

weight vector since all other quantities in equation 3.2 are constant. (The weight 

vector is buried in the activation function a;} in equation 3.2, but it is the only 

variable in the equation.) In order for the sum .squared error to always decrease (in 

pure gradient descent) the change in some (m -1 )-la~er weight wJi-1 due to pattern 

p must be proportional to the negation of the partial derivative of Ep with resped 

to w~-1. 
)1, • 

~ m-1 _ 8Ep 
PWji - -771

8 
m-1 

w·· 
)1 

(3.3) 

where 771 is a parameter of the algorithm called the learning rate. The question now 

is to determine an expression for calculating the partial derivative of Ep with respect 

to each weight. 

\Ve begin by recalling the expression for a no'de's net input given in equation :3.1. 

For this derivation, we assume the popular sigmoid node activation function of node 

j for pattern p at layer m given by 

m 1 o . = 
PJ 1 + exp( - f3j . net~j ) (:3.4 ) 
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where f3j is a constant regulating the steepness of the function. By the chain rule, 

we may break up the partial derivative of Ep with respect to weight wJi- 1: 

8Ep _ 8Ep 8net;] 

8 m-1 - 8netm. 8 m-1· 
Wji PJ Wji 

(3.5) 

The goal now becomes to derive a formula for each of the factors of equation 3.5. 

First, notice that the second factor of equation 3.5 is given by 

8net;] 8 (~m-l m-1) m-1 
8 m-l = 8 m-l L..J Wjk °pk = °pi . 

Wji Wji k . 

Let the negation of the first factor of equation 3.5 be denoted by 

8m. = 
PJ 

8Ep 
8net;] . 

Combining equations 3.5, 3.6, and 3.7 results in 

8Ep :::: 8m.0~-1 
8w~-1 PJ pz 

J~ 

(3.6) 

(3.7) 

(3.8) 

At this point we see that equations 3.3 and 3.8 specify the weight update formula 

given by 

A m-l em m-1 upW.. = 1/1U '0· . J't PJ pZ (:3.9) 

The 8;;} is called the backpropagation error signal. This signal takes on different 

values for the weights entering the output layer nodes than for the weights entering 

the hidden layer nodes. Applying the chain rule to equation 3.7 gives 

8m. = _ 8Ep = _ 8 Ep 80;] . 
PJ 8netm. 80m. 8netm. 

PJ PJ PJ 

The second factor of equation 3.10 is seen to be 

80m. 
PJ _ 13m m (1 m ) 

8netm. - j 0pj - 0pj . 
PJ 

(:3.10) 

(:3.11 ) 
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The first factor is different for output layer weights than for hidden layer weights. 

For weights entering the output layer, the first factor of equation 3.10 is given by 

oEp ( m) oom. = - tpj - 0pj . (3.12) 
PJ 

The first factor is derived for weights entering hidden layer nodes as follows: 

-p = I: p P (3.13) oE (OE onet1+
1

) 
oom. k onetm+ 100m. 

PJ pk PJ 

_ '" oEp a ( ) -1; onet;k+l oo~j ~wkio~ (3.14) 

-I: oEp (. m) - wk' (3.15) 
k onetm+l 'J 

pk 

= - '" fJmk+1wmk' (3.16) .1; p' J 

We combine all of the above results to form the final weight update rule for output 

layer weights given by 

A m-1 _ (t. m)f3m m(1 m) m-1 UpWji - 771 PJ - 0pj j 0pj - 0pj 0pi . (3.17) 

Hidden layer weights have a final weight update rule given by 

A m-1 pm m (1 m) ('" cm+1 m) m-1 UPWji = 771 j 0pj - 0pj 1; vpk Wkj °pi . (3.18) 

The backpropagation algorithm repeatedly presents each training pattern to the 

FFNN. After each pattern has passed through the network, the weights are altered 

as prescribed by equations 3.17 and 3.18. (One pass through the entire training set is 

called an iteration.) The sum squared error continues to decrease as more and more 

iterations are run. Eventually, the network will reach an error level that the user can 

tolerate (within reason). 
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3.4 Backpropagation Improvement Techniques 

Backpropagation learning is plagued with excessively long run times. As a result, 

a major field of investigation in the field of FFNNs is the run-time improvement of 

the algorithm given in the previous section. The most prominent of the improvement 

techniques is momentum [47]. This method adds the following term to the final 

update formulas of equations 3.17 and 3.18: 

(3.19) 

where a is a parameter of the algorithm that determines the effect of previous weight 

changes (notice the p - 1 subscript) on the current weight change. Dozens of other 

backpropagation improvement techniques have been proposed included those in [32, 

33, 57]. Interesting use has also been made of higher order (e.g., second derivatiye) 

methods [5]. 

An interesting new approach with limited biological plausibility [7] is neuronal 

learning [58]. The idea purports the existence of a tuning parameter within the 

FFNN node that can be manipulated into the learning algorithm. Specifically. the 

parameter Tj for node j in layer m (called the temperature) is given by 

m 1 
Tj = {37Jl 

J 

(3.20) 

where Pj is the value shown in equation 3.4. This implementation of the technique is 

limited to sigmoid activation functions; however, other parameters of other activation 

functions may work just as well. Approximate gradient descent is used to adjust 

the temperatures throughout the FFNN in a method similar to the weight update 

procedure of backpropagation. The same sum squared error and net input functions 
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used in backpropagation are used in neuronal learning. The derivation of the neuronal 

temperature update rules is similar to backpropagation .. 

We first notice that the change in temperature for node j at layer m for pattern 

p must be proportional to the partial derivative of the error with respect to the 

temperature: 

m_ 8Ep 
6.pTj - -712 8TTJl 

J 
(3.21 ) 

where 712 is a learning rate parameter of the algorithm analogous to the backpropa-

gation learning rate. Since neuronal learning is an extension of backpropagation, it 

must be pointed out that the two learning rates are independently set by the user. 

By using the chain rule we observe that 

8Ep _ 8Ep 8o;,} 
8Tm - 80m. 8TTJl . 

J PJ J 

The second factor of equation 3.22 is given by 

8o;} _ net;,} (m) ( m) 
8TTJl - 2 0pj 1 - 0pj . 

J (Tj) 
Similar to backpropagation, we define the node error term as 

Am _ 8Ep 
hpj - - 80m .. 

PJ 

For nodes in the output layer m, the error term is 

(3.22) 

(3.23) 

(3.24 ) 

(3.25 ) 

By an argument similar to the backpropagation weight update derivation, the neu-

ronal error term for non-output layer m is 

(:3.26) 
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Combining all the equations we come up with the neuronal update rule 

(3.27) 

where 6;;] is given by equations 3.25 and 3.26. This technique is a reasonable and 

well-founded extension to backpropagation. 

3.5 Discussion 

As stated throughout this chapter, FFNNs (especially multilayered FFNNs) of-

ten require extremely long learning times. This phenomenon is especially true of 

backpropagation even though empirical studies have been undertaken to investigate 

the problem [13]. On top of this rather severe run-time problem, it is often difficult 

to find appropriate backpropagation parameters such as the learning rate and mo­

mentum rate. Even with these difficulties, FFNNs do have significant positive points. 

They are a form of extremely distributed computation, thus FFNNs are tolerant to 

possible node failure. It is also claimed that FFNNs are quite robust to noise in t.he 

input (both training and testing set). 

As a mapping approximation tool, FFNNs must compete with conventional tech-

niques such as MARS. As our experiments show (in upcoming chapters), FFNNs (es­

pecially backpropagation networks) train many times slower than MARS, have many 

barriers to easy use, and can perform worse on testing data than ~vIARS. One must 

not dismiss FFNNs altogether, however. The field is young and maturing. 

Other function approximation neural network paradigms do exist other than 

backpropagation. Examples include counterpropagation [2.5] and a one-shot learning 
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method given in [27]. For an excellent introduction to a large number of neural 

network paradigms, please see [53]. 
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4. GENERATIVE LEARNING IN FFNNs 

Generative learning refers to the process of dynamically building the architecture 

(number of nodes and the pattern of connectivity between them) of a FFNN during 

the learning process. Two major techniques have emerged in this general area: node 

pruning and node addition. Node pruning [52] concentrates on removing nodes and 

weights that are contributing little to the final result. Node addition tries to "grow" 

new nodes as necessary to help find a satisfactory architecture [2, 3, 15, 28, 29]. (See 

[2] for a listing and description of current addition and pruning methods.) Using 

both techniques in one learning algorithm would be an interesting endeavor; however, 

most generative learning algorithms deal with one method at a time. Most of the 

work reported in this thesis concentrated on node addition algorithms; thus, we will 

concentrate solely on dynamic addition learning techniques. 

4.1 Dynamic Node Creation (DNe) 

The dynamic node creation (DNC) technique of Timur Ash [3] is an attempt 

to incrementally build a three-layer (i.e., one hidden layer) FFNN by adding hidden 

nodes one at a time to increase function approximation accuracy. Standard back­

propagation is used to train each newly generated FFNN, and nodes are added when 

the sum squared error curve given by equation 3.2 becomes sufficient.ly flat over time. 
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As before, define an iteration as one pass through the training set. Let w be 

the DNC window size given in iterations, ~T be the trigger slope, at be the average 

squared error at time t for a given output node, mt be the maximum squared error 

at time t for any output node, ea be the average squared error cutoff, and em. be 

the maximum squared error cutoff. A hidden node is added to the single hidden layer 

when the following conditions hold: 

(4.1 ) 

and 

t - w > to ( 4.2) 

where to is the training iteration during which the last hidden node was added. Con­

ceptually, equation 4.2 guarantees that a node is not added until w iterations through 

the training set have been completed (thus the name "window size"). Equation 4.1 

measures the steepness of the error curve and detects when it has become excessively 

flat over time. Node addition halts when 

( 4.3) 

and' 

(4.4 ) 

New nodes are given full connection to all input and output nodes. Ash reports slower 

convergence time than standard backpropagation, but this effect was expected. The 

benefit of DNC is the purported solution to the problem of finding a good network 

architect ure. . 

\Vith any generative learning algorithm, a variety of design questions must be 

addressed including 
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1. how many nodes should be added, 

2. to which layer should the node(s) be added, 

3. what pattern of connectivity should be associated with the node(s), 

4. when should the node( s) be added, and 

5. what activation function(s) should the node(s) use. 

DNe chooses relatively simple and arbitrary answers to these questions without any 

formal justification. In general, no firm mathematical basis is given for the DNC 

technique. The method relies mainly on heuristically formed conditions parameter­

ized by user input. Indeed, setting the various backprop and DNC parameters is a 

difficult task. Severe node growth explosions can result if the parameters are not 

set correctly, especially on nontrivial function approximation problems. (The simple 

XOR problem is easily solved by DNC, but this benchmark is too simple to judge 

the quality of any algorithm.) 

4.2 Neuronal Dynamic Node Creation 

Neuronal Dynamic Node Creation (Neuronal DNC) is a generative techn"ique 

we invented that simply combines the neuronal lea.rning technique [58) wit.h DNC 

[3]. Since both neuronal learning and DNC are based on the backpropagation weight 

update algorithm, placing the methods together into one algorithm was a. natural 

exerCIse. 

The neuronal DNC technique possesses the attractive and intuitive appeal of 

cutting back the convergence time of standard DNC by allowing more optimiza-
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tion parameters (the neuronal temperatures associated with the sigmoid activation 

function - see equation 3.20) to vary in a mathematically grounded way. Since our 

underlying purpose is to approximate fairly high dimensional multivariate functions, 

a reduction in learning time would be a significant advantage because the large di-

mens ion of the functions only adds to the slow convergence of backpropagation-based 

algorithms. 

Computer simulation code for neuronal DNC was written in C and executed on 

a variety of DECstation 5000, DECstation 2100, and Sun Sparcstation platforms. 

Twenty-eight parameters are input to the simulator from standard input. Twelve of 

the parameters are "administrative" (input file names, random number seed, program 

mode, etc ... ) and the remaining sixteen are algorithmically relevant. Notice that 

two separate learning rates must be considered: one for neuronal learning and one 

for standard backpropagation. Both .rates remain static throughout learning. The 

"momentum" parameter is used in a momentum term added to every weight update 

in order to account for past weight changes. 

A relatively limited number of experiments were attempted. The exclusive-or 

(XOR) benchmark function was tried, and the network quickly learned the function 

to the desired degree of accuracy regardless of whether neuronal learning was used. 

Since XOR is a toy problem in which the training set is equivalent to the testing set, 

a more interesting continuous. multivariate function was formed. The mapping from 

~4 to ~2 is given by 

(4.5) 

(4.6) 

where 0 < Xi 5 2 Vi. Testing and training cases were easily generated. 
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Table 4.1: Neuronal DNC results for the XOR problem 

back initial result 
prop neuron number number 

Expt learn learn hidden window hidden number of 
number momentum rate rate nodes SIze nodes iterations 

1 0.9 0.5 0.1 1 200 4 705 
2 0.9 0.5 0.0 1 200 5 2726 
3 0.9 0.5 0.1 1 100 3 359 
4 0.9 0.5 0.0 1 100 9 2704 
5 0.9 0.5 0.1 1 50 3 277 
6 0.9 0.5 0.0 1 50 22 2499 
7 0.9 0.5 0.1 1 25 4 235 
8 0.9 0.5 0.0 1 25 48 2145 
9 0.9 0.1 0.1 1 50 3 228 
10 0.9 0.1 0.0 1 50 101 9864 

As mentioned previously, the addition of neuronal learning did improve the net­

work's performance over standard DNC for XOR. In fact, neuronal DNC required 

significantly less training time than standard DNC in many cases. 

Parameter settings were chosen based upon observed performance, and no rig­

orous justification can be given for the decisions made. All experiments for the XOR 

function used the same four element training set and four element testing set. The 

DNC trigger was set to 0.05. The average error cutoff was set to 0.0001, and the 

maximum error cutoff was set to 0.001. Unlimited hidden node addition was allowed. 

All experiments began with one hidden node. Table 4.1 summarizes a representa­

tive sample of experiments attempted. Since all experiments approximat.ed the 

mapping sufficiently, the important results to observe are the number of iterations 

through the training set required to obtain the approximation and the number of 
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hidden nodes generated. Experiments 6, 8, and 10 (all not using neuronal learning) 

generated extreme hidden node explosions, while the corresponding neuronal DNC 

experiments (5, 7, and 9) performed well. In all cases neuronal DNC significantly 

outperformed regular DNC both in node growth and in the number of required it­

erations. Of course, this statement cannot be generally made because all possible 

parameter settings have not been attempted. Standard backpropagation was run by 

using experiment numbe~ 10 and shutting off node creation. Three hidden nodes 

were initially provided. Standard backprop took 12698 iterations compared with 228 

for experiment number 9 (the neuronal DNC version). 

The continuous mapping problem presented above was attempted and promising 

results were obtained in which neuronal DNC outperformed normal DNC and stan­

dard backpropagation. Unfortunately, this success was tempered by the excessively 

long p.rocess of finding appropriate algorithmic parameters. Also, more tolerance for 

error was accepted for the continuous problem, but when the tolerance was decreased 

to a low yet acceptable level, no parameter settings could be found that favored neu­

ronal DNC. 

The success of the neuronal DNC technique in the experiments should be tem­

pered by the difficulties experienced with the continuous mapping problem. A variety 

of possible explanations for this difficulty are presented below. 

First and foremost, the vast number of parameters (sixteen) used by neuronal 

DNC possess an enormous 'number of possible settings. No clean method is available 

to decide the appropriate values for each parameter. Indeed, this problem afflicts 

most backpropagation-based algorithms to some degree; however, DNC seems to 

worsen the affliction. Neuronal DNC may be a viable technique if the parameters 
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are set correctly, so calling it an outright failure may be too hasty. Parameter values 

similar to those given in the original papers were used, but the same success was not 

achieved. A massive "simulation· search" will need to be undertaken to solve this 

problem; however, since convergence is still relatively slow (three hours for one run 

on a DECstation 5000), this idea may not be possible. 

Another problem may lie in the DNC technique itself. As noted earlier, a node 

growth explosion sporadically occurs. The underlying problem may be the fact that 

DNC has no method of rigorously controlling the growth of nodes other than the 

correct setting of parameters. Thus, adding neuronal learning compounds the prob­

lem by setting loose more unregulated parameters. Even though neuronal learning is 

well founded in approximate gradient descent, the changing architecture may disrupt 

the sear<:h space. Moreover, a newly added node possesses no guarantee of doing 

"useful" work, i.e. the weights and temperature may play little or no role in the 

final approximation. Seemingly, the only way to minimize neuron growth in this 

model is to enlarge the window size sufficiently enabling the existing network to be 

"fine-trained" as necessary; however, a price is paid in greater convergence times. 

A large number of other reasons for the experimental results are possible; how­

ever, the common threads in all of them are an excessive number of input parameters, 

extreme parameter sensitivity, and relatively uncontrolled node addition. 

Future directions of this work may include large simulation and diagnostic stud­

ies, the addition of novel controllers to DNC, and algorithmic optimization such as 

decaying learning rates. Actually, we see more promise in studying the underlying 

node basis functions. Neuronal learning is still a valuable technique that we expect 

will prove fruitful in future work. 
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4.3 Cascade-Correlation 

The cascade-correlation (CC) generative learning algorithm [15] creates a variant 

of architecturally pure FFNNs (as understood in this thesis). Unlike DNC, CC makes 

an attempt to control the usefulness of added nodes by correlating their output with 

the residual error of the output nodes. It also utilizes only single-layer learning 

techniques by freezing certain weights during learning. This explicit avoidance of 

multilayer backpropagation of error signals is one of the most desirable properties 

(from a run-time standpoint) of the CC technique. CC uses a higher order technique 

called Quickprop [14] in an attempt to speed up convergence time. 

The CC algorithm begins with no hidden nodes. Training ensues with the singlc­

layer learning technique until no significant change in error is observed for some pre­

set number of training iterations (called the patience parameter - set by the user). 

At this point a new hidden node (called a candidate node) is given a connection from 

every input node and from all other hidden nodes. The new node's output is not yet 

attached to any other node. A pre-set number of iterations over the training set are 

executed, and the candidate node's input weights are adjusted in order to maximize 

the correlation between the candidate node's output and the error at the output 

nodes. A gradient ascent procedure is. used to carry out this task. Notice again that 

only a single layer of weights are being trained. In addition, one may train a group 

of candidate nodes (possibly in parallel) and choose the best one. This is possible 

since the weights of the existing nodes are frozen during node addition. 

After a node is added, its input weights are permanently frozen. The entire 

network is then trained using a single-layer training algorithm; however, only the 

weights entering the output nodes are allowed to vary. \\Then the change in error 
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over time is minimal, the process of adding a node begins again. This cycle repeats 

until the stopping criteria (set by the user) are met. 

CC has numerous benefits including no backpropagation of error signals, a well 

grounded method of ensuring that a node does useful work, and the creation of sta­

tionary feature detectors through the freezing of input weights for hidden nodes. The 

main difficulty with the algorithm is its large number of seemingly sensitive param­

eters. Empirical studies of CC such as [62] were invaluable in our experimentation 

with the method. (Our results are presented in upcoming chapters.) As stated in [62), 

a weight update scheme other than quickprop would be worth trying in conjunction. 

with CC. 

4.4 Generative Functional-Link Net 

Since one usually wants one-layer FFNN algorithms for run-time efficiency, gen­

erative algorithms for setting the FFNN architecture, and the ability to approxi­

mate non-linearly separable mappings, we hypothesized that a generative version of 

a functional-link net [43] would provide a plausible solution. This generative algo­

rithm repeatedly adds nodes to the input layer. The input to a new node is the 

product of the inputs of some number of original input nodes. The node addition 

criterion is extremely simple: add a node after a certain number of iterations (spec­

ified by the user). We implemented this technique with a variant of the relaxat.ion 

method [41] and with the single-layer delta rule [47]. 

We decided to try the technique out on the iris classification benchmark problem 

from the UC-Irvine machine learning data repository [45]. The technique ~lid not 

perform as well as expected. After adding over 85 nodes one at a time, the generative 
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functional-link net did not learn the classification. Either the problem did not become 

linearly separable in higher dimensions or the generative learning algorithms were 

insufficient for the task. We did not expect these results and cannot explain them at 

this time. 

4.5 Discussion 

Generative learning ,provides the valuable service of automatically determining 

a FFNN architecture. The variety of techniques given above all hold promise; how­

ever, the node growth control mechanism of cascade-correlation is impressive. The 

understandable foundation of CC's mechanism is an advantage over the techniques 

of methods like dynamic node creation. However, setting the parameters of the CC 

algorithm is a difficult problem (as it is with many other methods). 
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5. APPLICATIONS OF MARS AND FFNNs TO QNDE 

Testing materials for hidden defects including flaws, cracks, or corrosion is im­

portant for guaranteeing reliability. Should the defect grow and reach critical size, 

an unexpected breakdown of the material could result. In certain application areas 

like aerospace, the results .could be disastrous. 

Until recently, reliability has been obtained by using off-line destructive testing. 

Destructive tests subject a material to the equivalent of the stresses which the mate­

rial will encounter during its lifetime. If the material holds up, the test is successful. 

However, this approach typically requires large "margins of safety" (at the cost of in­

creased machine weight) to reduce the risk of material breakdown caused by internal 

flaws [49]. With increasing demands on performance, overly conservative "margins 

of safety" are becoming less and less acceptable. 

Quantitative nondestruCtive evaluation (QNDE), on the other hand, can help to 

guarantee reliability by detecting, classifying, and sizing flaws without inflicting stress 

on the material being examined. QNDE allows an object to emerge from a material 

integrity test with no change in its chemical or physical properties [49]. The physical 

techniques used in QNDE include magnetic particles, X-radiation, liquid penetrants, 

eddy currents, and ultrasonics. We will concentrate on the last two techniques for 

our experiments. 
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This chapter presents two flaw sizing problems and two classification problems 

studied at the Iowa State Center for Nondestructive Evaluation (ISCNDE). Each 

of the approaches involves the construction of a nonlinear function approximator. 

Individuals at ISCNDE have already. utilized FFNNs to build approximators [8, 37, 

54]. We present their results along with new results using FFNNs and MARS. 

Ultrasonic and eddy current QNDE techniques involve scanning a material with 

a probe and collecting signals. The signals are then analyzed and preprocessed into an 

appropriate form for input to a function approximation tool (e.g., a FFNN or MARS 

model). In general, the process for sizing and classification requires careful formations 

of probe scan plans, precise measurement of returning signals, appropriate feature 

extraction from the resulting data, and the formation of a mathematical tool to map 

the·features to the flaw sizes or classes. Although the first three steps are extremely 

critical, we will be concerned mainly with the last step (except one experiment in 

which we undertake the feature extraction). The interested reader is referred to [37] 

for a discussion ~f the uniform field eddy current probe data acquisition and feature 

extraction techniques used to obtain the sizing data used in this thesis. For ultrasonic 

data acquisition' information, please see [54] and [8]. Portions of this chapter are 

contained in [44]. 

Choosing a FFNN architecture without using generative learning is not au easy 

problem. All the architectures for the fixed architecture FFNNs described in this 

chapter were arrived at by trial and error. Currently, educated trial and error is the 

only valid way to set network architectures (for fixed architecture learning algorithms) 

since a complet~ scan of all reasonable architectures would take a prohibitively long 

time to accomplish. 
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5.1 Eddy Current Sizing 

The flaw sizing problem using eddy currents requires the function approximator 

to output the dimensions of of the flaw (length, width, and depth) given a set- of fea­

tures of the flaw as input. An underlying mathematical theory exists (due to Auld [-1]) 

describing the interaction of a uniform electromagnetic field with a three-dimensional 

flaw. This model agrees with experimental results and allows the generation of "syn­

thetic" input/output data for use by the function approximator. 

5.1.1 Comparing MARS to existing FFNN eddy current results 

The original data described here were gathered and used initially by Jim Mann 

at the Center for Nondestructive Evaluation at Iowa State University [37]. Two 

approaches were taken to test the MARS and FFNN models. The first approach 

used synthetic training and testing sets generated according to Auld's theory [4]. 

Two synthetic training sets were produced, one with 1000 elements and one with 100 

elements. A single 100 element synthetic test set was used to evaluate the performance 

of the approximators. The second approach used experimental data obtained by 

Mann [37] from eight real flaws. Each flaw was scanned twenty times for a total data­

set of 160 measurements. 

5.1.1.1 MARS versus neural nets with synthetic data A standard 

fixed architecture FFNN using backpropagation was used by Jim Mann [37] on both 

the 100 and 1000 element training sets. The FFNN.used for the 100 element training 

set consisted of 14 input nodes, one hidden layer of 14 nodes, and 3 output nodes 

(corresponding to- flaw half-length, width, and depth). The network trained on the 
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Table 5.1: Performance of MARS and FFNNs on syn­
thetic eddy current data 

II 100 element training set II 1000 element training set II 
Standard Standard 
Deviation Deviation 

Mean % Error % Error Mean % Error % Error 

MARS 9.71 11.01 5.84 4.96 
Neural 
Network 16.81 12.37 3.05 2.89 

1000 element training set had an additional hidden layer of 14 nodes. We applied 

MARS to both training sets varying the maximum number of basis functions over 

the trials. Only flaw depth was considered in the synthetic cases since it provided 

the most interesting results and since Mann did not report neural network results on 

width or half-length. 

. The best MARS model (as measured by average percent error on the 100 element 

test set) for the 100 element training set was piecewise cubic and had the maximum 

number of basis functions parameter (Mmax) set at 34. The final model had 18 basis 

functions. The best MARS model for the 1000 element training set was piecewise· 

cubic and had Afmax set to 100. The final model had 59 basis functions. It should be 

noted that setting Afmax to 50 gave almost the same results (with 31 basis functions 

in the final model). Table 5.1 shows the relevant results reported in [37] for the 

backpropagation FFNNs and our results with MARS. On the 100 element training 

set experiment, MARS gave better results and built its model much more quickly. 

The 1000 element training.sefwas handled better by the FFNNj however, an effective 

study of the MARS parameter settings was not accomplished due to the long running 
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Table 5.2: Eddy current flaws 

Flaw Flaw Flaw 
Number Depth (mm) Type 

1 1.05' Fabricated 
2 0.85 Fabricated 
3 0.63 Fabricated 
4 0.40 Fabricated 
5 0.33 Fabricated 
6 0.00 Fabricated 
7 0.33 Actual Crack 
8 0.33 Actual Crack 

times of this experiment. For completeness, it should be noted that percent error is 

not the best measure to use in this case since desired output values are often close 

to zero. However, to compare with Mann's results, percent error was used. A better 

measure may be mean absolute error (which is used in experiments in later sections). 

5.1.1.2 MARS versus neural nets with experimental data Of the eight 

available real flaws, six were hand fabricated and two were actual cracks. See Ta-

ble 5.2 for flaw numbers, depths, and types. Two experiments were run by Mann 

using backpropagation FFNNs to determine flaw half-length and depth. The first 

experiment used an 80 element training set consisting of data from fabricated flaws 

#1, #3, #5, and #6. The test set consisted of the 40 data sets from the two other 

fabricated flaws (#2 and #4). The FFNN used in this experiment for flaw depth 

consisted of twenty input nodes, ten nodes in the first hidden layer, three nodes in 

the second hidden layer, and a single output node corresponding to flaw depth. The 

best MARS model was piecewise linear with .~lmax set at 10, and the final modd 
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consisted of 5 basis functions. The second experiment used a 120 element training 

set composed of the data from all six fabricated flaws (#1 through #6). The test set 

was made up of the 40 elements from the two actual cracks (flaws #7 and #8), and 

the FFNN architectures used for half-length and depth were unspecified in Mann's 

report. The best MARS model was piecewise cubic with Mmax set at 3 (a very small 

model). The final model consisted of 3 basis functions. 

Mean absolute error (average of the absolute values of the differences between 

the model outputs and the target outputs) will be the measurement tool of choice 

for this data. Results for flaw depth only are given. Early results for flaw haH-

length were similar; however, we chose not to report them since time did not allow a 

thorough and fair search of the MARS parameter space. For the first experiment, the 

FFNN had a mean absolute error of 0.0254 mm with a standard deviation of 0.0161 . . 

mm, and the MARS model had a mean absolute error of 0.0364 mm with a standard 

deviation of 0.0122 mm. See Figures 5.1 and 5.2 for graphical views of the actual 

approximations of the FFNN and MARS on the eddy current data for experiment 

one. (The format of the graphs was borrowed from [37].) In the second 

experiment, the FFNN had a mean absolute error of 0.0100 mm with a standard 

deviation of ,0.0077 mm, and the MARS model had a mean absolute error of 0.0081 

mm with a standard deviation of 0.0065 mm. See Figures 5.3 and 5.4 for graphical 

views of the actual approximations of the FFNN and MARS on the eddy current 

data for experiment two. As shown by the data, MARS results were better than 

the neural network in the second experiment and worse in the first. The greatest 

difference between MARS and FFNNs on these two experiments was running time. 

MARS took much less time than the FFNNs to build its model. 
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5.1.2 Comparing MARS, FFNNs, and cascade-correlation 

Given the above results, we decided to undertake another experiment using syn­

thetic eddy current data generated according to Auld's theory for flaw depth. Specif­

ically, four training sets were generated of size 100, 200, 500, and 1000. Each training 

set contained all the elements of the next smallest training set plus additional new 

patterns. A 4000 element test set was created to examine the generalization capabil­

ities of the techniques used. The two criteria important in this problem are learning 

time and model performance on the test set. Mean absolute error was used as the 

test set model performance metric. 

Three techniques were applied to this problem: backpropagation, MARS, and 

cascade-correlation. The only parameter allowed to vary in MARS was iHmax , which 

was set from 1 to 100 in increments of 1. Figure 5.5 shows the mean absolute errol' 

on the test set as a function of the Mmax parameter setting for the four training 

sets. As the graph shows, good results for all training set sizes are obtained with 

fairly low settings of Mmax. This observation is important since MARS run-time is 

approximately cubic in Mmax. 

Setting the parameters in backpropagation and cascade-correlation is a difficult 

task. Exploratory runs were carried out for each of the two methods to locate "good" 

parameter settings. (Guidance in the parameter search for cascade-correlation was 

obtained by referring to the findings of [62].) The patience parameter and maxi­

mum growth factor were found to be critical parameters for network convergence and 

performance in our experiments with cascade-correlation. In fact, one can control 

the run-time of cascade-correlation significantly through parameter settings; thus, 

no run-time comparison is given between cascade-correlation and the other methods. 
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Table 5.3: Results using backpropagation on the 4000 
elemen t test set 

Size of Training Set 
100 200 500 

Number of Hidden Nodes 14 14 28 
Mean Absolute Error 
During Testing (mm) 0.1160 0.0760 0.0593 
Standard Deviation 
of Absolute Error 0.1325 0.0757 0.0707 
During Testing (mm) 
Run Time 8 hours 15.5 hours 71 hours 

Suffice it to say, the run-time of backpropagation was much longer than the run-time 

of cascade-correlation regardless of parameter settings. 

Backpropagation entails the additional burden of finding and setting an archi-

tecture prior to learning. In the exploratory runs it was found that one hidden 

layer almost always provided the best results. Adding a momentum term to back­

propagation actually hindered network performance both in terms of learning time 

and performance on the test set; thus, the results given in this section do not uti-

lize momentum. Simulation run-time was used to report learning time results for 

back propagation and MARS. All simulations were run on a DECstation 2100 under 

ULTRIX V4.1. 

Results of the best model for each method are shown in Tables .5.3, 5.4, and .5.5. 

All the backpropagation FFNNs were run for 100,000 iterations and had a learning 

rate of 0.5. The best networks for the 100 and 200 element training sets had one 

hidden layer of 14 nodes, while the best network for the 500 element training set had 

one hidden layer of 28 nodes. No experiments were run on the 1000 element training 
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Table 5.4: Results using cascade-correlation on the 
4000 element test set 

Size of Training Set 
100 200 500 

Number of Hidden Nodes 25 25 40 
Type of Hidden Nodes Gaussian Sigmoid Gaussian 
Mean Absolute Error 
During Testing (mm) 0.1451 0.0943 0.0800 
Standard Deviation 
of Absolute Error 0.3061 0.0742 0.0697 
During Testing (mm) 

Table 5.5: Results using MARS on the 4000 element test set 

Size of Training Set 
100 200 500 1000 

Maximum Number of 
Basis Functions 22 40 43 41 
Final Number of 
Basis Functions 12 17 27 31 

Piecewise Piecewise Piecewise Piecewise 
Model Type Linear Linear Linear Linear 
Mean Absolute Error 
During Testing (mm) 0.0456 0.0404 0.0364 0.0338 
Standard Deviation 
of Absolute Error 0.0428 0.0378 0.0330 0.0293 
During Testing (mm) 

1 min 9 min 31 min 57 min 
Run Time 16 secs 25 secs 10 secs 23 secs 
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set for backpropagation or cascade-correlation due to the long running times of the 

procedures. 

As the tables show, the performance of cascade-correlation on the test set did 

not measure up to either backpropagation or MARS. This phenomenon could be the 

result of inappropriate parameter settings; however, more time was spent fine-tuning 

the cascade-correlation parameter settings than was spent on the other two methods 

combined. As stated in [62], a version of cascade-correlation with a simpler learning 

algorithm may be interesting. 

The most significant result is the relatively small run-time of MARS compa.red 

with backpropagation. Even if the backpropagation softwa.re was made significantly 

more efficient, MARS would still take much less time to train. The disparity between 

the run-times of MARS and backpropagation combined with the better performance 

of MARS on the test set (see Tables 5.3 and 5.5) allow us to conclude that l\'IARS 

is a better method for this problem. Table 5.6 shows the MARS model which, for 

each training set, gives the same performance as backpropagation on the testing set. 

Notice the small run-times due to the small settings of Mmax. The 1000 element 

training set column in Table 5.6 is included to show the drastic cut in run-time 

(without much loss in test set performance) that results from setting Mmax to 29 

instead of the best MARS model setting of 41 (see Table 5.5). Figure 5.5 reinforces 

graphically that good results are obtained with A/max set relatively low. The fact 

that only one parameter (Mmax) was allowed to vary is another promising MARS 

factor. Even better results may be obtained by utilizing some of the other MARS 

parameters. 
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Table 5.6: Results using MARS on the 4000 element test set with test­
ing accuracy approximately the same as backpropagation 

Size of Training Set 
100 200 500 1000 

Maximum Number of 
Basis Functions 3 13 10 29 
Final Number of 
Basis Functions 3. 10 . 10 22 

Piecewise Piecewise Piecewise Piec.ewise 
Model Type Linear Cubic Cubic Linear 
Mean Absolute Error 
During Testing (mm) 0.0968 0.0679 0.0585 0.0345 
Standard Deviation 
of Absolute Error 0.0745 0.0584 0.0446 0.0302 
During Testing (mm) 

1 min 23 min 
Run Time 5 secs 53 sees 4 sees 6 sees 
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5.2 Ultrasonic Sizing 

The ultrasonic sizing problem discussed here involves finding the dimensions of a 

best-fit equivalent circular shape for an isolated planar crack. The response wave gen­

erated by a crack is characterized by two large peaks called "flashpoints." The time 

separation between the flashpoints can be related to the radius and orientation of the 

crack; thus, a measurable quantity exists (time) from which the crack dimensions can" 

be obtained [8]. A mathematical analysis has been carried out [8] which transforms 

the problem into a three-to-three mapping with the three outputs representing the 

crack radius and two angular parameters. This output scheme fully describes the 

crack size and orientation. Often, crack size is the crucial factor in sizing; thus, for 

the sake of comparison with existing experiments, only crack size will be discussed 

here. (This implies a three-to-one mapping rather than a three-to-three.) 

The data for the ultrasonic flaw sizing problem were originally generated by C.­

P. Chiou at the Center for Nondestructive Evaluation at Iowa State University [8]. A 

330 element synthetic training set was generated along with a 1920 element synthetic 

testing set. 

A fixed architecture FFNN using an adaptive variant of backpropagation was 

used by C.-P. Chiou [8] on the 330 element training set. The adaptive aspect of 

the learning algorithm mainly affected the speed of the algorithm. The FFNN used 

had three input nodes, twelve nodes in the first hidden layer, twelve nodes in the 

second hidden layer, twelve nodes in the third hidden layer and one output node 

corresponding to crack size. 

We applied MARS to the training set varying the maximum number of basis 

functions over the trials. The best MARS model was piecewise linear with Nlmo;r set 
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Table 5.7: Performance of MARS and FFNNs on ultrasonic synthetic 
sizing data 

Number Number Number Number Number 
Between Between Between Between Between 

o and 10% 10 and 20% 20 and 30% 30 and 40% 40 and 50% 
Error Error Error Error Error 

MARS 1829 0 0 87 4 
Adaptive 
Neural 1827 2 0 65 26 
Network 

to 50. The final model had 38 basis functions. The results in this case were measured 

in classes of error as shown in Table 5.7. MARS and the FFNN performed ahout 

the same for this experiment; however, the issue of run time is once again important. 

MARS took less time than the FFNN to build its approximator. It should be noted 

that all of the 30-40% and 40-50% errors occurred when the target value was close to 

zero. As with the eddy current data, percent error may not be the best measurement 

tool. For completeness: MARS had a 2.62% mean error with a 8.10% standard 

deviation. 

5.3 Ultrasonic Classification 

The flaw classification problem is important in cases where knowledge of flaw 

type is more important than exact flaw size. Determining the type of a flaw is often 

sufficient to make crucial decisions about the material. 
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5.3.1 Ultrasonic classification problem one 

The data for the ultrasonic flaw classification problem presented here were orig­

inally used by S.-J. Song of the Center for Nondestructive Evaluation at Iowa State 

University and were generated from samples provided by '\Vestinghouse Corporation 

[54]. Basically, the goal is to separate known welding defects into three distinct 

classes: crack, porosity, or slag. A total of 239 input/output examples were selected, 

120 for the training set and 119 for the testing set. 104 were known cracks; ,53 were 

porosity; and 82 were slag [54]. 

Song [54] applied a probabilistic neural network (PNN) to this problem W5J. 
This type of FFNN has its architecture determined by the number of output cla.sses 

and the choice of training samples. Specifically, a PNN is a four layer (two hidden 

layers) FFNN. Nodes in the first hidden layer employ a gaussian activation function 

f given by 

f(net) = exp ((net - 1)/0-2) (.5.1 ) 

where 0- is a parameter of the algorithm. One node exists in this layer for each 

training pattern, and the input layer and first hidden layer are fully connected. The 

weight Wji from node i in the input layer to node j in the first hidden layer is sr't 

to Xji, where Xji is the i-th dimension of the j-th training set pattern. One node 

exists in the second hidden layer for each output class, and it simply outputs its net 

sum. A connection Wji exists from first hidden layer node i to second hidden la.yer 

node j if training example i belongs to class j. An such weights are set to 1. One 

output node is required for each output class, and a connection ci exists from second 

hidden layer node i to output node i. The ci are set by the user as parameters of t.he 

system and are multiplied by the output of the second hidden layer to give the output 
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of the network. In general, a higher relative value of ci will increase the chances of 

classifying a pattern as class i. The output node with the largest output value is 

chosen as the class of the input pattern. 

Given that there are ti training patterns from class i, the first hidden layer 

produces ti gaussian distributions with centers at the training patterns. A small 

setting of the q parameter generates narrow gaussian distributions while a large 

setting implies wide distributions. Node j of the second hidden layer sums together 

the gaussian distributions of class j. This technique approximates the. probahility 

density function for each class. Please see [54] and [55] for a more detailed description 

of the underlying PNN theory. 

MARS was applied to the training set varying the maximum. number of basis 

functions over the trials. Since MARS has a continuous output value, each of the 

three categories was assigned a range of output values. We had to choose how large 

each range would be with respect to the other ranges. This new MARS parameter 

was found to be critical in the performance of MARS on all classification problems 

attempted. The best MARS model was piecewise cubic with klmax set to 5. The 

final model consisted of 4 basis functions. The second category (porosity) in the best 

model had a smaller relative range of output values than cracks or slag. 

The model performance evaluation criteria used by Song [.54] requires explana­

tion. The correct accept rate C Ai for class i is defined as 

m· CA. =_Z 
Z n. 

Z 

(.5.2) 

where mi is the number of test set patterns from class i classified correctly and Hi 

is the number of test set patterns belonging to class i. The false reject rate F Ri for 
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Table 5.8: MARS versus FFNN on ultrasonic 
classification problem one 

MARS FFNN 
Correct Accept Crack (%) 69 75 
Correct Accept Porosity (%) 35 42 
Correct Accept Slag (%) 49 54 
False Reject Crack (%) 34 31 
False Reject Porosity (%) 18 10 
False Reject Slag (%) 18 22 

FR. = L-j mji 
1 L-j nj 

(5.3) 

where mji is the number of test set patterns from class j classified by the model as 

class i "and nj is the number of test set patterns belonging to class j.' In general, 

these quantities measure fractions of samples classified correctly or incorrectly. To 

compare our MARS results with Songs neural network results, we'll use the correct 

accept/false reject notion. 

Looking at Table 5.8 we see that the probabilistic FFNN performed better 

than MARS; however, the fact that MARS is relatively competitive is worth noting. 

The MARS procedure is not meant to be a classification scheme, so its performance 

is admirable. One interesting point was the ease with which we were able to build 

MARS models to favor one Class over another by changing the relative sizes of the class 

output ranges. Thus, it seems MARS could be easily tailored to specific classification 

applications as necessary. 
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5.3.2 Ultrasonic classification problem two 

The second ultrasonic classification problem is based on data taken at the David 

W. Taylor Naval Ship Research and Development Center. The flaws were located 

in the weld zone of 36 steel plates with an approximate thickness of two inches. 

Half the plates were from a decommissioned submarine, and half were manufactured 

with intentional flaws placed in the material. Each defect was classified using a 

consensus approach from a variety of different inspection methods. Two plat.es were 

destructively evaluated to verify the accuracy of the classification. It is estimated that 

85% of the data we received was classified accurately. This figure may be inaccurate; 

however, we assume its validity. The data came to us in the form of sampled voltage 

versus time waveforms coupled with the classes of the defects generating the waves. 

Four flaw classes are present in the data: crack, lack of fusion, porosity, and slag. Of 

the 736 samples, 132 were cracks, 260 were lack of fusion, 130 were porosity, and 214 

were slag. 

One of the most difficult (and ad hoc) steps in the processing of NDE data is 

feature extraction. Eleven features were extracted from the waveforms to be used as 

input to a classifier. No particular justification can be given for these features, and 

we make no claim that they are in any way optimal. Other features may drastically 

improve the results of the experiments. We extracted features from t.he time domain 

(the raw signals) as well as from the frequency domain (via the fast fourier transform 

(FFT) [12]). We generated the phase graph from the FFT output by taking the 

inverse tangent of the imaginary part of the FFT divided by the real part. The 

magnitude spectrum was obtained by taking the square root of the sum of the squares 

of the imaginary part and the real part of the FFT output. We also translated the 
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magnitude spectrum graph onto a log scale to allow the smaller maxima of the graph 

to show up. Finally, the energy of a wave is given by the sum of the squares of each 

sampled point. The eleven features were: 

1. maximum peak of the time domain waveform 

2. maximum peak of the magnitude spectrum 

3. number of maxima from the time domain waveform 

4. number of maxima from the magnitude spectrum 

5. number of maxima from the phase graph 

6. number of "tall" maxima from the time domain waveform where "tall" is defined 

with a threshold of 25.0 

7. number of "tall" maxima from the magnitude spectrum where "tall" is defined 

with a threshold of 250.0 

8. maximum peak of the log scale of the magnitude spectrum 

9. minimum peak of the log scale of the magnitude spectrum 

10. the signal duration of the time domain waveform 

11. the energy of the time domain waveform 

All of the experiments reported in this section compare the performa.nce of the 

probabilistic neural network (PNN) and MARS. Results are reported using the correct 

accept/false reject notion introduced in the previous section. Deciding which results 
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to report is difficult using this metric since "good" results often depend on the needs 

of the user. For example, a high correct accept rate for a particular class may be more 

important than an overall high correct accept rate. In fact, a high correct accept for 

a particular class almost invariably results in a high false reject rate for that class. 

This tradeoff is important when deciding which results to report. Unfortunately, it 

is impossible to report results from all of the runs. We report only those results 

considered most important and interesting with the understanding that many other 

possibly valua1?le outcomes are not included here. 

For experiments lA, IB, and 1 C (below) we randomly chose half of the flaws 

from each of the four classes for the training set and half for the test set. Thus, each 

set contained 368 samples of which 66 were cracks, 130 were lack of fusion, 6.5 were 

porosity, and 107 were slag. For experiments 2A, 2B, and 2C we randomly chose 100 

flaws from each class for the 400 element training set. The test set contained the 

remaining 336 defects. 

5.3.2.1 Experiment 1A This experiment weighted all of the classes equally. 

For MARS, this means that each class was assigned an equal range of output values. 

For the PNN, each output weight ci was set to 1. The "best" MARS model was 

piecewise cubic and had Mmax set to 28. The final model consisted of 13 basis 

functions. 

Looking at Table 5.9 we see that the PNN performed slightly better for this 

experiment. The data in the table were from a PNN with q set to 0.17. For com­

pleteness, the PNN with the highest overall probability of detection had q set to 

0.04. 



70 

Table 5.9: MARS versus the PNN FFNN for ul­
trasonic classification experiment 1A 

MARS PNN FFNN 
Correct Accept Crack (%) 14 20 
Correct Accept Lack of Fusion (%) 34 32 
Correct Accept Porosity (%) 72 72 
Correct Accept Slag (%) 11 27 
False Reject Crack (%) 02 06 
False Reject Lack of Fusion (%) 31 14 
False Reject Porosity (%) 55 50 
False Reject Slag (%) 03 14 

5.3.2.2 Experiment IB This experiment weighted the crack class more 

heavily than the other three classes. For MARS, this means that the range of out­

put values for the crack class was greater than the other classes. For the PNN, the 

output weight ciwas set t~ 3 for the crack class and 1 for the other classes. The 

"best" MARS model was piecewise cubic and had Mmax set to 16. The final model 

consisted of 10 basis functions. 

Table 5.10 shows that the PNN performed significantly better for this exper­

iment. The data in the table were from a PNN with u set to 0.07. The PNN with 

the highest overall probability of detection had u set to 0.02. 

5.3.2.3 Experiment Ie This experiment put all non-crack flaws into one 

class and all cracks into another class. Parameter settings for both MARS and the 

PNN were set to favor the crack class. For the PNN, the ci output weight was set to 

2 for the crack class and 1 for the non-crack class. The highest overall probability of 

detection was achieved with u set to 0.02. Table 5.11 compares the PNN with u set 
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Table 5.10: MARS versus the PNN FFNN for ul­
trasonic classification experiment IB 

MARS PNN FFNN 
Correct Accept Crack (%) 94 94 
Correct Accept Lack of Fusion (%) 21 42 
Correct Accept Porosity (%) 11 17 
Correct Accept Slag (%) 09 31 
False Reject Crack (%) 54 47 
False Reject Lack of Fusion (%) 22 10 
False Reject Porosity (%) 11 06 
False Reject Slag (%) 06 10 

Table 5.11: MARS versus the PNN FFNN for ul­
trasonic classification experiment 1 C 

MARS PNN FFNN 
Correct Accept Crack (%) 70 79 
Correct Accept Non-crack (%) 70 79 
False Reject Crack (%) 30 21 
False Reject Non-crack (%) 30 21 

at 0.03 with the "best" MARS model (piecewise linear, Mmax = 27, and a final 

model consisting of 16 basis functions). The PNN showed a significant advantage in 

test set performance. 

5.3.2.4 Experiment 2A This experiment weighted all of the classes equally. 

For'the PNN, each output weight ci was set to 1. The "best" MARS model was 

piecewise linear and had Mmax s~t to 40. The final model consisted of 21 basis 

functions. 
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Table 5.12: MARS versus the PNN FFNN for ul­
trasonic classification experiment 2A 

MARS PNN FFNN 
Correct Accept Crack (%) 16 56 
Correct Accept Lack of Fusion (%) 45 55 
Correct Accept Porosity (%) 60 70 
Correct Accept Slag (%) 17 43 
False Reject Crack (%) 03 13 
False Reject Lack of Fusion (%) 26 07 
False Reject Porosity (%) 50 22 
False Reject Slag (%) 06 18 

Looking at Table 5.12 we see that the PNN performed much better for t.his 

-experiment. The data in the table were from a PNN with (j set to 0.05 (which was 

the PNN with the highest overall probability of detection). 

5.3.2.5 Experiment 2B This experiment weighted the crack class more 

heavily than the other thr~ classes. For the PNN, the output weight ci wa.s set 

to 4 for the crack class and 1 for the other classes. The "best" MARS model wa.s 

piecewise linear and had Mmax set to 19. The final model consisted of 14 basis 

functions. 

Table 5.13 shows that the PNN performed better for this experiment. The data 

in the table were from a PNN with (j set to 0.03. The PNN with the highest overall 

probability of detection had (j set to 0.02. 

5.3.2.6 Experiment 2C This experime~t put all non-crack flaws into one 

class and all cracks into another class. Parameter settings for both MARS and the 
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Table 5.13: MARS versus the PNN FFNN for ul­
trasonic classification experiment 2B 

MARS PNN FFNN 
Correct Accept Crack (%) 84 84 
Correct Accept Lack of Fusion (%) 32 50 
Correct Accept Porosity (%) 33 47 
Correct Accept Slag (%) 16 33 
False Reject Crack (%) 34 25 
False Reject Lack of Fusion (%) 27 09 
False Reject Porosity (%) 19 14 
False Reject Slag (%) 10 18 

Table 5.14: MARS versus the PNN FFNN for ul­
trasonic classification experiment 2C 

MARS PNN FFNN 
Correct Accept Crack (%) 88 75 
Correct Accept Non-crack (%) 79 78 
False Reject Crack (%) 21 22 
False Reject Non-crack (%) 12 25 

PNN were set to favor the crack class. For the PNN, the ci output weight was set to 
3 for the crack class and 1 for the non-crack class. The highest overall probability of 

detection was achieved with u set to 0.02. Table 5.14 compares this PNN (u = 0.02) 

with the "best" MARS model (piecewise linear, A1max = 21, and a final model 

consisting of 15 basis functions). Unlike all other experiments, MARS showed a 

significant advantage in test set performance. 
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5.3.2.7 Comments Again, it must be stressed that the results reported 

above were chosen for comparison purposes between MARS and PNNs. Quite of­

.ten, the overall "probability of detection was higher for different results, especially for 

the PNN. Assigning a range of output values to each class for MARS is a difficult 

problem. Experiment 2C shows that MARS can perform better than the PNN with 

appropriate settings for the output class ranges; however, in most cases the PNN was 

easier to use and gave superior results. 

5.4 Discussion 

For the most part, MARS and FFNNs were able to approximate the ahove 

mappings to about the same level of accuracy (as measured by performance on the 

" test sets). However, the greatest advantage of MARS over FFNNs is its fast training 

time. For example, we were able to run a full series of MARS tests (a Scan of the 

Mmax parameter) in the time it took to train one neural network for the 100 element 

synthetic eddy current training set. 

One must also recognize the inherent parallelism in FFNN computing. Although 

most neural nets are simulated on sequential computers today, the future of VLSI 

neural network chips promises real parallelism. Thus, neural nets may regain a 

speed advantage over MARS and other sequential algorithms. But wit.h the currently 

available neural network tools still operating sequentially, MARS is often a faster 

technique. Of course, one cannot rule out the future possibility of a parallel MARS 

implementation providing better run-times. 

The strong mathematical foundation of MARS gives it another edge over neural 

networks. Final MARS models may be analyzed for relative variable importance 
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along with a variety of other interesting information. Neural network models are 

much more difficult to analyze and comprehend. 

MARS also has the advantage of a fixed and predictable run-time. FFNNs 

(except the PNN) iterate through the training set until a certain condition is met. 

When this condition will actually occur is not predictable a priori. 

For experimental applications like QNDE, one must recognize the challenge and 

difficulty inherent in selecting features to use as input to the network. This concern 

was of paramount importance in both ultrasonic classification problems. If the wrong 

features are selected, then one feature may dominate the entire training process. \Vith 

MARS this is easily identified, but with neural networks, one may not be able to see 

this as easily. 

MARS could be used·as a general purpose classifi~r as shown above; h9wever, 

we believe sizing is a more appropriate use for the technique. Forcing MARS into the 

role of classifier is sometimes clumsy, but the results are often competitive. Assigning 

a range of output values to each class is not easy, especially as the number of classes 

grows large. 

As ·shown by' ultrasonic dassification problem two, the PNN FFNN is definitely 

a useful tool for classification. The results obtained for the submarine data were not 

of industrial qualitYi however, given the chosen features and 85% data classification 

accuracy, no method seems to perform significantly better. Improved feature selection 

techniques are necessary in order to more effectively analyze the data. 

Taking into consideration all the factors discussed a.bove including run-time, test 

set approximation accuracy, ease of use, and "interpretability,". we recommend MARS 

as a generally better method for the given mapping approximation problems. 
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6. SUMMARY AND DISCUSSION 

This thesis presented the MARS technique along with many feed-forward neural 

network paradigms. Experiments utilizing all the methods were presented and dis­

cussed. The purpose of this work was to analyze the applicability of these techniques 

for function approximation problems, especially in the application area of quantit.a­

tive nondestructive evaluation. 

In the introduction, various measurement criteria were proposed for comparing 

methods of building functi9n approximators. In .tne area of run time, MARS almost 

invariably performed better than FFNNs. Nowhere was this more evident than in the 

eddy current synthetic data experiment that used a 4000 element test set. FFNNs are 

by definition highly parallel; thus, the sequential simulations used today are not a fair 

measure of the speed of the paradigm. However, MARS seems to lend itself to parallel 

implementation as well. With the extreme disparity in run time between MARS and 

FFNNs shown in this thesis, it seems reasonable to predict that a parallel version of 

MARS (if not the sequential version) will still run faster than most backpropagation­

based FFNNs. This fact is the impetus for research into faster multilayer FFNN 

learning algorithms. With respect to ease of use, all methods seem to be about the 

same; however, MARS is more parameter insensitive than backpropagation and thus 

slightly easier to use. We found MARS and FFNNs to both be tolerant to noisy input 
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data; however, FFNNs always performed slightly better than MARS in the presence 

of noise. This statement is based mainly on the results of the ultrasonic classification 

problems in which a probabilistic FFNN is used. With respect to interpretability, 

MARS is unbeatable. The variety of analysis data that is inherent in the MARS 

approach gives it a firm mathematical basis for interpretation. FFNNs, on the other 

hand, still remain largely a black box when trying to understand their resulting 

models. Finally, most of our sizing experiments preferred MARS over FFNNs for test 

set approximation accuracy. This observation is most obvious in the 4000 element 

test set problem in the eddy current experiments. 

Overall, MARS performed "better" than FFNNs on most of the QNDE applica­

tions. However, this statement cannot be generalized to all applications. A necessary 

~rea of research entails characterizing the fe.atures of functions that may make them 

suitable for FFNNs or MARS. We also see many possibilities in attempting to join 

the best features of MARS with the best features of FFNNs. Exactly how this might 

be done is an interesting problem. 

Backpropagation-based FFNNs are one portion of the vast field of neural net­

working. A huge amount of work is being done on other neural network issues and 

paradigms not discussed in this thesis. This work includes other neural network 

paradigms [22, 26, 30, 35, 48], computational learning theory [60], the computability 

issues of neural networks [51], and dozens of other areas. 
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