
Impedance spectroscopy workstation for electrical characterization of

ionically conducting glasses

by

Hitendra K. Patel

A Thesis Submitted t.o t.he

Grad uate Faculty in Partial Fulfillment of the

Requirements for the Degree of

l\IASTER OF SCIENCE

Depart menlo:

Major:

l\Iaterial~ Science and Engineering
Ceramic Engineering

Signatures have been redacted for privacy Signatures have been redacted for privacy

Iowa State l}niversit.y

Ames, Iowa

1989

Copyright. (I) Hitendra K. Pat.el, l!JRt)' All right.s reserved.

11

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

CHAPTER 2. BACKGROUND

Impedance Spectroscopy

Impedance theory and impedance related functions

Impedance spectroscopy measurement.

Analysis of Impedance Spectra

Ideal lossy dielectric

Real lossy dielectric .

CHAPTER 3. IMPEDANCE WORKSTATION

Automation of Instrumentation

Instrumentation hardware

Automation Software

Data Analysis Software. .

General Description.

Mathematical Methods

User's Guide To Analysis Package .

CHAPTER 4. WORKSTATION PERFORMANCE.

1

3

3

3

10

12

13

1.5

20

21

22

43

52

53

58

.59

67

111

Impedance Measurements

Impedance limits of the Solartron 1260

Conductivity Cell Characterization

Temperature Control

Results for the FIC glass, sodium metaphosphate

CHAPTER 5. CONCLUSIONS

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

APPENDIX A. DEFINITIONS.

APPENDIX B. DIELECTRIC THEORY

APPENDIX C. MATHEMATICAL METHODS

Data Conversion

Least-Squares Algorithms

APPENDIX D. PASCAL SOURCE CODE

Is Wkstn.Pas

Data-Collection Code.

Data-Analyze Code.

Pascal Units

GetFiles.Pas .

Math.Pas ...

67

67

71

83

84

92

94

96

97

99

108

108

110

113

114

116

141

186

186

214

IV

LIST OF FIGURES

Figure 2.1: The electromagnetic spectrum

Figure 2.2: Typical voltages and current responses of material

Figure 2.3: Impedance plotted as a phasor

Figure 2.4: Transient measurement

Figure 2.5: Complex impedance plane plot of lossy material

4

5

6

10

14

Figure 2.6: Impedance spectra of a ionic conducting glass. . 16

Figure 2.7: Dispersi ve behavior of the relative dielectric constant 17

Figure 2.8: Thermally activated conductivity exhibiting Arrhenius behavior 19

Figure 3.1: Block diagram of impedance spectroscopy workstation 23

Figure 3.2: Parallel RC response of 100 MO resistor and 22 pF capacitor

using (top) Solartron and (bottom) HP4194A . 24

Figure 3.3: Principle of four terminal measurement 26

Figure 3.4: Set point temperature calibration of Eurotherm 810 using Tek-

tronix 50M20 D / A converter 28

Figure 3.5: Electrical connections of temperature controller. 29

Figure 3.6: Design of conductivity cell 32

Figure 3.7: Electrode and cable connections for the conductivity cell. 34

v

Figure 3.8: Furnace design , 37

Figure 3.9: Typical electrodes used in IS experiments - parallel plate ca-

pacitor .. 38

Figure 3.10: Calibration of Type-K thermocouple against Bureau of Stan-

dards Type-S thermocouple. 40

Figure 3.11: Calibration of Type-T thermocouple against Bureau of Stan-

dards Type-S thermocouple., 41

Figure 3.12: Setpoint temperature and actual temperature inside the con-

ductivity cell .. 42

Figure 3.13: Flow chart of software control of the impedance experiment 44

Figure 3.14: Impedance spectroscopy software - Menu 1 49

Figure 3.15:

Figure 3.16:

Figure 3.17:

Figure 3.18:

Figure 3.19:

Figure 3.20:

Data collection menu ...

Typical data analysis session

Data analysis: File Manager

Data analysis: Data Choice .

Data analysis: Graph Setting 1 .

Data analysis: Graph Setting 2 .

50

.54

60

61

63

65

Figure 4.1: Solartron 12601: upper impedance limit test, R = 100 MO 68

Figure 4.2: Solartron 12601: lower capacitance limit test, C = 1 pF . 69

Figure 4.3: Solartron 12601: lower capacitance limit test, C = 22 pF 70

Figure 4.4: Short circuit frequency response of the Solartron 12601 and

the conductivity cell. .. 72

VI

Figure 4.5: Capacitance measurements of 22 pF in the Solartron 12601

and in the conductivity cell . . . 73

Figure 4.6: Resistance measurement of a 10 S1 resistor in the Solartron

12601 and in the conductivity cell 75

Figure 4.7: Resistance measurements of a 100 S1 resistor in the Solartron

12601 and in the conductivity cell 76

Figure 4.8: Resistance measurements of a 10.2 kS1 resistor in the Solartron

12601 and in the conductivity cell 77

Figure 4.9: Resistance measurements of a 100 MS1 resistor in the Solartron

12601 and in the conductivity cell 78

Figure 4.10: Complex impedance measurements of a parallel 100 MS1 resis-

tor and a 22 pF capacitor in the conductivity cell 79

Figure 4.11: Dielectric measurement of high purity silica glass 81

Figure 4.12: Dielectric measurement of Teflon 82

Figure 4.13: Time-temperature history during a data-collection experiment 84

Figure 4.14: Approach to steady state temperature response of conductiv-

ity cell ramped from 60°C to 70°C. 85

Figure 4.15: Complex impedance plane plots at different temperatures for

NaP03 glass .. 86

Figure 4.16: Arrhenius plot of conductivity of NaP03 glass. The dashed

line is extended above Tg to show the limiting high conductivity 87

Figure 4.17: Isothermal frequency scans of O"(w) for NaP03 89

Vll

Figure 4.18: Frequency dependence of the real part of the relative dielectric

constant for N aP03 glass 90

Figure 4.19: Frequency dependence of the electrical modulus for NaP03

glass at 30°C. .. 91

Figure B.l: Charging and loss current for a capacitor 101

Figure B.2: Charge stored on capacitor with dielectric is increased by k'. 103

Figure B.3: Dielectric dispersion .. 107

1

CHAPTER 1. INTRODUCTION

Impedance spectroscopy (IS) is a powerful technique for characterizing many

electrical properties of materials and plays an important role in science and engineer­

ing. It involves a relatively simple electrical measurement whose results may often

be correlated with mass transport, dielectric properties, defects, microstructure and

compositional influences on the conductance of solids.

Historically, IS developed from Cole-Cole plots [1, 2, 3, 4], i.e., graphs of E' and

/' for dielectric systems in the complex plane, which were first plotted as early as

1941 by Cole and Cole [.5]. Impedance spectroscopy today, however, uses some or all

of the four related functions: impedance (Z), admittance (Y), modulus (M) and the

dielectric permittivity (E). Bound or mobile charges in ionic, mixed electronic-ionic,

semiconductor and insulator materials have been investigated using IS [1, 2, 4, 6]. IS

has been especially powerful in determining the conductance and dielectric properties

of glasses [4, 6, 7, 8].

Isothermal electrical measurements made at different temperatures have been

used successfully to determine thermally activated ionic conductivities. Activation

energies for de conduction due to ionic motion in glass have been determined for

many years by this technique [6, 7, 8, 9, 10].

While the theory of IS is well established, its growth has been slowed by the lack

2

of convenient, fast and automated instrumentation. A single instrument capable of

frequency and temperature scanning, data collection and data storage is not commer­

ciallyavailable. Factors which contribute to this are that the sample holder (cell) is

user, frequency and material specific; many samples are atmospheric sensitive and the

need for strict environment control is an added concern; and finally, analysis software

for easy conversion of raw data into meaningful results is often limited in capability.

Commercial instruments are, however, available which can automatically mea­

sure the impedance as a function of frequency over wide ranges, and these are easily

interfaced to personal computers (PCs). Temperature controllers with high stability

and computer interfaceability are also available commercially. The furnace for the

temperature controller may be easily built or bought. Sample holders, however, have

to be designed by the user to meet specific requirements such as size, ease of handling,

temperature, frequency range and environment.

The goal of this project is to set up an automated impedance spectroscopy work­

station. It must be accurate, precise, fast, convenient to use, and be able to generate

reproducible results. Once experimental conditions are established by the operator,

the workstation must be able to automatically control the entire experiment. Analyses

of data using both numerical and graphical methods should be available to enhance

data interpretation.

3

CHAPTER 2. BACKGROUND

The purpose of this chapter is to give a background for the application of imped­

ance spectroscopy as a tool for materials characterization. A discussion of ionically

conducting glass is included because the final application of this technique will be the

electrical characterization of fast ion conducting glasses.

Impedance Spectroscopy

The IS section is broken into three parts. Impedance theory, definitions and

derivations of impedance-related functions are presented first. This is followed by a

description of the basic IS experiment. Finally, an elementary analysis of impedance

spectra is given to show the types of information that can be obtained from the

spectra.

Impedance theory and impedance related functions

The concept of electrical resistance was introduced by G. Ohm (1787- 1854) who

observed a constant of proportionality between the applied de voltage and measured

current, and this relationship is known today as Ohm's Law in [11]. In 1883, O.

Heaviside in [12] was the first to develop the concept of electrical impedance, and

this was further mathematically developed into vector and complex notation by A. E.

4

Frequency, Hz

.
. . . . : : ~.~.~~.~. : ~ YY:t: ~~f~~r.~~: ~ ... ~~ ... ~ .. ~~~~d.a~~~ ..
: ~ .r~y~ : Visible : ~I.i~r?~~~e: : ~~~i?:

Figure 2.1: The electromagnetic spectrum

Kennelly and C. P. Steinmetz in [12]. Electrical impedance is a fundamental concept

in electrical engineering and materials scientists have extended it and the branch of

electrical measurements into IS.

The impedance of a material is defined as the ratio of the voltage to the current

and is in general a complex quantity. Impedance, as used in the name impedance

spectroscopy describes, both the technique of measurement and the frequency or

energy range of the technique. The frequency spectrum for IS typically extends from

approximately 1 Hz to 1 MHz and this is shown in Figure 2.1.

The input signal The input stimulus is a monochromatic voltage given by

v(t) = V"msin(wt + B) and has an amplitude Vm , an angular frequency wand phase

shift e [13]. When this voltage is applied to a material, a sinusoidal current with the

same frequency but a different amplitude and phase shift is observed (see Figure 2.2).

These sinusoidal signals are transformed to phasors (see next part) and the ratio of

the voltage phasor and the current phasor is defined as the impedance.

.)

VOLTAGE/CURRENT RESPONSE

.- I np u t Vol t a & e

+ Out put Curre nt

Phase Shift

Time

Figure 2.2: Typical voltages and current responses of material

Phasor A phasor is a complex number that carries the amplitude and phase

angle information of a sinusoidal function. Euler's identity relates the complex expo-

nential function to the sinusoidal function and is given below [14]:

e±jfJ = cosO ± jsinB (2.1)

where j == J=I. This complex exponential may be represented by one of the three

equivalent notations for phasors:

polar form F'" =1 F I io

rectangular form

exponential form

6

v* =1 F I cose ± j I F i sine

v* =1"1 e±je.

All phasors will be represented with the symbol" * " and are not to be confused

with the complex conjugat.e. The amplitude of a sinusoidal signal is defined as the

magnitude and will appear between two parallel bars. In rectangular (cartesian)

coordinates, a phasor Z"" may be represented by

z* = Z, + jZ". (2.2)

This is graphically shown in Figure 2.3 where both the rectangular and polar form are

represented. Complex computations with phasors are greatly simplified by adding

Z"

Yaxis
Im(Z)

X axis

Z, Re(Z)

Figure 2.3: Impedance plotted as a phasor

and subtracting in the cartesian form and multiplying and dividing in the polar form.

The process for addition in cartesian form is to simply sum the real parts to get the

,real component and to sum the imaginary parts to yield the imaginary component.

7

Multiplying two phasors in the polar form simply requires multiplying the magnitudes

of the two components to get the resultant magnitude and summing the phases to get

the resultant phase. Division requires dividing the magnitudes and subtracting the

phases. The reader is referred to other references for a complete description [13, 14J.

Impedance The impedance has been defined as the ratio of the voltage phasor

to the current phasor at a particular frequency. It is represented by the letter Z* and

has the units of ohms (0). Impedance can be written as:

Z*(w) = Z'(w) - jZ"(w) (2.3)

where the real part of the impedance Z' is the resistive component R and the imagi­

nary part Z" is the reactive component X. The real part is a measure of the energy

dissipated in a material and the reactive part is the energy stored by the material

during the application of the sinusoidal voltage. The reactive component has a neg-

ative sign because IS measurements usually involve capacitive and rarely inductive

elements. To analyze the impedance, it is customary to plot the impedance in the Z'

versus -Z" plane.

Admittance The admittance y* is the ratio of the current phasor to the

voltage phasor and is, therefore, the reciprocal of the impedance. It is measured in

siemens and is commonly expressed as mhos (U). The real component of admittance

is called the conductance (G) and the imaginary component is called the susceptance

(B). The reciprocal of the impedance is a complex operation and is given by:

} '* = _1 ___ Z' + jZ" G "B
- Z* I Z 12 == T + J (2.4)

8

Dielectric permittivity The dielectric permittivity E* describes the mate-

rial's ability to store electrical energy. The dielectric permittivity is given by

* k* (k' 'kIf) E = EO = EO - J (2.5)

where Eo is the dielectric permittivity of free space and has units of F 1m and k* is

the relative dielectric permittivity and is a ratio of the dielectric permittivity of the

material to the dielectric permittivity of vacuum. k' is called the relative dielectric

constant and determines the polarizability of a material. kIf is defined as the relative

loss factor and describes the ohmic losses in a material. A material is said to be a

good conductor if kIf » k' and a good insulator if kIf <t: k'. The ratio of kif to

k' is called the loss tangent or dissipation factor, tan 8. The inverse of the dissi pa-

tion factor is called the quality factor Q and is a frequently used design parameter

during the manufacture of electronic devices and circuits. Good insulators usually

have dissipation factors less than 0.001 and relative dielectric constants less than 30.

Materials used in capacitors are called dielectrics and have a k' greater than 30 and

a dissipation factor less then 0.001. Appendix B shows that the relative dielectric

permittivity and the impedance are related by the equation shown below.

* ,ko
k = -) Z*'

EOW
(2.6)

where ko is the cell constant of the material and is the ratio of the distance d between

the parallel plates of the capacitor to the surface area A perpendicular to the electric

field.

9

Electrical modulus The electrical modulus IS the inverse of the dielectric

permittivity E*, has units of m/F and is given by

Af* = ~ = jEowZ*
E'" ko

(2.7)

This form of data presentation for conducting materials was introduced by Macedo

et al. [3] and popularized by Hodge et al. [2] for the reason that it emphasizes bulk

property at the expense of interfacial polarization.

Conductivity Conductivity has units of U/cm and is a measure of the current

through a material. It is derived from the admittance by accounting for the effect of

the cell constant ko:

* * ko
(J' = koA =-.

Z*
(2.8)

Resistivity The resistivity p* is the inverse of the conductivity and has units

ncm. It can be calculated from the impedance and the cell constant as shown:

* 1 Z* R .X
P =-=-=-+)-

(J'* ko ko ko
(2.9)

The resistivity listed in most handbooks of physical properties is the zero frequency

limit of the real part of the resistivity. The imaginary part of the resistivity for

nonmagnetic materials is a measure of the material's capacitive properties.

As shown above, all of the related functions can be derived from the impedance.

Interpretation of a particular property for a particular type of material, however, may

be facilitated by choosing one of the related impedance functions.

10

Impedance spectroscopy measurement

The general approach in IS is (~~y a known volt~or current to a material

and measure the resulting QlUent or v~age. Three different types of electrical stimuli

are used in IS and these are summarized here [12].

In transient measurements, a fixed voltage of magnitude Vo is applied to a ma-

terial and the resulting current is recorded as a function of time i(t) (see Figure 2.4).

The ratio vo/i(t) is then Fourier transformed from the time domain to the frequency

domain to get the frequency dependent impedance. The disadvantages of this process

include (1) the need to Fourier analyze the results, (2) t he data acquisition rate has

to be greater than the inverse of the relaxation time for the various processes within

the material, (3) the frequency spectrum is not directly controlled and (4) electrode

to sample contact problems may occur due to blocking electrodes.

~ I t=O Sample

L A I-~:==:::J

i(t)

t=O Time

Figure 2.4: Transient measurement

Another technique in IS is to take the ratio of an applied random (white) noise

voltage signal v(t) to the resulting current. The ratio is then Fourier transformed to

the frequency domain to yield the impedance. The Fourier transformation of random

11

signals is cumbersome and computationally difficult. Though this is a relatively

straight forward experiment, it is hampered also by the problems mentioned above

for the transient measurements.

The approach used by most impedance spectroscopists today is to measure the

impedance directly in the frequency domain. A constant amplitude sinusoidal voltage

is applied at one frequency and the phase shift and the amplitude of the current is

measured at that frequency. The ratio of the voltage phasor to the current phasor

is the frequency dependent impedance. Today, impedance analyzers using micropro­

cessors provide a comprehensive range of impedance and frequency response measur­

ing capabilities. Instruments are commercially available with frequency ranges from

10 IlHz to 40 MHz with a resolution up to fifty thousand measurements over the

range. Computer automation of these instruments is made possible through parallel

and serial communication ports. In general, the advantages of these instruments are

their wide impedance range, their choice of many different measurement modes, their

ease of use and their wide frequency range.

The characterization procedure of a material using IS is to fit the experimental

data to an equivalent circuit using ideal lumped circuit elements. The choice of a

circuit, however, is not unique, because an infinite number of different circuits all

having the same impedance response can be used to fit the experimental data. A

plausible physical model from theory or practice is therefore used to determined the

best equivalent circuit for the material. The experimental data are curve fitted to the

circuit, and the values for circuit elements are calculated using either linear regression,

complex linear or nonlinear least-squares fitting. The frequency response of the ideal

12

circuit is calculated and compared to the experimental data. The magnitudes of the

various circuit elements are adjusted until either a good match to the experimental

data is found or the circuit is abandoned for another in which a better fit can be

achieved. One major disadvantage of this technique is that the processes contributing

to the impedance within a material are distributed over space and their microscopic

properties may be also distributed. The sum of each process therefore may not be

described by a lump circuit element. In such cases, the experimental data may be

approximated to an equivalent circuit where a resistor implies a conductive path for a

species and a capacitor implies polarization of some species. A system is characterized

once an equivalent circuit is found which is able to predict the impedance of a material,

especially under different physical conditions.

Analysis of Impedance Spectra

According to dielectric theory, IS measures two fundamental electrical character­

istics of a material - the relative dielectric constant and the real conductance. The

relative dielectric constant measures the polarization or capacitive properties and the

conductance measures the resistive properties of a material. To illustrate this, a treat­

ment of an ideal lossy dielectric material exhibiting a single relaxation phenomenon

is presented first. This is then followed by the treatment of a real lossy dielectric, the

example used being that of a fast ion conducting (FIe) glass.

13

Ideal lossy dielectric

In a lossy material, both conduction and polarization of species occur, and these

cause ohmic loss and energy storage, respectively. A material having these properties

can be represented by a parallel resistor-capacitor (RC) circuit where the ohmic losses

are due to a single component resistor and the polarization is due to a capacitor. The

impedance of a such a circuit is given by

z* _ R . wR2C
- 1 + (wRC)2 - J 1 + (wRC)2

(2.10)

The relaxation time T for this circuit is the product of the resistance and the capac-

itance, T = RC; the relaxation frequency is the inverse of the relaxation time. At

frequencies less than the relaxation frequency, the impedance of the capacitor (1/ wC)

is large, therefore the current passes mainly through the resistor. At frequencies

greater than the relaxation frequency, the impedance of the capacitor becomes small

and the current passes mainly through the capacitor. The frequency at which the

impedance of the capacitor and the resistor are equal is just the relaxation frequency.

The complete relaxation phenomena will only be observed in an experiment if the

frequency range of the experiment spans frequencies both lower and higher than the

relaxation frequency.

The complex plane plot of impedance for a typical RC circuit is given in Figure 2.5

which appears as a semicircle with diameter R and center located at (R/2,0) in the

x-y plane. The frequency is a parameter in this plot and increases in the direction of

the arrow, from the right side of the plot to the left. The magnitude of the resistance

of the resistor may be determined by the intersection of the impedance arc at the

low frequency (right) side of the semicircle with the x axis. As frequency increases,

14

COMPLEX IMPEDANCE
Ideal Lossy Material

12

+-+-+ Lossy Material

Curve Fit
LIl

9 0
-'
x 1 C,

('.)R, - C, 22 pF c: 6 --- 10kHz
,.......,

* ~
L...-I e 3 f, = 7234 Hz -I

o~~~~~~~~~~~~~~~~~

o 3 6 9 R, 12

4&

Re[Z]

Figure 2.5: Complex impedance plane plot of lossy material

the magnitude of the imaginary impedance goes through a maximum value at the

relaxation frequency. Once the relaxation frequency and the resistance are known,

the capacitance can be determined using the relaxation frequency equation

C=_1.
wR (2.11)

At high frequencies, both the real and imaginary part of the impedance go to zero.

For ideal lossy materials, the resistance and capacitance are easily determined from

1.5

the impedance plot. The value for the conductivity and relative dielectric constant can

be calculated, if the cell constant ko is known, from Equation 2.8 and Equation 2.6,

respectively.

Real lossy dielectric

Solid electrolytes fall into the class of lossy dielectrics. The relative dielectric

constant for most electrolytes lies between 5 and 30 [15]. The resistive contribution

arises from the thermally activated jumping of ions over potential energy barriers

in the solid electrolyte. The first approximation for an equivalent circuit for a solid

electrolyte is, therefore, a parallel RC circuit.

A complex impedance plot for a typical glassy solid electrolyte, silver phosphate

(AgP03), where silver is the mobile ion, is presented to characterize the behavior of

lossy dielectric materials (see Figure 2.6). There are two typical features which are

observed in impedance plane plots for glassy solid electrolytes. (1) The center of the

circle is usually below the x axis (arcs of this type are called depressed semicircles

and arise because the conductivity relaxation occurs from mobile ions which are

distributed throughout the material in unequal chemical sites); and (2) because of

the presence of other relaxations such as grain boundaries, contact polarization and

surface adlayers, additional or even overlapping arcs may occur in the complex plane.

The center of the semicircle for the AgP03 glass is, as is expected below the

x axis. A least-square fit routine for the equation of a circle is used to locate the

center and calculate the resistance of the glass. The capacitance is dispersive due

to relaxation of each mobile ion at a different frequency. The solid line semicircle in

Ln
o -­X

---c: ---
r--t

* N
~

S -I

16

COMPLEX IMPEDANCE
Spectra of Ionic Conducting Glass

8 ~------------------------------------~

I AgP0
3

6 ----- RC curve fit

4 10kHz

2

o
+ R,

Center of data arc
-2~~~~~~~~~-L~~~~~~-L~

-2 o 2 4 6 8

lie

Re[Z]

Figure 2.6: Impedance spectra of a ionic conducting glass

Figure 2.6 is the curve fit of the data if the capacitance is determined using the parallel

RC model - the difference between the ideal behavior and the glass is dramatic.

The relative dielectric constant is a function of frequency, temperature and po-

larizability of the glass (see Appendix B). At high temperature and low frequencies,

where the mobile ions in the glass are capable of contributing to the polarizability

of the glass, the relative dielectric constant reaches quite large values. As the tem­

perature is lowered, the thermally activated conduction of the mobile ions drops off

17

dramatically, their contribution to the polarization decreases. and the relative dielec-

tric constant decreases. At highest frequency and lowest temperature, the mobile ion

contribution to the relative dielectric constant has been effectively frozen out, and all

that remains is the contribution from the instantaneous atomic polarization of ions

in the glass. This is the relative dielectric constant usually reported for glasses. Plots

of the relative dielectric constant at different temperatures therefore should all level

off to the same value at high frequencies (see Figure 2.7).

Relative Dielectric Constant
Dielectric dispersion in a fast ion conducting glass

10

+-+-+ 30·C
x·*~ 50·C

8
~

I3-D-El 70·C
G-ee 90·C

\
~ 110·C ,

\ C)
6 :&-!f x 130·C ,

x
~

....... 150·C
~ ~. 170·C

\ \
,........,
~ 4
~

CD
~

2

OL--L~LU~L-~~~~~~~~~~~~~~

102 103 10
4

Frequency (Hz)

Figure 2.7: Dispersive behavior of the relative dielectric constant

18

The activation energy for dc conductivity for glass is determined by plotting

the dc conductivity measured at different temperatures versus the inverse of the

temperature. The data are displayed in this manner because the conductivity has an

Arrhenius dependence on temperature

(2.12)

where ero is the limiting conductivity, Ea is the activation energy, k is the Boltzman

constant and T is the temperature. An Arrhenius plot for the AgP03 glass is shown

in Figure 2.8, where the activation energy has been determined from the slope of the

least-squares fit line and the limit.ing conductivity from the y intercept of the line.

The above discussion for characterizing the electrical properties of glass using IS

describes the major capabilities of the technique, but it is, however, far from complete.

For a more complete discussion of different techniques for analyzing impedance spectra

data, the reader is referred to the book by MacDonald [12]. Much mathematical

modeling of dispersive behavior using models such as Debye and Williams-Watts

functions and Dyre's uniform distribution law have been studied [4, 12, 16, 17].

The purpose of this chapter was to provide the reader with a background to

understand and appreciate impedance spectroscopy measurements and to show the

motivation for the construction of an IS workstation.

.....
I -a

o
c: --b -CU
c=4

19

ARRHENIUS BEHAVIOR OF a de
AgPo

3
Glass

10-4c-------------------------------------~

+ + + Raw data
Curve fit

+

u = u.exp(-E /kT)
a

u = 130exp(O.532eV /kT)

-~I k E-E---~~

-6~ __ ~ __ ~ ____ ~ __ ~ ____ L_ __ ~ __ ~L_ __ ~

10 24 26 28 30 32

Figure 2.8: Thermally activated conductivity exhibiting Arrhenius behavior

20

CHAPTER 3. IMPEDANCE WORKSTATION

Automated multifrequency instrumentation for impedance spectroscopy was re­

ported as early as 1955 by Weingarten [18]. Since then, systems based on frequency

or network analyzers for impedance measurements have been reported by Morse in

1974 [19], and later by Klein and Ploof [20], Engstrom and Wang [21], Staudt and

Schon [22], and Boukamp [23]. Much of the work reported there emphasized new in­

strumentation and techniques in measuring impedance. Today this problem has been

largely overcome with the availability of conventional wide frequency and imped­

ance range impedance analyzers from companies such as DuPont, Hewlett-Packard,

Schlumberger Technologies and Tektronix. Microcomputers are now much faster,

more versatile and have higher data storage capabilities compared to those used in

the past. Interfacing between instruments has been simplified through standardized

serial and/ or parallel communication ports. High level computer languages and com­

mercially available software are also now available that have greatly simplified the

software programming of the computer interfaced instrumentation. With these ad­

vantages in mind, it is anticipated that the workstation described in this thesis will

have substantially more power and capability than impedance spectroscopy worksta­

tions reported in the past and presently available.

In this chapter, an impedance spectroscopy workstation for studying fast IOn

21

conducting glasses is described. The workstation is designed and built to achieve the

following performance criteria: (1) it must have a frequency range of at least 1 Hz

to 1 MHz, (2) a temperature range of at least 100 K to 600 K, (3) the sample under

study must be protected from mechanical abuse and environmental contamination

and reaction during measurement, (4) the software must be able to operate the

complete experiment unattended once the experimental conditions are set, (.5) after

measurements are made, the data must be stored in a systematic manner for later

identification and retrieval, (6) the software must be user-friendly during experiment

setup and data analysis, (7) the data analysis software must provide high level

plotting and analysis functions and (8) data output after analysis to a data file,

plotter or printer must be available.

Automation of Instrumentation

The automation of the workstation can be divided into the assembling and pro­

gramming of the equipment. The assembling includes the selection of instrumen­

tation, the design of the conductivity cell and the furnace, and the calibration of

temperature controller and thermocouples. The programming encompasses the de­

velopment of a user friendly interface for configuring the instruments, setting up the

experimental conditions, controlling the entire IS experiment, and storing the imped­

ance data.

22

Instrumentation hardware

The design for the impedance workstation is based on the automated impedance

measuring system reported by S. Martin [6]. The designs of other reported imped­

ance workstations do vary [19, 20, 21, 22, 23], but, the general concept of the setup is

similar. A block diagram of the impedance measuring facility is shown in Figure 3.1.

To meet the objectives of both ease of programming and flexibility in the system, the

general purpose interface bus (G PIB) which conforms to the IEEE 488-1978 standard

is used to link the instruments. Each component in the block diagram was commer­

cially bought except for the conductivity cell and the furnace. A general description

of each instrument and their capabilities is given next. A complete explanation of

the design, materials and implementation of the conductivity cell and the furnace is

emphasized.

Impedance analyzer The quality of the impedance analyzer determines the

quality of the measured data in an IS experiment. The Solartron 1260 Impedance

Gain-Phase Analyzer made by Schlumberger Technologies was selected after a very

thorough evaluation of other commercial products. The Hewlett-Packard 4192A was

the most easy to use but was not selected due to the wider frequency capability

1011Hz to 32 MHz compared to 100 Hz to 1.5 MHz and measurement resolution of

fifty thousand points of the Solartron. The HP4192A had a similar impedance range

(10 mn to 100 1\H1) and was much faster and just as accurate and precise during

measurements as the Solartron 1260. The wide frequency range of the Solartron 1260

compared to the HP4194A is dramatically shown in Figure 3.2 where the real and

23

HP7475A Epson l\IX
Plotter Zenith 248 Printer

Controller

RS232 c::=::J Centronics
I I

IEEE-488 GPIB

Solartron 1260 Tektronix M.jOl\I20 HP3478A l\Iultimeter
I~edance analyzer

--l-- I-L V _ 1_
D / A Converter AID Converter

Eurotherm 810 Kaye 1.50
Temperature Ice Point Unit

Controller

Type-T Type-K

TIC TIC

Sample
.. - - -- - -------- v---I-----: I

I

I

I

I IXXXXXl I

I I

I I

I I

I I

r I I

I I

I

I I

I I

I I

I

~-----------------------------~
Furnace

Figure 3.1: Block diagram of impedance spectroscopy workstation

"'­e
)(

-c::,

"'­e
)(

-c::,

24

Extreme Glass Behavior: Rp - 100Wl and Cp - 22pF

I I I Real

12 x·· ·x···x Imaginary

9

Ii

3

o~~~wu~--~~~uu--~~~~~~~~~

100

12

9

Ii

3

101 102

Frequency
103

(Hz)

I I I Real
x .. ·X" -DC Imaginary

<- Low frequency cutoff

In BP4194.A

'x,
• x, Only rlsht side of

x"x~uon observed.
·x.

'x
"x

• ')C.
'x

• ')C""
,...~.

')C.?C •• ~ •

oL-----~~~~~~~~~~~~~~

102 10
3

104

Frequency (Hz)

10

8

6

4

2

o

10

B

6

4

2

o

-o,

)(....
e,

-o,

x
e,

Figure 3.2: Parallel RC response of 100Mn resistor and 22pF capacitor using (top)
Solartron and (bottom) HP4194A

25

imaginary parts of the impedance of a parallel RC circuit with a resistance of 100 MSl

and a capacitance of 20 pF are shown. The entire relaxation spectrum of this circuit is

visible using the Solartron 1260, whereas only the high frequency side of the spectrum

is seen using the HP4194A. Since the above circuit elements represent the extreme of

behavior that is expected for the glasses to be studied with this workstation, this test

is viewed as the most critical test of an instrument's suitability for our measurements.

The Solartron is assigned to address 28 on the GPIB and is configured to both

talk and listen to the computer. A complete list of commands is available to set up

the Solartron and these commands can be easily sent through the GPIB from the

controller. The list of commands for remote and local control, as well as a complete

description of the analyzer's capabilities, can be found in the Solartron user's manual1.

The instrument uses four terminals to measure the impedance; a schematic setup

of the technique is shown in Figure 3.3, where two terminals are used to apply a

voltage to the material under test and the other two terminals are used to measure

the current passing through the sample. All lead connections in the four terminal

configuration are made using shielded coaxial cables.

The four terminal configuration is used because the current measured through

the sample is due to the voltage drop across the sample only and not the combina-

tion of the sample and the current leads as in two terminal measurements. At high

frequencies, the outer shield conductor works as a return path for the measurement

signal current. The same current therefore flows through both the inner conductor

and the outer shield conductor, cancelling the magnetic field produced by the two op­

lSolartron 1260 Impedance and Gain-Phase Analyzer Operating Manual, 1987.
Schlumberger Technologies, Farnborough, Hampshire, England.

1+

v+

26

Sample

v-
V 1------'

Voltmeter

Figure 3.3: Principle of four terminal measurement

posite currents. Bec"ause minimal magnetic fields are developed) the test leads don)t

contribute additional measurement errors due to self or mutual inductance between

the individual leads. The four terminal configuration, therefore, has a significant

measuring advantage in the high frequency region by minimizing stray capacitance

and residual inductance in the leads.

A limitation of this instrument is that a current must be measured for a imped­

ance to be determined. At low frequencies, for example, the impedance of capacitors

is so large that for a one volt signal applied at 100 Hz for a 2 pF capacitor, a current

less than 2 nA is generated) which is below the instrument measuring limits.

The conductivity cell is connected to the impedance analyzer as shown in Fig­

ure 3.3 using shielded coaxial cables. Each cable is reserved for one of the four termi­

nals and its length when added to the connecting wire in the cell sums to one meter.

Uniformity of length will cause the same phase shift in the applied and measured sig­

nal at the point of measurement. The Solartron has a built in feature for calibrating

a sample holder for line resistance and inductance and parasitic capacitance and then

nulling for their effect during measurement.

27

Controller The controller for the workstation is an IBM compatible Zenith-

248 PC AT running the Microsoft MS-DOS operating system. It has a forty megabyte

hard drive, a 1.4 megabyte 3.5" floppy disk drive and a 320KByte floppy disk drive for

data storage. The computer is connected to a Hewlett-Packard 7475A plotter through

an asynchronous RS-232C compatible serial port and to an Epson MX printer through

a parallel Centronics compatible port. GPIB capability is nonstandard to most IBM

compatible PCs, and for this system is provided by a commercially available GPIB-

10 card and software. The card is inserted in one of the expansion slots and is

immediately ready to use with most high level computer languages. The digital to

analog (D I A) and analog to digital (AID) converters and the impedance bridge are

all connected in parallel through the GPIB port to the computer.

Temperature Controller The Eurotherm 810 temperature controller is a

microprocessor-based instrument with a temperature range of ±250oC. The tem-

perature is set through a programmable analog dc input voltage in the range of 0 to

5 volts. The relationship between the applied dc voltage Vapplied and the set point

temperature T set is given by

Tset = 100Vapplied - 2.50
0 C. (3.1)

Since an applied voltage is used to set the temperature controller, the following rela-

tion is gi ven

Vapplied = Ts~~, + 2.5Volts.
100 '

(3.2)

The temperature controller has a resolution of one degree, and to take advan-

tage of this capability, the dc voltage source must have a resolution of 10 m V. The

28

Tektronix 50M20 Programmable Digital-to-Analog (D/ A) Converter Card has a res-

olution of .Jm V and an accuracy of ±10 m V and is used as the dc analog voltage

source. The D / A converter and temperature controller were calibrated by com par-

ing the applied voltage, incremented in steps of 10m V, and recording the setpoint

temperature displayed on the temperature controller. The results are shown in Fig-

ure 3.4 and show that the D / A converter is indeed accurate and is in agreement with

Equation 3.2.

Eurotherrn 810 Setpoint Calibration

25~------------------------~--------~

-o -x

(1)
$04

20

.8 15 as
$04
(1)

Q.

8 10
(1)

E-t

5

T = 100V Ii d + 250·C set app e

o~~wu~wu~wu~uu~~~uu~~~uu~~~

25 30 35 40 45 50

Applied Voltage ()(10 -1)

Figure 3.4: Set point temperature calibration of Eurotherm 810 usmg Tektronix
.50M20 D / A converter

Eurotherm
810 R

29

Furnace

Load l120V
Power IV

Figure 3 .. 5: Electrical connections of temperature controller

The temperature of the furnace is measured with a Type-T thermocouple con-

nected to the temperature controller through an internal electronic ice-point allowing

the controller to calculate the temperature. The temperature is digitally displayed at

all times and the setpoint can be viewed by pressing panel buttons. The calibration

of the Type-T thermocouple was done at the same time as the Type-K thermocouple,

and this is discussed in a separate section.

The temperature controller has an internal silicon controlled rectifier (SCR)

which is used to control the on and off cycles of the furnace. An Omega solid state

relay (SSR) is connected to the output of the triac to extend the temperature con-

troller's current switching capabilities and adds a zero voltage switching and solid

30

state reliability. The schematic of the connections of the SSR and SCR is displayed

in Figure 3.5. The resistor R in Figure 3.5 serves two purposes during the on and off

cycles of the SSR. During the on stage of the controller, the resistor offers a minimum

load to the controllers triac to insure positive firing. During the off stage, the resis-

tor supplies a low impedance path for the controller's leakage current. The electrical

wiring of the furnace heater is given in the furnace section and is not discussed further

here.

The temperature controller has three term control - proportional, integral and

derivative (PID). The three parameters are proportional band, integral time constant

and derivative time constant and can be set to give optimum control and steady

state conditions in the furnace. Fine tuning of these parameters is described in the

instruction manua12 and allows as rapidly as possible the attainment of steady state

conditions and optimal control at the set point.

D / A Converter The Tektronix .50M20 Digital to Analog (D / A) Converter

Function Card is linked to the computer with the CPIB interface through the Tek-

tronix MI5010 Multifunction Interface System. The address for the MI5010 is 23

and the D / A converter in placed in slot 2. Only two programming instructions are

needed to operate the D / A converter - one to select the device and the other to set

the voltage. The device is selected through the CPIB by first choosing address 23 and

then sending the command "SEL 2" to choose the card in slot 2. The D / A converter

is prompted to output a voltage with the string "VOLT #" where # means a number

2Eurotherm 810 Temperature Controller - Instruction Manual, 1986. Eurotherm
Corporation, 11485 Sunset Hills Road, Reston, VA 22090.

31

between -10.24 and 10.23.5, the output range of the converter. The output voltage is

then input to the temperature controller by the converter. Both the Tektronix units

and the GPIB act as an interface for the computer to the temperature controller.

Multimeter A Hewlett-Packard 3478A multimeter is used as an analog to

digital voltage converter. Temperature measurement within the conductivity cell is

made with a Type-K thermocouple connected to an electronic ice point unit with the

Seeback voltage generated being measured by the digital multimeter. The measured

value is read by the computer through the GPIB interface at address 15 and converted

to a temperature using a quartic equation (see thermocouple section).

Conductivity cell The design of a conductivity cell as mentioned above is

sample and user specific. For the purpose of this project, fast ion conducting chalco­

genide glasses will be studied using this workstation. Chalcogenide glasses decompose

rapidly in air and as such are stable only in an inert gas environments. Loading the

conductivity cell with the glass sample has to be done in a glove box after which it

is transported to the impedance workstation. The conductivity cell has to accommo­

date these needs, as well as allow impedance measurements to be made with accuracy

and precision.

The cell is designed to be (1) hermetically sealed in order to protect the glass from

decomposition, (2) small enough to pass through the glovebox exchange chamber,

(3) easy to handle and manipulate during operations in the glovebox, (4) able to

heat up or cool down rapidly, (5) able to withstand the temperature range of ±250oC

and (6) electrically noise free so as to not affect impedance measurements, especially

32

at high frequencies, because of lead resistance, inductance. and parasitic capacitance.

Lid Thermocouple

Signal
Leads

See next figure
for detail of
electrodes

Sample

C:=:::J

C:=:::J

C:=:::J

c::=:l

c::=:l

c::=:l

C:=:::J

c::=:l

I ,
I

I

Container

4"

BNC
/' Connectors

Viton
O-Ring

To} C:=:::J
She f

C:=:::J

c::=:l Side
c::=:l Support

Fins
c::=:l

c::=:l
Bottom
Shelf

c::=:l

Figure 3.6: Design of conductivity cell

The discussion of the design of the cell is broken down into two parts. The

physical dimensions of the cell are discussed first, followed by the electrical wiring of

the cell.

The temperature range of operation of the cell is limited by the Eurotherm Tem-

33

perature Controller to ±250oC. The cell was, however, designed for an upper range of

500°C. Brass is an appropriate material to use as it can withstand this temperature

and also has a high thermal conductivity. A compact design was important, because

a small cell is easy to heat and thermally control, and small lead lengths decrease

measurement errors prevalent at high frequencies. The cell design was optimized

to ensure maximum heating rates and yet provide thermal protection for the BNC

connectors.

The support for the electrodes is made up of two brass plates (shelves) which are

attached to two vertical parallel plates (side supports) and is shown in Figure 3.6.

The side supports are attached with screws to the bottom side of a brass circular disk

(lid), through which are made electrical BNC and thermocouple connections. This

sample holder then fits into a brass cylindrical container. A Viton O-ring between the

sample holder and the cylindrical container is used to form a hermetic seal. Hermetic

BNC panel connectors with the O-rings replaced with Viton O-rings are attached on

the top side of the lid to provide hermetic electrical connections to the inside of the

cell. An Omega Type-K thermocouple with an exposed bead in an stainless steel

sheath is fed through a compression fitting on the lid to provide a hermetic seal. The

temperature sensor of the thermocouple is placed 2.5 mm away from the glass sample.

A gas valve is attached to the upper section of the container for gas exchange. Parallel

brass plates which act as fins are inserted in the lower half of the cell to increase the

thermal conduction to the sample and to reduce convection currents from setting up

within the cell.

Viton O-rings are used because they can withstand temperatures up to 230°C.

34

\Vater cooling through copper tubing wound around the top of the lid is possible if

the upper temperature limit were to increase.

After evaluating many different electrical lead designs for minimizing electrical

noise while still maintaining ease of use, the design shown in Figure 3.7 was chosen.

Electrical shielding from external electrical noise is provided by the brass cylindrical

container of the conductivity cell. Internal interference between the measuring signals

is minimized by using shielded coaxial cables.

Nuts

MACOR Spacer --.......

Top
Shelf

Spring

Top Electrode
Bottom Electrode

Guard Electrode

Bottom
Shelf

-

Threaded end to secure
signal leads between nuts
for flexible cable

Vertical Motion

- 3/4"-

-- Washer
Nut to hold spring

Sample

Threaded end to secure
signal leads between nuts
for rigid cable

Figure 3.7: Electrode and cable connections for the conductivity cell

35

The electrodes in the sample holder are made out of copper with a protective

gold coating. The top electrode is threaded at both ends; one end is used with a nut

to hold the spring and the other end is used to secure the signal leads between two

nuts. The bottom electrode is threaded only at one end for electrical connections as

described above. The sample rests on the lower and immobile electrode and is held

in place due to the pressure of the spring loaded top electrode. Samples as thick

as half a centimeter and four centimeters in diameter may be easily loaded into the

cell. These electrodes are isolated from the rest of the cell by MACOR machined

spacers which have a resistivity of 1014 ncm. A guard electrode is electrically and

physically connected to the lower shelf and has some mobility to move vertically and

horizontally depending on the size and shape of the sample. This electrode is used

to prevent conduction along the sample surface from the top electrode to the bottom

electrode and vice versa; surface conduction is observed usually in high impedance

materials.

The top electrode is connected to a flexible cable to allow vertical motion during

sample loading. The lower electrode is immobile and is connected to a fixed cable.

The advantage and reason for using a rigid cable is that it will not get kinked or bent

during loading or handling. Kinks in leads can act as resistors at low frequencies and

inductors at high frequencies and may contribute to measurement errors.

Commercial coaxial or shielded cables which can withstand 200°C are not avail­

able and for this reason a rigid and a flexible type of high temperature ceramic insu­

lated shielded cable was designed for the cell. The rigid shielded lead was made from

platinum as the internal conductor and a silica tube as the rigid insulator. The lead

36

is shielded using the copper wire mesh sleeve from a commercial coaxial cable. The

rigid lead was shaped by heating the silica insulator to its working point. Platinum

was selected over copper as the conductor for the signal carrier because of inertness.

Copper, on the other hand, oxidizes easily and the conducting properties of the wire

will change with time. Silica was used as the insulator because of its low dielectric

constant (3.81), good electrical resistivity (4000-30000 MOcm) and high softening

point [24]. The outer conductor has the same function as before - attenuating electri­

cal noise. Surface oxidation does not affect the outer conductor function as the skin

depth for attenuating high frequency signals is orders of magnitude smaller than the

thickness of the shield.

A flexible coaxial cable was designed with platinum as the central conductor,

alumina beads for the flexible insulator and the same outer conductor described in the

above paragraph. Alumina has a dielectric constant between 4.5 and 8.4 depending

upon grade and purity and a volume resistivity greater than 1011 Ocm making it a

very good insulator.

The bottom electrode is connected to the low current and low voltage BNC

connectors through the rigid cable while the top electrode is connected to the high

current and voltage BNC connectors through the flexible cable (see Figure 3.7). In

this way, the four terminals are now made into three terminals: a high (top) and low

(bottom) electrode and a ground (shield) electrode. The cell connects to the outer

conductors of the coaxial cable and, therefore, is also grounded.

Furnace The cell is heated in a cylindrical aluminum block using six 500 watt

cartridge heaters connected in parallel and placed symmetrically around the block.

3i

The power supply is controlled and protected through a variac with a 20A super-lag

fuse using a maximum allowable voltage setting of 95VAC. The furnace design is

shown in Figure 3.8. The Type-T thermocouple from the temperature controller is

inserted 2.5 mm away from one of the heaters to minimize the thermal lag between the

heaters and the thermocouple. Initially, the conductivity cell was water cooled and

the power required to get the cell up to temperature was very high. \Vithout water

cooling, which is the case now, 800 watts is more then adequate for fast ramping to

the set point.

Type T

t
~" .)

Cell

I
Insulation

Aluminum Block

Type T

Figure 3.8: Furnace design

Sample Preparation The glass sample is a flat disc with sputtered gold cir­

cular electrodes on each side. A third electrode is sputtered on the outer edge of the

38

glass on one side and acts as a guard electrode. A diagram of this electrode system

is shown in Figure 3.9. Any surface conductivity is eliminated by providing a path

to ground through the guard electrode. To calculate the cell constant for the sample,

the area of the gold electrode is calculated from the diameter of the electrode and the

thickness is measured using a micrometer.

Top Side Side View Bottom Side

Sample

Top Electrode Bottom Electrode Guard Electrode

Figure 3.9: Typical electrodes used in IS experiments - parallel plate capacitor

Thermocouple calibration An Omega Type-K thermocouple is used to mea­

sure the temperature of the sample under study and an Omega Type-T thermocouple

is used to measure the temperature of the furnace. Secondary calibration of the two

thermocouples was done using a calibrated Type-S thermocouple from the Bureau of

Standards.

Both uncalibrated thermocouples were inserted approximately one millimeter

away from the Type-S thermocouple and three inches deep into a high conductivity

graphite block. The block had a large enough thermal mass and high enough conduc­

tivity to assume limited thermal gradients between the thermocouples. The graphite

39

block was inserted into the aluminum thermal block and ramped from 25-250oC in

steps of SaC. The Type-S and Type-K thermocouple were connected to the same

ice point unit (Kaye Ice Point Reference) and then connected to a Keithley 175 and

Hewlett-Packard 3478A multimeter, respectively. The voltmeter readings were input

to the computer via the GPIB bus. The voltages were converted to temperature for

both thermocouples using quartic equations published in the Report of Calibration

for the Type-S thermocouple and in the Tektronix M41A3 instruction manua13 for

the Type-K thermocouple. The Type-T temperature was displayed on the Eurotherm

810 temperature controller and recorded manually.

The temperatures of the thermocouples were recorded when ten consecutive tem-

perature readings spaced over five seconds differed by no more than ±0.02°C. The

results of this experiment are shown in Figure 3.10 and Figure 3.11.

Linear fits for the Type-K and Type-T results are given by

TS = 0.99TK - 0.05 (3.3)

and

TS = 0.99TT - 0.59. (3.4)

where the subscript represents the type of thermocouple. Both thermocouples are in

close agreement with the calibrated value.

A fifth ordered polynomial with a correlation of one was curve fit to the Type-K

and Type-S measurements and is given by

(3.5)

3Tektronix M41A1 Low Level Amplifier M41A2-A8 Thermocouple Amplifiers,
1984. Tektronix Inc., Beaverton, Oregon.

40

where T K is the measured Type-K temperature and the coefficients a, b, c, d. e

and fare -1.5, 1.12, .2.419x10-3, 1.665x10-·), -4.644xlO- 8 and 4.346x10- 11 , re-

spectively. Equation 3.5 is incorporated in the programming section for temperature

measurements and is used to determine the temperature of the sample.

CALIBRATION CHART
Type-K Thermocouple

25

+ + + Measured te~perature

20 TS = 0.99T
K

- 0.05
0
x

15
...-
U
0 ---
rn 10
I

C1>
~
~ 5 ~

25

Figure 3.10: Calibration of Type-K thermocouple against Bureau of Standards
Type-S thermocouple

41

During preliminary testing of the furnace and temperature control apparatus,

temperature gradients between the Type-T thermocouple (set point) and the Type-

K thermocouple (sample) were observed. A plot of the steady-state temperature

between the two thermocouples is shown in Figure 3.12. The linear fitted equation

CALIBRATION CHART
Type-T· Thermocouple

25~--------------------------------------~

I I I Measured temperature

20 TS = 0.99T
T

- 0.59

.....
(:)
x

15 -0 -
00 10
I

CI.)

~

t; 5

25

Figure 3.11: Calibration of Type-T thermocouple against Bureau of Standards
Type-S thermocouple

42

to the data of the temperature of the thermal block and the temperature of the sample

IS

Tsetpoint = 1.21Tsampie - 4.67. (3.6)

Equation 3.6 is used to estimate the applied furnace temperature necessary to raise

the sample temperature to a chosen value.

Having fully described the hardware, its design and calibration, attention is next

turned to the software written to both control the IS experiment as well as analyze

the data.

THERMAL GRADIENT IN CELL
300~ __________________________________ ~

+ + + RaW' data
250 -- Cune fit

J

U 200J
I

•

150~ l-
I
QI
Q
>- 100
l-

SO

O~----~r------r------~----~------~
o 50 100 150 200 250

Type-K ('C)

Figure 3.12: Setpoint temperature and actual temperature inside the conductivity
cell

43

Automation Software

The computer coordinates and directs the entire system in performing the im­

pedance spectroscopy experiment. It assigns tasks to and receives data from the

various instruments and monitors the system's progress. Once data are acquired and

processed, the computer is responsible for storing and/ or displaying the results. The

instructions (program) for the computer are written in Turbo Pascal version .5.0 and

are found in Appendix D. The data-collect routine provides automated collection for

the IS experiment and the data are immediately ready for analysis. A description of

the software and its development in terms of controlling the system, data processing,

storing data and program operation are discussed in this section.

The impedance experiment is described as a series of isothermal impedance mea­

surements. The variables that define the impedance measuring part of the experiment

are the magnitude of the applied voltage signal, the frequency range, the number of

measurements during the sweep and the integration time for each spot measurement.

The thermal variables are the start temperature Tstart' final temperature T final

and the temperature increment Tine'

System control Impedance variables are output to the Solartron through a

configuration file sent by the computer or by recalling a setup with the variables

already stored in one of the sixteen memory locations available on the Solartron. The

thermal variables are input through the keyboard of the computer. A flow chart of

the complete data collection procedure once experimental conditions are set is shown

in Figure 3.13.

User Input Experimental
Conditions: T starb

T final and Tinc

Set Furnace To

T furnace = f(Tstard

No

Check Sampl
Temperature

Make Impedance
Measurement

44

No

Figure 3.13: Flow chart of software control of the impedance experiment

45

The software control of this experiment using the hardware shown in Figure 3.1

is presented here. Tstart is the initial sample temperature at which impedance mea-

surements are to be made, however, the furnace temperature required to heat the

sample to T start is calculated by using Equation 3.6. The furnace set point tem-

perature is converted to an applied voltage with the use of Equation 3.2. The D / A

converter is then prompted by the computer to output the calculated voltage to set

the temperature controller.

The temperature of the sample is monitored by the computer through the AID

converter connected to the Type-K thermocouple. The temperature is calculated

from the quartic equation given in the Tektronix M41A3 users manual and corrected

with Equation 3.5.

The computer begins checking for steady-state once the sample temperature is

within three degrees of the set temperature. Steady-state, in this experiment, is

defined as ten consecutive temperature measurements spaced out by N seconds that

differ by no more than 0.O.5 0 C from the initial measurement. N is one tenth of the

total measurement time for the Solartron to sweep through the frequency range and

is given by

N = Round(~(# of measurements * Integration time)). (3.7)
10

Once steady state is achieved the Solartron is prompted to make impedance measure-

ments on the sample. In this way the deviation of the temperature during the sweep

is anticipated to be no more than ±O.050C. The computer monitors the progress of

the measurement through the data status byte of the Solartron. The impedance data

are immediately transferred for processing from the Solartron to the computer on

46

completion of the sweep. The Solartron are configured to always output the imped­

ance in terms of the magnitude and the phase. The data are standardized in this

manner so as to simplify the data management section of the analysis software. The

raw and processed data are stored on floppy disk. The sample set point is incre­

mented by T inc' and if the new set point temperature is less than or equal to the

final temperature, then the above procedure is repeated. When the set temperature

exceeds T final, the experiment is complete and the furnace is turned off by setting

the D / A converter output voltage to zero.

Data processing Two types of data processing are required within the data

collection program. The first is string manipulation of data sent and received on the

GPIB bus and the other is simple to complex mathematical operations on the raw

data to get the desired parameters.

Data sent from GPIB instruments contain, in addition to the numerical data of

interest, string information that often contains the device address and the units of

the quantity being measured. In order to store the numerical data, they must be

first extracted from the data strings and this is accomplished as the data are received

at the computer controller using standard string manipulation routines available in

Turbo Pascal.

The other type of data manipulation in the collect program is the calculation

of the dc conductivity. The dc conductivity, 0"0, is evaluated for each temperature

from the raw data by converting the magnitude and phase data to real and imaginary

impedance data and solving for the center and the radius of the circle. The intercept

of the real axis at low frequency is determined by solving for the solution of the circle

47

when the imaginary part is zero. The algorithm [26] is found in the source code in

Appendix C and is not described here. The temperature and conductivity are then

stored in a separate data file. These data files will be used for Arrhenius type plots

to determine the activation energy and the high temperature limiting conductivity.

By performing this data analysis at the time of collection, much time is saved in data

analysis.

Data storage A sophisticated yet simple data storage system is essential for

the purpose of analysis, retrieval, identification and optimizing memory use. After

trying different filing systems, the one described in this section is considered to be

the most effective. The following discussion assumes knowledge of the filing system

in DOS as well as the rules regarding naming conventions and allowable characters

for file names and directories. Additional background material can be found in the

DOS manual 4.

On average, twenty isothermal impedance measurements with a density of two

hundred measurements of the frequency, magnitude and phase per sweep are made

during a single temperature program run. A single data file of this size would use

approximately 150Kbytes and would be cumbersome to manipulate during analysis.

In addition, information about the sample, the temperature during measurement and

dc conductivity would not be easily accessible. An alternative strategy is therefore

used where data for each frequency sweep are stored in a separate data file, identified

by the temperature of the sweep.

4Microsoft MS-DOS Version 3.21, user's Guide, 1987. Zenith Data System Cor­
poration, St. Joseph Michigan.

48

In this system, data storage is done on a high density (1.4MByte) floppy disk.

Before the computer initiates a temperature program run, it first makes sure that at

least 200KBytes of memory are available on the floppy disk. If not, it will prompt

the user to insert a new disk until a disk with enough memory is detected.

The user is then asked to input a unique alphanumeric name with a maximum of

eight characters to identify the sample. For explanation purposes, the name GLASS1

will be used here. The computer checks the floppy disk for the directory GLASS1. If a

directory with the same name exists, the option to overwrite or create a new directory

with a different name is available. Once a unique directory is created, all files created

during the experiment are stored in this directory.

The impedance data for each isothermal sweep are then stored in a file called

GLASS1. TMP where the extension TMP is the set point temperature of the sample

at which the sweep was conducted in degrees centigrade. The first line of the file

contains the date and time, the set point temperature and the actual temperature

of the sample. The impedance data are stored in three columns, one each for the

frequency, impedance magnitude and the phase. The data are stored in order of

increasing frequency.

The dc conductivity data are stored in a file called GLASS. SIG where SIG is short

for sigma, the conductivity. This data file contains the temperature, conductivity and

resistivity calculated for each isothermal sweep.

The name of the sample, the starting, final and incremental temperature, user

name, date, cell constant and a one line sample description are all stored in a file called

CONTENTS. TXT. A file called STEADYST. ATE contains the time of day when a system

49

achieved steady-state for each isotherm and the maximum temperature fluctuation

during the sweep. Finally, the temperature history or time versus temperature log of

the complete experiment is saved under the name TRANSIENT. RES. All the information

about the sample and the experiment is contained in these three files. All files are

stored as ASCII files and are accessible to most text editors. An example of a typical

directory after a data collection experiment is shown later in Figure 3.17.

IMPEDANCE SPECTROSCOPY
FOR GLASS RESEARCH

1. Data Collection

2. Data Analysis

3. Exit

Press N umber or Highlighted Char actor

Figure 3.14: Impedance spectroscopy software - Menu 1

Program operation This section is included to act as a user's guide to op-

eration of the data-collection routine. Execution of the program IS_WKSTN. EXE will

display a software identification screen. By pressing any key, a second screen will

appear prompting the user to choose either the collection or the analysis module or

exit (see Figure 3.14). Options are selected by pressing the number or the high­

lighted character of the selection. On choosing the data-collection option the screen

will clear and then display the data-collection menu shown in Figure 3.1.5. In the fol-

lowing paragraphs, each of the options available to the user from the data-collection

50

menu will be described.

D A T A C OL L E C T ION MOD U L E
IMPEDANCE SPECTROSCOPY

1. Select Solartron Setup [I]
2. Configure Solartron
3. Null Conductivity Cell
4. Impedance Measurement
5. GPIB Communication Program

6. Exit

Figure 3.15: Data collection menu

Select Solartron Setup: The first option gives the user the option to choose one

of the nine impedance measuring setups stored in the nine memory locations on the

Solartron. When selecting this option, the cursor will jump to the box for that option

and wait for a number to be keyed in to select a setup. All other data-collect options

are performed using the selected experimental setup here.

Configure Solartron: The second option allows the user to configure the Solartron

to the specific needs of a new experiment. Selection of this option clears the screen

and displays the contents of the configuration file SOLSET. UP# where the # mark

represents the number of the currently selected memory location. Nine such config-

uration files exist with the same name but different last character. The displayed

file can be edited and additional commands may be added as long as the following

two rules are obeyed. The first ten characters of a line are reserved for output to

51

the Solartron, the rest may be used for comments to describe the command. All new

commands must occur between the clear and store setup commands. The option of

saving the new configuration file or quitting without saving is available, however, the

configuration file selected is stored on the Solartron and becomes the default setup.

Null Conductivity Cell: The third option allows calibration of the conductivity

cell using the selected setup experimental conditions. The user is prompted to short

circuit the cell for parasitic resistance and inductance evaluation. The user is then

prompted to open the circuit of the conductivity cell such that measurement of any

stray capacitance can be determined. On completion of this operation, the NULL

option of the Solartron is enabled and impedance measurements using the present

setup will compensate for parasitic effects. Though this is a powerful feature of the

Solartron, the null calibration cannot be stored and used again when the default setup

is changed and therefore the Solartron must be nulled before any data collection run.

Impedance Collection: The fourth option selects the IS experiment described

above. A screen for entering the sample name, user identification, cell constant and

temperature settings appears on selecting this option. Entering the same number for

all the temperature settings allows a single frequency sweep to be made without a

temperature program. Inputting a Tstart' T final and a Tine will cause the worksta­

tion to perform as described in the last section. The input name, the date and time

of logging onto the collection module are stored in a user log file called USER. LOG. On

completion of the impedance experiment the user is logged out and returned to the

main data-collect menu.

GPIB Communication: The last option is a communication program for the GPIB

52

interface where commands can be sent to and data received from the GPIB. This

option is useful when diagnosing the performance of the GPIB or of GPIB devices

connected to the interface bus.

Exiting from the collection program will then display the very first menu and

the option to analyze the collected or any other impedance data. The development,

capabilities and operation of the analysis software is given in the next section.

Data Analysis Software

The data analysis software was developed to provide for the easy transformation

of the raw data into other electrical properties in order to enhance data interpreta-

tion and to provide insight into the electrical response of the glass. Two dimensional

data presentation for all impedance related functions in both the complex plane and

the frequency domain is provided. In addition, a routine to evaluate and display the

conduction activation energy Ea and the high temperature limiting conductivity (To

for dc is also provide. Since in general the conductivity of a material is frequency

dependent, an additional utility is provided such that the conductivity at selected

frequencies can be extracted from the raw data files and a new file created in which

the fixed frequency conductivity along with its corresponding temperature of mea-

surement are stored. In this way, after all the data have been collected an Arrhenius

plot of the fixed frequency conductivity can be made.

This program is written in Turbo Pascal (Version .5.0) and uses HGRAPH, a

commercial package from Heartland Software5 , as its graphics driver. The analysis

5HGRAPH: Version 4.1 Reference Manual and User's Guide, 1987. Heartland
Software, Inc., Ames, IA 50010.

.53

package was written to be as flexible as possible with the hopes that other impedance

spectroscopists may find features which are not presently available and perhaps for

this reason incorporate them into their own workstation environments.

Data files that conform to the format used in this program but not obtained using

the data collection program can be input to this analysis package for analysis and

plotting. Publication-quality graphs of the data and results are easily user customized

on the CRT and then prepared for reports by a pen plotter or a printer.

A general description of the program capabilities is given next and this is followed

by a discussion of the data conversion techniques and other mathematical operations

used in the program. The final section is a user's guide to the operation of the analysis

software.

General Description

In order to give a global overVIew of the analysis software, Figure 3.16 gIves

the flowchart of a typical data analysis session using this package. The typical steps

involved in the data analysis are

• Selection of the data file

• Choice of single or multiple data file plots

• Selection of the kind of data plot

• Display of autoscaled data plot

• Manual scaling to optimize data display

• Annotation and customizing of data legends and axis labels

• Hard copy output to printer or plotter

• Repetition on new file{ s) or terminating of analysis routine

Select Data
Files

Data Choice Window
3 1. File Options

/-4----/ 2. Convert Data
3. Exit

,.-----'2 1
4

1. Reorder Files 3

Change Graph
Setting

2. Plot Type
3. Start Over
4. Exit

2 1

3
1. Plot all Files
2. One File/Graph
3. Exit

2

Select File
To Plot

I-------..J

Change Sequence
of Selected Files

Figure 3.16: Typical data analysis session

5.5

Files to be analyzed are selected through a user friendly file manager which allows

easy movement between the disk drives, directories and subdirectories. Only those

files containing impedance data in terms of the frequency, magnitude and phase) or

conductivity files are considered for input.

For any impedance data file, the user has up to sixteen different ways of dis­

playing the data. Twelve of those are Z*, A *, M*, E*, (j* and p* displayed either

in the complex plane or in the frequency domain. Two more display options are the

magnitude and phase versus log frequency and the loss tangent versus log frequency.

The remaining two options are model dependent plots of the equivalent resistance

and capacitance for a parallel circuit and the equivalent resistance and inductance for

a series circuit both plotted versus frequency.

In all the frequency plots, the real part is plotted on the left y-axis and the imag­

inary part is plotted on the right y-axis. Either one of these axes may be turned on

or off to display only the real part or only the imaginary part. A better view of the

complex plane data can be achieved however by viewing both the real and the imag­

inary parts versus frequency in a three dimensional plot of the impedance function.

J. MacDonald in [12, 27] has exploited this and has developed a 3-D perspective plot­

ting package to simultaneously display the real and imaginary parts in the frequency

and complex plane domains. This capability, while not part of the present software,

is viewed as a powerful addition to the plotting features of the program and will be

included in future revisions of the software package.

In the complex plane plots, the imaginary part is used as the y-axis and the real

part is used as the x-axis. To account for the fact that many of the plots exhibit a

.56

high frequency limit where both parts go to zero, in these plots the origin is offset to

negative values to allow a better visualization of the data. To make properly scaled

graphs, both axes use the same scale factors and units between the tick marks. In this

way, for example, the complex plane plots of the impedance come out as semicircle

arcs. Without equal scaling, the arcs would be compressed or expanded, depending

upon the difference in scaling between the two axes. Also for the impedance plots,

the data are automatically best-fitted to the single relaxation time model (parallel

RC circuit) using the best-fit parameters to draw a line through the data to show the

level of either agreement or disagreement. Finally, since frequency is a parameter in

the complex plane plot and is not directly plotted, frequencies are labelled at decade

intervals to show the direction that frequencies change on the plot.

The Arrhenius plotting option is used to determine the conduction activation

energy and the high temperature limiting conductivity. This option is only accessible

to those data files with a . SIG extension. An error checking procedure is used both

to prevent frequency files from being analyzed and to disable all options besides

the Arrhenius plot for files ending with . SIG. The raw and the curve fit data are

simultaneously plotted; the activation energy is determined from the slope and the

limiting conductivity from the y-intercept of the curve fit. Standard deviations for

both the activation energy and limiting conductivity are provided.

All data files plotted for the first time have default values for the titles and colors

and these are defined by t~e program. The user name, date of data measurement,

the temperature and the cell constant are extracted from the first line of the data

file and from the CONTENTS. TXT file located in the same directory as the data file

57

(created by the data-collect routine) and are then added to the bottom of the graph.

If the CONTENTS. TXT file is not found, all variables normally extracted from this file

are assigned to the value of 0 except for the cell constant which is assigned to the

value of one. The user may change any of these variables with the exception of the

cell constant during the course of the analysis. Help menus are available to select

colors, fonts and devices to display the data.

Once a plot type is selected, the data are autoscaled to guarantee display of the

data on the screen. The data range may then be changed manually or further au­

toscaled. The step size, the number of major and minor tick marks and the data scale

factors are chosen automatically by the program. The axis types are predetermined,

however, they may be changed from log to linear and vice versa.

Multiple data files may be plotted on the same graph. Axis scaling is calculated

from the data for the first data file. Manual scaling is then used if the autoscaling

due to the first file does not provide an optimum window to include the data from

the other files. The selected files may be reordered such that the file with the widest

data range is first in the list. A very common example of the use of multiple plotting

is for plots of the logarithm of the conductivity versus the logarithm of the frequency.

Here multiple files are plotted for the same sample with each file differing only in

the temperature at which the data were calculated. Another common practice is

to plot the impedance of a material at different temperatures on the same complex

impedance plane plot to observe the decrease in resistance (increase of conductivity)

with temperature increase.

After the graph format has been optimized for either single or multiple data

58

file plots, the user is prompted to either annotate the graph (comment) or to input

data legends for each curve plotted (legend). Each command, executed by pressing

C or L, respectively, allows the user to place text information anywhere on the graph

describing any relevant information the user feels appropriate.

After the final format is achieved, the user may scale the size of the graph all

the way down to 0.35 of its original size and select output to either the screen,

plotter, printer or a graphics data file. At this point, customized graphs can be

saved for displaying or plotting at another date but they cannot be modified. This

advantageous feature will be implemented in a later version of the software.

Mathematical Methods

Three types of mathematical computations are used in this program. The first is

the conversion of impedance data from one form to another. The second uses iterative

techniques of numerical analysis to curve fit data to a theoretical model. The third

type are those which require the use of unique algorithms to solve problems within a

section of the program code such as log and linear autoscaling. The first two are of

interest for the spectroscopist and will be discussed here. For detail of the third type

the reader is referred to the source code.

The conversion of one type of impedance data to another type reqUIres basic

knowledge of complex numbers and mathematical operations. Because most high

level languages do not offer complex arithmetic, polar coordinates are used. The

conversion table used to convert the raw magnitude and phase data into each of the

c 11 . . d f . Z* A* 1\·1* * * d *. . . A d' C 10 owmg Impe ance unctIOn , ,1'/, E ,(7 an p IS gIven In ppen IX .

59

The physical and mathematical bases for these conversions are given in Appendix B.

Two iterative algorithms, one for fitting data to a straight line and the other

for fitting data to a circle, are used in this program. The linear regression algorithm

to solve for a straight line can be found in most numerical analysis books [25]. The

algorithm to solve for the center of a circle and its radius using complex nonlinear

least-squares is given by MacDonald et al. [26] who have done much statistical work

on theoretical modelling of electrical impedance data to equivalent circuits. This

algorithm is identical to the one used by S. Martin [6] and is incorporated in the

data collection routine to calculate the dc conductivity and in the analysis program.

The equations for both these algorithms are included with the impedance conversion

equations in Appendix C.

User's Guide To Analysis Package

This program uses menus and keystrokes to allow movement between functions

and help screens to optimize data analysis. The user is informed at each new step

or keystroke of the status of the present operation and/or what is expected from

the user. A first-time user should be comfortably moving through the screens and

preparing quality graphs in a relatively short time. Instructions to use the program

are, however, given to facilitate the operation of the routine and to allow for future

optimization of the program.

The data analysis program is selected from the menu shown in Figure 3.14 dur­

ing the execution of the program IS_WKSTN. EXE. The menu screen is replaced by a

identification screen for the analysis program. On pressing the Enter key, the screen

60

INS - Select File
Data Files To Analyze

c: DATA NAP03 NAP03.30
F1 - Chg Drive

F4 - Edit
ESC - Quit·

C:\DATA\NAP03*.*

CONTENT.TXT NAP03.30
NAP03.40 NAP03.50 NAP03.60 NAP03.70
NAP03.80 NAP03.90 NAP03.100 NAP03.110
NAP03.120 NAP03.130 NAP03.140 NAP03.150
NAP03.160 NAP03.170 NAP03.SIG STEDYST.ATE
TRNSIENT.RES

Figure 3.17: Data analysis: File Manager

is replaced by a file manager as shown in Figure 3.17.

File Manager: All directories are identified by a backslash before their name.

To move within the file manager, the Up, Down, Left and Right arrow keys and

the Home and End keys are used. To select a file, the cursor (solid colored block) is

moved to the name of the file and the Insert key pressed; a maximum of eight files

can be selected. To edit a file, the cursor is moved to the name of the file and the

F4 key pressed. A backup of this file is immediately made with Z as the first letter

of the filename. A line editor with minimal functions may be used for the purpose of

data correction and editing the CONTENTS. TXT file. To move to another directory, the

cursor is moved to the name of that directory and the Enter key pressed. The files

in that directory will be displayed. To change the drive or filter the files displayed,

the Fl key is pressed and a prompt at the bottom of the screen will appear. Entering

61

the name of the new drive, the directory name and any wildcards * will select the

new drive and display only the selected files. Instructions for the main keystrokes are

found on the top left hand corner of the screen. To continue to the next part of the

program, the Esc key is pressed and the data choice menu will appear.

IMPEDANCE DATA PRESENTATION

FI: File

IMPEDANCE

RESISTIVITY

ADMITTANCE

CONDUCTIVITY

MODULUS

PERMITTIVITY

PLOT SELECTION
FlO: Exit

1. Z' vs Z"

3. p' vs. p"

5. A' vs. A"

7. u' vs. u"

9. M' vs. M"

11. c' vs. /'

13. Arrhenius

16. Loss Factor

O. Z, a vs. Log(f)

2. Z vs. Log(f)

4. p vs. Log(f)

6. A vs Log(f)

8. u vs. Log(f)

10. M vs Log(f)

12. E vs. Log(f)

14. Rp, Cp vs. Log(f)

15. Rs, Ls vs. Log(f)

Choice 0 _________ ---J

Figure 3.18: Data analysis: Data Choice

Data Choice: The data choice menu is shown in Figure 3.18. The filename

selected for analysis is displayed at the bottom of the screen. To exit the program

simply press the FlO key. Pressing the Fl key in this menu will cause a pop up

window to appear on the top left hand corner. The options to reorder files, plot type,

begin all over again or to return to the menu are available.

The first option, Reorder Files. allows the user to change the order of the

selected files. Choosing the Plot Type option will cause another window to open and

62

offer to either plot all the files on the same graph or plot one file per graph. Selecting

the option One File per Plot will cause another window to open allowing the user

to select one of the files chosen during the file manager window to be plotted. Pressing

the letter E or the Esc key will take the user back to the first window. Lastly, the

option Begin AllOver will take the user back to the file manager to begin all over

again.

On returning to the data choice menu, a short delay is observed as the selected file

or the first file of the series of files to be plotted is input. Depending on the extension

of the file, the option to plot an Arrhenius graph is enabled or disabled according to

the discussion in the last section. The plot type to be displayed is chosen by keying in

the number next to the plot type on the menu (see Figure 3.18) and pressing Enter.

The chosen data type will be displayed graphically on the screen.

A prompt at the bottom of the screen to add comments (C) or add legends (L)

to the graph will appear once the graph is drawn. In the legend mode, the user

first selects the symbol line associated with a data curve using the function keys; Fl

represents the first data set plotted, F2 represents the second data set and so forth.

The user then uses the arrow key to position the cross-hair to the start of the symbol

line, presses the space bar to pin that position down and then uses the arrow key

to move the cross-hair to define the length of the symbol line; a final space bar defines

the length. The user then types the legend for that data curve; almost all font types

and numbers can be used. For a complete description the reader is referred to the

HGRAPH manual. In the comment mode, the user selects one of the ten comment

strings for annotation by pressing the function key as described above. The user

63

then positions the cross-hair where the comment is to begin and presses return to

pin the position down and begins typing. Again almost all fonts and characters are

available. The same process can be repeated until all ten comment strings are used

up. Pressing any other key will display a screen asking the user whether the present

analysis of the data should be continued. Entering the Esc key will stop the analysis

and return the user to the data choice menu. Pressing any other key will display the

data input window shown in Figure 3.19 to allow changes to be made on the current

graph settings.

GRAPH SETTING

Title
Device 0

I
Subtitle
I
Name Color
I 0
Date
I 0
Comment
I 0
X-Axis Label
I 0
YI-Axis Label
[0
Y2-Axis Label
[0

Fl = HELP
ESC = Next

Magnification D
Color
0

0

Plot nth
Scale Data Point

0 0
PlotdY IN)

0
0 0

Pg 1/2

Figure 3.19: Data analysis: Graph Setting 1

64

Graph Setting 1: This is one of two graph setting windows used to change

the default settings of the graph. The list of devices available for output of the graph

is obtained by moving the cursor into the device box and pressing the F1 key. The

devices available for plot output are the screen, the plotter, the printer (in both

landscape and portrait mode) and the disk.

The title, subtitle, name, data, footnote and x-axis, yl-axis and y2-axis titles

(where yl-axis is the left hand y-axis and the y2-axis is the right hand axis), can all

be edited. Again, the list of available fonts and graphics string commands is accessible

by moving the cursor into one of these input windows and pressing the F1 key.

The color of any of the displayed strings on the screen is determined by a number

between 0 and 10. The colors which match to these numbers are found by pressing

the F1 key when the cursor in one of the color input windows. For outputting to the

plotter, the user is limited to six pen colors available on the plotter.

The axis type may be changed to log or linear by appropriately entering Log or

Lin in the axis type input window. The display of both y-axes or one y-axis can be

enabled or disabled by entering a letter Y(es) to display axis and the letter N(0) to

turn off an axis. Finally, the option to display every nth data point is available by

entering an integer n; for example inputting 1 will display each data point with a

symbol and entering 5 will display every fifth data point. Once the user is satisfied

with these graph settings, pressing the Esc key will save the new settings and display

the second graph setup window.

Graph Setting 2: This window is used to set the axis limits by entering the

minimum and maximum values for the axes in the first two boxes. The step is

X-Axis

YI-Axis

Y2-Axis

65

GRAPH SETTING

Min Max Step Autoscale

o
o
o
Pg 2/2

Figure 3.20: Data analysis: Graph Setting 2

the increment between two displayed numbers on the graph. For the x-axis settings,

entering the letter y(es) in the autoscale window followed by the return key will result

in an internal sweep of the x-data to determine the minimum and maximum values

in the range. These numbers are fed into an autoscaling algorithm to determine the

best minimum, maximum and step values for the x-data. Autoscaling performed on

either of the y-axis data sets is done only for that x-range displayed in the x-axis

settings. Manual scaling of the data can be achieved by manually entering numbers

into each of the axis windows. For log scaled plots, the values input for scaling are

the log of the minimum and maximum values. The step value is an integer divisor of

one and tic marks are placed at powers of ten and at powers base ten of the multiples

of the step. The default value is one resulting in ten tick marks per decade. Once the

scaling values are input, pressing the Esc key will display the graph with the new

settings.

The technique of analyzing multiple files is the same as that of single files. The

program will automatically choose different symbols and colors for the different data

66

files. Currently, the user cannot change the default settings for the choice of the color

and symbol types.

67

CHAPTER 4. WORKSTATION PERFORMANCE

The workstation performance and typical results obtained using this workstation

are given in this chapter. The workstation capabilities are divided into three sections.

The first addresses the impedance measuring limits and accuracies of the Solartron

1260. This is followed by an analysis of the temperature control capability, and

finally, this chapter is concluded by showing data obtained using this workstation for

a typical fast ion conducting glass, NaP03'

Impedance Measurements

The impedance measuring capabilities of the Solartron 1260 are reported in the

first part of this section. The calibration of the conductivity cell using standard

resistors, capacitors and dielectrics, Teflon and quartz, are reported in the second

part of this section.

Impedance limits of the Solartron 1260

As shown in Chapter 2, not only is the conductivity temperature dependent,

but it is compositionally dependent as well. These two factors combine to produce

conductivities which vary between 10-10 to 10-1 Ujcm for glasses. Clearly, to fully

characterize the conductivity, as much as possible of this range must be measurable

l.D
o -)(

CD
CJ
d
as
~
rn
rn
CD
~

68

Solartron 1260: Calibration
Standard 100lm Resistor Measurement

104 +-f-+ R .. 100Wl ± 1Wl

102

100

98

96

94~--~~~~~~--~~~~~~--~~~~~

10° 10 1

Frequency
102

(Hz)

Figure 4.1: Solartron 12601: upper impedance limit test, R = 100 MD

using the IS workstation, and for this reason the high impedance (low conductance)

measuring limit of the impedance analyzer becomes a very important quantity to

determine. The upper impedance range for the Solartron is specified in the Solartron

user's manual as 100 MD with an accuracy of ±10 MD. To test this capability, a

100 MD high precision resistor (± 1 %) was measured using the Solartron 12601 test

module which fits directly onto the four terminals of the instrument. The results of

this measurement are shown in Figure 4.1 and are within 3% of the stated resistor

M -I
o -x

CD

18

16

c:.> 14
d
a:s,
.~

c:.>
a:s 12
r:l4
a:s

to)

69

SOLARTRON 1260
Low Capacitance Performance Test: C = lpF

I I I lpF ±. O.5pF

10~~~~~~--~~~~~~~~~~--~~~~

102 103 104

Frequency (Hz)
Figure 4.2: Solartron 12601: lower capacitance limit test, C = 1 pF

value; this error is much better than the accuracy specified (±10%) by the manufac-

turer. The spike at 60 Hz is caused by a systematic error due to inadequate shielding

of the resistor from 60 Hz electrical noise.

To test the low capacitance measuring capability of the instrument, two standard

capacitors, 1 pF and 22 pF, were measured. The first was to test the lower capacitance

measuring limit of 1 pF specified by the manufacturer. The results of the 1 pF

measurements are shown in Figure 4.2 and lie within the capacitor manufacturers

specifications of ±0 .. 5 pF for the capacitor. The results, however, are precise over the

iO

frequency range and exhibit the characteristic decrease in capacitance due to ohmic

losses in the capacitor with increase in frequency.

M
I
C)
x

SOLARTRON 1260: CALIBRATION
Standard 22pF Capacitor Measurement

230

dC = 270

220

210

200~~~~~~~~~~U-~~~~~--~~LUJJj

102 103 10
4

Frequency (Hz)

Figure 4.3: Solartron 12601: lower capacitance limit test. (' = 22 pF

The relative dielectric constant of ionic conducting chalcogenide glasses vary

between 10 and 30. The lowest capacitance expected to be measured by the Solartron

for such glasses is approximately 9 pF, and is determined from Equation B.3 by using

the largest possible cell constant (O.l/cm) and a minimum value for k' (10). A 22 pF

capacitor therefore represents a median capacitance value of a chalcogenide glass

71

specimen at high frequency and low temperature. The results of a frequency sweep of

a standard 22 pF capacitor show that the measurement are within ±2% of the actual

value and are shown in Figure 4.3.

The accuracy of the high impedance and capacitance test results are much better

than those specified by the Solartron user's manual. Thus it has been shown that

the Solartron 1260 is capable of measuring impedance and the capacitance values of

ionic conducting glasses that lie at the extreme values that are expected for these

glasses. As values for the glass move away from these extremes the accuracy of the

measurement, will no doubt, improve considerably.

Conductivity Cell Characterization

The conductivity cell was characterized by comparing the values of standard re­

sistors and capacitors measured in the conductivity cell and measured in the Solartron

12601 module. Once this calibration was complete, the ability of the workstation to

measure dielectric properties of standard materials with sputtered circular gold elec­

trodes prepared in the lab was tested.

Standard Elements Results of measurements of standard resistors and ca­

pacitors in the conductivity cell are described in this section. The characterization

procedure began by measuring the parasitic resistance and inductance of a shorting

bar first in the Solartron 12601 module and then in the conductivity cell. The resis­

tance and inductance versus frequency is shown in Figure 4.4. The parasitic resistance

in the conductivity cell is seen to be 0.3 n and the inductance approximately 34 nR.

The resistance measured in the 12601 module was approximately 0.25 mn and the

i2

inductance was approximately 20 nR. From the above results, the conductivity cell

leads and electrodes contribute 0.3 n to the measured resistance and 14 nR to the

measured inductance. Both these values are relatively small compared to the mag-

nitude of the impedance of typical glass specimens and therefore will not affect the

experiment.

N
I
o ...
x

,......,
c:
L-..I

CELL CALIBRATION: SHORT CIRCUIT
Larger symbol represents the resistance

20

10

-10E-~--~~~U---~~~~~--~~~~~

103 104 105 106

Frequency (Hz)

10

8

6

4

2

o

,......,
1:1::

L-..I

)(-o
I

CXI

Figure 4.4: Short circuit frequency response of the Solartron 12601 and the con­
ductivity cell

(Y'J -I
o -x

CELL
226

224

222

220

i3

CALIBRATION:
standard capacitor.

x···x···x
I

13-00--£1

Go -Go-O

AC 11 ~ O.25pF ce

CAPACITANCE
C = 22pF

Cell Null Off
Cell Null On
Module Null Off
Module Null On

218~--~~~~~~--~-L~~~~--~-L-L~~

10
3 10

4

Frequency
10

5

(Hz)

Figure 4.5: Capacitance measurements of 22 pF in the Solartron 12601 and in the
conductivity cell

The parasitic (stray) capacitance of the cell was determined by measuring the

capacitance o(a 22 pF capacitor in the conductivity cell. The short and open circuit

calibration (null) routine of in the Solartron 1260 was performed on the conductivity

cell and the capacitor was measured. The same procedure was followed with the

12601 module as the sample holder instead of the conductivity cell. The capacitance

measured using these four setups, calibrated (null on) and uncalibrated (null off)

74

conductivity cell and the 12601 module, are shown plotted on in Figure 4.5. The

results for the 12601 module with the null on and off are essentially identical and

differ by less than 0.01 pF. The difference between the module measurements and

the uncalibrated (null off) cell measurements show that the cell results are greater

than the module results by approximately 0.25 pF. The calibrated (null on) cell

data, however, differ by only 0.1 pF due to correction of the measurements by the

nulling routine of the Solartron 1260. The stray capacitance in the cell from the above

results is therefore approximately 0.25 pF and its effect on the measurements made

on samples is reduced to 0.1 pF by nulling of the cell. Again it should be noted that

errors due to this parasitic capacitance are negligible since typical capacitive value of

glass specimens to be measured are in the range of 20 pF leading to an error of 0.5%.

Next, a series of resistors were measured in the nulled conductivity cell and the

nulled Solartron 12601. This experiment was performed to determine the effectiveness

of the nulling calibration for different impedance magnitudes. For low impedance

measurements, R = 10 nand R = 100 n, the cell measurements are systematically

less than the 12601 measurements by 0.4 n and are shown in Figure 4.6 and Figure 4.7.

An error of .5% is, therefore, expected for low values of resistance but this error is

expected to decrease as the magnitude of the impedance increases. This improved

accuracy was confirmed by measuring the resistance of a 10.2 kn resistor over the

complete frequency range. Figure 4.8 shows that the results are essentially identical

up to 105 Hz. The nonlinear behavior of the resistor at high frequency is a typical

response exemplifying the difficulty of making accurate impedance measurements at

even higher frequencies.

i5

Figure 4.6: Resistance measurement of a IOn resistor in the Solartron 12601 and
in the conductivity cell

.....
I
C)
x

i6

CELL CALIBRATION: RESISTANCE

1008

1006

1004

1002

Standard Resistor. R = 1000

+-1---+ In conductivity cell

x· ·x··x In module 12601

R - R ~ 0.4 0
module cell

~.

1000L-~LU~~J-~llUll-~~~W-~~~~~~~LUU

10 1 102 103 104 105 106

Frequency (Hz)

Figure 4.7: Resistance measurements of a 100 n resistor in the Solartron 12601 and
in the conductivity cell

N
o -X

77

CELL CALIBRATION: RESISTANCE

103

101

Standard Resistor. R = 10.2K.O

I I I 12601 Module
x- --x- --x Conductivity cell

EUgh Frequency -->

Deviation

100~~~WL~~~~~~~~~~~~~~~~~

100 102 103

Frequency
104

(Hz)

Figure 4.8: Resistance measurements of a 10.2 kn resistor in the Solartron 12601
and in the conductivity cell

Ul
01 -x

r--"I

C
~

CI)
0
Q
as
~
tll
.~

tll
CI)

&:t'4

i8

CELL CALIBRATION: RESISTANCE

102
).C . ..

100
.' -:

98

96

94

100

.

'. '. '. '.
' . . x

High Impedance Response: R=100MO

+-+-+ Module 12601
x· ·x··x Conductivity cell

10 1

Frequency
102

(Hz)

Figure 4.9: Resistance measurements of a 100 MO resistor in the Solartron 12601
and in the conductivity cell

To check for current leakage paths in the conductivity cell, a 100 MO resistor

was measured in the conductivity cell with the nulling operation on and the results

compared to those obtained using the 12601 module. The data from the 12601 module

have already been shown in Figure 4.1. All leakage paths with a resistance less

than a 100 MO, due to bad connections or inadequate electrode isolation from the

casing of the grounded celL should affect the measurement of the 100 MO resistor.

79

The conductivity cell data are plotted along with the data obtained using the 12601

module in Figure 4.9. The graph shows a cell response identical to the module, except

for improvement of the data at 60 Hz, due to complete shielding of electrical noise by

the brass container of the cell.

,...
0
x

-c -
,.......,
N
'--'

II)

Po::

CELL CALIBRATION: PARALLEL
Simulation of High Impedance Glass

15

+-+-+
x··x--x

Imaginary ->

10 1 102

Frequency

U:odule 12601
Conductivity cell

Rp - 1001Ul
Cp - 22pF

10
3

(Hz)

RC
10

8 I -a:: ,.......,
~
~

6 -::> ---
4

x -0
'-I

2

o

Figure 4.10: Complex impedance measurements of a parallel 100 1\H1 resistor and
a 22 pF capacitor in the conductivity cell

Finally, the parallel RC circuit with a 100 MO resistor and a 22 pF capacitor

used to choose the Solartron over the HP4194A impedance analyzer (see Chapter 3)

80

was measured in the conductivity cell. The data are shown in Figure 4.10 and show

that the same results are obtained in both the conductivity cell and in the Solartron

12601 module.

The above characterization experiments have shown that the conductivity cell

can be used for making accurate and precise measurements on ionically conducting

glasses. Parasitic line resistance, inductance and stray capacitance are small enough

that the nulling routine of the Solartron 1260 can compensate for their contribution

during the measurement. The high impedance measurements show that the imped­

ance measuring range for this workstation using the conductivity cell is the same as

that defined for the Solartron 1260. The accuracy for all measurements using the

nulling operation on the conductivity cell are within .5% of the actual value and are

in close agreement to the accuracy reported in the Solartron manual using the 12601

module.

Standard Dielectrics To further test the capability of the conductivity cell

and Solartron 1260, capacitors made from high purity silica glass and Teflon wafers

as the dielectric and gold sputtered circular electrodes were examined. Due to the

extremely high resistance of each of these dielectrics, accurate measurement of the

dielectric constant of these materials is considered as a very stringent test of the

performance of the impedance workstation. Impedance data for each capacitor were

collected using the data collection software, and their relative dielectric constant were

plotted versus frequency using the data analysis routine. The experimental values

for the relative dielectric constants for Si02 glass are shown in Figure 4.11 and for

Teflon in Figure 4.12 and the data show virtually no frequency dependence and are in

....
I
0
x

,.......,
.!4

L.......J
Q)

~

81

RELATIVE DIELECTRIC CONSTANT
Silica (Si0

2
) glass: dielectric constant = 3.B1

42 I Silica glass measured in cell

40

38 k' = 3.92

36

34~--~-L~~~U----L~~-LLL~--~--~~-W~

10
3

10
4

Frequency
105

(Hz)

Figure 4.11: Dielectric measurement of high purity silica glass

excellent agreement with the literature values for these materials [1.5]. The reported

relative dielectric constant for silica glass is 3.81 while the measured value is 3.92,

which is within 3% of the reported value. The reported relative dielectric constant for

Teflon is 2.10 [1.5J and the measured values for two different Teflon capacitors were

2.16 and 2.18. The deviation from the reported value for the worst case is less than

4%. The results for the relative dielectric constants for these standard materials are

in excellent agreement with the standard reported values and are within the error

-I
o -x

82

RELATIVE DIELECTRIC CONSTANT
Sputtered Gold Teflon Capacitor; k' = 2.1

30~--.--r~~~n---~-'~~~~--~--~~~~

27

24

18

+--+--+
x--x--x

-1
ko = 0.0112 cm_

1
ko 0.0153 cm

* xx-x-x-x:>< x xx-x-x-x:>< x x-x-x-x-x ~ * x-x-x-x-x~ * x-x-x-x-x ~ x- x-x-x-x:><

1S~--~~~~~U---~~~~~~--~--~~~~

10
3 104

Frequency
105

(Hz)

Figure 4.12: Dielectric measurement of Teflon

margin of ±5% determined in the calibration section.

The above experiment confirm the accuracy of the workstation for low capaci-

tance measurements. since the capacitance in each of these tests was less than 2 pF,

and the accuracy of the measured dielectric constants are within .5% of the reported

values.

To summarize the characterization of the conductivity cell, the series resistance

and inductance and the parallel capacitance due to the leads and electrodes in the

83

conductivity cell are 0.3 n, 14 nH and 0.25 pF, respectively. The series and parallel

resonance frequencies for this combination of circuit elements is much greater than the

upper measuring frequency capability of the Solartron. Using the nulling operation,

low capacitance and high impedance dielectrics can be measured with an accuracy

of better than ±5% at the extremes of the measuring range. Relative dielectric

constant values of standard materials using sputtered gold electrodes prepared in the

manner described in Chapter 3 have been measured to an accuracy of 5%. Since fast

ion conducting glass samples will be prepared for impedance measurements in the

same manner as the dielectrics used above, and the typical impedances of these glass

samples will be well within the measuring range of the Solartron, the impedance

analyzer and the conductivity cell performance described above show that the IS

workstation is well suited to the electrical characterization of these glasses.

Temperature Control

A typical time-temperature history during an IS data collection experiment is

shown in Figure 4.13. The setpoints for this run were changed in steps of ten, starting

at 30oC, and steady state was determined as a temperature deviation of less than

0.050 C over 8 minutes.

The approach to steady state temperature response within the conductivity cell

is displayed in Figure 4.14 and is a blow up of the temperature profile in Figure 4.13

between 60 and 70°C. Temperature stability is achieved within 80 minutes for this

experiment and impedance measurements are made within 2.5 0 C of the user specified

temperature. For most experimental setups, the period to achieve steady state is less

84

TIME-TEMPERATURE RESPONSE
115

150
",.......

U
0, 125

Q)
~

=='
100

.p.J

cd
~ 75 Q)

0..
S 50
Q)

E-t
25

7
/

l.7

I Lf

_/ V
Al

I~
1'-5 ••

Next
FIgure

o 0 200 400 600 BOO 1000

Time (mins)

Figure 4.13: Time-temperature history during a data-collection experiment

than 8 minutes, and most impedance measurements therefore are made in less than

50 minutes.

Results for the FIe glass, sodium metaphosphate

To test the complete performance of the workstation, a sodium phosphate glass,

N aP03, which is a typical fast ion conducting glass, was prepared and electrical

measurements were performed using the data collection routine. The measurements

Were analyzed using the data analysis routine and are shown in this section.

8.5

APROACH TO STEADY STATE
72

)
70 ..-

t.)
0 liB - ~

/
CI.)
~ lili
~ ...,:»

= r." ~
CI.)

~ 62 S
CI.)

E-t liD

/
/ 10 K

/
/

r--, ,.
80 Min

300 325 350 375

Time (mins)

Figure 4.14: Approach to steady state temperature response of conductivity cell
ramped from 60°(' to 70°C

Sodium metaphosphate glass was prepared by heating 99% pure sodium meta­

phosphate crystal, purchased from Fisher Scientific, in an open platinum crucible

over a blue flame until it was a liquid. It was than heated in a muffle furnace at

1100 0 e for 30 minutes. The melt was quenched into a flat disk between two smooth

surfaced graphite thermal blocks heated to 250°(' ('"'"' T g) and allowed to cool at a

rate of 0.50 C / min. The quenching blocks produce relatively flat smooth disks 2 cm

in diameter and 2 mm in thickness.

Gold electrodes were sputtered onto the disk as described in Chapter 3. The

86

area of the electrode surface was determined by measuring its diameter with a caliper

and the thickness of the glass was determined using a micrometer. The sample was

hermetically sealed into the cell in a helium glove box.

COMPLEX IMPEDANCE PLANE

6 .-------------------------------------~

5 +--t-I- T - 29.4°C
x·x··x T - 39.6°C

"-
0 13-o-El T - 49.9°C
~ 4

X

..-.. 3
c:
'-"

2
r--,

* N
L-...J 1
S
~

I
0

-1 ~~~--~~--~~~--~~--~~~~~~
.-1 o 1 2 3 4 5 6

* Re[Z]

Figure 4.15: Complex impedance plane plots at different temperatures for NaP03
glass

87

ARRHENIUS
Sodium metaphosphate glass

104

102 "-
Ea "-

"'- a - a Exp(- --)
" o kT

....-f
100 "'-

J "- a 730/0cm .-.. "'- -
a 0

10-2 "-0 " Ea O.71BeV C E "- --..-
"-10-4

.-..
b -..-
co 10-6
~

10-8

10-10
0 10 20 30 40

T
-1 (K)-1 (xl0-4)

Figure 4.16: Arrhenius plot of conductivity of NaP03 glass. The dashed line is
extended above Tg to show the limiting high conductivity

Impedance measurements to determine the conductivity of this glass were per-

formed over the complete frequency range (1Hz to 1MHz) and the temperature was

ramped in steps of 10° starting at 30°C and ending at 170°C. The dramatic change

in resistivity with temperature is shown in Figure 4.15. The typical depressed arcs

decrease in radius as the temperature increases. The real dc conductivity determined

from the complex plane are plotted versus temperature in an Arrhenius plot in Fig-

89

CONDUCTIVITY vs. FREQUENCY
Isothermal frequency scans of a(e,) for NeP0

3
Glass

10-4=---------------------------------------~

10-5
~

I ...-
S
0

10-6

c:
"-'"

10-7

~

* b
10-8 '--'

CI)

~

10-9

10-10~~~=-~~~~~uw~~~~~~~~~~

100 10 1 102 103 104 105 106

Frequency (Hz)

Figure 4.17: Isothermal frequency scans of a(w) for NaP03

The above experiment shows that the activation energy, the limiting high tem-

perature conductivity and the relative dielectric constant of the glass can be measured

accurately using this workstation. The value for the activation energy for N aP03 is

in excellent agreement with that reported by Martin [6]. The value for the limiting

conductivity is slightly larger but is still in good agreement with that reported by

Martin [6]. The relative dielectric constant was measured to within five percent of

the value reported by Martin [6].

90

To show that the conductivity cell seal is hermetic. the following experiment was

performed in a glove box. Two silicon sulfide glass pieces were weighed on an A&D

digital balance to a resolution of Img. One piece was sealed in a glass jar and stored

in the glove box, while the other was sealed in the conductivity cell, taken out of

the glove box, and heated for 12 hours at 200°C in the thermal block. The cell was

air cooled to room temperature and brought back into the glove box. The two glass

pIeces

RELATIVE DIELECTRIC CONSTANT

+---+--+1 Glass in cell

16

14

12

10

k' = 10

8~-L-L~LUU-~~-LWU~ __ ~~~~L-~-L~~

102 103 104 105

Frequency (Hz)

Figure 4.18: Frequency dependence of the real part of the relative dielectric con­
stant for NaP03 glass

91

were reweighed to determine if any weight change occurred due to surface reaction

with the atmosphere in the cell or the glove box. The initial and final weights of

both samples were identical indicating that the cell was indeed hermetically sealed.

This test was performed using silicon sulfide glass because this glass is extremely

hygroscopic and decomposes rapidly in air to give H2S gas and Si02 and is typical

of the fast ion conducting glasses to be studied using this workstation.

N
1
o -x

COMPLEX ELECTRICAL MODULUS
NaP0

3
Glass

15r-.-rn~~-rTTrmm--.,,~~-.-r~~--ro~~

+-+-+ Real
12 x"x"x Imaginary

9

Ei

3

10 1 102 103

Frequency (Hz)

50

40 -S
r-"I

30 .s::
L-.J

X

20 -0
1 w

10

o

Figure 4.19: Frequency dependence of the electrical modulus for NaP03 glass at
30°('

92

CHAPTER 5. CONCLUSIONS

The impedance workstation described in this thesis is capable of making con-

venient, fast, accurate and precise electrical impedance measurements over wide im-

pedance and frequency ranges. Experimental variables for temperature control and

impedance measurements are easy to set through user friendly interfaces between the

computer and the user. The hardware performance of the workstation is summarized

below.

• Impedance Ranges

Resistance 1 n to 100 Mn

Capacitance: 1 pF to 10 mF

• Frequency

Frequency range: 1 Hz to 1 MHz

Maximum number of frequencies scanned per sweep = 50000

• Temperature

- Range: 25 to 230°C

- Isothermal stability: ±O.050C

- Maximum time to stabilize: 80 minutes

• Atmosphere

- Helium or any other inert gas

• Sample size

Maximum diameter = 4cm

Maximum thickness = 0.5cm

93

• Maximum error in measurements

Resistance = ±5%

Capacitance = ±5%

The workstation through the robust menu driven data collection software allows

automated calibration of the conductivity cell, easy input of operator selected experi­

mental parameters and unattended operation of the complete impedance experiment.

Data analysis is facilitated through graphical display of all the impedance related

functions. Conduction activation energy and the limiting conductivity are calculated

and are made available to the user through an Arrhenius plot. Finally, graphs can be

customized on the CRT and prepared in publication-quality for reports by a plotter

or printer.

Improvements in this impedance spectroscopy workstation are, nevertheless, pos­

sible. The frequency window may be w~dened by one more decade by increasing the

upper frequency range to 10 MHz. This is a difficult task since signal leads act

as transmission lines and the effect of line inductance and parasitic capacitance is

dominant at high frequency. Sub-ambient temperature capability should be added,

especially, for the study of highly conductive materials for which, at room tempera­

ture and above, only the resistive part of the spectra can presently be seen. Finally,

a routine to perform 3-D graphics along with the standard graphics already present

would greatly enhance the data presentation and analysis routines.

94

BIBLIOGRAPHY

[1] Baurel, J. E. 1969. J. Phys. Chern. 30: 341-351.

[2] Hodge, 1. M., M. D. Ingram and A. R. West. 1976. J. Electroanal. Chern. 74:
341-351.

[3] Macedo, P. B., C. T. Moynihan and R. Bose. 1972. Phys. Chern. Glasses. 13:
171-175.

[4] Ravine D. and J. L . Souquet. 1974. J. Chim. Phys. 71:693-701.

[5] Cole, K. S. and R. H. Cole. 1941. J. Chern. Phys. 9: 341-351.

[6J Martin, S. W. 1986. Ph.D. Dissertation. Purdue University, Indiana.

[7] Kulkarni, A. R., H. S Maiti and A. Paul. 1984. Bull. Mater. Sci. 6: 201-221.

[8] Tuller, H. L. and M. W. Barsoum. 1985. J. Non-Cryst. Solids. 73: 331-341.

[9] Pye, 1. D., H. J. Stevens and W. C. LaCourse. 1972. Introduction To Glass
Science. Plenum, New York.

[10] Morey, G. W. 1950. The Properties of Glass. Reinhold Publishing Corporation,
New York.

[11] Serway, R. A. 1982. Physics: For Scientists and Engineers. CBS College Publish­
ing, New York.

[12] MacDonald, J. R. 1987. Impedance Spectroscopy Emphasizing Solid Materials
and Systems. John 'Vi ley and Sons, Inc., New York.

[13] Nilsson, J. W. 1983. Electric Circuits. Addison- Wesley, Cambridge, Mass.

[14] Churchill, R. V. and J. "V. Brown. 1984. Complex Variables and Applications.
McGraw-Hill Book Company, New York.

95

[1.5] Buchanan, R. C. 1986. Ceramic Materials For Electronics. Marcel Dekker,lnc.,
New York.

[16] lsard, J. O. 1988. Solid States lonics. 31: 187-196.

[17] Elliot, s. R. 1988. Solid State lonics. 27: 131-149.

[18] Weingarten,1. R. 1955. Annual Report of the Conference on Electrical Insulation.
53.

[19] Morse, C. T. 1973. J. Phys. E. 7: 6.57-662.

[20] Klein, R. M. and D. A. Ploof. 1977. Ceramic Bulletin. 57(6): 582-586.

[21] Engstrom, H. and J. C. Wang. 1980. Solid State lonics. 1: 441-459.

[22] Staudt, U. and G. Schon. 1980. Solid State Ionics. 2: 17.5-183.

[23] Boukamp, B. A. 1984. Solid State lonics. 11: 339-346.

[24] \Veast, R. C. 1977. Handbook of Physics and Chemistry. CRC Press Inc., Cleve­
land.

[25] Press, W. H., B. P. Flannery, S. A. Teulosky and W. T. Vetterling. 1986. Nu­
merical Recipes The Art of Scientific Computing. Cambridge University Press,
New York.

[26] MacDonald, J. R., J. Schoonman and A. P. Lehnen. 1981. J. Electroanal. Chern.
131:77-95.

[27] Hurt, R. L. and J. R. MacDonald. 1986. Solid State Ionics. 20: 111-124.

[28] Kingery, W. D., H. K. Bowen and D. R. Uhlman. 1976. Introduction to Ceramics.
John Wiley and Sons Inc., New York.

96

ACKNOWLEDGEMENTS

I would like to thank my major professor Dr. Steve W. Martin for tolerating my

numerous mistakes and persistent questioning, and for his consistent help and advice,

especially, during the writing of this thesis.

Thanks are also due Dr. Micheal Berard, Dr. Glenn E. Fanslow, Dr. Edwin C.

Jones and Dr. David M. Martin for serving on my graduate committee.

Sincere thanks are due to John Rundle for suggesting improvements in the design

of the conductivity cell and for daily help even in the most trivial of problems.

A special thanks to Jim Hudgens and Mark Wagner for preparation of glasses

while my hand was broken, to Joe Kincs for general help in the laboratory, and to

Dave Juedes for help in the drawings of some of the figures in this thesis.

I am grateful for the moral support and constant encouragement throughout the

last year and during the writing of my thesis to two very good people, my brother

Dipak Patel and Heidi ·Williams.

Most of all, I wish to thank my parents, Mr. Naginbhai Patel and Mrs. Urmilaben

Patel who have been a source of encouragement throughout my education; I could

not have accomplished so much without their love and support.

Acknowledgement is also gratefully made to the National Science Foundation

and Iowa State University for the financial support of this work.

97

APPENDIX A. DEFINITIONS

VARIABLE UNITS DEFINITION

A cm2 Electrode area normal to electric field

B U Conductance

C F Capacitance of cell with solid dielectric

Co F Capacitance of cell - vacuum dielectric

d em distance between electrodes

E V/cm Electric field strength

Ea eV Conduction activation energy

G U Susceptance

I C /s (A) 8Q/5t: current

ko cm- 1 Cell constant of dielectric: d/ A

k* k' kif , , cm-1 Complex relative dielectric constant

1\1* M' M" , , cm/F Complex, real and imaginary modulus

P FV/cm2 Electric polarization

Q C Total charge

R n Resistance

98

VARIABLE UNITS DEFINITION

Tstart °c Starting temperature of sample

T final °c Final temperature of sample

Tine °C Starting temperature of sample

X n Reactance

y* yl yll , , U Complex, real and imaginary admittance

z* Z, z" , , n Complex, real and imaginary impedance

tan 8 unitless Loss tangent: -E" 1/

Eo Flcm Dielectric permittivity of free space

E* , / " , € Flcm Complex, real, imaginary dielectric

constant

* , " p ,p, p , ncm Complex, real, imaginary resistivity

(J'o U Icm High temperature limiting conductivity

(J'* , (J" (J''' , , U Icm Complex, real, imaginary conductivity

99

APPENDIX B. DIELECTRIC THEORY

The capacitance, C, is defined as the ratio of the magnitude of the electrical

charge stored on two conducting plates separated by a nonconducting material to the

magnitude of the potential difference between them:

Q c= -.
V

(B.1)

The unit of capacitance is coulombs per volt and is called farads (F) after Michael

Faraday. The capacitance of a vacuum capacitor is determined purely by its geometry;

for parallel plate capacitors, the capacitance is proportional to the area A of its plates

and inversely proportional to the plate separation d (11]. The proportionality constant

is called the dielectric permittivity and is denoted by E and has the units of F I cm.

In a vacuum, the capacitance is given by

(B.2)

where the subscript implies free space, EO is called the absolute permittivity of free

space (8.854 x 10-14 F/cm) and the ratio d/A is called the cell constant ko. The

capacitance of a capacitor with the same geometry but with a nonconducting material

inserted between the plates is given by

(B.3)

100

where E is the dielectric permittivity of the material. The ratio of the capacitance

with a nonconducting material between the conductors to the capacitance with free

space between the conductors is the same as the ratio of the two dielectric constants

and is called the relative dielectric constant k':

, C E
k = - =-.

Co EO
(BA)

The relative dielectric constant is greater than one for all materials. If a sinusoidal

voltage V* = Voe jwt is applied to a capacitor then Equation B.1 can be rewritten

as:

(B.5)

The current during discharge of the capacitor can be determined by taking the first

derivative of Equation B .. 5 with respect to time and rearranging Equation BA and

substituting for C to give:

J* 8Q . k'C V* = Tt = JW 0 •

By rearranging Equation B.6, the impedance of the capacitor is

V* 1
ZC----~­, - J* - jwk'Co ·

(B.6)

(B.7)

The current is an imaginary number implying that it leads the applied voltage by 90 0
•

No real current is measured through the capacitor and therefore no heating losses are

observed. In real capacitors, however, such ideal behavior is not observed. Electric

heating is detected and the measured phase shift is less than 90 degrees. This can be

mathematically corrected by substituting k' with k* = k' - jk", a complex number.

The current is then given by

J* = wk" Co V* + jwk' Co V*. (B.8)

101

where kIf in the above equation is called the relative loss factor because it gIves

rise to a conduction current I R. k' is called the relative dielectric constant and is

proportional to the charge storing ability of the capacitor. Figure B.1 shows the

graphical interpretation of these phenomena.

raxi5

I

X axis

Figure B.1: Charging and loss current for a capacitor

From the magnitude of these currents, a quantity called the dissipation factor

can be defined as:

I k"
tan(8) = Ji = -

Ie k'
(E.9)

where 8, I R and Ie is defined in Figure B.!. This is a measure of the conduction

current relative to that of the displacement current or the ratio of the ohmic loss

in the material to the energy stored. A material is said to be a good conductor if

kIf ~ k' and a good insulator if k' ~ k". The reciprocal of this number is called the

quality factor Q and is a frequently used parameter during design of electronic devices

102

and circuits. Good insulators usually have a dissipation factor less than 0.001 and a

relative dielectric constant less than 30. Materials used in capacitors have k' value

greater than 30 and dissipation factors less then 0.001 and are called dielectrics [15].

The values of k' and kif can be calculated from the impedance data and these

equations are derived here. Equation B.8 is divided through by the voltage, to give

the admittance. The admittance of a dielectric material is then given by

A* k"C' 0 k'C = W' 0 +)w· o· (B.10)

Dividing both sides of Equation B.10 by wCo and multiplying by -j yields the result:

k* k' ok" 0 A* 0 1
. = -) = -) wCo = -) v;CoZ*' (B.ll)

It has been shown from the derivation above that all the impedance related functions

used in IS can be derived from two material properties - the relative dielectric constant

k' and the relative loss factor k".

So far the dielectric permittivity has been described mathematically, a macro-

scopic description of the behavior of dielectric materials in the presence of an electric

fields is presented next.

Polarization A dielectric reacts to an electric field because it contains charge

carriers and dipoles that can be displaced. A dipole consists of two equal and opposite

charges separated by a distance. The phenomenon of displacement of dipoles is called

polarization which is the ability of a material to neutralize part of an applied field.

The voltage in a capacitor containing a dielectric is given by

Q/k' v=-­
Co

(B.12)

103

Battery

Capacitor

Plates + + + +

\ Air

\
+++1+++

I Dielectric k' I
--

Figure B.2: Charge stored on capacitor with dielectric is increased by k'

where only a fraction (1/ k') of the total charge Q sets up an electric field E to give

the potential difference V. The rest of the charge is neutralized by the polarization

of the dielectric. This means, for the same applied voltage, the charge stored in a

capacitor with a dielectric is greater than a capacitor with free space (see Figure B.2).

Charges on the plates of a capacitor are cancelled by dipoles induced by the

electric field E. The electric flux density or electric displacement D is given by (1)

the charge density established by the applied electric field without the dielectric and

(2) the additional charge density equal to the neutralized charge due to the electric

field induced by the dipoles. The polarization is a function of the electric field and

therefore the dielectric displacement can be written as shown:

D = toE + P = tok* E. (B.13)

The unit of D is charge per unit area. The total electrical displacement D in a material

is related to the applied field E by the complex relative dielectric permittivity k*. By

rewriting the Equation B.13, the polarization can be expressed as

P = tok* E - toE = to(k* - 1)E. (B.14)

104

The polarization P has the units of surface charge per unit area, but it can be equated

to the number of dipoles per unit volume and is defined as

P=NJ.L (B.1.5)

where N is the number of dipoles per unit volume and J.1 is the average dipole moment

of the dipoles. The average dipole moment is a function of the local electric field E'

and a proportionality factor a. The electric field locally acting is not the same as the

applied electric field due to the polarization of the surrounding medium. a is called

the polarizability, which is a true material property, and is a measure of the dipole

moment per unit of local field strength. Dipoles of different nature and environment

are likely to be present in a dielectric and therefore a more appropriate expression for

the polarization is
n

p = ~ N'a'E~ L....J 1 1 1

i=1
(B.16)

where the subscript i represents each set of dipoles. If it is assumed that the local

electric field E' is the same for all the dipoles then E', as first calculated by Mosotti

in [28], is given by

, P E * E = E + - = -(k + 2).
3Eo 3

(B.17)

Substituting Equation B.17 and Equation B.14 into Equation B.16 and rearrang-

ing the terms gives the final result which is better known as the Clausius-Mosotti

equation [28]:

k* - 1 1 n
----~N·a·
k* + 2 - 3E .L....J 1 2'

0 1=1
(B.18)

This equation describes the relationship between the relative dielectric permittivity

of a material, the number of polarizable species Ni and the in polarizability, ai'

105

The four major types of polarization in solids are (1) electronic ete (2) molecular,

atomic or ionic eta (3) orientation etd and (4) space charge polarization eti' Each

dipole in the presence of a slowly varying electric field will keep up with the field and

contribute to a pure capacitance. The current therefore leads the applied field by

90 0
. As the frequency of the changing field increases, some types of dipoles may not

be able to keep up and the current will lag by an angle 8 implying that a component

of the current is in phase with the applied field. This is due to an inertia-to-charge

movement for orientation and space charge type polarization. The frequency at which

maximum loss occurs is called the relaxation frequency. As the frequency increases

even further, the natural absorption frequency of the atomic bonds and electrons will

be reached and further losses will be observed. This frequency is labeled the resonant

frequency. Each of the four classes of polarizable species is described next.

Electronic Polarization This occurs in all materials because they

consist of ions which are surrounded by electron douds. The center of gravity of the

negative electron cloud in relation to the positive atom nucleus shifts in the presence

of a varying field. As electrons are very light they can respond to alternating fields

quickly and contribute to the dielectric constant at frequencies well into the optical

spectrum - 1015 Hz.

Molecular, Atomic and Ionic Polarization This physical process

occurs in the infrared region (1012 _10 13 Hz). Bonds between atoms are stretched by

applied electric fields to give rise to a dipole. Resonance losses occur at a frequency

that depends upon bond strength between the ions and the reduced pair mass of the

106

atom pair. The infrared absorption will be broad if there are several types of ions

and a distribution of bond strengths.

Orientation Polarization This type of polarization is due to per-

manent molecular or ionic or induced dipoles. They orient with the oscillating field

with the help of thermal energy. Molecules containing permanent dipoles may be

rotated against a restoring force about an equilibrium position. These dipoles have

a relaxation frequency of approximately 1011 Hz. Rotation of dipoles between two

equivalent equilibrium positions is another mechanism. Such oscillations occur con-

tinuously as thermally activated ions hop in the direction favored by the electric field.

It is these ions which contribute to the dc conductivity. The frequency at which the

hopping ion can no longer keep up with the alternating field is called the relaxation

frequency and this may be observed in the impedance part of the electromagnetic

spectrum.

Space Charge Polarization Space charge occurs when mobile ch-

arge carriers are impeded by a physical barrier that inhibits charge migration. The

charges are not supplied or discharged at an electrode. This charges contribute to a

large capacitance but only at frequencies less then 10Hz.

The relation between the relative dielectric permittivity and the polarizability

can now be written in terms of the species described above as

(B.19)

Low frequency measurements of the relative dielectric permittivity is a measure of

all the polarizable species. As frequency increases the relative dielectric permittivity

k~
-.>c:

k'·
I

k' e

-.>c:

I
I

SPACE CHARGE
;RELAXATION

107

-t----------
I I

I _L _________ ~------
I I

DIELECTRIC
LOSS SPECTRA

CIRCUIT
ANALOG

Cj

Figure B.3: Dielectric dispersion

10 16 w (FREO.l

decreases as the relaxation or resonant frequency is passed for the various speCIes.

At the upper extreme of the frequency range during impedance measurements, k* is

only a function of the electronic and atomic polarization. The behavior of k' and kif

versus frequency is shown in Figure B.3 along with an equivalent circuit representation

(1.5J. Observe the inclusion of the series resistance in the space charge and ion jump

relaxation circuits, this is to represent the actual work done to move the dipole. The

relaxation frequency is given by 1/(211"RC) and the resonant frequency is the natural

absorption frequency of the electronic or bond dipole.

For an in-depth discussion the reader is referred to one of the following refer-

ences (9, 15, 28J.

108

APPENDIX C. MATHEMATICAL METHODS

Data Conversion

Data are stored in terms of the magnitude and phase of the impedance and to

determine the other impedance related functions, the data have to be converted from

the basic form to the new. The conversions are given here and are based on the

definitions given in Chapter 2 and Appendix B.

Impedance

Resistivity

Admittance

Conductivity

, z =1 z 1 cosO

z" =1 z 1 sinO

, I Z !
p = ~cos8

/' = ~sinO
ko

, 1
.4 = mcos(-8)

.4" = I ~ 1 sin(-(})

, ko
(T = -cos(-())

1 Z I

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

109

11 ko .
(C.S) IT = mszn(-e) ,

Relative Dielectric Permittivity G
k' = (C.9)

k" =
k I Z I sin{ -e) (C.lO)

WEo

Modulus
, WEo I Z I

sine (C.1l) lVI =
ko

M"=
WEo I Z I

case (C.12)
ko

Loss Tangent

tan5 =
cost -8)

(C.13)
sin(-e)

Rp - Cp

R -l£l
p - cose (C.14)

c __ sine
p - wi Z I (C.15)

Rs - Ls

Rs =\ Z I cose (C.16)

Ls =
I Z I sine

(C.17)
W

110

Least-Squares Algorithms

The algorithm to determine a and b for the equation of a best-fit straight line

y = bx + c (C.l8)

is determined by minimizing the sums of the squares of the deviations. The Pascal

algorithm to do this is given below in [25]. The subroutine returns the values for a, b,

and their standard deviations siga and sigb, the chi-square and the goodness of the

fit q when the data set x and yare input. A thorough discussion of the algorithm is

given in reference [25].

PROCEDURE fit(x,y: glndata; ndata: integer; sig: glndata;
VAR a,b,siga,sigb,chi2,q: real);

(* Programs using routine FIT must define the type
TYPE

glndata = ARRAY [1 .. ndata] OF real;
in the main routine. *)
VAR

i: integer;
t,sy,sxoss,sx,st2,ss,sigdat: real;

BEGIN
sx := 0.0;
sy := 0.0;
st2 := 0.0;
b := 0.0;
FOR i .= 1 to ndata

sx := sx+x[i] ;
sy .= sy+y[i]

END;
ss := ndata
sxoss .= sx/ss;
FOR i := 1 to ndata

t := x[i]-sxoss;
st2 := st2+t*t;
b : = b+t*y [i]

DO BEGIN

DO BEGIN

{ Accumulate sums }

111

END
b := b/st2; { Solve for a,b, siga and sigb }
a := (sy-sx*b)/ss;
siga sqrt((1.0+sx*sx/(ss*st2»)/ss);
sigb := sqrt(1.0/st2);
chi2 := 0.0;
FOR i := 1 to ndata DO BEGIN { calculate chi-square}

chi2 := chi2+sqr(y[i]-a-b*x[i])
END;
q := 1.0;

sigdat := sqrt(chi2/(ndata-2);
siga := siga*sigdat;
sigb := sigb*sigdat
q := gammq(0.5*(ndata-2),O.5*chi2)

END;

The matrix algorithm for the determination of the best-fit semi-circle is given by

J. MacDonald et al. [26] and the software algorithm is given by S. Martin [6]. The

loci of a circle are defined by the following equation

2 2 2
T =(x-xo) +(Y-yo). (C.19)

The algorithm to calculate Xo, Yo and r is given in a terms of summations. The x-axis

shift is given by

(Ly3 + Lyx2)LyX2 - (Lxy2 + LX3)Ly2
Xo = L(xy)2 _ Lx2y2 (C.20)

and the y-axis shift is

(LX 3 + Lxy2)Ly,r - (Lxy2 + I; y3)I;x2

Yo = I;(xy)2 _ Lx2y2 (C.21)

and r is calculated using the center of the circle with the equation given below

j 2 2 r = Xo + Yo. (C.22)

112

The x-axis intercept is calculated by solving for x when y is equal to zero and is given

below:

(C.23)

113

APPENDIX D. PASCAL SOURCE CODE

The source code for the data-collection and data-analysis package is written in

Turbo Pascal Version .5.0. The data-collection module, in addition, uses a Pascal

source library provided by BBS ELECTRONICS INC. to drive their GP1B-IOOO 10-

card. The data-analysis module uses HGRAPH Pascal routines to display graphics

and plot to different devices. Since, these are not standard routines, a description of

those routines used in each program is summarized before presenting the source code.

Throughout the programming environment, extensive use of screen files for intro-

ducing the software, data input windows and menus have been used to create a user

friendly interface. This screen files were made by using a software package from the

PC-SIG shareware library called BOX.EXE1 and the Pascal source code to display

the files within a Turbo Pascal environment. A list of the screen files used in this

program are shown below.

CLR_HELP.SCR
GRP _SET1. SCR
INTRO.SCR
IS_WKSTN.SCR

C_MENU_1.SCR
GRP_SET2.SCR
INTROGRP.SCR
THERMAL.SCR

D_CHOICE.SCR
IMPED1.SCR

IS_WKSTN.LOG

The source code is broken into four sections, the first is for the package which

1 Nescatunga Software, Box 5942, Katy, TX 77450.

114

links the two modules together. The next two sections contain the data-collection

and the data-analysis source code, respectively. Some procedures are used by both

modules and are stored in libraries called Turbo Pascal units and the source code for

these units are found in the last section.

Is Wkstn.Pas

Both the data-collection and the data-analysis programs are independent of each

other and are stored in their executionable form. The two programs are linked to-

get her by this source code.

program is_wkstn;
{$M $4000,O,O}
uses

getfiles,dos,crt;
var

ch : char;

procedure write_errors(stng:string);
begin

gotoxy(24,O)j
write(stng);
delay(3000);
ch .- 'e';

endj

begin
repeat

Screen_file('is_wkstn.scr') ;
ch := readkeyj
swapvectors;
case ch of

'1', 'c', 'C' begin
ch := '1';
Exec('decl0.exe',' ,)

, 2' , 'A', 'a'

'3', 'e', 'E'
end;
clrscr;
swapvectors;

end;
begin

115

ch := '2';
Exec('conv18.exe' ,")

end;
ch : = , 3' ;

if (ch = '1') or (ch='2') then
case doserror of

2 : write_errors('File '+ch+' Not Found');
8 : write_errors('Not Enough Memory!');

end;
swapvectors;

until ch = '3';
End.

116

Data-Collection Code

Automation of the workstation is done using the IEEE-488 parallel interface using

a GPIB-lOOO interface card and software from BBS ELECTRONICS INC. Only five

procedures, to initialize or abort, to send or receive data and to serial poll the status

byte of an instrument, are used in this program. The format for each procedure

is described here to help make the source code more readable, but for complete

discussion the reader is referred to the BBS READ. ME file.

enter(in string, device#) (D.l)

Procedure D.l is used to receive data from the GPIB, where the data are received

from the instrument with the GPIB address device# and is stored as a string in the

data variable instring.

output(outstring, device#) (D.2)

Data are output from the computer to an instrument using procedure D.2, where the

outstring is the data sent and device# is the address of the instrument. Finally, the

serial polling of the status byte of an instrument is used to determine whether the

Solartron has completed a series of measurements. A function is used to perform this

task and is given below.

spoll(device#) (D.3)

To initialize the GPIB, the procedure INIT is used and to abort an operation ABOR­

TID is used.

117

{ D A T A COL LEe T MOD U L E

GPIB Addr.

28
15
23(2)

Instrument

Impedance Bridge
A/D converter
D/A Converter

{$R-} {Range checking off}

Type

SOLARTRON 1260
HP3478A
TEK 50M20

{$B+} {Boolean complete evaluation on}
{$S+} {Stack checking on}
{$I+} {I/a checking on}
{$N-} {No numeric coprocessor}
{$M 65500,16384,655360} {Turbo 3 default stack and heap}
{$V-}

Uses
getfiles, edtool, Crt, Dos;

{$I IEEE488.PAS} {include the gpib driver}

type

const

strng
strngl

= string[255];
= string [14] ;

}

bridge
multimeter
multifunc
crlf

integer=28; {Impedance Bridge = Adr(28) }

var

integer=15; {Digital rnultimeter }
integer=23; {Multifunction Interface }
string [2] =#13#10;

init_temp,final_temp,step,i,
data_points,integ_tirne

instring
done

:integer;
:bus_string;
:boolean;

118

: string [SO] ;
outfile, infile , Arhenius, trans, logfile, sst :text;
temperature,volt,seconds,zero,constant,start, final:real;
ans , Sol_setup, ch :char;

{==
This subroutine initializes all the IEEE interfaceable devices, the

initial setup can be modified in the CONST block.
--}

procedure initialize_alI_devices;
const

meter_setup
multifunc_setup
d_a_setup

:string[30]='INIT;DCV;CALC ON;AVE 10;MODE TRIG';
:string[10]='INIT;' ;
:string[20]='SEL 2;DT OFF';

begin

end;

zero:=1;
sol_setup := '9';
integ_time := 0;
data_points := 0;
init; {This are GPIB commands to initialize the}

{cable} abortio;
output(meter_setup+crlf,multimeter);
output(multifunc_setup+crlf,multifunc);
output(d_a_setup+crlf,multifunc);
output(crlf,multifunc) ;

{==
Uses GetTime procedure to return a time string

--}

function time:strng1;
var

hour_ss, minute_ss, second_ss, sec100 :word;
temp1,temp2 :strng1;

119

begin

end;

GetTime(hour_ss, minute_ss, second_ss, secl00);
str(hour_ss, templ);
str(minute_ss, temp2);
if minute_ss < 10 then

temp2 := concat('O', temp2);
temp! := concat(templ, ':', temp2);
str(second_ss, temp2);
if second_ss < 10 then

temp2 := concat('O', temp2);
time := concat(templ, ':', temp2);

{==
Procedure creates a directory where all the data files for a

particular sample are going to be stored for each temperature.
--}

procedure create_data_storage_area;
var

diskspace :real;

begin
repeat

end;

write_data_situation(red,white,'Checking If Enough Space! I);
diskspace := DiskSize(l);
if diskspace < le5 then

begin
Beep; Beep;
write_data_situation(red,white,
'Less Then 100 KBytes of Memory, PUT NEW DISK in Drive A: ');
delay(4000);
write_data_situation(red.white,'Press SPACE BAR when ready');
repeat until ReadKey = Chr(32);

end;
write_data_situationCblack.black.");
until diskspace > le5;

{==

120

Makes filenames for each isothermal temperature
--}

procedure create_isotherrnal_filenameCsuffix:integer);
var

new _file_name
disk_space
error_chk

begin

:strng;
:real;
: integer;

strCsuffix,new_file_name);
new_file_narne:='a:'+file_narne+' .'+new_file_name;
open_file_to_writeCoutfile,new_file_narne,error_chk);

end;

{==
Calculates the temperature using the quartic equation given in the

manual for the thermocouple type K
--}

procedure calculate_type_kCvolt:real;var temperature:real);

const
aO real=O; { M4iA3 manual }

a1 real=2.4383248e-2 { T > 0 }

a2 real=9.783025ie-9
a3 real=3.6276965e-12;
a4 real=-2.5756438e-16;
bO real=-1.4999; { bx - calibrated fifth }

bi real=1.11998; { order fit }

b2 real=-2 .41ge-3 ;
b3 real=1.6655e-5;
b4 real=-4.644e-8;
b5 real=4.3487e-ii;
cO real=-1.4999; { T > 0 }
ci real=2.3783697e-2
c2 real=-2.43822i7e-6 ;
c3 real=-6.8203073e-i0 ,
c4 real=-9.485403ie-14;

begin
volt:=volt*le6;

121

if volt > 0 then
temperature:= aO+(a1+(a2+(a3+a4*volt)*volt)*volt)*volt

else
temperature:= cO+(c1+(c2+(c3+c4*volt)*volt)*volt)*volt

if temperature > 30 then
temperature:=bO+(b1+(b2+(b3+(b4+b5*temperature)*temperature)*

temperature)*temperature)*temperature; end;

{==
Use the HP3478A multimeter to read the voltage for the type K

--}
procedure get_type_kevar temperature:real);

var
in_string
volt
j

:strng;
:real;
: integer;

begin
repeat

output ('DCV' ,15);
enter(in_string,15);
j := pose#13,in_string);
delete(in_string,j,5) ;
val(in_string,volt,j);
calculate_type_k(volt,temperature);

until temperature> -240;
end;

{==
Calculates the temperature for the temperature controller in order to

get the true set temperature - coefficients form least square fit
---}
procedure calculate_type_T(var temperature:real);

const
bO :real=-12.47; { bx - coefficients to convert }
b1 :real=1.52332; { temperature to offset }
b2 :real=-7.732e-3; { for the controller }

b3
b4
b5

122

:real=5.4641e-5;
:real=-1.828e-8;
:real=2.3275e-l0;

begin
temperature:=bO+(bl+(b2+(b3+(b4+b5*temperature)*temperature)*

temperature)*temperature)*temperature;
end;

{==
Check if Solartron is done making a sweep or a measurement

--}
procedure check_if_operation_completed(status_byte : integer);
var

k
temp

begin

integer;
real;

final := start; {*Temperature at sweep begin *}
repeat

k := spoll(bridge); { Check if sweep is complete}
gotoxy(30,25);
write('Please Wait !! ',k);
if (init_temp <> final_temp) and (k = 2) then {thermal prog ?}

begin
get_type_k(temp);
if abs(temp - start) > abs(final - start) then

final := temp
end;

until k = status_byte ;
end;

{ srq+sweep+measure = 70 }

{==
Procedure performs the ZERO-OPEN compensation function in the
Impedance Bridge to subtract parasitic capacitance within the

conductivity cell.

--}
procedure send_data(data: bus_string);

begin
output(data+crlf,bridge);

{ simplifies data xmit }

delay(1000) ;
end;

123

{==
Option 2: Initalize Solartron

--}
procedure Initialize_Solartron(ch:char);
var

i : integer;
command string [10] ;
comment string [67] ;

begin
clrscr;
writeln;
writeln('Edit Configuration File (yin) ?');
readln(ans);
repeat

if (ans = 'y') or (ans = 'Y') then edit_file('sol_set.up'+ch);
send_data('RS'+ch);
Open_file_to_Read(infile, 'Sol_Set.Up'+ch,i);
textbackground(blue);
textcolor(white);
clrscr;

writeln('PLEASE WAIT COMMANDS SENT TO SOLARTRON AS PRINTED! ');
writeln;
readln(infile,comment);
writeln(cornment); writeln;
readln(infile) ;
readln(infile,command,cornment);
while not eof(infile) do

begin
writeln(cornmand,cornment);
trim(command) ;
send_data(cornmand);
if pos('SF',command) <> 0 then

begin
delete(command,1,2);
val (cornmand ,data_points ,i)

end;

124

end;
readln(infile,command,comment);

end;
close(infile);
writeln;
writeln('Reset configuration on Solartron (y/n) ?');
readln(ans);
until (ans = 'n') or (ans = 'N');

{==
Option 3: Calibrate Conductivity Cell

--}
procedure zero_open(number :char); var ans : char;

begin
ClrScr;
send_data('rs'+number); { Recall setup number }
send_data('*sre4'); { Enable SRQ - sweep complete }
send_data('nI2'); { Evaluate Null }
writeln('Please S H aRT circuit the Conductivity Cell! !!');
writeln;writeln('Press <Enter> to continue!! ,);
readln;
send_data('cp'); { Pause/Cont}
check_if_operation_completed(70);
send_data('*sre4'); { Enable SRQ - sweep complete}
GotoXY(6,O);
writeln('O PEN Circuit Conductivity Cell!! !');
writeln;writeln('Press <ENTER> when ready!! ');
readln;
send_data('cp'); { Pause/Cont
check_if_operation_completed(70);
writeln;
send_data('nI1');
send_data('cs'+number);
send_data('ss'+number);

{ Turn Null On
{ Clear setup #

writeln('Auto Integration on (y/n) ? ,);
readln(ans);
if (ans = 'y') or (ans='Y') then

send_data('au1');

}

}
}

writeln('norrnalize complete');
end;

125

{==
Magnitude and phase results measured over the frequency spectrum at a

constant temperature using the Solartron 1260
--}

procedure impedance_measure;
var

j ,err : integer;

{--------------------------------}
Break Input String: F, Z, theta

{--------------------------------}
procedure clean_imped_data(data:bus_string;var freq,mag,phase:real);

begin

bus_string;
integer;

cut_data := COPY(DATA,1,14);
if pose' ,',cut_data) = 14

then
begin

data := ' ,'+data;
delete(cut_data,14,1);

end;
val(copy(cut_data,1,14),FREQ,i) ;
CUT_DATA := COPY(DATA,16,11);
val(copy(data,16,11),mag,i);
CUT_DATA := COPY(DATA,28,11);
val(copy(data,28,11),phase,i)

end;

{--------------------------------}
Prompt Solartron to Measure

{--------------------------------}
procedure read_data;

126

var
j integer;

begin
send_data('OP2,O'); { Turn output to display }
send_data('*sre4'); { Enable SRQ - sweep complete }
send_data('RE') ; { Begin sweep }
check_if_operation_completed(70);

end;

{--------------------------------}
Write raw & calc. data to Floppy

{--------------------------------}
procedure write_to_file;

var
data_in
j , err

bus_string;
integer;

magnitude, phase ,frequency array [1 .. 200] of real;

{--------------------------------}
Non-Linear Least-Squares Routine

{--------------------------------}
procedure calculate_arhenius_data;

canst
pi : real=3.141593;

var
lsq
j ,k,l,One_MHz
xc, ye, r, sigma, xl, x2, scale
Re , 1m

begin
for k := 1 to data_points do

array [1 .. 7] of real;
integer;
real;
array [1 .. 200] of real;

begin
Re[k]
1m[k]

:= Magnitude[k]*Cos(phase[k]*pi/180) ;
-Magnitude[k]*Sin(phase[k]*pi/180);

end;
k := data_points - 1;
while frequeney[k] > le6 do k := k - 1;

end;

127

One_MHz := k ;
while «Re[k] > Re[k+l]) and (Im[k] > Im[k+l]))
while «Re[k] > Re[k+l]) and (Im[k] < Im[k+l]))
if (One_MHz - k) > 5 then

do k:=k-l;
do k:=k-l;

begin
for j:=l to 7 do lsq[j]
1 := k;
xl := Re[k]; x2 := Re[k] ;

O' ,

for j := k to One_MHz do max_min(j,xl,x2,Re[j]);
if x2 > le5 then scale := 1/x2 else scale := 1;
for j := k to One_MHz do
begin

Re [j] := scale * Re [j]
Im[j] := scale * Im[j]
lsq [1] - lsq [1] + Re[j]*Re[j]; {SUM
lsq[2] . lsq [2] + Re[j]*Re[j]*Re[j]; {SUM
lsq[3] - lsq [3] + Re[j]*Im[j]*Im[j]; {SUM
lsq[5] - lsq[5] + Im[j] *Im[j] ; {SUM
lsq [6] - lsq [6] + Im[j]*Im[j]*Im[j]; {SUM
lsq [7] := lsq [7] + Re[j]*Re[j]*Im[j]; {SUM

end;
yc := lsq[4]*lsq[4] - lsq[1]*lsq[5];

Re~2 }

Re~3 }

Relm~2 }
Im~2 }

Im~3 }

ImRe~2 }

{ yc =(ReY)~2 - (X~2 Y~2)}

xc := «lsq[6]+lsq[7])*lsq[4] -(lsq[3]+lsq[2])*lsq[5])/yc;
yc := «lsq[3]+lsq[2])*lsq[4]-(lsq[6]+lsq[7])*lsq[1])/(-yc);
R := O.5*scale*sqrt(xc*xc + yc*yc);
yc := yc*scale/2;
xc := xc*scale/2;
sigma := constant/(sqrt(r*r - yc*yc) + xc);
append(arhenius);
writeln(arhenius, temperature, sigma, l/sigma);
close(arhenius);

end;

begin
send_data('CZ1');
send_data('fdO');
send_data('op2,1');

{ Data output in form of Z and theta }
{ Goto beginning of data file }
{ Turn on output to GPIB }

128

repeat
send_data('FO'); { Goto beginning of data file }
j := spoll(bridge)

until (j = 16) or (j = 22); {Means Measurement AVailable }
FOR J := 1 TO data_points DO

BEGIN
enter(data_in,bridge); {Read Data}
clean_imped_data(data_in,frequency[j] ,rnagnitude[j] ,phase[j]);
if frequency[j] <> 0.0 then

writeln(outfile,frequency[j] :14,' "

end;
close(outfile);
send_data('OP2,0');
calculate_Arhenius_data;

end;

magnitude[j] :11,' , ,phase[j] :8:3);

{--------------------------------}
begin

send_data('bk');
read_data;
write_to_file;
str(init_temp,instring);

{ Interrupt all operations}

instring := 'a:\nulloff\'+file_name+' .'+instring;
open_file_to_write(outfile,instring,err);
send_data('NLO');
write_to_file;
send_data('NL1');

end;

{==
Procedure gets data for the temperature range and step between each

impedance measurement.
--}

procedure get_initial_data(var init_ternp,final_temp,step:integer);

type
data_string = string[80];

129

var
name, composition, cell_constant, comments, data: data_string;
year, month, day, Dayofweek word;
returnCode, error_chk integer;
position byte;
directory strng;
f file;

{==
User input window to enter data

--}
procedure data_box(var position:byte; x,y,size:byte; data_type: char;

var data: data_string; var intgr_string: integer);
begin

GotoXY (x,y);
if data_type = '5' then ptoolent(data,data_type,size,O,ReturnCode)

else ptoolent(intgr_string,data_type,size,O,ReturnCode);
case returncode of

72 if position> 1 then position := position - 1
else beep;

1,2,80 position := position + 1;
end;

end;
{===

Read Solartron Config. file for Integ t, and #pts
---}
procedure get_solartron_data(ch : char);

var
infile : text;
command string[10] ;
comment : string [67] ;

begin
Open_file_to_Read(infile,'Sol_Set.Up'+ch,i);
readln(infile,comment);
readln(infile);
readln(infile, command, comment) ;
while not eof(infile) do

begin

end;

130

trim(cormnand);
if pos('SF',cormnand) <> 0 then

begin
delete(command,1,2);
val(command,data_points,i)

end;
if pos('IS',cormnand) <> 0 then

begin

end;

delete(command,1,2);
val(command,integ_time,i)

end;
readln(infile,command,comment);

if data_points = 0 then
begin

data_points := 200;
send_data('SF200')

end;
if integ_time = 0 then

begin
integ_time := 1;
send_data('IS1 ')

end;
close(infile) ;

begin
screen_file('imped1.pck');
create_data_storage_area;
name := "; composition :=
file_name:= "; init_ternp
TextBackground(Black);
TextColor(Yellow);
position := 1;
repeat

case position of
1: begin

"; cell_constant := "; comments :=

0; final_temp := 0; step := 0;

data_box(position,19,7,14,'S' ,file_name,error_chk);
repeat

directory := 'a:\'+file_name;

" . ,

{$I-}
ChDir(directory);
{$I+}

131

error_chk := IOResult;
if error_chk = 0 then

begin
write_data_situation(red,white,

'DIRECTORY exists! OVERWRITE? ');
data := readkey;
write (data) ;
write_data_situation(red,white,");
TextBackground(Black);
TextColor(Yellow);.
if (data = 'y') or (data = ,y,) then

begin
open_file_to_read(infile,'a:Contents.txt ' ,

error_chk) ;
If error_chk = 0 then
begin

Readln(infile,name);
delete(name,l,7);
readln(infile,composition);
readln(infile,composition);
delete(composition,l,14);
readln(infile,cell_constant);
delete(cell_constant,l,22);
readln(infile) ;
readln(infile,comments);
delete(comments,l,15);
val(comments,init_temp,returncode);
readln(infile,comments);
val(comments,final_temp,returncode);
readln(infile,comments);
delete(comments,1,15);
val(comments,step,returncode) ;
readln(infile,comments);
delete(comments,1,11);
close(infile);

end else

else

132

write_data_situation(Red,white,
'Contents.Txt Not Found ');

error_chk := 1;
end

data_box(position,19,7,14,'S' ,file_name,error_chk);
end;

write_data_situation(red,white,") ;
TextBackground(Black);
TextColor(Yellow);

until error_chk <> 0;
if not «data = 'y') or (data = ,y,» then

begin
MkDir(directory);
ChDir(directory)

end;
ChDir('c:');

end;
2: begin

write_data_situation(black,yellow,
'Name of Person Setting Conditions');

data_box(position,56,7,20,'S' ,name,error_chk)
end;

3: begin
write_data_situation(black,yellow,

'Sample Description, Experimental Conditions');
data_box(position,22,9,54,'S' ,composition,error_chk)

end;

4: begin
write_data_situation(black,yellow,
'Ratio of thickness of sample to electrode area - d/A');
data_box(position,24,11,8,'S' ,cell_constant,error_chk)

end;

5: begin
write_data_situation(black,yellow,

'Starting Temperature of Experiment in Centegrade');
data_box(position,30,13,3,'I' ,data,Init_temp)

end;

133

6: begin
write_data_situation(black,yellow,

'Final Temperature of Experiment in Centegrade');
data_box(position,59,13,3,'I' ,data,final_temp)

end;
7: begin

write_data_situation(black,yellow,
'Temperature Step between Impedance Measurements');

data_box(position,74,13,3,'I' ,data,step)
end;

8: begin
write_data_situation(black,yellow,'General Comment Area');
data_box(position,19,16,58,'S' ,comments,error_chk)

end;
end;

until position = 9;
write_data_situation(red,white,

'Please Wait - Storing Initial Data in "Contents.Txt" !! ');

open_file_to_write(outfile,'a:contents.txt' ,error_chk);
open_file_to_write(arhenius,'a:'+file_name+' .SIG' ,error_chk);
writeln(arhenius,'Arhenius Data-Set 1'); writeln(arhenius);
close(arhenius);
writeln(outfile,'USER : ' ,name);
GetDate(year,month,day,dayofweek);
writeln(outfile,'Date : ' ,month,'/' ,day,'/' ,year);
trim(cornposition);
writeln(outfile,'COMPOSITION : ' ,composition);
writeln(outfile,'Cell Constant (d/A) : ' ,cell_constant);
trim(cell_constant);
val(cell_constant,constant,error_chk) ;
writeln(outfile);

= , ,init_temp);
= , ,final_temp);
= ',step);

writeln(outfile,'Initial Temp
writeln(outfile,'Final Temp
writeln(outfile,'Step
writeln(outfile,'COMMENTS
close(outfile);

, , comment s) ;

get_solartron_dataCsol_setup);
assign(logfile,'is_wkstn.log') ;
append(logfile) ;

134

delete(composition,30,100);
writeln(logfile,name: 20 ,composition, ,

close(logfile) ;
ClrScr;

end;

month, ' /' ,day, ' /' ,year, ' , ,time) ;

{==
Checks if the the temperature in the cell is at the setpoint and

not fluctuating - steady state.
--}

procedure check_steady_state(set_temp,step:integer);

var
data, volt_read
last_temperature, types,
typek, old_steady_state,setvoltage
flag, thermo_relay, period, counter, temp_difference
time_counter

begin
GotoXY (20,4); write(SET_TEMP);
temp_difference 4;
append(trans);
flag:=O;

:real;
:integer;
:integer;

period := round(integ_time*data_points/20); {delay between measure}
get_type_k(old_steady_state);
time_counter := 1;
repeat

get_type_k(temperature);
GotoXY(65,2); write(time:8);
GotoXY(19,S); write(temperature:7:2);
if time_counter = 10 then

{ Wait for Thermal Mass to }
{ heat up !}

{ * Transient Response * }

begin
writeln(trans,time:8,temperature:7:2) ;
time_counter := 1

end;
time_counter := time_counter + 1

135

until «temperature - old_steady_state) > 2)
or (abs(temperature - set_temp) < 2)

last_temperature temperature;

repeat { * Steady State Response * }
get_type_k(temperature);
if abs(temperature-last_temperature) < 0.05 then

flag := flag + 1
else

begin
for counter := 1 to 10 do

begin
GotoXY(12.(counter+12); write('
GotoXY(24.(counter+12»; write('

end; {for}
GotoXY(65,2); write(time:8);
flag := 1;
last_temperature := temperature

end; {else}
GotoXY (12,FLAG+12); write(temperature:7:2);

,) ;
,) ;

GotoXY(24,FLAG+12); write(ABS(temperature-LAST_temperature) :4:3);
for counter := 1 to period do

begin
get_type_k(temperature);
GotoXY(65,2); write(time:8);
GotoXY(19,6); write(temperature:7:2);
Delay(1000) ;

end;
writeln(trans,time:8,temperature:8:2);

until (flag = 10);
gotoXY(24,24); write(temperature:7:2);

{ heat up !}

{ changed 1 seconds}

WRITEln(OUTFILE,time:8,' , ,set_temp,' , ,temperature:10:3);
close(trans);

end;

{==
Combines the procedures check_steady_state and impedance_measure to
step through the temperature range and make impedance measurements.

--}

136

procedure make_measurement;

var
setvoltage, temp_offset
setvoltage_str
time_ss
temp_ss
hour_ss, minute_ss, second_ss, secl00
step_number,j,k
sst

:real;
:strng;
:array[1 .. 100] of strngl;
:array[l .. 100] of real;
:word;
: integer;
:text;

begin
open_file_to_write(sst,'a:steadyst.ate' ,j);
open_file_to_write(trans,'a:trnsient.res' ,j);
close(trans);
writeln(sst,' Start End dT ');
repeat

screen_file('therrnal.scr');
TextBackground(Black);
TextColor(White);
step_number:= 0; { dT in cell and setpoint }
temp_offset := 0.86202+(0.88468+(7.4616e-3+(-81.76e-6+

(421.72e-9 - 816.4e-12* init_ternp)*init_temp)*
init_temp)*init_temp)*init_temp;

setvoltage := (temp_offset * 0.01) + 2.5 ;
str(setvoltage:6:3, setvoltage_str);
setvoltage_str:= concat('SEL 2;VOLT' ,setvoltage_str,';' ,crlf);
output(setvoltage_str,multifunc);
output(crlf,multifunc);
create_isothermal_filenarne(init_temp) ;
for j:=l to step_number do

begin
GotoXY(38,6+j);
write(time_ss[j]:8);
g.otoxy (48, 6+j); write (temp_5s [j] : 7: 2) ;

end;
if (init_temp <> final_temp) or (init_temp <> 20) then

check_steady_state(init_temp,step);
get_type_k(start); {*}

137

impedance_measure;
writeln(sst,start:l0:3,final:l0:3,(start-final):10:3);
step_number := step_number + 1 ;
init_ternp := init_temp + step;
get_type_k(ternp_ss[step_number]);
time_ss[step_number] := time;
delay(2000)

until init_temp > final_temp;
close(sst);
setvoltage := 0
str(setvoltage:6:3, setvoltage_str);
setvoltage_str:= concat('SEL 2;VOLT' ,setvoltage_str,';' ,crlf);
output(setvoltage_str,multifunc);
output(crlf,rnultifunc) ;
append(logfile);
writeln(logfile,'Ended' :50,time);
close(logfile) ;
if final_temp = init_temp then

end;

begin
erase(sst);
erase(trans);
erase (arhenius)

end;

{==
Option 6: GPIB Communication, this is a simplified version of a user

friendly communication program
--}

procedure hpterm;

var
data, CUT_DATA : bus_string;
device, solartron, flag, j : integer;
TEMP : STRING [5] ;
TMP :CHAR;
MAGNITUDE, PHASE, FREQUENCY :REAL;

procedure clear_all;

begin
ABORTIO;
clear(16);
clear(30);
clear(24);
clear(23);
device 24;

end;

begin
solartron := 28;
flag:=O;
clrscr;
repeat

write(IHPTERM> I);
read(device,data) ;
case device of

-1 clear_all;
-2 begin

device := status;

138

writeln(IError check
device := errcheck;
writeln(IError check

-3
end;

begin
write('HPTERM spoll> I);
read(device,data);

device);

device)

device := spoll(device);
writeln(lthe serial poll is 1 ,device) ;

end;
end;

if device = 1 then
flag:=l

else
begin

case device of
16, 28 Temp

Temp
TEMP

23
24

{#10 LF}
{#13 CR}

- crlf;
:= 1 ; 1 +#10;
- 1 ;'+crlf;

139

end;
output(data+ternp,device);
'iiriteln;
'iiriteln(' Sent > ' ,data+temp);
enter(DATA,DEVICE);
WRITELN('Recieved> ' ,data);

end;
until flag=l;

End;

{============================
The Main Body of the Program
----------------------------} begin

DirectVideo := False; { Will not write directly to Screen}
clrscr;
screen_file('intro.pck');
initialize_alI_devices;
readln;
clrscr;
repeat

Screen_file('c_menu_1.scr');
init_temp := 20; final_temp:= 20; step := 20;
textbackground(lightgray); textcolor(blue);
gotoXY(56,10); write(sol_setup);
gotoxy(40,23);
ch := Readkey;
write(' '+ch+' ,);
case ch of

, l' , , s' , , S ' begin

, 2' ,'c' , 'C'

repeat
gotoXY(56,10) ;
ch := ReadKey;
write(ch);

until (ch > #48) and (ch < #58);
sol_setup := ch ;
if ch = '6' then ch := '1' {Stop Prog*}

end;
Initialize_solartron(sol_setup) ;

End.

'3' ,'n' ,'N'

'4' ,'t' ,'T'

140

begin
get_initial_data(init_temp,final_temp,step);
make_measurement;
clrscr; writeln('Operation Successful')

end;

, 5' , ' g' " G ' HPTERM ;
end;

until (ch = 'e') or (ch = 'E') or (ch = '6');
textbackground(Blue); textcolor(white);
clrscr;

141

Data-Analyze Code

The flow chart in Figure 3.16 describes the Data-Analyze source code. Non-

standard Turbo Pascal procedures for file management and graphics are either found

in the units described in the next section or in the HGRAPH routines. The HGRAPH

routines used in this program are summarized here and the interested reader is referred

to the HGRAPH user's manual.

{

HGRAPH Routines Called by Data-Analyze Program

INIPLT(Unit, Rotation, Scalefactor)

The first routine INIPLT, initializes the graphics device defined by
Unit and the second and third arguments control the angle of Rotation
of the plot and the Scalefactor.

GRAPHBOUNDARY(x1, x2, y1, y2);

The routine GRAPHBOUNDARY defines the viewport area of the device to
display the graph where (x1,y1) define the lower left corner and
(x2,y2) define the upper right corner.

SCALE(x1, x2, y1, y2)

This SCALE routine defines the transformation of input data values to
the device coordinates. (x1,y1) is mapped onto the lower left
corner of the GraphBoundary and (x2,y2) is mapped to the top right
corner of the GraphBoundary.

AXIS(xtic,xsubtic,xfrmt,xtitle,xsize,ytic,ysubtic,yfrmt,ytitle,ysixe)

Various procedures with the format shown above are used to draw a set
of axes. xtic defines the interval for each displayed tick mark and
number. The xsubtic controls the number of subtics displayed. The
format of the axis numbers is controlled by xfrmt. The size of the

142

axis label and the label are defined by xsize and xtitle. The
arguments for y have the same function as the x arguements.

SMOOTH(X ,Y ,N ,COL ,SYM ,SIZE ,NUM ,LINE)
POLYLINE(X ,Y ,N ,COL ,SYM ,SIZE ,NUM ,LINE)

The procedure SMOOTH draws raw data and a spline curve through the
data while POLYLINE draws the data but connects each point with a
straight line. X and Yare real arrays with N data points, and the
COLor, SYMbol, SIZE and LINEtype are controlled by inputing integers
between 1-10. NUM controls the number of data points displayed on
the device.

JUSTIFYSTRING(X, Y, CAPTION, ANGLE, SIZE, XJUS, YJUS)

X and Y define the location on the plotting device to write a CAPTION
controlled by SIZE and ANGLE and left, right, top, bottom and
centered to the define location with XJUS and YJUS.

Data collect source code

{

SOURCE CODE FOR THE DATA ANALYSIS MODULE
--- }

{$R-} {Range checking off}
{$B-} {Boolean complete evaluation on}
{$S+} {Stack checking on}
{$I+} {I/O checking on}
{$N-} {No numeric coprocessor}
{$M 65500,16384,655360}

Program analyses(input,output);

Uses
hgrglb,
hgrlow,
hgrlin,

{HGRAPH units}

143

hgraxi,
hgrstr,
hgrlgn,
edtool,
getfiles,
math,
crt,

{Units described in next section}

dos;

type
fnt = string[2] ;
strng = string [14] ;

= string [22] ;
= string[120] ;

strng22
pltstring
step_array
count_array
conunent_array
legends

= array [1. .8] of real;

const
permittivity
bId
IbId
cmplx
drft
dplx
grk
scrpt
up
dn

VAR

= array [1. .10]
= array [1. .10]
= array [1. .10]

real=8.854e-14;
fnt=~F+)6) ;
fnt=~F+) 7' ;
fnt=~F+'4' ;
fnt=~F+'O) ;
fnt=~F+' 2' ;
fnt=~F+' A' ;
fnt=~F+' 8' ;
Char=~U;

char=~D;

infile, outfile
i, j , xmark, ymark, tau

of integer;
of pltstring;
of legend;

{define fonts}

counter,file_counter, files_processed, DEVICE_FLAG,
num_point
in_name, out_name, files_to_fix
dummy
date, legend, temperature, name, title, xtitle,

: TEXT;
INTEGER;

: byte;
: STRNG;
strng22;

144

ytitle, ytitle2, subtitle, resistance, capacitance,
cell_const, yllegend, y2legend, plotyl, ploty2 : pltstring;
data_label
freq, mag, phase, lfreq, x, y , yc_fit, xc fit
xfreq, yfreq
cell_constant, plot_scale
choice
files_to_analyze
ch, plot_alI_files, plot_labels

conunent_array ;
data_array;
step_array;

: real;
: word;

file_to_analyze;

mnx, mny, mny2, mxx, mxy, mxy2, xstp, ystp, y2stp
: char;
: real;

count_array;
: legends;

xi, yi
data_legend

{==
Read contents. txt file and data file for raw data

{--}
PROCEDURE getfile_names(var counter:byte);
var

x , Y
xl, x2, y1, y2
first

: integer;
:Byte;
: string [17] ;
:Dirstr;
:Namestr;
:Extstr;

D
N
E

ans

begin
{$I-}

repeat

: char;

files_to_Analyze[9] := files_to_Analyze[counter];
FSplit (files_to_Analyze[counter], D, N, E);
assign (infile,d+'contents.txt'); {Read Contents file}
reset (infile);
if IORESULT = 0 then

begin
readln(infile,name) ;
readln(infile,date);
readln(infile,subtitle);

145

read(infile,dummy);
readln(infile,cell_constant);
Close(infile);
subtitle:=concat(cmplx+subtitle);
name:=concat(cmplx+name);
date:=concat(cmplx+date);
if cell_constant <> 1 then
begin

str(cell_constant:6:4,cell_const);
cell_const:=concat(cmplx+'Ko = '+cell const+' fcm')

end
else cell_const

end
.=" . . ,

else
begin

subtitle := bId; name := cmplx;
date := cmplx; cell_const := '1';
cell constant := 1;

end;
{Read Raw Data File}

open_file_to_read(infile,files_to_analyze[9],x);
reset(infile);
readln(infile,first,freq[l]);
readln(infile);
x : = IOResul t ;
str(freq[l] :5:2,N);
temperature := ";
if freq[l] <> 1 then

temperature := concat(cmplx+'Temp: '+N+' '+grk+#39+cmpIx+'C')
i := 0;

repeat
inc (i)
readln(infile, freq[i], mag[i], phase[i]);
x := IOResuIt ;

until eof(infile) or (x <> 0);
if (x <> 0) or (i = 1) or (freq[l] = 0) then

begin
for y := counter to 5 do

files_to_analyze[y] := files_to_analyze[y+l] ;

146

files_to_analyze[9] := 'INVALID DATA FILE' +
files_to_analyze[9]

Beep; Beep;
write_data_situation(red, white, files_to_analyze[9]);
delay(1000);
dec (file_counter);

End;
close(infile);
if counter = file_counter then counter := counter - 1
until «x = 0) and (i > 1)) or (counter = 0);
{$I+}

end;
{==

Gets the raw data and plots it
{--}
procedure draw_graphs;
var

max_x, min_x, min_y, max_y, min_y2, max_y2,
xstep, ystep, y2step, Ko, minix, maxix : real;

{==
Routines draw to plot data on linear and log plots

{--}
procedure plot_it(j:integer; title, xtitle, ytitle, ytitle2, name,

subtitle,date, temperature pltstring
x, y1, y2 : data_array; i : integer);

type
string4

var
xtype, ytype, y2type
angle
title_col, subtitle_col, name_col, date_col,
temperature_col, xtitle_col, ytitle_col, ytitle2_col,
device, data_col, data_symbol, line_type, xsubtic,
ysubtic, y2subtic
chr

{-----------------------------}
{ Linear X and Linear Y plot }

=string[4] ;

:pltstring;
: integer;

:byte;
: char;

{-----------------------------}
procedure Plot_LinY_LinX;
begin

14i

if (choice = 1) or (choice = 3) or (choice = 9) then
begin

GRAPHBOUNDARY(2550,7450,1100,6000);
SCALE(min_x,rnax_x,rnin_y,max_y);
if plot_alI_files = 'N' then

end
else

begin
smooth(xc_fit,yc_fit,150,l,10,O,O,O);
Polyline(xfreq,yfreq,8,l,O,4,nurn_point,9) ;
xmark := iscrx(xfreq[tau]) ;
ymark := iscry(yfreq[tau]) + 150 ;
justifystring(xmark,ymark,Dumrny,O,2,center,base)

end;

begin
GRAPHBOUNDARY(2000,8000,l100,6000);
SCALE(min_x,max_x,min_y,max_y);

end;
AXIS(xstep,xsubtic,'8.6',xtitle,3,ystep,ysubtic,'8.6' ,ytitle,3);
TAXIS(xstep,xsubtic,'O'," ,3,ystep,ysubtic,'0' ," ,3);}
polyline(x,yl,i,data_col,data_syrnbol,2,nurn_point,line_type);

end;

{-----------------------------}
{ Log X and Linear Yl Plot }
{-----------------------------}
procedure Plot_LinY_logX(ydata : data_array;i: integer;

rnin_y, rnax_y, ystep : real;
ysubtic : byte; ytitle : pltstring);

begin
GRAPHBOUNDARY(1800,8200,1200,6100) ;
SCALE(rnin_x,rnax_x,min_y,rnax_y);
if choice = 16 then

LXAXIS(xstep,xsubtic,'7',xtitle,3,ystep,ysubtic,'8.0' ,ytitle,3)
else

148

LXAXIS(xstep,xsubtic,'7',xtitle,3,ystep,ysubtic,'8.6' ,ytitle,3);
TLXAXIS(xstep,xsubtic,'O',' ',3,-ystep,ysubtic,'7' ,ytitle,3);
LXAXIS2(xstep,xsubtic,'7' ,xtitle,3,ystep,ysubtic,'O' ," ,3);
polyline(x,ydata,i,data_col,data_symbol,2,num_point,line_type);

end;

{-----------------------------}
{ Log Y and Linear X Plot }
{-----------------------------}
procedure Plot_LogY_LinX;
begin

GRAPHBOUNDARY(1800,8200,1200,6100);
SCALE(min_x,max_x,min_y,max_y) ;
LAXIS(xstep,xsubtic,'8.6' ,xtitle,3,ystep,ysubtic,'7' ,ytitle,3);
if choice = 13 then

begin
SCALE(min_x,max_x,min_y,max_y) ;
smooth(xc_fit,yc_fit,150,l,10,O,O,O);
line_type := 9

end;
polyline(x,y1,i,data_col,data_symbol,2,num_point,line_type);

end;

{-----------------------------}
{ Log X and Log Y1 Plot }
{-----------------------------}
procedure Plot_LogY_logX(ydata : data_array;i: integer;

min_y, max_y,ystep : real;
ysubtic : byte; ytitle : pltstring);

begin
GRAPHBOUNDARY(1800,8200,1200,6100);
SCALE(min_x,max_x,min_y,max_y);
LLAXIS(xstep,xsubtic,'7',xtitle,3,ystep,ysubtic,'7' ,ytitle,3);
polyline(x,yl,i,data_col,data_symbol,2,num_point,line_type);

end;

{--
Log X and Log Yl and log Y2 Plot

149

---}
procedure Plot_LogY2_logy1_logX;
var

I : integer ;
begin

GRAPHBOUNDARY(1800,8200,1200,6100);
SCALE(min_x,rnax_x,rnin_y,max_y);
LLAXIS(xstep,xsubtic,'7' ,xtitle,3,ystep,ysubtic,'7' ,ytitle,3);
polyline(x,y1,i,data_col,data_syrnbol,2,num_point,line_type);
GRAPHBOUNDARY(1800,8200,1200,6100);
SCALE(min_x,rnax_x,rnin_y2,rnax_y2);
LogY2Axis(xstep,xsubtic,'7' " ',3,y2step,y2subtic,'7',ytitle2,3);
if plot_alI_files = 'N' then

polyline(x,y2,i,data_col+l,data_syrnbol+l,2,num_point,line_type+1)
else

polyline(x,y2,i,data_col,data_syrnbol,num_point,1,line_type);
end;

{-----------------------------}
{ Lin X and Linear Y1 and Y2 }
{-----------------------------}
procedure Plot_LinY2_LinY1_LinX;

begin
GRAPHBOUNDARY(2000,8000,1100,6000);
SCALE(min_x,rnax_x,rnin_y,max_y);
AXIS(xstep,xsubtic,'8.6',xtitle,3,ystep,ysubtic,'8.6' ,ytitle,3);
srnooth(x,y1,i,data_col,data_syrnbol,2,num_point,line_type);
polyline(x,y1,i, 2, 2, 1, 1, 2); {Draw data curve}
SCALE(min_x,rnax_x,rnin_y2,rnax_y2);
srnooth(x,y2,i,data_col+1,data_syrnbol+1,2,num_point,line_type+1);

end;

{-----------------------------}
{ Log X and Linear Y1 and Y2 }
{-----------------------------}
procedure Plot_LinY2_LinY1_LogX;

begin

150

GRAPHBOUNDARY(1800,8200,1200,6100);
SCALE(min_x,max_x,min_y,max_y);
LXAXIS(xstep,xsubtic,'7',xtitle,3,ystep,ysubtic,'8.6' ,ytitle,3);
TLXAXIS(xstep,xsubtic,'O' ," ,3,-ystep,ysubtic,'7' ,ytitle,3);
polyline(x,yl,i,data_col,data_symbol,2,num_point,line_type);
SCALE(min_x,max_x,min_y2,max_y2);

LXAXIS2(xstep,xsubtic,'7' ,xtitle,3,y2step,y2subtic,'8.6' ,ytitle2,3);
if plot_alI_files = 'N' then

polyline(x,y2,i,data_col+l,data_symbol+l,2,num_point,line_type+l)
else

polyline(x,y2,i,data_col,data_symbol,num_point,1,line_type);
end;

{--}
{ Write pre-set Graph Settings for Window 1
{--}
procedure write_default_data;

begin
screen_file('grp_setl.scr');
TextBackground(red);
TextColor(white);
GotoXY(30,6);writeln(device);
GotoXY(60,6);writeln(plot_scale:3:2);
GotoXY(5,8); trim(title); writeln(title);
GotoXY(77,8); writeln(title_col);
GotoXY(5,10); trim(subtitle); writeln(subtitle);
GotoXY(77,10); writeln(subtitle_col);
GotoXY(5,13); trim(name); writeln(name);
GotoXY(35,13); writeln(name_col);
GotoXY(5,15); trim(date); writeln(date);
GotoXY(35,15); writeln(date_col);
GotoXY(5,17); trim(temperature); writeln(temperature);
GotoXY(35,17); writeln(temperature_col);
GotoXY(5,20); writeln(xtitle);
GotoXY(35,20); writeln(xtitle_col);
GotoXY(44,20); writeln(xtype);
GotoXY(55,20); writeln(num_point);
GotoXY(5,22); writeln(ytitle);

end;

151

GotoXY(35,22); writeln(ytitle_col);
GotoXY(44,22); writeln(ytype);
GotoXY(S5,22); writeln(plotyl);
GotoXY(S,24); writeln(ytitle2);
GotoXY(35,24); writeln(ytitle2_col);
GotoXY(44,24); writeln(y2type);
GotoXY(SS,24); writeln(ploty2);

{--}
{ Write pre-set Graph Settings for User Window 2
{----------------------------------~-----------------}
procedure write_default_data2;
begin

screen_file('grp_set2.scr');
GotoXY(21,9); writeln(min_x:l0);
GotoXy(34,9); writeln(max_x:l0);
GotoXY(47,9); writeln(xstep:l0);
GotoXY(21,11); writeln(min_y:10);
GotoXY(34,11); writeln(max_y:10);
GotoXY(47,11); writeln(ystep:10);
GotoXY(21,13); writeln(min_y2:10);
GotoXY(34,13); writeln(max_y2:10);
GotoXY(47,13); writeln(y2step:l0);

end;

{---
Simple line editor to input data for the input windows for the graph
settings, insert/overwrite modes, delete and backspace are used for
deleting, right and left arrow move within an input window and up

arrow moves back to the last window and enter moves to the next. Fl
shows the help menu.

--}

procedure get_new_setting(x,y,lenth:integer;var new_string:pltstring);
{screen location (,) }

var

152

tmp_string pltstring;
new location byte;
i,j,insert_mode integer;

begin
GotoXY(74,4); writeln(I{OVR}');
Gotoxy(x,y);
i := 1;
new_location := 0;

{INS}

tmp_string := ";

ch : = ReadKey;
insert_mode := -1;
While (ch <> #13) and (ch <> #27) and ((i-1) < lenth) and

(new_location = 0) do {carrige return}
begin

while ch = #0 do
begin

ch := ReadKey;
case ch of

#82 : begin
insert mode := -1*insert_mode;
GotoXY(74,4);
If insert_mode = 1 then writeln(I{INS}')

Else Writeln(I{OVR}');
end;

{del} #83 begin
delete(new_string,0,i+1);
new_string :=

{F1 = Help} #59

concat (tmp_string ,new_string) ;
for j :=length(new_string) to (lenth-1) do

begin GotoXY(x+j,y); write(1 I); end;
end;
begin

if lenth <> 10 then
begin

if lenth < 5 then
screen_file(lclr_help.scr ')

else screen_file(lfnt_help.scr l);
repeat ch := ReadKey until ch <> #0;

{Up,Dn arrow}

{Rt arrow}

{Lt arrow}

153

write_default_data;
end;

end;
#72,#88 : begin

#77

new_location 1
end;

begin
tmp_string := new_string;
delete(tmp_string,i+l,lenth);
delete(new_string,O,i+l);
new_string : =

concat(tmp_string,new_string) ;
j := lengthCnew_string);
If (i <= lenth) and (i <= j) then

i := i + 1

end;
#75 begin

end;

if i > 1 then i := i - 1 ;

delete(tmp_string,i,lenth);
delete(new_string,O,i) ;
new_string :=

concat(tmp_string,new_string);
end;

GotoXY(x,y);
write(new_string);
GotoXY(x+i-1,y);
if new_location = ° then ch := ReadKey;
if ch = #13 then new location := 1;

end;
if new location = ° then
begin
if insert_mode = 1 then

begin
if ch <> #8 then {backspace}

begin
tmp_string := concat(tmp_string,ch);
delete(new_string,lenth,l);
delete(new_string,O,i);

end;

154

If I <> lenth then
i := i + 1

end
else

begin

end
else

begin

if i > 1 then i := i - 1 ;
delete(trnp_string,i,lenth) ;
delete(new_string,O,i+l)

end;

if ch <> #8 then
begin

i := i + 1;

{backspace}

trnp_string := concat(trnp_string,ch);
delete(new_string,O,i)

end
else

begin
if i > 1 then i := i - 1 ;
delete(trnp_string,i,lenth) ;
delete(new_string,0,i+1)

end;
end;

new_string := concat(trnp_string,new_string);
GotoXY(x,y);
writeCnew_string);
for j :=length(new_string) to (lenth-1) do

wri te C I I);

GotoXYCx+i-l,y);
ch := ReadKey;

end;
end;
if ch = #0 then ch := readKey;
trirn(new_string);

155

{---
Labels the graph for all defined variables through the Graph Setting

windows and Graphic window

--}
procedure label_graph
var

count:integer;
begin

end;

if (plot_alI_files = 'N') then
begin

coltyp(title_col) ;
justifystring(5000,6800,title,O,4,center,center);
coltyp(subtitle_col);
justifystring(5000,6400,subtitle,O,2,center,center)

end
else

if (plot_labels = Iyl) then
begin

end;

coltyp(narne_col);
justifystring(7200,500,narne,O,2,left,base);
coltyp(date_col);
justifystring(7200,300,date,O,2,left,base);
coltyp(temperature_col);
justifystring(7200,100,temperature,O,2,left,base);
justifystring(lOO,SOO,Resistance,0,2,left,base);
justifystring(100,300,Capacitance,0,2,left,base);
justifystring(100,100,Cell_const,0,2,left,base)

for count:= 1 to 10 do
justifystring(xi[count] ,yi[count] , data_label [count] ,

O,2,left,center);
for count := 1 to 8 do

reclegend(data_legend[count]) ;

{---
Determines the Plot Type string to display on the Graph Setting

Window from the graph type integer

--}

1.56

procedure determine_plot_type_string(j:integer);

begin
if (j mod 2) = 1 then xtype := 'Log' else xtype := 'Lin';
if ((j div 2) mod 2) = 1 then ytype := 'Log' else ytype := 'Lin';
if j > 6 then y2type:='Log'

else if j > 3 then y2type
else y2type := ";

if j = 8 then

end;

begin
xtype :='Log'
ytype := 'Log';
y2type := 'Log'

end;

'Lin'

{---
Determines the Plot Type from the selected integer to display on

the Graph Setting Window
--}

procedure determine_plot_type(var j:integer);
begin

j: =0;

if xtype = 'Log' then j:=j+l;
if ytype = 'Log' then j:=J+2;
if y2type ='Log' then j:=J+5;
if y2type = 'Lin' then j:=J+4;

end;

{---
Get user data for the two Graph Setting Windows

--}
procedure get_user_data;
var

position
temp
chk

integer;
pltstring;
integer;

procedure get_color(x,y,lenth:integer; var string_col:byte);

var
colour
i

begin

:pltstring;
: integer;

str(string_col,colour);

1.57

repeat
get_new_setting(x,y,lenth,colour);
val(colour,string_col,i)

until i = 0;
end;
procedure get_number(x,y,lenth:integer; var max_min:real);
var

colour
i

begin

:pltstring;
: integer;

str(max_min:10,colour);
repeat

get_new_setting(x,y,lenth,colour);
val (colour ,max_min, i)

until i = 0;
end;

{--
Autoscale function used in Window 2

---}
procedure quick_autoscaleCx,y:integer; xrange, x_array: data_array;

axis_type:pltstring; var x1,x2,xstep :real);
var

tmp
1, xmin_loc, xmax_loc
num_x_min, num_x_max

begin

pltstring;
integer;
real;

tmp := ";

get_new_setting(x,y,1,tmp) ;
if (tmp = 'y') or (tmp = ,y,) then

begin
xmin_loc := 1;
xmax_loc := i;
if position> 3 then { Selects X range to autoscale Y }

end;

begin
num_x_min := min_x;
num_x_max := max_x;

158

while xrange[xmin_loc] < num_x_min do
xmin_loc := xmin_loc + 1;

xmax_loc := xmin_loc;
while (xrange[xmax_loc] < num_x_max) and

xmax_loc := xmax_loc + 1
end;

xl x_array [xmin_loc] ;
x2 := xl ;
for 1 := xmin_loc to xmax_loc do

max_min(1,xl,x2,x_array[1]) ;

(xmax_loc < i) do

if axis_type = 'Log' then
log_autoscale(minix,maxix,xl,x2,xstep)

else autoscale(xl,x2,xstep);
write_default_data2

end;

begin {get user data }
position:=O;
write_default_data;
repeat

case position of
0: get_color(30,6,1,device);
1: begin

str(plot_scale:3:2,temp);
repeat

get_new_setting(60,6,3,temp);
val(temp,plot_scale,chk)

until chk = 0;
end;

2: get_new_setting(5,8,55,title);
3: get_color(77,8,1,title_col);
4: get_new_setting(5,10,70,subtitle);
5: get_color(77,10,1,subtitle_col);
6: get_new_setting(5,13,22,name);
7: get_color(35,13,1,name_col);

159

8: get_new_setting(5,15,22,date);
9: get_color(35,15,1,date_col);

10: get_new_setting(5,17,22,temperature);
11: get_color(35,17,1,temperature_col);
12: get_ne~_setting(5,20,22,xtitle);
13: get_color(35,20,1,xtitle_col);
14: get_ne~_setting(44,20,3,xtype);
15: get_color(55,20,1,num_point);
16: get_new_setting(5,22,22,ytitle);
17: get_color(35,22,1,ytitle_col);
18: get_ne~_setting(44,22,3,ytype);
19: get_new_setting(55,22,1,ploty1);
20: get_new_setting(5,24,22,ytitle2);
21: get_color(35,24,1,ytitle_col);
22: get_new_setting(44,24,3,y2type);
23: get_new_setting(55,24,1,ploty2);

end;
if ch = #72 then position := position - 1

else position := position + 1;
if position < 0 then position := 0;

until ch = #27;
position:=O;
write_default_data2;
repeat

case position of
0: get_number(21,9,10,rnin_x);
1: get_number(34,9,10,max_x);
2: get_number(47,9,10,xstep);
3: quick_autoscale(68,9,x,x,xtype,min_x,max_x,xstep);
4: get_number(21,11,10,min_y);
5: get_number(34,11,10,max_y);
6: get_number(47,11,10,ystep);
7: quick_autoscale(68,11,x,y1,ytype,min_y,max_y,ystep);
8: get_number(21,13,10,min_y2);
9: get_number(34,13,10,max_y2);

10: get_number(47,13,10,y2step);
11: quick_autoscale(68,13,x,y2,y2type,min_y2,max_y2,y2step);

end;
if ch = #72 then position := position - 1

160

else position := position + 1;
if ch = #59 then Beep; {Option to use Annotation}
if position < 0 then position 0;

until ch = #27;
end;

{---
Default colors to use for displaying first plot

--}
procedure initial_Iabel_colors;
begin

determine_plot_type_string(j);
title_col := 1 ; subtitle_col := 4 ; name_col := 1; date_col := 1;
temperature_col := 1 ; xtitle_col := 0; ytitle_col := 0 j

ytitle2_col := 0; data_col:= files_processed+2
data_symbol := files_processed - 1;
line_type files_processed - 1;

end;

{---
If axis type is changed, convert data to log or linear form

--}
procedure correct_data;

procedure convert_to_logex: data_array; var logx:data_array);
var

I
begin

integer;

for 1:= 1 to i do

end;
begin

logx[i] := 0.4342945*ln(x[i]);

case j of
1,5: convert_to_log(freq,x);
2: convert_to_log(mag,y1);
3: begin

convert_to_log(mag,y1);;
convert_to_log(freq,x);

end;

{i = # of data points}

end;

161

6: begin
convert_to_log(mag,y1); ;
convert_to_log(phase,y2);

end;
7: begin

convert_to_log(mag,y1); ;
convert_to_log(phase,y2);
convert_to_log(freq,x); ;

end;
end; {case of j}

{---
Dra~ the graph to the device by calling one of the plot type

procedures described above
--}

procedure dra~_to_device;

function subtic(step:real):byte;
begin

if (step >= 1) or (step <= 0) then { 10~(trunc(log(step)))}
subtic := round(step/exp(trunc(0.43443*ln(abs(step)))*ln(10)))

else
subtic := round(step/exp(trunc(0.43443*ln(abs(step))-1)*ln(10)))

{ 10~(trunc(log(step)-1))}
end;

begin
xsubtic subtic(xstep);
ysubtic subtic(ystep);
y2subtic:= subtic(y2step);
GRAPHBOUNDARY(2000,8000,1400,5600);

case j of {lsb msb}
0: Plot_LinY_LinX ;
1: Plot_LinY_logX(y1,i,min-y,max_y,ystep,ysubtic,ytitle);
2: Plot_LogY_LinX ;
3: Plot_LogY_LogX(y1,i,min-y,max-y,ystep,ysubtic,ytitle)
4: Plot_LinY2_LinY1_LinX
5: begin

end;

162

if (plotyl=)N») or (plotyl=)n») then
Plot_LinY_logX(y2,i,min_y2,max_y2,y2step,y2subtic,ytitle2)

else if (ploty2=)N») or (ploty2=)n») then
Plot_LinY_logX(yl,i,min_y,max_y,ystep,ysubtic,ytitle)

else
Plot_LinY2_LinYl_LogX

end;
8: begin

end;

if (plotyl='N') or (plotyl='n') then
Plot_LogY_logX(y2,i,min_y2,max_y2,

y2step,y2subtic,ytitle2)
else

end;

if Cploty2=)N») or (ploty2=)n») then
Plot_Logy_LogX(yl,i,min_y,max_y,

ystep,ysubtic,ytitle)
else

Plot_LogY2_LogYl_LogX

{---
Writes messages of different colors on the Graphics window

--}
procedure center_cmdCcolor:integer; d_label :pltstring);
begin

coltyp(color) ;
justifystring(5000,100,d_label,O,2,center,center);

end;

{---
Customize Graphics Screen

--}
procedure customize_screen;
var

count, symb
chr

begin

integer;
char;

if device = ° then

163

begin
center_crod(-1,' < PLEASE WAIT> ');
center_crod(1,'< "C" - COMMENT "L" - LEGEND> ');
chr := readkey;
while (chr='l') or (chr='L') or (ehr='C') or (ehr='e') do
begin

center_crod(-1,'< "C" - COMMENT "L" - LEGEND> ');
if (chr = 'C') or (chr = 'c') then

begin
repeat

{HGRAPH routine}

center_erod(1,' < PRESS F1 - FlO TO LABEL> ');
ehr := readkey;
if ehr = #0 then

begin
chr := Readkey;
if (chr > #58) and (chr < #69) then

begin

end;

count := ord(chr) - 58;
readstring(xi[count] ,yi[count] ,

data_label [count] ,0,2)
end

center_crod(-l,' < PRESS Fl - F10 TO LABEL> ');
until (chr < #59) or (chr > #69);

end
else if (chr = 'L') or (chr = '1') then

begin
repeat

center_erod(1,' < SELECT LEGEND (Fl - F10) > ');
chr := readkey;
if ehr = #0 then

begin
chr := Readkey;
if (chr > #58) and (chr < #69) then

begin
count := ord(chr) - 58;
if plot_alI_files = 'N' then symb := -2

{HGRAPH routine to}
else symb := count;

conlegend(data_legend[count],count+2,

164

{draw legends} count-l,2,1,count-l);
end

end;
center_cmd(-l,' < SELECT LEGEND (Fl - FlO) > ');

until (chr < #59) or (chr > #68);
end;

center_cmd(l,'< "C" - COMMENT
chr := readkey

end;
center_cmd(-l,'< "C" - COMMENT

end;
end;

"L" - LEGEND> ');

ilL" - LEGEND> ');

{---
Message sent on completion of graphics section: option to continue !

--}
procedure endplt_redefined(var ch :char);

begin
if device = ° then

begin
center_cmd(-l,' < PLEASE WAIT> ');
center_cmd(3,' < PRESS ANY KEY TO CONTINUE> ,)

end;
ENDPLT;
textcolor(~hite);

GotoXY(8, 15);

{Terminate HGraph}

writeln('<ESC> to Re-Calculate Data to View in Another Form');
GotoXY(10,20) ;
writeln('Press <ANY OTHER KEY> to CONTINUE Present Analysis');
ch := readkey;

end;

begin {Main Plotting Routine Body}
initial_Iabel_colors;
if plot_alI_files = 'N' then {True = Single Plot}
begin

DEVICE := 0;
INIPLT(device, normal, plot_scale);
draw_to_device;

{Initialize HGraph}

165

Label_Graph(title,name,subtitle,date,temperature) ;
customize_screen;
ENDPLT_redefined(ch);
while ch <> #27 do

{Terminate HGraph}
{change graph settings}

end

begin
device := 0;
Get_user_data;
determine_plot_typeCj);
if choice = 39 then correct_data;
INIPLT(device, normal, plot_scale); {Initialize HGraph}
draw_to_device;
Label_Graph(title,name,subtitle,date,temperature);
customize_screen;
EndPlt_redefined(ch);

end;

else if plot_alI_files = 'Y' then
begin

{Multiple plot}

device := device_flag;
if files_processed < file_counter then
begin

if files_processed = 1 then
begin

if ch = #27 then
begin

min_x ,= mnx
max_x - rnxx
xstep - xstp

end;
if ch = #13 then

begin

min_y := mny ; min_y2 := mny2 ;
max_y := rnxy ; max_y2 := rnxy2 ;

; ystep := ystp ; y2step := y2stp

mnx := min_x; mny := min_y mny2:= min_y2 ;
rnxx := max_x ; rnxy := max_y rnxy2:= max_y2 ;
xstp := xstep ; ystp := ystep ; y2stp := y2step

end;
INIPLT(device,normal, plot_scale);
if device = 0 then center_cmd(3,' < PLEASE WAIT> ,);
Label_Graph(title,name,subtitle,date,temperature) ;
draw_to_device

166

end
else

begin
SCALE(mnx,rnxx,mny,rnxy);

if choice = 13 then
begin

smooth(xc_fit,yc_fit,150,data_col,0,O,O,line_type);
polyline(x,y1,i,data_col,data_syrnbol,2,num_point,9)

end
else
if (ploty1<>IN') and (ploty1 <> 'n') then

polyline(x,y1,i,data_col,data_syrnbol,2,2,line_type)
else

begin
SCALE(mnx,rnxx,mny2,rnxy2);
polyline(x,y2,i,data_col,data_syrnbol,2,

num_point,line_type)
end;

if «(choice mod 2) = 0) or (choice = 15»
and (choice <> 16)

end;

and «ploty1 =,y,) or (ploty1 = Iyl»
and «ploty2 ='Y') or (ploty2 = ,y,» then

begin
SCALE(mnx,rnxx,mny2,mxy2);
polyline(x,y2,i,data_col,data_symbol,1,

nurn_point,line_type)
end;

end else
begin

customize_screen;
ENDPLT_REDEFINED(CH);
if ch <> #27 then

begin
device := 0;
files_processed := °
min_x := mnx ; min_y mny ; min_y2 := mny2 ;
max_x := rnxx ; max_y := rnxy ; max_y2 := rnxy2 ;
xstep := xstp ; ystep := ystp ; y2step := y2stp;

end;
end;

end;

167

Get_user_data;
device_flag := device;
mnx := min_x; mny := min_y mny2 :=

mxx := max_x ; rnxy := max_y rnxy2:=
xstp := xstep ; ystp := ystep ; y2stp
determine_plot_typeej);
if choice = 39 then correct_data;

end;

{End of Plot it}

min_y2 ;
max_y2 ;

y2step

{---
The following routines are to calculate the different forms of

presenting the magnitude, phase and frequency data of a material.
--}

{---
Determines the curve fit for the raw data and the best curve fit for

the semicircle and RC curve fit.
--}

procedure semi_circle_fitex,y:data_array;i:integer;
var xc_fit, yc_fit : data_array;
var tau: integer);

var
lsq
j,k,l,One_MHz
xc, yc, r, x_intercept, x1, x2, cap, scale

begin
scale := 1;
dummy := ";

k := I-1;
if max_y > 1e6 then scale := max_y
while freq[K] > 1e6 do k := k - 1;
One_MHz := k ;

array [1 .. 7] of real;
integer;
real;

while «x[k] > x[k+1]) and (y[k] > y[k+1])) do k:=k-1;
while «x[k] > x[k+1]) and (y[k] < y[k+1])) do k:=k-1;

if (One_MHz - k) > 5 then
begin

for j:=1 to 7 do
begin

Isq [j] .= o· ,
xfreq[j] .= 0
yfreq[j] - 0

end;
1 := k + 1;

x1 := y[k]!scaIe;
for j:= k+1 to One_MHz do

begin
x[j] := x[j]!scale;
y[j] y[j]!scale;

168

lsq[1] := lsq[1] + x[j]*x[j];
Isq[2] := Isq[2] + x[j]*x[j]*x[j];
Isq[3] := lsq[3] + x[j]*y[j]*y[j];
Isq[4] Isq[4] + x[j]*y[j];
Isq[5] := lsq[5] + y[j]*y[j];
Isq[6] lsq[6] + y[j]*y[j]*y[j];
Isq[7] := Isq[7] + x[j]*x[j]*y[j];
if y[j] > x1 then

end;

begin
x1 := y[j];
I : = j

end;

{SUM r2 }

{SUM r3 }

{SUM XY-2 }

{SUM XY }

{SUM r2 }

{SUM r3 }

{SUM yr2 }

yc Isq[4]*lsq[4] - lsq[1]*lsq[5]; {(XY)-2 - (X-2 Y-2)}
xc «lsq[S]+lsq[7])*lsq[4] -(lsq[3]+lsq[2])*lsq[5])/yc;
yc «lsq[3]+lsq[2])*lsq[4]-(lsq[6]+lsq[7])*lsq[1])!(-yc);
r O.5*scaIe*sqrt(xc*xc + yc*yc);
yc yc*scale!2;
xc xc*scaIe!2;
xfreq[S] := xc;
yfreq [S] : = -yc;
x_intercept := sqrt(r*r - yc*yc) + xc;
if max_y < x_intercept then max_y := x_intercept;
if min_y > -yc then min_y := -yc;
x[l] := scaIe*x[I];

169

yc_fi t [102] : = sqrt (r*r - exp (2*ln(abs (x [1] -xc»» + yc;
cap := yc_fit[102]/(2*pi*freq[l]*

(x [1] *x [lJ + yc_fi t [102J *yc_fi t [102] »; {ZIt I (w* I z I A2}
str(x_intercept:9,resistance);
str(cap:9,capacitance);
lsq[2] := 1/(2*pi*x_intercept*cap);
lsq[l] := le8;
for j := 1 to 150 do
begin

{relaxation frequency}
{used for frequency steps}

lsq [1] : = lsq [1J - 0,333*
exp(2.30258*trunc(0.4342945*Ln(lsq[lJ»);

yc_fit[jJ 1 + exp(2*
In(abs(x_intercept*cap*2*pi*lsq[l]»);

xc_fit[jJ := x_intercept/yc_fit[j] ;
yc_fi t [jJ : = (2*pi*lsq [1] *x_intercept*x_intercept*cap)

Iyc_fit [j] ;

end;
lsq[l] := 1; {used for frequency steps}
for j := 1 to 7 do

begin
10*lsq[l] ; lsq [1]

yfreq [j]
xfreq [jJ
yfreq [j]

:= 1+exp(2*ln(abs(x_intercept*cap*2*pi*lsq[1J»);
:= x_intercept/yfreq[j] ;
:= (2*pi*lsq[l]*x_intercept*x_intercept*cap)

Iyfreq[j] ;
if lsq[l] > lsq[2] then begin

tau := j;
if abs(yfreq[j] - y[l]) > abs(yfreq[j-1] - y[l]) then

tau := j - 1
case tau of

1 : dununy .= '10Hz'
2: dununy .= '100Hz'
3: dununy .= '1KHz'
4: dununy ,= '10KHz'
5: dununy ,= '100KHz' •
6: dununy := 'lMHz'
7: dununy - '10MHz' •

end;
lsq [2] .= lel0;

end
else

begin

end;
end;

end;
end;
if choice < 3 then

begin
resistance
capacitance

end
else

begin

liO

cmplx+'R ='+resistance+grk+' W'+cmplx;
cmplx+'C ='+capacitance+cmplx+' F'

resistance := grk+'r'+cmplx+' ='+

capaci tance

end;

for j:=1 to i do
begin
yc_fi t [j] - y [j]
xc_fi t [j] := x[j]

end ;
x_intercept .= x [i]

resistance+grk+' W'+cmplx+'/cm';
grk+'e'+cmplx+' ='+

capacitance+cmplx+' F'

{---
Takes the log of the frequency and the max and min values

--}
procedure all_max_min_and_Log_freq;
begin

end;

lfreq[j]:= O.4342945*ln(freq[j]);
max_min(j,min_y,max_y,x[j]);
max_min(j,minix,maxix,freq[j]) ;

{-- }
{ z, vs. -ZIt data calculation and axis labels}

{-- }

171

begin

end;

for j : = 1 to i do {i = # of data points}
begin

x [j] - mag[j]*cos(phase[j]*pi/180); { Z' }

y[j] .= -mag[j]*sin(phase[j]*pi/180); { ZIt }

all_max_min_and_Log_freq;
end;

min_y := 0;
semi_circle_fit(x,y,i,xc_fit,yc_fit,tau);
autoscale(min_y,max_y,ystep);
y2step := ystep;
if choice = 1 then
begin

min x min_y;
max_x max_y;
xstep ystep;
title := bld+'COMPLEX IMPEDANCE';
xtitle := bld+'Re[Z'+up+'*'+dn+'] ('+grk+'W'+bld+')';
ytitle := bld+'-Im[Z'+up+'*'+dn+'] ('+grk+'W'+bld+')';

plot_it(0,title,xtitle,ytitle,ytitle2,name,subtitle,
date,temperature,x,y,yc_fit,j)

end
else
begin

end;

log_autoscale (minix ,maxix,min_x,max_x,xstep) ;
min_y2 := min_y;
max_y2 := max_y;
title := bld+'COMPLEX IMPEDANCE FREQUENCY RESPONSE';
xtitle :=bld+'Frequency (Hz)';
ytitle := bld+'Re[Z] ('+grk+'W'+bld+')';
ytitle2 := bld+'-IM[Z] ('+grk+'W'+bld+')';
plot_it(S,title,xtitle,ytitle,ytitle2,name,subtitle,

date,temperature,lfreq,x,y,j);

{--- }

172

{ rho' vs. rho" data calculation and axis labels}
{--- }
procedure Re_Im_Resistivity;

begin
for j:= 1 to i do {i = # of data points}

begin
x[j] := (mag[j]*cos(phase[j]*pi/180»/cell_constant;
y[j] := -(mag[j]*sin(phase[j]*pi/180»!cell_constant;
all_max_min_and_Log_freq;

end;
semi_circle_fit(x,y,i,xc_fit,yc_fit,tau);
rnin_y := 0;
autoscale(min_y,rnax_y,ystep);
y2step := ystep;
if choice = 3 then

begin
min x := min_y;

:= max_y;
:= ystep;

rnax_x
xstep
title := bld+'COMPLEX RESISTIVITY';
xtitle := bld+'Re['+grk+'r'+bld+'J (, +grk+'W'+bld+'/cm)';
ytitle := bld+'-Im['+grk+'r'+ bId +'] (, +grk+'W'+bld+'/crn)';
plot_it(0,title,xtitle,ytitle,ytitle2,narne,subtitle,

date,ternperature,x,y,yc_fit,j)
end

else
begin

log_autoscale(rninix,rnaxix,min_x,max_x,xstep) ;
min_y2 := rnin_y;

end;
end;

max_y2 := rnax_y;
title := bld+'COMPLEX RESISTIVITY FREQUENCY RESPONSE';
xtitle : =bld+ 1 Frequency (Hz)';
ytitle := bld+'Re['+grk+'r'+bld+'] (I +grk+'W'+bld+'/crn)';
ytitle2:= bld+'-Im['+grk+'r'+ bld+'] (, +grk+'W'+bld+'/cm)';
plot_it(5,title,xtitle,ytitle,ytitle2,narne,subtitle,

date,temperature,lfreq,x,y,j) ;

{Resistivity}

173

{-- }
{ A' vs. All data calculation and axis labels }

{-- }
procedure Re_Im_Admittance;

begin {Admittance}
for j:= 1 to i do {i = #

begin
x [j] := cos(-phase[j]*pi/180)/mag[j];
y [j] := sin(-phase[j]*pi/180)/mag[j] ;
all_max_min_and_Log_freq;
max_min(j,min_y2,max_y2,y[j]) ;

end;
autoscale(min_y, max_y, ystep);
autoscale(min_y2, max_y2, y2step);
if choice = 5 then

begin
min x
max_x
xstep
min_y

:= min_y;
:= max_y;

ystep;
:= min_y2;

max_y := max_y2;
ystep := y2step;
title := bld+'COMPLEX ADMITTANCE';

of data

{

{

xtitle := bld+'Re[A]· (' +grk+'W'+bld+'/cm)';

points}

A' }

A" }

ytitle := bld+'-Im[A] (, +grk+'W'+bld+'/cm)';
plot_it(O,title,xtitle,ytitle,ytitle2,name,subtitle,

end
else

begin

date,temperature,x,y,mag,j)

title := bld+'COMPLEX ADMITTANCE FREQUENCY RESPONSE';
xtitle :=bld+'Frequency (Hz)';
ytitle := bld+'Re[A] (, +grk+'W'+bld+'/cm)';
ytitle2 := bld+'-Im[A] (, +grk+'W'+bld+'/cm)';
plot_it(5,title,xtitle,ytitle,ytitle2,name,subtitle,

date,temperature,lfreq,x,y,j);
end;

174

end;

{-- }
{ Sigma' VS. Sigma" data calculation and axis labels }
{-- }
Procedure Re_Im_Conductance; { \A\ <phase = (1/\Z\) <-phase }

begin {Conductance}
for j:= 1 to i do {i = # of data points}
begin

x[jJ := O.4342945*ln(cos(-phase[j]*pi/180)*cell_constant/mag[jJ);
y[j] := O.4342945*ln(sin(-phase[j]*pi/180)*cell_constant/mag[jJ);

all_max_min_and_Log_freq;
max_min(j,min_y2,max_y2,y[j]);

end;
min_y trunc(min_y);
max_y := trunc(max_y + 1);
ystep := 1;
min_y2 trunc(min_y2);
max_y2 := trunc(max_y2 + 1);
y2step := 1;

if choice = 7 then
begin

min_x
max_x
xstep
min_y
max_y
ystep
title

min_y;
max_y;
ystep;
min_y2;
max_y2;
y2step;

:= bld+'COMPLEX CONDUCTIVITY' ;
xtitle bld+'Re['+grk+'s'+up+bld+'*'+dn+']

(, +grk+'W'+bld+'/cm)';
ytitle := bld+'-Im['+grk+'s'+up+bld+'*'+dn+'J

(I +grk+'W'+bld+'/cm)';
plot_it(O,title,xtitle,ytitle,ytitle2,name,subtitle,

date,temperature,x,y,mag,j)
end

else
begin

17.5

log_autoscale(minix,maxix,min_x,max_x,xstep);
title := bld+'COMPLEX CONDUCTIVITY FREQUENCY RESPONSE' ;
xtitle :=bld+'Frequency (Hz)';
ytitle := bld+'Re['+grk+'s'+up+bld+'*'+dn+']

(I +grk+IW'+bld+'/cm), ;
ytitle2 := bld+'-Im['+grk+'s'+up+bld+'*'+dn+']

(, +grk+'W'+bld+'/cm)';
plot_it(8,title,xtitle,ytitle,ytitle2,name,subtitle,

date,temperature,lfreq,x,y,j);
end;

end;

{------------------------}
{ Log sigma versus liT }
{------------------------}
procedure Arrhenius;

var
a,b,siga,sigb,chi2 :real;

begin {Log sigma vs. l/T}
for j:= 1 to i do {i = # of data points}

begin
x [j]

y[j]
:= 1/(freq[j]+273);
:= 0.4342945*ln(mag[j]);

max_min(j,min_x,max_x,x[j]);
max_min(j,min_y2,max_y2,mag[j]);

{lIT}

{Log sigma}

end;
log_autoscale(min_y2,max_y2,min_y,max_y,ystep);
min_y2 := l/max_x - 273; max_y2 := l/min_x - 273;
autoscale(min_y2,max_y2,y2step);
autoscale(min_x, max_x, xstep);
fit(x,y,i,a,b,siga,sigb,chi2) ;
siga := abs(min_x - max_x)/150;

xc_fit[l] := min_x - siga;
yc_fit [1] := a + b*xc_fit[l];
for j := 2 to 150 do

begin
xc_fit[j] := xc_fit[j-l] + siga;
yc_fit[j] := a + b*xc_fit[j]

end;
b := -b*2.303*8.62e-5;
a := exp(a*2.3026);
str(b:7:3,resistance);
str(a:7,capacitance);

176

{ Eact = eV}

resistance := cmplx+'Eact = '+resistance+ ' eV';
capacitance := grk+'s'+cmplx+'o = ,+

capacitance+ ' /(I+grk+IWI+cmplx+'cm)1
name :=resistance;
date := capacitance;
title:= bld+IARRHENIUS';
xtitle := bld+ITI+up+l-ll+dn+' (K)I+up+l-l ' +dn;
ytitle := bld+IRe('+grk+'s'+bld+') (' +grk+'W'+bld+'cm)'+up+'-l';
ytitle2 := bld+'(C),;
plot_it(2,title,xtitle,ytitle,ytitle2,name,subtitle,

date,ternperature,x,y,freq,i);

{---}
{ M', Mit vs. Log frequency and axis labels }
{---}
Procedure Re_Im_Modulus_LFreq;

begin {Modulus}
Ko:=2*pi*permittivity/cell_constant;
for j:= 1 to i do {i = # of data points}

begin
x[j]
y[j]

-Ko*freq[j]*mag[j] *sin(phase[j] *pi/180) ; { weoZII/K }
Ko*freq[j]*mag[j]*cos(phase[j]*pi/180); {weoZ'/K}

all_max_min_and_Log_freq;
max_min(j,min_y2,max_y2,y[j]);

end;
autoscale(min_y, max_y, ystep);
autoscale(min_y2, max_y2, y2step);
semi_circle_fit(x,y~i,xc-fit,yc-fit,tau);

if choice = 9 then
begin

:= min_y;
:= max_y;

177

xstep := ystep;
title := bld+'ELECTRICAL MODULUS';
xtitle :=bld+'Frequency (Hz)';
Xtitle := bld+'Re[M]';
ytitle := bld+'Im[M]';

plot_it(O,title,xtitle,ytitle,ytitle2,name,subtitle,
date,temperature,x,y,mag,j)

end
else

begin
log_autoscale(minix,maxix,min_x,max_x,xstep);
title := bld+'COMPLEX MODULUS FREQUENCY RESPONSE';
xtitle :=bld+'Frequency (Hz)';
ytitle := bld+'Re[M]';
ytitle2 := bld+'Im[M]';
plot_it(5,title,xtitle,ytitle,ytitle2,name,subtitle,

date,temperature,lfreq,x,y,j) ;
end;

end; {Re_Im_Modulus_LFreq}

{---}
{ E', E" vs. Log frequency and axis labels }
{ Dielectric Constant }
{---}
procedure Re_Im_Dielectric_Lfreq;

begin
Ko:= 2*pi*permittivity*le15/cell_constant; {scaled by lE15 to }
for j:= 1 to i do { decrease round off error}

begin
x [j] : = (le15*sin(-phase [j] *pi/180» / (mag [j] *Ko*freq [j]) ;
y [j] : = (1e15*cos (-phase [j] *pi/180)) / (mag [j] *Ko*freq [j]) ;
all_max_min_and_Log_freq;
max_min(j,min_y2,max_y2,y[j]) ;

end;
autoscale(min_y, max_y, ystep);
autoscaleCmin_y2, max_y2, y2step);
if choice = 11 then
begin

rnin_y;
:= rnax_y;

ystep;

178

rn~n_x

rnax_x
xstep
title := bld+'RELATIVE DIELECTRIC PERMITTIVITY';
xtitle bld+'Re[k]';
ytitle := bld+'Irn[k]';
plot_it(O,title,xtitle,ytitle,ytitle2,narne,subtitle,

end
else

date,ternperature,x,y,MAG,j)

begin
log_autoscale(rninix,rnaxix,rnin_x,rnax_x,xstep);
title bld+'RELATIVE DIELECTRIC PERMITTIVITY' ;
xtitle bld+'Frequency (Hz)';
ytitle bld+'Re[k]';
ytitle2 bld+'Irn[k]';
plot_it(5,title,xtitle,ytitle,ytitle2,narne,subtitle,

end;
end;

date,ternperature,lfreq,x,y,j);

{--}
{ Loss factor vs. Log frequency and axis labels }
{--}
procedure loss_factor;

begin
Ko:= 2*pi*perrnittivity*le15!ce11_constant; {scaled by lEiS to }
for j:= 1 to i do { decrease round off error}

begin
x[j] := -cos(phase[j]*pi/180)!sin(phase[j]*pi!180);
y [j] : = x [j] ;
{x[j] := 180*arctan(y[jJ!x[j])!pi;} {to solve for loss angle}
all_max_min_and_Log_freq;
rnax_min(j,rnin_y2,rnax_y2,y[j]);

end;
autoscale(min_y, rnax_y, ystep);
autoscale(min_y2, rnax_y2, y2step);

{

179

max x := max_y;
xstep .= ystep;
title - bld+'LOSS TANGENT' ;
xtitle .= bld+'Frequency (Hz)' ;
ytitle - bld+'tan('+grk+'d ' +bld+')' ;

ytitle := grk+'d' ;}
ytitle2 - 'Try this' ;
log_autoscale(minix,maxix,min_x,max_x,xstep);
plot_it(1,title,xtitle,ytitle,ytitle2,narne,subtitle,

date,temperature,lfreq,x,y,j) ;
end;

{---}
{ Mag, Phase vs. Log frequency and axis labels }
{---}
Procedure Mag_Phase_Lfreq;

begin { freq vs. magnitude, phase}
for j:= 1 to i do {i = # of data points}

begin
x[j] := mag[j];
y [j] : = phase [j] ;
all_max_min_and_Log_freq;
max_min(j,min_y2,max_y2,y[j]);

end;
autoscale(min_y, max_y, ystep);
autoscale(min_y2, max_y2, y2step);
log_autoscale(minix,maxix,min_x,max_x,xstep);
title:= bld+'MAGNITUDE PHASE RESPONSE';
xtitle :=bld+'Frequency (Hz)';
ytitle2 := bld+'PHASE ['+grk+chr(39)+bld+']';
ytitle :=bld+'MAGNITUDE (, +grk+'W'+bld+')';;
plot_it(5,title,xtitle,ytitle,ytitle2,narne,subtitle,

date,temperature,lfreq,x,y,j) ;
end;

{---}
{ Rp, Cp vs. Log frequency and axis labels }
{---}

180

Procedure Rp_Cp;

begin
for j:= 1 to i do {i = # of data points}

begin
x [j]
y [j]

:= mag[j]/cos(phase[j]*pi/180);
:= -sin(phase[j]*pi/180)/(2*pi*freq[j]*mag[j]);

all_max_rnin_and_Log_freq;
max_min(j,rnin_y2,rnax_y2,y[j]);

end;
autoscale(min_y, max_y, ystep);
autoscale(rnin_y2, rnax_y2, y2step);
log_autoscale(minix,rnaxix,rnin_x,rnax_x,xstep);
title := bld+'FREQUENCY RESPONSE';
xtitle :=bld+'Frequency (Hz)';
ytitle := bld+'Resistance ['+grk+'W'+bld+']';
ytitle2 := bld+'Capacitance [F]';
plot_it(5,title,xtitle,ytitle,ytitle2,narne,subtitle,

date,ternperature,lfreq,x,y,j);

{---}
{ Rs, Ls vs. Log frequency and axis labels }
{---}
Procedure Rs_Ls; { RL in series }

begin
for j:= 1 to i do {i = # of data points}

begin
x [j]
y [j]

:= mag[j] *cos(phase[j] *pi/180) ;
:= mag[j]*sin(phase[j]*pi/180)/(2*pi*freq[j]);

all_max_rnin_and_Log_freq;
max_min(j,rnin_y2,rnax_y2,y[j]) ;

end;
autoscale(min_y, rnax_y, ystep);
autoscale(rnin_y2, max_y2, y2step);
log_autoscale(minix,rnaxix,rnin_x,max_x,xstep);
title := bld+'FREQUENCY RESPONSE' ;
xtitle :=bld+'Frequency (Hz)';

181

ytitle := bld+'Resistance ['+grk+'W'+bld+']';
ytitle2 := bld+'Inductance [H]';
plot_it(5,title,xtitle,ytitle,ytitle2,name,subtitle,

date,temperature,lfreq,x,y,j) ;

{-----------------------------------}
{ General purpose plot of any type }
{-----------------------------------}
Procedure Gen_Plot;

begin
for j:= 1 to i do {i = # of data points}

end;

begin
max_min(j,min_x,max_x,freq[j]);
max_min(j,min_y,max_y,mag[j]);
max_min(j,min_y2,max_y2,phase[j]) ;

end;
autoscale(min_x, max_x, xstep);
autoscale(min_y, max_y, ystep);
autoscale(min_y2,max_y2,y2step);
title := bld+'Graph' ;
xtitle :=bld+'X Axis' ;
ytitle := bld+'Y Axis' ;
plot_it(0,title,xtitle,ytitle,ytitle2,name,subtitle,

date,temperature,freq,mag,phase,i) ;

{---
Initialize device and plot types and data arrays

---}
procedure init_labels;
var

i : integer;
begin

device := 1
plotyl:='y' ;
ploty2:='y' ;
For i := 1 to 10 do
begin

xi [i] : = 0; y [i] : = 0;
data_Iabel[i] := ";

data_Iegend[i] .icol := -1;

data_legend [i] . title : = "
end;

end;

begin
num_point : = 1;

device_flag := 0;
plot_alI_files := 'N';
counter := 1;
d_choice_~indo~;

Getfile_names(counter) ;
repeat

init_Iabels;
files_processed := 1;
resistance := ";

Repeat
TextbackgroundClightgray) ;

182

{ M A I N

if plot_alI_files = 'Y' then
files_to_Analyze[9] := 'All Files!';

~rite_data_situation(Lightgray, blue,

PRO G RAM }

'Using '+ files_to_analyze[9]);
GotoXY(42,23);
TextBackground(red) ;
TextColor(WHITE);
ch := ReadKey;
if ch = #0 then

begin
ch := ReadKey;
if ch = #59 then

begin
redo_filenames Cplot_all_files, counter,file_counter,

files_to_analyze);
~rite_data_situationCRed, WHite, 'Please Wait !

Reading Data File '+files_to_analyze[counter]);
getfile_namesCcounter);

183

end;
if ch = #68 then resistance := '20';

end
else if ch <> #13 then

begin
if ch = #8 then

begin
write(ch); write(' ,);
delete(resistance,length(resistance) ,1) ;

end
else

resistance := resistance + ch;
GotoXY(42,23);
write(resistance);

end;
until (ch = #13) or (resistance = '20');
val(resistance,choice,j);
repeat

if (plot_alI_files = 'Y')
and (files_processed < file_counter) then

Getfile_narnes(files_processed)
else if plot_alI_files = 'Y' then

begin
counter := 1;
Getfile_narnes(counter)

end;
ytitle2:= ";
resistance : = " . ,
capacitance := ";

if (choice = 13) and
(copy(files_to_analyze[9] ,length(files_to_analyze[9])-2,3) <> 'SIG')

then
begin

write_data_situationCRed, white, 'Not Arhenius File');
choice 21

end;
case choice of {converts the raw freq, mag and phase as

selected through data choice window }

184

13: Arrhenius

14: Rp_Cp;

15: Rs_Ls;

16: loss_factor;

0: Mag_Phase_Lfreq;

17: Gen_Plot;

end; {case}
files_processed := files_processed + 1;

until (plot_alI_files = 'N') or

d_choice_window;
init_labels;

until choice=20;
end;

BEGIN {main program }
plot_labels := 'N';

(files_processed = file_counter + 1);

plot_scale := 1.0;
screen_file('introgrp.scr');
readln;
get_files(files_to_analyze,file_counter);

END.

repeat
draw_graphs;

until choice = 20;
TextBackground(Blue);
textcolor(white);
clrscr;

185

186

Pascal Units

GetFiles.Pas

This unit contains the routines to read, edit and write files, display introduction,

help and user input screen files created by BOX.EXE, and select files as described

by the file manager. All the window routines for the data choice window are also

included in this unit.

{$R-} {Range checking off}
{$B-} {Boolean complete evaluation on}
{$S+} {Stack checking on}
{$I-} {I/O checking on}
{$N-} {No numeric coprocessor}
UNIT GETFILES;
{--}
interface

Uses
crt,
dos,
edtool;

Type

file_to_analyze
data_array

= Array [1 .. 9] of pathstr;
= Array [1 .. 300] of real;

procedure get_files(var file_names: file_to_analyze;
var file_count:byte);

procedure Draw_box(xl,yl,x2,y2 :byte); {begin of drawing box}

procedure screen_file(scrfile:pathstr);

procedure open_file_to_read(var infile:text; file_name:pathstr;
var error_chk: integer);

187

procedure open_file_to_writeCvar outfile:text; file_name:pathstr;
var error_chk: integer);

procedure edit_fileCfile_name: pathstr);

procedure write_data_situationCtext_color, back_color: byte;
write_string: pathstr);

procedure redo_filenames(var plot_all_files:char;var counter,
file_counter:byte;var files_to_analyze : file_to_analyze);

{--}
Implementation

var
files_to_analyze : file_to_analyze;
file_counter : byte;
file_name: pathstr;

{==}
This subroutine displays packed video memory files created using
BOX.EXE, Nescatunga Software, Box 5942, Katy, TX 77450.

{--}
procedure screen_file(scrfile:pathstr);

type
pack = record

packnm Byte; {run length}
packch char; {repeated character}
packat Byte; {repeated attribute}

end;
map = record

scrch char;
scrat Byte;
end;

screen = array[1 .. 25,1 .. 80J of map;

188

anystr = string[80];

var
filevarm
packbuf
cs
ms
loadscr
filenm

file;
array[1 .. 2000] of pack;
screen Absolute $b800:0000;
screen Absolute $bOOO:OOOO;
screen;
anystr;

color boolean;
{===}
procedure checkcolor;
begin

if (Mem[OOOO:1040] and 48) <> 48
then color true
else color := false;

end;

{===}
procedure loadpacked(pfile:anystr);
{
{
{
{
{
{
{
{
{

}
This procedure loads a Packed Format screen created }
by BOX. The Packed format utilizes a run-length }
encoding scheme that must be unpacked. Each record}
in a Packed Format file is three bytes long. Byte 1 }
is the run length, i.e. the number of characters to }
repeat. Byte 2 is the character to repeat and }
byte 3 is the attribute of the character. }

}
var

ii,jj,sloc,sx,sy,nurnrec integer;

begin
sloe := 1; {SLoe is location on screen}
Assign(filevarm,pfile);
{$I-} reset(filevarm); {$i+}
if IOResult = 0 then {found good file name}

begin
blockread(filevarm,packbuf,48,nurnrec);

189

jj := 0;
while sloc < 2001 do
begin

jj := jj + 1;
for ii := 1 to packbuf[jj] .packnm do

end

begin
sy := (sloc-1) div 80 +
sx := (sloc-1) mod 80 +

loadscr[sy,sx] .scrch
loadscr[sy,sx] .scrat
sloc

end;
sloc + 1;

end;
if color then cs := loadscr

else ms := loadscr;
close(filevarm);

1; {row}
1; {column}
packbuf[jj] .packch;
packbuf[jj] .packat;

else {couldn}t find file}
begin

GotoXY(1,24);
write(}ERROR - Could not find file},

pfile,} Copy file in directory});
end;

end;

{===}
begin {Main Routine}

checkcolor;
ClrScr;
loadpacked(scrfile);

end;

{==
Opens a file to Read and returns and returns an error message if file

is not found, prevents program from crashing!
{--}
procedure open_file_to_readCvar infile:text; file_narne:pathstr;

var error_chk : integer);

begin
assign(infile,file_name);
{$I-}
reset (infile) ;
{$I+}
error_chk := IOResult;
If IOResult <> 0 then

190

{Open Data File}

write_data_situation(red,white, 'Error reading File '+file_narne);
end;

{==
Opens a file to Write and returns and returns an error message if file

is not found, prevents program from crashing!
{--}

procedure open_file_to_write(var outfile:text; file_name:pathstr;
var error_chk: integer);

begin
assign(outfile,file_name);
{$I-} rewrite(outfile);
error_chk := IOResult; {$I+}
If IOResult <> 0 then

{Open Data File}

write_data_situation(red,white, 'Error reading File '+file_narne);

end;

{==
A low level editor for files containing less than 500 lines using the

edit commands in the Unit: EDTOOLS.PAS. A backup of the file is
always made if the file is saved.

{--}
PROCEDURE edit_file(file_name:pathstr);

type

lines
page

= string [80] ;
= array [1 .. 500] of lines;

var
x
D

N
E
ans
infile, outfile
last line_number, k,
line

191

integer;
Dirstr;
Namestr;
Extstr;
char;
text;

position
: page;

integer;

{--
Displays 19 lines on screen at a time

{--}
procedure write_19_lines(line_number, last: integer);

var
i,j,k :integer;

begin
textbackground(blue);
textcolor(lightgray);
gotoxy(1, 1);
clrscr;
i := 0;
while (line_number + i <= last) and (i < 19) do

end;

begin
gotoxy(1, i+1) ;
write(line[line_number + i]);
i := i + 1 ;

end;

begin
for k := 1 to 500 do line[k] := ";

textbackground(black);
window(1,1,80,25);
clrscr;
open_file_to_read(infile,file_name,k);
fsplit(file_name,d,n,e);
file_name := fexpand(file_name);

{Open Data FIle}

192

open_file_to_write(outfile,d+'z'+n+e,k) ;
last := 0;
repeat

last := last + 1 ;
readln(infile,line[last]);
writeln(outfile,line[last]);

until eof(infile);

close(outfile);
close(infile) ;
textcolor(white);
textbackground(red) ;
gotoXY(2,25);
write(' Fl - INS ');
gotoXY(22,25) ;
write(' F4 - DEL ');
gotoXY(42,25) ;
write(' F9 - SAVE ,);
gotoxy(68,25); write(' FlO - QUIT ');
gotoXY((40-(length('Edit : '+file_name) div 2)-1) ,1);

write(' Edit: ' ,file_name,' ');
window(1,3,80,23);
ans := , ';

line_number := 1;
position := 1;
k := 1;

write_19_lines(line_number,last);
while ans <> #27 do

begin
textbackground(blue);
textcolor(WHITE);
gotoxy(l,position) ;
ptoolent(line[line_number] ,'S',80,0,k);
textbackground(blue);
textcolor(lightgray);
gotoXY(l,position); write(line[line_nurnber]);
case k of

1, 80 begin {cr or dn arrow}
if line_number < last then

begin

{esc to quit}

72

79,81

73, 71

end;

193

line_number := line_number + 1;
if position < 19 then

position position + 1
else

begin
write_19_lines(line_number-18,last);
position := 19

end;
end;

begin {up arrow}
if line_number > 1 then

line_number := line_number - 1;
if position > 1 then

position position - 1
else
begin
write_19_lines(line_number,last);
position := 1

end;
end;
begin {79 = END} {Pgdn}
if (line_number+18 < last) and (k=81) then

begin
line_number := Line_number + 18 ;
write_19_lines(line_number,last);
line_number line_number + position - 1

end
else

end;

begin {End}
line number := last;
position := 19;
write_19_lines(line_number-18 ,last)

end;

begin {Pgup}
if (line_number - (17 + position) > 0) and

(k = 73) then
begin

{F1 - INS} 59

{F4 - Del} 62

67,68

194

line_number := Line_number-(17+position);
write_19_lines(line_number,last);
line_number := line_number + position - 1

end
else
begin {Horne}

line_number := 1;
position := 1;
write_19_lines(line_number,last);

end;
end;

begin
for k := last downto line_number do

line [k+ 1] : = line [k] ;
last := last + 1 ;
line [line_number] := ";

write_19_lines(line_number-position+1,last);
end;

begin
for k := line_number to last do

line[k] := line[k+1];
line [last] : = ";
last := last - 1 ;

write_19_lines(line_number-position+1,last);
end;
begin {F9 - save, F10 - quit}

textbackground(red) ;
textcolor(white);
if k = 68 then
begin

gotoXY(25,position);
Write(' ESC: Quit without Saving ');
ans := ReadKey;

end;
If (k = 67) or Cans = #67) then
begin

gotoXY(25,position);
write(1 Please Wait - Saving File ');

end;

end ;
end;
window(1,1,80,25) ;
clrscr;

end;

195

open_file_to_write(outfile,file_nrune,k) ;
for k := 1 to last do

writeln(outfile,line[k]);
close(outfile) ;

if ans = #67 then ans := #27;
end;

{==
Subroutine draws double lined boxes for the pop up windows in

the data-choice window in Data-Analysis.
{--}
Procedure Draw_box(x1,y1,x2,y2 :byte);

var {top left corner, bottom right corner}
i : byte;

begin
GotoXY(xl,y1) ;
write(#213) ;
for i:= 2 to (x2-1) do write(#205);
write(#184) ;
for i:= 2 to (y2-1) do
begin

GotoXY(x1,i); write(#179);
GotoXY(x2,i);write(#179);

end;
GotoXY(xl,y2);
write(#212) ;
for i:= 2 to (x2-1) do write(#205);
write(#190) ;

end;

{==
Displays an informative message at the bottom of the data-choice

window e.g. INVALID DATA FILE

196

{--}
procedure write_data_situation(text_color, back_color: byte;

write_string: pathstr);
var

end;

xl, x2, yl, y2
k

begin

Byte;
integer;

xl := lo(windmin); yl
x2 := lo(windmax); y2
window(l,l,80,25);
TextBackGround(Black);
GotoXY(l,25);

hi(windmin);
hi (windrnax) ;

For k := 1 to 75 Do Write(' ,);
TextBackground(Text_color);
Textcolor(Back_color);
GotoXY(40-(length(write_string) div 2) ,25)
Write(' '+write_string+' ,) ;
window(xl,yl,x2,y2) ;

{==
File manager window is actually drawn on the screen and no a screen

file using box

{--}
Procedure first_screen;
var j : byte;
begin

highvideo;
TEXTBACKGROUND(blue);
clrscr;
textcolor(YELLOW);
WINDOW(25,l,80,9);
draw_box(l,l,55,9);
GotoXY(17,2); write('DATA FILES TO ANALYZE');
draw_box(l,3,55,9);
textcolor(white);
Window(26,4,79,8);
for j:= 1 to file_counter do

197

begin
if j < 5 then gotoxy(2,j) else gotoxy(28,j-4);
write(files_to_analyze[j])

end;
textcolor(YELLOW);
WINDOW(2,l,24,9);
draw_box(l,1,22,9);
textcolor(lightgray);
GotoXY(9,l) ;write(' HELP ');
GOtoXY(4,4) ;write('F1 - Chg Drive');
GotoXY(4,6) ;write('F4 - Edit');
GotoXY(4,3) ;write('INS - Select File');
GotoXY(4,7) ;write('ESC - Quit');

end;

{==
File manager routines to search and sort the directories and to

move and select files in the file manager
{--}
{$S-}

const
MaxDirSize = 512;

type
DirPtr = ~DirRec; {pointer
DirRec = record

Attr: Byte;
Time: Longint;
Size: Longint;
Narne: string [12] ;

end;
DirList = array[O .. MaxDirSize

var
WideDir: Boolean;
Count: Integer;
position : longint;
Path: PathStr;
Dir: DirList;

-

of type all file data}

1] of DirPtr;

198

function NumStr(N, D: Integer): String;
begin

NumStr[O] := Chr(D);
while D > 0 do
begin

NumStr[D] Chr(N mod 10 + Ord(IO'));
N := N div 10;
Dec(D) ;

end;
end;

procedure QuickSort(L, R: Integer);
var

I, J: Integer;
X, Y: DirPtr;

begin
I L' ,
J := R;
X := Dir[(L + R) div 2];
repeat

while (Dir[I]-.Name < X-.Name) do Inc(I);
while (X- .Name < Dir[J]- .Name) do Dec(J);
if I <= J then
begin

Y : = Dir [I] ;
Dir [I] : = Dir [J] ;
Dir[J] := Y;
Inc(I);
Dec(J);

end;
until I > J;
if L < J then QuickSort(L, J);
if I < R then QuickSort(I, R);

end;

procedure GetCommand;
var

I,J: Integer;

Attr: Word;
S: PathStr;
D: DirStr;
N: NameStr;
E: ExtStr;
F: File;

begin
WideDir := TRUE;
Path := FExpand(Path);

199

if Path[Length(Path)] <> '\' then
begin

Assign(F, Path);
GetFAttr(F, Attr);
if (DosError = 0) and (Attr and Directory <> 0) then

Path : = Path + '\';

end;
FSplit(Path, D, N, E);
if N = " then N :=

if E = " then E : =
Path D + N + E;

end;

procedure FindFiles;
var

F: SearchRec;
begin

Count := 0;

'*' . ,
, . *';

FindFirst(Path, ReadOnly + Directory + Archive, F);
while (DosError = 0) and (Count < MaxDirSize) do
begin

if F.Attr = $10 then F.Name := '$' + F.Name + '\'
GetMem(Dir[Count] , Length(F.Name) + 10);
Move(F.Attr, Dir[Count]-, Length(F.Name) + 10);
Inc (Count) ;
FindNext(F) ;

end;
end;

procedure SortFiles;

200

begin
if Count <> 0 then

QuickSort(O, Count - 1);
end;

procedure PrintFiles(var position:longint);
var

I, P, j, x, y: Integer;
begin

TEXTBACKGRDUND(lightgray);
textcolor(black);
WINDDW(2,ll,79,24);
ClrScr;
WINDDW(2,11,80,24);
draw_box(l,l,78,14);
WINDDW(2,ll,79,24);
J 1-,
y := 2;
x := 0;

for I := Position to Count-l do
with Dir[I]- do

begin
if not «y = 13) and (j = 5)) then

begin
if J < 5 then j
else

begin

end;

y := y + 1;
J : = 1

j + 1

x := 15 * (j-l) + 3 ;

{ begin of file writing}

if pos('$' ,name) = 1 then delete(name,l,l);
GotoXY(x,y); Write(Narne);

end;
end;

textbackground(red);
textcolor(white);
I := 40 - (length (Path) div 2);
GotoXY(i-l,l); Write(' , ,Path,' ');

201

end;

Procedure move_around;
var

I,x,y integer;
ch char;
j byte;
temp string [1] ;
S PathStr;
0 DirStr;
N NameStr;
E ExtStr;
F File;

procedure highlight_regionCx,y :integer;bg,tc:byte);
begin

TEXTBACKGROUND(bg) ;
textcolor(tc);
window(x+l,y+l0,x+13,y+l0);
clrscr;
write(Dir[i]~.narne);

end;

procedure find_directory;

begin

begin
GetCommand;
FindFiles;
SortFiles;
position
i := 0;

O· ,

x := 18; y := 2;

printfiles(position);
highlight_region(x,y,black,white);

end;

file_counter:= 1;
find_directory;
repeat

WINDDW(2,11,79,24);
ch := ReadKey;
if ch = #0 then

202

begin
highlight_region(x,y,lightgray,black);
ch := readKey;
case ch of

{F1} #59 : begin

{F4}

{Home}

{End}

#62

FSplit(Path, D, N, E);
WINDDW(2,11,79,25);
textbackground(red);
textcolor(White);
GotoXY(2,15);
for i := 1 to 76 do write(' ');
GotoXY(2, 15);
write(' New Drive or File Selection: ');
readln(path);
if Pos(':' ,Path) <> 2 then Path := D + Path
textbackground(blue);
GotoXY(1, 15);
for i := 1 to 78 do write(' ');
Find_directory;

end;
begin

FSplit(Path, D, N, E);
files_to_analyze[file_counter]:= d+Dir[i]~ .Name;
edit_file(files_to_analyze[file_counter]) ;
first_screen;
find_directory;

end;

#71 Find_Directory;

#79 begin
if count < 59 then beep {45}
else begin

if (count-59) mod 5 <> 0 then
position := (((count - 59) div 5)+1)*5

else position := ((count - 59) div 5) * 5;

{up} #72

{left} #75

{right} #77

203

i position + 54
x 3;

y 13;

printfiles(position);
end;

end;
begin

if i < 5 then beep
else

begin
i := i - 5 ;

if Y = 2 then
begin
position := position - 5;
printfiles(position)

end
else y := y - 1

end;
end;
begin

if i > 0 then
begin

end;
begin

i := i - 1

if (i mod 5) = 3 then
begin

end

x := 63 ;

if Y = 2 then
begin

position := position - 5;
printfiles(position)

end
else y := y - 1

end else
x := x - 15;

else beep;

if (i < count-1) then

{do'iffi}

{Ins}

#80

#82

204

begin
i := i + 1 ;

if (i mod 5) = 4 then
begin

end

x := 3;

if Y = 13 then
begin

position := position + 5;

printfiles(position)
end

else y := y + 1;

end else
x := x + 15;

else beep;
end;
begin

if i + 6 > count then beep
else

end;

begin
i := i + 5 ;

if Y = 13 then
begin

end

position := position + 5;

printfiles(position)

else y := y + 1;

end;

begin
If Pos('\' ,Oir[i]-. Name) = 0 then
begin
FSplit(Path, 0, N, E);

files_to_analyze[file_counter] :=d+Oir[i]- .Name;
first_screen;
file_counter

end else beep;
file_counter + 1 ;

end;
end; {case}

20.5

highlight_region(x,y,black,white) ;
end

else
begin

case ch of
#13 : begin

end; {case}

end;

FSplit(Path, 0, N, E);
if Dir[i]-.Name = '.\' then

Path := copy(Path,l,3)
else if Dir[i]-.Narne = ' .. \' then

begin

end

position := pos('.' ,path) - 2;
delete(path,position,position+14);
position := length(path);
Repeat

e := copy(path,position,l);
if (e <> '\,) and (e <> ' :') then

delete(path,position,l)
else
if e = '\, then e := ':'

position := position - 1 ;
until e = ':'

else if Pos('\' ,Dir[i]-. Name) <> 0 then
Path := 0 + Dir[i]-.Name + '*.*' ;

find_directory;

highlight_region(x,y,black,white) ;
end;
until (ch = #27) or (file_counter> 8);

end;
{esc}

{==
FIle-Manager subroutine which calls routines to find directories,

move around in the file manager and select files.

206

{--}
procedure get_files(var file_names: file_to_analyze;

begin
window(1,1,80,25); CLrScr;
file_counter := 0;
first_screen;
path : = 'c:';
move_around;
file_names := files_to_analyze;
file_count := file_counter;
window(1,1,80,25); Clrscr;

end;

var file_count :byte);

{==
Begin routines for Data Choice Window

{--}

{==
Writes first letter of string in different color for menus

{--}
procedure write_comrnand(key_color : byte; comrnandkey : pltstring;

org_color : byte; rest_of_string : pltstring);
begin

textcolor(key_color);
write(commandkey);
textcolor(org_color);
write (rest_of_string)

end;

{==
Displays data choice screen memory file

{--}
Procedure d_choice_window;
begin

window(1,1,80,25);
TextBackground(red);
TextColor(white);

screen_file('d_choice.scr');
GotoXY(42,23);

207

end;

{==
Pop up File Option window

--}
procedure redo_filenames(var plot_all_files:char;var counter,

var

file_counter:byte;var files_to_analyze : file_to_analyze);

tmp, name_length, vert_length
chr
ch
count

: integer;
: string [1] ;
: char;
byte;

{--------------------------------------
Draw window for pop up menu

--------------------------------------}
procedure draw_window(x1,y1,x2,y2:byte);
begin

textbackground(lightgray);
textcolor(black);
window(x1,yl,x2,y2);
Clrscr;
window(x1,y1,x2,y2+1);
draw_box(1,1,x2-x1+1,y2-y1+1);
draw_box(1,1,x2-xl+l,3);
gotoXY(1,3); write(#198);
gotoXY(x2-x1+1,3); write(#181);

end;

{--------------------------------------
Write options in first pop up menu

--------------------------------------}
PROCEDURE file_option_window;
begin

draw_window(1,1,20,11);
GotoXY(S,2); write('FILE OPTION');

208

GotoXY(3,4); write_cornmand(red,'R' ,black,'e-order Files');
GotoXY(3,6); write_cornmand(red,'P' ,black,'lot Type');
GotoXY(3,8); write_cornmand(red,'B' ,black,'egin AllOver');
GotoXY(3,10); write_command(red,'E' ,black,'xit');
write_data_situation(Lightgray, blue,

'Press High Lighted Charactor For Option');
end;

{--------------------------------------
Write List of selected files

--------------------------------------}
procedure list_dir_window(x1,y1,x2,y2:byte);

var count : byte;
begin

draw_window(xl,yl,x2,y2);
For count:= 1 to file_counter-l do
begin

end;

GotoXY(6,count+3);
write(files_to_analyze[count]);

end;
textcolor(red);
For count := 1 to file_counter-l do

begin
GotoXY(3,count+3); write(count,' .')

end;
textcolor(black);

{--------------------------------------
Menu for Plot Type

--------------------------------------}
procedure plot_type_window(x:char);
begin

draw_window(19,6,40,14) ;
GotoXY(8,2); write('PLOT TYPE');
GotoXY(3,4); write_command(red,'A' ,black,'ll On One Graph');
GotoXY(3,6); write_command(red,'O' ,black,'ne File One Plot');
GotoXY(3,8); write_cornmand(red,'E' ,black,'xit');
textcolor(white); textBackground(black);

209

case x of
'Y': begin GotoXY(3,4); write('All On One Graph') end;
'N': begin GotoXY(3,6); write('One File One Plot') end;

end;
end;

{--------------------------------------
Menu for Reorder files

--------------------------------------}
procedure reorder_files;
var

temp_list
ans

file_to_analyze;
char;

j ,k,l integer;

begin
write_data_situation(White, Red,

'Enter New
I := 1;
temp_list [9]

repeat

Number Order

GotoXY(4,1+4); ch := ReadKey;
if ch = #0 then ch := ReadKey

or

if (ch > #48) and (ch < #58) then
begin

write(ch);
val(ch, j ,k) ;
temp_list [j]

I := 1 + 1;

end;
if ch = #72 then 1 := I - 1

if ch = #80 then 1 := I + 1
if (ch = 'k') or (ch = 'K') then begin

file_counter := file_counter - 1;

1 := 1 + 1
end;

if I = file_counter then
begin

Beep;

K - Kill');

210

if (ch = 'f') or (ch = 'F') then
write_data_situation(White, Red,

'Press "0" if Done else Press "R" to ReOrder Files')
else

write_data_situation(Red, White,
'Make Sure Files Sequential! Press "F" if Finished');

end;
until (ch = 'f') or (ch ='F') ;
files_to_analyze temp_list;
counter := 1;

end;

begin {main routine for re_do_filenames}
Repeat

File_Dption_Window;
ch := ReadKey;

case ch of
'r' , 'R' :

begin
name_length := 20;
for tmp := 1 to file_counter-l do
if name_length < length(files_to_analyze[tmp]) then

name_length := length(files_to_analyze[tmp]);
list_dir_window(18,4,25+name_length,file_counter+9) ;
GotoXY«(name_length+8) div 2)-6,2);
write('RE-ORDER FILES');
GotoXY(3,file_counter+4);
write_command(red,'R' ,black,'e-Order Files');
GotoXY(3,file_counter+5);
write_command(red,'D' ,black,'one');
repeat

ch := ReadKey;
if (ch = 'r') or (ch = 'R') then reorder_files;
list_dir_window(18,4,25+name_length,file_counter+9);
GotoXY«(name_length+8) div 2)-6,2);
write('RE-ORDER FILES');
GotoXY(3,file_counter+4);
write_command(red,'R' ,black,'e-Order Files');
GotoXY(3,file_counter+5);

211

write_command(red,'O' ,black,'one');
if Cch = 'd') or Cch = '0') or Cch = #27) then

begin
d_choice_window;
file_option_window

end
until Cch = 'd') or (ch = '0') or (ch = #27)

end;
'b' , 'B' :

begin

end;

for count := 1 to 8 do
files_to_analyze[counter] := ";

get_filesCfiles_to_analyze,file_counter);
counter := 1;
plot_all_files:='N'

'p' ,'P' :
begin

repeat
plot_type_windowCplot_all_files);
ch := ReadKey;
if ch = #0 then ch := ReadKey;
if Cch = 'A') or (ch = 'a ') or (ch = #72) then

begin
plot_alI_files := 'Y';
plot_type_window('Y');
write_data_situation(Lightgray, Red,

'All Selected Files Plotted On The Sarne Graph');
end;

if (ch ='0') or (ch = 'oj) or (ch = #80) then
begin

if (ch = #80) then
begin

plot_alI_files := 'N';
piot_type_windowC'N');
write_data_situation(Lightgray, Red,

'Press "0" to Select File to Plot')
end

else begin

212

write_data_situation(Lightgray, Red,
'HighLight File To Plot Then Enter "E" to Exit');

plot_alI_files := 'N';
plot_type_window(IN');
if (counter < 0) or (counter> file_counter) then

counter := 1;
name_length := 20;
for tmp := 1 to file_counter-1 do
if name_length < length(files_to_analyze[tmp]) then

name_length := length(files_to_analyze[tmp]);
list_dir_window(38,11,45+name_length,file_counter+15) ;

GotoXY«(name_length+8) div 2)-9,2);
write('SELECT FILE TO PLOT');
GotoXY«(name_length+8) div 2)-2,file_counter+4);
write_command(red,IEI,black,lxit ');
repeat

TextBackGround(black);
TextColor(white);
GotoXY(S,counter+3);
write(files_to_analyze[counter]);
ch : = ReadKey;
if (ch = #0) then ch := ReadKey;
if «ch > #48) and (ch < #57»

or (ch = #72) or (ch =#80) then
begin

TextColor(Black);
TextBackGround(lightgray);
GotoXY(S,counter+3);
write(files_to_analyze[counter]);
TextBackGround(black);
TextColor(white);
if (counter> 1) and (ch = #72)

then counter := counter - 1;
if (counter < file_counter-1) and (ch = #80)

then counter := counter + 1;
if «ch > #48) and (ch < #57» then
begin

val(ch,counter,tmp);
if (tmp = 0) and

end;

end;

213

(counter < file_counter) then
begin

GotoXY(6,counter+3);
~rite(files_to_analyze[counter])

end
end;

end;
until (ch = #27) or (ch = 'e') or (ch ='E');
ch := 'a';
~rite_data_situation(Red, WHite,

'Reading Data File '+files_to_analyze[counter]);
d_choice_~indo~;

file_option_windo~;

end;
until Cch='e') or (ch = 'E') or (ch = #27);
d_choice_windo~;

ch 'a';
end;

until (ch = 'e') or (ch = 'E') or (ch = 'B') or

d_choice_~indo~;

end;

begin
end.

(ch = 'b') or (ch = #27);

214

Math.Pas

This unit contains the algorithms to determine the autoscaling routine used to

plot the data in the data analysis routine and the linear least-squares routine to

determine the Arrhenius variables.

{$R-}

{$B+}
{$S+}
{$I+}
{$N-}

{Range checking off}
{Boolean complete evaluation on}
{Stack checking on}
{I/O checking on}
{No numeric coprocessor}

UNIT MATH;
{--}
interface

Uses
crt,
dos;

procedure max_min(j :integer;var xl,x2:real; x:real);

procedure autoscale(var min, max, step : real);

procedure log_autoscale(xl,x2 : real; var min, max, step

procedure fit(x,y: data_array; ndata: integer;

real);

VAR a,b,siga,sigb,chi2: real);

{--}
Implementation

{--
Determines whether xl is the minimum and and x2 is the maximum

compared to x and is assigned to it if it is not
---}

procedure max_min(j :integer;var xl,x2:real; x:real);

215

begin
If j = 1 then

begin
x2 := x;
xl := x;

end;
if x > x2 then

x2 := x
else

if x < xl then
xl := x;

end;

{--
Autoscaling Routine

Given two different numbers, this sunroutine determines the maximum
and minimum and the step between the two to give axis divisions of

1,2,3,4,5 and 10 during plotting}

--}
procedure autoscale(var min, max, step : real);
var

multiplier
flag

real;
boolean;

begin
flag : = false
max : = 1.05*max;
repeat

step := abs « max - min) / 5); {Assume 5 divisions}
if (step >= 1) or (step <= 0) then {10~(trunc(log(step)))}

multiplier exp(trunc(0.43443*ln(step))*ln(10))
else

multiplier exp(trunc(0.43443*ln(step)-1)*ln(10»;

step := trunc(step/rnultiplier) + 1;
if step > 5 then

step := 10;
step := multiplier * step
if min >= 0 then

min trunc(min/step) * step

{ 10~(trunc(log(step)-1))}

216

else { shift axis -ve }
min := ((trunc (min / step) - 1) * step);

max := min + (5 * step)
if abs(200 * step /(max + min» < 1 then

begin { checks for very small fluctuation in }
min min / 2 { data}
max := max * 2

end
else

flag := true
until flag = true;

end;

{--- }
{ Log Autoscale the axis to give divisions}
{--}
procedure log_autoscale(x1,x2 : real; var min, max, step
var

x : real;

begin

end;

min := trunc(O.43443*ln(x1»;
min min - 1;
max trunc(O.43443*ln(x2»;
if max> 0 then max := max + 1
step := 1

{--- }
{ y = mX + b linear fit }
{--}

PROCEDURE fit(x,y: data_array; ndata: integer;

real) ;

VAR a,b,siga,sigb,chi2: real);
VAR

~: integer;
wt,t,sy,sxoss,sx,st2,ss,sigdat: real;

BEGIN

sx := 0.0;
sy := 0.0;
st2 := 0.0;
b := 0.0;
FOR i := 1 to ndata DO

BEGIN
sx := sx+x[i];
sy := sy+y[i]

END;
ss := ndata;
sxoss := sx/ss;
FOR i := 1 to ndata DO

BEGIN
t : = x [i] -sxoss;
st2 := st2+t*t;
b : = b+t*y [i]

END;
b := b/st2;
a (sy-sx*b)/ss;

217

siga := sqrt((1.0+sx*sx/(ss*st2))/ss);
sigb := sqrt(1.0/st2);
chi2 := 0.0;
FOR i := 1 to ndata DO chi2 := chi2+sqr(y[i]-a-b*x[i]);
sigdat := sqrt(chi2/(ndata-2));
siga
sigb

END;

begin
End.

siga*sigdat;
sigb*sigdat

